1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43
44 #include "mtdcore.h"
45
46 /*
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
49 */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 .capabilities = BDI_CAP_MAP_COPY,
52 };
53
54 /*
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
58 */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63
64 /*
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
68 */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 BDI_CAP_WRITE_MAP),
73 };
74
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77
78 static struct class mtd_class = {
79 .name = "mtd",
80 .owner = THIS_MODULE,
81 .suspend = mtd_cls_suspend,
82 .resume = mtd_cls_resume,
83 };
84
85 static DEFINE_IDR(mtd_idr);
86
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91
__mtd_next_device(int i)92 struct mtd_info *__mtd_next_device(int i)
93 {
94 return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97
98 static LIST_HEAD(mtd_notifiers);
99
100
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
105 */
mtd_release(struct device * dev)106 static void mtd_release(struct device *dev)
107 {
108 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 dev_t index = MTD_DEVT(mtd->index);
110
111 /* remove /dev/mtdXro node if needed */
112 if (index)
113 device_destroy(&mtd_class, index + 1);
114 }
115
mtd_cls_suspend(struct device * dev,pm_message_t state)116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 struct mtd_info *mtd = dev_get_drvdata(dev);
119
120 return mtd ? mtd_suspend(mtd) : 0;
121 }
122
mtd_cls_resume(struct device * dev)123 static int mtd_cls_resume(struct device *dev)
124 {
125 struct mtd_info *mtd = dev_get_drvdata(dev);
126
127 if (mtd)
128 mtd_resume(mtd);
129 return 0;
130 }
131
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)132 static ssize_t mtd_type_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134 {
135 struct mtd_info *mtd = dev_get_drvdata(dev);
136 char *type;
137
138 switch (mtd->type) {
139 case MTD_ABSENT:
140 type = "absent";
141 break;
142 case MTD_RAM:
143 type = "ram";
144 break;
145 case MTD_ROM:
146 type = "rom";
147 break;
148 case MTD_NORFLASH:
149 type = "nor";
150 break;
151 case MTD_NANDFLASH:
152 type = "nand";
153 break;
154 case MTD_DATAFLASH:
155 type = "dataflash";
156 break;
157 case MTD_UBIVOLUME:
158 type = "ubi";
159 break;
160 default:
161 type = "unknown";
162 }
163
164 return snprintf(buf, PAGE_SIZE, "%s\n", type);
165 }
166 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
167
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)168 static ssize_t mtd_flags_show(struct device *dev,
169 struct device_attribute *attr, char *buf)
170 {
171 struct mtd_info *mtd = dev_get_drvdata(dev);
172
173 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
174
175 }
176 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
177
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)178 static ssize_t mtd_size_show(struct device *dev,
179 struct device_attribute *attr, char *buf)
180 {
181 struct mtd_info *mtd = dev_get_drvdata(dev);
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)mtd->size);
185
186 }
187 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
188
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)189 static ssize_t mtd_erasesize_show(struct device *dev,
190 struct device_attribute *attr, char *buf)
191 {
192 struct mtd_info *mtd = dev_get_drvdata(dev);
193
194 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
195
196 }
197 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
198
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_writesize_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201 {
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
205
206 }
207 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
208
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)209 static ssize_t mtd_subpagesize_show(struct device *dev,
210 struct device_attribute *attr, char *buf)
211 {
212 struct mtd_info *mtd = dev_get_drvdata(dev);
213 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
214
215 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
216
217 }
218 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
219
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)220 static ssize_t mtd_oobsize_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct mtd_info *mtd = dev_get_drvdata(dev);
224
225 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
226
227 }
228 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
229
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)230 static ssize_t mtd_numeraseregions_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232 {
233 struct mtd_info *mtd = dev_get_drvdata(dev);
234
235 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
236
237 }
238 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
239 NULL);
240
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)241 static ssize_t mtd_name_show(struct device *dev,
242 struct device_attribute *attr, char *buf)
243 {
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245
246 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
247
248 }
249 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
250
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)251 static ssize_t mtd_ecc_strength_show(struct device *dev,
252 struct device_attribute *attr, char *buf)
253 {
254 struct mtd_info *mtd = dev_get_drvdata(dev);
255
256 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
257 }
258 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
259
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)260 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
261 struct device_attribute *attr,
262 char *buf)
263 {
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
267 }
268
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)269 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
270 struct device_attribute *attr,
271 const char *buf, size_t count)
272 {
273 struct mtd_info *mtd = dev_get_drvdata(dev);
274 unsigned int bitflip_threshold;
275 int retval;
276
277 retval = kstrtouint(buf, 0, &bitflip_threshold);
278 if (retval)
279 return retval;
280
281 mtd->bitflip_threshold = bitflip_threshold;
282 return count;
283 }
284 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
285 mtd_bitflip_threshold_show,
286 mtd_bitflip_threshold_store);
287
288 static struct attribute *mtd_attrs[] = {
289 &dev_attr_type.attr,
290 &dev_attr_flags.attr,
291 &dev_attr_size.attr,
292 &dev_attr_erasesize.attr,
293 &dev_attr_writesize.attr,
294 &dev_attr_subpagesize.attr,
295 &dev_attr_oobsize.attr,
296 &dev_attr_numeraseregions.attr,
297 &dev_attr_name.attr,
298 &dev_attr_ecc_strength.attr,
299 &dev_attr_bitflip_threshold.attr,
300 NULL,
301 };
302
303 static struct attribute_group mtd_group = {
304 .attrs = mtd_attrs,
305 };
306
307 static const struct attribute_group *mtd_groups[] = {
308 &mtd_group,
309 NULL,
310 };
311
312 static struct device_type mtd_devtype = {
313 .name = "mtd",
314 .groups = mtd_groups,
315 .release = mtd_release,
316 };
317
318 /**
319 * add_mtd_device - register an MTD device
320 * @mtd: pointer to new MTD device info structure
321 *
322 * Add a device to the list of MTD devices present in the system, and
323 * notify each currently active MTD 'user' of its arrival. Returns
324 * zero on success or 1 on failure, which currently will only happen
325 * if there is insufficient memory or a sysfs error.
326 */
327
add_mtd_device(struct mtd_info * mtd)328 int add_mtd_device(struct mtd_info *mtd)
329 {
330 struct mtd_notifier *not;
331 int i, error;
332
333 if (!mtd->backing_dev_info) {
334 switch (mtd->type) {
335 case MTD_RAM:
336 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
337 break;
338 case MTD_ROM:
339 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
340 break;
341 default:
342 mtd->backing_dev_info = &mtd_bdi_unmappable;
343 break;
344 }
345 }
346
347 BUG_ON(mtd->writesize == 0);
348 mutex_lock(&mtd_table_mutex);
349
350 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
351 if (i < 0)
352 goto fail_locked;
353
354 mtd->index = i;
355 mtd->usecount = 0;
356
357 /* default value if not set by driver */
358 if (mtd->bitflip_threshold == 0)
359 mtd->bitflip_threshold = mtd->ecc_strength;
360
361 if (is_power_of_2(mtd->erasesize))
362 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
363 else
364 mtd->erasesize_shift = 0;
365
366 if (is_power_of_2(mtd->writesize))
367 mtd->writesize_shift = ffs(mtd->writesize) - 1;
368 else
369 mtd->writesize_shift = 0;
370
371 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
372 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
373
374 /* Some chips always power up locked. Unlock them now */
375 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
376 error = mtd_unlock(mtd, 0, mtd->size);
377 if (error && error != -EOPNOTSUPP)
378 printk(KERN_WARNING
379 "%s: unlock failed, writes may not work\n",
380 mtd->name);
381 }
382
383 /* Caller should have set dev.parent to match the
384 * physical device.
385 */
386 mtd->dev.type = &mtd_devtype;
387 mtd->dev.class = &mtd_class;
388 mtd->dev.devt = MTD_DEVT(i);
389 dev_set_name(&mtd->dev, "mtd%d", i);
390 dev_set_drvdata(&mtd->dev, mtd);
391 if (device_register(&mtd->dev) != 0)
392 goto fail_added;
393
394 if (MTD_DEVT(i))
395 device_create(&mtd_class, mtd->dev.parent,
396 MTD_DEVT(i) + 1,
397 NULL, "mtd%dro", i);
398
399 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
400 /* No need to get a refcount on the module containing
401 the notifier, since we hold the mtd_table_mutex */
402 list_for_each_entry(not, &mtd_notifiers, list)
403 not->add(mtd);
404
405 mutex_unlock(&mtd_table_mutex);
406 /* We _know_ we aren't being removed, because
407 our caller is still holding us here. So none
408 of this try_ nonsense, and no bitching about it
409 either. :) */
410 __module_get(THIS_MODULE);
411 return 0;
412
413 fail_added:
414 idr_remove(&mtd_idr, i);
415 fail_locked:
416 mutex_unlock(&mtd_table_mutex);
417 return 1;
418 }
419
420 /**
421 * del_mtd_device - unregister an MTD device
422 * @mtd: pointer to MTD device info structure
423 *
424 * Remove a device from the list of MTD devices present in the system,
425 * and notify each currently active MTD 'user' of its departure.
426 * Returns zero on success or 1 on failure, which currently will happen
427 * if the requested device does not appear to be present in the list.
428 */
429
del_mtd_device(struct mtd_info * mtd)430 int del_mtd_device(struct mtd_info *mtd)
431 {
432 int ret;
433 struct mtd_notifier *not;
434
435 mutex_lock(&mtd_table_mutex);
436
437 if (idr_find(&mtd_idr, mtd->index) != mtd) {
438 ret = -ENODEV;
439 goto out_error;
440 }
441
442 /* No need to get a refcount on the module containing
443 the notifier, since we hold the mtd_table_mutex */
444 list_for_each_entry(not, &mtd_notifiers, list)
445 not->remove(mtd);
446
447 if (mtd->usecount) {
448 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
449 mtd->index, mtd->name, mtd->usecount);
450 ret = -EBUSY;
451 } else {
452 device_unregister(&mtd->dev);
453
454 idr_remove(&mtd_idr, mtd->index);
455
456 module_put(THIS_MODULE);
457 ret = 0;
458 }
459
460 out_error:
461 mutex_unlock(&mtd_table_mutex);
462 return ret;
463 }
464
465 /**
466 * mtd_device_parse_register - parse partitions and register an MTD device.
467 *
468 * @mtd: the MTD device to register
469 * @types: the list of MTD partition probes to try, see
470 * 'parse_mtd_partitions()' for more information
471 * @parser_data: MTD partition parser-specific data
472 * @parts: fallback partition information to register, if parsing fails;
473 * only valid if %nr_parts > %0
474 * @nr_parts: the number of partitions in parts, if zero then the full
475 * MTD device is registered if no partition info is found
476 *
477 * This function aggregates MTD partitions parsing (done by
478 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
479 * basically follows the most common pattern found in many MTD drivers:
480 *
481 * * It first tries to probe partitions on MTD device @mtd using parsers
482 * specified in @types (if @types is %NULL, then the default list of parsers
483 * is used, see 'parse_mtd_partitions()' for more information). If none are
484 * found this functions tries to fallback to information specified in
485 * @parts/@nr_parts.
486 * * If any partitioning info was found, this function registers the found
487 * partitions.
488 * * If no partitions were found this function just registers the MTD device
489 * @mtd and exits.
490 *
491 * Returns zero in case of success and a negative error code in case of failure.
492 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)493 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
494 struct mtd_part_parser_data *parser_data,
495 const struct mtd_partition *parts,
496 int nr_parts)
497 {
498 int err;
499 struct mtd_partition *real_parts;
500
501 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
502 if (err <= 0 && nr_parts && parts) {
503 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
504 GFP_KERNEL);
505 if (!real_parts)
506 err = -ENOMEM;
507 else
508 err = nr_parts;
509 }
510
511 if (err > 0) {
512 err = add_mtd_partitions(mtd, real_parts, err);
513 kfree(real_parts);
514 } else if (err == 0) {
515 err = add_mtd_device(mtd);
516 if (err == 1)
517 err = -ENODEV;
518 }
519
520 return err;
521 }
522 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
523
524 /**
525 * mtd_device_unregister - unregister an existing MTD device.
526 *
527 * @master: the MTD device to unregister. This will unregister both the master
528 * and any partitions if registered.
529 */
mtd_device_unregister(struct mtd_info * master)530 int mtd_device_unregister(struct mtd_info *master)
531 {
532 int err;
533
534 err = del_mtd_partitions(master);
535 if (err)
536 return err;
537
538 if (!device_is_registered(&master->dev))
539 return 0;
540
541 return del_mtd_device(master);
542 }
543 EXPORT_SYMBOL_GPL(mtd_device_unregister);
544
545 /**
546 * register_mtd_user - register a 'user' of MTD devices.
547 * @new: pointer to notifier info structure
548 *
549 * Registers a pair of callbacks function to be called upon addition
550 * or removal of MTD devices. Causes the 'add' callback to be immediately
551 * invoked for each MTD device currently present in the system.
552 */
register_mtd_user(struct mtd_notifier * new)553 void register_mtd_user (struct mtd_notifier *new)
554 {
555 struct mtd_info *mtd;
556
557 mutex_lock(&mtd_table_mutex);
558
559 list_add(&new->list, &mtd_notifiers);
560
561 __module_get(THIS_MODULE);
562
563 mtd_for_each_device(mtd)
564 new->add(mtd);
565
566 mutex_unlock(&mtd_table_mutex);
567 }
568 EXPORT_SYMBOL_GPL(register_mtd_user);
569
570 /**
571 * unregister_mtd_user - unregister a 'user' of MTD devices.
572 * @old: pointer to notifier info structure
573 *
574 * Removes a callback function pair from the list of 'users' to be
575 * notified upon addition or removal of MTD devices. Causes the
576 * 'remove' callback to be immediately invoked for each MTD device
577 * currently present in the system.
578 */
unregister_mtd_user(struct mtd_notifier * old)579 int unregister_mtd_user (struct mtd_notifier *old)
580 {
581 struct mtd_info *mtd;
582
583 mutex_lock(&mtd_table_mutex);
584
585 module_put(THIS_MODULE);
586
587 mtd_for_each_device(mtd)
588 old->remove(mtd);
589
590 list_del(&old->list);
591 mutex_unlock(&mtd_table_mutex);
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(unregister_mtd_user);
595
596 /**
597 * get_mtd_device - obtain a validated handle for an MTD device
598 * @mtd: last known address of the required MTD device
599 * @num: internal device number of the required MTD device
600 *
601 * Given a number and NULL address, return the num'th entry in the device
602 * table, if any. Given an address and num == -1, search the device table
603 * for a device with that address and return if it's still present. Given
604 * both, return the num'th driver only if its address matches. Return
605 * error code if not.
606 */
get_mtd_device(struct mtd_info * mtd,int num)607 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
608 {
609 struct mtd_info *ret = NULL, *other;
610 int err = -ENODEV;
611
612 mutex_lock(&mtd_table_mutex);
613
614 if (num == -1) {
615 mtd_for_each_device(other) {
616 if (other == mtd) {
617 ret = mtd;
618 break;
619 }
620 }
621 } else if (num >= 0) {
622 ret = idr_find(&mtd_idr, num);
623 if (mtd && mtd != ret)
624 ret = NULL;
625 }
626
627 if (!ret) {
628 ret = ERR_PTR(err);
629 goto out;
630 }
631
632 err = __get_mtd_device(ret);
633 if (err)
634 ret = ERR_PTR(err);
635 out:
636 mutex_unlock(&mtd_table_mutex);
637 return ret;
638 }
639 EXPORT_SYMBOL_GPL(get_mtd_device);
640
641
__get_mtd_device(struct mtd_info * mtd)642 int __get_mtd_device(struct mtd_info *mtd)
643 {
644 int err;
645
646 if (!try_module_get(mtd->owner))
647 return -ENODEV;
648
649 if (mtd->_get_device) {
650 err = mtd->_get_device(mtd);
651
652 if (err) {
653 module_put(mtd->owner);
654 return err;
655 }
656 }
657 mtd->usecount++;
658 return 0;
659 }
660 EXPORT_SYMBOL_GPL(__get_mtd_device);
661
662 /**
663 * get_mtd_device_nm - obtain a validated handle for an MTD device by
664 * device name
665 * @name: MTD device name to open
666 *
667 * This function returns MTD device description structure in case of
668 * success and an error code in case of failure.
669 */
get_mtd_device_nm(const char * name)670 struct mtd_info *get_mtd_device_nm(const char *name)
671 {
672 int err = -ENODEV;
673 struct mtd_info *mtd = NULL, *other;
674
675 mutex_lock(&mtd_table_mutex);
676
677 mtd_for_each_device(other) {
678 if (!strcmp(name, other->name)) {
679 mtd = other;
680 break;
681 }
682 }
683
684 if (!mtd)
685 goto out_unlock;
686
687 err = __get_mtd_device(mtd);
688 if (err)
689 goto out_unlock;
690
691 mutex_unlock(&mtd_table_mutex);
692 return mtd;
693
694 out_unlock:
695 mutex_unlock(&mtd_table_mutex);
696 return ERR_PTR(err);
697 }
698 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
699
put_mtd_device(struct mtd_info * mtd)700 void put_mtd_device(struct mtd_info *mtd)
701 {
702 mutex_lock(&mtd_table_mutex);
703 __put_mtd_device(mtd);
704 mutex_unlock(&mtd_table_mutex);
705
706 }
707 EXPORT_SYMBOL_GPL(put_mtd_device);
708
__put_mtd_device(struct mtd_info * mtd)709 void __put_mtd_device(struct mtd_info *mtd)
710 {
711 --mtd->usecount;
712 BUG_ON(mtd->usecount < 0);
713
714 if (mtd->_put_device)
715 mtd->_put_device(mtd);
716
717 module_put(mtd->owner);
718 }
719 EXPORT_SYMBOL_GPL(__put_mtd_device);
720
721 /*
722 * Erase is an asynchronous operation. Device drivers are supposed
723 * to call instr->callback() whenever the operation completes, even
724 * if it completes with a failure.
725 * Callers are supposed to pass a callback function and wait for it
726 * to be called before writing to the block.
727 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)728 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
729 {
730 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
731 return -EINVAL;
732 if (!(mtd->flags & MTD_WRITEABLE))
733 return -EROFS;
734 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
735 if (!instr->len) {
736 instr->state = MTD_ERASE_DONE;
737 mtd_erase_callback(instr);
738 return 0;
739 }
740 return mtd->_erase(mtd, instr);
741 }
742 EXPORT_SYMBOL_GPL(mtd_erase);
743
744 /*
745 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
746 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)747 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
748 void **virt, resource_size_t *phys)
749 {
750 *retlen = 0;
751 *virt = NULL;
752 if (phys)
753 *phys = 0;
754 if (!mtd->_point)
755 return -EOPNOTSUPP;
756 if (from < 0 || from > mtd->size || len > mtd->size - from)
757 return -EINVAL;
758 if (!len)
759 return 0;
760 return mtd->_point(mtd, from, len, retlen, virt, phys);
761 }
762 EXPORT_SYMBOL_GPL(mtd_point);
763
764 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)765 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
766 {
767 if (!mtd->_point)
768 return -EOPNOTSUPP;
769 if (from < 0 || from > mtd->size || len > mtd->size - from)
770 return -EINVAL;
771 if (!len)
772 return 0;
773 return mtd->_unpoint(mtd, from, len);
774 }
775 EXPORT_SYMBOL_GPL(mtd_unpoint);
776
777 /*
778 * Allow NOMMU mmap() to directly map the device (if not NULL)
779 * - return the address to which the offset maps
780 * - return -ENOSYS to indicate refusal to do the mapping
781 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)782 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
783 unsigned long offset, unsigned long flags)
784 {
785 if (!mtd->_get_unmapped_area)
786 return -EOPNOTSUPP;
787 if (offset > mtd->size || len > mtd->size - offset)
788 return -EINVAL;
789 return mtd->_get_unmapped_area(mtd, len, offset, flags);
790 }
791 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
792
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)793 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
794 u_char *buf)
795 {
796 int ret_code;
797 *retlen = 0;
798 if (from < 0 || from > mtd->size || len > mtd->size - from)
799 return -EINVAL;
800 if (!len)
801 return 0;
802
803 /*
804 * In the absence of an error, drivers return a non-negative integer
805 * representing the maximum number of bitflips that were corrected on
806 * any one ecc region (if applicable; zero otherwise).
807 */
808 ret_code = mtd->_read(mtd, from, len, retlen, buf);
809 if (unlikely(ret_code < 0))
810 return ret_code;
811 if (mtd->ecc_strength == 0)
812 return 0; /* device lacks ecc */
813 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
814 }
815 EXPORT_SYMBOL_GPL(mtd_read);
816
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)817 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
818 const u_char *buf)
819 {
820 *retlen = 0;
821 if (to < 0 || to > mtd->size || len > mtd->size - to)
822 return -EINVAL;
823 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
824 return -EROFS;
825 if (!len)
826 return 0;
827 return mtd->_write(mtd, to, len, retlen, buf);
828 }
829 EXPORT_SYMBOL_GPL(mtd_write);
830
831 /*
832 * In blackbox flight recorder like scenarios we want to make successful writes
833 * in interrupt context. panic_write() is only intended to be called when its
834 * known the kernel is about to panic and we need the write to succeed. Since
835 * the kernel is not going to be running for much longer, this function can
836 * break locks and delay to ensure the write succeeds (but not sleep).
837 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)838 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
839 const u_char *buf)
840 {
841 *retlen = 0;
842 if (!mtd->_panic_write)
843 return -EOPNOTSUPP;
844 if (to < 0 || to > mtd->size || len > mtd->size - to)
845 return -EINVAL;
846 if (!(mtd->flags & MTD_WRITEABLE))
847 return -EROFS;
848 if (!len)
849 return 0;
850 return mtd->_panic_write(mtd, to, len, retlen, buf);
851 }
852 EXPORT_SYMBOL_GPL(mtd_panic_write);
853
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)854 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
855 {
856 int ret_code;
857 ops->retlen = ops->oobretlen = 0;
858 if (!mtd->_read_oob)
859 return -EOPNOTSUPP;
860 /*
861 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
862 * similar to mtd->_read(), returning a non-negative integer
863 * representing max bitflips. In other cases, mtd->_read_oob() may
864 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
865 */
866 ret_code = mtd->_read_oob(mtd, from, ops);
867 if (unlikely(ret_code < 0))
868 return ret_code;
869 if (mtd->ecc_strength == 0)
870 return 0; /* device lacks ecc */
871 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
872 }
873 EXPORT_SYMBOL_GPL(mtd_read_oob);
874
875 /*
876 * Method to access the protection register area, present in some flash
877 * devices. The user data is one time programmable but the factory data is read
878 * only.
879 */
mtd_get_fact_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)880 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
881 size_t len)
882 {
883 if (!mtd->_get_fact_prot_info)
884 return -EOPNOTSUPP;
885 if (!len)
886 return 0;
887 return mtd->_get_fact_prot_info(mtd, buf, len);
888 }
889 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
890
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)891 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
892 size_t *retlen, u_char *buf)
893 {
894 *retlen = 0;
895 if (!mtd->_read_fact_prot_reg)
896 return -EOPNOTSUPP;
897 if (!len)
898 return 0;
899 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
900 }
901 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
902
mtd_get_user_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)903 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
904 size_t len)
905 {
906 if (!mtd->_get_user_prot_info)
907 return -EOPNOTSUPP;
908 if (!len)
909 return 0;
910 return mtd->_get_user_prot_info(mtd, buf, len);
911 }
912 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
913
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)914 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
915 size_t *retlen, u_char *buf)
916 {
917 *retlen = 0;
918 if (!mtd->_read_user_prot_reg)
919 return -EOPNOTSUPP;
920 if (!len)
921 return 0;
922 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
923 }
924 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
925
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)926 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
927 size_t *retlen, u_char *buf)
928 {
929 *retlen = 0;
930 if (!mtd->_write_user_prot_reg)
931 return -EOPNOTSUPP;
932 if (!len)
933 return 0;
934 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
935 }
936 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
937
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)938 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
939 {
940 if (!mtd->_lock_user_prot_reg)
941 return -EOPNOTSUPP;
942 if (!len)
943 return 0;
944 return mtd->_lock_user_prot_reg(mtd, from, len);
945 }
946 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
947
948 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)949 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
950 {
951 if (!mtd->_lock)
952 return -EOPNOTSUPP;
953 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
954 return -EINVAL;
955 if (!len)
956 return 0;
957 return mtd->_lock(mtd, ofs, len);
958 }
959 EXPORT_SYMBOL_GPL(mtd_lock);
960
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)961 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
962 {
963 if (!mtd->_unlock)
964 return -EOPNOTSUPP;
965 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
966 return -EINVAL;
967 if (!len)
968 return 0;
969 return mtd->_unlock(mtd, ofs, len);
970 }
971 EXPORT_SYMBOL_GPL(mtd_unlock);
972
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)973 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
974 {
975 if (!mtd->_is_locked)
976 return -EOPNOTSUPP;
977 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
978 return -EINVAL;
979 if (!len)
980 return 0;
981 return mtd->_is_locked(mtd, ofs, len);
982 }
983 EXPORT_SYMBOL_GPL(mtd_is_locked);
984
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)985 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
986 {
987 if (!mtd->_block_isbad)
988 return 0;
989 if (ofs < 0 || ofs > mtd->size)
990 return -EINVAL;
991 return mtd->_block_isbad(mtd, ofs);
992 }
993 EXPORT_SYMBOL_GPL(mtd_block_isbad);
994
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)995 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
996 {
997 if (!mtd->_block_markbad)
998 return -EOPNOTSUPP;
999 if (ofs < 0 || ofs > mtd->size)
1000 return -EINVAL;
1001 if (!(mtd->flags & MTD_WRITEABLE))
1002 return -EROFS;
1003 return mtd->_block_markbad(mtd, ofs);
1004 }
1005 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1006
1007 /*
1008 * default_mtd_writev - the default writev method
1009 * @mtd: mtd device description object pointer
1010 * @vecs: the vectors to write
1011 * @count: count of vectors in @vecs
1012 * @to: the MTD device offset to write to
1013 * @retlen: on exit contains the count of bytes written to the MTD device.
1014 *
1015 * This function returns zero in case of success and a negative error code in
1016 * case of failure.
1017 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1018 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1019 unsigned long count, loff_t to, size_t *retlen)
1020 {
1021 unsigned long i;
1022 size_t totlen = 0, thislen;
1023 int ret = 0;
1024
1025 for (i = 0; i < count; i++) {
1026 if (!vecs[i].iov_len)
1027 continue;
1028 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1029 vecs[i].iov_base);
1030 totlen += thislen;
1031 if (ret || thislen != vecs[i].iov_len)
1032 break;
1033 to += vecs[i].iov_len;
1034 }
1035 *retlen = totlen;
1036 return ret;
1037 }
1038
1039 /*
1040 * mtd_writev - the vector-based MTD write method
1041 * @mtd: mtd device description object pointer
1042 * @vecs: the vectors to write
1043 * @count: count of vectors in @vecs
1044 * @to: the MTD device offset to write to
1045 * @retlen: on exit contains the count of bytes written to the MTD device.
1046 *
1047 * This function returns zero in case of success and a negative error code in
1048 * case of failure.
1049 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1050 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1051 unsigned long count, loff_t to, size_t *retlen)
1052 {
1053 *retlen = 0;
1054 if (!(mtd->flags & MTD_WRITEABLE))
1055 return -EROFS;
1056 if (!mtd->_writev)
1057 return default_mtd_writev(mtd, vecs, count, to, retlen);
1058 return mtd->_writev(mtd, vecs, count, to, retlen);
1059 }
1060 EXPORT_SYMBOL_GPL(mtd_writev);
1061
1062 /**
1063 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1064 * @mtd: mtd device description object pointer
1065 * @size: a pointer to the ideal or maximum size of the allocation, points
1066 * to the actual allocation size on success.
1067 *
1068 * This routine attempts to allocate a contiguous kernel buffer up to
1069 * the specified size, backing off the size of the request exponentially
1070 * until the request succeeds or until the allocation size falls below
1071 * the system page size. This attempts to make sure it does not adversely
1072 * impact system performance, so when allocating more than one page, we
1073 * ask the memory allocator to avoid re-trying, swapping, writing back
1074 * or performing I/O.
1075 *
1076 * Note, this function also makes sure that the allocated buffer is aligned to
1077 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1078 *
1079 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1080 * to handle smaller (i.e. degraded) buffer allocations under low- or
1081 * fragmented-memory situations where such reduced allocations, from a
1082 * requested ideal, are allowed.
1083 *
1084 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1085 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1086 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1087 {
1088 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1089 __GFP_NORETRY | __GFP_NO_KSWAPD;
1090 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1091 void *kbuf;
1092
1093 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1094
1095 while (*size > min_alloc) {
1096 kbuf = kmalloc(*size, flags);
1097 if (kbuf)
1098 return kbuf;
1099
1100 *size >>= 1;
1101 *size = ALIGN(*size, mtd->writesize);
1102 }
1103
1104 /*
1105 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1106 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1107 */
1108 return kmalloc(*size, GFP_KERNEL);
1109 }
1110 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1111
1112 #ifdef CONFIG_PROC_FS
1113
1114 /*====================================================================*/
1115 /* Support for /proc/mtd */
1116
mtd_proc_show(struct seq_file * m,void * v)1117 static int mtd_proc_show(struct seq_file *m, void *v)
1118 {
1119 struct mtd_info *mtd;
1120
1121 seq_puts(m, "dev: size erasesize name\n");
1122 mutex_lock(&mtd_table_mutex);
1123 mtd_for_each_device(mtd) {
1124 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1125 mtd->index, (unsigned long long)mtd->size,
1126 mtd->erasesize, mtd->name);
1127 }
1128 mutex_unlock(&mtd_table_mutex);
1129 return 0;
1130 }
1131
mtd_proc_open(struct inode * inode,struct file * file)1132 static int mtd_proc_open(struct inode *inode, struct file *file)
1133 {
1134 return single_open(file, mtd_proc_show, NULL);
1135 }
1136
1137 static const struct file_operations mtd_proc_ops = {
1138 .open = mtd_proc_open,
1139 .read = seq_read,
1140 .llseek = seq_lseek,
1141 .release = single_release,
1142 };
1143 #endif /* CONFIG_PROC_FS */
1144
1145 /*====================================================================*/
1146 /* Init code */
1147
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1148 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1149 {
1150 int ret;
1151
1152 ret = bdi_init(bdi);
1153 if (!ret)
1154 ret = bdi_register(bdi, NULL, name);
1155
1156 if (ret)
1157 bdi_destroy(bdi);
1158
1159 return ret;
1160 }
1161
1162 static struct proc_dir_entry *proc_mtd;
1163
init_mtd(void)1164 static int __init init_mtd(void)
1165 {
1166 int ret;
1167
1168 ret = class_register(&mtd_class);
1169 if (ret)
1170 goto err_reg;
1171
1172 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1173 if (ret)
1174 goto err_bdi1;
1175
1176 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1177 if (ret)
1178 goto err_bdi2;
1179
1180 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1181 if (ret)
1182 goto err_bdi3;
1183
1184 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1185
1186 ret = init_mtdchar();
1187 if (ret)
1188 goto out_procfs;
1189
1190 return 0;
1191
1192 out_procfs:
1193 if (proc_mtd)
1194 remove_proc_entry("mtd", NULL);
1195 err_bdi3:
1196 bdi_destroy(&mtd_bdi_ro_mappable);
1197 err_bdi2:
1198 bdi_destroy(&mtd_bdi_unmappable);
1199 err_bdi1:
1200 class_unregister(&mtd_class);
1201 err_reg:
1202 pr_err("Error registering mtd class or bdi: %d\n", ret);
1203 return ret;
1204 }
1205
cleanup_mtd(void)1206 static void __exit cleanup_mtd(void)
1207 {
1208 cleanup_mtdchar();
1209 if (proc_mtd)
1210 remove_proc_entry("mtd", NULL);
1211 class_unregister(&mtd_class);
1212 bdi_destroy(&mtd_bdi_unmappable);
1213 bdi_destroy(&mtd_bdi_ro_mappable);
1214 bdi_destroy(&mtd_bdi_rw_mappable);
1215 }
1216
1217 module_init(init_mtd);
1218 module_exit(cleanup_mtd);
1219
1220 MODULE_LICENSE("GPL");
1221 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1222 MODULE_DESCRIPTION("Core MTD registration and access routines");
1223