• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 
15 #include <asm/hpet.h>
16 #include <asm/timer.h>
17 #include <asm/vgtod.h>
18 #include <asm/time.h>
19 #include <asm/delay.h>
20 #include <asm/hypervisor.h>
21 #include <asm/nmi.h>
22 #include <asm/x86_init.h>
23 
24 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
25 EXPORT_SYMBOL(cpu_khz);
26 
27 unsigned int __read_mostly tsc_khz;
28 EXPORT_SYMBOL(tsc_khz);
29 
30 /*
31  * TSC can be unstable due to cpufreq or due to unsynced TSCs
32  */
33 static int __read_mostly tsc_unstable;
34 
35 /* native_sched_clock() is called before tsc_init(), so
36    we must start with the TSC soft disabled to prevent
37    erroneous rdtsc usage on !cpu_has_tsc processors */
38 static int __read_mostly tsc_disabled = -1;
39 
40 int tsc_clocksource_reliable;
41 /*
42  * Scheduler clock - returns current time in nanosec units.
43  */
native_sched_clock(void)44 u64 native_sched_clock(void)
45 {
46 	u64 this_offset;
47 
48 	/*
49 	 * Fall back to jiffies if there's no TSC available:
50 	 * ( But note that we still use it if the TSC is marked
51 	 *   unstable. We do this because unlike Time Of Day,
52 	 *   the scheduler clock tolerates small errors and it's
53 	 *   very important for it to be as fast as the platform
54 	 *   can achieve it. )
55 	 */
56 	if (unlikely(tsc_disabled)) {
57 		/* No locking but a rare wrong value is not a big deal: */
58 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
59 	}
60 
61 	/* read the Time Stamp Counter: */
62 	rdtscll(this_offset);
63 
64 	/* return the value in ns */
65 	return __cycles_2_ns(this_offset);
66 }
67 
68 /* We need to define a real function for sched_clock, to override the
69    weak default version */
70 #ifdef CONFIG_PARAVIRT
sched_clock(void)71 unsigned long long sched_clock(void)
72 {
73 	return paravirt_sched_clock();
74 }
75 #else
76 unsigned long long
77 sched_clock(void) __attribute__((alias("native_sched_clock")));
78 #endif
79 
native_read_tsc(void)80 unsigned long long native_read_tsc(void)
81 {
82 	return __native_read_tsc();
83 }
84 EXPORT_SYMBOL(native_read_tsc);
85 
check_tsc_unstable(void)86 int check_tsc_unstable(void)
87 {
88 	return tsc_unstable;
89 }
90 EXPORT_SYMBOL_GPL(check_tsc_unstable);
91 
92 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)93 int __init notsc_setup(char *str)
94 {
95 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
96 	tsc_disabled = 1;
97 	return 1;
98 }
99 #else
100 /*
101  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
102  * in cpu/common.c
103  */
notsc_setup(char * str)104 int __init notsc_setup(char *str)
105 {
106 	setup_clear_cpu_cap(X86_FEATURE_TSC);
107 	return 1;
108 }
109 #endif
110 
111 __setup("notsc", notsc_setup);
112 
113 static int no_sched_irq_time;
114 
tsc_setup(char * str)115 static int __init tsc_setup(char *str)
116 {
117 	if (!strcmp(str, "reliable"))
118 		tsc_clocksource_reliable = 1;
119 	if (!strncmp(str, "noirqtime", 9))
120 		no_sched_irq_time = 1;
121 	return 1;
122 }
123 
124 __setup("tsc=", tsc_setup);
125 
126 #define MAX_RETRIES     5
127 #define SMI_TRESHOLD    50000
128 
129 /*
130  * Read TSC and the reference counters. Take care of SMI disturbance
131  */
tsc_read_refs(u64 * p,int hpet)132 static u64 tsc_read_refs(u64 *p, int hpet)
133 {
134 	u64 t1, t2;
135 	int i;
136 
137 	for (i = 0; i < MAX_RETRIES; i++) {
138 		t1 = get_cycles();
139 		if (hpet)
140 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
141 		else
142 			*p = acpi_pm_read_early();
143 		t2 = get_cycles();
144 		if ((t2 - t1) < SMI_TRESHOLD)
145 			return t2;
146 	}
147 	return ULLONG_MAX;
148 }
149 
150 /*
151  * Calculate the TSC frequency from HPET reference
152  */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)153 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
154 {
155 	u64 tmp;
156 
157 	if (hpet2 < hpet1)
158 		hpet2 += 0x100000000ULL;
159 	hpet2 -= hpet1;
160 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
161 	do_div(tmp, 1000000);
162 	do_div(deltatsc, tmp);
163 
164 	return (unsigned long) deltatsc;
165 }
166 
167 /*
168  * Calculate the TSC frequency from PMTimer reference
169  */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)170 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
171 {
172 	u64 tmp;
173 
174 	if (!pm1 && !pm2)
175 		return ULONG_MAX;
176 
177 	if (pm2 < pm1)
178 		pm2 += (u64)ACPI_PM_OVRRUN;
179 	pm2 -= pm1;
180 	tmp = pm2 * 1000000000LL;
181 	do_div(tmp, PMTMR_TICKS_PER_SEC);
182 	do_div(deltatsc, tmp);
183 
184 	return (unsigned long) deltatsc;
185 }
186 
187 #define CAL_MS		10
188 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
189 #define CAL_PIT_LOOPS	1000
190 
191 #define CAL2_MS		50
192 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
193 #define CAL2_PIT_LOOPS	5000
194 
195 
196 /*
197  * Try to calibrate the TSC against the Programmable
198  * Interrupt Timer and return the frequency of the TSC
199  * in kHz.
200  *
201  * Return ULONG_MAX on failure to calibrate.
202  */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)203 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
204 {
205 	u64 tsc, t1, t2, delta;
206 	unsigned long tscmin, tscmax;
207 	int pitcnt;
208 
209 	/* Set the Gate high, disable speaker */
210 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
211 
212 	/*
213 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
214 	 * count mode), binary count. Set the latch register to 50ms
215 	 * (LSB then MSB) to begin countdown.
216 	 */
217 	outb(0xb0, 0x43);
218 	outb(latch & 0xff, 0x42);
219 	outb(latch >> 8, 0x42);
220 
221 	tsc = t1 = t2 = get_cycles();
222 
223 	pitcnt = 0;
224 	tscmax = 0;
225 	tscmin = ULONG_MAX;
226 	while ((inb(0x61) & 0x20) == 0) {
227 		t2 = get_cycles();
228 		delta = t2 - tsc;
229 		tsc = t2;
230 		if ((unsigned long) delta < tscmin)
231 			tscmin = (unsigned int) delta;
232 		if ((unsigned long) delta > tscmax)
233 			tscmax = (unsigned int) delta;
234 		pitcnt++;
235 	}
236 
237 	/*
238 	 * Sanity checks:
239 	 *
240 	 * If we were not able to read the PIT more than loopmin
241 	 * times, then we have been hit by a massive SMI
242 	 *
243 	 * If the maximum is 10 times larger than the minimum,
244 	 * then we got hit by an SMI as well.
245 	 */
246 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
247 		return ULONG_MAX;
248 
249 	/* Calculate the PIT value */
250 	delta = t2 - t1;
251 	do_div(delta, ms);
252 	return delta;
253 }
254 
255 /*
256  * This reads the current MSB of the PIT counter, and
257  * checks if we are running on sufficiently fast and
258  * non-virtualized hardware.
259  *
260  * Our expectations are:
261  *
262  *  - the PIT is running at roughly 1.19MHz
263  *
264  *  - each IO is going to take about 1us on real hardware,
265  *    but we allow it to be much faster (by a factor of 10) or
266  *    _slightly_ slower (ie we allow up to a 2us read+counter
267  *    update - anything else implies a unacceptably slow CPU
268  *    or PIT for the fast calibration to work.
269  *
270  *  - with 256 PIT ticks to read the value, we have 214us to
271  *    see the same MSB (and overhead like doing a single TSC
272  *    read per MSB value etc).
273  *
274  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
275  *    them each to take about a microsecond on real hardware.
276  *    So we expect a count value of around 100. But we'll be
277  *    generous, and accept anything over 50.
278  *
279  *  - if the PIT is stuck, and we see *many* more reads, we
280  *    return early (and the next caller of pit_expect_msb()
281  *    then consider it a failure when they don't see the
282  *    next expected value).
283  *
284  * These expectations mean that we know that we have seen the
285  * transition from one expected value to another with a fairly
286  * high accuracy, and we didn't miss any events. We can thus
287  * use the TSC value at the transitions to calculate a pretty
288  * good value for the TSC frequencty.
289  */
pit_verify_msb(unsigned char val)290 static inline int pit_verify_msb(unsigned char val)
291 {
292 	/* Ignore LSB */
293 	inb(0x42);
294 	return inb(0x42) == val;
295 }
296 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)297 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
298 {
299 	int count;
300 	u64 tsc = 0, prev_tsc = 0;
301 
302 	for (count = 0; count < 50000; count++) {
303 		if (!pit_verify_msb(val))
304 			break;
305 		prev_tsc = tsc;
306 		tsc = get_cycles();
307 	}
308 	*deltap = get_cycles() - prev_tsc;
309 	*tscp = tsc;
310 
311 	/*
312 	 * We require _some_ success, but the quality control
313 	 * will be based on the error terms on the TSC values.
314 	 */
315 	return count > 5;
316 }
317 
318 /*
319  * How many MSB values do we want to see? We aim for
320  * a maximum error rate of 500ppm (in practice the
321  * real error is much smaller), but refuse to spend
322  * more than 50ms on it.
323  */
324 #define MAX_QUICK_PIT_MS 50
325 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
326 
quick_pit_calibrate(void)327 static unsigned long quick_pit_calibrate(void)
328 {
329 	int i;
330 	u64 tsc, delta;
331 	unsigned long d1, d2;
332 
333 	/* Set the Gate high, disable speaker */
334 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
335 
336 	/*
337 	 * Counter 2, mode 0 (one-shot), binary count
338 	 *
339 	 * NOTE! Mode 2 decrements by two (and then the
340 	 * output is flipped each time, giving the same
341 	 * final output frequency as a decrement-by-one),
342 	 * so mode 0 is much better when looking at the
343 	 * individual counts.
344 	 */
345 	outb(0xb0, 0x43);
346 
347 	/* Start at 0xffff */
348 	outb(0xff, 0x42);
349 	outb(0xff, 0x42);
350 
351 	/*
352 	 * The PIT starts counting at the next edge, so we
353 	 * need to delay for a microsecond. The easiest way
354 	 * to do that is to just read back the 16-bit counter
355 	 * once from the PIT.
356 	 */
357 	pit_verify_msb(0);
358 
359 	if (pit_expect_msb(0xff, &tsc, &d1)) {
360 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
361 			if (!pit_expect_msb(0xff-i, &delta, &d2))
362 				break;
363 
364 			/*
365 			 * Iterate until the error is less than 500 ppm
366 			 */
367 			delta -= tsc;
368 			if (d1+d2 >= delta >> 11)
369 				continue;
370 
371 			/*
372 			 * Check the PIT one more time to verify that
373 			 * all TSC reads were stable wrt the PIT.
374 			 *
375 			 * This also guarantees serialization of the
376 			 * last cycle read ('d2') in pit_expect_msb.
377 			 */
378 			if (!pit_verify_msb(0xfe - i))
379 				break;
380 			goto success;
381 		}
382 	}
383 	pr_err("Fast TSC calibration failed\n");
384 	return 0;
385 
386 success:
387 	/*
388 	 * Ok, if we get here, then we've seen the
389 	 * MSB of the PIT decrement 'i' times, and the
390 	 * error has shrunk to less than 500 ppm.
391 	 *
392 	 * As a result, we can depend on there not being
393 	 * any odd delays anywhere, and the TSC reads are
394 	 * reliable (within the error).
395 	 *
396 	 * kHz = ticks / time-in-seconds / 1000;
397 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
398 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
399 	 */
400 	delta *= PIT_TICK_RATE;
401 	do_div(delta, i*256*1000);
402 	pr_info("Fast TSC calibration using PIT\n");
403 	return delta;
404 }
405 
406 /**
407  * native_calibrate_tsc - calibrate the tsc on boot
408  */
native_calibrate_tsc(void)409 unsigned long native_calibrate_tsc(void)
410 {
411 	u64 tsc1, tsc2, delta, ref1, ref2;
412 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
413 	unsigned long flags, latch, ms, fast_calibrate;
414 	int hpet = is_hpet_enabled(), i, loopmin;
415 
416 	local_irq_save(flags);
417 	fast_calibrate = quick_pit_calibrate();
418 	local_irq_restore(flags);
419 	if (fast_calibrate)
420 		return fast_calibrate;
421 
422 	/*
423 	 * Run 5 calibration loops to get the lowest frequency value
424 	 * (the best estimate). We use two different calibration modes
425 	 * here:
426 	 *
427 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
428 	 * load a timeout of 50ms. We read the time right after we
429 	 * started the timer and wait until the PIT count down reaches
430 	 * zero. In each wait loop iteration we read the TSC and check
431 	 * the delta to the previous read. We keep track of the min
432 	 * and max values of that delta. The delta is mostly defined
433 	 * by the IO time of the PIT access, so we can detect when a
434 	 * SMI/SMM disturbance happened between the two reads. If the
435 	 * maximum time is significantly larger than the minimum time,
436 	 * then we discard the result and have another try.
437 	 *
438 	 * 2) Reference counter. If available we use the HPET or the
439 	 * PMTIMER as a reference to check the sanity of that value.
440 	 * We use separate TSC readouts and check inside of the
441 	 * reference read for a SMI/SMM disturbance. We dicard
442 	 * disturbed values here as well. We do that around the PIT
443 	 * calibration delay loop as we have to wait for a certain
444 	 * amount of time anyway.
445 	 */
446 
447 	/* Preset PIT loop values */
448 	latch = CAL_LATCH;
449 	ms = CAL_MS;
450 	loopmin = CAL_PIT_LOOPS;
451 
452 	for (i = 0; i < 3; i++) {
453 		unsigned long tsc_pit_khz;
454 
455 		/*
456 		 * Read the start value and the reference count of
457 		 * hpet/pmtimer when available. Then do the PIT
458 		 * calibration, which will take at least 50ms, and
459 		 * read the end value.
460 		 */
461 		local_irq_save(flags);
462 		tsc1 = tsc_read_refs(&ref1, hpet);
463 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
464 		tsc2 = tsc_read_refs(&ref2, hpet);
465 		local_irq_restore(flags);
466 
467 		/* Pick the lowest PIT TSC calibration so far */
468 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
469 
470 		/* hpet or pmtimer available ? */
471 		if (ref1 == ref2)
472 			continue;
473 
474 		/* Check, whether the sampling was disturbed by an SMI */
475 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
476 			continue;
477 
478 		tsc2 = (tsc2 - tsc1) * 1000000LL;
479 		if (hpet)
480 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
481 		else
482 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
483 
484 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
485 
486 		/* Check the reference deviation */
487 		delta = ((u64) tsc_pit_min) * 100;
488 		do_div(delta, tsc_ref_min);
489 
490 		/*
491 		 * If both calibration results are inside a 10% window
492 		 * then we can be sure, that the calibration
493 		 * succeeded. We break out of the loop right away. We
494 		 * use the reference value, as it is more precise.
495 		 */
496 		if (delta >= 90 && delta <= 110) {
497 			pr_info("PIT calibration matches %s. %d loops\n",
498 				hpet ? "HPET" : "PMTIMER", i + 1);
499 			return tsc_ref_min;
500 		}
501 
502 		/*
503 		 * Check whether PIT failed more than once. This
504 		 * happens in virtualized environments. We need to
505 		 * give the virtual PC a slightly longer timeframe for
506 		 * the HPET/PMTIMER to make the result precise.
507 		 */
508 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
509 			latch = CAL2_LATCH;
510 			ms = CAL2_MS;
511 			loopmin = CAL2_PIT_LOOPS;
512 		}
513 	}
514 
515 	/*
516 	 * Now check the results.
517 	 */
518 	if (tsc_pit_min == ULONG_MAX) {
519 		/* PIT gave no useful value */
520 		pr_warn("Unable to calibrate against PIT\n");
521 
522 		/* We don't have an alternative source, disable TSC */
523 		if (!hpet && !ref1 && !ref2) {
524 			pr_notice("No reference (HPET/PMTIMER) available\n");
525 			return 0;
526 		}
527 
528 		/* The alternative source failed as well, disable TSC */
529 		if (tsc_ref_min == ULONG_MAX) {
530 			pr_warn("HPET/PMTIMER calibration failed\n");
531 			return 0;
532 		}
533 
534 		/* Use the alternative source */
535 		pr_info("using %s reference calibration\n",
536 			hpet ? "HPET" : "PMTIMER");
537 
538 		return tsc_ref_min;
539 	}
540 
541 	/* We don't have an alternative source, use the PIT calibration value */
542 	if (!hpet && !ref1 && !ref2) {
543 		pr_info("Using PIT calibration value\n");
544 		return tsc_pit_min;
545 	}
546 
547 	/* The alternative source failed, use the PIT calibration value */
548 	if (tsc_ref_min == ULONG_MAX) {
549 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
550 		return tsc_pit_min;
551 	}
552 
553 	/*
554 	 * The calibration values differ too much. In doubt, we use
555 	 * the PIT value as we know that there are PMTIMERs around
556 	 * running at double speed. At least we let the user know:
557 	 */
558 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
559 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
560 	pr_info("Using PIT calibration value\n");
561 	return tsc_pit_min;
562 }
563 
recalibrate_cpu_khz(void)564 int recalibrate_cpu_khz(void)
565 {
566 #ifndef CONFIG_SMP
567 	unsigned long cpu_khz_old = cpu_khz;
568 
569 	if (cpu_has_tsc) {
570 		tsc_khz = x86_platform.calibrate_tsc();
571 		cpu_khz = tsc_khz;
572 		cpu_data(0).loops_per_jiffy =
573 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
574 					cpu_khz_old, cpu_khz);
575 		return 0;
576 	} else
577 		return -ENODEV;
578 #else
579 	return -ENODEV;
580 #endif
581 }
582 
583 EXPORT_SYMBOL(recalibrate_cpu_khz);
584 
585 
586 /* Accelerators for sched_clock()
587  * convert from cycles(64bits) => nanoseconds (64bits)
588  *  basic equation:
589  *              ns = cycles / (freq / ns_per_sec)
590  *              ns = cycles * (ns_per_sec / freq)
591  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
592  *              ns = cycles * (10^6 / cpu_khz)
593  *
594  *      Then we use scaling math (suggested by george@mvista.com) to get:
595  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
596  *              ns = cycles * cyc2ns_scale / SC
597  *
598  *      And since SC is a constant power of two, we can convert the div
599  *  into a shift.
600  *
601  *  We can use khz divisor instead of mhz to keep a better precision, since
602  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
603  *  (mathieu.desnoyers@polymtl.ca)
604  *
605  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
606  */
607 
608 DEFINE_PER_CPU(unsigned long, cyc2ns);
609 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
610 
set_cyc2ns_scale(unsigned long cpu_khz,int cpu)611 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
612 {
613 	unsigned long long tsc_now, ns_now, *offset;
614 	unsigned long flags, *scale;
615 
616 	local_irq_save(flags);
617 	sched_clock_idle_sleep_event();
618 
619 	scale = &per_cpu(cyc2ns, cpu);
620 	offset = &per_cpu(cyc2ns_offset, cpu);
621 
622 	rdtscll(tsc_now);
623 	ns_now = __cycles_2_ns(tsc_now);
624 
625 	if (cpu_khz) {
626 		*scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
627 				cpu_khz / 2) / cpu_khz;
628 		*offset = ns_now - mult_frac(tsc_now, *scale,
629 					     (1UL << CYC2NS_SCALE_FACTOR));
630 	}
631 
632 	sched_clock_idle_wakeup_event(0);
633 	local_irq_restore(flags);
634 }
635 
636 static unsigned long long cyc2ns_suspend;
637 
tsc_save_sched_clock_state(void)638 void tsc_save_sched_clock_state(void)
639 {
640 	if (!sched_clock_stable)
641 		return;
642 
643 	cyc2ns_suspend = sched_clock();
644 }
645 
646 /*
647  * Even on processors with invariant TSC, TSC gets reset in some the
648  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
649  * arbitrary value (still sync'd across cpu's) during resume from such sleep
650  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
651  * that sched_clock() continues from the point where it was left off during
652  * suspend.
653  */
tsc_restore_sched_clock_state(void)654 void tsc_restore_sched_clock_state(void)
655 {
656 	unsigned long long offset;
657 	unsigned long flags;
658 	int cpu;
659 
660 	if (!sched_clock_stable)
661 		return;
662 
663 	local_irq_save(flags);
664 
665 	__this_cpu_write(cyc2ns_offset, 0);
666 	offset = cyc2ns_suspend - sched_clock();
667 
668 	for_each_possible_cpu(cpu)
669 		per_cpu(cyc2ns_offset, cpu) = offset;
670 
671 	local_irq_restore(flags);
672 }
673 
674 #ifdef CONFIG_CPU_FREQ
675 
676 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
677  * changes.
678  *
679  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
680  * not that important because current Opteron setups do not support
681  * scaling on SMP anyroads.
682  *
683  * Should fix up last_tsc too. Currently gettimeofday in the
684  * first tick after the change will be slightly wrong.
685  */
686 
687 static unsigned int  ref_freq;
688 static unsigned long loops_per_jiffy_ref;
689 static unsigned long tsc_khz_ref;
690 
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)691 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
692 				void *data)
693 {
694 	struct cpufreq_freqs *freq = data;
695 	unsigned long *lpj;
696 
697 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
698 		return 0;
699 
700 	lpj = &boot_cpu_data.loops_per_jiffy;
701 #ifdef CONFIG_SMP
702 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
703 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
704 #endif
705 
706 	if (!ref_freq) {
707 		ref_freq = freq->old;
708 		loops_per_jiffy_ref = *lpj;
709 		tsc_khz_ref = tsc_khz;
710 	}
711 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
712 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
713 			(val == CPUFREQ_RESUMECHANGE)) {
714 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
715 
716 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
717 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
718 			mark_tsc_unstable("cpufreq changes");
719 	}
720 
721 	set_cyc2ns_scale(tsc_khz, freq->cpu);
722 
723 	return 0;
724 }
725 
726 static struct notifier_block time_cpufreq_notifier_block = {
727 	.notifier_call  = time_cpufreq_notifier
728 };
729 
cpufreq_tsc(void)730 static int __init cpufreq_tsc(void)
731 {
732 	if (!cpu_has_tsc)
733 		return 0;
734 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
735 		return 0;
736 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
737 				CPUFREQ_TRANSITION_NOTIFIER);
738 	return 0;
739 }
740 
741 core_initcall(cpufreq_tsc);
742 
743 #endif /* CONFIG_CPU_FREQ */
744 
745 /* clocksource code */
746 
747 static struct clocksource clocksource_tsc;
748 
749 /*
750  * We compare the TSC to the cycle_last value in the clocksource
751  * structure to avoid a nasty time-warp. This can be observed in a
752  * very small window right after one CPU updated cycle_last under
753  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
754  * is smaller than the cycle_last reference value due to a TSC which
755  * is slighty behind. This delta is nowhere else observable, but in
756  * that case it results in a forward time jump in the range of hours
757  * due to the unsigned delta calculation of the time keeping core
758  * code, which is necessary to support wrapping clocksources like pm
759  * timer.
760  */
read_tsc(struct clocksource * cs)761 static cycle_t read_tsc(struct clocksource *cs)
762 {
763 	cycle_t ret = (cycle_t)get_cycles();
764 
765 	return ret >= clocksource_tsc.cycle_last ?
766 		ret : clocksource_tsc.cycle_last;
767 }
768 
resume_tsc(struct clocksource * cs)769 static void resume_tsc(struct clocksource *cs)
770 {
771 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
772 		clocksource_tsc.cycle_last = 0;
773 }
774 
775 static struct clocksource clocksource_tsc = {
776 	.name                   = "tsc",
777 	.rating                 = 300,
778 	.read                   = read_tsc,
779 	.resume			= resume_tsc,
780 	.mask                   = CLOCKSOURCE_MASK(64),
781 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
782 				  CLOCK_SOURCE_MUST_VERIFY,
783 #ifdef CONFIG_X86_64
784 	.archdata               = { .vclock_mode = VCLOCK_TSC },
785 #endif
786 };
787 
mark_tsc_unstable(char * reason)788 void mark_tsc_unstable(char *reason)
789 {
790 	if (!tsc_unstable) {
791 		tsc_unstable = 1;
792 		sched_clock_stable = 0;
793 		disable_sched_clock_irqtime();
794 		pr_info("Marking TSC unstable due to %s\n", reason);
795 		/* Change only the rating, when not registered */
796 		if (clocksource_tsc.mult)
797 			clocksource_mark_unstable(&clocksource_tsc);
798 		else {
799 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
800 			clocksource_tsc.rating = 0;
801 		}
802 	}
803 }
804 
805 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
806 
check_system_tsc_reliable(void)807 static void __init check_system_tsc_reliable(void)
808 {
809 #ifdef CONFIG_MGEODE_LX
810 	/* RTSC counts during suspend */
811 #define RTSC_SUSP 0x100
812 	unsigned long res_low, res_high;
813 
814 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
815 	/* Geode_LX - the OLPC CPU has a very reliable TSC */
816 	if (res_low & RTSC_SUSP)
817 		tsc_clocksource_reliable = 1;
818 #endif
819 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
820 		tsc_clocksource_reliable = 1;
821 }
822 
823 /*
824  * Make an educated guess if the TSC is trustworthy and synchronized
825  * over all CPUs.
826  */
unsynchronized_tsc(void)827 __cpuinit int unsynchronized_tsc(void)
828 {
829 	if (!cpu_has_tsc || tsc_unstable)
830 		return 1;
831 
832 #ifdef CONFIG_SMP
833 	if (apic_is_clustered_box())
834 		return 1;
835 #endif
836 
837 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
838 		return 0;
839 
840 	if (tsc_clocksource_reliable)
841 		return 0;
842 	/*
843 	 * Intel systems are normally all synchronized.
844 	 * Exceptions must mark TSC as unstable:
845 	 */
846 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
847 		/* assume multi socket systems are not synchronized: */
848 		if (num_possible_cpus() > 1)
849 			return 1;
850 	}
851 
852 	return 0;
853 }
854 
855 
856 static void tsc_refine_calibration_work(struct work_struct *work);
857 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
858 /**
859  * tsc_refine_calibration_work - Further refine tsc freq calibration
860  * @work - ignored.
861  *
862  * This functions uses delayed work over a period of a
863  * second to further refine the TSC freq value. Since this is
864  * timer based, instead of loop based, we don't block the boot
865  * process while this longer calibration is done.
866  *
867  * If there are any calibration anomalies (too many SMIs, etc),
868  * or the refined calibration is off by 1% of the fast early
869  * calibration, we throw out the new calibration and use the
870  * early calibration.
871  */
tsc_refine_calibration_work(struct work_struct * work)872 static void tsc_refine_calibration_work(struct work_struct *work)
873 {
874 	static u64 tsc_start = -1, ref_start;
875 	static int hpet;
876 	u64 tsc_stop, ref_stop, delta;
877 	unsigned long freq;
878 
879 	/* Don't bother refining TSC on unstable systems */
880 	if (check_tsc_unstable())
881 		goto out;
882 
883 	/*
884 	 * Since the work is started early in boot, we may be
885 	 * delayed the first time we expire. So set the workqueue
886 	 * again once we know timers are working.
887 	 */
888 	if (tsc_start == -1) {
889 		/*
890 		 * Only set hpet once, to avoid mixing hardware
891 		 * if the hpet becomes enabled later.
892 		 */
893 		hpet = is_hpet_enabled();
894 		schedule_delayed_work(&tsc_irqwork, HZ);
895 		tsc_start = tsc_read_refs(&ref_start, hpet);
896 		return;
897 	}
898 
899 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
900 
901 	/* hpet or pmtimer available ? */
902 	if (ref_start == ref_stop)
903 		goto out;
904 
905 	/* Check, whether the sampling was disturbed by an SMI */
906 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
907 		goto out;
908 
909 	delta = tsc_stop - tsc_start;
910 	delta *= 1000000LL;
911 	if (hpet)
912 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
913 	else
914 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
915 
916 	/* Make sure we're within 1% */
917 	if (abs(tsc_khz - freq) > tsc_khz/100)
918 		goto out;
919 
920 	tsc_khz = freq;
921 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
922 		(unsigned long)tsc_khz / 1000,
923 		(unsigned long)tsc_khz % 1000);
924 
925 out:
926 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
927 }
928 
929 
init_tsc_clocksource(void)930 static int __init init_tsc_clocksource(void)
931 {
932 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
933 		return 0;
934 
935 	if (tsc_clocksource_reliable)
936 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
937 	/* lower the rating if we already know its unstable: */
938 	if (check_tsc_unstable()) {
939 		clocksource_tsc.rating = 0;
940 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
941 	}
942 
943 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
944 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
945 
946 	/*
947 	 * Trust the results of the earlier calibration on systems
948 	 * exporting a reliable TSC.
949 	 */
950 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
951 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
952 		return 0;
953 	}
954 
955 	schedule_delayed_work(&tsc_irqwork, 0);
956 	return 0;
957 }
958 /*
959  * We use device_initcall here, to ensure we run after the hpet
960  * is fully initialized, which may occur at fs_initcall time.
961  */
962 device_initcall(init_tsc_clocksource);
963 
tsc_init(void)964 void __init tsc_init(void)
965 {
966 	u64 lpj;
967 	int cpu;
968 
969 	x86_init.timers.tsc_pre_init();
970 
971 	if (!cpu_has_tsc)
972 		return;
973 
974 	tsc_khz = x86_platform.calibrate_tsc();
975 	cpu_khz = tsc_khz;
976 
977 	if (!tsc_khz) {
978 		mark_tsc_unstable("could not calculate TSC khz");
979 		return;
980 	}
981 
982 	pr_info("Detected %lu.%03lu MHz processor\n",
983 		(unsigned long)cpu_khz / 1000,
984 		(unsigned long)cpu_khz % 1000);
985 
986 	/*
987 	 * Secondary CPUs do not run through tsc_init(), so set up
988 	 * all the scale factors for all CPUs, assuming the same
989 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
990 	 * up if their speed diverges)
991 	 */
992 	for_each_possible_cpu(cpu)
993 		set_cyc2ns_scale(cpu_khz, cpu);
994 
995 	if (tsc_disabled > 0)
996 		return;
997 
998 	/* now allow native_sched_clock() to use rdtsc */
999 	tsc_disabled = 0;
1000 
1001 	if (!no_sched_irq_time)
1002 		enable_sched_clock_irqtime();
1003 
1004 	lpj = ((u64)tsc_khz * 1000);
1005 	do_div(lpj, HZ);
1006 	lpj_fine = lpj;
1007 
1008 	use_tsc_delay();
1009 
1010 	if (unsynchronized_tsc())
1011 		mark_tsc_unstable("TSCs unsynchronized");
1012 
1013 	check_system_tsc_reliable();
1014 }
1015 
1016 #ifdef CONFIG_SMP
1017 /*
1018  * If we have a constant TSC and are using the TSC for the delay loop,
1019  * we can skip clock calibration if another cpu in the same socket has already
1020  * been calibrated. This assumes that CONSTANT_TSC applies to all
1021  * cpus in the socket - this should be a safe assumption.
1022  */
calibrate_delay_is_known(void)1023 unsigned long __cpuinit calibrate_delay_is_known(void)
1024 {
1025 	int i, cpu = smp_processor_id();
1026 
1027 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1028 		return 0;
1029 
1030 	for_each_online_cpu(i)
1031 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1032 			return cpu_data(i).loops_per_jiffy;
1033 	return 0;
1034 }
1035 #endif
1036