• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include "nouveau_drm.h"
26 #include "nouveau_bios.h"
27 #include "nouveau_pm.h"
28 
29 #include <subdev/bios/pll.h>
30 #include <subdev/bios.h>
31 #include <subdev/clock.h>
32 #include <subdev/timer.h>
33 #include <subdev/fb.h>
34 
35 static u32 read_div(struct drm_device *, int, u32, u32);
36 static u32 read_pll(struct drm_device *, u32);
37 
38 static u32
read_vco(struct drm_device * dev,u32 dsrc)39 read_vco(struct drm_device *dev, u32 dsrc)
40 {
41 	struct nouveau_device *device = nouveau_dev(dev);
42 	u32 ssrc = nv_rd32(device, dsrc);
43 	if (!(ssrc & 0x00000100))
44 		return read_pll(dev, 0x00e800);
45 	return read_pll(dev, 0x00e820);
46 }
47 
48 static u32
read_pll(struct drm_device * dev,u32 pll)49 read_pll(struct drm_device *dev, u32 pll)
50 {
51 	struct nouveau_device *device = nouveau_dev(dev);
52 	u32 ctrl = nv_rd32(device, pll + 0);
53 	u32 coef = nv_rd32(device, pll + 4);
54 	u32 P = (coef & 0x003f0000) >> 16;
55 	u32 N = (coef & 0x0000ff00) >> 8;
56 	u32 M = (coef & 0x000000ff) >> 0;
57 	u32 sclk, doff;
58 
59 	if (!(ctrl & 0x00000001))
60 		return 0;
61 
62 	switch (pll & 0xfff000) {
63 	case 0x00e000:
64 		sclk = 27000;
65 		P = 1;
66 		break;
67 	case 0x137000:
68 		doff = (pll - 0x137000) / 0x20;
69 		sclk = read_div(dev, doff, 0x137120, 0x137140);
70 		break;
71 	case 0x132000:
72 		switch (pll) {
73 		case 0x132000:
74 			sclk = read_pll(dev, 0x132020);
75 			break;
76 		case 0x132020:
77 			sclk = read_div(dev, 0, 0x137320, 0x137330);
78 			break;
79 		default:
80 			return 0;
81 		}
82 		break;
83 	default:
84 		return 0;
85 	}
86 
87 	return sclk * N / M / P;
88 }
89 
90 static u32
read_div(struct drm_device * dev,int doff,u32 dsrc,u32 dctl)91 read_div(struct drm_device *dev, int doff, u32 dsrc, u32 dctl)
92 {
93 	struct nouveau_device *device = nouveau_dev(dev);
94 	u32 ssrc = nv_rd32(device, dsrc + (doff * 4));
95 	u32 sctl = nv_rd32(device, dctl + (doff * 4));
96 
97 	switch (ssrc & 0x00000003) {
98 	case 0:
99 		if ((ssrc & 0x00030000) != 0x00030000)
100 			return 27000;
101 		return 108000;
102 	case 2:
103 		return 100000;
104 	case 3:
105 		if (sctl & 0x80000000) {
106 			u32 sclk = read_vco(dev, dsrc + (doff * 4));
107 			u32 sdiv = (sctl & 0x0000003f) + 2;
108 			return (sclk * 2) / sdiv;
109 		}
110 
111 		return read_vco(dev, dsrc + (doff * 4));
112 	default:
113 		return 0;
114 	}
115 }
116 
117 static u32
read_mem(struct drm_device * dev)118 read_mem(struct drm_device *dev)
119 {
120 	struct nouveau_device *device = nouveau_dev(dev);
121 	u32 ssel = nv_rd32(device, 0x1373f0);
122 	if (ssel & 0x00000001)
123 		return read_div(dev, 0, 0x137300, 0x137310);
124 	return read_pll(dev, 0x132000);
125 }
126 
127 static u32
read_clk(struct drm_device * dev,int clk)128 read_clk(struct drm_device *dev, int clk)
129 {
130 	struct nouveau_device *device = nouveau_dev(dev);
131 	u32 sctl = nv_rd32(device, 0x137250 + (clk * 4));
132 	u32 ssel = nv_rd32(device, 0x137100);
133 	u32 sclk, sdiv;
134 
135 	if (ssel & (1 << clk)) {
136 		if (clk < 7)
137 			sclk = read_pll(dev, 0x137000 + (clk * 0x20));
138 		else
139 			sclk = read_pll(dev, 0x1370e0);
140 		sdiv = ((sctl & 0x00003f00) >> 8) + 2;
141 	} else {
142 		sclk = read_div(dev, clk, 0x137160, 0x1371d0);
143 		sdiv = ((sctl & 0x0000003f) >> 0) + 2;
144 	}
145 
146 	if (sctl & 0x80000000)
147 		return (sclk * 2) / sdiv;
148 	return sclk;
149 }
150 
151 int
nvc0_pm_clocks_get(struct drm_device * dev,struct nouveau_pm_level * perflvl)152 nvc0_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
153 {
154 	perflvl->shader = read_clk(dev, 0x00);
155 	perflvl->core   = perflvl->shader / 2;
156 	perflvl->memory = read_mem(dev);
157 	perflvl->rop    = read_clk(dev, 0x01);
158 	perflvl->hub07  = read_clk(dev, 0x02);
159 	perflvl->hub06  = read_clk(dev, 0x07);
160 	perflvl->hub01  = read_clk(dev, 0x08);
161 	perflvl->copy   = read_clk(dev, 0x09);
162 	perflvl->daemon = read_clk(dev, 0x0c);
163 	perflvl->vdec   = read_clk(dev, 0x0e);
164 	return 0;
165 }
166 
167 struct nvc0_pm_clock {
168 	u32 freq;
169 	u32 ssel;
170 	u32 mdiv;
171 	u32 dsrc;
172 	u32 ddiv;
173 	u32 coef;
174 };
175 
176 struct nvc0_pm_state {
177 	struct nouveau_pm_level *perflvl;
178 	struct nvc0_pm_clock eng[16];
179 	struct nvc0_pm_clock mem;
180 };
181 
182 static u32
calc_div(struct drm_device * dev,int clk,u32 ref,u32 freq,u32 * ddiv)183 calc_div(struct drm_device *dev, int clk, u32 ref, u32 freq, u32 *ddiv)
184 {
185 	u32 div = min((ref * 2) / freq, (u32)65);
186 	if (div < 2)
187 		div = 2;
188 
189 	*ddiv = div - 2;
190 	return (ref * 2) / div;
191 }
192 
193 static u32
calc_src(struct drm_device * dev,int clk,u32 freq,u32 * dsrc,u32 * ddiv)194 calc_src(struct drm_device *dev, int clk, u32 freq, u32 *dsrc, u32 *ddiv)
195 {
196 	u32 sclk;
197 
198 	/* use one of the fixed frequencies if possible */
199 	*ddiv = 0x00000000;
200 	switch (freq) {
201 	case  27000:
202 	case 108000:
203 		*dsrc = 0x00000000;
204 		if (freq == 108000)
205 			*dsrc |= 0x00030000;
206 		return freq;
207 	case 100000:
208 		*dsrc = 0x00000002;
209 		return freq;
210 	default:
211 		*dsrc = 0x00000003;
212 		break;
213 	}
214 
215 	/* otherwise, calculate the closest divider */
216 	sclk = read_vco(dev, clk);
217 	if (clk < 7)
218 		sclk = calc_div(dev, clk, sclk, freq, ddiv);
219 	return sclk;
220 }
221 
222 static u32
calc_pll(struct drm_device * dev,int clk,u32 freq,u32 * coef)223 calc_pll(struct drm_device *dev, int clk, u32 freq, u32 *coef)
224 {
225 	struct nouveau_device *device = nouveau_dev(dev);
226 	struct nouveau_bios *bios = nouveau_bios(device);
227 	struct nvbios_pll limits;
228 	int N, M, P, ret;
229 
230 	ret = nvbios_pll_parse(bios, 0x137000 + (clk * 0x20), &limits);
231 	if (ret)
232 		return 0;
233 
234 	limits.refclk = read_div(dev, clk, 0x137120, 0x137140);
235 	if (!limits.refclk)
236 		return 0;
237 
238 	ret = nva3_calc_pll(dev, &limits, freq, &N, NULL, &M, &P);
239 	if (ret <= 0)
240 		return 0;
241 
242 	*coef = (P << 16) | (N << 8) | M;
243 	return ret;
244 }
245 
246 /* A (likely rather simplified and incomplete) view of the clock tree
247  *
248  * Key:
249  *
250  * S: source select
251  * D: divider
252  * P: pll
253  * F: switch
254  *
255  * Engine clocks:
256  *
257  * 137250(D) ---- 137100(F0) ---- 137160(S)/1371d0(D) ------------------- ref
258  *                      (F1) ---- 1370X0(P) ---- 137120(S)/137140(D) ---- ref
259  *
260  * Not all registers exist for all clocks.  For example: clocks >= 8 don't
261  * have their own PLL (all tied to clock 7's PLL when in PLL mode), nor do
262  * they have the divider at 1371d0, though the source selection at 137160
263  * still exists.  You must use the divider at 137250 for these instead.
264  *
265  * Memory clock:
266  *
267  * TBD, read_mem() above is likely very wrong...
268  *
269  */
270 
271 static int
calc_clk(struct drm_device * dev,int clk,struct nvc0_pm_clock * info,u32 freq)272 calc_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info, u32 freq)
273 {
274 	u32 src0, div0, div1D, div1P = 0;
275 	u32 clk0, clk1 = 0;
276 
277 	/* invalid clock domain */
278 	if (!freq)
279 		return 0;
280 
281 	/* first possible path, using only dividers */
282 	clk0 = calc_src(dev, clk, freq, &src0, &div0);
283 	clk0 = calc_div(dev, clk, clk0, freq, &div1D);
284 
285 	/* see if we can get any closer using PLLs */
286 	if (clk0 != freq && (0x00004387 & (1 << clk))) {
287 		if (clk < 7)
288 			clk1 = calc_pll(dev, clk, freq, &info->coef);
289 		else
290 			clk1 = read_pll(dev, 0x1370e0);
291 		clk1 = calc_div(dev, clk, clk1, freq, &div1P);
292 	}
293 
294 	/* select the method which gets closest to target freq */
295 	if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
296 		info->dsrc = src0;
297 		if (div0) {
298 			info->ddiv |= 0x80000000;
299 			info->ddiv |= div0 << 8;
300 			info->ddiv |= div0;
301 		}
302 		if (div1D) {
303 			info->mdiv |= 0x80000000;
304 			info->mdiv |= div1D;
305 		}
306 		info->ssel = 0;
307 		info->freq = clk0;
308 	} else {
309 		if (div1P) {
310 			info->mdiv |= 0x80000000;
311 			info->mdiv |= div1P << 8;
312 		}
313 		info->ssel = (1 << clk);
314 		info->freq = clk1;
315 	}
316 
317 	return 0;
318 }
319 
320 static int
calc_mem(struct drm_device * dev,struct nvc0_pm_clock * info,u32 freq)321 calc_mem(struct drm_device *dev, struct nvc0_pm_clock *info, u32 freq)
322 {
323 	struct nouveau_device *device = nouveau_dev(dev);
324 	struct nouveau_bios *bios = nouveau_bios(device);
325 	struct nvbios_pll pll;
326 	int N, M, P, ret;
327 	u32 ctrl;
328 
329 	/* mclk pll input freq comes from another pll, make sure it's on */
330 	ctrl = nv_rd32(device, 0x132020);
331 	if (!(ctrl & 0x00000001)) {
332 		/* if not, program it to 567MHz.  nfi where this value comes
333 		 * from - it looks like it's in the pll limits table for
334 		 * 132000 but the binary driver ignores all my attempts to
335 		 * change this value.
336 		 */
337 		nv_wr32(device, 0x137320, 0x00000103);
338 		nv_wr32(device, 0x137330, 0x81200606);
339 		nv_wait(device, 0x132020, 0x00010000, 0x00010000);
340 		nv_wr32(device, 0x132024, 0x0001150f);
341 		nv_mask(device, 0x132020, 0x00000001, 0x00000001);
342 		nv_wait(device, 0x137390, 0x00020000, 0x00020000);
343 		nv_mask(device, 0x132020, 0x00000004, 0x00000004);
344 	}
345 
346 	/* for the moment, until the clock tree is better understood, use
347 	 * pll mode for all clock frequencies
348 	 */
349 	ret = nvbios_pll_parse(bios, 0x132000, &pll);
350 	if (ret == 0) {
351 		pll.refclk = read_pll(dev, 0x132020);
352 		if (pll.refclk) {
353 			ret = nva3_calc_pll(dev, &pll, freq, &N, NULL, &M, &P);
354 			if (ret > 0) {
355 				info->coef = (P << 16) | (N << 8) | M;
356 				return 0;
357 			}
358 		}
359 	}
360 
361 	return -EINVAL;
362 }
363 
364 void *
nvc0_pm_clocks_pre(struct drm_device * dev,struct nouveau_pm_level * perflvl)365 nvc0_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
366 {
367 	struct nouveau_device *device = nouveau_dev(dev);
368 	struct nvc0_pm_state *info;
369 	int ret;
370 
371 	info = kzalloc(sizeof(*info), GFP_KERNEL);
372 	if (!info)
373 		return ERR_PTR(-ENOMEM);
374 
375 	/* NFI why this is still in the performance table, the ROPCs appear
376 	 * to get their clock from clock 2 ("hub07", actually hub05 on this
377 	 * chip, but, anyway...) as well.  nvatiming confirms hub05 and ROP
378 	 * are always the same freq with the binary driver even when the
379 	 * performance table says they should differ.
380 	 */
381 	if (device->chipset == 0xd9)
382 		perflvl->rop = 0;
383 
384 	if ((ret = calc_clk(dev, 0x00, &info->eng[0x00], perflvl->shader)) ||
385 	    (ret = calc_clk(dev, 0x01, &info->eng[0x01], perflvl->rop)) ||
386 	    (ret = calc_clk(dev, 0x02, &info->eng[0x02], perflvl->hub07)) ||
387 	    (ret = calc_clk(dev, 0x07, &info->eng[0x07], perflvl->hub06)) ||
388 	    (ret = calc_clk(dev, 0x08, &info->eng[0x08], perflvl->hub01)) ||
389 	    (ret = calc_clk(dev, 0x09, &info->eng[0x09], perflvl->copy)) ||
390 	    (ret = calc_clk(dev, 0x0c, &info->eng[0x0c], perflvl->daemon)) ||
391 	    (ret = calc_clk(dev, 0x0e, &info->eng[0x0e], perflvl->vdec))) {
392 		kfree(info);
393 		return ERR_PTR(ret);
394 	}
395 
396 	if (perflvl->memory) {
397 		ret = calc_mem(dev, &info->mem, perflvl->memory);
398 		if (ret) {
399 			kfree(info);
400 			return ERR_PTR(ret);
401 		}
402 	}
403 
404 	info->perflvl = perflvl;
405 	return info;
406 }
407 
408 static void
prog_clk(struct drm_device * dev,int clk,struct nvc0_pm_clock * info)409 prog_clk(struct drm_device *dev, int clk, struct nvc0_pm_clock *info)
410 {
411 	struct nouveau_device *device = nouveau_dev(dev);
412 
413 	/* program dividers at 137160/1371d0 first */
414 	if (clk < 7 && !info->ssel) {
415 		nv_mask(device, 0x1371d0 + (clk * 0x04), 0x80003f3f, info->ddiv);
416 		nv_wr32(device, 0x137160 + (clk * 0x04), info->dsrc);
417 	}
418 
419 	/* switch clock to non-pll mode */
420 	nv_mask(device, 0x137100, (1 << clk), 0x00000000);
421 	nv_wait(device, 0x137100, (1 << clk), 0x00000000);
422 
423 	/* reprogram pll */
424 	if (clk < 7) {
425 		/* make sure it's disabled first... */
426 		u32 base = 0x137000 + (clk * 0x20);
427 		u32 ctrl = nv_rd32(device, base + 0x00);
428 		if (ctrl & 0x00000001) {
429 			nv_mask(device, base + 0x00, 0x00000004, 0x00000000);
430 			nv_mask(device, base + 0x00, 0x00000001, 0x00000000);
431 		}
432 		/* program it to new values, if necessary */
433 		if (info->ssel) {
434 			nv_wr32(device, base + 0x04, info->coef);
435 			nv_mask(device, base + 0x00, 0x00000001, 0x00000001);
436 			nv_wait(device, base + 0x00, 0x00020000, 0x00020000);
437 			nv_mask(device, base + 0x00, 0x00020004, 0x00000004);
438 		}
439 	}
440 
441 	/* select pll/non-pll mode, and program final clock divider */
442 	nv_mask(device, 0x137100, (1 << clk), info->ssel);
443 	nv_wait(device, 0x137100, (1 << clk), info->ssel);
444 	nv_mask(device, 0x137250 + (clk * 0x04), 0x00003f3f, info->mdiv);
445 }
446 
447 static void
mclk_precharge(struct nouveau_mem_exec_func * exec)448 mclk_precharge(struct nouveau_mem_exec_func *exec)
449 {
450 }
451 
452 static void
mclk_refresh(struct nouveau_mem_exec_func * exec)453 mclk_refresh(struct nouveau_mem_exec_func *exec)
454 {
455 }
456 
457 static void
mclk_refresh_auto(struct nouveau_mem_exec_func * exec,bool enable)458 mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
459 {
460 	struct nouveau_device *device = nouveau_dev(exec->dev);
461 	nv_wr32(device, 0x10f210, enable ? 0x80000000 : 0x00000000);
462 }
463 
464 static void
mclk_refresh_self(struct nouveau_mem_exec_func * exec,bool enable)465 mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
466 {
467 }
468 
469 static void
mclk_wait(struct nouveau_mem_exec_func * exec,u32 nsec)470 mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
471 {
472 	udelay((nsec + 500) / 1000);
473 }
474 
475 static u32
mclk_mrg(struct nouveau_mem_exec_func * exec,int mr)476 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
477 {
478 	struct nouveau_device *device = nouveau_dev(exec->dev);
479 	struct nouveau_fb *pfb = nouveau_fb(device);
480 	if (pfb->ram.type != NV_MEM_TYPE_GDDR5) {
481 		if (mr <= 1)
482 			return nv_rd32(device, 0x10f300 + ((mr - 0) * 4));
483 		return nv_rd32(device, 0x10f320 + ((mr - 2) * 4));
484 	} else {
485 		if (mr == 0)
486 			return nv_rd32(device, 0x10f300 + (mr * 4));
487 		else
488 		if (mr <= 7)
489 			return nv_rd32(device, 0x10f32c + (mr * 4));
490 		return nv_rd32(device, 0x10f34c);
491 	}
492 }
493 
494 static void
mclk_mrs(struct nouveau_mem_exec_func * exec,int mr,u32 data)495 mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
496 {
497 	struct nouveau_device *device = nouveau_dev(exec->dev);
498 	struct nouveau_fb *pfb = nouveau_fb(device);
499 	if (pfb->ram.type != NV_MEM_TYPE_GDDR5) {
500 		if (mr <= 1) {
501 			nv_wr32(device, 0x10f300 + ((mr - 0) * 4), data);
502 			if (pfb->ram.ranks > 1)
503 				nv_wr32(device, 0x10f308 + ((mr - 0) * 4), data);
504 		} else
505 		if (mr <= 3) {
506 			nv_wr32(device, 0x10f320 + ((mr - 2) * 4), data);
507 			if (pfb->ram.ranks > 1)
508 				nv_wr32(device, 0x10f328 + ((mr - 2) * 4), data);
509 		}
510 	} else {
511 		if      (mr ==  0) nv_wr32(device, 0x10f300 + (mr * 4), data);
512 		else if (mr <=  7) nv_wr32(device, 0x10f32c + (mr * 4), data);
513 		else if (mr == 15) nv_wr32(device, 0x10f34c, data);
514 	}
515 }
516 
517 static void
mclk_clock_set(struct nouveau_mem_exec_func * exec)518 mclk_clock_set(struct nouveau_mem_exec_func *exec)
519 {
520 	struct nouveau_device *device = nouveau_dev(exec->dev);
521 	struct nvc0_pm_state *info = exec->priv;
522 	u32 ctrl = nv_rd32(device, 0x132000);
523 
524 	nv_wr32(device, 0x137360, 0x00000001);
525 	nv_wr32(device, 0x137370, 0x00000000);
526 	nv_wr32(device, 0x137380, 0x00000000);
527 	if (ctrl & 0x00000001)
528 		nv_wr32(device, 0x132000, (ctrl &= ~0x00000001));
529 
530 	nv_wr32(device, 0x132004, info->mem.coef);
531 	nv_wr32(device, 0x132000, (ctrl |= 0x00000001));
532 	nv_wait(device, 0x137390, 0x00000002, 0x00000002);
533 	nv_wr32(device, 0x132018, 0x00005000);
534 
535 	nv_wr32(device, 0x137370, 0x00000001);
536 	nv_wr32(device, 0x137380, 0x00000001);
537 	nv_wr32(device, 0x137360, 0x00000000);
538 }
539 
540 static void
mclk_timing_set(struct nouveau_mem_exec_func * exec)541 mclk_timing_set(struct nouveau_mem_exec_func *exec)
542 {
543 	struct nouveau_device *device = nouveau_dev(exec->dev);
544 	struct nvc0_pm_state *info = exec->priv;
545 	struct nouveau_pm_level *perflvl = info->perflvl;
546 	int i;
547 
548 	for (i = 0; i < 5; i++)
549 		nv_wr32(device, 0x10f290 + (i * 4), perflvl->timing.reg[i]);
550 }
551 
552 static void
prog_mem(struct drm_device * dev,struct nvc0_pm_state * info)553 prog_mem(struct drm_device *dev, struct nvc0_pm_state *info)
554 {
555 	struct nouveau_device *device = nouveau_dev(dev);
556 	struct nouveau_mem_exec_func exec = {
557 		.dev = dev,
558 		.precharge = mclk_precharge,
559 		.refresh = mclk_refresh,
560 		.refresh_auto = mclk_refresh_auto,
561 		.refresh_self = mclk_refresh_self,
562 		.wait = mclk_wait,
563 		.mrg = mclk_mrg,
564 		.mrs = mclk_mrs,
565 		.clock_set = mclk_clock_set,
566 		.timing_set = mclk_timing_set,
567 		.priv = info
568 	};
569 
570 	if (device->chipset < 0xd0)
571 		nv_wr32(device, 0x611200, 0x00003300);
572 	else
573 		nv_wr32(device, 0x62c000, 0x03030000);
574 
575 	nouveau_mem_exec(&exec, info->perflvl);
576 
577 	if (device->chipset < 0xd0)
578 		nv_wr32(device, 0x611200, 0x00003330);
579 	else
580 		nv_wr32(device, 0x62c000, 0x03030300);
581 }
582 int
nvc0_pm_clocks_set(struct drm_device * dev,void * data)583 nvc0_pm_clocks_set(struct drm_device *dev, void *data)
584 {
585 	struct nvc0_pm_state *info = data;
586 	int i;
587 
588 	if (info->mem.coef)
589 		prog_mem(dev, info);
590 
591 	for (i = 0; i < 16; i++) {
592 		if (!info->eng[i].freq)
593 			continue;
594 		prog_clk(dev, i, &info->eng[i]);
595 	}
596 
597 	kfree(info);
598 	return 0;
599 }
600