1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44
45 /* #define NFS_DEBUG_VERBOSE 1 */
46
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53
54 const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61 };
62
63 const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65 };
66
alloc_nfs_open_dir_context(struct inode * dir,struct rpc_cred * cred)67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80 }
81
put_nfs_open_dir_context(struct nfs_open_dir_context * ctx)82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86 }
87
88 /*
89 * Open file
90 */
91 static int
nfs_opendir(struct inode * inode,struct file * filp)92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120 out:
121 put_rpccred(cred);
122 return res;
123 }
124
125 static int
nfs_closedir(struct inode * inode,struct file * filp)126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130 }
131
132 struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137 };
138
139 struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144 };
145
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161 } nfs_readdir_descriptor_t;
162
163 /*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166 static
nfs_readdir_get_array(struct page * page)167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176 }
177
178 static
nfs_readdir_release_array(struct page * page)179 void nfs_readdir_release_array(struct page *page)
180 {
181 kunmap(page);
182 }
183
184 /*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187 static
nfs_readdir_clear_array(struct page * page)188 void nfs_readdir_clear_array(struct page *page)
189 {
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197 }
198
199 /*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218 }
219
220 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247 out:
248 nfs_readdir_release_array(page);
249 return ret;
250 }
251
252 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270 out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273 }
274
275 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320 out:
321 return status;
322 }
323
324 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347 out:
348 return status;
349 }
350
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
405 }
406
407 static
nfs_use_readdirplus(struct inode * dir,struct file * filp)408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417 }
418
419 /*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424 static
nfs_advise_use_readdirplus(struct inode * dir)425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429
430 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry)431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
444 }
445 filename.hash = full_name_hash(filename.name, filename.len);
446
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 if (d_invalidate(dentry) != 0)
454 goto out;
455 dput(dentry);
456 }
457 }
458
459 dentry = d_alloc(parent, &filename);
460 if (dentry == NULL)
461 return;
462
463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
464 if (IS_ERR(inode))
465 goto out;
466
467 alias = d_materialise_unique(dentry, inode);
468 if (IS_ERR(alias))
469 goto out;
470 else if (alias) {
471 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
472 dput(alias);
473 } else
474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
475
476 out:
477 dput(dentry);
478 }
479
480 /* Perform conversion from xdr to cache array */
481 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)482 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
483 struct page **xdr_pages, struct page *page, unsigned int buflen)
484 {
485 struct xdr_stream stream;
486 struct xdr_buf buf;
487 struct page *scratch;
488 struct nfs_cache_array *array;
489 unsigned int count = 0;
490 int status;
491
492 scratch = alloc_page(GFP_KERNEL);
493 if (scratch == NULL)
494 return -ENOMEM;
495
496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
498
499 do {
500 status = xdr_decode(desc, entry, &stream);
501 if (status != 0) {
502 if (status == -EAGAIN)
503 status = 0;
504 break;
505 }
506
507 count++;
508
509 if (desc->plus != 0)
510 nfs_prime_dcache(desc->file->f_path.dentry, entry);
511
512 status = nfs_readdir_add_to_array(entry, page);
513 if (status != 0)
514 break;
515 } while (!entry->eof);
516
517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
518 array = nfs_readdir_get_array(page);
519 if (!IS_ERR(array)) {
520 array->eof_index = array->size;
521 status = 0;
522 nfs_readdir_release_array(page);
523 } else
524 status = PTR_ERR(array);
525 }
526
527 put_page(scratch);
528 return status;
529 }
530
531 static
nfs_readdir_free_pagearray(struct page ** pages,unsigned int npages)532 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
533 {
534 unsigned int i;
535 for (i = 0; i < npages; i++)
536 put_page(pages[i]);
537 }
538
539 static
nfs_readdir_free_large_page(void * ptr,struct page ** pages,unsigned int npages)540 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
541 unsigned int npages)
542 {
543 nfs_readdir_free_pagearray(pages, npages);
544 }
545
546 /*
547 * nfs_readdir_large_page will allocate pages that must be freed with a call
548 * to nfs_readdir_free_large_page
549 */
550 static
nfs_readdir_large_page(struct page ** pages,unsigned int npages)551 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
552 {
553 unsigned int i;
554
555 for (i = 0; i < npages; i++) {
556 struct page *page = alloc_page(GFP_KERNEL);
557 if (page == NULL)
558 goto out_freepages;
559 pages[i] = page;
560 }
561 return 0;
562
563 out_freepages:
564 nfs_readdir_free_pagearray(pages, i);
565 return -ENOMEM;
566 }
567
568 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)569 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
570 {
571 struct page *pages[NFS_MAX_READDIR_PAGES];
572 void *pages_ptr = NULL;
573 struct nfs_entry entry;
574 struct file *file = desc->file;
575 struct nfs_cache_array *array;
576 int status = -ENOMEM;
577 unsigned int array_size = ARRAY_SIZE(pages);
578
579 entry.prev_cookie = 0;
580 entry.cookie = desc->last_cookie;
581 entry.eof = 0;
582 entry.fh = nfs_alloc_fhandle();
583 entry.fattr = nfs_alloc_fattr();
584 entry.server = NFS_SERVER(inode);
585 if (entry.fh == NULL || entry.fattr == NULL)
586 goto out;
587
588 array = nfs_readdir_get_array(page);
589 if (IS_ERR(array)) {
590 status = PTR_ERR(array);
591 goto out;
592 }
593 memset(array, 0, sizeof(struct nfs_cache_array));
594 array->eof_index = -1;
595
596 status = nfs_readdir_large_page(pages, array_size);
597 if (status < 0)
598 goto out_release_array;
599 do {
600 unsigned int pglen;
601 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
602
603 if (status < 0)
604 break;
605 pglen = status;
606 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
607 if (status < 0) {
608 if (status == -ENOSPC)
609 status = 0;
610 break;
611 }
612 } while (array->eof_index < 0);
613
614 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
615 out_release_array:
616 nfs_readdir_release_array(page);
617 out:
618 nfs_free_fattr(entry.fattr);
619 nfs_free_fhandle(entry.fh);
620 return status;
621 }
622
623 /*
624 * Now we cache directories properly, by converting xdr information
625 * to an array that can be used for lookups later. This results in
626 * fewer cache pages, since we can store more information on each page.
627 * We only need to convert from xdr once so future lookups are much simpler
628 */
629 static
nfs_readdir_filler(nfs_readdir_descriptor_t * desc,struct page * page)630 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
631 {
632 struct inode *inode = file_inode(desc->file);
633 int ret;
634
635 ret = nfs_readdir_xdr_to_array(desc, page, inode);
636 if (ret < 0)
637 goto error;
638 SetPageUptodate(page);
639
640 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
641 /* Should never happen */
642 nfs_zap_mapping(inode, inode->i_mapping);
643 }
644 unlock_page(page);
645 return 0;
646 error:
647 unlock_page(page);
648 return ret;
649 }
650
651 static
cache_page_release(nfs_readdir_descriptor_t * desc)652 void cache_page_release(nfs_readdir_descriptor_t *desc)
653 {
654 if (!desc->page->mapping)
655 nfs_readdir_clear_array(desc->page);
656 page_cache_release(desc->page);
657 desc->page = NULL;
658 }
659
660 static
get_cache_page(nfs_readdir_descriptor_t * desc)661 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
662 {
663 return read_cache_page(file_inode(desc->file)->i_mapping,
664 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
665 }
666
667 /*
668 * Returns 0 if desc->dir_cookie was found on page desc->page_index
669 */
670 static
find_cache_page(nfs_readdir_descriptor_t * desc)671 int find_cache_page(nfs_readdir_descriptor_t *desc)
672 {
673 int res;
674
675 desc->page = get_cache_page(desc);
676 if (IS_ERR(desc->page))
677 return PTR_ERR(desc->page);
678
679 res = nfs_readdir_search_array(desc);
680 if (res != 0)
681 cache_page_release(desc);
682 return res;
683 }
684
685 /* Search for desc->dir_cookie from the beginning of the page cache */
686 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)687 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
688 {
689 int res;
690
691 if (desc->page_index == 0) {
692 desc->current_index = 0;
693 desc->last_cookie = 0;
694 }
695 do {
696 res = find_cache_page(desc);
697 } while (res == -EAGAIN);
698 return res;
699 }
700
701 /*
702 * Once we've found the start of the dirent within a page: fill 'er up...
703 */
704 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc,void * dirent,filldir_t filldir)705 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
706 filldir_t filldir)
707 {
708 struct file *file = desc->file;
709 int i = 0;
710 int res = 0;
711 struct nfs_cache_array *array = NULL;
712 struct nfs_open_dir_context *ctx = file->private_data;
713
714 array = nfs_readdir_get_array(desc->page);
715 if (IS_ERR(array)) {
716 res = PTR_ERR(array);
717 goto out;
718 }
719
720 for (i = desc->cache_entry_index; i < array->size; i++) {
721 struct nfs_cache_array_entry *ent;
722
723 ent = &array->array[i];
724 if (filldir(dirent, ent->string.name, ent->string.len,
725 file->f_pos, nfs_compat_user_ino64(ent->ino),
726 ent->d_type) < 0) {
727 desc->eof = 1;
728 break;
729 }
730 file->f_pos++;
731 if (i < (array->size-1))
732 *desc->dir_cookie = array->array[i+1].cookie;
733 else
734 *desc->dir_cookie = array->last_cookie;
735 if (ctx->duped != 0)
736 ctx->duped = 1;
737 }
738 if (array->eof_index >= 0)
739 desc->eof = 1;
740
741 nfs_readdir_release_array(desc->page);
742 out:
743 cache_page_release(desc);
744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
745 (unsigned long long)*desc->dir_cookie, res);
746 return res;
747 }
748
749 /*
750 * If we cannot find a cookie in our cache, we suspect that this is
751 * because it points to a deleted file, so we ask the server to return
752 * whatever it thinks is the next entry. We then feed this to filldir.
753 * If all goes well, we should then be able to find our way round the
754 * cache on the next call to readdir_search_pagecache();
755 *
756 * NOTE: we cannot add the anonymous page to the pagecache because
757 * the data it contains might not be page aligned. Besides,
758 * we should already have a complete representation of the
759 * directory in the page cache by the time we get here.
760 */
761 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc,void * dirent,filldir_t filldir)762 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
763 filldir_t filldir)
764 {
765 struct page *page = NULL;
766 int status;
767 struct inode *inode = file_inode(desc->file);
768 struct nfs_open_dir_context *ctx = desc->file->private_data;
769
770 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
771 (unsigned long long)*desc->dir_cookie);
772
773 page = alloc_page(GFP_HIGHUSER);
774 if (!page) {
775 status = -ENOMEM;
776 goto out;
777 }
778
779 desc->page_index = 0;
780 desc->last_cookie = *desc->dir_cookie;
781 desc->page = page;
782 ctx->duped = 0;
783
784 status = nfs_readdir_xdr_to_array(desc, page, inode);
785 if (status < 0)
786 goto out_release;
787
788 status = nfs_do_filldir(desc, dirent, filldir);
789
790 out:
791 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
792 __func__, status);
793 return status;
794 out_release:
795 cache_page_release(desc);
796 goto out;
797 }
798
799 /* The file offset position represents the dirent entry number. A
800 last cookie cache takes care of the common case of reading the
801 whole directory.
802 */
nfs_readdir(struct file * filp,void * dirent,filldir_t filldir)803 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
804 {
805 struct dentry *dentry = filp->f_path.dentry;
806 struct inode *inode = dentry->d_inode;
807 nfs_readdir_descriptor_t my_desc,
808 *desc = &my_desc;
809 struct nfs_open_dir_context *dir_ctx = filp->private_data;
810 int res;
811
812 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
813 dentry->d_parent->d_name.name, dentry->d_name.name,
814 (long long)filp->f_pos);
815 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
816
817 /*
818 * filp->f_pos points to the dirent entry number.
819 * *desc->dir_cookie has the cookie for the next entry. We have
820 * to either find the entry with the appropriate number or
821 * revalidate the cookie.
822 */
823 memset(desc, 0, sizeof(*desc));
824
825 desc->file = filp;
826 desc->dir_cookie = &dir_ctx->dir_cookie;
827 desc->decode = NFS_PROTO(inode)->decode_dirent;
828 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
829
830 nfs_block_sillyrename(dentry);
831 res = nfs_revalidate_mapping(inode, filp->f_mapping);
832 if (res < 0)
833 goto out;
834
835 do {
836 res = readdir_search_pagecache(desc);
837
838 if (res == -EBADCOOKIE) {
839 res = 0;
840 /* This means either end of directory */
841 if (*desc->dir_cookie && desc->eof == 0) {
842 /* Or that the server has 'lost' a cookie */
843 res = uncached_readdir(desc, dirent, filldir);
844 if (res == 0)
845 continue;
846 }
847 break;
848 }
849 if (res == -ETOOSMALL && desc->plus) {
850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
851 nfs_zap_caches(inode);
852 desc->page_index = 0;
853 desc->plus = 0;
854 desc->eof = 0;
855 continue;
856 }
857 if (res < 0)
858 break;
859
860 res = nfs_do_filldir(desc, dirent, filldir);
861 if (res < 0)
862 break;
863 } while (!desc->eof);
864 out:
865 nfs_unblock_sillyrename(dentry);
866 if (res > 0)
867 res = 0;
868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
869 dentry->d_parent->d_name.name, dentry->d_name.name,
870 res);
871 return res;
872 }
873
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
875 {
876 struct dentry *dentry = filp->f_path.dentry;
877 struct inode *inode = dentry->d_inode;
878 struct nfs_open_dir_context *dir_ctx = filp->private_data;
879
880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
881 dentry->d_parent->d_name.name,
882 dentry->d_name.name,
883 offset, whence);
884
885 mutex_lock(&inode->i_mutex);
886 switch (whence) {
887 case 1:
888 offset += filp->f_pos;
889 case 0:
890 if (offset >= 0)
891 break;
892 default:
893 offset = -EINVAL;
894 goto out;
895 }
896 if (offset != filp->f_pos) {
897 filp->f_pos = offset;
898 dir_ctx->dir_cookie = 0;
899 dir_ctx->duped = 0;
900 }
901 out:
902 mutex_unlock(&inode->i_mutex);
903 return offset;
904 }
905
906 /*
907 * All directory operations under NFS are synchronous, so fsync()
908 * is a dummy operation.
909 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
911 int datasync)
912 {
913 struct dentry *dentry = filp->f_path.dentry;
914 struct inode *inode = dentry->d_inode;
915
916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
917 dentry->d_parent->d_name.name, dentry->d_name.name,
918 datasync);
919
920 mutex_lock(&inode->i_mutex);
921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
922 mutex_unlock(&inode->i_mutex);
923 return 0;
924 }
925
926 /**
927 * nfs_force_lookup_revalidate - Mark the directory as having changed
928 * @dir - pointer to directory inode
929 *
930 * This forces the revalidation code in nfs_lookup_revalidate() to do a
931 * full lookup on all child dentries of 'dir' whenever a change occurs
932 * on the server that might have invalidated our dcache.
933 *
934 * The caller should be holding dir->i_lock
935 */
nfs_force_lookup_revalidate(struct inode * dir)936 void nfs_force_lookup_revalidate(struct inode *dir)
937 {
938 NFS_I(dir)->cache_change_attribute++;
939 }
940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
941
942 /*
943 * A check for whether or not the parent directory has changed.
944 * In the case it has, we assume that the dentries are untrustworthy
945 * and may need to be looked up again.
946 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry)947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
948 {
949 if (IS_ROOT(dentry))
950 return 1;
951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
952 return 0;
953 if (!nfs_verify_change_attribute(dir, dentry->d_time))
954 return 0;
955 /* Revalidate nfsi->cache_change_attribute before we declare a match */
956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
957 return 0;
958 if (!nfs_verify_change_attribute(dir, dentry->d_time))
959 return 0;
960 return 1;
961 }
962
963 /*
964 * Use intent information to check whether or not we're going to do
965 * an O_EXCL create using this path component.
966 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
968 {
969 if (NFS_PROTO(dir)->version == 2)
970 return 0;
971 return flags & LOOKUP_EXCL;
972 }
973
974 /*
975 * Inode and filehandle revalidation for lookups.
976 *
977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
978 * or if the intent information indicates that we're about to open this
979 * particular file and the "nocto" mount flag is not set.
980 *
981 */
982 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
984 {
985 struct nfs_server *server = NFS_SERVER(inode);
986 int ret;
987
988 if (IS_AUTOMOUNT(inode))
989 return 0;
990 /* VFS wants an on-the-wire revalidation */
991 if (flags & LOOKUP_REVAL)
992 goto out_force;
993 /* This is an open(2) */
994 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
995 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
996 goto out_force;
997 out:
998 return (inode->i_nlink == 0) ? -ENOENT : 0;
999 out_force:
1000 ret = __nfs_revalidate_inode(server, inode);
1001 if (ret != 0)
1002 return ret;
1003 goto out;
1004 }
1005
1006 /*
1007 * We judge how long we want to trust negative
1008 * dentries by looking at the parent inode mtime.
1009 *
1010 * If parent mtime has changed, we revalidate, else we wait for a
1011 * period corresponding to the parent's attribute cache timeout value.
1012 */
1013 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1014 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1015 unsigned int flags)
1016 {
1017 /* Don't revalidate a negative dentry if we're creating a new file */
1018 if (flags & LOOKUP_CREATE)
1019 return 0;
1020 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1021 return 1;
1022 return !nfs_check_verifier(dir, dentry);
1023 }
1024
1025 /*
1026 * This is called every time the dcache has a lookup hit,
1027 * and we should check whether we can really trust that
1028 * lookup.
1029 *
1030 * NOTE! The hit can be a negative hit too, don't assume
1031 * we have an inode!
1032 *
1033 * If the parent directory is seen to have changed, we throw out the
1034 * cached dentry and do a new lookup.
1035 */
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1036 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1037 {
1038 struct inode *dir;
1039 struct inode *inode;
1040 struct dentry *parent;
1041 struct nfs_fh *fhandle = NULL;
1042 struct nfs_fattr *fattr = NULL;
1043 int error;
1044
1045 if (flags & LOOKUP_RCU)
1046 return -ECHILD;
1047
1048 parent = dget_parent(dentry);
1049 dir = parent->d_inode;
1050 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1051 inode = dentry->d_inode;
1052
1053 if (!inode) {
1054 if (nfs_neg_need_reval(dir, dentry, flags))
1055 goto out_bad;
1056 goto out_valid_noent;
1057 }
1058
1059 if (is_bad_inode(inode)) {
1060 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1061 __func__, dentry->d_parent->d_name.name,
1062 dentry->d_name.name);
1063 goto out_bad;
1064 }
1065
1066 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1067 goto out_set_verifier;
1068
1069 /* Force a full look up iff the parent directory has changed */
1070 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1071 if (nfs_lookup_verify_inode(inode, flags))
1072 goto out_zap_parent;
1073 goto out_valid;
1074 }
1075
1076 if (NFS_STALE(inode))
1077 goto out_bad;
1078
1079 error = -ENOMEM;
1080 fhandle = nfs_alloc_fhandle();
1081 fattr = nfs_alloc_fattr();
1082 if (fhandle == NULL || fattr == NULL)
1083 goto out_error;
1084
1085 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1086 if (error)
1087 goto out_bad;
1088 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1089 goto out_bad;
1090 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1091 goto out_bad;
1092
1093 nfs_free_fattr(fattr);
1094 nfs_free_fhandle(fhandle);
1095 out_set_verifier:
1096 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1097 out_valid:
1098 /* Success: notify readdir to use READDIRPLUS */
1099 nfs_advise_use_readdirplus(dir);
1100 out_valid_noent:
1101 dput(parent);
1102 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1103 __func__, dentry->d_parent->d_name.name,
1104 dentry->d_name.name);
1105 return 1;
1106 out_zap_parent:
1107 nfs_zap_caches(dir);
1108 out_bad:
1109 nfs_free_fattr(fattr);
1110 nfs_free_fhandle(fhandle);
1111 nfs_mark_for_revalidate(dir);
1112 if (inode && S_ISDIR(inode->i_mode)) {
1113 /* Purge readdir caches. */
1114 nfs_zap_caches(inode);
1115 /* If we have submounts, don't unhash ! */
1116 if (have_submounts(dentry))
1117 goto out_valid;
1118 if (dentry->d_flags & DCACHE_DISCONNECTED)
1119 goto out_valid;
1120 shrink_dcache_parent(dentry);
1121 }
1122 d_drop(dentry);
1123 dput(parent);
1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1125 __func__, dentry->d_parent->d_name.name,
1126 dentry->d_name.name);
1127 return 0;
1128 out_error:
1129 nfs_free_fattr(fattr);
1130 nfs_free_fhandle(fhandle);
1131 dput(parent);
1132 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1133 __func__, dentry->d_parent->d_name.name,
1134 dentry->d_name.name, error);
1135 return error;
1136 }
1137
1138 /*
1139 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1140 * when we don't really care about the dentry name. This is called when a
1141 * pathwalk ends on a dentry that was not found via a normal lookup in the
1142 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1143 *
1144 * In this situation, we just want to verify that the inode itself is OK
1145 * since the dentry might have changed on the server.
1146 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1147 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1148 {
1149 int error;
1150 struct inode *inode = dentry->d_inode;
1151
1152 /*
1153 * I believe we can only get a negative dentry here in the case of a
1154 * procfs-style symlink. Just assume it's correct for now, but we may
1155 * eventually need to do something more here.
1156 */
1157 if (!inode) {
1158 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1159 __func__, dentry->d_parent->d_name.name,
1160 dentry->d_name.name);
1161 return 1;
1162 }
1163
1164 if (is_bad_inode(inode)) {
1165 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1166 __func__, dentry->d_parent->d_name.name,
1167 dentry->d_name.name);
1168 return 0;
1169 }
1170
1171 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1172 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1173 __func__, inode->i_ino, error ? "invalid" : "valid");
1174 return !error;
1175 }
1176
1177 /*
1178 * This is called from dput() when d_count is going to 0.
1179 */
nfs_dentry_delete(const struct dentry * dentry)1180 static int nfs_dentry_delete(const struct dentry *dentry)
1181 {
1182 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1183 dentry->d_parent->d_name.name, dentry->d_name.name,
1184 dentry->d_flags);
1185
1186 /* Unhash any dentry with a stale inode */
1187 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1188 return 1;
1189
1190 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1191 /* Unhash it, so that ->d_iput() would be called */
1192 return 1;
1193 }
1194 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1195 /* Unhash it, so that ancestors of killed async unlink
1196 * files will be cleaned up during umount */
1197 return 1;
1198 }
1199 return 0;
1200
1201 }
1202
1203 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1204 static void nfs_drop_nlink(struct inode *inode)
1205 {
1206 spin_lock(&inode->i_lock);
1207 /* drop the inode if we're reasonably sure this is the last link */
1208 if (inode->i_nlink == 1)
1209 clear_nlink(inode);
1210 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1211 spin_unlock(&inode->i_lock);
1212 }
1213
1214 /*
1215 * Called when the dentry loses inode.
1216 * We use it to clean up silly-renamed files.
1217 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1218 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1219 {
1220 if (S_ISDIR(inode->i_mode))
1221 /* drop any readdir cache as it could easily be old */
1222 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1223
1224 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1225 nfs_complete_unlink(dentry, inode);
1226 nfs_drop_nlink(inode);
1227 }
1228 iput(inode);
1229 }
1230
nfs_d_release(struct dentry * dentry)1231 static void nfs_d_release(struct dentry *dentry)
1232 {
1233 /* free cached devname value, if it survived that far */
1234 if (unlikely(dentry->d_fsdata)) {
1235 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1236 WARN_ON(1);
1237 else
1238 kfree(dentry->d_fsdata);
1239 }
1240 }
1241
1242 const struct dentry_operations nfs_dentry_operations = {
1243 .d_revalidate = nfs_lookup_revalidate,
1244 .d_weak_revalidate = nfs_weak_revalidate,
1245 .d_delete = nfs_dentry_delete,
1246 .d_iput = nfs_dentry_iput,
1247 .d_automount = nfs_d_automount,
1248 .d_release = nfs_d_release,
1249 };
1250 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1251
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1252 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1253 {
1254 struct dentry *res;
1255 struct dentry *parent;
1256 struct inode *inode = NULL;
1257 struct nfs_fh *fhandle = NULL;
1258 struct nfs_fattr *fattr = NULL;
1259 int error;
1260
1261 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1262 dentry->d_parent->d_name.name, dentry->d_name.name);
1263 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1264
1265 res = ERR_PTR(-ENAMETOOLONG);
1266 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1267 goto out;
1268
1269 /*
1270 * If we're doing an exclusive create, optimize away the lookup
1271 * but don't hash the dentry.
1272 */
1273 if (nfs_is_exclusive_create(dir, flags)) {
1274 d_instantiate(dentry, NULL);
1275 res = NULL;
1276 goto out;
1277 }
1278
1279 res = ERR_PTR(-ENOMEM);
1280 fhandle = nfs_alloc_fhandle();
1281 fattr = nfs_alloc_fattr();
1282 if (fhandle == NULL || fattr == NULL)
1283 goto out;
1284
1285 parent = dentry->d_parent;
1286 /* Protect against concurrent sillydeletes */
1287 nfs_block_sillyrename(parent);
1288 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1289 if (error == -ENOENT)
1290 goto no_entry;
1291 if (error < 0) {
1292 res = ERR_PTR(error);
1293 goto out_unblock_sillyrename;
1294 }
1295 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1296 res = ERR_CAST(inode);
1297 if (IS_ERR(res))
1298 goto out_unblock_sillyrename;
1299
1300 /* Success: notify readdir to use READDIRPLUS */
1301 nfs_advise_use_readdirplus(dir);
1302
1303 no_entry:
1304 res = d_materialise_unique(dentry, inode);
1305 if (res != NULL) {
1306 if (IS_ERR(res))
1307 goto out_unblock_sillyrename;
1308 dentry = res;
1309 }
1310 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1311 out_unblock_sillyrename:
1312 nfs_unblock_sillyrename(parent);
1313 out:
1314 nfs_free_fattr(fattr);
1315 nfs_free_fhandle(fhandle);
1316 return res;
1317 }
1318 EXPORT_SYMBOL_GPL(nfs_lookup);
1319
1320 #if IS_ENABLED(CONFIG_NFS_V4)
1321 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1322
1323 const struct dentry_operations nfs4_dentry_operations = {
1324 .d_revalidate = nfs4_lookup_revalidate,
1325 .d_delete = nfs_dentry_delete,
1326 .d_iput = nfs_dentry_iput,
1327 .d_automount = nfs_d_automount,
1328 .d_release = nfs_d_release,
1329 };
1330 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1331
flags_to_mode(int flags)1332 static fmode_t flags_to_mode(int flags)
1333 {
1334 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1335 if ((flags & O_ACCMODE) != O_WRONLY)
1336 res |= FMODE_READ;
1337 if ((flags & O_ACCMODE) != O_RDONLY)
1338 res |= FMODE_WRITE;
1339 return res;
1340 }
1341
create_nfs_open_context(struct dentry * dentry,int open_flags)1342 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1343 {
1344 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1345 }
1346
do_open(struct inode * inode,struct file * filp)1347 static int do_open(struct inode *inode, struct file *filp)
1348 {
1349 nfs_fscache_set_inode_cookie(inode, filp);
1350 return 0;
1351 }
1352
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags,int * opened)1353 static int nfs_finish_open(struct nfs_open_context *ctx,
1354 struct dentry *dentry,
1355 struct file *file, unsigned open_flags,
1356 int *opened)
1357 {
1358 int err;
1359
1360 if (ctx->dentry != dentry) {
1361 dput(ctx->dentry);
1362 ctx->dentry = dget(dentry);
1363 }
1364
1365 /* If the open_intent is for execute, we have an extra check to make */
1366 if (ctx->mode & FMODE_EXEC) {
1367 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1368 if (err < 0)
1369 goto out;
1370 }
1371
1372 err = finish_open(file, dentry, do_open, opened);
1373 if (err)
1374 goto out;
1375 nfs_file_set_open_context(file, ctx);
1376
1377 out:
1378 put_nfs_open_context(ctx);
1379 return err;
1380 }
1381
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode,int * opened)1382 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1383 struct file *file, unsigned open_flags,
1384 umode_t mode, int *opened)
1385 {
1386 struct nfs_open_context *ctx;
1387 struct dentry *res;
1388 struct iattr attr = { .ia_valid = ATTR_OPEN };
1389 struct inode *inode;
1390 int err;
1391
1392 /* Expect a negative dentry */
1393 BUG_ON(dentry->d_inode);
1394
1395 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1396 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1397
1398 /* NFS only supports OPEN on regular files */
1399 if ((open_flags & O_DIRECTORY)) {
1400 if (!d_unhashed(dentry)) {
1401 /*
1402 * Hashed negative dentry with O_DIRECTORY: dentry was
1403 * revalidated and is fine, no need to perform lookup
1404 * again
1405 */
1406 return -ENOENT;
1407 }
1408 goto no_open;
1409 }
1410
1411 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1412 return -ENAMETOOLONG;
1413
1414 if (open_flags & O_CREAT) {
1415 attr.ia_valid |= ATTR_MODE;
1416 attr.ia_mode = mode & ~current_umask();
1417 }
1418 if (open_flags & O_TRUNC) {
1419 attr.ia_valid |= ATTR_SIZE;
1420 attr.ia_size = 0;
1421 }
1422
1423 ctx = create_nfs_open_context(dentry, open_flags);
1424 err = PTR_ERR(ctx);
1425 if (IS_ERR(ctx))
1426 goto out;
1427
1428 nfs_block_sillyrename(dentry->d_parent);
1429 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1430 d_drop(dentry);
1431 if (IS_ERR(inode)) {
1432 nfs_unblock_sillyrename(dentry->d_parent);
1433 put_nfs_open_context(ctx);
1434 err = PTR_ERR(inode);
1435 switch (err) {
1436 case -ENOENT:
1437 d_add(dentry, NULL);
1438 break;
1439 case -EISDIR:
1440 case -ENOTDIR:
1441 goto no_open;
1442 case -ELOOP:
1443 if (!(open_flags & O_NOFOLLOW))
1444 goto no_open;
1445 break;
1446 /* case -EINVAL: */
1447 default:
1448 break;
1449 }
1450 goto out;
1451 }
1452 res = d_add_unique(dentry, inode);
1453 if (res != NULL)
1454 dentry = res;
1455
1456 nfs_unblock_sillyrename(dentry->d_parent);
1457 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1458
1459 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1460
1461 dput(res);
1462 out:
1463 return err;
1464
1465 no_open:
1466 res = nfs_lookup(dir, dentry, 0);
1467 err = PTR_ERR(res);
1468 if (IS_ERR(res))
1469 goto out;
1470
1471 return finish_no_open(file, res);
1472 }
1473 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1474
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1475 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1476 {
1477 struct dentry *parent = NULL;
1478 struct inode *inode;
1479 struct inode *dir;
1480 int ret = 0;
1481
1482 if (flags & LOOKUP_RCU)
1483 return -ECHILD;
1484
1485 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1486 goto no_open;
1487 if (d_mountpoint(dentry))
1488 goto no_open;
1489 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1490 goto no_open;
1491
1492 inode = dentry->d_inode;
1493 parent = dget_parent(dentry);
1494 dir = parent->d_inode;
1495
1496 /* We can't create new files in nfs_open_revalidate(), so we
1497 * optimize away revalidation of negative dentries.
1498 */
1499 if (inode == NULL) {
1500 if (!nfs_neg_need_reval(dir, dentry, flags))
1501 ret = 1;
1502 goto out;
1503 }
1504
1505 /* NFS only supports OPEN on regular files */
1506 if (!S_ISREG(inode->i_mode))
1507 goto no_open_dput;
1508 /* We cannot do exclusive creation on a positive dentry */
1509 if (flags & LOOKUP_EXCL)
1510 goto no_open_dput;
1511
1512 /* Let f_op->open() actually open (and revalidate) the file */
1513 ret = 1;
1514
1515 out:
1516 dput(parent);
1517 return ret;
1518
1519 no_open_dput:
1520 dput(parent);
1521 no_open:
1522 return nfs_lookup_revalidate(dentry, flags);
1523 }
1524
1525 #endif /* CONFIG_NFSV4 */
1526
1527 /*
1528 * Code common to create, mkdir, and mknod.
1529 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)1530 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1531 struct nfs_fattr *fattr)
1532 {
1533 struct dentry *parent = dget_parent(dentry);
1534 struct inode *dir = parent->d_inode;
1535 struct inode *inode;
1536 int error = -EACCES;
1537
1538 d_drop(dentry);
1539
1540 /* We may have been initialized further down */
1541 if (dentry->d_inode)
1542 goto out;
1543 if (fhandle->size == 0) {
1544 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1545 if (error)
1546 goto out_error;
1547 }
1548 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1549 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1550 struct nfs_server *server = NFS_SB(dentry->d_sb);
1551 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1552 if (error < 0)
1553 goto out_error;
1554 }
1555 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1556 error = PTR_ERR(inode);
1557 if (IS_ERR(inode))
1558 goto out_error;
1559 d_add(dentry, inode);
1560 out:
1561 dput(parent);
1562 return 0;
1563 out_error:
1564 nfs_mark_for_revalidate(dir);
1565 dput(parent);
1566 return error;
1567 }
1568 EXPORT_SYMBOL_GPL(nfs_instantiate);
1569
1570 /*
1571 * Following a failed create operation, we drop the dentry rather
1572 * than retain a negative dentry. This avoids a problem in the event
1573 * that the operation succeeded on the server, but an error in the
1574 * reply path made it appear to have failed.
1575 */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1576 int nfs_create(struct inode *dir, struct dentry *dentry,
1577 umode_t mode, bool excl)
1578 {
1579 struct iattr attr;
1580 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1581 int error;
1582
1583 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1584 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1585
1586 attr.ia_mode = mode;
1587 attr.ia_valid = ATTR_MODE;
1588
1589 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1590 if (error != 0)
1591 goto out_err;
1592 return 0;
1593 out_err:
1594 d_drop(dentry);
1595 return error;
1596 }
1597 EXPORT_SYMBOL_GPL(nfs_create);
1598
1599 /*
1600 * See comments for nfs_proc_create regarding failed operations.
1601 */
1602 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1603 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1604 {
1605 struct iattr attr;
1606 int status;
1607
1608 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1609 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1610
1611 if (!new_valid_dev(rdev))
1612 return -EINVAL;
1613
1614 attr.ia_mode = mode;
1615 attr.ia_valid = ATTR_MODE;
1616
1617 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1618 if (status != 0)
1619 goto out_err;
1620 return 0;
1621 out_err:
1622 d_drop(dentry);
1623 return status;
1624 }
1625 EXPORT_SYMBOL_GPL(nfs_mknod);
1626
1627 /*
1628 * See comments for nfs_proc_create regarding failed operations.
1629 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1630 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1631 {
1632 struct iattr attr;
1633 int error;
1634
1635 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1636 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1637
1638 attr.ia_valid = ATTR_MODE;
1639 attr.ia_mode = mode | S_IFDIR;
1640
1641 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1642 if (error != 0)
1643 goto out_err;
1644 return 0;
1645 out_err:
1646 d_drop(dentry);
1647 return error;
1648 }
1649 EXPORT_SYMBOL_GPL(nfs_mkdir);
1650
nfs_dentry_handle_enoent(struct dentry * dentry)1651 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1652 {
1653 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1654 d_delete(dentry);
1655 }
1656
nfs_rmdir(struct inode * dir,struct dentry * dentry)1657 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1658 {
1659 int error;
1660
1661 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1662 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1663
1664 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1665 /* Ensure the VFS deletes this inode */
1666 if (error == 0 && dentry->d_inode != NULL)
1667 clear_nlink(dentry->d_inode);
1668 else if (error == -ENOENT)
1669 nfs_dentry_handle_enoent(dentry);
1670
1671 return error;
1672 }
1673 EXPORT_SYMBOL_GPL(nfs_rmdir);
1674
1675 /*
1676 * Remove a file after making sure there are no pending writes,
1677 * and after checking that the file has only one user.
1678 *
1679 * We invalidate the attribute cache and free the inode prior to the operation
1680 * to avoid possible races if the server reuses the inode.
1681 */
nfs_safe_remove(struct dentry * dentry)1682 static int nfs_safe_remove(struct dentry *dentry)
1683 {
1684 struct inode *dir = dentry->d_parent->d_inode;
1685 struct inode *inode = dentry->d_inode;
1686 int error = -EBUSY;
1687
1688 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1689 dentry->d_parent->d_name.name, dentry->d_name.name);
1690
1691 /* If the dentry was sillyrenamed, we simply call d_delete() */
1692 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1693 error = 0;
1694 goto out;
1695 }
1696
1697 if (inode != NULL) {
1698 NFS_PROTO(inode)->return_delegation(inode);
1699 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1700 if (error == 0)
1701 nfs_drop_nlink(inode);
1702 } else
1703 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1704 if (error == -ENOENT)
1705 nfs_dentry_handle_enoent(dentry);
1706 out:
1707 return error;
1708 }
1709
1710 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1711 * belongs to an active ".nfs..." file and we return -EBUSY.
1712 *
1713 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1714 */
nfs_unlink(struct inode * dir,struct dentry * dentry)1715 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1716 {
1717 int error;
1718 int need_rehash = 0;
1719
1720 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1721 dir->i_ino, dentry->d_name.name);
1722
1723 spin_lock(&dentry->d_lock);
1724 if (dentry->d_count > 1) {
1725 spin_unlock(&dentry->d_lock);
1726 /* Start asynchronous writeout of the inode */
1727 write_inode_now(dentry->d_inode, 0);
1728 error = nfs_sillyrename(dir, dentry);
1729 return error;
1730 }
1731 if (!d_unhashed(dentry)) {
1732 __d_drop(dentry);
1733 need_rehash = 1;
1734 }
1735 spin_unlock(&dentry->d_lock);
1736 error = nfs_safe_remove(dentry);
1737 if (!error || error == -ENOENT) {
1738 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1739 } else if (need_rehash)
1740 d_rehash(dentry);
1741 return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_unlink);
1744
1745 /*
1746 * To create a symbolic link, most file systems instantiate a new inode,
1747 * add a page to it containing the path, then write it out to the disk
1748 * using prepare_write/commit_write.
1749 *
1750 * Unfortunately the NFS client can't create the in-core inode first
1751 * because it needs a file handle to create an in-core inode (see
1752 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1753 * symlink request has completed on the server.
1754 *
1755 * So instead we allocate a raw page, copy the symname into it, then do
1756 * the SYMLINK request with the page as the buffer. If it succeeds, we
1757 * now have a new file handle and can instantiate an in-core NFS inode
1758 * and move the raw page into its mapping.
1759 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1760 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1761 {
1762 struct pagevec lru_pvec;
1763 struct page *page;
1764 char *kaddr;
1765 struct iattr attr;
1766 unsigned int pathlen = strlen(symname);
1767 int error;
1768
1769 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1770 dir->i_ino, dentry->d_name.name, symname);
1771
1772 if (pathlen > PAGE_SIZE)
1773 return -ENAMETOOLONG;
1774
1775 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1776 attr.ia_valid = ATTR_MODE;
1777
1778 page = alloc_page(GFP_HIGHUSER);
1779 if (!page)
1780 return -ENOMEM;
1781
1782 kaddr = kmap_atomic(page);
1783 memcpy(kaddr, symname, pathlen);
1784 if (pathlen < PAGE_SIZE)
1785 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1786 kunmap_atomic(kaddr);
1787
1788 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1789 if (error != 0) {
1790 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1791 dir->i_sb->s_id, dir->i_ino,
1792 dentry->d_name.name, symname, error);
1793 d_drop(dentry);
1794 __free_page(page);
1795 return error;
1796 }
1797
1798 /*
1799 * No big deal if we can't add this page to the page cache here.
1800 * READLINK will get the missing page from the server if needed.
1801 */
1802 pagevec_init(&lru_pvec, 0);
1803 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1804 GFP_KERNEL)) {
1805 pagevec_add(&lru_pvec, page);
1806 pagevec_lru_add_file(&lru_pvec);
1807 SetPageUptodate(page);
1808 unlock_page(page);
1809 } else
1810 __free_page(page);
1811
1812 return 0;
1813 }
1814 EXPORT_SYMBOL_GPL(nfs_symlink);
1815
1816 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1817 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1818 {
1819 struct inode *inode = old_dentry->d_inode;
1820 int error;
1821
1822 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1823 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1824 dentry->d_parent->d_name.name, dentry->d_name.name);
1825
1826 NFS_PROTO(inode)->return_delegation(inode);
1827
1828 d_drop(dentry);
1829 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1830 if (error == 0) {
1831 ihold(inode);
1832 d_add(dentry, inode);
1833 }
1834 return error;
1835 }
1836 EXPORT_SYMBOL_GPL(nfs_link);
1837
1838 /*
1839 * RENAME
1840 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1841 * different file handle for the same inode after a rename (e.g. when
1842 * moving to a different directory). A fail-safe method to do so would
1843 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1844 * rename the old file using the sillyrename stuff. This way, the original
1845 * file in old_dir will go away when the last process iput()s the inode.
1846 *
1847 * FIXED.
1848 *
1849 * It actually works quite well. One needs to have the possibility for
1850 * at least one ".nfs..." file in each directory the file ever gets
1851 * moved or linked to which happens automagically with the new
1852 * implementation that only depends on the dcache stuff instead of
1853 * using the inode layer
1854 *
1855 * Unfortunately, things are a little more complicated than indicated
1856 * above. For a cross-directory move, we want to make sure we can get
1857 * rid of the old inode after the operation. This means there must be
1858 * no pending writes (if it's a file), and the use count must be 1.
1859 * If these conditions are met, we can drop the dentries before doing
1860 * the rename.
1861 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1862 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1863 struct inode *new_dir, struct dentry *new_dentry)
1864 {
1865 struct inode *old_inode = old_dentry->d_inode;
1866 struct inode *new_inode = new_dentry->d_inode;
1867 struct dentry *dentry = NULL, *rehash = NULL;
1868 int error = -EBUSY;
1869
1870 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1871 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1872 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1873 new_dentry->d_count);
1874
1875 /*
1876 * For non-directories, check whether the target is busy and if so,
1877 * make a copy of the dentry and then do a silly-rename. If the
1878 * silly-rename succeeds, the copied dentry is hashed and becomes
1879 * the new target.
1880 */
1881 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1882 /*
1883 * To prevent any new references to the target during the
1884 * rename, we unhash the dentry in advance.
1885 */
1886 if (!d_unhashed(new_dentry)) {
1887 d_drop(new_dentry);
1888 rehash = new_dentry;
1889 }
1890
1891 if (new_dentry->d_count > 2) {
1892 int err;
1893
1894 /* copy the target dentry's name */
1895 dentry = d_alloc(new_dentry->d_parent,
1896 &new_dentry->d_name);
1897 if (!dentry)
1898 goto out;
1899
1900 /* silly-rename the existing target ... */
1901 err = nfs_sillyrename(new_dir, new_dentry);
1902 if (err)
1903 goto out;
1904
1905 new_dentry = dentry;
1906 rehash = NULL;
1907 new_inode = NULL;
1908 }
1909 }
1910
1911 NFS_PROTO(old_inode)->return_delegation(old_inode);
1912 if (new_inode != NULL)
1913 NFS_PROTO(new_inode)->return_delegation(new_inode);
1914
1915 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1916 new_dir, &new_dentry->d_name);
1917 nfs_mark_for_revalidate(old_inode);
1918 out:
1919 if (rehash)
1920 d_rehash(rehash);
1921 if (!error) {
1922 if (new_inode != NULL)
1923 nfs_drop_nlink(new_inode);
1924 d_move(old_dentry, new_dentry);
1925 nfs_set_verifier(new_dentry,
1926 nfs_save_change_attribute(new_dir));
1927 } else if (error == -ENOENT)
1928 nfs_dentry_handle_enoent(old_dentry);
1929
1930 /* new dentry created? */
1931 if (dentry)
1932 dput(dentry);
1933 return error;
1934 }
1935 EXPORT_SYMBOL_GPL(nfs_rename);
1936
1937 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1938 static LIST_HEAD(nfs_access_lru_list);
1939 static atomic_long_t nfs_access_nr_entries;
1940
nfs_access_free_entry(struct nfs_access_entry * entry)1941 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1942 {
1943 put_rpccred(entry->cred);
1944 kfree(entry);
1945 smp_mb__before_atomic_dec();
1946 atomic_long_dec(&nfs_access_nr_entries);
1947 smp_mb__after_atomic_dec();
1948 }
1949
nfs_access_free_list(struct list_head * head)1950 static void nfs_access_free_list(struct list_head *head)
1951 {
1952 struct nfs_access_entry *cache;
1953
1954 while (!list_empty(head)) {
1955 cache = list_entry(head->next, struct nfs_access_entry, lru);
1956 list_del(&cache->lru);
1957 nfs_access_free_entry(cache);
1958 }
1959 }
1960
nfs_access_cache_shrinker(struct shrinker * shrink,struct shrink_control * sc)1961 int nfs_access_cache_shrinker(struct shrinker *shrink,
1962 struct shrink_control *sc)
1963 {
1964 LIST_HEAD(head);
1965 struct nfs_inode *nfsi, *next;
1966 struct nfs_access_entry *cache;
1967 int nr_to_scan = sc->nr_to_scan;
1968 gfp_t gfp_mask = sc->gfp_mask;
1969
1970 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1971 return (nr_to_scan == 0) ? 0 : -1;
1972
1973 spin_lock(&nfs_access_lru_lock);
1974 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1975 struct inode *inode;
1976
1977 if (nr_to_scan-- == 0)
1978 break;
1979 inode = &nfsi->vfs_inode;
1980 spin_lock(&inode->i_lock);
1981 if (list_empty(&nfsi->access_cache_entry_lru))
1982 goto remove_lru_entry;
1983 cache = list_entry(nfsi->access_cache_entry_lru.next,
1984 struct nfs_access_entry, lru);
1985 list_move(&cache->lru, &head);
1986 rb_erase(&cache->rb_node, &nfsi->access_cache);
1987 if (!list_empty(&nfsi->access_cache_entry_lru))
1988 list_move_tail(&nfsi->access_cache_inode_lru,
1989 &nfs_access_lru_list);
1990 else {
1991 remove_lru_entry:
1992 list_del_init(&nfsi->access_cache_inode_lru);
1993 smp_mb__before_clear_bit();
1994 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1995 smp_mb__after_clear_bit();
1996 }
1997 spin_unlock(&inode->i_lock);
1998 }
1999 spin_unlock(&nfs_access_lru_lock);
2000 nfs_access_free_list(&head);
2001 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2002 }
2003
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2004 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2005 {
2006 struct rb_root *root_node = &nfsi->access_cache;
2007 struct rb_node *n;
2008 struct nfs_access_entry *entry;
2009
2010 /* Unhook entries from the cache */
2011 while ((n = rb_first(root_node)) != NULL) {
2012 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2013 rb_erase(n, root_node);
2014 list_move(&entry->lru, head);
2015 }
2016 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2017 }
2018
nfs_access_zap_cache(struct inode * inode)2019 void nfs_access_zap_cache(struct inode *inode)
2020 {
2021 LIST_HEAD(head);
2022
2023 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2024 return;
2025 /* Remove from global LRU init */
2026 spin_lock(&nfs_access_lru_lock);
2027 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2028 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2029
2030 spin_lock(&inode->i_lock);
2031 __nfs_access_zap_cache(NFS_I(inode), &head);
2032 spin_unlock(&inode->i_lock);
2033 spin_unlock(&nfs_access_lru_lock);
2034 nfs_access_free_list(&head);
2035 }
2036 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2037
nfs_access_search_rbtree(struct inode * inode,struct rpc_cred * cred)2038 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2039 {
2040 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2041 struct nfs_access_entry *entry;
2042
2043 while (n != NULL) {
2044 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2045
2046 if (cred < entry->cred)
2047 n = n->rb_left;
2048 else if (cred > entry->cred)
2049 n = n->rb_right;
2050 else
2051 return entry;
2052 }
2053 return NULL;
2054 }
2055
nfs_access_get_cached(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res)2056 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2057 {
2058 struct nfs_inode *nfsi = NFS_I(inode);
2059 struct nfs_access_entry *cache;
2060 int err = -ENOENT;
2061
2062 spin_lock(&inode->i_lock);
2063 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2064 goto out_zap;
2065 cache = nfs_access_search_rbtree(inode, cred);
2066 if (cache == NULL)
2067 goto out;
2068 if (!nfs_have_delegated_attributes(inode) &&
2069 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2070 goto out_stale;
2071 res->jiffies = cache->jiffies;
2072 res->cred = cache->cred;
2073 res->mask = cache->mask;
2074 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2075 err = 0;
2076 out:
2077 spin_unlock(&inode->i_lock);
2078 return err;
2079 out_stale:
2080 rb_erase(&cache->rb_node, &nfsi->access_cache);
2081 list_del(&cache->lru);
2082 spin_unlock(&inode->i_lock);
2083 nfs_access_free_entry(cache);
2084 return -ENOENT;
2085 out_zap:
2086 spin_unlock(&inode->i_lock);
2087 nfs_access_zap_cache(inode);
2088 return -ENOENT;
2089 }
2090
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2091 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2092 {
2093 struct nfs_inode *nfsi = NFS_I(inode);
2094 struct rb_root *root_node = &nfsi->access_cache;
2095 struct rb_node **p = &root_node->rb_node;
2096 struct rb_node *parent = NULL;
2097 struct nfs_access_entry *entry;
2098
2099 spin_lock(&inode->i_lock);
2100 while (*p != NULL) {
2101 parent = *p;
2102 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2103
2104 if (set->cred < entry->cred)
2105 p = &parent->rb_left;
2106 else if (set->cred > entry->cred)
2107 p = &parent->rb_right;
2108 else
2109 goto found;
2110 }
2111 rb_link_node(&set->rb_node, parent, p);
2112 rb_insert_color(&set->rb_node, root_node);
2113 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2114 spin_unlock(&inode->i_lock);
2115 return;
2116 found:
2117 rb_replace_node(parent, &set->rb_node, root_node);
2118 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2119 list_del(&entry->lru);
2120 spin_unlock(&inode->i_lock);
2121 nfs_access_free_entry(entry);
2122 }
2123
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2124 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2125 {
2126 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2127 if (cache == NULL)
2128 return;
2129 RB_CLEAR_NODE(&cache->rb_node);
2130 cache->jiffies = set->jiffies;
2131 cache->cred = get_rpccred(set->cred);
2132 cache->mask = set->mask;
2133
2134 nfs_access_add_rbtree(inode, cache);
2135
2136 /* Update accounting */
2137 smp_mb__before_atomic_inc();
2138 atomic_long_inc(&nfs_access_nr_entries);
2139 smp_mb__after_atomic_inc();
2140
2141 /* Add inode to global LRU list */
2142 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2143 spin_lock(&nfs_access_lru_lock);
2144 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2145 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2146 &nfs_access_lru_list);
2147 spin_unlock(&nfs_access_lru_lock);
2148 }
2149 }
2150 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2151
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2152 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2153 {
2154 entry->mask = 0;
2155 if (access_result & NFS4_ACCESS_READ)
2156 entry->mask |= MAY_READ;
2157 if (access_result &
2158 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2159 entry->mask |= MAY_WRITE;
2160 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2161 entry->mask |= MAY_EXEC;
2162 }
2163 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2164
nfs_do_access(struct inode * inode,struct rpc_cred * cred,int mask)2165 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2166 {
2167 struct nfs_access_entry cache;
2168 int status;
2169
2170 status = nfs_access_get_cached(inode, cred, &cache);
2171 if (status == 0)
2172 goto out;
2173
2174 /* Be clever: ask server to check for all possible rights */
2175 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2176 cache.cred = cred;
2177 cache.jiffies = jiffies;
2178 status = NFS_PROTO(inode)->access(inode, &cache);
2179 if (status != 0) {
2180 if (status == -ESTALE) {
2181 nfs_zap_caches(inode);
2182 if (!S_ISDIR(inode->i_mode))
2183 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2184 }
2185 return status;
2186 }
2187 nfs_access_add_cache(inode, &cache);
2188 out:
2189 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2190 return 0;
2191 return -EACCES;
2192 }
2193
nfs_open_permission_mask(int openflags)2194 static int nfs_open_permission_mask(int openflags)
2195 {
2196 int mask = 0;
2197
2198 if (openflags & __FMODE_EXEC) {
2199 /* ONLY check exec rights */
2200 mask = MAY_EXEC;
2201 } else {
2202 if ((openflags & O_ACCMODE) != O_WRONLY)
2203 mask |= MAY_READ;
2204 if ((openflags & O_ACCMODE) != O_RDONLY)
2205 mask |= MAY_WRITE;
2206 }
2207
2208 return mask;
2209 }
2210
nfs_may_open(struct inode * inode,struct rpc_cred * cred,int openflags)2211 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2212 {
2213 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2214 }
2215 EXPORT_SYMBOL_GPL(nfs_may_open);
2216
nfs_permission(struct inode * inode,int mask)2217 int nfs_permission(struct inode *inode, int mask)
2218 {
2219 struct rpc_cred *cred;
2220 int res = 0;
2221
2222 if (mask & MAY_NOT_BLOCK)
2223 return -ECHILD;
2224
2225 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2226
2227 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2228 goto out;
2229 /* Is this sys_access() ? */
2230 if (mask & (MAY_ACCESS | MAY_CHDIR))
2231 goto force_lookup;
2232
2233 switch (inode->i_mode & S_IFMT) {
2234 case S_IFLNK:
2235 goto out;
2236 case S_IFREG:
2237 /* NFSv4 has atomic_open... */
2238 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2239 && (mask & MAY_OPEN)
2240 && !(mask & MAY_EXEC))
2241 goto out;
2242 break;
2243 case S_IFDIR:
2244 /*
2245 * Optimize away all write operations, since the server
2246 * will check permissions when we perform the op.
2247 */
2248 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2249 goto out;
2250 }
2251
2252 force_lookup:
2253 if (!NFS_PROTO(inode)->access)
2254 goto out_notsup;
2255
2256 cred = rpc_lookup_cred();
2257 if (!IS_ERR(cred)) {
2258 res = nfs_do_access(inode, cred, mask);
2259 put_rpccred(cred);
2260 } else
2261 res = PTR_ERR(cred);
2262 out:
2263 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2264 res = -EACCES;
2265
2266 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2267 inode->i_sb->s_id, inode->i_ino, mask, res);
2268 return res;
2269 out_notsup:
2270 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2271 if (res == 0)
2272 res = generic_permission(inode, mask);
2273 goto out;
2274 }
2275 EXPORT_SYMBOL_GPL(nfs_permission);
2276
2277 /*
2278 * Local variables:
2279 * version-control: t
2280 * kept-new-versions: 5
2281 * End:
2282 */
2283