1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
61 *
62 * 0 ==> 4MB
63 * 1 ==> 256MB
64 * 2 ==> 2GB
65 * 3 ==> 16GB
66 *
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
71 *
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
75 */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
82 */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85
86 static unsigned long cpu_pgsz_mask;
87
88 #define MAX_BANKS 32
89
90 static struct linux_prom64_registers pavail[MAX_BANKS];
91 static int pavail_ents;
92
cmp_p64(const void * a,const void * b)93 static int cmp_p64(const void *a, const void *b)
94 {
95 const struct linux_prom64_registers *x = a, *y = b;
96
97 if (x->phys_addr > y->phys_addr)
98 return 1;
99 if (x->phys_addr < y->phys_addr)
100 return -1;
101 return 0;
102 }
103
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)104 static void __init read_obp_memory(const char *property,
105 struct linux_prom64_registers *regs,
106 int *num_ents)
107 {
108 phandle node = prom_finddevice("/memory");
109 int prop_size = prom_getproplen(node, property);
110 int ents, ret, i;
111
112 ents = prop_size / sizeof(struct linux_prom64_registers);
113 if (ents > MAX_BANKS) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property, MAX_BANKS);
117 prom_halt();
118 }
119
120 ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 if (ret == -1) {
122 prom_printf("Couldn't get %s property from /memory.\n",
123 property);
124 prom_halt();
125 }
126
127 /* Sanitize what we got from the firmware, by page aligning
128 * everything.
129 */
130 for (i = 0; i < ents; i++) {
131 unsigned long base, size;
132
133 base = regs[i].phys_addr;
134 size = regs[i].reg_size;
135
136 size &= PAGE_MASK;
137 if (base & ~PAGE_MASK) {
138 unsigned long new_base = PAGE_ALIGN(base);
139
140 size -= new_base - base;
141 if ((long) size < 0L)
142 size = 0UL;
143 base = new_base;
144 }
145 if (size == 0UL) {
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
149 */
150 memmove(®s[i], ®s[i + 1],
151 (ents - i - 1) * sizeof(regs[0]));
152 i--;
153 ents--;
154 continue;
155 }
156 regs[i].phys_addr = base;
157 regs[i].reg_size = size;
158 }
159
160 *num_ents = ents;
161
162 sort(regs, ents, sizeof(struct linux_prom64_registers),
163 cmp_p64, NULL);
164 }
165
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187
188 int num_kernel_image_mappings;
189
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196
flush_dcache_page_impl(struct page * page)197 inline void flush_dcache_page_impl(struct page *page)
198 {
199 BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes);
202 #endif
203
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page),
206 ((tlb_type == spitfire) &&
207 page_mapping(page) != NULL));
208 #else
209 if (page_mapping(page) != NULL &&
210 tlb_type == spitfire)
211 __flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
set_dcache_dirty(struct page * page,int this_cpu)223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225 unsigned long mask = this_cpu;
226 unsigned long non_cpu_bits;
227
228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231 __asm__ __volatile__("1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
238 " nop"
239 : /* no outputs */
240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 : "g1", "g7");
242 }
243
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246 unsigned long mask = (1UL << PG_dcache_dirty);
247
248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 "1:\n\t"
250 "ldx [%2], %%g7\n\t"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
253 "cmp %%g1, %0\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
257 "cmp %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n"
260 "2:"
261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7");
266 }
267
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 unsigned long tsb_addr = (unsigned long) ent;
271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr);
274
275 __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
flush_dcache(unsigned long pfn)280 static void flush_dcache(unsigned long pfn)
281 {
282 struct page *page;
283
284 page = pfn_to_page(pfn);
285 if (page) {
286 unsigned long pg_flags;
287
288 pg_flags = page->flags;
289 if (pg_flags & (1UL << PG_dcache_dirty)) {
290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 PG_dcache_cpu_mask);
292 int this_cpu = get_cpu();
293
294 /* This is just to optimize away some function calls
295 * in the SMP case.
296 */
297 if (cpu == this_cpu)
298 flush_dcache_page_impl(page);
299 else
300 smp_flush_dcache_page_impl(page, cpu);
301
302 clear_dcache_dirty_cpu(page, cpu);
303
304 put_cpu();
305 }
306 }
307 }
308
309 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 unsigned long tsb_hash_shift, unsigned long address,
312 unsigned long tte)
313 {
314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 unsigned long tag;
316
317 if (unlikely(!tsb))
318 return;
319
320 tsb += ((address >> tsb_hash_shift) &
321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 tag = (address >> 22UL);
323 tsb_insert(tsb, tag, tte);
324 }
325
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
is_hugetlb_pte(pte_t pte)327 static inline bool is_hugetlb_pte(pte_t pte)
328 {
329 if ((tlb_type == hypervisor &&
330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331 (tlb_type != hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333 return true;
334 return false;
335 }
336 #endif
337
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
339 {
340 struct mm_struct *mm;
341 unsigned long flags;
342 pte_t pte = *ptep;
343
344 if (tlb_type != hypervisor) {
345 unsigned long pfn = pte_pfn(pte);
346
347 if (pfn_valid(pfn))
348 flush_dcache(pfn);
349 }
350
351 mm = vma->vm_mm;
352
353 spin_lock_irqsave(&mm->context.lock, flags);
354
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
357 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
358 address, pte_val(pte));
359 else
360 #endif
361 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
362 address, pte_val(pte));
363
364 spin_unlock_irqrestore(&mm->context.lock, flags);
365 }
366
flush_dcache_page(struct page * page)367 void flush_dcache_page(struct page *page)
368 {
369 struct address_space *mapping;
370 int this_cpu;
371
372 if (tlb_type == hypervisor)
373 return;
374
375 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times.
378 */
379 if (page == ZERO_PAGE(0))
380 return;
381
382 this_cpu = get_cpu();
383
384 mapping = page_mapping(page);
385 if (mapping && !mapping_mapped(mapping)) {
386 int dirty = test_bit(PG_dcache_dirty, &page->flags);
387 if (dirty) {
388 int dirty_cpu = dcache_dirty_cpu(page);
389
390 if (dirty_cpu == this_cpu)
391 goto out;
392 smp_flush_dcache_page_impl(page, dirty_cpu);
393 }
394 set_dcache_dirty(page, this_cpu);
395 } else {
396 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways.
400 */
401 flush_dcache_page_impl(page);
402 }
403
404 out:
405 put_cpu();
406 }
407 EXPORT_SYMBOL(flush_dcache_page);
408
flush_icache_range(unsigned long start,unsigned long end)409 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
410 {
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type == spitfire) {
413 unsigned long kaddr;
414
415 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U.
417 */
418 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
419 unsigned long paddr, mask = _PAGE_PADDR_4U;
420
421 if (kaddr >= PAGE_OFFSET)
422 paddr = kaddr & mask;
423 else {
424 pgd_t *pgdp = pgd_offset_k(kaddr);
425 pud_t *pudp = pud_offset(pgdp, kaddr);
426 pmd_t *pmdp = pmd_offset(pudp, kaddr);
427 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
428
429 paddr = pte_val(*ptep) & mask;
430 }
431 __flush_icache_page(paddr);
432 }
433 }
434 }
435 EXPORT_SYMBOL(flush_icache_range);
436
mmu_info(struct seq_file * m)437 void mmu_info(struct seq_file *m)
438 {
439 static const char *pgsz_strings[] = {
440 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB",
442 };
443 int i, printed;
444
445 if (tlb_type == cheetah)
446 seq_printf(m, "MMU Type\t: Cheetah\n");
447 else if (tlb_type == cheetah_plus)
448 seq_printf(m, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type == spitfire)
450 seq_printf(m, "MMU Type\t: Spitfire\n");
451 else if (tlb_type == hypervisor)
452 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
453 else
454 seq_printf(m, "MMU Type\t: ???\n");
455
456 seq_printf(m, "MMU PGSZs\t: ");
457 printed = 0;
458 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
459 if (cpu_pgsz_mask & (1UL << i)) {
460 seq_printf(m, "%s%s",
461 printed ? "," : "", pgsz_strings[i]);
462 printed++;
463 }
464 }
465 seq_putc(m, '\n');
466
467 #ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes));
470 #ifdef CONFIG_SMP
471 seq_printf(m, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall));
473 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */
475 }
476
477 struct linux_prom_translation prom_trans[512] __read_mostly;
478 unsigned int prom_trans_ents __read_mostly;
479
480 unsigned long kern_locked_tte_data;
481
482 /* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S.
485 */
in_obp_range(unsigned long vaddr)486 static inline int in_obp_range(unsigned long vaddr)
487 {
488 return (vaddr >= LOW_OBP_ADDRESS &&
489 vaddr < HI_OBP_ADDRESS);
490 }
491
cmp_ptrans(const void * a,const void * b)492 static int cmp_ptrans(const void *a, const void *b)
493 {
494 const struct linux_prom_translation *x = a, *y = b;
495
496 if (x->virt > y->virt)
497 return 1;
498 if (x->virt < y->virt)
499 return -1;
500 return 0;
501 }
502
503 /* Read OBP translations property into 'prom_trans[]'. */
read_obp_translations(void)504 static void __init read_obp_translations(void)
505 {
506 int n, node, ents, first, last, i;
507
508 node = prom_finddevice("/virtual-memory");
509 n = prom_getproplen(node, "translations");
510 if (unlikely(n == 0 || n == -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n");
512 prom_halt();
513 }
514 if (unlikely(n > sizeof(prom_trans))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n);
516 prom_halt();
517 }
518
519 if ((n = prom_getproperty(node, "translations",
520 (char *)&prom_trans[0],
521 sizeof(prom_trans))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n");
523 prom_halt();
524 }
525
526 n = n / sizeof(struct linux_prom_translation);
527
528 ents = n;
529
530 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
531 cmp_ptrans, NULL);
532
533 /* Now kick out all the non-OBP entries. */
534 for (i = 0; i < ents; i++) {
535 if (in_obp_range(prom_trans[i].virt))
536 break;
537 }
538 first = i;
539 for (; i < ents; i++) {
540 if (!in_obp_range(prom_trans[i].virt))
541 break;
542 }
543 last = i;
544
545 for (i = 0; i < (last - first); i++) {
546 struct linux_prom_translation *src = &prom_trans[i + first];
547 struct linux_prom_translation *dest = &prom_trans[i];
548
549 *dest = *src;
550 }
551 for (; i < ents; i++) {
552 struct linux_prom_translation *dest = &prom_trans[i];
553 dest->virt = dest->size = dest->data = 0x0UL;
554 }
555
556 prom_trans_ents = last - first;
557
558 if (tlb_type == spitfire) {
559 /* Clear diag TTE bits. */
560 for (i = 0; i < prom_trans_ents; i++)
561 prom_trans[i].data &= ~0x0003fe0000000000UL;
562 }
563
564 /* Force execute bit on. */
565 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data |= (tlb_type == hypervisor ?
567 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
568 }
569
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)570 static void __init hypervisor_tlb_lock(unsigned long vaddr,
571 unsigned long pte,
572 unsigned long mmu)
573 {
574 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
575
576 if (ret != 0) {
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
579 prom_halt();
580 }
581 }
582
583 static unsigned long kern_large_tte(unsigned long paddr);
584
remap_kernel(void)585 static void __init remap_kernel(void)
586 {
587 unsigned long phys_page, tte_vaddr, tte_data;
588 int i, tlb_ent = sparc64_highest_locked_tlbent();
589
590 tte_vaddr = (unsigned long) KERNBASE;
591 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
592 tte_data = kern_large_tte(phys_page);
593
594 kern_locked_tte_data = tte_data;
595
596 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type == hypervisor) {
598 for (i = 0; i < num_kernel_image_mappings; i++) {
599 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
601 tte_vaddr += 0x400000;
602 tte_data += 0x400000;
603 }
604 } else {
605 for (i = 0; i < num_kernel_image_mappings; i++) {
606 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
607 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 tte_vaddr += 0x400000;
609 tte_data += 0x400000;
610 }
611 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
612 }
613 if (tlb_type == cheetah_plus) {
614 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
615 CTX_CHEETAH_PLUS_NUC);
616 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
617 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
618 }
619 }
620
621
inherit_prom_mappings(void)622 static void __init inherit_prom_mappings(void)
623 {
624 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... ");
626 remap_kernel();
627 printk("done.\n");
628 }
629
prom_world(int enter)630 void prom_world(int enter)
631 {
632 if (!enter)
633 set_fs(get_fs());
634
635 __asm__ __volatile__("flushw");
636 }
637
__flush_dcache_range(unsigned long start,unsigned long end)638 void __flush_dcache_range(unsigned long start, unsigned long end)
639 {
640 unsigned long va;
641
642 if (tlb_type == spitfire) {
643 int n = 0;
644
645 for (va = start; va < end; va += 32) {
646 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
647 if (++n >= 512)
648 break;
649 }
650 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
651 start = __pa(start);
652 end = __pa(end);
653 for (va = start; va < end; va += 32)
654 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
655 "membar #Sync"
656 : /* no outputs */
657 : "r" (va),
658 "i" (ASI_DCACHE_INVALIDATE));
659 }
660 }
661 EXPORT_SYMBOL(__flush_dcache_range);
662
663 /* get_new_mmu_context() uses "cache + 1". */
664 DEFINE_SPINLOCK(ctx_alloc_lock);
665 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
666 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
669
670 /* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false.
672 *
673 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h).
677 *
678 * Always invoked with interrupts disabled.
679 */
get_new_mmu_context(struct mm_struct * mm)680 void get_new_mmu_context(struct mm_struct *mm)
681 {
682 unsigned long ctx, new_ctx;
683 unsigned long orig_pgsz_bits;
684 int new_version;
685
686 spin_lock(&ctx_alloc_lock);
687 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
688 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
689 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
690 new_version = 0;
691 if (new_ctx >= (1 << CTX_NR_BITS)) {
692 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
693 if (new_ctx >= ctx) {
694 int i;
695 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
696 CTX_FIRST_VERSION;
697 if (new_ctx == 1)
698 new_ctx = CTX_FIRST_VERSION;
699
700 /* Don't call memset, for 16 entries that's just
701 * plain silly...
702 */
703 mmu_context_bmap[0] = 3;
704 mmu_context_bmap[1] = 0;
705 mmu_context_bmap[2] = 0;
706 mmu_context_bmap[3] = 0;
707 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
708 mmu_context_bmap[i + 0] = 0;
709 mmu_context_bmap[i + 1] = 0;
710 mmu_context_bmap[i + 2] = 0;
711 mmu_context_bmap[i + 3] = 0;
712 }
713 new_version = 1;
714 goto out;
715 }
716 }
717 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
718 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
719 out:
720 tlb_context_cache = new_ctx;
721 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
722 spin_unlock(&ctx_alloc_lock);
723
724 if (unlikely(new_version))
725 smp_new_mmu_context_version();
726 }
727
728 static int numa_enabled = 1;
729 static int numa_debug;
730
early_numa(char * p)731 static int __init early_numa(char *p)
732 {
733 if (!p)
734 return 0;
735
736 if (strstr(p, "off"))
737 numa_enabled = 0;
738
739 if (strstr(p, "debug"))
740 numa_debug = 1;
741
742 return 0;
743 }
744 early_param("numa", early_numa);
745
746 #define numadbg(f, a...) \
747 do { if (numa_debug) \
748 printk(KERN_INFO f, ## a); \
749 } while (0)
750
find_ramdisk(unsigned long phys_base)751 static void __init find_ramdisk(unsigned long phys_base)
752 {
753 #ifdef CONFIG_BLK_DEV_INITRD
754 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
755 unsigned long ramdisk_image;
756
757 /* Older versions of the bootloader only supported a
758 * 32-bit physical address for the ramdisk image
759 * location, stored at sparc_ramdisk_image. Newer
760 * SILO versions set sparc_ramdisk_image to zero and
761 * provide a full 64-bit physical address at
762 * sparc_ramdisk_image64.
763 */
764 ramdisk_image = sparc_ramdisk_image;
765 if (!ramdisk_image)
766 ramdisk_image = sparc_ramdisk_image64;
767
768 /* Another bootloader quirk. The bootloader normalizes
769 * the physical address to KERNBASE, so we have to
770 * factor that back out and add in the lowest valid
771 * physical page address to get the true physical address.
772 */
773 ramdisk_image -= KERNBASE;
774 ramdisk_image += phys_base;
775
776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 ramdisk_image, sparc_ramdisk_size);
778
779 initrd_start = ramdisk_image;
780 initrd_end = ramdisk_image + sparc_ramdisk_size;
781
782 memblock_reserve(initrd_start, sparc_ramdisk_size);
783
784 initrd_start += PAGE_OFFSET;
785 initrd_end += PAGE_OFFSET;
786 }
787 #endif
788 }
789
790 struct node_mem_mask {
791 unsigned long mask;
792 unsigned long val;
793 };
794 static struct node_mem_mask node_masks[MAX_NUMNODES];
795 static int num_node_masks;
796
797 int numa_cpu_lookup_table[NR_CPUS];
798 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
799
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
801
802 struct mdesc_mblock {
803 u64 base;
804 u64 size;
805 u64 offset; /* RA-to-PA */
806 };
807 static struct mdesc_mblock *mblocks;
808 static int num_mblocks;
809
ra_to_pa(unsigned long addr)810 static unsigned long ra_to_pa(unsigned long addr)
811 {
812 int i;
813
814 for (i = 0; i < num_mblocks; i++) {
815 struct mdesc_mblock *m = &mblocks[i];
816
817 if (addr >= m->base &&
818 addr < (m->base + m->size)) {
819 addr += m->offset;
820 break;
821 }
822 }
823 return addr;
824 }
825
find_node(unsigned long addr)826 static int find_node(unsigned long addr)
827 {
828 int i;
829
830 addr = ra_to_pa(addr);
831 for (i = 0; i < num_node_masks; i++) {
832 struct node_mem_mask *p = &node_masks[i];
833
834 if ((addr & p->mask) == p->val)
835 return i;
836 }
837 return -1;
838 }
839
memblock_nid_range(u64 start,u64 end,int * nid)840 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
841 {
842 *nid = find_node(start);
843 start += PAGE_SIZE;
844 while (start < end) {
845 int n = find_node(start);
846
847 if (n != *nid)
848 break;
849 start += PAGE_SIZE;
850 }
851
852 if (start > end)
853 start = end;
854
855 return start;
856 }
857 #endif
858
859 /* This must be invoked after performing all of the necessary
860 * memblock_set_node() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid().
862 */
allocate_node_data(int nid)863 static void __init allocate_node_data(int nid)
864 {
865 struct pglist_data *p;
866 unsigned long start_pfn, end_pfn;
867 #ifdef CONFIG_NEED_MULTIPLE_NODES
868 unsigned long paddr;
869
870 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
871 if (!paddr) {
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
873 prom_halt();
874 }
875 NODE_DATA(nid) = __va(paddr);
876 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
877
878 NODE_DATA(nid)->node_id = nid;
879 #endif
880
881 p = NODE_DATA(nid);
882
883 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
884 p->node_start_pfn = start_pfn;
885 p->node_spanned_pages = end_pfn - start_pfn;
886 }
887
init_node_masks_nonnuma(void)888 static void init_node_masks_nonnuma(void)
889 {
890 int i;
891
892 numadbg("Initializing tables for non-numa.\n");
893
894 node_masks[0].mask = node_masks[0].val = 0;
895 num_node_masks = 1;
896
897 for (i = 0; i < NR_CPUS; i++)
898 numa_cpu_lookup_table[i] = 0;
899
900 cpumask_setall(&numa_cpumask_lookup_table[0]);
901 }
902
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data *node_data[MAX_NUMNODES];
905
906 EXPORT_SYMBOL(numa_cpu_lookup_table);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table);
908 EXPORT_SYMBOL(node_data);
909
910 struct mdesc_mlgroup {
911 u64 node;
912 u64 latency;
913 u64 match;
914 u64 mask;
915 };
916 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups;
918
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 u32 cfg_handle)
921 {
922 u64 arc;
923
924 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 u64 target = mdesc_arc_target(md, arc);
926 const u64 *val;
927
928 val = mdesc_get_property(md, target,
929 "cfg-handle", NULL);
930 if (val && *val == cfg_handle)
931 return 0;
932 }
933 return -ENODEV;
934 }
935
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 u32 cfg_handle)
938 {
939 u64 arc, candidate, best_latency = ~(u64)0;
940
941 candidate = MDESC_NODE_NULL;
942 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 u64 target = mdesc_arc_target(md, arc);
944 const char *name = mdesc_node_name(md, target);
945 const u64 *val;
946
947 if (strcmp(name, "pio-latency-group"))
948 continue;
949
950 val = mdesc_get_property(md, target, "latency", NULL);
951 if (!val)
952 continue;
953
954 if (*val < best_latency) {
955 candidate = target;
956 best_latency = *val;
957 }
958 }
959
960 if (candidate == MDESC_NODE_NULL)
961 return -ENODEV;
962
963 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964 }
965
of_node_to_nid(struct device_node * dp)966 int of_node_to_nid(struct device_node *dp)
967 {
968 const struct linux_prom64_registers *regs;
969 struct mdesc_handle *md;
970 u32 cfg_handle;
971 int count, nid;
972 u64 grp;
973
974 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller.
977 */
978 if (!mlgroups)
979 return -1;
980
981 regs = of_get_property(dp, "reg", NULL);
982 if (!regs)
983 return -1;
984
985 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986
987 md = mdesc_grab();
988
989 count = 0;
990 nid = -1;
991 mdesc_for_each_node_by_name(md, grp, "group") {
992 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 nid = count;
994 break;
995 }
996 count++;
997 }
998
999 mdesc_release(md);
1000
1001 return nid;
1002 }
1003
add_node_ranges(void)1004 static void __init add_node_ranges(void)
1005 {
1006 struct memblock_region *reg;
1007
1008 for_each_memblock(memory, reg) {
1009 unsigned long size = reg->size;
1010 unsigned long start, end;
1011
1012 start = reg->base;
1013 end = start + size;
1014 while (start < end) {
1015 unsigned long this_end;
1016 int nid;
1017
1018 this_end = memblock_nid_range(start, end, &nid);
1019
1020 numadbg("Setting memblock NUMA node nid[%d] "
1021 "start[%lx] end[%lx]\n",
1022 nid, start, this_end);
1023
1024 memblock_set_node(start, this_end - start, nid);
1025 start = this_end;
1026 }
1027 }
1028 }
1029
grab_mlgroups(struct mdesc_handle * md)1030 static int __init grab_mlgroups(struct mdesc_handle *md)
1031 {
1032 unsigned long paddr;
1033 int count = 0;
1034 u64 node;
1035
1036 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1037 count++;
1038 if (!count)
1039 return -ENOENT;
1040
1041 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1042 SMP_CACHE_BYTES);
1043 if (!paddr)
1044 return -ENOMEM;
1045
1046 mlgroups = __va(paddr);
1047 num_mlgroups = count;
1048
1049 count = 0;
1050 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1051 struct mdesc_mlgroup *m = &mlgroups[count++];
1052 const u64 *val;
1053
1054 m->node = node;
1055
1056 val = mdesc_get_property(md, node, "latency", NULL);
1057 m->latency = *val;
1058 val = mdesc_get_property(md, node, "address-match", NULL);
1059 m->match = *val;
1060 val = mdesc_get_property(md, node, "address-mask", NULL);
1061 m->mask = *val;
1062
1063 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1064 "match[%llx] mask[%llx]\n",
1065 count - 1, m->node, m->latency, m->match, m->mask);
1066 }
1067
1068 return 0;
1069 }
1070
grab_mblocks(struct mdesc_handle * md)1071 static int __init grab_mblocks(struct mdesc_handle *md)
1072 {
1073 unsigned long paddr;
1074 int count = 0;
1075 u64 node;
1076
1077 mdesc_for_each_node_by_name(md, node, "mblock")
1078 count++;
1079 if (!count)
1080 return -ENOENT;
1081
1082 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1083 SMP_CACHE_BYTES);
1084 if (!paddr)
1085 return -ENOMEM;
1086
1087 mblocks = __va(paddr);
1088 num_mblocks = count;
1089
1090 count = 0;
1091 mdesc_for_each_node_by_name(md, node, "mblock") {
1092 struct mdesc_mblock *m = &mblocks[count++];
1093 const u64 *val;
1094
1095 val = mdesc_get_property(md, node, "base", NULL);
1096 m->base = *val;
1097 val = mdesc_get_property(md, node, "size", NULL);
1098 m->size = *val;
1099 val = mdesc_get_property(md, node,
1100 "address-congruence-offset", NULL);
1101
1102 /* The address-congruence-offset property is optional.
1103 * Explicity zero it be identifty this.
1104 */
1105 if (val)
1106 m->offset = *val;
1107 else
1108 m->offset = 0UL;
1109
1110 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1111 count - 1, m->base, m->size, m->offset);
1112 }
1113
1114 return 0;
1115 }
1116
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1117 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1118 u64 grp, cpumask_t *mask)
1119 {
1120 u64 arc;
1121
1122 cpumask_clear(mask);
1123
1124 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1125 u64 target = mdesc_arc_target(md, arc);
1126 const char *name = mdesc_node_name(md, target);
1127 const u64 *id;
1128
1129 if (strcmp(name, "cpu"))
1130 continue;
1131 id = mdesc_get_property(md, target, "id", NULL);
1132 if (*id < nr_cpu_ids)
1133 cpumask_set_cpu(*id, mask);
1134 }
1135 }
1136
find_mlgroup(u64 node)1137 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1138 {
1139 int i;
1140
1141 for (i = 0; i < num_mlgroups; i++) {
1142 struct mdesc_mlgroup *m = &mlgroups[i];
1143 if (m->node == node)
1144 return m;
1145 }
1146 return NULL;
1147 }
1148
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1149 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1150 int index)
1151 {
1152 struct mdesc_mlgroup *candidate = NULL;
1153 u64 arc, best_latency = ~(u64)0;
1154 struct node_mem_mask *n;
1155
1156 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1157 u64 target = mdesc_arc_target(md, arc);
1158 struct mdesc_mlgroup *m = find_mlgroup(target);
1159 if (!m)
1160 continue;
1161 if (m->latency < best_latency) {
1162 candidate = m;
1163 best_latency = m->latency;
1164 }
1165 }
1166 if (!candidate)
1167 return -ENOENT;
1168
1169 if (num_node_masks != index) {
1170 printk(KERN_ERR "Inconsistent NUMA state, "
1171 "index[%d] != num_node_masks[%d]\n",
1172 index, num_node_masks);
1173 return -EINVAL;
1174 }
1175
1176 n = &node_masks[num_node_masks++];
1177
1178 n->mask = candidate->mask;
1179 n->val = candidate->match;
1180
1181 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1182 index, n->mask, n->val, candidate->latency);
1183
1184 return 0;
1185 }
1186
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1187 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1188 int index)
1189 {
1190 cpumask_t mask;
1191 int cpu;
1192
1193 numa_parse_mdesc_group_cpus(md, grp, &mask);
1194
1195 for_each_cpu(cpu, &mask)
1196 numa_cpu_lookup_table[cpu] = index;
1197 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1198
1199 if (numa_debug) {
1200 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1201 for_each_cpu(cpu, &mask)
1202 printk("%d ", cpu);
1203 printk("]\n");
1204 }
1205
1206 return numa_attach_mlgroup(md, grp, index);
1207 }
1208
numa_parse_mdesc(void)1209 static int __init numa_parse_mdesc(void)
1210 {
1211 struct mdesc_handle *md = mdesc_grab();
1212 int i, err, count;
1213 u64 node;
1214
1215 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1216 if (node == MDESC_NODE_NULL) {
1217 mdesc_release(md);
1218 return -ENOENT;
1219 }
1220
1221 err = grab_mblocks(md);
1222 if (err < 0)
1223 goto out;
1224
1225 err = grab_mlgroups(md);
1226 if (err < 0)
1227 goto out;
1228
1229 count = 0;
1230 mdesc_for_each_node_by_name(md, node, "group") {
1231 err = numa_parse_mdesc_group(md, node, count);
1232 if (err < 0)
1233 break;
1234 count++;
1235 }
1236
1237 add_node_ranges();
1238
1239 for (i = 0; i < num_node_masks; i++) {
1240 allocate_node_data(i);
1241 node_set_online(i);
1242 }
1243
1244 err = 0;
1245 out:
1246 mdesc_release(md);
1247 return err;
1248 }
1249
numa_parse_jbus(void)1250 static int __init numa_parse_jbus(void)
1251 {
1252 unsigned long cpu, index;
1253
1254 /* NUMA node id is encoded in bits 36 and higher, and there is
1255 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1256 */
1257 index = 0;
1258 for_each_present_cpu(cpu) {
1259 numa_cpu_lookup_table[cpu] = index;
1260 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1261 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1262 node_masks[index].val = cpu << 36UL;
1263
1264 index++;
1265 }
1266 num_node_masks = index;
1267
1268 add_node_ranges();
1269
1270 for (index = 0; index < num_node_masks; index++) {
1271 allocate_node_data(index);
1272 node_set_online(index);
1273 }
1274
1275 return 0;
1276 }
1277
numa_parse_sun4u(void)1278 static int __init numa_parse_sun4u(void)
1279 {
1280 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1281 unsigned long ver;
1282
1283 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1284 if ((ver >> 32UL) == __JALAPENO_ID ||
1285 (ver >> 32UL) == __SERRANO_ID)
1286 return numa_parse_jbus();
1287 }
1288 return -1;
1289 }
1290
bootmem_init_numa(void)1291 static int __init bootmem_init_numa(void)
1292 {
1293 int err = -1;
1294
1295 numadbg("bootmem_init_numa()\n");
1296
1297 if (numa_enabled) {
1298 if (tlb_type == hypervisor)
1299 err = numa_parse_mdesc();
1300 else
1301 err = numa_parse_sun4u();
1302 }
1303 return err;
1304 }
1305
1306 #else
1307
bootmem_init_numa(void)1308 static int bootmem_init_numa(void)
1309 {
1310 return -1;
1311 }
1312
1313 #endif
1314
bootmem_init_nonnuma(void)1315 static void __init bootmem_init_nonnuma(void)
1316 {
1317 unsigned long top_of_ram = memblock_end_of_DRAM();
1318 unsigned long total_ram = memblock_phys_mem_size();
1319
1320 numadbg("bootmem_init_nonnuma()\n");
1321
1322 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1323 top_of_ram, total_ram);
1324 printk(KERN_INFO "Memory hole size: %ldMB\n",
1325 (top_of_ram - total_ram) >> 20);
1326
1327 init_node_masks_nonnuma();
1328 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1329 allocate_node_data(0);
1330 node_set_online(0);
1331 }
1332
bootmem_init(unsigned long phys_base)1333 static unsigned long __init bootmem_init(unsigned long phys_base)
1334 {
1335 unsigned long end_pfn;
1336
1337 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1338 max_pfn = max_low_pfn = end_pfn;
1339 min_low_pfn = (phys_base >> PAGE_SHIFT);
1340
1341 if (bootmem_init_numa() < 0)
1342 bootmem_init_nonnuma();
1343
1344 /* Dump memblock with node info. */
1345 memblock_dump_all();
1346
1347 /* XXX cpu notifier XXX */
1348
1349 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1350 sparse_init();
1351
1352 return end_pfn;
1353 }
1354
1355 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1356 static int pall_ents __initdata;
1357
1358 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot)1359 static unsigned long __ref kernel_map_range(unsigned long pstart,
1360 unsigned long pend, pgprot_t prot)
1361 {
1362 unsigned long vstart = PAGE_OFFSET + pstart;
1363 unsigned long vend = PAGE_OFFSET + pend;
1364 unsigned long alloc_bytes = 0UL;
1365
1366 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1367 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1368 vstart, vend);
1369 prom_halt();
1370 }
1371
1372 while (vstart < vend) {
1373 unsigned long this_end, paddr = __pa(vstart);
1374 pgd_t *pgd = pgd_offset_k(vstart);
1375 pud_t *pud;
1376 pmd_t *pmd;
1377 pte_t *pte;
1378
1379 pud = pud_offset(pgd, vstart);
1380 if (pud_none(*pud)) {
1381 pmd_t *new;
1382
1383 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1384 alloc_bytes += PAGE_SIZE;
1385 pud_populate(&init_mm, pud, new);
1386 }
1387
1388 pmd = pmd_offset(pud, vstart);
1389 if (!pmd_present(*pmd)) {
1390 pte_t *new;
1391
1392 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1393 alloc_bytes += PAGE_SIZE;
1394 pmd_populate_kernel(&init_mm, pmd, new);
1395 }
1396
1397 pte = pte_offset_kernel(pmd, vstart);
1398 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1399 if (this_end > vend)
1400 this_end = vend;
1401
1402 while (vstart < this_end) {
1403 pte_val(*pte) = (paddr | pgprot_val(prot));
1404
1405 vstart += PAGE_SIZE;
1406 paddr += PAGE_SIZE;
1407 pte++;
1408 }
1409 }
1410
1411 return alloc_bytes;
1412 }
1413
1414 extern unsigned int kvmap_linear_patch[1];
1415 #endif /* CONFIG_DEBUG_PAGEALLOC */
1416
kpte_set_val(unsigned long index,unsigned long val)1417 static void __init kpte_set_val(unsigned long index, unsigned long val)
1418 {
1419 unsigned long *ptr = kpte_linear_bitmap;
1420
1421 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1422 ptr += (index / (BITS_PER_LONG / 2));
1423
1424 *ptr |= val;
1425 }
1426
1427 static const unsigned long kpte_shift_min = 28; /* 256MB */
1428 static const unsigned long kpte_shift_max = 34; /* 16GB */
1429 static const unsigned long kpte_shift_incr = 3;
1430
kpte_mark_using_shift(unsigned long start,unsigned long end,unsigned long shift)1431 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1432 unsigned long shift)
1433 {
1434 unsigned long size = (1UL << shift);
1435 unsigned long mask = (size - 1UL);
1436 unsigned long remains = end - start;
1437 unsigned long val;
1438
1439 if (remains < size || (start & mask))
1440 return start;
1441
1442 /* VAL maps:
1443 *
1444 * shift 28 --> kern_linear_pte_xor index 1
1445 * shift 31 --> kern_linear_pte_xor index 2
1446 * shift 34 --> kern_linear_pte_xor index 3
1447 */
1448 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1449
1450 remains &= ~mask;
1451 if (shift != kpte_shift_max)
1452 remains = size;
1453
1454 while (remains) {
1455 unsigned long index = start >> kpte_shift_min;
1456
1457 kpte_set_val(index, val);
1458
1459 start += 1UL << kpte_shift_min;
1460 remains -= 1UL << kpte_shift_min;
1461 }
1462
1463 return start;
1464 }
1465
mark_kpte_bitmap(unsigned long start,unsigned long end)1466 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1467 {
1468 unsigned long smallest_size, smallest_mask;
1469 unsigned long s;
1470
1471 smallest_size = (1UL << kpte_shift_min);
1472 smallest_mask = (smallest_size - 1UL);
1473
1474 while (start < end) {
1475 unsigned long orig_start = start;
1476
1477 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1478 start = kpte_mark_using_shift(start, end, s);
1479
1480 if (start != orig_start)
1481 break;
1482 }
1483
1484 if (start == orig_start)
1485 start = (start + smallest_size) & ~smallest_mask;
1486 }
1487 }
1488
init_kpte_bitmap(void)1489 static void __init init_kpte_bitmap(void)
1490 {
1491 unsigned long i;
1492
1493 for (i = 0; i < pall_ents; i++) {
1494 unsigned long phys_start, phys_end;
1495
1496 phys_start = pall[i].phys_addr;
1497 phys_end = phys_start + pall[i].reg_size;
1498
1499 mark_kpte_bitmap(phys_start, phys_end);
1500 }
1501 }
1502
kernel_physical_mapping_init(void)1503 static void __init kernel_physical_mapping_init(void)
1504 {
1505 #ifdef CONFIG_DEBUG_PAGEALLOC
1506 unsigned long i, mem_alloced = 0UL;
1507
1508 for (i = 0; i < pall_ents; i++) {
1509 unsigned long phys_start, phys_end;
1510
1511 phys_start = pall[i].phys_addr;
1512 phys_end = phys_start + pall[i].reg_size;
1513
1514 mem_alloced += kernel_map_range(phys_start, phys_end,
1515 PAGE_KERNEL);
1516 }
1517
1518 printk("Allocated %ld bytes for kernel page tables.\n",
1519 mem_alloced);
1520
1521 kvmap_linear_patch[0] = 0x01000000; /* nop */
1522 flushi(&kvmap_linear_patch[0]);
1523
1524 __flush_tlb_all();
1525 #endif
1526 }
1527
1528 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_pages(struct page * page,int numpages,int enable)1529 void kernel_map_pages(struct page *page, int numpages, int enable)
1530 {
1531 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1532 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1533
1534 kernel_map_range(phys_start, phys_end,
1535 (enable ? PAGE_KERNEL : __pgprot(0)));
1536
1537 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1538 PAGE_OFFSET + phys_end);
1539
1540 /* we should perform an IPI and flush all tlbs,
1541 * but that can deadlock->flush only current cpu.
1542 */
1543 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1544 PAGE_OFFSET + phys_end);
1545 }
1546 #endif
1547
find_ecache_flush_span(unsigned long size)1548 unsigned long __init find_ecache_flush_span(unsigned long size)
1549 {
1550 int i;
1551
1552 for (i = 0; i < pavail_ents; i++) {
1553 if (pavail[i].reg_size >= size)
1554 return pavail[i].phys_addr;
1555 }
1556
1557 return ~0UL;
1558 }
1559
tsb_phys_patch(void)1560 static void __init tsb_phys_patch(void)
1561 {
1562 struct tsb_ldquad_phys_patch_entry *pquad;
1563 struct tsb_phys_patch_entry *p;
1564
1565 pquad = &__tsb_ldquad_phys_patch;
1566 while (pquad < &__tsb_ldquad_phys_patch_end) {
1567 unsigned long addr = pquad->addr;
1568
1569 if (tlb_type == hypervisor)
1570 *(unsigned int *) addr = pquad->sun4v_insn;
1571 else
1572 *(unsigned int *) addr = pquad->sun4u_insn;
1573 wmb();
1574 __asm__ __volatile__("flush %0"
1575 : /* no outputs */
1576 : "r" (addr));
1577
1578 pquad++;
1579 }
1580
1581 p = &__tsb_phys_patch;
1582 while (p < &__tsb_phys_patch_end) {
1583 unsigned long addr = p->addr;
1584
1585 *(unsigned int *) addr = p->insn;
1586 wmb();
1587 __asm__ __volatile__("flush %0"
1588 : /* no outputs */
1589 : "r" (addr));
1590
1591 p++;
1592 }
1593 }
1594
1595 /* Don't mark as init, we give this to the Hypervisor. */
1596 #ifndef CONFIG_DEBUG_PAGEALLOC
1597 #define NUM_KTSB_DESCR 2
1598 #else
1599 #define NUM_KTSB_DESCR 1
1600 #endif
1601 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1602 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1603
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)1604 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1605 {
1606 pa >>= KTSB_PHYS_SHIFT;
1607
1608 while (start < end) {
1609 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1610
1611 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1612 __asm__ __volatile__("flush %0" : : "r" (ia));
1613
1614 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1615 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1616
1617 start++;
1618 }
1619 }
1620
ktsb_phys_patch(void)1621 static void ktsb_phys_patch(void)
1622 {
1623 extern unsigned int __swapper_tsb_phys_patch;
1624 extern unsigned int __swapper_tsb_phys_patch_end;
1625 unsigned long ktsb_pa;
1626
1627 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1628 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1629 &__swapper_tsb_phys_patch_end, ktsb_pa);
1630 #ifndef CONFIG_DEBUG_PAGEALLOC
1631 {
1632 extern unsigned int __swapper_4m_tsb_phys_patch;
1633 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1634 ktsb_pa = (kern_base +
1635 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1636 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1637 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1638 }
1639 #endif
1640 }
1641
sun4v_ktsb_init(void)1642 static void __init sun4v_ktsb_init(void)
1643 {
1644 unsigned long ktsb_pa;
1645
1646 /* First KTSB for PAGE_SIZE mappings. */
1647 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1648
1649 switch (PAGE_SIZE) {
1650 case 8 * 1024:
1651 default:
1652 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1653 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1654 break;
1655
1656 case 64 * 1024:
1657 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1658 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1659 break;
1660
1661 case 512 * 1024:
1662 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1663 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1664 break;
1665
1666 case 4 * 1024 * 1024:
1667 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1668 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1669 break;
1670 }
1671
1672 ktsb_descr[0].assoc = 1;
1673 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1674 ktsb_descr[0].ctx_idx = 0;
1675 ktsb_descr[0].tsb_base = ktsb_pa;
1676 ktsb_descr[0].resv = 0;
1677
1678 #ifndef CONFIG_DEBUG_PAGEALLOC
1679 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1680 ktsb_pa = (kern_base +
1681 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1682
1683 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1684 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1685 HV_PGSZ_MASK_256MB |
1686 HV_PGSZ_MASK_2GB |
1687 HV_PGSZ_MASK_16GB) &
1688 cpu_pgsz_mask);
1689 ktsb_descr[1].assoc = 1;
1690 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1691 ktsb_descr[1].ctx_idx = 0;
1692 ktsb_descr[1].tsb_base = ktsb_pa;
1693 ktsb_descr[1].resv = 0;
1694 #endif
1695 }
1696
sun4v_ktsb_register(void)1697 void __cpuinit sun4v_ktsb_register(void)
1698 {
1699 unsigned long pa, ret;
1700
1701 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1702
1703 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1704 if (ret != 0) {
1705 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1706 "errors with %lx\n", pa, ret);
1707 prom_halt();
1708 }
1709 }
1710
sun4u_linear_pte_xor_finalize(void)1711 static void __init sun4u_linear_pte_xor_finalize(void)
1712 {
1713 #ifndef CONFIG_DEBUG_PAGEALLOC
1714 /* This is where we would add Panther support for
1715 * 32MB and 256MB pages.
1716 */
1717 #endif
1718 }
1719
sun4v_linear_pte_xor_finalize(void)1720 static void __init sun4v_linear_pte_xor_finalize(void)
1721 {
1722 #ifndef CONFIG_DEBUG_PAGEALLOC
1723 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1724 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1725 0xfffff80000000000UL;
1726 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1727 _PAGE_P_4V | _PAGE_W_4V);
1728 } else {
1729 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1730 }
1731
1732 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1733 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1734 0xfffff80000000000UL;
1735 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1736 _PAGE_P_4V | _PAGE_W_4V);
1737 } else {
1738 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1739 }
1740
1741 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1742 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1743 0xfffff80000000000UL;
1744 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1745 _PAGE_P_4V | _PAGE_W_4V);
1746 } else {
1747 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1748 }
1749 #endif
1750 }
1751
1752 /* paging_init() sets up the page tables */
1753
1754 static unsigned long last_valid_pfn;
1755 pgd_t swapper_pg_dir[2048];
1756
1757 static void sun4u_pgprot_init(void);
1758 static void sun4v_pgprot_init(void);
1759
paging_init(void)1760 void __init paging_init(void)
1761 {
1762 unsigned long end_pfn, shift, phys_base;
1763 unsigned long real_end, i;
1764 int node;
1765
1766 /* These build time checkes make sure that the dcache_dirty_cpu()
1767 * page->flags usage will work.
1768 *
1769 * When a page gets marked as dcache-dirty, we store the
1770 * cpu number starting at bit 32 in the page->flags. Also,
1771 * functions like clear_dcache_dirty_cpu use the cpu mask
1772 * in 13-bit signed-immediate instruction fields.
1773 */
1774
1775 /*
1776 * Page flags must not reach into upper 32 bits that are used
1777 * for the cpu number
1778 */
1779 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1780
1781 /*
1782 * The bit fields placed in the high range must not reach below
1783 * the 32 bit boundary. Otherwise we cannot place the cpu field
1784 * at the 32 bit boundary.
1785 */
1786 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1787 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1788
1789 BUILD_BUG_ON(NR_CPUS > 4096);
1790
1791 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1792 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1793
1794 /* Invalidate both kernel TSBs. */
1795 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1796 #ifndef CONFIG_DEBUG_PAGEALLOC
1797 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1798 #endif
1799
1800 if (tlb_type == hypervisor)
1801 sun4v_pgprot_init();
1802 else
1803 sun4u_pgprot_init();
1804
1805 if (tlb_type == cheetah_plus ||
1806 tlb_type == hypervisor) {
1807 tsb_phys_patch();
1808 ktsb_phys_patch();
1809 }
1810
1811 if (tlb_type == hypervisor)
1812 sun4v_patch_tlb_handlers();
1813
1814 /* Find available physical memory...
1815 *
1816 * Read it twice in order to work around a bug in openfirmware.
1817 * The call to grab this table itself can cause openfirmware to
1818 * allocate memory, which in turn can take away some space from
1819 * the list of available memory. Reading it twice makes sure
1820 * we really do get the final value.
1821 */
1822 read_obp_translations();
1823 read_obp_memory("reg", &pall[0], &pall_ents);
1824 read_obp_memory("available", &pavail[0], &pavail_ents);
1825 read_obp_memory("available", &pavail[0], &pavail_ents);
1826
1827 phys_base = 0xffffffffffffffffUL;
1828 for (i = 0; i < pavail_ents; i++) {
1829 phys_base = min(phys_base, pavail[i].phys_addr);
1830 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1831 }
1832
1833 memblock_reserve(kern_base, kern_size);
1834
1835 find_ramdisk(phys_base);
1836
1837 memblock_enforce_memory_limit(cmdline_memory_size);
1838
1839 memblock_allow_resize();
1840 memblock_dump_all();
1841
1842 set_bit(0, mmu_context_bmap);
1843
1844 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1845
1846 real_end = (unsigned long)_end;
1847 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1848 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1849 num_kernel_image_mappings);
1850
1851 /* Set kernel pgd to upper alias so physical page computations
1852 * work.
1853 */
1854 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1855
1856 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1857
1858 /* Now can init the kernel/bad page tables. */
1859 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1860 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1861
1862 inherit_prom_mappings();
1863
1864 init_kpte_bitmap();
1865
1866 /* Ok, we can use our TLB miss and window trap handlers safely. */
1867 setup_tba();
1868
1869 __flush_tlb_all();
1870
1871 prom_build_devicetree();
1872 of_populate_present_mask();
1873 #ifndef CONFIG_SMP
1874 of_fill_in_cpu_data();
1875 #endif
1876
1877 if (tlb_type == hypervisor) {
1878 sun4v_mdesc_init();
1879 mdesc_populate_present_mask(cpu_all_mask);
1880 #ifndef CONFIG_SMP
1881 mdesc_fill_in_cpu_data(cpu_all_mask);
1882 #endif
1883 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1884
1885 sun4v_linear_pte_xor_finalize();
1886
1887 sun4v_ktsb_init();
1888 sun4v_ktsb_register();
1889 } else {
1890 unsigned long impl, ver;
1891
1892 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1893 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1894
1895 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1896 impl = ((ver >> 32) & 0xffff);
1897 if (impl == PANTHER_IMPL)
1898 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1899 HV_PGSZ_MASK_256MB);
1900
1901 sun4u_linear_pte_xor_finalize();
1902 }
1903
1904 /* Flush the TLBs and the 4M TSB so that the updated linear
1905 * pte XOR settings are realized for all mappings.
1906 */
1907 __flush_tlb_all();
1908 #ifndef CONFIG_DEBUG_PAGEALLOC
1909 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1910 #endif
1911 __flush_tlb_all();
1912
1913 /* Setup bootmem... */
1914 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1915
1916 /* Once the OF device tree and MDESC have been setup, we know
1917 * the list of possible cpus. Therefore we can allocate the
1918 * IRQ stacks.
1919 */
1920 for_each_possible_cpu(i) {
1921 node = cpu_to_node(i);
1922
1923 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1924 THREAD_SIZE,
1925 THREAD_SIZE, 0);
1926 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1927 THREAD_SIZE,
1928 THREAD_SIZE, 0);
1929 }
1930
1931 kernel_physical_mapping_init();
1932
1933 {
1934 unsigned long max_zone_pfns[MAX_NR_ZONES];
1935
1936 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1937
1938 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1939
1940 free_area_init_nodes(max_zone_pfns);
1941 }
1942
1943 printk("Booting Linux...\n");
1944 }
1945
page_in_phys_avail(unsigned long paddr)1946 int page_in_phys_avail(unsigned long paddr)
1947 {
1948 int i;
1949
1950 paddr &= PAGE_MASK;
1951
1952 for (i = 0; i < pavail_ents; i++) {
1953 unsigned long start, end;
1954
1955 start = pavail[i].phys_addr;
1956 end = start + pavail[i].reg_size;
1957
1958 if (paddr >= start && paddr < end)
1959 return 1;
1960 }
1961 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1962 return 1;
1963 #ifdef CONFIG_BLK_DEV_INITRD
1964 if (paddr >= __pa(initrd_start) &&
1965 paddr < __pa(PAGE_ALIGN(initrd_end)))
1966 return 1;
1967 #endif
1968
1969 return 0;
1970 }
1971
1972 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1973 static int pavail_rescan_ents __initdata;
1974
1975 /* Certain OBP calls, such as fetching "available" properties, can
1976 * claim physical memory. So, along with initializing the valid
1977 * address bitmap, what we do here is refetch the physical available
1978 * memory list again, and make sure it provides at least as much
1979 * memory as 'pavail' does.
1980 */
setup_valid_addr_bitmap_from_pavail(unsigned long * bitmap)1981 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1982 {
1983 int i;
1984
1985 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1986
1987 for (i = 0; i < pavail_ents; i++) {
1988 unsigned long old_start, old_end;
1989
1990 old_start = pavail[i].phys_addr;
1991 old_end = old_start + pavail[i].reg_size;
1992 while (old_start < old_end) {
1993 int n;
1994
1995 for (n = 0; n < pavail_rescan_ents; n++) {
1996 unsigned long new_start, new_end;
1997
1998 new_start = pavail_rescan[n].phys_addr;
1999 new_end = new_start +
2000 pavail_rescan[n].reg_size;
2001
2002 if (new_start <= old_start &&
2003 new_end >= (old_start + PAGE_SIZE)) {
2004 set_bit(old_start >> 22, bitmap);
2005 goto do_next_page;
2006 }
2007 }
2008
2009 prom_printf("mem_init: Lost memory in pavail\n");
2010 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2011 pavail[i].phys_addr,
2012 pavail[i].reg_size);
2013 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2014 pavail_rescan[i].phys_addr,
2015 pavail_rescan[i].reg_size);
2016 prom_printf("mem_init: Cannot continue, aborting.\n");
2017 prom_halt();
2018
2019 do_next_page:
2020 old_start += PAGE_SIZE;
2021 }
2022 }
2023 }
2024
patch_tlb_miss_handler_bitmap(void)2025 static void __init patch_tlb_miss_handler_bitmap(void)
2026 {
2027 extern unsigned int valid_addr_bitmap_insn[];
2028 extern unsigned int valid_addr_bitmap_patch[];
2029
2030 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2031 mb();
2032 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2033 flushi(&valid_addr_bitmap_insn[0]);
2034 }
2035
register_page_bootmem_info(void)2036 static void __init register_page_bootmem_info(void)
2037 {
2038 #ifdef CONFIG_NEED_MULTIPLE_NODES
2039 int i;
2040
2041 for_each_online_node(i)
2042 if (NODE_DATA(i)->node_spanned_pages)
2043 register_page_bootmem_info_node(NODE_DATA(i));
2044 #endif
2045 }
mem_init(void)2046 void __init mem_init(void)
2047 {
2048 unsigned long codepages, datapages, initpages;
2049 unsigned long addr, last;
2050
2051 addr = PAGE_OFFSET + kern_base;
2052 last = PAGE_ALIGN(kern_size) + addr;
2053 while (addr < last) {
2054 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2055 addr += PAGE_SIZE;
2056 }
2057
2058 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2059 patch_tlb_miss_handler_bitmap();
2060
2061 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2062
2063 register_page_bootmem_info();
2064 totalram_pages = free_all_bootmem();
2065
2066 /* We subtract one to account for the mem_map_zero page
2067 * allocated below.
2068 */
2069 num_physpages = totalram_pages - 1;
2070
2071 /*
2072 * Set up the zero page, mark it reserved, so that page count
2073 * is not manipulated when freeing the page from user ptes.
2074 */
2075 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2076 if (mem_map_zero == NULL) {
2077 prom_printf("paging_init: Cannot alloc zero page.\n");
2078 prom_halt();
2079 }
2080 mark_page_reserved(mem_map_zero);
2081
2082 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2083 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2084 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2085 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2086 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2087 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2088
2089 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2090 nr_free_pages() << (PAGE_SHIFT-10),
2091 codepages << (PAGE_SHIFT-10),
2092 datapages << (PAGE_SHIFT-10),
2093 initpages << (PAGE_SHIFT-10),
2094 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2095
2096 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2097 cheetah_ecache_flush_init();
2098 }
2099
free_initmem(void)2100 void free_initmem(void)
2101 {
2102 unsigned long addr, initend;
2103 int do_free = 1;
2104
2105 /* If the physical memory maps were trimmed by kernel command
2106 * line options, don't even try freeing this initmem stuff up.
2107 * The kernel image could have been in the trimmed out region
2108 * and if so the freeing below will free invalid page structs.
2109 */
2110 if (cmdline_memory_size)
2111 do_free = 0;
2112
2113 /*
2114 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2115 */
2116 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2117 initend = (unsigned long)(__init_end) & PAGE_MASK;
2118 for (; addr < initend; addr += PAGE_SIZE) {
2119 unsigned long page;
2120
2121 page = (addr +
2122 ((unsigned long) __va(kern_base)) -
2123 ((unsigned long) KERNBASE));
2124 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2125
2126 if (do_free)
2127 free_reserved_page(virt_to_page(page));
2128 }
2129 }
2130
2131 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2132 void free_initrd_mem(unsigned long start, unsigned long end)
2133 {
2134 num_physpages += free_reserved_area(start, end, POISON_FREE_INITMEM,
2135 "initrd");
2136 }
2137 #endif
2138
2139 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2140 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2141 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2142 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2143 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2144 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2145
2146 pgprot_t PAGE_KERNEL __read_mostly;
2147 EXPORT_SYMBOL(PAGE_KERNEL);
2148
2149 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2150 pgprot_t PAGE_COPY __read_mostly;
2151
2152 pgprot_t PAGE_SHARED __read_mostly;
2153 EXPORT_SYMBOL(PAGE_SHARED);
2154
2155 unsigned long pg_iobits __read_mostly;
2156
2157 unsigned long _PAGE_IE __read_mostly;
2158 EXPORT_SYMBOL(_PAGE_IE);
2159
2160 unsigned long _PAGE_E __read_mostly;
2161 EXPORT_SYMBOL(_PAGE_E);
2162
2163 unsigned long _PAGE_CACHE __read_mostly;
2164 EXPORT_SYMBOL(_PAGE_CACHE);
2165
2166 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2167 unsigned long vmemmap_table[VMEMMAP_SIZE];
2168
2169 static long __meminitdata addr_start, addr_end;
2170 static int __meminitdata node_start;
2171
vmemmap_populate(unsigned long vstart,unsigned long vend,int node)2172 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2173 int node)
2174 {
2175 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2176 unsigned long phys_end = (vend - VMEMMAP_BASE);
2177 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2178 unsigned long end = VMEMMAP_ALIGN(phys_end);
2179 unsigned long pte_base;
2180
2181 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2182 _PAGE_CP_4U | _PAGE_CV_4U |
2183 _PAGE_P_4U | _PAGE_W_4U);
2184 if (tlb_type == hypervisor)
2185 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2186 _PAGE_CP_4V | _PAGE_CV_4V |
2187 _PAGE_P_4V | _PAGE_W_4V);
2188
2189 for (; addr < end; addr += VMEMMAP_CHUNK) {
2190 unsigned long *vmem_pp =
2191 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2192 void *block;
2193
2194 if (!(*vmem_pp & _PAGE_VALID)) {
2195 block = vmemmap_alloc_block(1UL << 22, node);
2196 if (!block)
2197 return -ENOMEM;
2198
2199 *vmem_pp = pte_base | __pa(block);
2200
2201 /* check to see if we have contiguous blocks */
2202 if (addr_end != addr || node_start != node) {
2203 if (addr_start)
2204 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2205 addr_start, addr_end-1, node_start);
2206 addr_start = addr;
2207 node_start = node;
2208 }
2209 addr_end = addr + VMEMMAP_CHUNK;
2210 }
2211 }
2212 return 0;
2213 }
2214
vmemmap_populate_print_last(void)2215 void __meminit vmemmap_populate_print_last(void)
2216 {
2217 if (addr_start) {
2218 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2219 addr_start, addr_end-1, node_start);
2220 addr_start = 0;
2221 addr_end = 0;
2222 node_start = 0;
2223 }
2224 }
2225
vmemmap_free(unsigned long start,unsigned long end)2226 void vmemmap_free(unsigned long start, unsigned long end)
2227 {
2228 }
2229
2230 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2231
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2232 static void prot_init_common(unsigned long page_none,
2233 unsigned long page_shared,
2234 unsigned long page_copy,
2235 unsigned long page_readonly,
2236 unsigned long page_exec_bit)
2237 {
2238 PAGE_COPY = __pgprot(page_copy);
2239 PAGE_SHARED = __pgprot(page_shared);
2240
2241 protection_map[0x0] = __pgprot(page_none);
2242 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2243 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2244 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2245 protection_map[0x4] = __pgprot(page_readonly);
2246 protection_map[0x5] = __pgprot(page_readonly);
2247 protection_map[0x6] = __pgprot(page_copy);
2248 protection_map[0x7] = __pgprot(page_copy);
2249 protection_map[0x8] = __pgprot(page_none);
2250 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2251 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2252 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2253 protection_map[0xc] = __pgprot(page_readonly);
2254 protection_map[0xd] = __pgprot(page_readonly);
2255 protection_map[0xe] = __pgprot(page_shared);
2256 protection_map[0xf] = __pgprot(page_shared);
2257 }
2258
sun4u_pgprot_init(void)2259 static void __init sun4u_pgprot_init(void)
2260 {
2261 unsigned long page_none, page_shared, page_copy, page_readonly;
2262 unsigned long page_exec_bit;
2263 int i;
2264
2265 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2266 _PAGE_CACHE_4U | _PAGE_P_4U |
2267 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2268 _PAGE_EXEC_4U);
2269 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2270 _PAGE_CACHE_4U | _PAGE_P_4U |
2271 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2272 _PAGE_EXEC_4U | _PAGE_L_4U);
2273
2274 _PAGE_IE = _PAGE_IE_4U;
2275 _PAGE_E = _PAGE_E_4U;
2276 _PAGE_CACHE = _PAGE_CACHE_4U;
2277
2278 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2279 __ACCESS_BITS_4U | _PAGE_E_4U);
2280
2281 #ifdef CONFIG_DEBUG_PAGEALLOC
2282 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2283 #else
2284 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2285 0xfffff80000000000UL;
2286 #endif
2287 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2288 _PAGE_P_4U | _PAGE_W_4U);
2289
2290 for (i = 1; i < 4; i++)
2291 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2292
2293 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2294 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2295 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2296
2297
2298 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2299 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2300 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2301 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2302 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2303 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2304 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2305
2306 page_exec_bit = _PAGE_EXEC_4U;
2307
2308 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2309 page_exec_bit);
2310 }
2311
sun4v_pgprot_init(void)2312 static void __init sun4v_pgprot_init(void)
2313 {
2314 unsigned long page_none, page_shared, page_copy, page_readonly;
2315 unsigned long page_exec_bit;
2316 int i;
2317
2318 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2319 _PAGE_CACHE_4V | _PAGE_P_4V |
2320 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2321 _PAGE_EXEC_4V);
2322 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2323
2324 _PAGE_IE = _PAGE_IE_4V;
2325 _PAGE_E = _PAGE_E_4V;
2326 _PAGE_CACHE = _PAGE_CACHE_4V;
2327
2328 #ifdef CONFIG_DEBUG_PAGEALLOC
2329 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2330 #else
2331 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2332 0xfffff80000000000UL;
2333 #endif
2334 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2335 _PAGE_P_4V | _PAGE_W_4V);
2336
2337 for (i = 1; i < 4; i++)
2338 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2339
2340 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2341 __ACCESS_BITS_4V | _PAGE_E_4V);
2342
2343 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2344 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2345 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2346 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2347
2348 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2349 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2350 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2351 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2352 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2353 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2354 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2355
2356 page_exec_bit = _PAGE_EXEC_4V;
2357
2358 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2359 page_exec_bit);
2360 }
2361
pte_sz_bits(unsigned long sz)2362 unsigned long pte_sz_bits(unsigned long sz)
2363 {
2364 if (tlb_type == hypervisor) {
2365 switch (sz) {
2366 case 8 * 1024:
2367 default:
2368 return _PAGE_SZ8K_4V;
2369 case 64 * 1024:
2370 return _PAGE_SZ64K_4V;
2371 case 512 * 1024:
2372 return _PAGE_SZ512K_4V;
2373 case 4 * 1024 * 1024:
2374 return _PAGE_SZ4MB_4V;
2375 }
2376 } else {
2377 switch (sz) {
2378 case 8 * 1024:
2379 default:
2380 return _PAGE_SZ8K_4U;
2381 case 64 * 1024:
2382 return _PAGE_SZ64K_4U;
2383 case 512 * 1024:
2384 return _PAGE_SZ512K_4U;
2385 case 4 * 1024 * 1024:
2386 return _PAGE_SZ4MB_4U;
2387 }
2388 }
2389 }
2390
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2391 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2392 {
2393 pte_t pte;
2394
2395 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2396 pte_val(pte) |= (((unsigned long)space) << 32);
2397 pte_val(pte) |= pte_sz_bits(page_size);
2398
2399 return pte;
2400 }
2401
kern_large_tte(unsigned long paddr)2402 static unsigned long kern_large_tte(unsigned long paddr)
2403 {
2404 unsigned long val;
2405
2406 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2407 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2408 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2409 if (tlb_type == hypervisor)
2410 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2411 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2412 _PAGE_EXEC_4V | _PAGE_W_4V);
2413
2414 return val | paddr;
2415 }
2416
2417 /* If not locked, zap it. */
__flush_tlb_all(void)2418 void __flush_tlb_all(void)
2419 {
2420 unsigned long pstate;
2421 int i;
2422
2423 __asm__ __volatile__("flushw\n\t"
2424 "rdpr %%pstate, %0\n\t"
2425 "wrpr %0, %1, %%pstate"
2426 : "=r" (pstate)
2427 : "i" (PSTATE_IE));
2428 if (tlb_type == hypervisor) {
2429 sun4v_mmu_demap_all();
2430 } else if (tlb_type == spitfire) {
2431 for (i = 0; i < 64; i++) {
2432 /* Spitfire Errata #32 workaround */
2433 /* NOTE: Always runs on spitfire, so no
2434 * cheetah+ page size encodings.
2435 */
2436 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2437 "flush %%g6"
2438 : /* No outputs */
2439 : "r" (0),
2440 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2441
2442 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2443 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2444 "membar #Sync"
2445 : /* no outputs */
2446 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2447 spitfire_put_dtlb_data(i, 0x0UL);
2448 }
2449
2450 /* Spitfire Errata #32 workaround */
2451 /* NOTE: Always runs on spitfire, so no
2452 * cheetah+ page size encodings.
2453 */
2454 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2455 "flush %%g6"
2456 : /* No outputs */
2457 : "r" (0),
2458 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2459
2460 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2461 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2462 "membar #Sync"
2463 : /* no outputs */
2464 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2465 spitfire_put_itlb_data(i, 0x0UL);
2466 }
2467 }
2468 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2469 cheetah_flush_dtlb_all();
2470 cheetah_flush_itlb_all();
2471 }
2472 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2473 : : "r" (pstate));
2474 }
2475
get_from_cache(struct mm_struct * mm)2476 static pte_t *get_from_cache(struct mm_struct *mm)
2477 {
2478 struct page *page;
2479 pte_t *ret;
2480
2481 spin_lock(&mm->page_table_lock);
2482 page = mm->context.pgtable_page;
2483 ret = NULL;
2484 if (page) {
2485 void *p = page_address(page);
2486
2487 mm->context.pgtable_page = NULL;
2488
2489 ret = (pte_t *) (p + (PAGE_SIZE / 2));
2490 }
2491 spin_unlock(&mm->page_table_lock);
2492
2493 return ret;
2494 }
2495
__alloc_for_cache(struct mm_struct * mm)2496 static struct page *__alloc_for_cache(struct mm_struct *mm)
2497 {
2498 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2499 __GFP_REPEAT | __GFP_ZERO);
2500
2501 if (page) {
2502 spin_lock(&mm->page_table_lock);
2503 if (!mm->context.pgtable_page) {
2504 atomic_set(&page->_count, 2);
2505 mm->context.pgtable_page = page;
2506 }
2507 spin_unlock(&mm->page_table_lock);
2508 }
2509 return page;
2510 }
2511
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)2512 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2513 unsigned long address)
2514 {
2515 struct page *page;
2516 pte_t *pte;
2517
2518 pte = get_from_cache(mm);
2519 if (pte)
2520 return pte;
2521
2522 page = __alloc_for_cache(mm);
2523 if (page)
2524 pte = (pte_t *) page_address(page);
2525
2526 return pte;
2527 }
2528
pte_alloc_one(struct mm_struct * mm,unsigned long address)2529 pgtable_t pte_alloc_one(struct mm_struct *mm,
2530 unsigned long address)
2531 {
2532 struct page *page;
2533 pte_t *pte;
2534
2535 pte = get_from_cache(mm);
2536 if (pte)
2537 return pte;
2538
2539 page = __alloc_for_cache(mm);
2540 if (page) {
2541 pgtable_page_ctor(page);
2542 pte = (pte_t *) page_address(page);
2543 }
2544
2545 return pte;
2546 }
2547
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2548 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2549 {
2550 struct page *page = virt_to_page(pte);
2551 if (put_page_testzero(page))
2552 free_hot_cold_page(page, 0);
2553 }
2554
__pte_free(pgtable_t pte)2555 static void __pte_free(pgtable_t pte)
2556 {
2557 struct page *page = virt_to_page(pte);
2558 if (put_page_testzero(page)) {
2559 pgtable_page_dtor(page);
2560 free_hot_cold_page(page, 0);
2561 }
2562 }
2563
pte_free(struct mm_struct * mm,pgtable_t pte)2564 void pte_free(struct mm_struct *mm, pgtable_t pte)
2565 {
2566 __pte_free(pte);
2567 }
2568
pgtable_free(void * table,bool is_page)2569 void pgtable_free(void *table, bool is_page)
2570 {
2571 if (is_page)
2572 __pte_free(table);
2573 else
2574 kmem_cache_free(pgtable_cache, table);
2575 }
2576
2577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot,bool for_modify)2578 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2579 {
2580 if (pgprot_val(pgprot) & _PAGE_VALID)
2581 pmd_val(pmd) |= PMD_HUGE_PRESENT;
2582 if (tlb_type == hypervisor) {
2583 if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2584 pmd_val(pmd) |= PMD_HUGE_WRITE;
2585 if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2586 pmd_val(pmd) |= PMD_HUGE_EXEC;
2587
2588 if (!for_modify) {
2589 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2590 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2591 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2592 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2593 }
2594 } else {
2595 if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2596 pmd_val(pmd) |= PMD_HUGE_WRITE;
2597 if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2598 pmd_val(pmd) |= PMD_HUGE_EXEC;
2599
2600 if (!for_modify) {
2601 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2602 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2603 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2604 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2605 }
2606 }
2607
2608 return pmd;
2609 }
2610
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)2611 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2612 {
2613 pmd_t pmd;
2614
2615 pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2616 pmd_val(pmd) |= PMD_ISHUGE;
2617 pmd = pmd_set_protbits(pmd, pgprot, false);
2618 return pmd;
2619 }
2620
pmd_modify(pmd_t pmd,pgprot_t newprot)2621 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2622 {
2623 pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2624 PMD_HUGE_WRITE |
2625 PMD_HUGE_EXEC);
2626 pmd = pmd_set_protbits(pmd, newprot, true);
2627 return pmd;
2628 }
2629
pmd_pgprot(pmd_t entry)2630 pgprot_t pmd_pgprot(pmd_t entry)
2631 {
2632 unsigned long pte = 0;
2633
2634 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2635 pte |= _PAGE_VALID;
2636
2637 if (tlb_type == hypervisor) {
2638 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2639 pte |= _PAGE_PRESENT_4V;
2640 if (pmd_val(entry) & PMD_HUGE_EXEC)
2641 pte |= _PAGE_EXEC_4V;
2642 if (pmd_val(entry) & PMD_HUGE_WRITE)
2643 pte |= _PAGE_W_4V;
2644 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2645 pte |= _PAGE_ACCESSED_4V;
2646 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2647 pte |= _PAGE_MODIFIED_4V;
2648 pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2649 } else {
2650 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2651 pte |= _PAGE_PRESENT_4U;
2652 if (pmd_val(entry) & PMD_HUGE_EXEC)
2653 pte |= _PAGE_EXEC_4U;
2654 if (pmd_val(entry) & PMD_HUGE_WRITE)
2655 pte |= _PAGE_W_4U;
2656 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2657 pte |= _PAGE_ACCESSED_4U;
2658 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2659 pte |= _PAGE_MODIFIED_4U;
2660 pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2661 }
2662
2663 return __pgprot(pte);
2664 }
2665
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2666 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2667 pmd_t *pmd)
2668 {
2669 unsigned long pte, flags;
2670 struct mm_struct *mm;
2671 pmd_t entry = *pmd;
2672 pgprot_t prot;
2673
2674 if (!pmd_large(entry) || !pmd_young(entry))
2675 return;
2676
2677 pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2678 pte <<= PMD_PADDR_SHIFT;
2679 pte |= _PAGE_VALID;
2680
2681 prot = pmd_pgprot(entry);
2682
2683 if (tlb_type == hypervisor)
2684 pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2685 else
2686 pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2687
2688 pte |= pgprot_val(prot);
2689
2690 mm = vma->vm_mm;
2691
2692 spin_lock_irqsave(&mm->context.lock, flags);
2693
2694 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2695 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2696 addr, pte);
2697
2698 spin_unlock_irqrestore(&mm->context.lock, flags);
2699 }
2700 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2701
2702 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2703 static void context_reload(void *__data)
2704 {
2705 struct mm_struct *mm = __data;
2706
2707 if (mm == current->mm)
2708 load_secondary_context(mm);
2709 }
2710
hugetlb_setup(struct pt_regs * regs)2711 void hugetlb_setup(struct pt_regs *regs)
2712 {
2713 struct mm_struct *mm = current->mm;
2714 struct tsb_config *tp;
2715
2716 if (in_atomic() || !mm) {
2717 const struct exception_table_entry *entry;
2718
2719 entry = search_exception_tables(regs->tpc);
2720 if (entry) {
2721 regs->tpc = entry->fixup;
2722 regs->tnpc = regs->tpc + 4;
2723 return;
2724 }
2725 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2726 die_if_kernel("HugeTSB in atomic", regs);
2727 }
2728
2729 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2730 if (likely(tp->tsb == NULL))
2731 tsb_grow(mm, MM_TSB_HUGE, 0);
2732
2733 tsb_context_switch(mm);
2734 smp_tsb_sync(mm);
2735
2736 /* On UltraSPARC-III+ and later, configure the second half of
2737 * the Data-TLB for huge pages.
2738 */
2739 if (tlb_type == cheetah_plus) {
2740 unsigned long ctx;
2741
2742 spin_lock(&ctx_alloc_lock);
2743 ctx = mm->context.sparc64_ctx_val;
2744 ctx &= ~CTX_PGSZ_MASK;
2745 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2746 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2747
2748 if (ctx != mm->context.sparc64_ctx_val) {
2749 /* When changing the page size fields, we
2750 * must perform a context flush so that no
2751 * stale entries match. This flush must
2752 * occur with the original context register
2753 * settings.
2754 */
2755 do_flush_tlb_mm(mm);
2756
2757 /* Reload the context register of all processors
2758 * also executing in this address space.
2759 */
2760 mm->context.sparc64_ctx_val = ctx;
2761 on_each_cpu(context_reload, mm, 0);
2762 }
2763 spin_unlock(&ctx_alloc_lock);
2764 }
2765 }
2766 #endif
2767