• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/i387.h>
72 #include <asm/fpu-internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 
77 #include <asm/smpboot_hooks.h>
78 #include <asm/i8259.h>
79 
80 #include <asm/realmode.h>
81 
82 /* State of each CPU */
83 DEFINE_PER_CPU(int, cpu_state) = { 0 };
84 
85 #ifdef CONFIG_HOTPLUG_CPU
86 /*
87  * We need this for trampoline_base protection from concurrent accesses when
88  * off- and onlining cores wildly.
89  */
90 static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex);
91 
cpu_hotplug_driver_lock(void)92 void cpu_hotplug_driver_lock(void)
93 {
94 	mutex_lock(&x86_cpu_hotplug_driver_mutex);
95 }
96 
cpu_hotplug_driver_unlock(void)97 void cpu_hotplug_driver_unlock(void)
98 {
99 	mutex_unlock(&x86_cpu_hotplug_driver_mutex);
100 }
101 
arch_cpu_probe(const char * buf,size_t count)102 ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; }
arch_cpu_release(const char * buf,size_t count)103 ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; }
104 #endif
105 
106 /* Number of siblings per CPU package */
107 int smp_num_siblings = 1;
108 EXPORT_SYMBOL(smp_num_siblings);
109 
110 /* Last level cache ID of each logical CPU */
111 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
112 
113 /* representing HT siblings of each logical CPU */
114 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
115 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
116 
117 /* representing HT and core siblings of each logical CPU */
118 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
119 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
120 
121 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
122 
123 /* Per CPU bogomips and other parameters */
124 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
125 EXPORT_PER_CPU_SYMBOL(cpu_info);
126 
127 atomic_t init_deasserted;
128 
129 /*
130  * Report back to the Boot Processor during boot time or to the caller processor
131  * during CPU online.
132  */
smp_callin(void)133 static void __cpuinit smp_callin(void)
134 {
135 	int cpuid, phys_id;
136 	unsigned long timeout;
137 
138 	/*
139 	 * If waken up by an INIT in an 82489DX configuration
140 	 * we may get here before an INIT-deassert IPI reaches
141 	 * our local APIC.  We have to wait for the IPI or we'll
142 	 * lock up on an APIC access.
143 	 *
144 	 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
145 	 */
146 	cpuid = smp_processor_id();
147 	if (apic->wait_for_init_deassert && cpuid != 0)
148 		apic->wait_for_init_deassert(&init_deasserted);
149 
150 	/*
151 	 * (This works even if the APIC is not enabled.)
152 	 */
153 	phys_id = read_apic_id();
154 	if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
155 		panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
156 					phys_id, cpuid);
157 	}
158 	pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
159 
160 	/*
161 	 * STARTUP IPIs are fragile beasts as they might sometimes
162 	 * trigger some glue motherboard logic. Complete APIC bus
163 	 * silence for 1 second, this overestimates the time the
164 	 * boot CPU is spending to send the up to 2 STARTUP IPIs
165 	 * by a factor of two. This should be enough.
166 	 */
167 
168 	/*
169 	 * Waiting 2s total for startup (udelay is not yet working)
170 	 */
171 	timeout = jiffies + 2*HZ;
172 	while (time_before(jiffies, timeout)) {
173 		/*
174 		 * Has the boot CPU finished it's STARTUP sequence?
175 		 */
176 		if (cpumask_test_cpu(cpuid, cpu_callout_mask))
177 			break;
178 		cpu_relax();
179 	}
180 
181 	if (!time_before(jiffies, timeout)) {
182 		panic("%s: CPU%d started up but did not get a callout!\n",
183 		      __func__, cpuid);
184 	}
185 
186 	/*
187 	 * the boot CPU has finished the init stage and is spinning
188 	 * on callin_map until we finish. We are free to set up this
189 	 * CPU, first the APIC. (this is probably redundant on most
190 	 * boards)
191 	 */
192 
193 	pr_debug("CALLIN, before setup_local_APIC()\n");
194 	if (apic->smp_callin_clear_local_apic)
195 		apic->smp_callin_clear_local_apic();
196 	setup_local_APIC();
197 	end_local_APIC_setup();
198 
199 	/*
200 	 * Need to setup vector mappings before we enable interrupts.
201 	 */
202 	setup_vector_irq(smp_processor_id());
203 
204 	/*
205 	 * Save our processor parameters. Note: this information
206 	 * is needed for clock calibration.
207 	 */
208 	smp_store_cpu_info(cpuid);
209 
210 	/*
211 	 * Get our bogomips.
212 	 * Update loops_per_jiffy in cpu_data. Previous call to
213 	 * smp_store_cpu_info() stored a value that is close but not as
214 	 * accurate as the value just calculated.
215 	 */
216 	calibrate_delay();
217 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
218 	pr_debug("Stack at about %p\n", &cpuid);
219 
220 	/*
221 	 * This must be done before setting cpu_online_mask
222 	 * or calling notify_cpu_starting.
223 	 */
224 	set_cpu_sibling_map(raw_smp_processor_id());
225 	wmb();
226 
227 	notify_cpu_starting(cpuid);
228 
229 	/*
230 	 * Allow the master to continue.
231 	 */
232 	cpumask_set_cpu(cpuid, cpu_callin_mask);
233 }
234 
235 static int cpu0_logical_apicid;
236 static int enable_start_cpu0;
237 /*
238  * Activate a secondary processor.
239  */
start_secondary(void * unused)240 notrace static void __cpuinit start_secondary(void *unused)
241 {
242 	/*
243 	 * Don't put *anything* before cpu_init(), SMP booting is too
244 	 * fragile that we want to limit the things done here to the
245 	 * most necessary things.
246 	 */
247 	cpu_init();
248 	x86_cpuinit.early_percpu_clock_init();
249 	preempt_disable();
250 	smp_callin();
251 
252 	enable_start_cpu0 = 0;
253 
254 #ifdef CONFIG_X86_32
255 	/* switch away from the initial page table */
256 	load_cr3(swapper_pg_dir);
257 	__flush_tlb_all();
258 #endif
259 
260 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
261 	barrier();
262 	/*
263 	 * Check TSC synchronization with the BP:
264 	 */
265 	check_tsc_sync_target();
266 
267 	/*
268 	 * Enable the espfix hack for this CPU
269 	 */
270 #ifdef CONFIG_X86_ESPFIX64
271 	init_espfix_ap();
272 #endif
273 
274 	/*
275 	 * We need to hold vector_lock so there the set of online cpus
276 	 * does not change while we are assigning vectors to cpus.  Holding
277 	 * this lock ensures we don't half assign or remove an irq from a cpu.
278 	 */
279 	lock_vector_lock();
280 	set_cpu_online(smp_processor_id(), true);
281 	unlock_vector_lock();
282 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
283 	x86_platform.nmi_init();
284 
285 	/* enable local interrupts */
286 	local_irq_enable();
287 
288 	/* to prevent fake stack check failure in clock setup */
289 	boot_init_stack_canary();
290 
291 	x86_cpuinit.setup_percpu_clockev();
292 
293 	wmb();
294 	cpu_startup_entry(CPUHP_ONLINE);
295 }
296 
smp_store_boot_cpu_info(void)297 void __init smp_store_boot_cpu_info(void)
298 {
299 	int id = 0; /* CPU 0 */
300 	struct cpuinfo_x86 *c = &cpu_data(id);
301 
302 	*c = boot_cpu_data;
303 	c->cpu_index = id;
304 }
305 
306 /*
307  * The bootstrap kernel entry code has set these up. Save them for
308  * a given CPU
309  */
smp_store_cpu_info(int id)310 void __cpuinit smp_store_cpu_info(int id)
311 {
312 	struct cpuinfo_x86 *c = &cpu_data(id);
313 
314 	*c = boot_cpu_data;
315 	c->cpu_index = id;
316 	/*
317 	 * During boot time, CPU0 has this setup already. Save the info when
318 	 * bringing up AP or offlined CPU0.
319 	 */
320 	identify_secondary_cpu(c);
321 }
322 
323 static bool __cpuinit
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)324 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
325 {
326 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
327 
328 	return !WARN_ONCE(cpu_to_node(cpu1) != cpu_to_node(cpu2),
329 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
330 		"[node: %d != %d]. Ignoring dependency.\n",
331 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
332 }
333 
334 #define link_mask(_m, c1, c2)						\
335 do {									\
336 	cpumask_set_cpu((c1), cpu_##_m##_mask(c2));			\
337 	cpumask_set_cpu((c2), cpu_##_m##_mask(c1));			\
338 } while (0)
339 
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)340 static bool __cpuinit match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
341 {
342 	if (cpu_has_topoext) {
343 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
344 
345 		if (c->phys_proc_id == o->phys_proc_id &&
346 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
347 		    c->compute_unit_id == o->compute_unit_id)
348 			return topology_sane(c, o, "smt");
349 
350 	} else if (c->phys_proc_id == o->phys_proc_id &&
351 		   c->cpu_core_id == o->cpu_core_id) {
352 		return topology_sane(c, o, "smt");
353 	}
354 
355 	return false;
356 }
357 
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)358 static bool __cpuinit match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
359 {
360 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
361 
362 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
363 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
364 		return topology_sane(c, o, "llc");
365 
366 	return false;
367 }
368 
match_mc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)369 static bool __cpuinit match_mc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
370 {
371 	if (c->phys_proc_id == o->phys_proc_id) {
372 		if (cpu_has(c, X86_FEATURE_AMD_DCM))
373 			return true;
374 
375 		return topology_sane(c, o, "mc");
376 	}
377 	return false;
378 }
379 
set_cpu_sibling_map(int cpu)380 void __cpuinit set_cpu_sibling_map(int cpu)
381 {
382 	bool has_smt = smp_num_siblings > 1;
383 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
384 	struct cpuinfo_x86 *c = &cpu_data(cpu);
385 	struct cpuinfo_x86 *o;
386 	int i;
387 
388 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
389 
390 	if (!has_mp) {
391 		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
392 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
393 		cpumask_set_cpu(cpu, cpu_core_mask(cpu));
394 		c->booted_cores = 1;
395 		return;
396 	}
397 
398 	for_each_cpu(i, cpu_sibling_setup_mask) {
399 		o = &cpu_data(i);
400 
401 		if ((i == cpu) || (has_smt && match_smt(c, o)))
402 			link_mask(sibling, cpu, i);
403 
404 		if ((i == cpu) || (has_mp && match_llc(c, o)))
405 			link_mask(llc_shared, cpu, i);
406 
407 	}
408 
409 	/*
410 	 * This needs a separate iteration over the cpus because we rely on all
411 	 * cpu_sibling_mask links to be set-up.
412 	 */
413 	for_each_cpu(i, cpu_sibling_setup_mask) {
414 		o = &cpu_data(i);
415 
416 		if ((i == cpu) || (has_mp && match_mc(c, o))) {
417 			link_mask(core, cpu, i);
418 
419 			/*
420 			 *  Does this new cpu bringup a new core?
421 			 */
422 			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
423 				/*
424 				 * for each core in package, increment
425 				 * the booted_cores for this new cpu
426 				 */
427 				if (cpumask_first(cpu_sibling_mask(i)) == i)
428 					c->booted_cores++;
429 				/*
430 				 * increment the core count for all
431 				 * the other cpus in this package
432 				 */
433 				if (i != cpu)
434 					cpu_data(i).booted_cores++;
435 			} else if (i != cpu && !c->booted_cores)
436 				c->booted_cores = cpu_data(i).booted_cores;
437 		}
438 	}
439 }
440 
441 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)442 const struct cpumask *cpu_coregroup_mask(int cpu)
443 {
444 	return cpu_llc_shared_mask(cpu);
445 }
446 
impress_friends(void)447 static void impress_friends(void)
448 {
449 	int cpu;
450 	unsigned long bogosum = 0;
451 	/*
452 	 * Allow the user to impress friends.
453 	 */
454 	pr_debug("Before bogomips\n");
455 	for_each_possible_cpu(cpu)
456 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
457 			bogosum += cpu_data(cpu).loops_per_jiffy;
458 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
459 		num_online_cpus(),
460 		bogosum/(500000/HZ),
461 		(bogosum/(5000/HZ))%100);
462 
463 	pr_debug("Before bogocount - setting activated=1\n");
464 }
465 
__inquire_remote_apic(int apicid)466 void __inquire_remote_apic(int apicid)
467 {
468 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
469 	const char * const names[] = { "ID", "VERSION", "SPIV" };
470 	int timeout;
471 	u32 status;
472 
473 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
474 
475 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
476 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
477 
478 		/*
479 		 * Wait for idle.
480 		 */
481 		status = safe_apic_wait_icr_idle();
482 		if (status)
483 			pr_cont("a previous APIC delivery may have failed\n");
484 
485 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
486 
487 		timeout = 0;
488 		do {
489 			udelay(100);
490 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
491 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
492 
493 		switch (status) {
494 		case APIC_ICR_RR_VALID:
495 			status = apic_read(APIC_RRR);
496 			pr_cont("%08x\n", status);
497 			break;
498 		default:
499 			pr_cont("failed\n");
500 		}
501 	}
502 }
503 
504 /*
505  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
506  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
507  * won't ... remember to clear down the APIC, etc later.
508  */
509 int __cpuinit
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)510 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
511 {
512 	unsigned long send_status, accept_status = 0;
513 	int maxlvt;
514 
515 	/* Target chip */
516 	/* Boot on the stack */
517 	/* Kick the second */
518 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
519 
520 	pr_debug("Waiting for send to finish...\n");
521 	send_status = safe_apic_wait_icr_idle();
522 
523 	/*
524 	 * Give the other CPU some time to accept the IPI.
525 	 */
526 	udelay(200);
527 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
528 		maxlvt = lapic_get_maxlvt();
529 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
530 			apic_write(APIC_ESR, 0);
531 		accept_status = (apic_read(APIC_ESR) & 0xEF);
532 	}
533 	pr_debug("NMI sent\n");
534 
535 	if (send_status)
536 		pr_err("APIC never delivered???\n");
537 	if (accept_status)
538 		pr_err("APIC delivery error (%lx)\n", accept_status);
539 
540 	return (send_status | accept_status);
541 }
542 
543 static int __cpuinit
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)544 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
545 {
546 	unsigned long send_status, accept_status = 0;
547 	int maxlvt, num_starts, j;
548 
549 	maxlvt = lapic_get_maxlvt();
550 
551 	/*
552 	 * Be paranoid about clearing APIC errors.
553 	 */
554 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
555 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
556 			apic_write(APIC_ESR, 0);
557 		apic_read(APIC_ESR);
558 	}
559 
560 	pr_debug("Asserting INIT\n");
561 
562 	/*
563 	 * Turn INIT on target chip
564 	 */
565 	/*
566 	 * Send IPI
567 	 */
568 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
569 		       phys_apicid);
570 
571 	pr_debug("Waiting for send to finish...\n");
572 	send_status = safe_apic_wait_icr_idle();
573 
574 	mdelay(10);
575 
576 	pr_debug("Deasserting INIT\n");
577 
578 	/* Target chip */
579 	/* Send IPI */
580 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
581 
582 	pr_debug("Waiting for send to finish...\n");
583 	send_status = safe_apic_wait_icr_idle();
584 
585 	mb();
586 	atomic_set(&init_deasserted, 1);
587 
588 	/*
589 	 * Should we send STARTUP IPIs ?
590 	 *
591 	 * Determine this based on the APIC version.
592 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
593 	 */
594 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
595 		num_starts = 2;
596 	else
597 		num_starts = 0;
598 
599 	/*
600 	 * Paravirt / VMI wants a startup IPI hook here to set up the
601 	 * target processor state.
602 	 */
603 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
604 			 stack_start);
605 
606 	/*
607 	 * Run STARTUP IPI loop.
608 	 */
609 	pr_debug("#startup loops: %d\n", num_starts);
610 
611 	for (j = 1; j <= num_starts; j++) {
612 		pr_debug("Sending STARTUP #%d\n", j);
613 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
614 			apic_write(APIC_ESR, 0);
615 		apic_read(APIC_ESR);
616 		pr_debug("After apic_write\n");
617 
618 		/*
619 		 * STARTUP IPI
620 		 */
621 
622 		/* Target chip */
623 		/* Boot on the stack */
624 		/* Kick the second */
625 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
626 			       phys_apicid);
627 
628 		/*
629 		 * Give the other CPU some time to accept the IPI.
630 		 */
631 		udelay(300);
632 
633 		pr_debug("Startup point 1\n");
634 
635 		pr_debug("Waiting for send to finish...\n");
636 		send_status = safe_apic_wait_icr_idle();
637 
638 		/*
639 		 * Give the other CPU some time to accept the IPI.
640 		 */
641 		udelay(200);
642 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
643 			apic_write(APIC_ESR, 0);
644 		accept_status = (apic_read(APIC_ESR) & 0xEF);
645 		if (send_status || accept_status)
646 			break;
647 	}
648 	pr_debug("After Startup\n");
649 
650 	if (send_status)
651 		pr_err("APIC never delivered???\n");
652 	if (accept_status)
653 		pr_err("APIC delivery error (%lx)\n", accept_status);
654 
655 	return (send_status | accept_status);
656 }
657 
658 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)659 static void __cpuinit announce_cpu(int cpu, int apicid)
660 {
661 	static int current_node = -1;
662 	int node = early_cpu_to_node(cpu);
663 
664 	if (system_state == SYSTEM_BOOTING) {
665 		if (node != current_node) {
666 			if (current_node > (-1))
667 				pr_cont(" OK\n");
668 			current_node = node;
669 			pr_info("Booting Node %3d, Processors ", node);
670 		}
671 		pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " OK\n" : "");
672 		return;
673 	} else
674 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
675 			node, cpu, apicid);
676 }
677 
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)678 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
679 {
680 	int cpu;
681 
682 	cpu = smp_processor_id();
683 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
684 		return NMI_HANDLED;
685 
686 	return NMI_DONE;
687 }
688 
689 /*
690  * Wake up AP by INIT, INIT, STARTUP sequence.
691  *
692  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
693  * boot-strap code which is not a desired behavior for waking up BSP. To
694  * void the boot-strap code, wake up CPU0 by NMI instead.
695  *
696  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
697  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
698  * We'll change this code in the future to wake up hard offlined CPU0 if
699  * real platform and request are available.
700  */
701 static int __cpuinit
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)702 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
703 	       int *cpu0_nmi_registered)
704 {
705 	int id;
706 	int boot_error;
707 
708 	/*
709 	 * Wake up AP by INIT, INIT, STARTUP sequence.
710 	 */
711 	if (cpu)
712 		return wakeup_secondary_cpu_via_init(apicid, start_ip);
713 
714 	/*
715 	 * Wake up BSP by nmi.
716 	 *
717 	 * Register a NMI handler to help wake up CPU0.
718 	 */
719 	boot_error = register_nmi_handler(NMI_LOCAL,
720 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
721 
722 	if (!boot_error) {
723 		enable_start_cpu0 = 1;
724 		*cpu0_nmi_registered = 1;
725 		if (apic->dest_logical == APIC_DEST_LOGICAL)
726 			id = cpu0_logical_apicid;
727 		else
728 			id = apicid;
729 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
730 	}
731 
732 	return boot_error;
733 }
734 
735 /*
736  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
737  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
738  * Returns zero if CPU booted OK, else error code from
739  * ->wakeup_secondary_cpu.
740  */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle)741 static int __cpuinit do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
742 {
743 	volatile u32 *trampoline_status =
744 		(volatile u32 *) __va(real_mode_header->trampoline_status);
745 	/* start_ip had better be page-aligned! */
746 	unsigned long start_ip = real_mode_header->trampoline_start;
747 
748 	unsigned long boot_error = 0;
749 	int timeout;
750 	int cpu0_nmi_registered = 0;
751 
752 	/* Just in case we booted with a single CPU. */
753 	alternatives_enable_smp();
754 
755 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
756 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
757 	per_cpu(current_task, cpu) = idle;
758 
759 #ifdef CONFIG_X86_32
760 	/* Stack for startup_32 can be just as for start_secondary onwards */
761 	irq_ctx_init(cpu);
762 #else
763 	clear_tsk_thread_flag(idle, TIF_FORK);
764 	initial_gs = per_cpu_offset(cpu);
765 	per_cpu(kernel_stack, cpu) =
766 		(unsigned long)task_stack_page(idle) -
767 		KERNEL_STACK_OFFSET + THREAD_SIZE;
768 #endif
769 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
770 	initial_code = (unsigned long)start_secondary;
771 	stack_start  = idle->thread.sp;
772 
773 	/* So we see what's up */
774 	announce_cpu(cpu, apicid);
775 
776 	/*
777 	 * This grunge runs the startup process for
778 	 * the targeted processor.
779 	 */
780 
781 	atomic_set(&init_deasserted, 0);
782 
783 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
784 
785 		pr_debug("Setting warm reset code and vector.\n");
786 
787 		smpboot_setup_warm_reset_vector(start_ip);
788 		/*
789 		 * Be paranoid about clearing APIC errors.
790 		*/
791 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
792 			apic_write(APIC_ESR, 0);
793 			apic_read(APIC_ESR);
794 		}
795 	}
796 
797 	/*
798 	 * Wake up a CPU in difference cases:
799 	 * - Use the method in the APIC driver if it's defined
800 	 * Otherwise,
801 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
802 	 */
803 	if (apic->wakeup_secondary_cpu)
804 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
805 	else
806 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
807 						     &cpu0_nmi_registered);
808 
809 	if (!boot_error) {
810 		/*
811 		 * allow APs to start initializing.
812 		 */
813 		pr_debug("Before Callout %d\n", cpu);
814 		cpumask_set_cpu(cpu, cpu_callout_mask);
815 		pr_debug("After Callout %d\n", cpu);
816 
817 		/*
818 		 * Wait 5s total for a response
819 		 */
820 		for (timeout = 0; timeout < 50000; timeout++) {
821 			if (cpumask_test_cpu(cpu, cpu_callin_mask))
822 				break;	/* It has booted */
823 			udelay(100);
824 			/*
825 			 * Allow other tasks to run while we wait for the
826 			 * AP to come online. This also gives a chance
827 			 * for the MTRR work(triggered by the AP coming online)
828 			 * to be completed in the stop machine context.
829 			 */
830 			schedule();
831 		}
832 
833 		if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
834 			print_cpu_msr(&cpu_data(cpu));
835 			pr_debug("CPU%d: has booted.\n", cpu);
836 		} else {
837 			boot_error = 1;
838 			if (*trampoline_status == 0xA5A5A5A5)
839 				/* trampoline started but...? */
840 				pr_err("CPU%d: Stuck ??\n", cpu);
841 			else
842 				/* trampoline code not run */
843 				pr_err("CPU%d: Not responding\n", cpu);
844 			if (apic->inquire_remote_apic)
845 				apic->inquire_remote_apic(apicid);
846 		}
847 	}
848 
849 	if (boot_error) {
850 		/* Try to put things back the way they were before ... */
851 		numa_remove_cpu(cpu); /* was set by numa_add_cpu */
852 
853 		/* was set by do_boot_cpu() */
854 		cpumask_clear_cpu(cpu, cpu_callout_mask);
855 
856 		/* was set by cpu_init() */
857 		cpumask_clear_cpu(cpu, cpu_initialized_mask);
858 
859 		set_cpu_present(cpu, false);
860 		per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
861 	}
862 
863 	/* mark "stuck" area as not stuck */
864 	*trampoline_status = 0;
865 
866 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
867 		/*
868 		 * Cleanup possible dangling ends...
869 		 */
870 		smpboot_restore_warm_reset_vector();
871 	}
872 	/*
873 	 * Clean up the nmi handler. Do this after the callin and callout sync
874 	 * to avoid impact of possible long unregister time.
875 	 */
876 	if (cpu0_nmi_registered)
877 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
878 
879 	return boot_error;
880 }
881 
native_cpu_up(unsigned int cpu,struct task_struct * tidle)882 int __cpuinit native_cpu_up(unsigned int cpu, struct task_struct *tidle)
883 {
884 	int apicid = apic->cpu_present_to_apicid(cpu);
885 	unsigned long flags;
886 	int err;
887 
888 	WARN_ON(irqs_disabled());
889 
890 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
891 
892 	if (apicid == BAD_APICID ||
893 	    !physid_isset(apicid, phys_cpu_present_map) ||
894 	    !apic->apic_id_valid(apicid)) {
895 		pr_err("%s: bad cpu %d\n", __func__, cpu);
896 		return -EINVAL;
897 	}
898 
899 	/*
900 	 * Already booted CPU?
901 	 */
902 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
903 		pr_debug("do_boot_cpu %d Already started\n", cpu);
904 		return -ENOSYS;
905 	}
906 
907 	/*
908 	 * Save current MTRR state in case it was changed since early boot
909 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
910 	 */
911 	mtrr_save_state();
912 
913 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
914 
915 	/* the FPU context is blank, nobody can own it */
916 	__cpu_disable_lazy_restore(cpu);
917 
918 	err = do_boot_cpu(apicid, cpu, tidle);
919 	if (err) {
920 		pr_debug("do_boot_cpu failed %d\n", err);
921 		return -EIO;
922 	}
923 
924 	/*
925 	 * Check TSC synchronization with the AP (keep irqs disabled
926 	 * while doing so):
927 	 */
928 	local_irq_save(flags);
929 	check_tsc_sync_source(cpu);
930 	local_irq_restore(flags);
931 
932 	while (!cpu_online(cpu)) {
933 		cpu_relax();
934 		touch_nmi_watchdog();
935 	}
936 
937 	return 0;
938 }
939 
940 /**
941  * arch_disable_smp_support() - disables SMP support for x86 at runtime
942  */
arch_disable_smp_support(void)943 void arch_disable_smp_support(void)
944 {
945 	disable_ioapic_support();
946 }
947 
948 /*
949  * Fall back to non SMP mode after errors.
950  *
951  * RED-PEN audit/test this more. I bet there is more state messed up here.
952  */
disable_smp(void)953 static __init void disable_smp(void)
954 {
955 	init_cpu_present(cpumask_of(0));
956 	init_cpu_possible(cpumask_of(0));
957 	smpboot_clear_io_apic_irqs();
958 
959 	if (smp_found_config)
960 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
961 	else
962 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
963 	cpumask_set_cpu(0, cpu_sibling_mask(0));
964 	cpumask_set_cpu(0, cpu_core_mask(0));
965 }
966 
967 /*
968  * Various sanity checks.
969  */
smp_sanity_check(unsigned max_cpus)970 static int __init smp_sanity_check(unsigned max_cpus)
971 {
972 	preempt_disable();
973 
974 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
975 	if (def_to_bigsmp && nr_cpu_ids > 8) {
976 		unsigned int cpu;
977 		unsigned nr;
978 
979 		pr_warn("More than 8 CPUs detected - skipping them\n"
980 			"Use CONFIG_X86_BIGSMP\n");
981 
982 		nr = 0;
983 		for_each_present_cpu(cpu) {
984 			if (nr >= 8)
985 				set_cpu_present(cpu, false);
986 			nr++;
987 		}
988 
989 		nr = 0;
990 		for_each_possible_cpu(cpu) {
991 			if (nr >= 8)
992 				set_cpu_possible(cpu, false);
993 			nr++;
994 		}
995 
996 		nr_cpu_ids = 8;
997 	}
998 #endif
999 
1000 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1001 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1002 			hard_smp_processor_id());
1003 
1004 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1005 	}
1006 
1007 	/*
1008 	 * If we couldn't find an SMP configuration at boot time,
1009 	 * get out of here now!
1010 	 */
1011 	if (!smp_found_config && !acpi_lapic) {
1012 		preempt_enable();
1013 		pr_notice("SMP motherboard not detected\n");
1014 		disable_smp();
1015 		if (APIC_init_uniprocessor())
1016 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1017 		return -1;
1018 	}
1019 
1020 	/*
1021 	 * Should not be necessary because the MP table should list the boot
1022 	 * CPU too, but we do it for the sake of robustness anyway.
1023 	 */
1024 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1025 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1026 			  boot_cpu_physical_apicid);
1027 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1028 	}
1029 	preempt_enable();
1030 
1031 	/*
1032 	 * If we couldn't find a local APIC, then get out of here now!
1033 	 */
1034 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1035 	    !cpu_has_apic) {
1036 		if (!disable_apic) {
1037 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1038 				boot_cpu_physical_apicid);
1039 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1040 		}
1041 		smpboot_clear_io_apic();
1042 		disable_ioapic_support();
1043 		return -1;
1044 	}
1045 
1046 	verify_local_APIC();
1047 
1048 	/*
1049 	 * If SMP should be disabled, then really disable it!
1050 	 */
1051 	if (!max_cpus) {
1052 		pr_info("SMP mode deactivated\n");
1053 		smpboot_clear_io_apic();
1054 
1055 		connect_bsp_APIC();
1056 		setup_local_APIC();
1057 		bsp_end_local_APIC_setup();
1058 		return -1;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
smp_cpu_index_default(void)1064 static void __init smp_cpu_index_default(void)
1065 {
1066 	int i;
1067 	struct cpuinfo_x86 *c;
1068 
1069 	for_each_possible_cpu(i) {
1070 		c = &cpu_data(i);
1071 		/* mark all to hotplug */
1072 		c->cpu_index = nr_cpu_ids;
1073 	}
1074 }
1075 
1076 /*
1077  * Prepare for SMP bootup.  The MP table or ACPI has been read
1078  * earlier.  Just do some sanity checking here and enable APIC mode.
1079  */
native_smp_prepare_cpus(unsigned int max_cpus)1080 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1081 {
1082 	unsigned int i;
1083 
1084 	preempt_disable();
1085 	smp_cpu_index_default();
1086 
1087 	/*
1088 	 * Setup boot CPU information
1089 	 */
1090 	smp_store_boot_cpu_info(); /* Final full version of the data */
1091 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1092 	mb();
1093 
1094 	current_thread_info()->cpu = 0;  /* needed? */
1095 	for_each_possible_cpu(i) {
1096 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1097 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1098 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1099 	}
1100 	set_cpu_sibling_map(0);
1101 
1102 
1103 	if (smp_sanity_check(max_cpus) < 0) {
1104 		pr_info("SMP disabled\n");
1105 		disable_smp();
1106 		goto out;
1107 	}
1108 
1109 	default_setup_apic_routing();
1110 
1111 	preempt_disable();
1112 	if (read_apic_id() != boot_cpu_physical_apicid) {
1113 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1114 		     read_apic_id(), boot_cpu_physical_apicid);
1115 		/* Or can we switch back to PIC here? */
1116 	}
1117 	preempt_enable();
1118 
1119 	connect_bsp_APIC();
1120 
1121 	/*
1122 	 * Switch from PIC to APIC mode.
1123 	 */
1124 	setup_local_APIC();
1125 
1126 	if (x2apic_mode)
1127 		cpu0_logical_apicid = apic_read(APIC_LDR);
1128 	else
1129 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1130 
1131 	/*
1132 	 * Enable IO APIC before setting up error vector
1133 	 */
1134 	if (!skip_ioapic_setup && nr_ioapics)
1135 		enable_IO_APIC();
1136 
1137 	bsp_end_local_APIC_setup();
1138 
1139 	if (apic->setup_portio_remap)
1140 		apic->setup_portio_remap();
1141 
1142 	smpboot_setup_io_apic();
1143 	/*
1144 	 * Set up local APIC timer on boot CPU.
1145 	 */
1146 
1147 	pr_info("CPU%d: ", 0);
1148 	print_cpu_info(&cpu_data(0));
1149 	x86_init.timers.setup_percpu_clockev();
1150 
1151 	if (is_uv_system())
1152 		uv_system_init();
1153 
1154 	set_mtrr_aps_delayed_init();
1155 out:
1156 	preempt_enable();
1157 }
1158 
arch_enable_nonboot_cpus_begin(void)1159 void arch_enable_nonboot_cpus_begin(void)
1160 {
1161 	set_mtrr_aps_delayed_init();
1162 }
1163 
arch_enable_nonboot_cpus_end(void)1164 void arch_enable_nonboot_cpus_end(void)
1165 {
1166 	mtrr_aps_init();
1167 }
1168 
1169 /*
1170  * Early setup to make printk work.
1171  */
native_smp_prepare_boot_cpu(void)1172 void __init native_smp_prepare_boot_cpu(void)
1173 {
1174 	int me = smp_processor_id();
1175 	switch_to_new_gdt(me);
1176 	/* already set me in cpu_online_mask in boot_cpu_init() */
1177 	cpumask_set_cpu(me, cpu_callout_mask);
1178 	per_cpu(cpu_state, me) = CPU_ONLINE;
1179 }
1180 
native_smp_cpus_done(unsigned int max_cpus)1181 void __init native_smp_cpus_done(unsigned int max_cpus)
1182 {
1183 	pr_debug("Boot done\n");
1184 
1185 	nmi_selftest();
1186 	impress_friends();
1187 #ifdef CONFIG_X86_IO_APIC
1188 	setup_ioapic_dest();
1189 #endif
1190 	mtrr_aps_init();
1191 }
1192 
1193 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1194 static int __init _setup_possible_cpus(char *str)
1195 {
1196 	get_option(&str, &setup_possible_cpus);
1197 	return 0;
1198 }
1199 early_param("possible_cpus", _setup_possible_cpus);
1200 
1201 
1202 /*
1203  * cpu_possible_mask should be static, it cannot change as cpu's
1204  * are onlined, or offlined. The reason is per-cpu data-structures
1205  * are allocated by some modules at init time, and dont expect to
1206  * do this dynamically on cpu arrival/departure.
1207  * cpu_present_mask on the other hand can change dynamically.
1208  * In case when cpu_hotplug is not compiled, then we resort to current
1209  * behaviour, which is cpu_possible == cpu_present.
1210  * - Ashok Raj
1211  *
1212  * Three ways to find out the number of additional hotplug CPUs:
1213  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1214  * - The user can overwrite it with possible_cpus=NUM
1215  * - Otherwise don't reserve additional CPUs.
1216  * We do this because additional CPUs waste a lot of memory.
1217  * -AK
1218  */
prefill_possible_map(void)1219 __init void prefill_possible_map(void)
1220 {
1221 	int i, possible;
1222 
1223 	/* no processor from mptable or madt */
1224 	if (!num_processors)
1225 		num_processors = 1;
1226 
1227 	i = setup_max_cpus ?: 1;
1228 	if (setup_possible_cpus == -1) {
1229 		possible = num_processors;
1230 #ifdef CONFIG_HOTPLUG_CPU
1231 		if (setup_max_cpus)
1232 			possible += disabled_cpus;
1233 #else
1234 		if (possible > i)
1235 			possible = i;
1236 #endif
1237 	} else
1238 		possible = setup_possible_cpus;
1239 
1240 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1241 
1242 	/* nr_cpu_ids could be reduced via nr_cpus= */
1243 	if (possible > nr_cpu_ids) {
1244 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1245 			possible, nr_cpu_ids);
1246 		possible = nr_cpu_ids;
1247 	}
1248 
1249 #ifdef CONFIG_HOTPLUG_CPU
1250 	if (!setup_max_cpus)
1251 #endif
1252 	if (possible > i) {
1253 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1254 			possible, setup_max_cpus);
1255 		possible = i;
1256 	}
1257 
1258 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1259 		possible, max_t(int, possible - num_processors, 0));
1260 
1261 	for (i = 0; i < possible; i++)
1262 		set_cpu_possible(i, true);
1263 	for (; i < NR_CPUS; i++)
1264 		set_cpu_possible(i, false);
1265 
1266 	nr_cpu_ids = possible;
1267 }
1268 
1269 #ifdef CONFIG_HOTPLUG_CPU
1270 
remove_siblinginfo(int cpu)1271 static void remove_siblinginfo(int cpu)
1272 {
1273 	int sibling;
1274 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1275 
1276 	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1277 		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1278 		/*/
1279 		 * last thread sibling in this cpu core going down
1280 		 */
1281 		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1282 			cpu_data(sibling).booted_cores--;
1283 	}
1284 
1285 	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1286 		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1287 	cpumask_clear(cpu_sibling_mask(cpu));
1288 	cpumask_clear(cpu_core_mask(cpu));
1289 	c->phys_proc_id = 0;
1290 	c->cpu_core_id = 0;
1291 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1292 }
1293 
remove_cpu_from_maps(int cpu)1294 static void __ref remove_cpu_from_maps(int cpu)
1295 {
1296 	set_cpu_online(cpu, false);
1297 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1298 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1299 	/* was set by cpu_init() */
1300 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1301 	numa_remove_cpu(cpu);
1302 }
1303 
cpu_disable_common(void)1304 void cpu_disable_common(void)
1305 {
1306 	int cpu = smp_processor_id();
1307 
1308 	remove_siblinginfo(cpu);
1309 
1310 	/* It's now safe to remove this processor from the online map */
1311 	lock_vector_lock();
1312 	remove_cpu_from_maps(cpu);
1313 	unlock_vector_lock();
1314 	fixup_irqs();
1315 }
1316 
native_cpu_disable(void)1317 int native_cpu_disable(void)
1318 {
1319 	clear_local_APIC();
1320 
1321 	cpu_disable_common();
1322 	return 0;
1323 }
1324 
native_cpu_die(unsigned int cpu)1325 void native_cpu_die(unsigned int cpu)
1326 {
1327 	/* We don't do anything here: idle task is faking death itself. */
1328 	unsigned int i;
1329 
1330 	for (i = 0; i < 10; i++) {
1331 		/* They ack this in play_dead by setting CPU_DEAD */
1332 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1333 			if (system_state == SYSTEM_RUNNING)
1334 				pr_info("CPU %u is now offline\n", cpu);
1335 			return;
1336 		}
1337 		msleep(100);
1338 	}
1339 	pr_err("CPU %u didn't die...\n", cpu);
1340 }
1341 
play_dead_common(void)1342 void play_dead_common(void)
1343 {
1344 	idle_task_exit();
1345 	reset_lazy_tlbstate();
1346 	amd_e400_remove_cpu(raw_smp_processor_id());
1347 
1348 	mb();
1349 	/* Ack it */
1350 	__this_cpu_write(cpu_state, CPU_DEAD);
1351 
1352 	/*
1353 	 * With physical CPU hotplug, we should halt the cpu
1354 	 */
1355 	local_irq_disable();
1356 }
1357 
wakeup_cpu0(void)1358 static bool wakeup_cpu0(void)
1359 {
1360 	if (smp_processor_id() == 0 && enable_start_cpu0)
1361 		return true;
1362 
1363 	return false;
1364 }
1365 
1366 /*
1367  * We need to flush the caches before going to sleep, lest we have
1368  * dirty data in our caches when we come back up.
1369  */
mwait_play_dead(void)1370 static inline void mwait_play_dead(void)
1371 {
1372 	unsigned int eax, ebx, ecx, edx;
1373 	unsigned int highest_cstate = 0;
1374 	unsigned int highest_subcstate = 0;
1375 	void *mwait_ptr;
1376 	int i;
1377 
1378 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1379 		return;
1380 	if (!this_cpu_has(X86_FEATURE_CLFLSH))
1381 		return;
1382 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1383 		return;
1384 
1385 	eax = CPUID_MWAIT_LEAF;
1386 	ecx = 0;
1387 	native_cpuid(&eax, &ebx, &ecx, &edx);
1388 
1389 	/*
1390 	 * eax will be 0 if EDX enumeration is not valid.
1391 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1392 	 */
1393 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1394 		eax = 0;
1395 	} else {
1396 		edx >>= MWAIT_SUBSTATE_SIZE;
1397 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1398 			if (edx & MWAIT_SUBSTATE_MASK) {
1399 				highest_cstate = i;
1400 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1401 			}
1402 		}
1403 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1404 			(highest_subcstate - 1);
1405 	}
1406 
1407 	/*
1408 	 * This should be a memory location in a cache line which is
1409 	 * unlikely to be touched by other processors.  The actual
1410 	 * content is immaterial as it is not actually modified in any way.
1411 	 */
1412 	mwait_ptr = &current_thread_info()->flags;
1413 
1414 	wbinvd();
1415 
1416 	while (1) {
1417 		/*
1418 		 * The CLFLUSH is a workaround for erratum AAI65 for
1419 		 * the Xeon 7400 series.  It's not clear it is actually
1420 		 * needed, but it should be harmless in either case.
1421 		 * The WBINVD is insufficient due to the spurious-wakeup
1422 		 * case where we return around the loop.
1423 		 */
1424 		clflush(mwait_ptr);
1425 		__monitor(mwait_ptr, 0, 0);
1426 		mb();
1427 		__mwait(eax, 0);
1428 		/*
1429 		 * If NMI wants to wake up CPU0, start CPU0.
1430 		 */
1431 		if (wakeup_cpu0())
1432 			start_cpu0();
1433 	}
1434 }
1435 
hlt_play_dead(void)1436 static inline void hlt_play_dead(void)
1437 {
1438 	if (__this_cpu_read(cpu_info.x86) >= 4)
1439 		wbinvd();
1440 
1441 	while (1) {
1442 		native_halt();
1443 		/*
1444 		 * If NMI wants to wake up CPU0, start CPU0.
1445 		 */
1446 		if (wakeup_cpu0())
1447 			start_cpu0();
1448 	}
1449 }
1450 
native_play_dead(void)1451 void native_play_dead(void)
1452 {
1453 	play_dead_common();
1454 	tboot_shutdown(TB_SHUTDOWN_WFS);
1455 
1456 	mwait_play_dead();	/* Only returns on failure */
1457 	if (cpuidle_play_dead())
1458 		hlt_play_dead();
1459 }
1460 
1461 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1462 int native_cpu_disable(void)
1463 {
1464 	return -ENOSYS;
1465 }
1466 
native_cpu_die(unsigned int cpu)1467 void native_cpu_die(unsigned int cpu)
1468 {
1469 	/* We said "no" in __cpu_disable */
1470 	BUG();
1471 }
1472 
native_play_dead(void)1473 void native_play_dead(void)
1474 {
1475 	BUG();
1476 }
1477 
1478 #endif
1479