1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * BSD LICENSE
14 *
15 * Copyright(c) 2012 Intel Corporation. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 *
21 * * Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * * Redistributions in binary form must reproduce the above copy
24 * notice, this list of conditions and the following disclaimer in
25 * the documentation and/or other materials provided with the
26 * distribution.
27 * * Neither the name of Intel Corporation nor the names of its
28 * contributors may be used to endorse or promote products derived
29 * from this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Intel PCIe NTB Linux driver
44 *
45 * Contact Information:
46 * Jon Mason <jon.mason@intel.com>
47 */
48 #include <linux/debugfs.h>
49 #include <linux/init.h>
50 #include <linux/interrupt.h>
51 #include <linux/module.h>
52 #include <linux/pci.h>
53 #include <linux/slab.h>
54 #include "ntb_hw.h"
55 #include "ntb_regs.h"
56
57 #define NTB_NAME "Intel(R) PCI-E Non-Transparent Bridge Driver"
58 #define NTB_VER "0.25"
59
60 MODULE_DESCRIPTION(NTB_NAME);
61 MODULE_VERSION(NTB_VER);
62 MODULE_LICENSE("Dual BSD/GPL");
63 MODULE_AUTHOR("Intel Corporation");
64
65 enum {
66 NTB_CONN_CLASSIC = 0,
67 NTB_CONN_B2B,
68 NTB_CONN_RP,
69 };
70
71 enum {
72 NTB_DEV_USD = 0,
73 NTB_DEV_DSD,
74 };
75
76 enum {
77 SNB_HW = 0,
78 BWD_HW,
79 };
80
81 /* Translate memory window 0,1 to BAR 2,4 */
82 #define MW_TO_BAR(mw) (mw * 2 + 2)
83
84 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl) = {
85 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
86 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
87 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF)},
88 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_RP_JSF)},
89 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_RP_SNB)},
90 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
91 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB)},
92 {0}
93 };
94 MODULE_DEVICE_TABLE(pci, ntb_pci_tbl);
95
96 /**
97 * ntb_register_event_callback() - register event callback
98 * @ndev: pointer to ntb_device instance
99 * @func: callback function to register
100 *
101 * This function registers a callback for any HW driver events such as link
102 * up/down, power management notices and etc.
103 *
104 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
105 */
ntb_register_event_callback(struct ntb_device * ndev,void (* func)(void * handle,enum ntb_hw_event event))106 int ntb_register_event_callback(struct ntb_device *ndev,
107 void (*func)(void *handle, enum ntb_hw_event event))
108 {
109 if (ndev->event_cb)
110 return -EINVAL;
111
112 ndev->event_cb = func;
113
114 return 0;
115 }
116
117 /**
118 * ntb_unregister_event_callback() - unregisters the event callback
119 * @ndev: pointer to ntb_device instance
120 *
121 * This function unregisters the existing callback from transport
122 */
ntb_unregister_event_callback(struct ntb_device * ndev)123 void ntb_unregister_event_callback(struct ntb_device *ndev)
124 {
125 ndev->event_cb = NULL;
126 }
127
128 /**
129 * ntb_register_db_callback() - register a callback for doorbell interrupt
130 * @ndev: pointer to ntb_device instance
131 * @idx: doorbell index to register callback, zero based
132 * @func: callback function to register
133 *
134 * This function registers a callback function for the doorbell interrupt
135 * on the primary side. The function will unmask the doorbell as well to
136 * allow interrupt.
137 *
138 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
139 */
ntb_register_db_callback(struct ntb_device * ndev,unsigned int idx,void * data,void (* func)(void * data,int db_num))140 int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
141 void *data, void (*func)(void *data, int db_num))
142 {
143 unsigned long mask;
144
145 if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) {
146 dev_warn(&ndev->pdev->dev, "Invalid Index.\n");
147 return -EINVAL;
148 }
149
150 ndev->db_cb[idx].callback = func;
151 ndev->db_cb[idx].data = data;
152
153 /* unmask interrupt */
154 mask = readw(ndev->reg_ofs.pdb_mask);
155 clear_bit(idx * ndev->bits_per_vector, &mask);
156 writew(mask, ndev->reg_ofs.pdb_mask);
157
158 return 0;
159 }
160
161 /**
162 * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
163 * @ndev: pointer to ntb_device instance
164 * @idx: doorbell index to register callback, zero based
165 *
166 * This function unregisters a callback function for the doorbell interrupt
167 * on the primary side. The function will also mask the said doorbell.
168 */
ntb_unregister_db_callback(struct ntb_device * ndev,unsigned int idx)169 void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx)
170 {
171 unsigned long mask;
172
173 if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback)
174 return;
175
176 mask = readw(ndev->reg_ofs.pdb_mask);
177 set_bit(idx * ndev->bits_per_vector, &mask);
178 writew(mask, ndev->reg_ofs.pdb_mask);
179
180 ndev->db_cb[idx].callback = NULL;
181 }
182
183 /**
184 * ntb_find_transport() - find the transport pointer
185 * @transport: pointer to pci device
186 *
187 * Given the pci device pointer, return the transport pointer passed in when
188 * the transport attached when it was inited.
189 *
190 * RETURNS: pointer to transport.
191 */
ntb_find_transport(struct pci_dev * pdev)192 void *ntb_find_transport(struct pci_dev *pdev)
193 {
194 struct ntb_device *ndev = pci_get_drvdata(pdev);
195 return ndev->ntb_transport;
196 }
197
198 /**
199 * ntb_register_transport() - Register NTB transport with NTB HW driver
200 * @transport: transport identifier
201 *
202 * This function allows a transport to reserve the hardware driver for
203 * NTB usage.
204 *
205 * RETURNS: pointer to ntb_device, NULL on error.
206 */
ntb_register_transport(struct pci_dev * pdev,void * transport)207 struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport)
208 {
209 struct ntb_device *ndev = pci_get_drvdata(pdev);
210
211 if (ndev->ntb_transport)
212 return NULL;
213
214 ndev->ntb_transport = transport;
215 return ndev;
216 }
217
218 /**
219 * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
220 * @ndev - ntb_device of the transport to be freed
221 *
222 * This function unregisters the transport from the HW driver and performs any
223 * necessary cleanups.
224 */
ntb_unregister_transport(struct ntb_device * ndev)225 void ntb_unregister_transport(struct ntb_device *ndev)
226 {
227 int i;
228
229 if (!ndev->ntb_transport)
230 return;
231
232 for (i = 0; i < ndev->max_cbs; i++)
233 ntb_unregister_db_callback(ndev, i);
234
235 ntb_unregister_event_callback(ndev);
236 ndev->ntb_transport = NULL;
237 }
238
239 /**
240 * ntb_write_local_spad() - write to the secondary scratchpad register
241 * @ndev: pointer to ntb_device instance
242 * @idx: index to the scratchpad register, 0 based
243 * @val: the data value to put into the register
244 *
245 * This function allows writing of a 32bit value to the indexed scratchpad
246 * register. This writes over the data mirrored to the local scratchpad register
247 * by the remote system.
248 *
249 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
250 */
ntb_write_local_spad(struct ntb_device * ndev,unsigned int idx,u32 val)251 int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
252 {
253 if (idx >= ndev->limits.max_spads)
254 return -EINVAL;
255
256 dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n",
257 val, idx);
258 writel(val, ndev->reg_ofs.spad_read + idx * 4);
259
260 return 0;
261 }
262
263 /**
264 * ntb_read_local_spad() - read from the primary scratchpad register
265 * @ndev: pointer to ntb_device instance
266 * @idx: index to scratchpad register, 0 based
267 * @val: pointer to 32bit integer for storing the register value
268 *
269 * This function allows reading of the 32bit scratchpad register on
270 * the primary (internal) side. This allows the local system to read data
271 * written and mirrored to the scratchpad register by the remote system.
272 *
273 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
274 */
ntb_read_local_spad(struct ntb_device * ndev,unsigned int idx,u32 * val)275 int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
276 {
277 if (idx >= ndev->limits.max_spads)
278 return -EINVAL;
279
280 *val = readl(ndev->reg_ofs.spad_write + idx * 4);
281 dev_dbg(&ndev->pdev->dev,
282 "Reading %x from local scratch pad index %d\n", *val, idx);
283
284 return 0;
285 }
286
287 /**
288 * ntb_write_remote_spad() - write to the secondary scratchpad register
289 * @ndev: pointer to ntb_device instance
290 * @idx: index to the scratchpad register, 0 based
291 * @val: the data value to put into the register
292 *
293 * This function allows writing of a 32bit value to the indexed scratchpad
294 * register. The register resides on the secondary (external) side. This allows
295 * the local system to write data to be mirrored to the remote systems
296 * scratchpad register.
297 *
298 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
299 */
ntb_write_remote_spad(struct ntb_device * ndev,unsigned int idx,u32 val)300 int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
301 {
302 if (idx >= ndev->limits.max_spads)
303 return -EINVAL;
304
305 dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n",
306 val, idx);
307 writel(val, ndev->reg_ofs.spad_write + idx * 4);
308
309 return 0;
310 }
311
312 /**
313 * ntb_read_remote_spad() - read from the primary scratchpad register
314 * @ndev: pointer to ntb_device instance
315 * @idx: index to scratchpad register, 0 based
316 * @val: pointer to 32bit integer for storing the register value
317 *
318 * This function allows reading of the 32bit scratchpad register on
319 * the primary (internal) side. This alloows the local system to read the data
320 * it wrote to be mirrored on the remote system.
321 *
322 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
323 */
ntb_read_remote_spad(struct ntb_device * ndev,unsigned int idx,u32 * val)324 int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
325 {
326 if (idx >= ndev->limits.max_spads)
327 return -EINVAL;
328
329 *val = readl(ndev->reg_ofs.spad_read + idx * 4);
330 dev_dbg(&ndev->pdev->dev,
331 "Reading %x from remote scratch pad index %d\n", *val, idx);
332
333 return 0;
334 }
335
336 /**
337 * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
338 * @ndev: pointer to ntb_device instance
339 * @mw: memory window number
340 *
341 * This function provides the base virtual address of the memory window
342 * specified.
343 *
344 * RETURNS: pointer to virtual address, or NULL on error.
345 */
ntb_get_mw_vbase(struct ntb_device * ndev,unsigned int mw)346 void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw)
347 {
348 if (mw >= NTB_NUM_MW)
349 return NULL;
350
351 return ndev->mw[mw].vbase;
352 }
353
354 /**
355 * ntb_get_mw_size() - return size of NTB memory window
356 * @ndev: pointer to ntb_device instance
357 * @mw: memory window number
358 *
359 * This function provides the physical size of the memory window specified
360 *
361 * RETURNS: the size of the memory window or zero on error
362 */
ntb_get_mw_size(struct ntb_device * ndev,unsigned int mw)363 resource_size_t ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw)
364 {
365 if (mw >= NTB_NUM_MW)
366 return 0;
367
368 return ndev->mw[mw].bar_sz;
369 }
370
371 /**
372 * ntb_set_mw_addr - set the memory window address
373 * @ndev: pointer to ntb_device instance
374 * @mw: memory window number
375 * @addr: base address for data
376 *
377 * This function sets the base physical address of the memory window. This
378 * memory address is where data from the remote system will be transfered into
379 * or out of depending on how the transport is configured.
380 */
ntb_set_mw_addr(struct ntb_device * ndev,unsigned int mw,u64 addr)381 void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr)
382 {
383 if (mw >= NTB_NUM_MW)
384 return;
385
386 dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr,
387 MW_TO_BAR(mw));
388
389 ndev->mw[mw].phys_addr = addr;
390
391 switch (MW_TO_BAR(mw)) {
392 case NTB_BAR_23:
393 writeq(addr, ndev->reg_ofs.sbar2_xlat);
394 break;
395 case NTB_BAR_45:
396 writeq(addr, ndev->reg_ofs.sbar4_xlat);
397 break;
398 }
399 }
400
401 /**
402 * ntb_ring_sdb() - Set the doorbell on the secondary/external side
403 * @ndev: pointer to ntb_device instance
404 * @db: doorbell to ring
405 *
406 * This function allows triggering of a doorbell on the secondary/external
407 * side that will initiate an interrupt on the remote host
408 *
409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
410 */
ntb_ring_sdb(struct ntb_device * ndev,unsigned int db)411 void ntb_ring_sdb(struct ntb_device *ndev, unsigned int db)
412 {
413 dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db);
414
415 if (ndev->hw_type == BWD_HW)
416 writeq((u64) 1 << db, ndev->reg_ofs.sdb);
417 else
418 writew(((1 << ndev->bits_per_vector) - 1) <<
419 (db * ndev->bits_per_vector), ndev->reg_ofs.sdb);
420 }
421
ntb_link_event(struct ntb_device * ndev,int link_state)422 static void ntb_link_event(struct ntb_device *ndev, int link_state)
423 {
424 unsigned int event;
425
426 if (ndev->link_status == link_state)
427 return;
428
429 if (link_state == NTB_LINK_UP) {
430 u16 status;
431
432 dev_info(&ndev->pdev->dev, "Link Up\n");
433 ndev->link_status = NTB_LINK_UP;
434 event = NTB_EVENT_HW_LINK_UP;
435
436 if (ndev->hw_type == BWD_HW)
437 status = readw(ndev->reg_ofs.lnk_stat);
438 else {
439 int rc = pci_read_config_word(ndev->pdev,
440 SNB_LINK_STATUS_OFFSET,
441 &status);
442 if (rc)
443 return;
444 }
445 dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n",
446 (status & NTB_LINK_WIDTH_MASK) >> 4,
447 (status & NTB_LINK_SPEED_MASK));
448 } else {
449 dev_info(&ndev->pdev->dev, "Link Down\n");
450 ndev->link_status = NTB_LINK_DOWN;
451 event = NTB_EVENT_HW_LINK_DOWN;
452 }
453
454 /* notify the upper layer if we have an event change */
455 if (ndev->event_cb)
456 ndev->event_cb(ndev->ntb_transport, event);
457 }
458
ntb_link_status(struct ntb_device * ndev)459 static int ntb_link_status(struct ntb_device *ndev)
460 {
461 int link_state;
462
463 if (ndev->hw_type == BWD_HW) {
464 u32 ntb_cntl;
465
466 ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
467 if (ntb_cntl & BWD_CNTL_LINK_DOWN)
468 link_state = NTB_LINK_DOWN;
469 else
470 link_state = NTB_LINK_UP;
471 } else {
472 u16 status;
473 int rc;
474
475 rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET,
476 &status);
477 if (rc)
478 return rc;
479
480 if (status & NTB_LINK_STATUS_ACTIVE)
481 link_state = NTB_LINK_UP;
482 else
483 link_state = NTB_LINK_DOWN;
484 }
485
486 ntb_link_event(ndev, link_state);
487
488 return 0;
489 }
490
491 /* BWD doesn't have link status interrupt, poll on that platform */
bwd_link_poll(struct work_struct * work)492 static void bwd_link_poll(struct work_struct *work)
493 {
494 struct ntb_device *ndev = container_of(work, struct ntb_device,
495 hb_timer.work);
496 unsigned long ts = jiffies;
497
498 /* If we haven't gotten an interrupt in a while, check the BWD link
499 * status bit
500 */
501 if (ts > ndev->last_ts + NTB_HB_TIMEOUT) {
502 int rc = ntb_link_status(ndev);
503 if (rc)
504 dev_err(&ndev->pdev->dev,
505 "Error determining link status\n");
506 }
507
508 schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
509 }
510
ntb_xeon_setup(struct ntb_device * ndev)511 static int ntb_xeon_setup(struct ntb_device *ndev)
512 {
513 int rc;
514 u8 val;
515
516 ndev->hw_type = SNB_HW;
517
518 rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val);
519 if (rc)
520 return rc;
521
522 switch (val & SNB_PPD_CONN_TYPE) {
523 case NTB_CONN_B2B:
524 ndev->conn_type = NTB_CONN_B2B;
525 break;
526 case NTB_CONN_CLASSIC:
527 case NTB_CONN_RP:
528 default:
529 dev_err(&ndev->pdev->dev, "Only B2B supported at this time\n");
530 return -EINVAL;
531 }
532
533 if (val & SNB_PPD_DEV_TYPE)
534 ndev->dev_type = NTB_DEV_DSD;
535 else
536 ndev->dev_type = NTB_DEV_USD;
537
538 ndev->reg_ofs.pdb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
539 ndev->reg_ofs.pdb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
540 ndev->reg_ofs.sbar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
541 ndev->reg_ofs.sbar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
542 ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET;
543 ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_LINK_STATUS_OFFSET;
544 ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
545 ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET;
546
547 if (ndev->conn_type == NTB_CONN_B2B) {
548 ndev->reg_ofs.sdb = ndev->reg_base + SNB_B2B_DOORBELL_OFFSET;
549 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_B2B_SPAD_OFFSET;
550 ndev->limits.max_spads = SNB_MAX_SPADS;
551 } else {
552 ndev->reg_ofs.sdb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
553 ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET;
554 ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS;
555 }
556
557 ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
558 ndev->limits.msix_cnt = SNB_MSIX_CNT;
559 ndev->bits_per_vector = SNB_DB_BITS_PER_VEC;
560
561 return 0;
562 }
563
ntb_bwd_setup(struct ntb_device * ndev)564 static int ntb_bwd_setup(struct ntb_device *ndev)
565 {
566 int rc;
567 u32 val;
568
569 ndev->hw_type = BWD_HW;
570
571 rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val);
572 if (rc)
573 return rc;
574
575 switch ((val & BWD_PPD_CONN_TYPE) >> 8) {
576 case NTB_CONN_B2B:
577 ndev->conn_type = NTB_CONN_B2B;
578 break;
579 case NTB_CONN_RP:
580 default:
581 dev_err(&ndev->pdev->dev, "Only B2B supported at this time\n");
582 return -EINVAL;
583 }
584
585 if (val & BWD_PPD_DEV_TYPE)
586 ndev->dev_type = NTB_DEV_DSD;
587 else
588 ndev->dev_type = NTB_DEV_USD;
589
590 /* Initiate PCI-E link training */
591 rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET,
592 val | BWD_PPD_INIT_LINK);
593 if (rc)
594 return rc;
595
596 ndev->reg_ofs.pdb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
597 ndev->reg_ofs.pdb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET;
598 ndev->reg_ofs.sbar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET;
599 ndev->reg_ofs.sbar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET;
600 ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET;
601 ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET;
602 ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET;
603 ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET;
604
605 if (ndev->conn_type == NTB_CONN_B2B) {
606 ndev->reg_ofs.sdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET;
607 ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET;
608 ndev->limits.max_spads = BWD_MAX_SPADS;
609 } else {
610 ndev->reg_ofs.sdb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
611 ndev->reg_ofs.spad_write = ndev->reg_base + BWD_SPAD_OFFSET;
612 ndev->limits.max_spads = BWD_MAX_COMPAT_SPADS;
613 }
614
615 ndev->limits.max_db_bits = BWD_MAX_DB_BITS;
616 ndev->limits.msix_cnt = BWD_MSIX_CNT;
617 ndev->bits_per_vector = BWD_DB_BITS_PER_VEC;
618
619 /* Since bwd doesn't have a link interrupt, setup a poll timer */
620 INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll);
621 schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
622
623 return 0;
624 }
625
ntb_device_setup(struct ntb_device * ndev)626 static int ntb_device_setup(struct ntb_device *ndev)
627 {
628 int rc;
629
630 switch (ndev->pdev->device) {
631 case PCI_DEVICE_ID_INTEL_NTB_2ND_SNB:
632 case PCI_DEVICE_ID_INTEL_NTB_RP_JSF:
633 case PCI_DEVICE_ID_INTEL_NTB_RP_SNB:
634 case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF:
635 case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB:
636 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
637 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
638 rc = ntb_xeon_setup(ndev);
639 break;
640 case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
641 rc = ntb_bwd_setup(ndev);
642 break;
643 default:
644 rc = -ENODEV;
645 }
646
647 /* Enable Bus Master and Memory Space on the secondary side */
648 writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER, ndev->reg_ofs.spci_cmd);
649
650 return rc;
651 }
652
ntb_device_free(struct ntb_device * ndev)653 static void ntb_device_free(struct ntb_device *ndev)
654 {
655 if (ndev->hw_type == BWD_HW)
656 cancel_delayed_work_sync(&ndev->hb_timer);
657 }
658
bwd_callback_msix_irq(int irq,void * data)659 static irqreturn_t bwd_callback_msix_irq(int irq, void *data)
660 {
661 struct ntb_db_cb *db_cb = data;
662 struct ntb_device *ndev = db_cb->ndev;
663
664 dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
665 db_cb->db_num);
666
667 if (db_cb->callback)
668 db_cb->callback(db_cb->data, db_cb->db_num);
669
670 /* No need to check for the specific HB irq, any interrupt means
671 * we're connected.
672 */
673 ndev->last_ts = jiffies;
674
675 writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.pdb);
676
677 return IRQ_HANDLED;
678 }
679
xeon_callback_msix_irq(int irq,void * data)680 static irqreturn_t xeon_callback_msix_irq(int irq, void *data)
681 {
682 struct ntb_db_cb *db_cb = data;
683 struct ntb_device *ndev = db_cb->ndev;
684
685 dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
686 db_cb->db_num);
687
688 if (db_cb->callback)
689 db_cb->callback(db_cb->data, db_cb->db_num);
690
691 /* On Sandybridge, there are 16 bits in the interrupt register
692 * but only 4 vectors. So, 5 bits are assigned to the first 3
693 * vectors, with the 4th having a single bit for link
694 * interrupts.
695 */
696 writew(((1 << ndev->bits_per_vector) - 1) <<
697 (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.pdb);
698
699 return IRQ_HANDLED;
700 }
701
702 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
xeon_event_msix_irq(int irq,void * dev)703 static irqreturn_t xeon_event_msix_irq(int irq, void *dev)
704 {
705 struct ntb_device *ndev = dev;
706 int rc;
707
708 dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq);
709
710 rc = ntb_link_status(ndev);
711 if (rc)
712 dev_err(&ndev->pdev->dev, "Error determining link status\n");
713
714 /* bit 15 is always the link bit */
715 writew(1 << ndev->limits.max_db_bits, ndev->reg_ofs.pdb);
716
717 return IRQ_HANDLED;
718 }
719
ntb_interrupt(int irq,void * dev)720 static irqreturn_t ntb_interrupt(int irq, void *dev)
721 {
722 struct ntb_device *ndev = dev;
723 unsigned int i = 0;
724
725 if (ndev->hw_type == BWD_HW) {
726 u64 pdb = readq(ndev->reg_ofs.pdb);
727
728 dev_dbg(&ndev->pdev->dev, "irq %d - pdb = %Lx\n", irq, pdb);
729
730 while (pdb) {
731 i = __ffs(pdb);
732 pdb &= pdb - 1;
733 bwd_callback_msix_irq(irq, &ndev->db_cb[i]);
734 }
735 } else {
736 u16 pdb = readw(ndev->reg_ofs.pdb);
737
738 dev_dbg(&ndev->pdev->dev, "irq %d - pdb = %x sdb %x\n", irq,
739 pdb, readw(ndev->reg_ofs.sdb));
740
741 if (pdb & SNB_DB_HW_LINK) {
742 xeon_event_msix_irq(irq, dev);
743 pdb &= ~SNB_DB_HW_LINK;
744 }
745
746 while (pdb) {
747 i = __ffs(pdb);
748 pdb &= pdb - 1;
749 xeon_callback_msix_irq(irq, &ndev->db_cb[i]);
750 }
751 }
752
753 return IRQ_HANDLED;
754 }
755
ntb_setup_msix(struct ntb_device * ndev)756 static int ntb_setup_msix(struct ntb_device *ndev)
757 {
758 struct pci_dev *pdev = ndev->pdev;
759 struct msix_entry *msix;
760 int msix_entries;
761 int rc, i, pos;
762 u16 val;
763
764 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
765 if (!pos) {
766 rc = -EIO;
767 goto err;
768 }
769
770 rc = pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, &val);
771 if (rc)
772 goto err;
773
774 msix_entries = msix_table_size(val);
775 if (msix_entries > ndev->limits.msix_cnt) {
776 rc = -EINVAL;
777 goto err;
778 }
779
780 ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries,
781 GFP_KERNEL);
782 if (!ndev->msix_entries) {
783 rc = -ENOMEM;
784 goto err;
785 }
786
787 for (i = 0; i < msix_entries; i++)
788 ndev->msix_entries[i].entry = i;
789
790 rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries);
791 if (rc < 0)
792 goto err1;
793 if (rc > 0) {
794 /* On SNB, the link interrupt is always tied to 4th vector. If
795 * we can't get all 4, then we can't use MSI-X.
796 */
797 if (ndev->hw_type != BWD_HW) {
798 rc = -EIO;
799 goto err1;
800 }
801
802 dev_warn(&pdev->dev,
803 "Only %d MSI-X vectors. Limiting the number of queues to that number.\n",
804 rc);
805 msix_entries = rc;
806 }
807
808 for (i = 0; i < msix_entries; i++) {
809 msix = &ndev->msix_entries[i];
810 WARN_ON(!msix->vector);
811
812 /* Use the last MSI-X vector for Link status */
813 if (ndev->hw_type == BWD_HW) {
814 rc = request_irq(msix->vector, bwd_callback_msix_irq, 0,
815 "ntb-callback-msix", &ndev->db_cb[i]);
816 if (rc)
817 goto err2;
818 } else {
819 if (i == msix_entries - 1) {
820 rc = request_irq(msix->vector,
821 xeon_event_msix_irq, 0,
822 "ntb-event-msix", ndev);
823 if (rc)
824 goto err2;
825 } else {
826 rc = request_irq(msix->vector,
827 xeon_callback_msix_irq, 0,
828 "ntb-callback-msix",
829 &ndev->db_cb[i]);
830 if (rc)
831 goto err2;
832 }
833 }
834 }
835
836 ndev->num_msix = msix_entries;
837 if (ndev->hw_type == BWD_HW)
838 ndev->max_cbs = msix_entries;
839 else
840 ndev->max_cbs = msix_entries - 1;
841
842 return 0;
843
844 err2:
845 while (--i >= 0) {
846 msix = &ndev->msix_entries[i];
847 if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
848 free_irq(msix->vector, ndev);
849 else
850 free_irq(msix->vector, &ndev->db_cb[i]);
851 }
852 pci_disable_msix(pdev);
853 err1:
854 kfree(ndev->msix_entries);
855 dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n");
856 err:
857 ndev->num_msix = 0;
858 return rc;
859 }
860
ntb_setup_msi(struct ntb_device * ndev)861 static int ntb_setup_msi(struct ntb_device *ndev)
862 {
863 struct pci_dev *pdev = ndev->pdev;
864 int rc;
865
866 rc = pci_enable_msi(pdev);
867 if (rc)
868 return rc;
869
870 rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev);
871 if (rc) {
872 pci_disable_msi(pdev);
873 dev_err(&pdev->dev, "Error allocating MSI interrupt\n");
874 return rc;
875 }
876
877 return 0;
878 }
879
ntb_setup_intx(struct ntb_device * ndev)880 static int ntb_setup_intx(struct ntb_device *ndev)
881 {
882 struct pci_dev *pdev = ndev->pdev;
883 int rc;
884
885 pci_msi_off(pdev);
886
887 /* Verify intx is enabled */
888 pci_intx(pdev, 1);
889
890 rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx",
891 ndev);
892 if (rc)
893 return rc;
894
895 return 0;
896 }
897
ntb_setup_interrupts(struct ntb_device * ndev)898 static int ntb_setup_interrupts(struct ntb_device *ndev)
899 {
900 int rc;
901
902 /* On BWD, disable all interrupts. On SNB, disable all but Link
903 * Interrupt. The rest will be unmasked as callbacks are registered.
904 */
905 if (ndev->hw_type == BWD_HW)
906 writeq(~0, ndev->reg_ofs.pdb_mask);
907 else
908 writew(~(1 << ndev->limits.max_db_bits),
909 ndev->reg_ofs.pdb_mask);
910
911 rc = ntb_setup_msix(ndev);
912 if (!rc)
913 goto done;
914
915 ndev->bits_per_vector = 1;
916 ndev->max_cbs = ndev->limits.max_db_bits;
917
918 rc = ntb_setup_msi(ndev);
919 if (!rc)
920 goto done;
921
922 rc = ntb_setup_intx(ndev);
923 if (rc) {
924 dev_err(&ndev->pdev->dev, "no usable interrupts\n");
925 return rc;
926 }
927
928 done:
929 return 0;
930 }
931
ntb_free_interrupts(struct ntb_device * ndev)932 static void ntb_free_interrupts(struct ntb_device *ndev)
933 {
934 struct pci_dev *pdev = ndev->pdev;
935
936 /* mask interrupts */
937 if (ndev->hw_type == BWD_HW)
938 writeq(~0, ndev->reg_ofs.pdb_mask);
939 else
940 writew(~0, ndev->reg_ofs.pdb_mask);
941
942 if (ndev->num_msix) {
943 struct msix_entry *msix;
944 u32 i;
945
946 for (i = 0; i < ndev->num_msix; i++) {
947 msix = &ndev->msix_entries[i];
948 if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
949 free_irq(msix->vector, ndev);
950 else
951 free_irq(msix->vector, &ndev->db_cb[i]);
952 }
953 pci_disable_msix(pdev);
954 } else {
955 free_irq(pdev->irq, ndev);
956
957 if (pci_dev_msi_enabled(pdev))
958 pci_disable_msi(pdev);
959 }
960 }
961
ntb_create_callbacks(struct ntb_device * ndev)962 static int ntb_create_callbacks(struct ntb_device *ndev)
963 {
964 int i;
965
966 /* Checken-egg issue. We won't know how many callbacks are necessary
967 * until we see how many MSI-X vectors we get, but these pointers need
968 * to be passed into the MSI-X register fucntion. So, we allocate the
969 * max, knowing that they might not all be used, to work around this.
970 */
971 ndev->db_cb = kcalloc(ndev->limits.max_db_bits,
972 sizeof(struct ntb_db_cb),
973 GFP_KERNEL);
974 if (!ndev->db_cb)
975 return -ENOMEM;
976
977 for (i = 0; i < ndev->limits.max_db_bits; i++) {
978 ndev->db_cb[i].db_num = i;
979 ndev->db_cb[i].ndev = ndev;
980 }
981
982 return 0;
983 }
984
ntb_free_callbacks(struct ntb_device * ndev)985 static void ntb_free_callbacks(struct ntb_device *ndev)
986 {
987 int i;
988
989 for (i = 0; i < ndev->limits.max_db_bits; i++)
990 ntb_unregister_db_callback(ndev, i);
991
992 kfree(ndev->db_cb);
993 }
994
ntb_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)995 static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
996 {
997 struct ntb_device *ndev;
998 int rc, i;
999
1000 ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL);
1001 if (!ndev)
1002 return -ENOMEM;
1003
1004 ndev->pdev = pdev;
1005 ndev->link_status = NTB_LINK_DOWN;
1006 pci_set_drvdata(pdev, ndev);
1007
1008 rc = pci_enable_device(pdev);
1009 if (rc)
1010 goto err;
1011
1012 pci_set_master(ndev->pdev);
1013
1014 rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME);
1015 if (rc)
1016 goto err1;
1017
1018 ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO);
1019 if (!ndev->reg_base) {
1020 dev_warn(&pdev->dev, "Cannot remap BAR 0\n");
1021 rc = -EIO;
1022 goto err2;
1023 }
1024
1025 for (i = 0; i < NTB_NUM_MW; i++) {
1026 ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i));
1027 ndev->mw[i].vbase =
1028 ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)),
1029 ndev->mw[i].bar_sz);
1030 dev_info(&pdev->dev, "MW %d size %llu\n", i,
1031 pci_resource_len(pdev, MW_TO_BAR(i)));
1032 if (!ndev->mw[i].vbase) {
1033 dev_warn(&pdev->dev, "Cannot remap BAR %d\n",
1034 MW_TO_BAR(i));
1035 rc = -EIO;
1036 goto err3;
1037 }
1038 }
1039
1040 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1041 if (rc) {
1042 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1043 if (rc)
1044 goto err3;
1045
1046 dev_warn(&pdev->dev, "Cannot DMA highmem\n");
1047 }
1048
1049 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1050 if (rc) {
1051 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1052 if (rc)
1053 goto err3;
1054
1055 dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
1056 }
1057
1058 rc = ntb_device_setup(ndev);
1059 if (rc)
1060 goto err3;
1061
1062 rc = ntb_create_callbacks(ndev);
1063 if (rc)
1064 goto err4;
1065
1066 rc = ntb_setup_interrupts(ndev);
1067 if (rc)
1068 goto err5;
1069
1070 /* The scratchpad registers keep the values between rmmod/insmod,
1071 * blast them now
1072 */
1073 for (i = 0; i < ndev->limits.max_spads; i++) {
1074 ntb_write_local_spad(ndev, i, 0);
1075 ntb_write_remote_spad(ndev, i, 0);
1076 }
1077
1078 rc = ntb_transport_init(pdev);
1079 if (rc)
1080 goto err6;
1081
1082 /* Let's bring the NTB link up */
1083 writel(NTB_CNTL_BAR23_SNOOP | NTB_CNTL_BAR45_SNOOP,
1084 ndev->reg_ofs.lnk_cntl);
1085
1086 return 0;
1087
1088 err6:
1089 ntb_free_interrupts(ndev);
1090 err5:
1091 ntb_free_callbacks(ndev);
1092 err4:
1093 ntb_device_free(ndev);
1094 err3:
1095 for (i--; i >= 0; i--)
1096 iounmap(ndev->mw[i].vbase);
1097 iounmap(ndev->reg_base);
1098 err2:
1099 pci_release_selected_regions(pdev, NTB_BAR_MASK);
1100 err1:
1101 pci_disable_device(pdev);
1102 err:
1103 kfree(ndev);
1104
1105 dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME);
1106 return rc;
1107 }
1108
ntb_pci_remove(struct pci_dev * pdev)1109 static void ntb_pci_remove(struct pci_dev *pdev)
1110 {
1111 struct ntb_device *ndev = pci_get_drvdata(pdev);
1112 int i;
1113 u32 ntb_cntl;
1114
1115 /* Bring NTB link down */
1116 ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1117 ntb_cntl |= NTB_LINK_DISABLE;
1118 writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1119
1120 ntb_transport_free(ndev->ntb_transport);
1121
1122 ntb_free_interrupts(ndev);
1123 ntb_free_callbacks(ndev);
1124 ntb_device_free(ndev);
1125
1126 for (i = 0; i < NTB_NUM_MW; i++)
1127 iounmap(ndev->mw[i].vbase);
1128
1129 iounmap(ndev->reg_base);
1130 pci_release_selected_regions(pdev, NTB_BAR_MASK);
1131 pci_disable_device(pdev);
1132 kfree(ndev);
1133 }
1134
1135 static struct pci_driver ntb_pci_driver = {
1136 .name = KBUILD_MODNAME,
1137 .id_table = ntb_pci_tbl,
1138 .probe = ntb_pci_probe,
1139 .remove = ntb_pci_remove,
1140 };
1141 module_pci_driver(ntb_pci_driver);
1142