• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *
9  *   This program is free software; you can redistribute it and/or modify
10  *   it under the terms of version 2 of the GNU General Public License as
11  *   published by the Free Software Foundation.
12  *
13  *   BSD LICENSE
14  *
15  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
16  *
17  *   Redistribution and use in source and binary forms, with or without
18  *   modification, are permitted provided that the following conditions
19  *   are met:
20  *
21  *     * Redistributions of source code must retain the above copyright
22  *       notice, this list of conditions and the following disclaimer.
23  *     * Redistributions in binary form must reproduce the above copy
24  *       notice, this list of conditions and the following disclaimer in
25  *       the documentation and/or other materials provided with the
26  *       distribution.
27  *     * Neither the name of Intel Corporation nor the names of its
28  *       contributors may be used to endorse or promote products derived
29  *       from this software without specific prior written permission.
30  *
31  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42  *
43  * Intel PCIe NTB Linux driver
44  *
45  * Contact Information:
46  * Jon Mason <jon.mason@intel.com>
47  */
48 #include <linux/debugfs.h>
49 #include <linux/init.h>
50 #include <linux/interrupt.h>
51 #include <linux/module.h>
52 #include <linux/pci.h>
53 #include <linux/slab.h>
54 #include "ntb_hw.h"
55 #include "ntb_regs.h"
56 
57 #define NTB_NAME	"Intel(R) PCI-E Non-Transparent Bridge Driver"
58 #define NTB_VER		"0.25"
59 
60 MODULE_DESCRIPTION(NTB_NAME);
61 MODULE_VERSION(NTB_VER);
62 MODULE_LICENSE("Dual BSD/GPL");
63 MODULE_AUTHOR("Intel Corporation");
64 
65 enum {
66 	NTB_CONN_CLASSIC = 0,
67 	NTB_CONN_B2B,
68 	NTB_CONN_RP,
69 };
70 
71 enum {
72 	NTB_DEV_USD = 0,
73 	NTB_DEV_DSD,
74 };
75 
76 enum {
77 	SNB_HW = 0,
78 	BWD_HW,
79 };
80 
81 /* Translate memory window 0,1 to BAR 2,4 */
82 #define MW_TO_BAR(mw)	(mw * 2 + 2)
83 
84 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl) = {
85 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD)},
86 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF)},
87 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF)},
88 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_RP_JSF)},
89 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_RP_SNB)},
90 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB)},
91 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB)},
92 	{0}
93 };
94 MODULE_DEVICE_TABLE(pci, ntb_pci_tbl);
95 
96 /**
97  * ntb_register_event_callback() - register event callback
98  * @ndev: pointer to ntb_device instance
99  * @func: callback function to register
100  *
101  * This function registers a callback for any HW driver events such as link
102  * up/down, power management notices and etc.
103  *
104  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
105  */
ntb_register_event_callback(struct ntb_device * ndev,void (* func)(void * handle,enum ntb_hw_event event))106 int ntb_register_event_callback(struct ntb_device *ndev,
107 			    void (*func)(void *handle, enum ntb_hw_event event))
108 {
109 	if (ndev->event_cb)
110 		return -EINVAL;
111 
112 	ndev->event_cb = func;
113 
114 	return 0;
115 }
116 
117 /**
118  * ntb_unregister_event_callback() - unregisters the event callback
119  * @ndev: pointer to ntb_device instance
120  *
121  * This function unregisters the existing callback from transport
122  */
ntb_unregister_event_callback(struct ntb_device * ndev)123 void ntb_unregister_event_callback(struct ntb_device *ndev)
124 {
125 	ndev->event_cb = NULL;
126 }
127 
128 /**
129  * ntb_register_db_callback() - register a callback for doorbell interrupt
130  * @ndev: pointer to ntb_device instance
131  * @idx: doorbell index to register callback, zero based
132  * @func: callback function to register
133  *
134  * This function registers a callback function for the doorbell interrupt
135  * on the primary side. The function will unmask the doorbell as well to
136  * allow interrupt.
137  *
138  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
139  */
ntb_register_db_callback(struct ntb_device * ndev,unsigned int idx,void * data,void (* func)(void * data,int db_num))140 int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
141 			     void *data, void (*func)(void *data, int db_num))
142 {
143 	unsigned long mask;
144 
145 	if (idx >= ndev->max_cbs || ndev->db_cb[idx].callback) {
146 		dev_warn(&ndev->pdev->dev, "Invalid Index.\n");
147 		return -EINVAL;
148 	}
149 
150 	ndev->db_cb[idx].callback = func;
151 	ndev->db_cb[idx].data = data;
152 
153 	/* unmask interrupt */
154 	mask = readw(ndev->reg_ofs.pdb_mask);
155 	clear_bit(idx * ndev->bits_per_vector, &mask);
156 	writew(mask, ndev->reg_ofs.pdb_mask);
157 
158 	return 0;
159 }
160 
161 /**
162  * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
163  * @ndev: pointer to ntb_device instance
164  * @idx: doorbell index to register callback, zero based
165  *
166  * This function unregisters a callback function for the doorbell interrupt
167  * on the primary side. The function will also mask the said doorbell.
168  */
ntb_unregister_db_callback(struct ntb_device * ndev,unsigned int idx)169 void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx)
170 {
171 	unsigned long mask;
172 
173 	if (idx >= ndev->max_cbs || !ndev->db_cb[idx].callback)
174 		return;
175 
176 	mask = readw(ndev->reg_ofs.pdb_mask);
177 	set_bit(idx * ndev->bits_per_vector, &mask);
178 	writew(mask, ndev->reg_ofs.pdb_mask);
179 
180 	ndev->db_cb[idx].callback = NULL;
181 }
182 
183 /**
184  * ntb_find_transport() - find the transport pointer
185  * @transport: pointer to pci device
186  *
187  * Given the pci device pointer, return the transport pointer passed in when
188  * the transport attached when it was inited.
189  *
190  * RETURNS: pointer to transport.
191  */
ntb_find_transport(struct pci_dev * pdev)192 void *ntb_find_transport(struct pci_dev *pdev)
193 {
194 	struct ntb_device *ndev = pci_get_drvdata(pdev);
195 	return ndev->ntb_transport;
196 }
197 
198 /**
199  * ntb_register_transport() - Register NTB transport with NTB HW driver
200  * @transport: transport identifier
201  *
202  * This function allows a transport to reserve the hardware driver for
203  * NTB usage.
204  *
205  * RETURNS: pointer to ntb_device, NULL on error.
206  */
ntb_register_transport(struct pci_dev * pdev,void * transport)207 struct ntb_device *ntb_register_transport(struct pci_dev *pdev, void *transport)
208 {
209 	struct ntb_device *ndev = pci_get_drvdata(pdev);
210 
211 	if (ndev->ntb_transport)
212 		return NULL;
213 
214 	ndev->ntb_transport = transport;
215 	return ndev;
216 }
217 
218 /**
219  * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
220  * @ndev - ntb_device of the transport to be freed
221  *
222  * This function unregisters the transport from the HW driver and performs any
223  * necessary cleanups.
224  */
ntb_unregister_transport(struct ntb_device * ndev)225 void ntb_unregister_transport(struct ntb_device *ndev)
226 {
227 	int i;
228 
229 	if (!ndev->ntb_transport)
230 		return;
231 
232 	for (i = 0; i < ndev->max_cbs; i++)
233 		ntb_unregister_db_callback(ndev, i);
234 
235 	ntb_unregister_event_callback(ndev);
236 	ndev->ntb_transport = NULL;
237 }
238 
239 /**
240  * ntb_write_local_spad() - write to the secondary scratchpad register
241  * @ndev: pointer to ntb_device instance
242  * @idx: index to the scratchpad register, 0 based
243  * @val: the data value to put into the register
244  *
245  * This function allows writing of a 32bit value to the indexed scratchpad
246  * register. This writes over the data mirrored to the local scratchpad register
247  * by the remote system.
248  *
249  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
250  */
ntb_write_local_spad(struct ntb_device * ndev,unsigned int idx,u32 val)251 int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
252 {
253 	if (idx >= ndev->limits.max_spads)
254 		return -EINVAL;
255 
256 	dev_dbg(&ndev->pdev->dev, "Writing %x to local scratch pad index %d\n",
257 		val, idx);
258 	writel(val, ndev->reg_ofs.spad_read + idx * 4);
259 
260 	return 0;
261 }
262 
263 /**
264  * ntb_read_local_spad() - read from the primary scratchpad register
265  * @ndev: pointer to ntb_device instance
266  * @idx: index to scratchpad register, 0 based
267  * @val: pointer to 32bit integer for storing the register value
268  *
269  * This function allows reading of the 32bit scratchpad register on
270  * the primary (internal) side.  This allows the local system to read data
271  * written and mirrored to the scratchpad register by the remote system.
272  *
273  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
274  */
ntb_read_local_spad(struct ntb_device * ndev,unsigned int idx,u32 * val)275 int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
276 {
277 	if (idx >= ndev->limits.max_spads)
278 		return -EINVAL;
279 
280 	*val = readl(ndev->reg_ofs.spad_write + idx * 4);
281 	dev_dbg(&ndev->pdev->dev,
282 		"Reading %x from local scratch pad index %d\n", *val, idx);
283 
284 	return 0;
285 }
286 
287 /**
288  * ntb_write_remote_spad() - write to the secondary scratchpad register
289  * @ndev: pointer to ntb_device instance
290  * @idx: index to the scratchpad register, 0 based
291  * @val: the data value to put into the register
292  *
293  * This function allows writing of a 32bit value to the indexed scratchpad
294  * register. The register resides on the secondary (external) side.  This allows
295  * the local system to write data to be mirrored to the remote systems
296  * scratchpad register.
297  *
298  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
299  */
ntb_write_remote_spad(struct ntb_device * ndev,unsigned int idx,u32 val)300 int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val)
301 {
302 	if (idx >= ndev->limits.max_spads)
303 		return -EINVAL;
304 
305 	dev_dbg(&ndev->pdev->dev, "Writing %x to remote scratch pad index %d\n",
306 		val, idx);
307 	writel(val, ndev->reg_ofs.spad_write + idx * 4);
308 
309 	return 0;
310 }
311 
312 /**
313  * ntb_read_remote_spad() - read from the primary scratchpad register
314  * @ndev: pointer to ntb_device instance
315  * @idx: index to scratchpad register, 0 based
316  * @val: pointer to 32bit integer for storing the register value
317  *
318  * This function allows reading of the 32bit scratchpad register on
319  * the primary (internal) side.  This alloows the local system to read the data
320  * it wrote to be mirrored on the remote system.
321  *
322  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
323  */
ntb_read_remote_spad(struct ntb_device * ndev,unsigned int idx,u32 * val)324 int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val)
325 {
326 	if (idx >= ndev->limits.max_spads)
327 		return -EINVAL;
328 
329 	*val = readl(ndev->reg_ofs.spad_read + idx * 4);
330 	dev_dbg(&ndev->pdev->dev,
331 		"Reading %x from remote scratch pad index %d\n", *val, idx);
332 
333 	return 0;
334 }
335 
336 /**
337  * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
338  * @ndev: pointer to ntb_device instance
339  * @mw: memory window number
340  *
341  * This function provides the base virtual address of the memory window
342  * specified.
343  *
344  * RETURNS: pointer to virtual address, or NULL on error.
345  */
ntb_get_mw_vbase(struct ntb_device * ndev,unsigned int mw)346 void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw)
347 {
348 	if (mw >= NTB_NUM_MW)
349 		return NULL;
350 
351 	return ndev->mw[mw].vbase;
352 }
353 
354 /**
355  * ntb_get_mw_size() - return size of NTB memory window
356  * @ndev: pointer to ntb_device instance
357  * @mw: memory window number
358  *
359  * This function provides the physical size of the memory window specified
360  *
361  * RETURNS: the size of the memory window or zero on error
362  */
ntb_get_mw_size(struct ntb_device * ndev,unsigned int mw)363 resource_size_t ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw)
364 {
365 	if (mw >= NTB_NUM_MW)
366 		return 0;
367 
368 	return ndev->mw[mw].bar_sz;
369 }
370 
371 /**
372  * ntb_set_mw_addr - set the memory window address
373  * @ndev: pointer to ntb_device instance
374  * @mw: memory window number
375  * @addr: base address for data
376  *
377  * This function sets the base physical address of the memory window.  This
378  * memory address is where data from the remote system will be transfered into
379  * or out of depending on how the transport is configured.
380  */
ntb_set_mw_addr(struct ntb_device * ndev,unsigned int mw,u64 addr)381 void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr)
382 {
383 	if (mw >= NTB_NUM_MW)
384 		return;
385 
386 	dev_dbg(&ndev->pdev->dev, "Writing addr %Lx to BAR %d\n", addr,
387 		MW_TO_BAR(mw));
388 
389 	ndev->mw[mw].phys_addr = addr;
390 
391 	switch (MW_TO_BAR(mw)) {
392 	case NTB_BAR_23:
393 		writeq(addr, ndev->reg_ofs.sbar2_xlat);
394 		break;
395 	case NTB_BAR_45:
396 		writeq(addr, ndev->reg_ofs.sbar4_xlat);
397 		break;
398 	}
399 }
400 
401 /**
402  * ntb_ring_sdb() - Set the doorbell on the secondary/external side
403  * @ndev: pointer to ntb_device instance
404  * @db: doorbell to ring
405  *
406  * This function allows triggering of a doorbell on the secondary/external
407  * side that will initiate an interrupt on the remote host
408  *
409  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
410  */
ntb_ring_sdb(struct ntb_device * ndev,unsigned int db)411 void ntb_ring_sdb(struct ntb_device *ndev, unsigned int db)
412 {
413 	dev_dbg(&ndev->pdev->dev, "%s: ringing doorbell %d\n", __func__, db);
414 
415 	if (ndev->hw_type == BWD_HW)
416 		writeq((u64) 1 << db, ndev->reg_ofs.sdb);
417 	else
418 		writew(((1 << ndev->bits_per_vector) - 1) <<
419 		       (db * ndev->bits_per_vector), ndev->reg_ofs.sdb);
420 }
421 
ntb_link_event(struct ntb_device * ndev,int link_state)422 static void ntb_link_event(struct ntb_device *ndev, int link_state)
423 {
424 	unsigned int event;
425 
426 	if (ndev->link_status == link_state)
427 		return;
428 
429 	if (link_state == NTB_LINK_UP) {
430 		u16 status;
431 
432 		dev_info(&ndev->pdev->dev, "Link Up\n");
433 		ndev->link_status = NTB_LINK_UP;
434 		event = NTB_EVENT_HW_LINK_UP;
435 
436 		if (ndev->hw_type == BWD_HW)
437 			status = readw(ndev->reg_ofs.lnk_stat);
438 		else {
439 			int rc = pci_read_config_word(ndev->pdev,
440 						      SNB_LINK_STATUS_OFFSET,
441 						      &status);
442 			if (rc)
443 				return;
444 		}
445 		dev_info(&ndev->pdev->dev, "Link Width %d, Link Speed %d\n",
446 			 (status & NTB_LINK_WIDTH_MASK) >> 4,
447 			 (status & NTB_LINK_SPEED_MASK));
448 	} else {
449 		dev_info(&ndev->pdev->dev, "Link Down\n");
450 		ndev->link_status = NTB_LINK_DOWN;
451 		event = NTB_EVENT_HW_LINK_DOWN;
452 	}
453 
454 	/* notify the upper layer if we have an event change */
455 	if (ndev->event_cb)
456 		ndev->event_cb(ndev->ntb_transport, event);
457 }
458 
ntb_link_status(struct ntb_device * ndev)459 static int ntb_link_status(struct ntb_device *ndev)
460 {
461 	int link_state;
462 
463 	if (ndev->hw_type == BWD_HW) {
464 		u32 ntb_cntl;
465 
466 		ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
467 		if (ntb_cntl & BWD_CNTL_LINK_DOWN)
468 			link_state = NTB_LINK_DOWN;
469 		else
470 			link_state = NTB_LINK_UP;
471 	} else {
472 		u16 status;
473 		int rc;
474 
475 		rc = pci_read_config_word(ndev->pdev, SNB_LINK_STATUS_OFFSET,
476 					  &status);
477 		if (rc)
478 			return rc;
479 
480 		if (status & NTB_LINK_STATUS_ACTIVE)
481 			link_state = NTB_LINK_UP;
482 		else
483 			link_state = NTB_LINK_DOWN;
484 	}
485 
486 	ntb_link_event(ndev, link_state);
487 
488 	return 0;
489 }
490 
491 /* BWD doesn't have link status interrupt, poll on that platform */
bwd_link_poll(struct work_struct * work)492 static void bwd_link_poll(struct work_struct *work)
493 {
494 	struct ntb_device *ndev = container_of(work, struct ntb_device,
495 					       hb_timer.work);
496 	unsigned long ts = jiffies;
497 
498 	/* If we haven't gotten an interrupt in a while, check the BWD link
499 	 * status bit
500 	 */
501 	if (ts > ndev->last_ts + NTB_HB_TIMEOUT) {
502 		int rc = ntb_link_status(ndev);
503 		if (rc)
504 			dev_err(&ndev->pdev->dev,
505 				"Error determining link status\n");
506 	}
507 
508 	schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
509 }
510 
ntb_xeon_setup(struct ntb_device * ndev)511 static int ntb_xeon_setup(struct ntb_device *ndev)
512 {
513 	int rc;
514 	u8 val;
515 
516 	ndev->hw_type = SNB_HW;
517 
518 	rc = pci_read_config_byte(ndev->pdev, NTB_PPD_OFFSET, &val);
519 	if (rc)
520 		return rc;
521 
522 	switch (val & SNB_PPD_CONN_TYPE) {
523 	case NTB_CONN_B2B:
524 		ndev->conn_type = NTB_CONN_B2B;
525 		break;
526 	case NTB_CONN_CLASSIC:
527 	case NTB_CONN_RP:
528 	default:
529 		dev_err(&ndev->pdev->dev, "Only B2B supported at this time\n");
530 		return -EINVAL;
531 	}
532 
533 	if (val & SNB_PPD_DEV_TYPE)
534 		ndev->dev_type = NTB_DEV_DSD;
535 	else
536 		ndev->dev_type = NTB_DEV_USD;
537 
538 	ndev->reg_ofs.pdb = ndev->reg_base + SNB_PDOORBELL_OFFSET;
539 	ndev->reg_ofs.pdb_mask = ndev->reg_base + SNB_PDBMSK_OFFSET;
540 	ndev->reg_ofs.sbar2_xlat = ndev->reg_base + SNB_SBAR2XLAT_OFFSET;
541 	ndev->reg_ofs.sbar4_xlat = ndev->reg_base + SNB_SBAR4XLAT_OFFSET;
542 	ndev->reg_ofs.lnk_cntl = ndev->reg_base + SNB_NTBCNTL_OFFSET;
543 	ndev->reg_ofs.lnk_stat = ndev->reg_base + SNB_LINK_STATUS_OFFSET;
544 	ndev->reg_ofs.spad_read = ndev->reg_base + SNB_SPAD_OFFSET;
545 	ndev->reg_ofs.spci_cmd = ndev->reg_base + SNB_PCICMD_OFFSET;
546 
547 	if (ndev->conn_type == NTB_CONN_B2B) {
548 		ndev->reg_ofs.sdb = ndev->reg_base + SNB_B2B_DOORBELL_OFFSET;
549 		ndev->reg_ofs.spad_write = ndev->reg_base + SNB_B2B_SPAD_OFFSET;
550 		ndev->limits.max_spads = SNB_MAX_SPADS;
551 	} else {
552 		ndev->reg_ofs.sdb = ndev->reg_base + SNB_SDOORBELL_OFFSET;
553 		ndev->reg_ofs.spad_write = ndev->reg_base + SNB_SPAD_OFFSET;
554 		ndev->limits.max_spads = SNB_MAX_COMPAT_SPADS;
555 	}
556 
557 	ndev->limits.max_db_bits = SNB_MAX_DB_BITS;
558 	ndev->limits.msix_cnt = SNB_MSIX_CNT;
559 	ndev->bits_per_vector = SNB_DB_BITS_PER_VEC;
560 
561 	return 0;
562 }
563 
ntb_bwd_setup(struct ntb_device * ndev)564 static int ntb_bwd_setup(struct ntb_device *ndev)
565 {
566 	int rc;
567 	u32 val;
568 
569 	ndev->hw_type = BWD_HW;
570 
571 	rc = pci_read_config_dword(ndev->pdev, NTB_PPD_OFFSET, &val);
572 	if (rc)
573 		return rc;
574 
575 	switch ((val & BWD_PPD_CONN_TYPE) >> 8) {
576 	case NTB_CONN_B2B:
577 		ndev->conn_type = NTB_CONN_B2B;
578 		break;
579 	case NTB_CONN_RP:
580 	default:
581 		dev_err(&ndev->pdev->dev, "Only B2B supported at this time\n");
582 		return -EINVAL;
583 	}
584 
585 	if (val & BWD_PPD_DEV_TYPE)
586 		ndev->dev_type = NTB_DEV_DSD;
587 	else
588 		ndev->dev_type = NTB_DEV_USD;
589 
590 	/* Initiate PCI-E link training */
591 	rc = pci_write_config_dword(ndev->pdev, NTB_PPD_OFFSET,
592 				    val | BWD_PPD_INIT_LINK);
593 	if (rc)
594 		return rc;
595 
596 	ndev->reg_ofs.pdb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
597 	ndev->reg_ofs.pdb_mask = ndev->reg_base + BWD_PDBMSK_OFFSET;
598 	ndev->reg_ofs.sbar2_xlat = ndev->reg_base + BWD_SBAR2XLAT_OFFSET;
599 	ndev->reg_ofs.sbar4_xlat = ndev->reg_base + BWD_SBAR4XLAT_OFFSET;
600 	ndev->reg_ofs.lnk_cntl = ndev->reg_base + BWD_NTBCNTL_OFFSET;
601 	ndev->reg_ofs.lnk_stat = ndev->reg_base + BWD_LINK_STATUS_OFFSET;
602 	ndev->reg_ofs.spad_read = ndev->reg_base + BWD_SPAD_OFFSET;
603 	ndev->reg_ofs.spci_cmd = ndev->reg_base + BWD_PCICMD_OFFSET;
604 
605 	if (ndev->conn_type == NTB_CONN_B2B) {
606 		ndev->reg_ofs.sdb = ndev->reg_base + BWD_B2B_DOORBELL_OFFSET;
607 		ndev->reg_ofs.spad_write = ndev->reg_base + BWD_B2B_SPAD_OFFSET;
608 		ndev->limits.max_spads = BWD_MAX_SPADS;
609 	} else {
610 		ndev->reg_ofs.sdb = ndev->reg_base + BWD_PDOORBELL_OFFSET;
611 		ndev->reg_ofs.spad_write = ndev->reg_base + BWD_SPAD_OFFSET;
612 		ndev->limits.max_spads = BWD_MAX_COMPAT_SPADS;
613 	}
614 
615 	ndev->limits.max_db_bits = BWD_MAX_DB_BITS;
616 	ndev->limits.msix_cnt = BWD_MSIX_CNT;
617 	ndev->bits_per_vector = BWD_DB_BITS_PER_VEC;
618 
619 	/* Since bwd doesn't have a link interrupt, setup a poll timer */
620 	INIT_DELAYED_WORK(&ndev->hb_timer, bwd_link_poll);
621 	schedule_delayed_work(&ndev->hb_timer, NTB_HB_TIMEOUT);
622 
623 	return 0;
624 }
625 
ntb_device_setup(struct ntb_device * ndev)626 static int ntb_device_setup(struct ntb_device *ndev)
627 {
628 	int rc;
629 
630 	switch (ndev->pdev->device) {
631 	case PCI_DEVICE_ID_INTEL_NTB_2ND_SNB:
632 	case PCI_DEVICE_ID_INTEL_NTB_RP_JSF:
633 	case PCI_DEVICE_ID_INTEL_NTB_RP_SNB:
634 	case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_JSF:
635 	case PCI_DEVICE_ID_INTEL_NTB_CLASSIC_SNB:
636 	case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF:
637 	case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB:
638 		rc = ntb_xeon_setup(ndev);
639 		break;
640 	case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD:
641 		rc = ntb_bwd_setup(ndev);
642 		break;
643 	default:
644 		rc = -ENODEV;
645 	}
646 
647 	/* Enable Bus Master and Memory Space on the secondary side */
648 	writew(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER, ndev->reg_ofs.spci_cmd);
649 
650 	return rc;
651 }
652 
ntb_device_free(struct ntb_device * ndev)653 static void ntb_device_free(struct ntb_device *ndev)
654 {
655 	if (ndev->hw_type == BWD_HW)
656 		cancel_delayed_work_sync(&ndev->hb_timer);
657 }
658 
bwd_callback_msix_irq(int irq,void * data)659 static irqreturn_t bwd_callback_msix_irq(int irq, void *data)
660 {
661 	struct ntb_db_cb *db_cb = data;
662 	struct ntb_device *ndev = db_cb->ndev;
663 
664 	dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
665 		db_cb->db_num);
666 
667 	if (db_cb->callback)
668 		db_cb->callback(db_cb->data, db_cb->db_num);
669 
670 	/* No need to check for the specific HB irq, any interrupt means
671 	 * we're connected.
672 	 */
673 	ndev->last_ts = jiffies;
674 
675 	writeq((u64) 1 << db_cb->db_num, ndev->reg_ofs.pdb);
676 
677 	return IRQ_HANDLED;
678 }
679 
xeon_callback_msix_irq(int irq,void * data)680 static irqreturn_t xeon_callback_msix_irq(int irq, void *data)
681 {
682 	struct ntb_db_cb *db_cb = data;
683 	struct ntb_device *ndev = db_cb->ndev;
684 
685 	dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for DB %d\n", irq,
686 		db_cb->db_num);
687 
688 	if (db_cb->callback)
689 		db_cb->callback(db_cb->data, db_cb->db_num);
690 
691 	/* On Sandybridge, there are 16 bits in the interrupt register
692 	 * but only 4 vectors.  So, 5 bits are assigned to the first 3
693 	 * vectors, with the 4th having a single bit for link
694 	 * interrupts.
695 	 */
696 	writew(((1 << ndev->bits_per_vector) - 1) <<
697 	       (db_cb->db_num * ndev->bits_per_vector), ndev->reg_ofs.pdb);
698 
699 	return IRQ_HANDLED;
700 }
701 
702 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
xeon_event_msix_irq(int irq,void * dev)703 static irqreturn_t xeon_event_msix_irq(int irq, void *dev)
704 {
705 	struct ntb_device *ndev = dev;
706 	int rc;
707 
708 	dev_dbg(&ndev->pdev->dev, "MSI-X irq %d received for Events\n", irq);
709 
710 	rc = ntb_link_status(ndev);
711 	if (rc)
712 		dev_err(&ndev->pdev->dev, "Error determining link status\n");
713 
714 	/* bit 15 is always the link bit */
715 	writew(1 << ndev->limits.max_db_bits, ndev->reg_ofs.pdb);
716 
717 	return IRQ_HANDLED;
718 }
719 
ntb_interrupt(int irq,void * dev)720 static irqreturn_t ntb_interrupt(int irq, void *dev)
721 {
722 	struct ntb_device *ndev = dev;
723 	unsigned int i = 0;
724 
725 	if (ndev->hw_type == BWD_HW) {
726 		u64 pdb = readq(ndev->reg_ofs.pdb);
727 
728 		dev_dbg(&ndev->pdev->dev, "irq %d - pdb = %Lx\n", irq, pdb);
729 
730 		while (pdb) {
731 			i = __ffs(pdb);
732 			pdb &= pdb - 1;
733 			bwd_callback_msix_irq(irq, &ndev->db_cb[i]);
734 		}
735 	} else {
736 		u16 pdb = readw(ndev->reg_ofs.pdb);
737 
738 		dev_dbg(&ndev->pdev->dev, "irq %d - pdb = %x sdb %x\n", irq,
739 			pdb, readw(ndev->reg_ofs.sdb));
740 
741 		if (pdb & SNB_DB_HW_LINK) {
742 			xeon_event_msix_irq(irq, dev);
743 			pdb &= ~SNB_DB_HW_LINK;
744 		}
745 
746 		while (pdb) {
747 			i = __ffs(pdb);
748 			pdb &= pdb - 1;
749 			xeon_callback_msix_irq(irq, &ndev->db_cb[i]);
750 		}
751 	}
752 
753 	return IRQ_HANDLED;
754 }
755 
ntb_setup_msix(struct ntb_device * ndev)756 static int ntb_setup_msix(struct ntb_device *ndev)
757 {
758 	struct pci_dev *pdev = ndev->pdev;
759 	struct msix_entry *msix;
760 	int msix_entries;
761 	int rc, i, pos;
762 	u16 val;
763 
764 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
765 	if (!pos) {
766 		rc = -EIO;
767 		goto err;
768 	}
769 
770 	rc = pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS, &val);
771 	if (rc)
772 		goto err;
773 
774 	msix_entries = msix_table_size(val);
775 	if (msix_entries > ndev->limits.msix_cnt) {
776 		rc = -EINVAL;
777 		goto err;
778 	}
779 
780 	ndev->msix_entries = kmalloc(sizeof(struct msix_entry) * msix_entries,
781 				     GFP_KERNEL);
782 	if (!ndev->msix_entries) {
783 		rc = -ENOMEM;
784 		goto err;
785 	}
786 
787 	for (i = 0; i < msix_entries; i++)
788 		ndev->msix_entries[i].entry = i;
789 
790 	rc = pci_enable_msix(pdev, ndev->msix_entries, msix_entries);
791 	if (rc < 0)
792 		goto err1;
793 	if (rc > 0) {
794 		/* On SNB, the link interrupt is always tied to 4th vector.  If
795 		 * we can't get all 4, then we can't use MSI-X.
796 		 */
797 		if (ndev->hw_type != BWD_HW) {
798 			rc = -EIO;
799 			goto err1;
800 		}
801 
802 		dev_warn(&pdev->dev,
803 			 "Only %d MSI-X vectors.  Limiting the number of queues to that number.\n",
804 			 rc);
805 		msix_entries = rc;
806 	}
807 
808 	for (i = 0; i < msix_entries; i++) {
809 		msix = &ndev->msix_entries[i];
810 		WARN_ON(!msix->vector);
811 
812 		/* Use the last MSI-X vector for Link status */
813 		if (ndev->hw_type == BWD_HW) {
814 			rc = request_irq(msix->vector, bwd_callback_msix_irq, 0,
815 					 "ntb-callback-msix", &ndev->db_cb[i]);
816 			if (rc)
817 				goto err2;
818 		} else {
819 			if (i == msix_entries - 1) {
820 				rc = request_irq(msix->vector,
821 						 xeon_event_msix_irq, 0,
822 						 "ntb-event-msix", ndev);
823 				if (rc)
824 					goto err2;
825 			} else {
826 				rc = request_irq(msix->vector,
827 						 xeon_callback_msix_irq, 0,
828 						 "ntb-callback-msix",
829 						 &ndev->db_cb[i]);
830 				if (rc)
831 					goto err2;
832 			}
833 		}
834 	}
835 
836 	ndev->num_msix = msix_entries;
837 	if (ndev->hw_type == BWD_HW)
838 		ndev->max_cbs = msix_entries;
839 	else
840 		ndev->max_cbs = msix_entries - 1;
841 
842 	return 0;
843 
844 err2:
845 	while (--i >= 0) {
846 		msix = &ndev->msix_entries[i];
847 		if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
848 			free_irq(msix->vector, ndev);
849 		else
850 			free_irq(msix->vector, &ndev->db_cb[i]);
851 	}
852 	pci_disable_msix(pdev);
853 err1:
854 	kfree(ndev->msix_entries);
855 	dev_err(&pdev->dev, "Error allocating MSI-X interrupt\n");
856 err:
857 	ndev->num_msix = 0;
858 	return rc;
859 }
860 
ntb_setup_msi(struct ntb_device * ndev)861 static int ntb_setup_msi(struct ntb_device *ndev)
862 {
863 	struct pci_dev *pdev = ndev->pdev;
864 	int rc;
865 
866 	rc = pci_enable_msi(pdev);
867 	if (rc)
868 		return rc;
869 
870 	rc = request_irq(pdev->irq, ntb_interrupt, 0, "ntb-msi", ndev);
871 	if (rc) {
872 		pci_disable_msi(pdev);
873 		dev_err(&pdev->dev, "Error allocating MSI interrupt\n");
874 		return rc;
875 	}
876 
877 	return 0;
878 }
879 
ntb_setup_intx(struct ntb_device * ndev)880 static int ntb_setup_intx(struct ntb_device *ndev)
881 {
882 	struct pci_dev *pdev = ndev->pdev;
883 	int rc;
884 
885 	pci_msi_off(pdev);
886 
887 	/* Verify intx is enabled */
888 	pci_intx(pdev, 1);
889 
890 	rc = request_irq(pdev->irq, ntb_interrupt, IRQF_SHARED, "ntb-intx",
891 			 ndev);
892 	if (rc)
893 		return rc;
894 
895 	return 0;
896 }
897 
ntb_setup_interrupts(struct ntb_device * ndev)898 static int ntb_setup_interrupts(struct ntb_device *ndev)
899 {
900 	int rc;
901 
902 	/* On BWD, disable all interrupts.  On SNB, disable all but Link
903 	 * Interrupt.  The rest will be unmasked as callbacks are registered.
904 	 */
905 	if (ndev->hw_type == BWD_HW)
906 		writeq(~0, ndev->reg_ofs.pdb_mask);
907 	else
908 		writew(~(1 << ndev->limits.max_db_bits),
909 		       ndev->reg_ofs.pdb_mask);
910 
911 	rc = ntb_setup_msix(ndev);
912 	if (!rc)
913 		goto done;
914 
915 	ndev->bits_per_vector = 1;
916 	ndev->max_cbs = ndev->limits.max_db_bits;
917 
918 	rc = ntb_setup_msi(ndev);
919 	if (!rc)
920 		goto done;
921 
922 	rc = ntb_setup_intx(ndev);
923 	if (rc) {
924 		dev_err(&ndev->pdev->dev, "no usable interrupts\n");
925 		return rc;
926 	}
927 
928 done:
929 	return 0;
930 }
931 
ntb_free_interrupts(struct ntb_device * ndev)932 static void ntb_free_interrupts(struct ntb_device *ndev)
933 {
934 	struct pci_dev *pdev = ndev->pdev;
935 
936 	/* mask interrupts */
937 	if (ndev->hw_type == BWD_HW)
938 		writeq(~0, ndev->reg_ofs.pdb_mask);
939 	else
940 		writew(~0, ndev->reg_ofs.pdb_mask);
941 
942 	if (ndev->num_msix) {
943 		struct msix_entry *msix;
944 		u32 i;
945 
946 		for (i = 0; i < ndev->num_msix; i++) {
947 			msix = &ndev->msix_entries[i];
948 			if (ndev->hw_type != BWD_HW && i == ndev->num_msix - 1)
949 				free_irq(msix->vector, ndev);
950 			else
951 				free_irq(msix->vector, &ndev->db_cb[i]);
952 		}
953 		pci_disable_msix(pdev);
954 	} else {
955 		free_irq(pdev->irq, ndev);
956 
957 		if (pci_dev_msi_enabled(pdev))
958 			pci_disable_msi(pdev);
959 	}
960 }
961 
ntb_create_callbacks(struct ntb_device * ndev)962 static int ntb_create_callbacks(struct ntb_device *ndev)
963 {
964 	int i;
965 
966 	/* Checken-egg issue.  We won't know how many callbacks are necessary
967 	 * until we see how many MSI-X vectors we get, but these pointers need
968 	 * to be passed into the MSI-X register fucntion.  So, we allocate the
969 	 * max, knowing that they might not all be used, to work around this.
970 	 */
971 	ndev->db_cb = kcalloc(ndev->limits.max_db_bits,
972 			      sizeof(struct ntb_db_cb),
973 			      GFP_KERNEL);
974 	if (!ndev->db_cb)
975 		return -ENOMEM;
976 
977 	for (i = 0; i < ndev->limits.max_db_bits; i++) {
978 		ndev->db_cb[i].db_num = i;
979 		ndev->db_cb[i].ndev = ndev;
980 	}
981 
982 	return 0;
983 }
984 
ntb_free_callbacks(struct ntb_device * ndev)985 static void ntb_free_callbacks(struct ntb_device *ndev)
986 {
987 	int i;
988 
989 	for (i = 0; i < ndev->limits.max_db_bits; i++)
990 		ntb_unregister_db_callback(ndev, i);
991 
992 	kfree(ndev->db_cb);
993 }
994 
ntb_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)995 static int ntb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
996 {
997 	struct ntb_device *ndev;
998 	int rc, i;
999 
1000 	ndev = kzalloc(sizeof(struct ntb_device), GFP_KERNEL);
1001 	if (!ndev)
1002 		return -ENOMEM;
1003 
1004 	ndev->pdev = pdev;
1005 	ndev->link_status = NTB_LINK_DOWN;
1006 	pci_set_drvdata(pdev, ndev);
1007 
1008 	rc = pci_enable_device(pdev);
1009 	if (rc)
1010 		goto err;
1011 
1012 	pci_set_master(ndev->pdev);
1013 
1014 	rc = pci_request_selected_regions(pdev, NTB_BAR_MASK, KBUILD_MODNAME);
1015 	if (rc)
1016 		goto err1;
1017 
1018 	ndev->reg_base = pci_ioremap_bar(pdev, NTB_BAR_MMIO);
1019 	if (!ndev->reg_base) {
1020 		dev_warn(&pdev->dev, "Cannot remap BAR 0\n");
1021 		rc = -EIO;
1022 		goto err2;
1023 	}
1024 
1025 	for (i = 0; i < NTB_NUM_MW; i++) {
1026 		ndev->mw[i].bar_sz = pci_resource_len(pdev, MW_TO_BAR(i));
1027 		ndev->mw[i].vbase =
1028 		    ioremap_wc(pci_resource_start(pdev, MW_TO_BAR(i)),
1029 			       ndev->mw[i].bar_sz);
1030 		dev_info(&pdev->dev, "MW %d size %llu\n", i,
1031 			 pci_resource_len(pdev, MW_TO_BAR(i)));
1032 		if (!ndev->mw[i].vbase) {
1033 			dev_warn(&pdev->dev, "Cannot remap BAR %d\n",
1034 				 MW_TO_BAR(i));
1035 			rc = -EIO;
1036 			goto err3;
1037 		}
1038 	}
1039 
1040 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1041 	if (rc) {
1042 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1043 		if (rc)
1044 			goto err3;
1045 
1046 		dev_warn(&pdev->dev, "Cannot DMA highmem\n");
1047 	}
1048 
1049 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1050 	if (rc) {
1051 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1052 		if (rc)
1053 			goto err3;
1054 
1055 		dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
1056 	}
1057 
1058 	rc = ntb_device_setup(ndev);
1059 	if (rc)
1060 		goto err3;
1061 
1062 	rc = ntb_create_callbacks(ndev);
1063 	if (rc)
1064 		goto err4;
1065 
1066 	rc = ntb_setup_interrupts(ndev);
1067 	if (rc)
1068 		goto err5;
1069 
1070 	/* The scratchpad registers keep the values between rmmod/insmod,
1071 	 * blast them now
1072 	 */
1073 	for (i = 0; i < ndev->limits.max_spads; i++) {
1074 		ntb_write_local_spad(ndev, i, 0);
1075 		ntb_write_remote_spad(ndev, i, 0);
1076 	}
1077 
1078 	rc = ntb_transport_init(pdev);
1079 	if (rc)
1080 		goto err6;
1081 
1082 	/* Let's bring the NTB link up */
1083 	writel(NTB_CNTL_BAR23_SNOOP | NTB_CNTL_BAR45_SNOOP,
1084 	       ndev->reg_ofs.lnk_cntl);
1085 
1086 	return 0;
1087 
1088 err6:
1089 	ntb_free_interrupts(ndev);
1090 err5:
1091 	ntb_free_callbacks(ndev);
1092 err4:
1093 	ntb_device_free(ndev);
1094 err3:
1095 	for (i--; i >= 0; i--)
1096 		iounmap(ndev->mw[i].vbase);
1097 	iounmap(ndev->reg_base);
1098 err2:
1099 	pci_release_selected_regions(pdev, NTB_BAR_MASK);
1100 err1:
1101 	pci_disable_device(pdev);
1102 err:
1103 	kfree(ndev);
1104 
1105 	dev_err(&pdev->dev, "Error loading %s module\n", KBUILD_MODNAME);
1106 	return rc;
1107 }
1108 
ntb_pci_remove(struct pci_dev * pdev)1109 static void ntb_pci_remove(struct pci_dev *pdev)
1110 {
1111 	struct ntb_device *ndev = pci_get_drvdata(pdev);
1112 	int i;
1113 	u32 ntb_cntl;
1114 
1115 	/* Bring NTB link down */
1116 	ntb_cntl = readl(ndev->reg_ofs.lnk_cntl);
1117 	ntb_cntl |= NTB_LINK_DISABLE;
1118 	writel(ntb_cntl, ndev->reg_ofs.lnk_cntl);
1119 
1120 	ntb_transport_free(ndev->ntb_transport);
1121 
1122 	ntb_free_interrupts(ndev);
1123 	ntb_free_callbacks(ndev);
1124 	ntb_device_free(ndev);
1125 
1126 	for (i = 0; i < NTB_NUM_MW; i++)
1127 		iounmap(ndev->mw[i].vbase);
1128 
1129 	iounmap(ndev->reg_base);
1130 	pci_release_selected_regions(pdev, NTB_BAR_MASK);
1131 	pci_disable_device(pdev);
1132 	kfree(ndev);
1133 }
1134 
1135 static struct pci_driver ntb_pci_driver = {
1136 	.name = KBUILD_MODNAME,
1137 	.id_table = ntb_pci_tbl,
1138 	.probe = ntb_pci_probe,
1139 	.remove = ntb_pci_remove,
1140 };
1141 module_pci_driver(ntb_pci_driver);
1142