• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3  * reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the NetLogic
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/delay.h>
37 #include <linux/init.h>
38 #include <linux/smp.h>
39 #include <linux/irq.h>
40 
41 #include <asm/mmu_context.h>
42 
43 #include <asm/netlogic/interrupt.h>
44 #include <asm/netlogic/mips-extns.h>
45 #include <asm/netlogic/haldefs.h>
46 #include <asm/netlogic/common.h>
47 
48 #if defined(CONFIG_CPU_XLP)
49 #include <asm/netlogic/xlp-hal/iomap.h>
50 #include <asm/netlogic/xlp-hal/xlp.h>
51 #include <asm/netlogic/xlp-hal/pic.h>
52 #elif defined(CONFIG_CPU_XLR)
53 #include <asm/netlogic/xlr/iomap.h>
54 #include <asm/netlogic/xlr/pic.h>
55 #include <asm/netlogic/xlr/xlr.h>
56 #else
57 #error "Unknown CPU"
58 #endif
59 
nlm_send_ipi_single(int logical_cpu,unsigned int action)60 void nlm_send_ipi_single(int logical_cpu, unsigned int action)
61 {
62 	int cpu, node;
63 	uint64_t picbase;
64 
65 	cpu = cpu_logical_map(logical_cpu);
66 	node = cpu / NLM_CPUS_PER_NODE;
67 	picbase = nlm_get_node(node)->picbase;
68 
69 	if (action & SMP_CALL_FUNCTION)
70 		nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_FUNCTION, 0);
71 	if (action & SMP_RESCHEDULE_YOURSELF)
72 		nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
73 }
74 
nlm_send_ipi_mask(const struct cpumask * mask,unsigned int action)75 void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action)
76 {
77 	int cpu;
78 
79 	for_each_cpu(cpu, mask) {
80 		nlm_send_ipi_single(cpu, action);
81 	}
82 }
83 
84 /* IRQ_IPI_SMP_FUNCTION Handler */
nlm_smp_function_ipi_handler(unsigned int irq,struct irq_desc * desc)85 void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc)
86 {
87 	clear_c0_eimr(irq);
88 	ack_c0_eirr(irq);
89 	smp_call_function_interrupt();
90 	set_c0_eimr(irq);
91 }
92 
93 /* IRQ_IPI_SMP_RESCHEDULE  handler */
nlm_smp_resched_ipi_handler(unsigned int irq,struct irq_desc * desc)94 void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc)
95 {
96 	clear_c0_eimr(irq);
97 	ack_c0_eirr(irq);
98 	scheduler_ipi();
99 	set_c0_eimr(irq);
100 }
101 
102 /*
103  * Called before going into mips code, early cpu init
104  */
nlm_early_init_secondary(int cpu)105 void nlm_early_init_secondary(int cpu)
106 {
107 	change_c0_config(CONF_CM_CMASK, 0x3);
108 #ifdef CONFIG_CPU_XLP
109 	/* mmu init, once per core */
110 	if (cpu % NLM_THREADS_PER_CORE == 0)
111 		xlp_mmu_init();
112 #endif
113 	write_c0_ebase(nlm_current_node()->ebase);
114 }
115 
116 /*
117  * Code to run on secondary just after probing the CPU
118  */
nlm_init_secondary(void)119 static void __cpuinit nlm_init_secondary(void)
120 {
121 	int hwtid;
122 
123 	hwtid = hard_smp_processor_id();
124 	current_cpu_data.core = hwtid / NLM_THREADS_PER_CORE;
125 	nlm_percpu_init(hwtid);
126 	nlm_smp_irq_init(hwtid);
127 }
128 
nlm_prepare_cpus(unsigned int max_cpus)129 void nlm_prepare_cpus(unsigned int max_cpus)
130 {
131 	/* declare we are SMT capable */
132 	smp_num_siblings = nlm_threads_per_core;
133 }
134 
nlm_smp_finish(void)135 void nlm_smp_finish(void)
136 {
137 	local_irq_enable();
138 }
139 
nlm_cpus_done(void)140 void nlm_cpus_done(void)
141 {
142 }
143 
144 /*
145  * Boot all other cpus in the system, initialize them, and bring them into
146  * the boot function
147  */
148 int nlm_cpu_ready[NR_CPUS];
149 unsigned long nlm_next_gp;
150 unsigned long nlm_next_sp;
151 static cpumask_t phys_cpu_present_mask;
152 
nlm_boot_secondary(int logical_cpu,struct task_struct * idle)153 void nlm_boot_secondary(int logical_cpu, struct task_struct *idle)
154 {
155 	int cpu, node;
156 
157 	cpu = cpu_logical_map(logical_cpu);
158 	node = cpu / NLM_CPUS_PER_NODE;
159 	nlm_next_sp = (unsigned long)__KSTK_TOS(idle);
160 	nlm_next_gp = (unsigned long)task_thread_info(idle);
161 
162 	/* barrier for sp/gp store above */
163 	__sync();
164 	nlm_pic_send_ipi(nlm_get_node(node)->picbase, cpu, 1, 1);  /* NMI */
165 }
166 
nlm_smp_setup(void)167 void __init nlm_smp_setup(void)
168 {
169 	unsigned int boot_cpu;
170 	int num_cpus, i, ncore;
171 	char buf[64];
172 
173 	boot_cpu = hard_smp_processor_id();
174 	cpumask_clear(&phys_cpu_present_mask);
175 
176 	cpumask_set_cpu(boot_cpu, &phys_cpu_present_mask);
177 	__cpu_number_map[boot_cpu] = 0;
178 	__cpu_logical_map[0] = boot_cpu;
179 	set_cpu_possible(0, true);
180 
181 	num_cpus = 1;
182 	for (i = 0; i < NR_CPUS; i++) {
183 		/*
184 		 * nlm_cpu_ready array is not set for the boot_cpu,
185 		 * it is only set for ASPs (see smpboot.S)
186 		 */
187 		if (nlm_cpu_ready[i]) {
188 			cpumask_set_cpu(i, &phys_cpu_present_mask);
189 			__cpu_number_map[i] = num_cpus;
190 			__cpu_logical_map[num_cpus] = i;
191 			set_cpu_possible(num_cpus, true);
192 			++num_cpus;
193 		}
194 	}
195 
196 	cpumask_scnprintf(buf, ARRAY_SIZE(buf), &phys_cpu_present_mask);
197 	pr_info("Physical CPU mask: %s\n", buf);
198 	cpumask_scnprintf(buf, ARRAY_SIZE(buf), cpu_possible_mask);
199 	pr_info("Possible CPU mask: %s\n", buf);
200 
201 	/* check with the cores we have worken up */
202 	for (ncore = 0, i = 0; i < NLM_NR_NODES; i++)
203 		ncore += hweight32(nlm_get_node(i)->coremask);
204 
205 	pr_info("Detected (%dc%dt) %d Slave CPU(s)\n", ncore,
206 		nlm_threads_per_core, num_cpus);
207 
208 	/* switch NMI handler to boot CPUs */
209 	nlm_set_nmi_handler(nlm_boot_secondary_cpus);
210 }
211 
nlm_parse_cpumask(cpumask_t * wakeup_mask)212 static int nlm_parse_cpumask(cpumask_t *wakeup_mask)
213 {
214 	uint32_t core0_thr_mask, core_thr_mask;
215 	int threadmode, i, j;
216 
217 	core0_thr_mask = 0;
218 	for (i = 0; i < NLM_THREADS_PER_CORE; i++)
219 		if (cpumask_test_cpu(i, wakeup_mask))
220 			core0_thr_mask |= (1 << i);
221 	switch (core0_thr_mask) {
222 	case 1:
223 		nlm_threads_per_core = 1;
224 		threadmode = 0;
225 		break;
226 	case 3:
227 		nlm_threads_per_core = 2;
228 		threadmode = 2;
229 		break;
230 	case 0xf:
231 		nlm_threads_per_core = 4;
232 		threadmode = 3;
233 		break;
234 	default:
235 		goto unsupp;
236 	}
237 
238 	/* Verify other cores CPU masks */
239 	for (i = 0; i < NR_CPUS; i += NLM_THREADS_PER_CORE) {
240 		core_thr_mask = 0;
241 		for (j = 0; j < NLM_THREADS_PER_CORE; j++)
242 			if (cpumask_test_cpu(i + j, wakeup_mask))
243 				core_thr_mask |= (1 << j);
244 		if (core_thr_mask != 0 && core_thr_mask != core0_thr_mask)
245 				goto unsupp;
246 	}
247 	return threadmode;
248 
249 unsupp:
250 	panic("Unsupported CPU mask %lx\n",
251 		(unsigned long)cpumask_bits(wakeup_mask)[0]);
252 	return 0;
253 }
254 
nlm_wakeup_secondary_cpus(void)255 int __cpuinit nlm_wakeup_secondary_cpus(void)
256 {
257 	unsigned long reset_vec;
258 	char *reset_data;
259 	int threadmode;
260 
261 	/* Update reset entry point with CPU init code */
262 	reset_vec = CKSEG1ADDR(RESET_VEC_PHYS);
263 	memcpy((void *)reset_vec, (void *)nlm_reset_entry,
264 			(nlm_reset_entry_end - nlm_reset_entry));
265 
266 	/* verify the mask and setup core config variables */
267 	threadmode = nlm_parse_cpumask(&nlm_cpumask);
268 
269 	/* Setup CPU init parameters */
270 	reset_data = (char *)CKSEG1ADDR(RESET_DATA_PHYS);
271 	*(int *)(reset_data + BOOT_THREAD_MODE) = threadmode;
272 
273 #ifdef CONFIG_CPU_XLP
274 	xlp_wakeup_secondary_cpus();
275 #else
276 	xlr_wakeup_secondary_cpus();
277 #endif
278 	return 0;
279 }
280 
281 struct plat_smp_ops nlm_smp_ops = {
282 	.send_ipi_single	= nlm_send_ipi_single,
283 	.send_ipi_mask		= nlm_send_ipi_mask,
284 	.init_secondary		= nlm_init_secondary,
285 	.smp_finish		= nlm_smp_finish,
286 	.cpus_done		= nlm_cpus_done,
287 	.boot_secondary		= nlm_boot_secondary,
288 	.smp_setup		= nlm_smp_setup,
289 	.prepare_cpus		= nlm_prepare_cpus,
290 };
291