1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
remote_function(void * data)54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
task_function_call(struct task_struct * p,int (* func)(void * info),void * info)82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
cpu_function_call(int cpu,int (* func)(void * info),void * info)106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152
153 /*
154 * perf event paranoia level:
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
157 * 1 - disallow cpu events for unpriv
158 * 2 - disallow kernel profiling for unpriv
159 * 3 - disallow all unpriv perf event use
160 */
161 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
162 int sysctl_perf_event_paranoid __read_mostly = 3;
163 #else
164 int sysctl_perf_event_paranoid __read_mostly = 1;
165 #endif
166
167 /* Minimum for 512 kiB + 1 user control page */
168 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
169
170 /*
171 * max perf event sample rate
172 */
173 #define DEFAULT_MAX_SAMPLE_RATE 100000
174 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175 static int max_samples_per_tick __read_mostly =
176 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)178 int perf_proc_update_handler(struct ctl_table *table, int write,
179 void __user *buffer, size_t *lenp,
180 loff_t *ppos)
181 {
182 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
183
184 if (ret || !write)
185 return ret;
186
187 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
188
189 return 0;
190 }
191
192 static atomic64_t perf_event_id;
193
194 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
195 enum event_type_t event_type);
196
197 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
198 enum event_type_t event_type,
199 struct task_struct *task);
200
201 static void update_context_time(struct perf_event_context *ctx);
202 static u64 perf_event_time(struct perf_event *event);
203
perf_event_print_debug(void)204 void __weak perf_event_print_debug(void) { }
205
perf_pmu_name(void)206 extern __weak const char *perf_pmu_name(void)
207 {
208 return "pmu";
209 }
210
perf_clock(void)211 static inline u64 perf_clock(void)
212 {
213 return local_clock();
214 }
215
216 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)217 __get_cpu_context(struct perf_event_context *ctx)
218 {
219 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
220 }
221
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)222 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
223 struct perf_event_context *ctx)
224 {
225 raw_spin_lock(&cpuctx->ctx.lock);
226 if (ctx)
227 raw_spin_lock(&ctx->lock);
228 }
229
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)230 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
231 struct perf_event_context *ctx)
232 {
233 if (ctx)
234 raw_spin_unlock(&ctx->lock);
235 raw_spin_unlock(&cpuctx->ctx.lock);
236 }
237
238 #ifdef CONFIG_CGROUP_PERF
239
240 /*
241 * perf_cgroup_info keeps track of time_enabled for a cgroup.
242 * This is a per-cpu dynamically allocated data structure.
243 */
244 struct perf_cgroup_info {
245 u64 time;
246 u64 timestamp;
247 };
248
249 struct perf_cgroup {
250 struct cgroup_subsys_state css;
251 struct perf_cgroup_info __percpu *info;
252 };
253
254 /*
255 * Must ensure cgroup is pinned (css_get) before calling
256 * this function. In other words, we cannot call this function
257 * if there is no cgroup event for the current CPU context.
258 */
259 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task)260 perf_cgroup_from_task(struct task_struct *task)
261 {
262 return container_of(task_subsys_state(task, perf_subsys_id),
263 struct perf_cgroup, css);
264 }
265
266 static inline bool
perf_cgroup_match(struct perf_event * event)267 perf_cgroup_match(struct perf_event *event)
268 {
269 struct perf_event_context *ctx = event->ctx;
270 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
271
272 /* @event doesn't care about cgroup */
273 if (!event->cgrp)
274 return true;
275
276 /* wants specific cgroup scope but @cpuctx isn't associated with any */
277 if (!cpuctx->cgrp)
278 return false;
279
280 /*
281 * Cgroup scoping is recursive. An event enabled for a cgroup is
282 * also enabled for all its descendant cgroups. If @cpuctx's
283 * cgroup is a descendant of @event's (the test covers identity
284 * case), it's a match.
285 */
286 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
287 event->cgrp->css.cgroup);
288 }
289
perf_tryget_cgroup(struct perf_event * event)290 static inline bool perf_tryget_cgroup(struct perf_event *event)
291 {
292 return css_tryget(&event->cgrp->css);
293 }
294
perf_put_cgroup(struct perf_event * event)295 static inline void perf_put_cgroup(struct perf_event *event)
296 {
297 css_put(&event->cgrp->css);
298 }
299
perf_detach_cgroup(struct perf_event * event)300 static inline void perf_detach_cgroup(struct perf_event *event)
301 {
302 perf_put_cgroup(event);
303 event->cgrp = NULL;
304 }
305
is_cgroup_event(struct perf_event * event)306 static inline int is_cgroup_event(struct perf_event *event)
307 {
308 return event->cgrp != NULL;
309 }
310
perf_cgroup_event_time(struct perf_event * event)311 static inline u64 perf_cgroup_event_time(struct perf_event *event)
312 {
313 struct perf_cgroup_info *t;
314
315 t = per_cpu_ptr(event->cgrp->info, event->cpu);
316 return t->time;
317 }
318
__update_cgrp_time(struct perf_cgroup * cgrp)319 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
320 {
321 struct perf_cgroup_info *info;
322 u64 now;
323
324 now = perf_clock();
325
326 info = this_cpu_ptr(cgrp->info);
327
328 info->time += now - info->timestamp;
329 info->timestamp = now;
330 }
331
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)332 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
333 {
334 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
335 if (cgrp_out)
336 __update_cgrp_time(cgrp_out);
337 }
338
update_cgrp_time_from_event(struct perf_event * event)339 static inline void update_cgrp_time_from_event(struct perf_event *event)
340 {
341 struct perf_cgroup *cgrp;
342
343 /*
344 * ensure we access cgroup data only when needed and
345 * when we know the cgroup is pinned (css_get)
346 */
347 if (!is_cgroup_event(event))
348 return;
349
350 cgrp = perf_cgroup_from_task(current);
351 /*
352 * Do not update time when cgroup is not active
353 */
354 if (cgrp == event->cgrp)
355 __update_cgrp_time(event->cgrp);
356 }
357
358 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)359 perf_cgroup_set_timestamp(struct task_struct *task,
360 struct perf_event_context *ctx)
361 {
362 struct perf_cgroup *cgrp;
363 struct perf_cgroup_info *info;
364
365 /*
366 * ctx->lock held by caller
367 * ensure we do not access cgroup data
368 * unless we have the cgroup pinned (css_get)
369 */
370 if (!task || !ctx->nr_cgroups)
371 return;
372
373 cgrp = perf_cgroup_from_task(task);
374 info = this_cpu_ptr(cgrp->info);
375 info->timestamp = ctx->timestamp;
376 }
377
378 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
379 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
380
381 /*
382 * reschedule events based on the cgroup constraint of task.
383 *
384 * mode SWOUT : schedule out everything
385 * mode SWIN : schedule in based on cgroup for next
386 */
perf_cgroup_switch(struct task_struct * task,int mode)387 void perf_cgroup_switch(struct task_struct *task, int mode)
388 {
389 struct perf_cpu_context *cpuctx;
390 struct pmu *pmu;
391 unsigned long flags;
392
393 /*
394 * disable interrupts to avoid geting nr_cgroup
395 * changes via __perf_event_disable(). Also
396 * avoids preemption.
397 */
398 local_irq_save(flags);
399
400 /*
401 * we reschedule only in the presence of cgroup
402 * constrained events.
403 */
404 rcu_read_lock();
405
406 list_for_each_entry_rcu(pmu, &pmus, entry) {
407 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
408 if (cpuctx->unique_pmu != pmu)
409 continue; /* ensure we process each cpuctx once */
410
411 /*
412 * perf_cgroup_events says at least one
413 * context on this CPU has cgroup events.
414 *
415 * ctx->nr_cgroups reports the number of cgroup
416 * events for a context.
417 */
418 if (cpuctx->ctx.nr_cgroups > 0) {
419 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
420 perf_pmu_disable(cpuctx->ctx.pmu);
421
422 if (mode & PERF_CGROUP_SWOUT) {
423 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
424 /*
425 * must not be done before ctxswout due
426 * to event_filter_match() in event_sched_out()
427 */
428 cpuctx->cgrp = NULL;
429 }
430
431 if (mode & PERF_CGROUP_SWIN) {
432 WARN_ON_ONCE(cpuctx->cgrp);
433 /*
434 * set cgrp before ctxsw in to allow
435 * event_filter_match() to not have to pass
436 * task around
437 */
438 cpuctx->cgrp = perf_cgroup_from_task(task);
439 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
440 }
441 perf_pmu_enable(cpuctx->ctx.pmu);
442 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
443 }
444 }
445
446 rcu_read_unlock();
447
448 local_irq_restore(flags);
449 }
450
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)451 static inline void perf_cgroup_sched_out(struct task_struct *task,
452 struct task_struct *next)
453 {
454 struct perf_cgroup *cgrp1;
455 struct perf_cgroup *cgrp2 = NULL;
456
457 /*
458 * we come here when we know perf_cgroup_events > 0
459 */
460 cgrp1 = perf_cgroup_from_task(task);
461
462 /*
463 * next is NULL when called from perf_event_enable_on_exec()
464 * that will systematically cause a cgroup_switch()
465 */
466 if (next)
467 cgrp2 = perf_cgroup_from_task(next);
468
469 /*
470 * only schedule out current cgroup events if we know
471 * that we are switching to a different cgroup. Otherwise,
472 * do no touch the cgroup events.
473 */
474 if (cgrp1 != cgrp2)
475 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
476 }
477
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)478 static inline void perf_cgroup_sched_in(struct task_struct *prev,
479 struct task_struct *task)
480 {
481 struct perf_cgroup *cgrp1;
482 struct perf_cgroup *cgrp2 = NULL;
483
484 /*
485 * we come here when we know perf_cgroup_events > 0
486 */
487 cgrp1 = perf_cgroup_from_task(task);
488
489 /* prev can never be NULL */
490 cgrp2 = perf_cgroup_from_task(prev);
491
492 /*
493 * only need to schedule in cgroup events if we are changing
494 * cgroup during ctxsw. Cgroup events were not scheduled
495 * out of ctxsw out if that was not the case.
496 */
497 if (cgrp1 != cgrp2)
498 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
499 }
500
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)501 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
502 struct perf_event_attr *attr,
503 struct perf_event *group_leader)
504 {
505 struct perf_cgroup *cgrp;
506 struct cgroup_subsys_state *css;
507 struct fd f = fdget(fd);
508 int ret = 0;
509
510 if (!f.file)
511 return -EBADF;
512
513 css = cgroup_css_from_dir(f.file, perf_subsys_id);
514 if (IS_ERR(css)) {
515 ret = PTR_ERR(css);
516 goto out;
517 }
518
519 cgrp = container_of(css, struct perf_cgroup, css);
520 event->cgrp = cgrp;
521
522 /* must be done before we fput() the file */
523 if (!perf_tryget_cgroup(event)) {
524 event->cgrp = NULL;
525 ret = -ENOENT;
526 goto out;
527 }
528
529 /*
530 * all events in a group must monitor
531 * the same cgroup because a task belongs
532 * to only one perf cgroup at a time
533 */
534 if (group_leader && group_leader->cgrp != cgrp) {
535 perf_detach_cgroup(event);
536 ret = -EINVAL;
537 }
538 out:
539 fdput(f);
540 return ret;
541 }
542
543 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)544 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
545 {
546 struct perf_cgroup_info *t;
547 t = per_cpu_ptr(event->cgrp->info, event->cpu);
548 event->shadow_ctx_time = now - t->timestamp;
549 }
550
551 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)552 perf_cgroup_defer_enabled(struct perf_event *event)
553 {
554 /*
555 * when the current task's perf cgroup does not match
556 * the event's, we need to remember to call the
557 * perf_mark_enable() function the first time a task with
558 * a matching perf cgroup is scheduled in.
559 */
560 if (is_cgroup_event(event) && !perf_cgroup_match(event))
561 event->cgrp_defer_enabled = 1;
562 }
563
564 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)565 perf_cgroup_mark_enabled(struct perf_event *event,
566 struct perf_event_context *ctx)
567 {
568 struct perf_event *sub;
569 u64 tstamp = perf_event_time(event);
570
571 if (!event->cgrp_defer_enabled)
572 return;
573
574 event->cgrp_defer_enabled = 0;
575
576 event->tstamp_enabled = tstamp - event->total_time_enabled;
577 list_for_each_entry(sub, &event->sibling_list, group_entry) {
578 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
579 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
580 sub->cgrp_defer_enabled = 0;
581 }
582 }
583 }
584 #else /* !CONFIG_CGROUP_PERF */
585
586 static inline bool
perf_cgroup_match(struct perf_event * event)587 perf_cgroup_match(struct perf_event *event)
588 {
589 return true;
590 }
591
perf_detach_cgroup(struct perf_event * event)592 static inline void perf_detach_cgroup(struct perf_event *event)
593 {}
594
is_cgroup_event(struct perf_event * event)595 static inline int is_cgroup_event(struct perf_event *event)
596 {
597 return 0;
598 }
599
perf_cgroup_event_cgrp_time(struct perf_event * event)600 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
601 {
602 return 0;
603 }
604
update_cgrp_time_from_event(struct perf_event * event)605 static inline void update_cgrp_time_from_event(struct perf_event *event)
606 {
607 }
608
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)609 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
610 {
611 }
612
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)613 static inline void perf_cgroup_sched_out(struct task_struct *task,
614 struct task_struct *next)
615 {
616 }
617
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)618 static inline void perf_cgroup_sched_in(struct task_struct *prev,
619 struct task_struct *task)
620 {
621 }
622
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)623 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
624 struct perf_event_attr *attr,
625 struct perf_event *group_leader)
626 {
627 return -EINVAL;
628 }
629
630 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)631 perf_cgroup_set_timestamp(struct task_struct *task,
632 struct perf_event_context *ctx)
633 {
634 }
635
636 void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)637 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
638 {
639 }
640
641 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 }
645
perf_cgroup_event_time(struct perf_event * event)646 static inline u64 perf_cgroup_event_time(struct perf_event *event)
647 {
648 return 0;
649 }
650
651 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)652 perf_cgroup_defer_enabled(struct perf_event *event)
653 {
654 }
655
656 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)657 perf_cgroup_mark_enabled(struct perf_event *event,
658 struct perf_event_context *ctx)
659 {
660 }
661 #endif
662
perf_pmu_disable(struct pmu * pmu)663 void perf_pmu_disable(struct pmu *pmu)
664 {
665 int *count = this_cpu_ptr(pmu->pmu_disable_count);
666 if (!(*count)++)
667 pmu->pmu_disable(pmu);
668 }
669
perf_pmu_enable(struct pmu * pmu)670 void perf_pmu_enable(struct pmu *pmu)
671 {
672 int *count = this_cpu_ptr(pmu->pmu_disable_count);
673 if (!--(*count))
674 pmu->pmu_enable(pmu);
675 }
676
677 static DEFINE_PER_CPU(struct list_head, rotation_list);
678
679 /*
680 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
681 * because they're strictly cpu affine and rotate_start is called with IRQs
682 * disabled, while rotate_context is called from IRQ context.
683 */
perf_pmu_rotate_start(struct pmu * pmu)684 static void perf_pmu_rotate_start(struct pmu *pmu)
685 {
686 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
687 struct list_head *head = &__get_cpu_var(rotation_list);
688
689 WARN_ON(!irqs_disabled());
690
691 if (list_empty(&cpuctx->rotation_list)) {
692 int was_empty = list_empty(head);
693 list_add(&cpuctx->rotation_list, head);
694 if (was_empty)
695 tick_nohz_full_kick();
696 }
697 }
698
get_ctx(struct perf_event_context * ctx)699 static void get_ctx(struct perf_event_context *ctx)
700 {
701 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
702 }
703
put_ctx(struct perf_event_context * ctx)704 static void put_ctx(struct perf_event_context *ctx)
705 {
706 if (atomic_dec_and_test(&ctx->refcount)) {
707 if (ctx->parent_ctx)
708 put_ctx(ctx->parent_ctx);
709 if (ctx->task)
710 put_task_struct(ctx->task);
711 kfree_rcu(ctx, rcu_head);
712 }
713 }
714
715 /*
716 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
717 * perf_pmu_migrate_context() we need some magic.
718 *
719 * Those places that change perf_event::ctx will hold both
720 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
721 *
722 * Lock ordering is by mutex address. There is one other site where
723 * perf_event_context::mutex nests and that is put_event(). But remember that
724 * that is a parent<->child context relation, and migration does not affect
725 * children, therefore these two orderings should not interact.
726 *
727 * The change in perf_event::ctx does not affect children (as claimed above)
728 * because the sys_perf_event_open() case will install a new event and break
729 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
730 * concerned with cpuctx and that doesn't have children.
731 *
732 * The places that change perf_event::ctx will issue:
733 *
734 * perf_remove_from_context();
735 * synchronize_rcu();
736 * perf_install_in_context();
737 *
738 * to affect the change. The remove_from_context() + synchronize_rcu() should
739 * quiesce the event, after which we can install it in the new location. This
740 * means that only external vectors (perf_fops, prctl) can perturb the event
741 * while in transit. Therefore all such accessors should also acquire
742 * perf_event_context::mutex to serialize against this.
743 *
744 * However; because event->ctx can change while we're waiting to acquire
745 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
746 * function.
747 *
748 * Lock order:
749 * task_struct::perf_event_mutex
750 * perf_event_context::mutex
751 * perf_event_context::lock
752 * perf_event::child_mutex;
753 * perf_event::mmap_mutex
754 * mmap_sem
755 */
perf_event_ctx_lock(struct perf_event * event)756 static struct perf_event_context *perf_event_ctx_lock(struct perf_event *event)
757 {
758 struct perf_event_context *ctx;
759
760 again:
761 rcu_read_lock();
762 ctx = ACCESS_ONCE(event->ctx);
763 if (!atomic_inc_not_zero(&ctx->refcount)) {
764 rcu_read_unlock();
765 goto again;
766 }
767 rcu_read_unlock();
768
769 mutex_lock(&ctx->mutex);
770 if (event->ctx != ctx) {
771 mutex_unlock(&ctx->mutex);
772 put_ctx(ctx);
773 goto again;
774 }
775
776 return ctx;
777 }
778
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)779 static void perf_event_ctx_unlock(struct perf_event *event,
780 struct perf_event_context *ctx)
781 {
782 mutex_unlock(&ctx->mutex);
783 put_ctx(ctx);
784 }
785
unclone_ctx(struct perf_event_context * ctx)786 static void unclone_ctx(struct perf_event_context *ctx)
787 {
788 if (ctx->parent_ctx) {
789 put_ctx(ctx->parent_ctx);
790 ctx->parent_ctx = NULL;
791 }
792 }
793
perf_event_pid(struct perf_event * event,struct task_struct * p)794 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
795 {
796 /*
797 * only top level events have the pid namespace they were created in
798 */
799 if (event->parent)
800 event = event->parent;
801
802 return task_tgid_nr_ns(p, event->ns);
803 }
804
perf_event_tid(struct perf_event * event,struct task_struct * p)805 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
806 {
807 /*
808 * only top level events have the pid namespace they were created in
809 */
810 if (event->parent)
811 event = event->parent;
812
813 return task_pid_nr_ns(p, event->ns);
814 }
815
816 /*
817 * If we inherit events we want to return the parent event id
818 * to userspace.
819 */
primary_event_id(struct perf_event * event)820 static u64 primary_event_id(struct perf_event *event)
821 {
822 u64 id = event->id;
823
824 if (event->parent)
825 id = event->parent->id;
826
827 return id;
828 }
829
830 /*
831 * Get the perf_event_context for a task and lock it.
832 * This has to cope with with the fact that until it is locked,
833 * the context could get moved to another task.
834 */
835 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)836 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
837 {
838 struct perf_event_context *ctx;
839
840 rcu_read_lock();
841 retry:
842 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
843 if (ctx) {
844 /*
845 * If this context is a clone of another, it might
846 * get swapped for another underneath us by
847 * perf_event_task_sched_out, though the
848 * rcu_read_lock() protects us from any context
849 * getting freed. Lock the context and check if it
850 * got swapped before we could get the lock, and retry
851 * if so. If we locked the right context, then it
852 * can't get swapped on us any more.
853 */
854 raw_spin_lock_irqsave(&ctx->lock, *flags);
855 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
856 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
857 goto retry;
858 }
859
860 if (!atomic_inc_not_zero(&ctx->refcount)) {
861 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
862 ctx = NULL;
863 }
864 }
865 rcu_read_unlock();
866 return ctx;
867 }
868
869 /*
870 * Get the context for a task and increment its pin_count so it
871 * can't get swapped to another task. This also increments its
872 * reference count so that the context can't get freed.
873 */
874 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)875 perf_pin_task_context(struct task_struct *task, int ctxn)
876 {
877 struct perf_event_context *ctx;
878 unsigned long flags;
879
880 ctx = perf_lock_task_context(task, ctxn, &flags);
881 if (ctx) {
882 ++ctx->pin_count;
883 raw_spin_unlock_irqrestore(&ctx->lock, flags);
884 }
885 return ctx;
886 }
887
perf_unpin_context(struct perf_event_context * ctx)888 static void perf_unpin_context(struct perf_event_context *ctx)
889 {
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&ctx->lock, flags);
893 --ctx->pin_count;
894 raw_spin_unlock_irqrestore(&ctx->lock, flags);
895 }
896
897 /*
898 * Update the record of the current time in a context.
899 */
update_context_time(struct perf_event_context * ctx)900 static void update_context_time(struct perf_event_context *ctx)
901 {
902 u64 now = perf_clock();
903
904 ctx->time += now - ctx->timestamp;
905 ctx->timestamp = now;
906 }
907
perf_event_time(struct perf_event * event)908 static u64 perf_event_time(struct perf_event *event)
909 {
910 struct perf_event_context *ctx = event->ctx;
911
912 if (is_cgroup_event(event))
913 return perf_cgroup_event_time(event);
914
915 return ctx ? ctx->time : 0;
916 }
917
918 /*
919 * Update the total_time_enabled and total_time_running fields for a event.
920 * The caller of this function needs to hold the ctx->lock.
921 */
update_event_times(struct perf_event * event)922 static void update_event_times(struct perf_event *event)
923 {
924 struct perf_event_context *ctx = event->ctx;
925 u64 run_end;
926
927 if (event->state < PERF_EVENT_STATE_INACTIVE ||
928 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
929 return;
930 /*
931 * in cgroup mode, time_enabled represents
932 * the time the event was enabled AND active
933 * tasks were in the monitored cgroup. This is
934 * independent of the activity of the context as
935 * there may be a mix of cgroup and non-cgroup events.
936 *
937 * That is why we treat cgroup events differently
938 * here.
939 */
940 if (is_cgroup_event(event))
941 run_end = perf_cgroup_event_time(event);
942 else if (ctx->is_active)
943 run_end = ctx->time;
944 else
945 run_end = event->tstamp_stopped;
946
947 event->total_time_enabled = run_end - event->tstamp_enabled;
948
949 if (event->state == PERF_EVENT_STATE_INACTIVE)
950 run_end = event->tstamp_stopped;
951 else
952 run_end = perf_event_time(event);
953
954 event->total_time_running = run_end - event->tstamp_running;
955
956 }
957
958 /*
959 * Update total_time_enabled and total_time_running for all events in a group.
960 */
update_group_times(struct perf_event * leader)961 static void update_group_times(struct perf_event *leader)
962 {
963 struct perf_event *event;
964
965 update_event_times(leader);
966 list_for_each_entry(event, &leader->sibling_list, group_entry)
967 update_event_times(event);
968 }
969
970 static struct list_head *
ctx_group_list(struct perf_event * event,struct perf_event_context * ctx)971 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
972 {
973 if (event->attr.pinned)
974 return &ctx->pinned_groups;
975 else
976 return &ctx->flexible_groups;
977 }
978
979 /*
980 * Add a event from the lists for its context.
981 * Must be called with ctx->mutex and ctx->lock held.
982 */
983 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)984 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
985 {
986 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
987 event->attach_state |= PERF_ATTACH_CONTEXT;
988
989 /*
990 * If we're a stand alone event or group leader, we go to the context
991 * list, group events are kept attached to the group so that
992 * perf_group_detach can, at all times, locate all siblings.
993 */
994 if (event->group_leader == event) {
995 struct list_head *list;
996
997 if (is_software_event(event))
998 event->group_flags |= PERF_GROUP_SOFTWARE;
999
1000 list = ctx_group_list(event, ctx);
1001 list_add_tail(&event->group_entry, list);
1002 }
1003
1004 if (is_cgroup_event(event))
1005 ctx->nr_cgroups++;
1006
1007 if (has_branch_stack(event))
1008 ctx->nr_branch_stack++;
1009
1010 list_add_rcu(&event->event_entry, &ctx->event_list);
1011 if (!ctx->nr_events)
1012 perf_pmu_rotate_start(ctx->pmu);
1013 ctx->nr_events++;
1014 if (event->attr.inherit_stat)
1015 ctx->nr_stat++;
1016 }
1017
1018 /*
1019 * Initialize event state based on the perf_event_attr::disabled.
1020 */
perf_event__state_init(struct perf_event * event)1021 static inline void perf_event__state_init(struct perf_event *event)
1022 {
1023 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1024 PERF_EVENT_STATE_INACTIVE;
1025 }
1026
1027 /*
1028 * Called at perf_event creation and when events are attached/detached from a
1029 * group.
1030 */
perf_event__read_size(struct perf_event * event)1031 static void perf_event__read_size(struct perf_event *event)
1032 {
1033 int entry = sizeof(u64); /* value */
1034 int size = 0;
1035 int nr = 1;
1036
1037 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1038 size += sizeof(u64);
1039
1040 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1041 size += sizeof(u64);
1042
1043 if (event->attr.read_format & PERF_FORMAT_ID)
1044 entry += sizeof(u64);
1045
1046 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1047 nr += event->group_leader->nr_siblings;
1048 size += sizeof(u64);
1049 }
1050
1051 size += entry * nr;
1052 event->read_size = size;
1053 }
1054
perf_event__header_size(struct perf_event * event)1055 static void perf_event__header_size(struct perf_event *event)
1056 {
1057 struct perf_sample_data *data;
1058 u64 sample_type = event->attr.sample_type;
1059 u16 size = 0;
1060
1061 perf_event__read_size(event);
1062
1063 if (sample_type & PERF_SAMPLE_IP)
1064 size += sizeof(data->ip);
1065
1066 if (sample_type & PERF_SAMPLE_ADDR)
1067 size += sizeof(data->addr);
1068
1069 if (sample_type & PERF_SAMPLE_PERIOD)
1070 size += sizeof(data->period);
1071
1072 if (sample_type & PERF_SAMPLE_WEIGHT)
1073 size += sizeof(data->weight);
1074
1075 if (sample_type & PERF_SAMPLE_READ)
1076 size += event->read_size;
1077
1078 if (sample_type & PERF_SAMPLE_DATA_SRC)
1079 size += sizeof(data->data_src.val);
1080
1081 event->header_size = size;
1082 }
1083
perf_event__id_header_size(struct perf_event * event)1084 static void perf_event__id_header_size(struct perf_event *event)
1085 {
1086 struct perf_sample_data *data;
1087 u64 sample_type = event->attr.sample_type;
1088 u16 size = 0;
1089
1090 if (sample_type & PERF_SAMPLE_TID)
1091 size += sizeof(data->tid_entry);
1092
1093 if (sample_type & PERF_SAMPLE_TIME)
1094 size += sizeof(data->time);
1095
1096 if (sample_type & PERF_SAMPLE_ID)
1097 size += sizeof(data->id);
1098
1099 if (sample_type & PERF_SAMPLE_STREAM_ID)
1100 size += sizeof(data->stream_id);
1101
1102 if (sample_type & PERF_SAMPLE_CPU)
1103 size += sizeof(data->cpu_entry);
1104
1105 event->id_header_size = size;
1106 }
1107
perf_group_attach(struct perf_event * event)1108 static void perf_group_attach(struct perf_event *event)
1109 {
1110 struct perf_event *group_leader = event->group_leader, *pos;
1111
1112 /*
1113 * We can have double attach due to group movement in perf_event_open.
1114 */
1115 if (event->attach_state & PERF_ATTACH_GROUP)
1116 return;
1117
1118 event->attach_state |= PERF_ATTACH_GROUP;
1119
1120 if (group_leader == event)
1121 return;
1122
1123 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1124 !is_software_event(event))
1125 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1126
1127 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1128 group_leader->nr_siblings++;
1129
1130 perf_event__header_size(group_leader);
1131
1132 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1133 perf_event__header_size(pos);
1134 }
1135
1136 /*
1137 * Remove a event from the lists for its context.
1138 * Must be called with ctx->mutex and ctx->lock held.
1139 */
1140 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1141 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1142 {
1143 struct perf_cpu_context *cpuctx;
1144 /*
1145 * We can have double detach due to exit/hot-unplug + close.
1146 */
1147 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1148 return;
1149
1150 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1151
1152 if (is_cgroup_event(event)) {
1153 ctx->nr_cgroups--;
1154 cpuctx = __get_cpu_context(ctx);
1155 /*
1156 * if there are no more cgroup events
1157 * then cler cgrp to avoid stale pointer
1158 * in update_cgrp_time_from_cpuctx()
1159 */
1160 if (!ctx->nr_cgroups)
1161 cpuctx->cgrp = NULL;
1162 }
1163
1164 if (has_branch_stack(event))
1165 ctx->nr_branch_stack--;
1166
1167 ctx->nr_events--;
1168 if (event->attr.inherit_stat)
1169 ctx->nr_stat--;
1170
1171 list_del_rcu(&event->event_entry);
1172
1173 if (event->group_leader == event)
1174 list_del_init(&event->group_entry);
1175
1176 update_group_times(event);
1177
1178 /*
1179 * If event was in error state, then keep it
1180 * that way, otherwise bogus counts will be
1181 * returned on read(). The only way to get out
1182 * of error state is by explicit re-enabling
1183 * of the event
1184 */
1185 if (event->state > PERF_EVENT_STATE_OFF)
1186 event->state = PERF_EVENT_STATE_OFF;
1187 }
1188
perf_group_detach(struct perf_event * event)1189 static void perf_group_detach(struct perf_event *event)
1190 {
1191 struct perf_event *sibling, *tmp;
1192 struct list_head *list = NULL;
1193
1194 /*
1195 * We can have double detach due to exit/hot-unplug + close.
1196 */
1197 if (!(event->attach_state & PERF_ATTACH_GROUP))
1198 return;
1199
1200 event->attach_state &= ~PERF_ATTACH_GROUP;
1201
1202 /*
1203 * If this is a sibling, remove it from its group.
1204 */
1205 if (event->group_leader != event) {
1206 list_del_init(&event->group_entry);
1207 event->group_leader->nr_siblings--;
1208 goto out;
1209 }
1210
1211 if (!list_empty(&event->group_entry))
1212 list = &event->group_entry;
1213
1214 /*
1215 * If this was a group event with sibling events then
1216 * upgrade the siblings to singleton events by adding them
1217 * to whatever list we are on.
1218 */
1219 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1220 if (list)
1221 list_move_tail(&sibling->group_entry, list);
1222 sibling->group_leader = sibling;
1223
1224 /* Inherit group flags from the previous leader */
1225 sibling->group_flags = event->group_flags;
1226 }
1227
1228 out:
1229 perf_event__header_size(event->group_leader);
1230
1231 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1232 perf_event__header_size(tmp);
1233 }
1234
1235 static inline int
event_filter_match(struct perf_event * event)1236 event_filter_match(struct perf_event *event)
1237 {
1238 return (event->cpu == -1 || event->cpu == smp_processor_id())
1239 && perf_cgroup_match(event);
1240 }
1241
1242 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1243 event_sched_out(struct perf_event *event,
1244 struct perf_cpu_context *cpuctx,
1245 struct perf_event_context *ctx)
1246 {
1247 u64 tstamp = perf_event_time(event);
1248 u64 delta;
1249 /*
1250 * An event which could not be activated because of
1251 * filter mismatch still needs to have its timings
1252 * maintained, otherwise bogus information is return
1253 * via read() for time_enabled, time_running:
1254 */
1255 if (event->state == PERF_EVENT_STATE_INACTIVE
1256 && !event_filter_match(event)) {
1257 delta = tstamp - event->tstamp_stopped;
1258 event->tstamp_running += delta;
1259 event->tstamp_stopped = tstamp;
1260 }
1261
1262 if (event->state != PERF_EVENT_STATE_ACTIVE)
1263 return;
1264
1265 event->state = PERF_EVENT_STATE_INACTIVE;
1266 if (event->pending_disable) {
1267 event->pending_disable = 0;
1268 event->state = PERF_EVENT_STATE_OFF;
1269 }
1270 event->tstamp_stopped = tstamp;
1271 event->pmu->del(event, 0);
1272 event->oncpu = -1;
1273
1274 if (!is_software_event(event))
1275 cpuctx->active_oncpu--;
1276 ctx->nr_active--;
1277 if (event->attr.freq && event->attr.sample_freq)
1278 ctx->nr_freq--;
1279 if (event->attr.exclusive || !cpuctx->active_oncpu)
1280 cpuctx->exclusive = 0;
1281 }
1282
1283 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1284 group_sched_out(struct perf_event *group_event,
1285 struct perf_cpu_context *cpuctx,
1286 struct perf_event_context *ctx)
1287 {
1288 struct perf_event *event;
1289 int state = group_event->state;
1290
1291 event_sched_out(group_event, cpuctx, ctx);
1292
1293 /*
1294 * Schedule out siblings (if any):
1295 */
1296 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1297 event_sched_out(event, cpuctx, ctx);
1298
1299 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1300 cpuctx->exclusive = 0;
1301 }
1302
1303 /*
1304 * Cross CPU call to remove a performance event
1305 *
1306 * We disable the event on the hardware level first. After that we
1307 * remove it from the context list.
1308 */
__perf_remove_from_context(void * info)1309 static int __perf_remove_from_context(void *info)
1310 {
1311 struct perf_event *event = info;
1312 struct perf_event_context *ctx = event->ctx;
1313 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1314
1315 raw_spin_lock(&ctx->lock);
1316 event_sched_out(event, cpuctx, ctx);
1317 list_del_event(event, ctx);
1318 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1319 ctx->is_active = 0;
1320 cpuctx->task_ctx = NULL;
1321 }
1322 raw_spin_unlock(&ctx->lock);
1323
1324 return 0;
1325 }
1326
1327
1328 /*
1329 * Remove the event from a task's (or a CPU's) list of events.
1330 *
1331 * CPU events are removed with a smp call. For task events we only
1332 * call when the task is on a CPU.
1333 *
1334 * If event->ctx is a cloned context, callers must make sure that
1335 * every task struct that event->ctx->task could possibly point to
1336 * remains valid. This is OK when called from perf_release since
1337 * that only calls us on the top-level context, which can't be a clone.
1338 * When called from perf_event_exit_task, it's OK because the
1339 * context has been detached from its task.
1340 */
perf_remove_from_context(struct perf_event * event)1341 static void perf_remove_from_context(struct perf_event *event)
1342 {
1343 struct perf_event_context *ctx = event->ctx;
1344 struct task_struct *task = ctx->task;
1345
1346 lockdep_assert_held(&ctx->mutex);
1347
1348 if (!task) {
1349 /*
1350 * Per cpu events are removed via an smp call and
1351 * the removal is always successful.
1352 */
1353 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1354 return;
1355 }
1356
1357 retry:
1358 if (!task_function_call(task, __perf_remove_from_context, event))
1359 return;
1360
1361 raw_spin_lock_irq(&ctx->lock);
1362 /*
1363 * If we failed to find a running task, but find the context active now
1364 * that we've acquired the ctx->lock, retry.
1365 */
1366 if (ctx->is_active) {
1367 raw_spin_unlock_irq(&ctx->lock);
1368 goto retry;
1369 }
1370
1371 /*
1372 * Since the task isn't running, its safe to remove the event, us
1373 * holding the ctx->lock ensures the task won't get scheduled in.
1374 */
1375 list_del_event(event, ctx);
1376 raw_spin_unlock_irq(&ctx->lock);
1377 }
1378
1379 /*
1380 * Cross CPU call to disable a performance event
1381 */
__perf_event_disable(void * info)1382 int __perf_event_disable(void *info)
1383 {
1384 struct perf_event *event = info;
1385 struct perf_event_context *ctx = event->ctx;
1386 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1387
1388 /*
1389 * If this is a per-task event, need to check whether this
1390 * event's task is the current task on this cpu.
1391 *
1392 * Can trigger due to concurrent perf_event_context_sched_out()
1393 * flipping contexts around.
1394 */
1395 if (ctx->task && cpuctx->task_ctx != ctx)
1396 return -EINVAL;
1397
1398 raw_spin_lock(&ctx->lock);
1399
1400 /*
1401 * If the event is on, turn it off.
1402 * If it is in error state, leave it in error state.
1403 */
1404 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1405 update_context_time(ctx);
1406 update_cgrp_time_from_event(event);
1407 update_group_times(event);
1408 if (event == event->group_leader)
1409 group_sched_out(event, cpuctx, ctx);
1410 else
1411 event_sched_out(event, cpuctx, ctx);
1412 event->state = PERF_EVENT_STATE_OFF;
1413 }
1414
1415 raw_spin_unlock(&ctx->lock);
1416
1417 return 0;
1418 }
1419
1420 /*
1421 * Disable a event.
1422 *
1423 * If event->ctx is a cloned context, callers must make sure that
1424 * every task struct that event->ctx->task could possibly point to
1425 * remains valid. This condition is satisifed when called through
1426 * perf_event_for_each_child or perf_event_for_each because they
1427 * hold the top-level event's child_mutex, so any descendant that
1428 * goes to exit will block in sync_child_event.
1429 * When called from perf_pending_event it's OK because event->ctx
1430 * is the current context on this CPU and preemption is disabled,
1431 * hence we can't get into perf_event_task_sched_out for this context.
1432 */
_perf_event_disable(struct perf_event * event)1433 static void _perf_event_disable(struct perf_event *event)
1434 {
1435 struct perf_event_context *ctx = event->ctx;
1436 struct task_struct *task = ctx->task;
1437
1438 if (!task) {
1439 /*
1440 * Disable the event on the cpu that it's on
1441 */
1442 cpu_function_call(event->cpu, __perf_event_disable, event);
1443 return;
1444 }
1445
1446 retry:
1447 if (!task_function_call(task, __perf_event_disable, event))
1448 return;
1449
1450 raw_spin_lock_irq(&ctx->lock);
1451 /*
1452 * If the event is still active, we need to retry the cross-call.
1453 */
1454 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1455 raw_spin_unlock_irq(&ctx->lock);
1456 /*
1457 * Reload the task pointer, it might have been changed by
1458 * a concurrent perf_event_context_sched_out().
1459 */
1460 task = ctx->task;
1461 goto retry;
1462 }
1463
1464 /*
1465 * Since we have the lock this context can't be scheduled
1466 * in, so we can change the state safely.
1467 */
1468 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1469 update_group_times(event);
1470 event->state = PERF_EVENT_STATE_OFF;
1471 }
1472 raw_spin_unlock_irq(&ctx->lock);
1473 }
1474
1475 /*
1476 * Strictly speaking kernel users cannot create groups and therefore this
1477 * interface does not need the perf_event_ctx_lock() magic.
1478 */
perf_event_disable(struct perf_event * event)1479 void perf_event_disable(struct perf_event *event)
1480 {
1481 struct perf_event_context *ctx;
1482
1483 ctx = perf_event_ctx_lock(event);
1484 _perf_event_disable(event);
1485 perf_event_ctx_unlock(event, ctx);
1486 }
1487 EXPORT_SYMBOL_GPL(perf_event_disable);
1488
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx,u64 tstamp)1489 static void perf_set_shadow_time(struct perf_event *event,
1490 struct perf_event_context *ctx,
1491 u64 tstamp)
1492 {
1493 /*
1494 * use the correct time source for the time snapshot
1495 *
1496 * We could get by without this by leveraging the
1497 * fact that to get to this function, the caller
1498 * has most likely already called update_context_time()
1499 * and update_cgrp_time_xx() and thus both timestamp
1500 * are identical (or very close). Given that tstamp is,
1501 * already adjusted for cgroup, we could say that:
1502 * tstamp - ctx->timestamp
1503 * is equivalent to
1504 * tstamp - cgrp->timestamp.
1505 *
1506 * Then, in perf_output_read(), the calculation would
1507 * work with no changes because:
1508 * - event is guaranteed scheduled in
1509 * - no scheduled out in between
1510 * - thus the timestamp would be the same
1511 *
1512 * But this is a bit hairy.
1513 *
1514 * So instead, we have an explicit cgroup call to remain
1515 * within the time time source all along. We believe it
1516 * is cleaner and simpler to understand.
1517 */
1518 if (is_cgroup_event(event))
1519 perf_cgroup_set_shadow_time(event, tstamp);
1520 else
1521 event->shadow_ctx_time = tstamp - ctx->timestamp;
1522 }
1523
1524 #define MAX_INTERRUPTS (~0ULL)
1525
1526 static void perf_log_throttle(struct perf_event *event, int enable);
1527
1528 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1529 event_sched_in(struct perf_event *event,
1530 struct perf_cpu_context *cpuctx,
1531 struct perf_event_context *ctx)
1532 {
1533 u64 tstamp = perf_event_time(event);
1534
1535 if (event->state <= PERF_EVENT_STATE_OFF)
1536 return 0;
1537
1538 event->state = PERF_EVENT_STATE_ACTIVE;
1539 event->oncpu = smp_processor_id();
1540
1541 /*
1542 * Unthrottle events, since we scheduled we might have missed several
1543 * ticks already, also for a heavily scheduling task there is little
1544 * guarantee it'll get a tick in a timely manner.
1545 */
1546 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1547 perf_log_throttle(event, 1);
1548 event->hw.interrupts = 0;
1549 }
1550
1551 /*
1552 * The new state must be visible before we turn it on in the hardware:
1553 */
1554 smp_wmb();
1555
1556 if (event->pmu->add(event, PERF_EF_START)) {
1557 event->state = PERF_EVENT_STATE_INACTIVE;
1558 event->oncpu = -1;
1559 return -EAGAIN;
1560 }
1561
1562 event->tstamp_running += tstamp - event->tstamp_stopped;
1563
1564 perf_set_shadow_time(event, ctx, tstamp);
1565
1566 if (!is_software_event(event))
1567 cpuctx->active_oncpu++;
1568 ctx->nr_active++;
1569 if (event->attr.freq && event->attr.sample_freq)
1570 ctx->nr_freq++;
1571
1572 if (event->attr.exclusive)
1573 cpuctx->exclusive = 1;
1574
1575 return 0;
1576 }
1577
1578 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1579 group_sched_in(struct perf_event *group_event,
1580 struct perf_cpu_context *cpuctx,
1581 struct perf_event_context *ctx)
1582 {
1583 struct perf_event *event, *partial_group = NULL;
1584 struct pmu *pmu = group_event->pmu;
1585 u64 now = ctx->time;
1586 bool simulate = false;
1587
1588 if (group_event->state == PERF_EVENT_STATE_OFF)
1589 return 0;
1590
1591 pmu->start_txn(pmu);
1592
1593 if (event_sched_in(group_event, cpuctx, ctx)) {
1594 pmu->cancel_txn(pmu);
1595 return -EAGAIN;
1596 }
1597
1598 /*
1599 * Schedule in siblings as one group (if any):
1600 */
1601 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1602 if (event_sched_in(event, cpuctx, ctx)) {
1603 partial_group = event;
1604 goto group_error;
1605 }
1606 }
1607
1608 if (!pmu->commit_txn(pmu))
1609 return 0;
1610
1611 group_error:
1612 /*
1613 * Groups can be scheduled in as one unit only, so undo any
1614 * partial group before returning:
1615 * The events up to the failed event are scheduled out normally,
1616 * tstamp_stopped will be updated.
1617 *
1618 * The failed events and the remaining siblings need to have
1619 * their timings updated as if they had gone thru event_sched_in()
1620 * and event_sched_out(). This is required to get consistent timings
1621 * across the group. This also takes care of the case where the group
1622 * could never be scheduled by ensuring tstamp_stopped is set to mark
1623 * the time the event was actually stopped, such that time delta
1624 * calculation in update_event_times() is correct.
1625 */
1626 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1627 if (event == partial_group)
1628 simulate = true;
1629
1630 if (simulate) {
1631 event->tstamp_running += now - event->tstamp_stopped;
1632 event->tstamp_stopped = now;
1633 } else {
1634 event_sched_out(event, cpuctx, ctx);
1635 }
1636 }
1637 event_sched_out(group_event, cpuctx, ctx);
1638
1639 pmu->cancel_txn(pmu);
1640
1641 return -EAGAIN;
1642 }
1643
1644 /*
1645 * Work out whether we can put this event group on the CPU now.
1646 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)1647 static int group_can_go_on(struct perf_event *event,
1648 struct perf_cpu_context *cpuctx,
1649 int can_add_hw)
1650 {
1651 /*
1652 * Groups consisting entirely of software events can always go on.
1653 */
1654 if (event->group_flags & PERF_GROUP_SOFTWARE)
1655 return 1;
1656 /*
1657 * If an exclusive group is already on, no other hardware
1658 * events can go on.
1659 */
1660 if (cpuctx->exclusive)
1661 return 0;
1662 /*
1663 * If this group is exclusive and there are already
1664 * events on the CPU, it can't go on.
1665 */
1666 if (event->attr.exclusive && cpuctx->active_oncpu)
1667 return 0;
1668 /*
1669 * Otherwise, try to add it if all previous groups were able
1670 * to go on.
1671 */
1672 return can_add_hw;
1673 }
1674
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)1675 static void add_event_to_ctx(struct perf_event *event,
1676 struct perf_event_context *ctx)
1677 {
1678 u64 tstamp = perf_event_time(event);
1679
1680 list_add_event(event, ctx);
1681 perf_group_attach(event);
1682 event->tstamp_enabled = tstamp;
1683 event->tstamp_running = tstamp;
1684 event->tstamp_stopped = tstamp;
1685 }
1686
1687 static void task_ctx_sched_out(struct perf_event_context *ctx);
1688 static void
1689 ctx_sched_in(struct perf_event_context *ctx,
1690 struct perf_cpu_context *cpuctx,
1691 enum event_type_t event_type,
1692 struct task_struct *task);
1693
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)1694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1695 struct perf_event_context *ctx,
1696 struct task_struct *task)
1697 {
1698 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1699 if (ctx)
1700 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1701 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1702 if (ctx)
1703 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1704 }
1705
1706 /*
1707 * Cross CPU call to install and enable a performance event
1708 *
1709 * Must be called with ctx->mutex held
1710 */
__perf_install_in_context(void * info)1711 static int __perf_install_in_context(void *info)
1712 {
1713 struct perf_event *event = info;
1714 struct perf_event_context *ctx = event->ctx;
1715 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1716 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1717 struct task_struct *task = current;
1718
1719 perf_ctx_lock(cpuctx, task_ctx);
1720 perf_pmu_disable(cpuctx->ctx.pmu);
1721
1722 /*
1723 * If there was an active task_ctx schedule it out.
1724 */
1725 if (task_ctx)
1726 task_ctx_sched_out(task_ctx);
1727
1728 /*
1729 * If the context we're installing events in is not the
1730 * active task_ctx, flip them.
1731 */
1732 if (ctx->task && task_ctx != ctx) {
1733 if (task_ctx)
1734 raw_spin_unlock(&task_ctx->lock);
1735 raw_spin_lock(&ctx->lock);
1736 task_ctx = ctx;
1737 }
1738
1739 if (task_ctx) {
1740 cpuctx->task_ctx = task_ctx;
1741 task = task_ctx->task;
1742 }
1743
1744 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1745
1746 update_context_time(ctx);
1747 /*
1748 * update cgrp time only if current cgrp
1749 * matches event->cgrp. Must be done before
1750 * calling add_event_to_ctx()
1751 */
1752 update_cgrp_time_from_event(event);
1753
1754 add_event_to_ctx(event, ctx);
1755
1756 /*
1757 * Schedule everything back in
1758 */
1759 perf_event_sched_in(cpuctx, task_ctx, task);
1760
1761 perf_pmu_enable(cpuctx->ctx.pmu);
1762 perf_ctx_unlock(cpuctx, task_ctx);
1763
1764 return 0;
1765 }
1766
1767 /*
1768 * Attach a performance event to a context
1769 *
1770 * First we add the event to the list with the hardware enable bit
1771 * in event->hw_config cleared.
1772 *
1773 * If the event is attached to a task which is on a CPU we use a smp
1774 * call to enable it in the task context. The task might have been
1775 * scheduled away, but we check this in the smp call again.
1776 */
1777 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)1778 perf_install_in_context(struct perf_event_context *ctx,
1779 struct perf_event *event,
1780 int cpu)
1781 {
1782 struct task_struct *task = ctx->task;
1783
1784 lockdep_assert_held(&ctx->mutex);
1785
1786 event->ctx = ctx;
1787 if (event->cpu != -1)
1788 event->cpu = cpu;
1789
1790 if (!task) {
1791 /*
1792 * Per cpu events are installed via an smp call and
1793 * the install is always successful.
1794 */
1795 cpu_function_call(cpu, __perf_install_in_context, event);
1796 return;
1797 }
1798
1799 retry:
1800 if (!task_function_call(task, __perf_install_in_context, event))
1801 return;
1802
1803 raw_spin_lock_irq(&ctx->lock);
1804 /*
1805 * If we failed to find a running task, but find the context active now
1806 * that we've acquired the ctx->lock, retry.
1807 */
1808 if (ctx->is_active) {
1809 raw_spin_unlock_irq(&ctx->lock);
1810 goto retry;
1811 }
1812
1813 /*
1814 * Since the task isn't running, its safe to add the event, us holding
1815 * the ctx->lock ensures the task won't get scheduled in.
1816 */
1817 add_event_to_ctx(event, ctx);
1818 raw_spin_unlock_irq(&ctx->lock);
1819 }
1820
1821 /*
1822 * Put a event into inactive state and update time fields.
1823 * Enabling the leader of a group effectively enables all
1824 * the group members that aren't explicitly disabled, so we
1825 * have to update their ->tstamp_enabled also.
1826 * Note: this works for group members as well as group leaders
1827 * since the non-leader members' sibling_lists will be empty.
1828 */
__perf_event_mark_enabled(struct perf_event * event)1829 static void __perf_event_mark_enabled(struct perf_event *event)
1830 {
1831 struct perf_event *sub;
1832 u64 tstamp = perf_event_time(event);
1833
1834 event->state = PERF_EVENT_STATE_INACTIVE;
1835 event->tstamp_enabled = tstamp - event->total_time_enabled;
1836 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1837 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1838 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1839 }
1840 }
1841
1842 /*
1843 * Cross CPU call to enable a performance event
1844 */
__perf_event_enable(void * info)1845 static int __perf_event_enable(void *info)
1846 {
1847 struct perf_event *event = info;
1848 struct perf_event_context *ctx = event->ctx;
1849 struct perf_event *leader = event->group_leader;
1850 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1851 int err;
1852
1853 if (WARN_ON_ONCE(!ctx->is_active))
1854 return -EINVAL;
1855
1856 raw_spin_lock(&ctx->lock);
1857 update_context_time(ctx);
1858
1859 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1860 goto unlock;
1861
1862 /*
1863 * set current task's cgroup time reference point
1864 */
1865 perf_cgroup_set_timestamp(current, ctx);
1866
1867 __perf_event_mark_enabled(event);
1868
1869 if (!event_filter_match(event)) {
1870 if (is_cgroup_event(event))
1871 perf_cgroup_defer_enabled(event);
1872 goto unlock;
1873 }
1874
1875 /*
1876 * If the event is in a group and isn't the group leader,
1877 * then don't put it on unless the group is on.
1878 */
1879 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1880 goto unlock;
1881
1882 if (!group_can_go_on(event, cpuctx, 1)) {
1883 err = -EEXIST;
1884 } else {
1885 if (event == leader)
1886 err = group_sched_in(event, cpuctx, ctx);
1887 else
1888 err = event_sched_in(event, cpuctx, ctx);
1889 }
1890
1891 if (err) {
1892 /*
1893 * If this event can't go on and it's part of a
1894 * group, then the whole group has to come off.
1895 */
1896 if (leader != event)
1897 group_sched_out(leader, cpuctx, ctx);
1898 if (leader->attr.pinned) {
1899 update_group_times(leader);
1900 leader->state = PERF_EVENT_STATE_ERROR;
1901 }
1902 }
1903
1904 unlock:
1905 raw_spin_unlock(&ctx->lock);
1906
1907 return 0;
1908 }
1909
1910 /*
1911 * Enable a event.
1912 *
1913 * If event->ctx is a cloned context, callers must make sure that
1914 * every task struct that event->ctx->task could possibly point to
1915 * remains valid. This condition is satisfied when called through
1916 * perf_event_for_each_child or perf_event_for_each as described
1917 * for perf_event_disable.
1918 */
_perf_event_enable(struct perf_event * event)1919 static void _perf_event_enable(struct perf_event *event)
1920 {
1921 struct perf_event_context *ctx = event->ctx;
1922 struct task_struct *task = ctx->task;
1923
1924 if (!task) {
1925 /*
1926 * Enable the event on the cpu that it's on
1927 */
1928 cpu_function_call(event->cpu, __perf_event_enable, event);
1929 return;
1930 }
1931
1932 raw_spin_lock_irq(&ctx->lock);
1933 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1934 goto out;
1935
1936 /*
1937 * If the event is in error state, clear that first.
1938 * That way, if we see the event in error state below, we
1939 * know that it has gone back into error state, as distinct
1940 * from the task having been scheduled away before the
1941 * cross-call arrived.
1942 */
1943 if (event->state == PERF_EVENT_STATE_ERROR)
1944 event->state = PERF_EVENT_STATE_OFF;
1945
1946 retry:
1947 if (!ctx->is_active) {
1948 __perf_event_mark_enabled(event);
1949 goto out;
1950 }
1951
1952 raw_spin_unlock_irq(&ctx->lock);
1953
1954 if (!task_function_call(task, __perf_event_enable, event))
1955 return;
1956
1957 raw_spin_lock_irq(&ctx->lock);
1958
1959 /*
1960 * If the context is active and the event is still off,
1961 * we need to retry the cross-call.
1962 */
1963 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1964 /*
1965 * task could have been flipped by a concurrent
1966 * perf_event_context_sched_out()
1967 */
1968 task = ctx->task;
1969 goto retry;
1970 }
1971
1972 out:
1973 raw_spin_unlock_irq(&ctx->lock);
1974 }
1975
1976 /*
1977 * See perf_event_disable();
1978 */
perf_event_enable(struct perf_event * event)1979 void perf_event_enable(struct perf_event *event)
1980 {
1981 struct perf_event_context *ctx;
1982
1983 ctx = perf_event_ctx_lock(event);
1984 _perf_event_enable(event);
1985 perf_event_ctx_unlock(event, ctx);
1986 }
1987 EXPORT_SYMBOL_GPL(perf_event_enable);
1988
_perf_event_refresh(struct perf_event * event,int refresh)1989 static int _perf_event_refresh(struct perf_event *event, int refresh)
1990 {
1991 /*
1992 * not supported on inherited events
1993 */
1994 if (event->attr.inherit || !is_sampling_event(event))
1995 return -EINVAL;
1996
1997 atomic_add(refresh, &event->event_limit);
1998 _perf_event_enable(event);
1999
2000 return 0;
2001 }
2002
2003 /*
2004 * See perf_event_disable()
2005 */
perf_event_refresh(struct perf_event * event,int refresh)2006 int perf_event_refresh(struct perf_event *event, int refresh)
2007 {
2008 struct perf_event_context *ctx;
2009 int ret;
2010
2011 ctx = perf_event_ctx_lock(event);
2012 ret = _perf_event_refresh(event, refresh);
2013 perf_event_ctx_unlock(event, ctx);
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(perf_event_refresh);
2018
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2019 static void ctx_sched_out(struct perf_event_context *ctx,
2020 struct perf_cpu_context *cpuctx,
2021 enum event_type_t event_type)
2022 {
2023 struct perf_event *event;
2024 int is_active = ctx->is_active;
2025
2026 ctx->is_active &= ~event_type;
2027 if (likely(!ctx->nr_events))
2028 return;
2029
2030 update_context_time(ctx);
2031 update_cgrp_time_from_cpuctx(cpuctx);
2032 if (!ctx->nr_active)
2033 return;
2034
2035 perf_pmu_disable(ctx->pmu);
2036 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2037 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2038 group_sched_out(event, cpuctx, ctx);
2039 }
2040
2041 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2042 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2043 group_sched_out(event, cpuctx, ctx);
2044 }
2045 perf_pmu_enable(ctx->pmu);
2046 }
2047
2048 /*
2049 * Test whether two contexts are equivalent, i.e. whether they
2050 * have both been cloned from the same version of the same context
2051 * and they both have the same number of enabled events.
2052 * If the number of enabled events is the same, then the set
2053 * of enabled events should be the same, because these are both
2054 * inherited contexts, therefore we can't access individual events
2055 * in them directly with an fd; we can only enable/disable all
2056 * events via prctl, or enable/disable all events in a family
2057 * via ioctl, which will have the same effect on both contexts.
2058 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)2059 static int context_equiv(struct perf_event_context *ctx1,
2060 struct perf_event_context *ctx2)
2061 {
2062 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2063 && ctx1->parent_gen == ctx2->parent_gen
2064 && !ctx1->pin_count && !ctx2->pin_count;
2065 }
2066
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)2067 static void __perf_event_sync_stat(struct perf_event *event,
2068 struct perf_event *next_event)
2069 {
2070 u64 value;
2071
2072 if (!event->attr.inherit_stat)
2073 return;
2074
2075 /*
2076 * Update the event value, we cannot use perf_event_read()
2077 * because we're in the middle of a context switch and have IRQs
2078 * disabled, which upsets smp_call_function_single(), however
2079 * we know the event must be on the current CPU, therefore we
2080 * don't need to use it.
2081 */
2082 switch (event->state) {
2083 case PERF_EVENT_STATE_ACTIVE:
2084 event->pmu->read(event);
2085 /* fall-through */
2086
2087 case PERF_EVENT_STATE_INACTIVE:
2088 update_event_times(event);
2089 break;
2090
2091 default:
2092 break;
2093 }
2094
2095 /*
2096 * In order to keep per-task stats reliable we need to flip the event
2097 * values when we flip the contexts.
2098 */
2099 value = local64_read(&next_event->count);
2100 value = local64_xchg(&event->count, value);
2101 local64_set(&next_event->count, value);
2102
2103 swap(event->total_time_enabled, next_event->total_time_enabled);
2104 swap(event->total_time_running, next_event->total_time_running);
2105
2106 /*
2107 * Since we swizzled the values, update the user visible data too.
2108 */
2109 perf_event_update_userpage(event);
2110 perf_event_update_userpage(next_event);
2111 }
2112
2113 #define list_next_entry(pos, member) \
2114 list_entry(pos->member.next, typeof(*pos), member)
2115
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)2116 static void perf_event_sync_stat(struct perf_event_context *ctx,
2117 struct perf_event_context *next_ctx)
2118 {
2119 struct perf_event *event, *next_event;
2120
2121 if (!ctx->nr_stat)
2122 return;
2123
2124 update_context_time(ctx);
2125
2126 event = list_first_entry(&ctx->event_list,
2127 struct perf_event, event_entry);
2128
2129 next_event = list_first_entry(&next_ctx->event_list,
2130 struct perf_event, event_entry);
2131
2132 while (&event->event_entry != &ctx->event_list &&
2133 &next_event->event_entry != &next_ctx->event_list) {
2134
2135 __perf_event_sync_stat(event, next_event);
2136
2137 event = list_next_entry(event, event_entry);
2138 next_event = list_next_entry(next_event, event_entry);
2139 }
2140 }
2141
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)2142 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2143 struct task_struct *next)
2144 {
2145 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2146 struct perf_event_context *next_ctx;
2147 struct perf_event_context *parent;
2148 struct perf_cpu_context *cpuctx;
2149 int do_switch = 1;
2150
2151 if (likely(!ctx))
2152 return;
2153
2154 cpuctx = __get_cpu_context(ctx);
2155 if (!cpuctx->task_ctx)
2156 return;
2157
2158 rcu_read_lock();
2159 parent = rcu_dereference(ctx->parent_ctx);
2160 next_ctx = next->perf_event_ctxp[ctxn];
2161 if (parent && next_ctx &&
2162 rcu_dereference(next_ctx->parent_ctx) == parent) {
2163 /*
2164 * Looks like the two contexts are clones, so we might be
2165 * able to optimize the context switch. We lock both
2166 * contexts and check that they are clones under the
2167 * lock (including re-checking that neither has been
2168 * uncloned in the meantime). It doesn't matter which
2169 * order we take the locks because no other cpu could
2170 * be trying to lock both of these tasks.
2171 */
2172 raw_spin_lock(&ctx->lock);
2173 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2174 if (context_equiv(ctx, next_ctx)) {
2175 /*
2176 * XXX do we need a memory barrier of sorts
2177 * wrt to rcu_dereference() of perf_event_ctxp
2178 */
2179 task->perf_event_ctxp[ctxn] = next_ctx;
2180 next->perf_event_ctxp[ctxn] = ctx;
2181 ctx->task = next;
2182 next_ctx->task = task;
2183 do_switch = 0;
2184
2185 perf_event_sync_stat(ctx, next_ctx);
2186 }
2187 raw_spin_unlock(&next_ctx->lock);
2188 raw_spin_unlock(&ctx->lock);
2189 }
2190 rcu_read_unlock();
2191
2192 if (do_switch) {
2193 raw_spin_lock(&ctx->lock);
2194 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2195 cpuctx->task_ctx = NULL;
2196 raw_spin_unlock(&ctx->lock);
2197 }
2198 }
2199
2200 #define for_each_task_context_nr(ctxn) \
2201 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2202
2203 /*
2204 * Called from scheduler to remove the events of the current task,
2205 * with interrupts disabled.
2206 *
2207 * We stop each event and update the event value in event->count.
2208 *
2209 * This does not protect us against NMI, but disable()
2210 * sets the disabled bit in the control field of event _before_
2211 * accessing the event control register. If a NMI hits, then it will
2212 * not restart the event.
2213 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)2214 void __perf_event_task_sched_out(struct task_struct *task,
2215 struct task_struct *next)
2216 {
2217 int ctxn;
2218
2219 for_each_task_context_nr(ctxn)
2220 perf_event_context_sched_out(task, ctxn, next);
2221
2222 /*
2223 * if cgroup events exist on this CPU, then we need
2224 * to check if we have to switch out PMU state.
2225 * cgroup event are system-wide mode only
2226 */
2227 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2228 perf_cgroup_sched_out(task, next);
2229 }
2230
task_ctx_sched_out(struct perf_event_context * ctx)2231 static void task_ctx_sched_out(struct perf_event_context *ctx)
2232 {
2233 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2234
2235 if (!cpuctx->task_ctx)
2236 return;
2237
2238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2239 return;
2240
2241 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2242 cpuctx->task_ctx = NULL;
2243 }
2244
2245 /*
2246 * Called with IRQs disabled
2247 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)2248 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2249 enum event_type_t event_type)
2250 {
2251 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2252 }
2253
2254 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2255 ctx_pinned_sched_in(struct perf_event_context *ctx,
2256 struct perf_cpu_context *cpuctx)
2257 {
2258 struct perf_event *event;
2259
2260 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2261 if (event->state <= PERF_EVENT_STATE_OFF)
2262 continue;
2263 if (!event_filter_match(event))
2264 continue;
2265
2266 /* may need to reset tstamp_enabled */
2267 if (is_cgroup_event(event))
2268 perf_cgroup_mark_enabled(event, ctx);
2269
2270 if (group_can_go_on(event, cpuctx, 1))
2271 group_sched_in(event, cpuctx, ctx);
2272
2273 /*
2274 * If this pinned group hasn't been scheduled,
2275 * put it in error state.
2276 */
2277 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2278 update_group_times(event);
2279 event->state = PERF_EVENT_STATE_ERROR;
2280 }
2281 }
2282 }
2283
2284 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2285 ctx_flexible_sched_in(struct perf_event_context *ctx,
2286 struct perf_cpu_context *cpuctx)
2287 {
2288 struct perf_event *event;
2289 int can_add_hw = 1;
2290
2291 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2292 /* Ignore events in OFF or ERROR state */
2293 if (event->state <= PERF_EVENT_STATE_OFF)
2294 continue;
2295 /*
2296 * Listen to the 'cpu' scheduling filter constraint
2297 * of events:
2298 */
2299 if (!event_filter_match(event))
2300 continue;
2301
2302 /* may need to reset tstamp_enabled */
2303 if (is_cgroup_event(event))
2304 perf_cgroup_mark_enabled(event, ctx);
2305
2306 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2307 if (group_sched_in(event, cpuctx, ctx))
2308 can_add_hw = 0;
2309 }
2310 }
2311 }
2312
2313 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2314 ctx_sched_in(struct perf_event_context *ctx,
2315 struct perf_cpu_context *cpuctx,
2316 enum event_type_t event_type,
2317 struct task_struct *task)
2318 {
2319 u64 now;
2320 int is_active = ctx->is_active;
2321
2322 ctx->is_active |= event_type;
2323 if (likely(!ctx->nr_events))
2324 return;
2325
2326 now = perf_clock();
2327 ctx->timestamp = now;
2328 perf_cgroup_set_timestamp(task, ctx);
2329 /*
2330 * First go through the list and put on any pinned groups
2331 * in order to give them the best chance of going on.
2332 */
2333 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2334 ctx_pinned_sched_in(ctx, cpuctx);
2335
2336 /* Then walk through the lower prio flexible groups */
2337 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2338 ctx_flexible_sched_in(ctx, cpuctx);
2339 }
2340
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2341 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2342 enum event_type_t event_type,
2343 struct task_struct *task)
2344 {
2345 struct perf_event_context *ctx = &cpuctx->ctx;
2346
2347 ctx_sched_in(ctx, cpuctx, event_type, task);
2348 }
2349
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)2350 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2351 struct task_struct *task)
2352 {
2353 struct perf_cpu_context *cpuctx;
2354
2355 cpuctx = __get_cpu_context(ctx);
2356 if (cpuctx->task_ctx == ctx)
2357 return;
2358
2359 perf_ctx_lock(cpuctx, ctx);
2360 perf_pmu_disable(ctx->pmu);
2361 /*
2362 * We want to keep the following priority order:
2363 * cpu pinned (that don't need to move), task pinned,
2364 * cpu flexible, task flexible.
2365 */
2366 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2367
2368 if (ctx->nr_events)
2369 cpuctx->task_ctx = ctx;
2370
2371 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2372
2373 perf_pmu_enable(ctx->pmu);
2374 perf_ctx_unlock(cpuctx, ctx);
2375
2376 /*
2377 * Since these rotations are per-cpu, we need to ensure the
2378 * cpu-context we got scheduled on is actually rotating.
2379 */
2380 perf_pmu_rotate_start(ctx->pmu);
2381 }
2382
2383 /*
2384 * When sampling the branck stack in system-wide, it may be necessary
2385 * to flush the stack on context switch. This happens when the branch
2386 * stack does not tag its entries with the pid of the current task.
2387 * Otherwise it becomes impossible to associate a branch entry with a
2388 * task. This ambiguity is more likely to appear when the branch stack
2389 * supports priv level filtering and the user sets it to monitor only
2390 * at the user level (which could be a useful measurement in system-wide
2391 * mode). In that case, the risk is high of having a branch stack with
2392 * branch from multiple tasks. Flushing may mean dropping the existing
2393 * entries or stashing them somewhere in the PMU specific code layer.
2394 *
2395 * This function provides the context switch callback to the lower code
2396 * layer. It is invoked ONLY when there is at least one system-wide context
2397 * with at least one active event using taken branch sampling.
2398 */
perf_branch_stack_sched_in(struct task_struct * prev,struct task_struct * task)2399 static void perf_branch_stack_sched_in(struct task_struct *prev,
2400 struct task_struct *task)
2401 {
2402 struct perf_cpu_context *cpuctx;
2403 struct pmu *pmu;
2404 unsigned long flags;
2405
2406 /* no need to flush branch stack if not changing task */
2407 if (prev == task)
2408 return;
2409
2410 local_irq_save(flags);
2411
2412 rcu_read_lock();
2413
2414 list_for_each_entry_rcu(pmu, &pmus, entry) {
2415 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2416
2417 /*
2418 * check if the context has at least one
2419 * event using PERF_SAMPLE_BRANCH_STACK
2420 */
2421 if (cpuctx->ctx.nr_branch_stack > 0
2422 && pmu->flush_branch_stack) {
2423
2424 pmu = cpuctx->ctx.pmu;
2425
2426 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2427
2428 perf_pmu_disable(pmu);
2429
2430 pmu->flush_branch_stack();
2431
2432 perf_pmu_enable(pmu);
2433
2434 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2435 }
2436 }
2437
2438 rcu_read_unlock();
2439
2440 local_irq_restore(flags);
2441 }
2442
2443 /*
2444 * Called from scheduler to add the events of the current task
2445 * with interrupts disabled.
2446 *
2447 * We restore the event value and then enable it.
2448 *
2449 * This does not protect us against NMI, but enable()
2450 * sets the enabled bit in the control field of event _before_
2451 * accessing the event control register. If a NMI hits, then it will
2452 * keep the event running.
2453 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)2454 void __perf_event_task_sched_in(struct task_struct *prev,
2455 struct task_struct *task)
2456 {
2457 struct perf_event_context *ctx;
2458 int ctxn;
2459
2460 for_each_task_context_nr(ctxn) {
2461 ctx = task->perf_event_ctxp[ctxn];
2462 if (likely(!ctx))
2463 continue;
2464
2465 perf_event_context_sched_in(ctx, task);
2466 }
2467 /*
2468 * if cgroup events exist on this CPU, then we need
2469 * to check if we have to switch in PMU state.
2470 * cgroup event are system-wide mode only
2471 */
2472 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2473 perf_cgroup_sched_in(prev, task);
2474
2475 /* check for system-wide branch_stack events */
2476 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2477 perf_branch_stack_sched_in(prev, task);
2478 }
2479
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)2480 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2481 {
2482 u64 frequency = event->attr.sample_freq;
2483 u64 sec = NSEC_PER_SEC;
2484 u64 divisor, dividend;
2485
2486 int count_fls, nsec_fls, frequency_fls, sec_fls;
2487
2488 count_fls = fls64(count);
2489 nsec_fls = fls64(nsec);
2490 frequency_fls = fls64(frequency);
2491 sec_fls = 30;
2492
2493 /*
2494 * We got @count in @nsec, with a target of sample_freq HZ
2495 * the target period becomes:
2496 *
2497 * @count * 10^9
2498 * period = -------------------
2499 * @nsec * sample_freq
2500 *
2501 */
2502
2503 /*
2504 * Reduce accuracy by one bit such that @a and @b converge
2505 * to a similar magnitude.
2506 */
2507 #define REDUCE_FLS(a, b) \
2508 do { \
2509 if (a##_fls > b##_fls) { \
2510 a >>= 1; \
2511 a##_fls--; \
2512 } else { \
2513 b >>= 1; \
2514 b##_fls--; \
2515 } \
2516 } while (0)
2517
2518 /*
2519 * Reduce accuracy until either term fits in a u64, then proceed with
2520 * the other, so that finally we can do a u64/u64 division.
2521 */
2522 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2523 REDUCE_FLS(nsec, frequency);
2524 REDUCE_FLS(sec, count);
2525 }
2526
2527 if (count_fls + sec_fls > 64) {
2528 divisor = nsec * frequency;
2529
2530 while (count_fls + sec_fls > 64) {
2531 REDUCE_FLS(count, sec);
2532 divisor >>= 1;
2533 }
2534
2535 dividend = count * sec;
2536 } else {
2537 dividend = count * sec;
2538
2539 while (nsec_fls + frequency_fls > 64) {
2540 REDUCE_FLS(nsec, frequency);
2541 dividend >>= 1;
2542 }
2543
2544 divisor = nsec * frequency;
2545 }
2546
2547 if (!divisor)
2548 return dividend;
2549
2550 return div64_u64(dividend, divisor);
2551 }
2552
2553 static DEFINE_PER_CPU(int, perf_throttled_count);
2554 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2555
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)2556 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2557 {
2558 struct hw_perf_event *hwc = &event->hw;
2559 s64 period, sample_period;
2560 s64 delta;
2561
2562 period = perf_calculate_period(event, nsec, count);
2563
2564 delta = (s64)(period - hwc->sample_period);
2565 delta = (delta + 7) / 8; /* low pass filter */
2566
2567 sample_period = hwc->sample_period + delta;
2568
2569 if (!sample_period)
2570 sample_period = 1;
2571
2572 hwc->sample_period = sample_period;
2573
2574 if (local64_read(&hwc->period_left) > 8*sample_period) {
2575 if (disable)
2576 event->pmu->stop(event, PERF_EF_UPDATE);
2577
2578 local64_set(&hwc->period_left, 0);
2579
2580 if (disable)
2581 event->pmu->start(event, PERF_EF_RELOAD);
2582 }
2583 }
2584
2585 /*
2586 * combine freq adjustment with unthrottling to avoid two passes over the
2587 * events. At the same time, make sure, having freq events does not change
2588 * the rate of unthrottling as that would introduce bias.
2589 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)2590 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2591 int needs_unthr)
2592 {
2593 struct perf_event *event;
2594 struct hw_perf_event *hwc;
2595 u64 now, period = TICK_NSEC;
2596 s64 delta;
2597
2598 /*
2599 * only need to iterate over all events iff:
2600 * - context have events in frequency mode (needs freq adjust)
2601 * - there are events to unthrottle on this cpu
2602 */
2603 if (!(ctx->nr_freq || needs_unthr))
2604 return;
2605
2606 raw_spin_lock(&ctx->lock);
2607 perf_pmu_disable(ctx->pmu);
2608
2609 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2610 if (event->state != PERF_EVENT_STATE_ACTIVE)
2611 continue;
2612
2613 if (!event_filter_match(event))
2614 continue;
2615
2616 hwc = &event->hw;
2617
2618 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2619 hwc->interrupts = 0;
2620 perf_log_throttle(event, 1);
2621 event->pmu->start(event, 0);
2622 }
2623
2624 if (!event->attr.freq || !event->attr.sample_freq)
2625 continue;
2626
2627 /*
2628 * stop the event and update event->count
2629 */
2630 event->pmu->stop(event, PERF_EF_UPDATE);
2631
2632 now = local64_read(&event->count);
2633 delta = now - hwc->freq_count_stamp;
2634 hwc->freq_count_stamp = now;
2635
2636 /*
2637 * restart the event
2638 * reload only if value has changed
2639 * we have stopped the event so tell that
2640 * to perf_adjust_period() to avoid stopping it
2641 * twice.
2642 */
2643 if (delta > 0)
2644 perf_adjust_period(event, period, delta, false);
2645
2646 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2647 }
2648
2649 perf_pmu_enable(ctx->pmu);
2650 raw_spin_unlock(&ctx->lock);
2651 }
2652
2653 /*
2654 * Round-robin a context's events:
2655 */
rotate_ctx(struct perf_event_context * ctx)2656 static void rotate_ctx(struct perf_event_context *ctx)
2657 {
2658 /*
2659 * Rotate the first entry last of non-pinned groups. Rotation might be
2660 * disabled by the inheritance code.
2661 */
2662 if (!ctx->rotate_disable)
2663 list_rotate_left(&ctx->flexible_groups);
2664 }
2665
2666 /*
2667 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2668 * because they're strictly cpu affine and rotate_start is called with IRQs
2669 * disabled, while rotate_context is called from IRQ context.
2670 */
perf_rotate_context(struct perf_cpu_context * cpuctx)2671 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2672 {
2673 struct perf_event_context *ctx = NULL;
2674 int rotate = 0, remove = 1;
2675
2676 if (cpuctx->ctx.nr_events) {
2677 remove = 0;
2678 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2679 rotate = 1;
2680 }
2681
2682 ctx = cpuctx->task_ctx;
2683 if (ctx && ctx->nr_events) {
2684 remove = 0;
2685 if (ctx->nr_events != ctx->nr_active)
2686 rotate = 1;
2687 }
2688
2689 if (!rotate)
2690 goto done;
2691
2692 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2693 perf_pmu_disable(cpuctx->ctx.pmu);
2694
2695 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2696 if (ctx)
2697 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2698
2699 rotate_ctx(&cpuctx->ctx);
2700 if (ctx)
2701 rotate_ctx(ctx);
2702
2703 perf_event_sched_in(cpuctx, ctx, current);
2704
2705 perf_pmu_enable(cpuctx->ctx.pmu);
2706 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2707 done:
2708 if (remove)
2709 list_del_init(&cpuctx->rotation_list);
2710 }
2711
2712 #ifdef CONFIG_NO_HZ_FULL
perf_event_can_stop_tick(void)2713 bool perf_event_can_stop_tick(void)
2714 {
2715 if (list_empty(&__get_cpu_var(rotation_list)))
2716 return true;
2717 else
2718 return false;
2719 }
2720 #endif
2721
perf_event_task_tick(void)2722 void perf_event_task_tick(void)
2723 {
2724 struct list_head *head = &__get_cpu_var(rotation_list);
2725 struct perf_cpu_context *cpuctx, *tmp;
2726 struct perf_event_context *ctx;
2727 int throttled;
2728
2729 WARN_ON(!irqs_disabled());
2730
2731 __this_cpu_inc(perf_throttled_seq);
2732 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2733
2734 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2735 ctx = &cpuctx->ctx;
2736 perf_adjust_freq_unthr_context(ctx, throttled);
2737
2738 ctx = cpuctx->task_ctx;
2739 if (ctx)
2740 perf_adjust_freq_unthr_context(ctx, throttled);
2741
2742 if (cpuctx->jiffies_interval == 1 ||
2743 !(jiffies % cpuctx->jiffies_interval))
2744 perf_rotate_context(cpuctx);
2745 }
2746 }
2747
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)2748 static int event_enable_on_exec(struct perf_event *event,
2749 struct perf_event_context *ctx)
2750 {
2751 if (!event->attr.enable_on_exec)
2752 return 0;
2753
2754 event->attr.enable_on_exec = 0;
2755 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2756 return 0;
2757
2758 __perf_event_mark_enabled(event);
2759
2760 return 1;
2761 }
2762
2763 /*
2764 * Enable all of a task's events that have been marked enable-on-exec.
2765 * This expects task == current.
2766 */
perf_event_enable_on_exec(struct perf_event_context * ctx)2767 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2768 {
2769 struct perf_event *event;
2770 unsigned long flags;
2771 int enabled = 0;
2772 int ret;
2773
2774 local_irq_save(flags);
2775 if (!ctx || !ctx->nr_events)
2776 goto out;
2777
2778 /*
2779 * We must ctxsw out cgroup events to avoid conflict
2780 * when invoking perf_task_event_sched_in() later on
2781 * in this function. Otherwise we end up trying to
2782 * ctxswin cgroup events which are already scheduled
2783 * in.
2784 */
2785 perf_cgroup_sched_out(current, NULL);
2786
2787 raw_spin_lock(&ctx->lock);
2788 task_ctx_sched_out(ctx);
2789
2790 list_for_each_entry(event, &ctx->event_list, event_entry) {
2791 ret = event_enable_on_exec(event, ctx);
2792 if (ret)
2793 enabled = 1;
2794 }
2795
2796 /*
2797 * Unclone this context if we enabled any event.
2798 */
2799 if (enabled)
2800 unclone_ctx(ctx);
2801
2802 raw_spin_unlock(&ctx->lock);
2803
2804 /*
2805 * Also calls ctxswin for cgroup events, if any:
2806 */
2807 perf_event_context_sched_in(ctx, ctx->task);
2808 out:
2809 local_irq_restore(flags);
2810 }
2811
2812 /*
2813 * Cross CPU call to read the hardware event
2814 */
__perf_event_read(void * info)2815 static void __perf_event_read(void *info)
2816 {
2817 struct perf_event *event = info;
2818 struct perf_event_context *ctx = event->ctx;
2819 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2820
2821 /*
2822 * If this is a task context, we need to check whether it is
2823 * the current task context of this cpu. If not it has been
2824 * scheduled out before the smp call arrived. In that case
2825 * event->count would have been updated to a recent sample
2826 * when the event was scheduled out.
2827 */
2828 if (ctx->task && cpuctx->task_ctx != ctx)
2829 return;
2830
2831 raw_spin_lock(&ctx->lock);
2832 if (ctx->is_active) {
2833 update_context_time(ctx);
2834 update_cgrp_time_from_event(event);
2835 }
2836 update_event_times(event);
2837 if (event->state == PERF_EVENT_STATE_ACTIVE)
2838 event->pmu->read(event);
2839 raw_spin_unlock(&ctx->lock);
2840 }
2841
perf_event_count(struct perf_event * event)2842 static inline u64 perf_event_count(struct perf_event *event)
2843 {
2844 return local64_read(&event->count) + atomic64_read(&event->child_count);
2845 }
2846
perf_event_read(struct perf_event * event)2847 static u64 perf_event_read(struct perf_event *event)
2848 {
2849 /*
2850 * If event is enabled and currently active on a CPU, update the
2851 * value in the event structure:
2852 */
2853 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2854 smp_call_function_single(event->oncpu,
2855 __perf_event_read, event, 1);
2856 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2857 struct perf_event_context *ctx = event->ctx;
2858 unsigned long flags;
2859
2860 raw_spin_lock_irqsave(&ctx->lock, flags);
2861 /*
2862 * may read while context is not active
2863 * (e.g., thread is blocked), in that case
2864 * we cannot update context time
2865 */
2866 if (ctx->is_active) {
2867 update_context_time(ctx);
2868 update_cgrp_time_from_event(event);
2869 }
2870 update_event_times(event);
2871 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2872 }
2873
2874 return perf_event_count(event);
2875 }
2876
2877 /*
2878 * Initialize the perf_event context in a task_struct:
2879 */
__perf_event_init_context(struct perf_event_context * ctx)2880 static void __perf_event_init_context(struct perf_event_context *ctx)
2881 {
2882 raw_spin_lock_init(&ctx->lock);
2883 mutex_init(&ctx->mutex);
2884 INIT_LIST_HEAD(&ctx->pinned_groups);
2885 INIT_LIST_HEAD(&ctx->flexible_groups);
2886 INIT_LIST_HEAD(&ctx->event_list);
2887 atomic_set(&ctx->refcount, 1);
2888 }
2889
2890 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)2891 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2892 {
2893 struct perf_event_context *ctx;
2894
2895 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2896 if (!ctx)
2897 return NULL;
2898
2899 __perf_event_init_context(ctx);
2900 if (task) {
2901 ctx->task = task;
2902 get_task_struct(task);
2903 }
2904 ctx->pmu = pmu;
2905
2906 return ctx;
2907 }
2908
2909 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)2910 find_lively_task_by_vpid(pid_t vpid)
2911 {
2912 struct task_struct *task;
2913 int err;
2914
2915 rcu_read_lock();
2916 if (!vpid)
2917 task = current;
2918 else
2919 task = find_task_by_vpid(vpid);
2920 if (task)
2921 get_task_struct(task);
2922 rcu_read_unlock();
2923
2924 if (!task)
2925 return ERR_PTR(-ESRCH);
2926
2927 /* Reuse ptrace permission checks for now. */
2928 err = -EACCES;
2929 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2930 goto errout;
2931
2932 return task;
2933 errout:
2934 put_task_struct(task);
2935 return ERR_PTR(err);
2936
2937 }
2938
2939 /*
2940 * Returns a matching context with refcount and pincount.
2941 */
2942 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,int cpu)2943 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2944 {
2945 struct perf_event_context *ctx;
2946 struct perf_cpu_context *cpuctx;
2947 unsigned long flags;
2948 int ctxn, err;
2949
2950 if (!task) {
2951 /* Must be root to operate on a CPU event: */
2952 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2953 return ERR_PTR(-EACCES);
2954
2955 /*
2956 * We could be clever and allow to attach a event to an
2957 * offline CPU and activate it when the CPU comes up, but
2958 * that's for later.
2959 */
2960 if (!cpu_online(cpu))
2961 return ERR_PTR(-ENODEV);
2962
2963 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2964 ctx = &cpuctx->ctx;
2965 get_ctx(ctx);
2966 ++ctx->pin_count;
2967
2968 return ctx;
2969 }
2970
2971 err = -EINVAL;
2972 ctxn = pmu->task_ctx_nr;
2973 if (ctxn < 0)
2974 goto errout;
2975
2976 retry:
2977 ctx = perf_lock_task_context(task, ctxn, &flags);
2978 if (ctx) {
2979 unclone_ctx(ctx);
2980 ++ctx->pin_count;
2981 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2982 } else {
2983 ctx = alloc_perf_context(pmu, task);
2984 err = -ENOMEM;
2985 if (!ctx)
2986 goto errout;
2987
2988 err = 0;
2989 mutex_lock(&task->perf_event_mutex);
2990 /*
2991 * If it has already passed perf_event_exit_task().
2992 * we must see PF_EXITING, it takes this mutex too.
2993 */
2994 if (task->flags & PF_EXITING)
2995 err = -ESRCH;
2996 else if (task->perf_event_ctxp[ctxn])
2997 err = -EAGAIN;
2998 else {
2999 get_ctx(ctx);
3000 ++ctx->pin_count;
3001 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3002 }
3003 mutex_unlock(&task->perf_event_mutex);
3004
3005 if (unlikely(err)) {
3006 put_ctx(ctx);
3007
3008 if (err == -EAGAIN)
3009 goto retry;
3010 goto errout;
3011 }
3012 }
3013
3014 return ctx;
3015
3016 errout:
3017 return ERR_PTR(err);
3018 }
3019
3020 static void perf_event_free_filter(struct perf_event *event);
3021
free_event_rcu(struct rcu_head * head)3022 static void free_event_rcu(struct rcu_head *head)
3023 {
3024 struct perf_event *event;
3025
3026 event = container_of(head, struct perf_event, rcu_head);
3027 if (event->ns)
3028 put_pid_ns(event->ns);
3029 perf_event_free_filter(event);
3030 kfree(event);
3031 }
3032
3033 static void ring_buffer_put(struct ring_buffer *rb);
3034 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3035
free_event(struct perf_event * event)3036 static void free_event(struct perf_event *event)
3037 {
3038 irq_work_sync(&event->pending);
3039
3040 if (!event->parent) {
3041 if (event->attach_state & PERF_ATTACH_TASK)
3042 static_key_slow_dec_deferred(&perf_sched_events);
3043 if (event->attr.mmap || event->attr.mmap_data)
3044 atomic_dec(&nr_mmap_events);
3045 if (event->attr.comm)
3046 atomic_dec(&nr_comm_events);
3047 if (event->attr.task)
3048 atomic_dec(&nr_task_events);
3049 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3050 put_callchain_buffers();
3051 if (is_cgroup_event(event)) {
3052 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3053 static_key_slow_dec_deferred(&perf_sched_events);
3054 }
3055
3056 if (has_branch_stack(event)) {
3057 static_key_slow_dec_deferred(&perf_sched_events);
3058 /* is system-wide event */
3059 if (!(event->attach_state & PERF_ATTACH_TASK)) {
3060 atomic_dec(&per_cpu(perf_branch_stack_events,
3061 event->cpu));
3062 }
3063 }
3064 }
3065
3066 if (event->rb) {
3067 struct ring_buffer *rb;
3068
3069 /*
3070 * Can happen when we close an event with re-directed output.
3071 *
3072 * Since we have a 0 refcount, perf_mmap_close() will skip
3073 * over us; possibly making our ring_buffer_put() the last.
3074 */
3075 mutex_lock(&event->mmap_mutex);
3076 rb = event->rb;
3077 if (rb) {
3078 rcu_assign_pointer(event->rb, NULL);
3079 ring_buffer_detach(event, rb);
3080 ring_buffer_put(rb); /* could be last */
3081 }
3082 mutex_unlock(&event->mmap_mutex);
3083 }
3084
3085 if (is_cgroup_event(event))
3086 perf_detach_cgroup(event);
3087
3088 if (event->destroy)
3089 event->destroy(event);
3090
3091 if (event->ctx)
3092 put_ctx(event->ctx);
3093
3094 call_rcu(&event->rcu_head, free_event_rcu);
3095 }
3096
perf_event_release_kernel(struct perf_event * event)3097 int perf_event_release_kernel(struct perf_event *event)
3098 {
3099 struct perf_event_context *ctx = event->ctx;
3100
3101 WARN_ON_ONCE(ctx->parent_ctx);
3102 /*
3103 * There are two ways this annotation is useful:
3104 *
3105 * 1) there is a lock recursion from perf_event_exit_task
3106 * see the comment there.
3107 *
3108 * 2) there is a lock-inversion with mmap_sem through
3109 * perf_event_read_group(), which takes faults while
3110 * holding ctx->mutex, however this is called after
3111 * the last filedesc died, so there is no possibility
3112 * to trigger the AB-BA case.
3113 */
3114 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3115 raw_spin_lock_irq(&ctx->lock);
3116 perf_group_detach(event);
3117 raw_spin_unlock_irq(&ctx->lock);
3118 perf_remove_from_context(event);
3119 mutex_unlock(&ctx->mutex);
3120
3121 free_event(event);
3122
3123 return 0;
3124 }
3125 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3126
3127 /*
3128 * Called when the last reference to the file is gone.
3129 */
put_event(struct perf_event * event)3130 static void put_event(struct perf_event *event)
3131 {
3132 struct task_struct *owner;
3133
3134 if (!atomic_long_dec_and_test(&event->refcount))
3135 return;
3136
3137 rcu_read_lock();
3138 owner = ACCESS_ONCE(event->owner);
3139 /*
3140 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3141 * !owner it means the list deletion is complete and we can indeed
3142 * free this event, otherwise we need to serialize on
3143 * owner->perf_event_mutex.
3144 */
3145 smp_read_barrier_depends();
3146 if (owner) {
3147 /*
3148 * Since delayed_put_task_struct() also drops the last
3149 * task reference we can safely take a new reference
3150 * while holding the rcu_read_lock().
3151 */
3152 get_task_struct(owner);
3153 }
3154 rcu_read_unlock();
3155
3156 if (owner) {
3157 /*
3158 * If we're here through perf_event_exit_task() we're already
3159 * holding ctx->mutex which would be an inversion wrt. the
3160 * normal lock order.
3161 *
3162 * However we can safely take this lock because its the child
3163 * ctx->mutex.
3164 */
3165 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3166
3167 /*
3168 * We have to re-check the event->owner field, if it is cleared
3169 * we raced with perf_event_exit_task(), acquiring the mutex
3170 * ensured they're done, and we can proceed with freeing the
3171 * event.
3172 */
3173 if (event->owner)
3174 list_del_init(&event->owner_entry);
3175 mutex_unlock(&owner->perf_event_mutex);
3176 put_task_struct(owner);
3177 }
3178
3179 perf_event_release_kernel(event);
3180 }
3181
perf_release(struct inode * inode,struct file * file)3182 static int perf_release(struct inode *inode, struct file *file)
3183 {
3184 put_event(file->private_data);
3185 return 0;
3186 }
3187
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)3188 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3189 {
3190 struct perf_event *child;
3191 u64 total = 0;
3192
3193 *enabled = 0;
3194 *running = 0;
3195
3196 mutex_lock(&event->child_mutex);
3197 total += perf_event_read(event);
3198 *enabled += event->total_time_enabled +
3199 atomic64_read(&event->child_total_time_enabled);
3200 *running += event->total_time_running +
3201 atomic64_read(&event->child_total_time_running);
3202
3203 list_for_each_entry(child, &event->child_list, child_list) {
3204 total += perf_event_read(child);
3205 *enabled += child->total_time_enabled;
3206 *running += child->total_time_running;
3207 }
3208 mutex_unlock(&event->child_mutex);
3209
3210 return total;
3211 }
3212 EXPORT_SYMBOL_GPL(perf_event_read_value);
3213
perf_event_read_group(struct perf_event * event,u64 read_format,char __user * buf)3214 static int perf_event_read_group(struct perf_event *event,
3215 u64 read_format, char __user *buf)
3216 {
3217 struct perf_event *leader = event->group_leader, *sub;
3218 struct perf_event_context *ctx = leader->ctx;
3219 int n = 0, size = 0, ret;
3220 u64 count, enabled, running;
3221 u64 values[5];
3222
3223 lockdep_assert_held(&ctx->mutex);
3224
3225 count = perf_event_read_value(leader, &enabled, &running);
3226
3227 values[n++] = 1 + leader->nr_siblings;
3228 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3229 values[n++] = enabled;
3230 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3231 values[n++] = running;
3232 values[n++] = count;
3233 if (read_format & PERF_FORMAT_ID)
3234 values[n++] = primary_event_id(leader);
3235
3236 size = n * sizeof(u64);
3237
3238 if (copy_to_user(buf, values, size))
3239 return -EFAULT;
3240
3241 ret = size;
3242
3243 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3244 n = 0;
3245
3246 values[n++] = perf_event_read_value(sub, &enabled, &running);
3247 if (read_format & PERF_FORMAT_ID)
3248 values[n++] = primary_event_id(sub);
3249
3250 size = n * sizeof(u64);
3251
3252 if (copy_to_user(buf + ret, values, size)) {
3253 return -EFAULT;
3254 }
3255
3256 ret += size;
3257 }
3258
3259 return ret;
3260 }
3261
perf_event_read_one(struct perf_event * event,u64 read_format,char __user * buf)3262 static int perf_event_read_one(struct perf_event *event,
3263 u64 read_format, char __user *buf)
3264 {
3265 u64 enabled, running;
3266 u64 values[4];
3267 int n = 0;
3268
3269 values[n++] = perf_event_read_value(event, &enabled, &running);
3270 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3271 values[n++] = enabled;
3272 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3273 values[n++] = running;
3274 if (read_format & PERF_FORMAT_ID)
3275 values[n++] = primary_event_id(event);
3276
3277 if (copy_to_user(buf, values, n * sizeof(u64)))
3278 return -EFAULT;
3279
3280 return n * sizeof(u64);
3281 }
3282
3283 /*
3284 * Read the performance event - simple non blocking version for now
3285 */
3286 static ssize_t
perf_read_hw(struct perf_event * event,char __user * buf,size_t count)3287 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3288 {
3289 u64 read_format = event->attr.read_format;
3290 int ret;
3291
3292 /*
3293 * Return end-of-file for a read on a event that is in
3294 * error state (i.e. because it was pinned but it couldn't be
3295 * scheduled on to the CPU at some point).
3296 */
3297 if (event->state == PERF_EVENT_STATE_ERROR)
3298 return 0;
3299
3300 if (count < event->read_size)
3301 return -ENOSPC;
3302
3303 WARN_ON_ONCE(event->ctx->parent_ctx);
3304 if (read_format & PERF_FORMAT_GROUP)
3305 ret = perf_event_read_group(event, read_format, buf);
3306 else
3307 ret = perf_event_read_one(event, read_format, buf);
3308
3309 return ret;
3310 }
3311
3312 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3313 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3314 {
3315 struct perf_event *event = file->private_data;
3316 struct perf_event_context *ctx;
3317 int ret;
3318
3319 ctx = perf_event_ctx_lock(event);
3320 ret = perf_read_hw(event, buf, count);
3321 perf_event_ctx_unlock(event, ctx);
3322
3323 return ret;
3324 }
3325
perf_poll(struct file * file,poll_table * wait)3326 static unsigned int perf_poll(struct file *file, poll_table *wait)
3327 {
3328 struct perf_event *event = file->private_data;
3329 struct ring_buffer *rb;
3330 unsigned int events = POLL_HUP;
3331
3332 /*
3333 * Pin the event->rb by taking event->mmap_mutex; otherwise
3334 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3335 */
3336 mutex_lock(&event->mmap_mutex);
3337 rb = event->rb;
3338 if (rb)
3339 events = atomic_xchg(&rb->poll, 0);
3340 mutex_unlock(&event->mmap_mutex);
3341
3342 poll_wait(file, &event->waitq, wait);
3343
3344 return events;
3345 }
3346
_perf_event_reset(struct perf_event * event)3347 static void _perf_event_reset(struct perf_event *event)
3348 {
3349 (void)perf_event_read(event);
3350 local64_set(&event->count, 0);
3351 perf_event_update_userpage(event);
3352 }
3353
3354 /*
3355 * Holding the top-level event's child_mutex means that any
3356 * descendant process that has inherited this event will block
3357 * in sync_child_event if it goes to exit, thus satisfying the
3358 * task existence requirements of perf_event_enable/disable.
3359 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))3360 static void perf_event_for_each_child(struct perf_event *event,
3361 void (*func)(struct perf_event *))
3362 {
3363 struct perf_event *child;
3364
3365 WARN_ON_ONCE(event->ctx->parent_ctx);
3366
3367 mutex_lock(&event->child_mutex);
3368 func(event);
3369 list_for_each_entry(child, &event->child_list, child_list)
3370 func(child);
3371 mutex_unlock(&event->child_mutex);
3372 }
3373
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))3374 static void perf_event_for_each(struct perf_event *event,
3375 void (*func)(struct perf_event *))
3376 {
3377 struct perf_event_context *ctx = event->ctx;
3378 struct perf_event *sibling;
3379
3380 lockdep_assert_held(&ctx->mutex);
3381
3382 event = event->group_leader;
3383
3384 perf_event_for_each_child(event, func);
3385 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3386 perf_event_for_each_child(sibling, func);
3387 }
3388
perf_event_period(struct perf_event * event,u64 __user * arg)3389 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3390 {
3391 struct perf_event_context *ctx = event->ctx;
3392 int ret = 0;
3393 u64 value;
3394
3395 if (!is_sampling_event(event))
3396 return -EINVAL;
3397
3398 if (copy_from_user(&value, arg, sizeof(value)))
3399 return -EFAULT;
3400
3401 if (!value)
3402 return -EINVAL;
3403
3404 raw_spin_lock_irq(&ctx->lock);
3405 if (event->attr.freq) {
3406 if (value > sysctl_perf_event_sample_rate) {
3407 ret = -EINVAL;
3408 goto unlock;
3409 }
3410
3411 event->attr.sample_freq = value;
3412 } else {
3413 event->attr.sample_period = value;
3414 event->hw.sample_period = value;
3415 }
3416 unlock:
3417 raw_spin_unlock_irq(&ctx->lock);
3418
3419 return ret;
3420 }
3421
3422 static const struct file_operations perf_fops;
3423
perf_fget_light(int fd,struct fd * p)3424 static inline int perf_fget_light(int fd, struct fd *p)
3425 {
3426 struct fd f = fdget(fd);
3427 if (!f.file)
3428 return -EBADF;
3429
3430 if (f.file->f_op != &perf_fops) {
3431 fdput(f);
3432 return -EBADF;
3433 }
3434 *p = f;
3435 return 0;
3436 }
3437
3438 static int perf_event_set_output(struct perf_event *event,
3439 struct perf_event *output_event);
3440 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3441
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)3442 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3443 {
3444 void (*func)(struct perf_event *);
3445 u32 flags = arg;
3446
3447 switch (cmd) {
3448 case PERF_EVENT_IOC_ENABLE:
3449 func = _perf_event_enable;
3450 break;
3451 case PERF_EVENT_IOC_DISABLE:
3452 func = _perf_event_disable;
3453 break;
3454 case PERF_EVENT_IOC_RESET:
3455 func = _perf_event_reset;
3456 break;
3457
3458 case PERF_EVENT_IOC_REFRESH:
3459 return _perf_event_refresh(event, arg);
3460
3461 case PERF_EVENT_IOC_PERIOD:
3462 return perf_event_period(event, (u64 __user *)arg);
3463
3464 case PERF_EVENT_IOC_SET_OUTPUT:
3465 {
3466 int ret;
3467 if (arg != -1) {
3468 struct perf_event *output_event;
3469 struct fd output;
3470 ret = perf_fget_light(arg, &output);
3471 if (ret)
3472 return ret;
3473 output_event = output.file->private_data;
3474 ret = perf_event_set_output(event, output_event);
3475 fdput(output);
3476 } else {
3477 ret = perf_event_set_output(event, NULL);
3478 }
3479 return ret;
3480 }
3481
3482 case PERF_EVENT_IOC_SET_FILTER:
3483 return perf_event_set_filter(event, (void __user *)arg);
3484
3485 default:
3486 return -ENOTTY;
3487 }
3488
3489 if (flags & PERF_IOC_FLAG_GROUP)
3490 perf_event_for_each(event, func);
3491 else
3492 perf_event_for_each_child(event, func);
3493
3494 return 0;
3495 }
3496
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3497 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3498 {
3499 struct perf_event *event = file->private_data;
3500 struct perf_event_context *ctx;
3501 long ret;
3502
3503 ctx = perf_event_ctx_lock(event);
3504 ret = _perf_ioctl(event, cmd, arg);
3505 perf_event_ctx_unlock(event, ctx);
3506
3507 return ret;
3508 }
3509
perf_event_task_enable(void)3510 int perf_event_task_enable(void)
3511 {
3512 struct perf_event_context *ctx;
3513 struct perf_event *event;
3514
3515 mutex_lock(¤t->perf_event_mutex);
3516 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
3517 ctx = perf_event_ctx_lock(event);
3518 perf_event_for_each_child(event, _perf_event_enable);
3519 perf_event_ctx_unlock(event, ctx);
3520 }
3521 mutex_unlock(¤t->perf_event_mutex);
3522
3523 return 0;
3524 }
3525
perf_event_task_disable(void)3526 int perf_event_task_disable(void)
3527 {
3528 struct perf_event_context *ctx;
3529 struct perf_event *event;
3530
3531 mutex_lock(¤t->perf_event_mutex);
3532 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
3533 ctx = perf_event_ctx_lock(event);
3534 perf_event_for_each_child(event, _perf_event_disable);
3535 perf_event_ctx_unlock(event, ctx);
3536 }
3537 mutex_unlock(¤t->perf_event_mutex);
3538
3539 return 0;
3540 }
3541
perf_event_index(struct perf_event * event)3542 static int perf_event_index(struct perf_event *event)
3543 {
3544 if (event->hw.state & PERF_HES_STOPPED)
3545 return 0;
3546
3547 if (event->state != PERF_EVENT_STATE_ACTIVE)
3548 return 0;
3549
3550 return event->pmu->event_idx(event);
3551 }
3552
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)3553 static void calc_timer_values(struct perf_event *event,
3554 u64 *now,
3555 u64 *enabled,
3556 u64 *running)
3557 {
3558 u64 ctx_time;
3559
3560 *now = perf_clock();
3561 ctx_time = event->shadow_ctx_time + *now;
3562 *enabled = ctx_time - event->tstamp_enabled;
3563 *running = ctx_time - event->tstamp_running;
3564 }
3565
arch_perf_update_userpage(struct perf_event_mmap_page * userpg,u64 now)3566 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3567 {
3568 }
3569
3570 /*
3571 * Callers need to ensure there can be no nesting of this function, otherwise
3572 * the seqlock logic goes bad. We can not serialize this because the arch
3573 * code calls this from NMI context.
3574 */
perf_event_update_userpage(struct perf_event * event)3575 void perf_event_update_userpage(struct perf_event *event)
3576 {
3577 struct perf_event_mmap_page *userpg;
3578 struct ring_buffer *rb;
3579 u64 enabled, running, now;
3580
3581 rcu_read_lock();
3582 /*
3583 * compute total_time_enabled, total_time_running
3584 * based on snapshot values taken when the event
3585 * was last scheduled in.
3586 *
3587 * we cannot simply called update_context_time()
3588 * because of locking issue as we can be called in
3589 * NMI context
3590 */
3591 calc_timer_values(event, &now, &enabled, &running);
3592 rb = rcu_dereference(event->rb);
3593 if (!rb)
3594 goto unlock;
3595
3596 userpg = rb->user_page;
3597
3598 /*
3599 * Disable preemption so as to not let the corresponding user-space
3600 * spin too long if we get preempted.
3601 */
3602 preempt_disable();
3603 ++userpg->lock;
3604 barrier();
3605 userpg->index = perf_event_index(event);
3606 userpg->offset = perf_event_count(event);
3607 if (userpg->index)
3608 userpg->offset -= local64_read(&event->hw.prev_count);
3609
3610 userpg->time_enabled = enabled +
3611 atomic64_read(&event->child_total_time_enabled);
3612
3613 userpg->time_running = running +
3614 atomic64_read(&event->child_total_time_running);
3615
3616 arch_perf_update_userpage(userpg, now);
3617
3618 barrier();
3619 ++userpg->lock;
3620 preempt_enable();
3621 unlock:
3622 rcu_read_unlock();
3623 }
3624
perf_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3625 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3626 {
3627 struct perf_event *event = vma->vm_file->private_data;
3628 struct ring_buffer *rb;
3629 int ret = VM_FAULT_SIGBUS;
3630
3631 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3632 if (vmf->pgoff == 0)
3633 ret = 0;
3634 return ret;
3635 }
3636
3637 rcu_read_lock();
3638 rb = rcu_dereference(event->rb);
3639 if (!rb)
3640 goto unlock;
3641
3642 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3643 goto unlock;
3644
3645 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3646 if (!vmf->page)
3647 goto unlock;
3648
3649 get_page(vmf->page);
3650 vmf->page->mapping = vma->vm_file->f_mapping;
3651 vmf->page->index = vmf->pgoff;
3652
3653 ret = 0;
3654 unlock:
3655 rcu_read_unlock();
3656
3657 return ret;
3658 }
3659
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)3660 static void ring_buffer_attach(struct perf_event *event,
3661 struct ring_buffer *rb)
3662 {
3663 unsigned long flags;
3664
3665 if (!list_empty(&event->rb_entry))
3666 return;
3667
3668 spin_lock_irqsave(&rb->event_lock, flags);
3669 if (list_empty(&event->rb_entry))
3670 list_add(&event->rb_entry, &rb->event_list);
3671 spin_unlock_irqrestore(&rb->event_lock, flags);
3672 }
3673
ring_buffer_detach(struct perf_event * event,struct ring_buffer * rb)3674 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3675 {
3676 unsigned long flags;
3677
3678 if (list_empty(&event->rb_entry))
3679 return;
3680
3681 spin_lock_irqsave(&rb->event_lock, flags);
3682 list_del_init(&event->rb_entry);
3683 wake_up_all(&event->waitq);
3684 spin_unlock_irqrestore(&rb->event_lock, flags);
3685 }
3686
ring_buffer_wakeup(struct perf_event * event)3687 static void ring_buffer_wakeup(struct perf_event *event)
3688 {
3689 struct ring_buffer *rb;
3690
3691 rcu_read_lock();
3692 rb = rcu_dereference(event->rb);
3693 if (rb) {
3694 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3695 wake_up_all(&event->waitq);
3696 }
3697 rcu_read_unlock();
3698 }
3699
rb_free_rcu(struct rcu_head * rcu_head)3700 static void rb_free_rcu(struct rcu_head *rcu_head)
3701 {
3702 struct ring_buffer *rb;
3703
3704 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3705 rb_free(rb);
3706 }
3707
ring_buffer_get(struct perf_event * event)3708 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3709 {
3710 struct ring_buffer *rb;
3711
3712 rcu_read_lock();
3713 rb = rcu_dereference(event->rb);
3714 if (rb) {
3715 if (!atomic_inc_not_zero(&rb->refcount))
3716 rb = NULL;
3717 }
3718 rcu_read_unlock();
3719
3720 return rb;
3721 }
3722
ring_buffer_put(struct ring_buffer * rb)3723 static void ring_buffer_put(struct ring_buffer *rb)
3724 {
3725 if (!atomic_dec_and_test(&rb->refcount))
3726 return;
3727
3728 WARN_ON_ONCE(!list_empty(&rb->event_list));
3729
3730 call_rcu(&rb->rcu_head, rb_free_rcu);
3731 }
3732
perf_mmap_open(struct vm_area_struct * vma)3733 static void perf_mmap_open(struct vm_area_struct *vma)
3734 {
3735 struct perf_event *event = vma->vm_file->private_data;
3736
3737 atomic_inc(&event->mmap_count);
3738 atomic_inc(&event->rb->mmap_count);
3739 }
3740
3741 /*
3742 * A buffer can be mmap()ed multiple times; either directly through the same
3743 * event, or through other events by use of perf_event_set_output().
3744 *
3745 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3746 * the buffer here, where we still have a VM context. This means we need
3747 * to detach all events redirecting to us.
3748 */
perf_mmap_close(struct vm_area_struct * vma)3749 static void perf_mmap_close(struct vm_area_struct *vma)
3750 {
3751 struct perf_event *event = vma->vm_file->private_data;
3752
3753 struct ring_buffer *rb = event->rb;
3754 struct user_struct *mmap_user = rb->mmap_user;
3755 int mmap_locked = rb->mmap_locked;
3756 unsigned long size = perf_data_size(rb);
3757
3758 atomic_dec(&rb->mmap_count);
3759
3760 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3761 return;
3762
3763 /* Detach current event from the buffer. */
3764 rcu_assign_pointer(event->rb, NULL);
3765 ring_buffer_detach(event, rb);
3766 mutex_unlock(&event->mmap_mutex);
3767
3768 /* If there's still other mmap()s of this buffer, we're done. */
3769 if (atomic_read(&rb->mmap_count)) {
3770 ring_buffer_put(rb); /* can't be last */
3771 return;
3772 }
3773
3774 /*
3775 * No other mmap()s, detach from all other events that might redirect
3776 * into the now unreachable buffer. Somewhat complicated by the
3777 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3778 */
3779 again:
3780 rcu_read_lock();
3781 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3782 if (!atomic_long_inc_not_zero(&event->refcount)) {
3783 /*
3784 * This event is en-route to free_event() which will
3785 * detach it and remove it from the list.
3786 */
3787 continue;
3788 }
3789 rcu_read_unlock();
3790
3791 mutex_lock(&event->mmap_mutex);
3792 /*
3793 * Check we didn't race with perf_event_set_output() which can
3794 * swizzle the rb from under us while we were waiting to
3795 * acquire mmap_mutex.
3796 *
3797 * If we find a different rb; ignore this event, a next
3798 * iteration will no longer find it on the list. We have to
3799 * still restart the iteration to make sure we're not now
3800 * iterating the wrong list.
3801 */
3802 if (event->rb == rb) {
3803 rcu_assign_pointer(event->rb, NULL);
3804 ring_buffer_detach(event, rb);
3805 ring_buffer_put(rb); /* can't be last, we still have one */
3806 }
3807 mutex_unlock(&event->mmap_mutex);
3808 put_event(event);
3809
3810 /*
3811 * Restart the iteration; either we're on the wrong list or
3812 * destroyed its integrity by doing a deletion.
3813 */
3814 goto again;
3815 }
3816 rcu_read_unlock();
3817
3818 /*
3819 * It could be there's still a few 0-ref events on the list; they'll
3820 * get cleaned up by free_event() -- they'll also still have their
3821 * ref on the rb and will free it whenever they are done with it.
3822 *
3823 * Aside from that, this buffer is 'fully' detached and unmapped,
3824 * undo the VM accounting.
3825 */
3826
3827 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3828 vma->vm_mm->pinned_vm -= mmap_locked;
3829 free_uid(mmap_user);
3830
3831 ring_buffer_put(rb); /* could be last */
3832 }
3833
3834 static const struct vm_operations_struct perf_mmap_vmops = {
3835 .open = perf_mmap_open,
3836 .close = perf_mmap_close,
3837 .fault = perf_mmap_fault,
3838 .page_mkwrite = perf_mmap_fault,
3839 };
3840
perf_mmap(struct file * file,struct vm_area_struct * vma)3841 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3842 {
3843 struct perf_event *event = file->private_data;
3844 unsigned long user_locked, user_lock_limit;
3845 struct user_struct *user = current_user();
3846 unsigned long locked, lock_limit;
3847 struct ring_buffer *rb;
3848 unsigned long vma_size;
3849 unsigned long nr_pages;
3850 long user_extra, extra;
3851 int ret = 0, flags = 0;
3852
3853 /*
3854 * Don't allow mmap() of inherited per-task counters. This would
3855 * create a performance issue due to all children writing to the
3856 * same rb.
3857 */
3858 if (event->cpu == -1 && event->attr.inherit)
3859 return -EINVAL;
3860
3861 if (!(vma->vm_flags & VM_SHARED))
3862 return -EINVAL;
3863
3864 vma_size = vma->vm_end - vma->vm_start;
3865 nr_pages = (vma_size / PAGE_SIZE) - 1;
3866
3867 /*
3868 * If we have rb pages ensure they're a power-of-two number, so we
3869 * can do bitmasks instead of modulo.
3870 */
3871 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3872 return -EINVAL;
3873
3874 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3875 return -EINVAL;
3876
3877 if (vma->vm_pgoff != 0)
3878 return -EINVAL;
3879
3880 WARN_ON_ONCE(event->ctx->parent_ctx);
3881 again:
3882 mutex_lock(&event->mmap_mutex);
3883 if (event->rb) {
3884 if (event->rb->nr_pages != nr_pages) {
3885 ret = -EINVAL;
3886 goto unlock;
3887 }
3888
3889 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3890 /*
3891 * Raced against perf_mmap_close() through
3892 * perf_event_set_output(). Try again, hope for better
3893 * luck.
3894 */
3895 mutex_unlock(&event->mmap_mutex);
3896 goto again;
3897 }
3898
3899 goto unlock;
3900 }
3901
3902 user_extra = nr_pages + 1;
3903 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3904
3905 /*
3906 * Increase the limit linearly with more CPUs:
3907 */
3908 user_lock_limit *= num_online_cpus();
3909
3910 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3911
3912 extra = 0;
3913 if (user_locked > user_lock_limit)
3914 extra = user_locked - user_lock_limit;
3915
3916 lock_limit = rlimit(RLIMIT_MEMLOCK);
3917 lock_limit >>= PAGE_SHIFT;
3918 locked = vma->vm_mm->pinned_vm + extra;
3919
3920 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3921 !capable(CAP_IPC_LOCK)) {
3922 ret = -EPERM;
3923 goto unlock;
3924 }
3925
3926 WARN_ON(event->rb);
3927
3928 if (vma->vm_flags & VM_WRITE)
3929 flags |= RING_BUFFER_WRITABLE;
3930
3931 rb = rb_alloc(nr_pages,
3932 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3933 event->cpu, flags);
3934
3935 if (!rb) {
3936 ret = -ENOMEM;
3937 goto unlock;
3938 }
3939
3940 atomic_set(&rb->mmap_count, 1);
3941 rb->mmap_locked = extra;
3942 rb->mmap_user = get_current_user();
3943
3944 atomic_long_add(user_extra, &user->locked_vm);
3945 vma->vm_mm->pinned_vm += extra;
3946
3947 ring_buffer_attach(event, rb);
3948 rcu_assign_pointer(event->rb, rb);
3949
3950 perf_event_update_userpage(event);
3951
3952 unlock:
3953 if (!ret)
3954 atomic_inc(&event->mmap_count);
3955 mutex_unlock(&event->mmap_mutex);
3956
3957 /*
3958 * Since pinned accounting is per vm we cannot allow fork() to copy our
3959 * vma.
3960 */
3961 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3962 vma->vm_ops = &perf_mmap_vmops;
3963
3964 return ret;
3965 }
3966
perf_fasync(int fd,struct file * filp,int on)3967 static int perf_fasync(int fd, struct file *filp, int on)
3968 {
3969 struct inode *inode = file_inode(filp);
3970 struct perf_event *event = filp->private_data;
3971 int retval;
3972
3973 mutex_lock(&inode->i_mutex);
3974 retval = fasync_helper(fd, filp, on, &event->fasync);
3975 mutex_unlock(&inode->i_mutex);
3976
3977 if (retval < 0)
3978 return retval;
3979
3980 return 0;
3981 }
3982
3983 static const struct file_operations perf_fops = {
3984 .llseek = no_llseek,
3985 .release = perf_release,
3986 .read = perf_read,
3987 .poll = perf_poll,
3988 .unlocked_ioctl = perf_ioctl,
3989 .compat_ioctl = perf_ioctl,
3990 .mmap = perf_mmap,
3991 .fasync = perf_fasync,
3992 };
3993
3994 /*
3995 * Perf event wakeup
3996 *
3997 * If there's data, ensure we set the poll() state and publish everything
3998 * to user-space before waking everybody up.
3999 */
4000
perf_event_wakeup(struct perf_event * event)4001 void perf_event_wakeup(struct perf_event *event)
4002 {
4003 ring_buffer_wakeup(event);
4004
4005 if (event->pending_kill) {
4006 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4007 event->pending_kill = 0;
4008 }
4009 }
4010
perf_pending_event(struct irq_work * entry)4011 static void perf_pending_event(struct irq_work *entry)
4012 {
4013 struct perf_event *event = container_of(entry,
4014 struct perf_event, pending);
4015
4016 if (event->pending_disable) {
4017 event->pending_disable = 0;
4018 __perf_event_disable(event);
4019 }
4020
4021 if (event->pending_wakeup) {
4022 event->pending_wakeup = 0;
4023 perf_event_wakeup(event);
4024 }
4025 }
4026
4027 /*
4028 * We assume there is only KVM supporting the callbacks.
4029 * Later on, we might change it to a list if there is
4030 * another virtualization implementation supporting the callbacks.
4031 */
4032 struct perf_guest_info_callbacks *perf_guest_cbs;
4033
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)4034 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4035 {
4036 perf_guest_cbs = cbs;
4037 return 0;
4038 }
4039 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4040
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)4041 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4042 {
4043 perf_guest_cbs = NULL;
4044 return 0;
4045 }
4046 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4047
4048 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)4049 perf_output_sample_regs(struct perf_output_handle *handle,
4050 struct pt_regs *regs, u64 mask)
4051 {
4052 int bit;
4053
4054 for_each_set_bit(bit, (const unsigned long *) &mask,
4055 sizeof(mask) * BITS_PER_BYTE) {
4056 u64 val;
4057
4058 val = perf_reg_value(regs, bit);
4059 perf_output_put(handle, val);
4060 }
4061 }
4062
perf_sample_regs_user(struct perf_regs_user * regs_user,struct pt_regs * regs)4063 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4064 struct pt_regs *regs)
4065 {
4066 if (!user_mode(regs)) {
4067 if (current->mm)
4068 regs = task_pt_regs(current);
4069 else
4070 regs = NULL;
4071 }
4072
4073 if (regs) {
4074 regs_user->regs = regs;
4075 regs_user->abi = perf_reg_abi(current);
4076 }
4077 }
4078
4079 /*
4080 * Get remaining task size from user stack pointer.
4081 *
4082 * It'd be better to take stack vma map and limit this more
4083 * precisly, but there's no way to get it safely under interrupt,
4084 * so using TASK_SIZE as limit.
4085 */
perf_ustack_task_size(struct pt_regs * regs)4086 static u64 perf_ustack_task_size(struct pt_regs *regs)
4087 {
4088 unsigned long addr = perf_user_stack_pointer(regs);
4089
4090 if (!addr || addr >= TASK_SIZE)
4091 return 0;
4092
4093 return TASK_SIZE - addr;
4094 }
4095
4096 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)4097 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4098 struct pt_regs *regs)
4099 {
4100 u64 task_size;
4101
4102 /* No regs, no stack pointer, no dump. */
4103 if (!regs)
4104 return 0;
4105
4106 /*
4107 * Check if we fit in with the requested stack size into the:
4108 * - TASK_SIZE
4109 * If we don't, we limit the size to the TASK_SIZE.
4110 *
4111 * - remaining sample size
4112 * If we don't, we customize the stack size to
4113 * fit in to the remaining sample size.
4114 */
4115
4116 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4117 stack_size = min(stack_size, (u16) task_size);
4118
4119 /* Current header size plus static size and dynamic size. */
4120 header_size += 2 * sizeof(u64);
4121
4122 /* Do we fit in with the current stack dump size? */
4123 if ((u16) (header_size + stack_size) < header_size) {
4124 /*
4125 * If we overflow the maximum size for the sample,
4126 * we customize the stack dump size to fit in.
4127 */
4128 stack_size = USHRT_MAX - header_size - sizeof(u64);
4129 stack_size = round_up(stack_size, sizeof(u64));
4130 }
4131
4132 return stack_size;
4133 }
4134
4135 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)4136 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4137 struct pt_regs *regs)
4138 {
4139 /* Case of a kernel thread, nothing to dump */
4140 if (!regs) {
4141 u64 size = 0;
4142 perf_output_put(handle, size);
4143 } else {
4144 unsigned long sp;
4145 unsigned int rem;
4146 u64 dyn_size;
4147
4148 /*
4149 * We dump:
4150 * static size
4151 * - the size requested by user or the best one we can fit
4152 * in to the sample max size
4153 * data
4154 * - user stack dump data
4155 * dynamic size
4156 * - the actual dumped size
4157 */
4158
4159 /* Static size. */
4160 perf_output_put(handle, dump_size);
4161
4162 /* Data. */
4163 sp = perf_user_stack_pointer(regs);
4164 rem = __output_copy_user(handle, (void *) sp, dump_size);
4165 dyn_size = dump_size - rem;
4166
4167 perf_output_skip(handle, rem);
4168
4169 /* Dynamic size. */
4170 perf_output_put(handle, dyn_size);
4171 }
4172 }
4173
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)4174 static void __perf_event_header__init_id(struct perf_event_header *header,
4175 struct perf_sample_data *data,
4176 struct perf_event *event)
4177 {
4178 u64 sample_type = event->attr.sample_type;
4179
4180 data->type = sample_type;
4181 header->size += event->id_header_size;
4182
4183 if (sample_type & PERF_SAMPLE_TID) {
4184 /* namespace issues */
4185 data->tid_entry.pid = perf_event_pid(event, current);
4186 data->tid_entry.tid = perf_event_tid(event, current);
4187 }
4188
4189 if (sample_type & PERF_SAMPLE_TIME)
4190 data->time = perf_clock();
4191
4192 if (sample_type & PERF_SAMPLE_ID)
4193 data->id = primary_event_id(event);
4194
4195 if (sample_type & PERF_SAMPLE_STREAM_ID)
4196 data->stream_id = event->id;
4197
4198 if (sample_type & PERF_SAMPLE_CPU) {
4199 data->cpu_entry.cpu = raw_smp_processor_id();
4200 data->cpu_entry.reserved = 0;
4201 }
4202 }
4203
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)4204 void perf_event_header__init_id(struct perf_event_header *header,
4205 struct perf_sample_data *data,
4206 struct perf_event *event)
4207 {
4208 if (event->attr.sample_id_all)
4209 __perf_event_header__init_id(header, data, event);
4210 }
4211
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)4212 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4213 struct perf_sample_data *data)
4214 {
4215 u64 sample_type = data->type;
4216
4217 if (sample_type & PERF_SAMPLE_TID)
4218 perf_output_put(handle, data->tid_entry);
4219
4220 if (sample_type & PERF_SAMPLE_TIME)
4221 perf_output_put(handle, data->time);
4222
4223 if (sample_type & PERF_SAMPLE_ID)
4224 perf_output_put(handle, data->id);
4225
4226 if (sample_type & PERF_SAMPLE_STREAM_ID)
4227 perf_output_put(handle, data->stream_id);
4228
4229 if (sample_type & PERF_SAMPLE_CPU)
4230 perf_output_put(handle, data->cpu_entry);
4231 }
4232
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)4233 void perf_event__output_id_sample(struct perf_event *event,
4234 struct perf_output_handle *handle,
4235 struct perf_sample_data *sample)
4236 {
4237 if (event->attr.sample_id_all)
4238 __perf_event__output_id_sample(handle, sample);
4239 }
4240
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)4241 static void perf_output_read_one(struct perf_output_handle *handle,
4242 struct perf_event *event,
4243 u64 enabled, u64 running)
4244 {
4245 u64 read_format = event->attr.read_format;
4246 u64 values[4];
4247 int n = 0;
4248
4249 values[n++] = perf_event_count(event);
4250 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4251 values[n++] = enabled +
4252 atomic64_read(&event->child_total_time_enabled);
4253 }
4254 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4255 values[n++] = running +
4256 atomic64_read(&event->child_total_time_running);
4257 }
4258 if (read_format & PERF_FORMAT_ID)
4259 values[n++] = primary_event_id(event);
4260
4261 __output_copy(handle, values, n * sizeof(u64));
4262 }
4263
4264 /*
4265 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4266 */
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)4267 static void perf_output_read_group(struct perf_output_handle *handle,
4268 struct perf_event *event,
4269 u64 enabled, u64 running)
4270 {
4271 struct perf_event *leader = event->group_leader, *sub;
4272 u64 read_format = event->attr.read_format;
4273 u64 values[5];
4274 int n = 0;
4275
4276 values[n++] = 1 + leader->nr_siblings;
4277
4278 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4279 values[n++] = enabled;
4280
4281 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4282 values[n++] = running;
4283
4284 if (leader != event)
4285 leader->pmu->read(leader);
4286
4287 values[n++] = perf_event_count(leader);
4288 if (read_format & PERF_FORMAT_ID)
4289 values[n++] = primary_event_id(leader);
4290
4291 __output_copy(handle, values, n * sizeof(u64));
4292
4293 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4294 n = 0;
4295
4296 if (sub != event)
4297 sub->pmu->read(sub);
4298
4299 values[n++] = perf_event_count(sub);
4300 if (read_format & PERF_FORMAT_ID)
4301 values[n++] = primary_event_id(sub);
4302
4303 __output_copy(handle, values, n * sizeof(u64));
4304 }
4305 }
4306
4307 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4308 PERF_FORMAT_TOTAL_TIME_RUNNING)
4309
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)4310 static void perf_output_read(struct perf_output_handle *handle,
4311 struct perf_event *event)
4312 {
4313 u64 enabled = 0, running = 0, now;
4314 u64 read_format = event->attr.read_format;
4315
4316 /*
4317 * compute total_time_enabled, total_time_running
4318 * based on snapshot values taken when the event
4319 * was last scheduled in.
4320 *
4321 * we cannot simply called update_context_time()
4322 * because of locking issue as we are called in
4323 * NMI context
4324 */
4325 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4326 calc_timer_values(event, &now, &enabled, &running);
4327
4328 if (event->attr.read_format & PERF_FORMAT_GROUP)
4329 perf_output_read_group(handle, event, enabled, running);
4330 else
4331 perf_output_read_one(handle, event, enabled, running);
4332 }
4333
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)4334 void perf_output_sample(struct perf_output_handle *handle,
4335 struct perf_event_header *header,
4336 struct perf_sample_data *data,
4337 struct perf_event *event)
4338 {
4339 u64 sample_type = data->type;
4340
4341 perf_output_put(handle, *header);
4342
4343 if (sample_type & PERF_SAMPLE_IP)
4344 perf_output_put(handle, data->ip);
4345
4346 if (sample_type & PERF_SAMPLE_TID)
4347 perf_output_put(handle, data->tid_entry);
4348
4349 if (sample_type & PERF_SAMPLE_TIME)
4350 perf_output_put(handle, data->time);
4351
4352 if (sample_type & PERF_SAMPLE_ADDR)
4353 perf_output_put(handle, data->addr);
4354
4355 if (sample_type & PERF_SAMPLE_ID)
4356 perf_output_put(handle, data->id);
4357
4358 if (sample_type & PERF_SAMPLE_STREAM_ID)
4359 perf_output_put(handle, data->stream_id);
4360
4361 if (sample_type & PERF_SAMPLE_CPU)
4362 perf_output_put(handle, data->cpu_entry);
4363
4364 if (sample_type & PERF_SAMPLE_PERIOD)
4365 perf_output_put(handle, data->period);
4366
4367 if (sample_type & PERF_SAMPLE_READ)
4368 perf_output_read(handle, event);
4369
4370 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4371 if (data->callchain) {
4372 int size = 1;
4373
4374 if (data->callchain)
4375 size += data->callchain->nr;
4376
4377 size *= sizeof(u64);
4378
4379 __output_copy(handle, data->callchain, size);
4380 } else {
4381 u64 nr = 0;
4382 perf_output_put(handle, nr);
4383 }
4384 }
4385
4386 if (sample_type & PERF_SAMPLE_RAW) {
4387 if (data->raw) {
4388 perf_output_put(handle, data->raw->size);
4389 __output_copy(handle, data->raw->data,
4390 data->raw->size);
4391 } else {
4392 struct {
4393 u32 size;
4394 u32 data;
4395 } raw = {
4396 .size = sizeof(u32),
4397 .data = 0,
4398 };
4399 perf_output_put(handle, raw);
4400 }
4401 }
4402
4403 if (!event->attr.watermark) {
4404 int wakeup_events = event->attr.wakeup_events;
4405
4406 if (wakeup_events) {
4407 struct ring_buffer *rb = handle->rb;
4408 int events = local_inc_return(&rb->events);
4409
4410 if (events >= wakeup_events) {
4411 local_sub(wakeup_events, &rb->events);
4412 local_inc(&rb->wakeup);
4413 }
4414 }
4415 }
4416
4417 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4418 if (data->br_stack) {
4419 size_t size;
4420
4421 size = data->br_stack->nr
4422 * sizeof(struct perf_branch_entry);
4423
4424 perf_output_put(handle, data->br_stack->nr);
4425 perf_output_copy(handle, data->br_stack->entries, size);
4426 } else {
4427 /*
4428 * we always store at least the value of nr
4429 */
4430 u64 nr = 0;
4431 perf_output_put(handle, nr);
4432 }
4433 }
4434
4435 if (sample_type & PERF_SAMPLE_REGS_USER) {
4436 u64 abi = data->regs_user.abi;
4437
4438 /*
4439 * If there are no regs to dump, notice it through
4440 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4441 */
4442 perf_output_put(handle, abi);
4443
4444 if (abi) {
4445 u64 mask = event->attr.sample_regs_user;
4446 perf_output_sample_regs(handle,
4447 data->regs_user.regs,
4448 mask);
4449 }
4450 }
4451
4452 if (sample_type & PERF_SAMPLE_STACK_USER)
4453 perf_output_sample_ustack(handle,
4454 data->stack_user_size,
4455 data->regs_user.regs);
4456
4457 if (sample_type & PERF_SAMPLE_WEIGHT)
4458 perf_output_put(handle, data->weight);
4459
4460 if (sample_type & PERF_SAMPLE_DATA_SRC)
4461 perf_output_put(handle, data->data_src.val);
4462 }
4463
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)4464 void perf_prepare_sample(struct perf_event_header *header,
4465 struct perf_sample_data *data,
4466 struct perf_event *event,
4467 struct pt_regs *regs)
4468 {
4469 u64 sample_type = event->attr.sample_type;
4470
4471 header->type = PERF_RECORD_SAMPLE;
4472 header->size = sizeof(*header) + event->header_size;
4473
4474 header->misc = 0;
4475 header->misc |= perf_misc_flags(regs);
4476
4477 __perf_event_header__init_id(header, data, event);
4478
4479 if (sample_type & PERF_SAMPLE_IP)
4480 data->ip = perf_instruction_pointer(regs);
4481
4482 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4483 int size = 1;
4484
4485 data->callchain = perf_callchain(event, regs);
4486
4487 if (data->callchain)
4488 size += data->callchain->nr;
4489
4490 header->size += size * sizeof(u64);
4491 }
4492
4493 if (sample_type & PERF_SAMPLE_RAW) {
4494 int size = sizeof(u32);
4495
4496 if (data->raw)
4497 size += data->raw->size;
4498 else
4499 size += sizeof(u32);
4500
4501 WARN_ON_ONCE(size & (sizeof(u64)-1));
4502 header->size += size;
4503 }
4504
4505 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4506 int size = sizeof(u64); /* nr */
4507 if (data->br_stack) {
4508 size += data->br_stack->nr
4509 * sizeof(struct perf_branch_entry);
4510 }
4511 header->size += size;
4512 }
4513
4514 if (sample_type & PERF_SAMPLE_REGS_USER) {
4515 /* regs dump ABI info */
4516 int size = sizeof(u64);
4517
4518 perf_sample_regs_user(&data->regs_user, regs);
4519
4520 if (data->regs_user.regs) {
4521 u64 mask = event->attr.sample_regs_user;
4522 size += hweight64(mask) * sizeof(u64);
4523 }
4524
4525 header->size += size;
4526 }
4527
4528 if (sample_type & PERF_SAMPLE_STACK_USER) {
4529 /*
4530 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4531 * processed as the last one or have additional check added
4532 * in case new sample type is added, because we could eat
4533 * up the rest of the sample size.
4534 */
4535 struct perf_regs_user *uregs = &data->regs_user;
4536 u16 stack_size = event->attr.sample_stack_user;
4537 u16 size = sizeof(u64);
4538
4539 if (!uregs->abi)
4540 perf_sample_regs_user(uregs, regs);
4541
4542 stack_size = perf_sample_ustack_size(stack_size, header->size,
4543 uregs->regs);
4544
4545 /*
4546 * If there is something to dump, add space for the dump
4547 * itself and for the field that tells the dynamic size,
4548 * which is how many have been actually dumped.
4549 */
4550 if (stack_size)
4551 size += sizeof(u64) + stack_size;
4552
4553 data->stack_user_size = stack_size;
4554 header->size += size;
4555 }
4556 }
4557
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)4558 static void perf_event_output(struct perf_event *event,
4559 struct perf_sample_data *data,
4560 struct pt_regs *regs)
4561 {
4562 struct perf_output_handle handle;
4563 struct perf_event_header header;
4564
4565 /* protect the callchain buffers */
4566 rcu_read_lock();
4567
4568 perf_prepare_sample(&header, data, event, regs);
4569
4570 if (perf_output_begin(&handle, event, header.size))
4571 goto exit;
4572
4573 perf_output_sample(&handle, &header, data, event);
4574
4575 perf_output_end(&handle);
4576
4577 exit:
4578 rcu_read_unlock();
4579 }
4580
4581 /*
4582 * read event_id
4583 */
4584
4585 struct perf_read_event {
4586 struct perf_event_header header;
4587
4588 u32 pid;
4589 u32 tid;
4590 };
4591
4592 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)4593 perf_event_read_event(struct perf_event *event,
4594 struct task_struct *task)
4595 {
4596 struct perf_output_handle handle;
4597 struct perf_sample_data sample;
4598 struct perf_read_event read_event = {
4599 .header = {
4600 .type = PERF_RECORD_READ,
4601 .misc = 0,
4602 .size = sizeof(read_event) + event->read_size,
4603 },
4604 .pid = perf_event_pid(event, task),
4605 .tid = perf_event_tid(event, task),
4606 };
4607 int ret;
4608
4609 perf_event_header__init_id(&read_event.header, &sample, event);
4610 ret = perf_output_begin(&handle, event, read_event.header.size);
4611 if (ret)
4612 return;
4613
4614 perf_output_put(&handle, read_event);
4615 perf_output_read(&handle, event);
4616 perf_event__output_id_sample(event, &handle, &sample);
4617
4618 perf_output_end(&handle);
4619 }
4620
4621 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4622 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4623
4624 static void
perf_event_aux_ctx(struct perf_event_context * ctx,perf_event_aux_match_cb match,perf_event_aux_output_cb output,void * data)4625 perf_event_aux_ctx(struct perf_event_context *ctx,
4626 perf_event_aux_match_cb match,
4627 perf_event_aux_output_cb output,
4628 void *data)
4629 {
4630 struct perf_event *event;
4631
4632 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4633 if (event->state < PERF_EVENT_STATE_INACTIVE)
4634 continue;
4635 if (!event_filter_match(event))
4636 continue;
4637 if (match(event, data))
4638 output(event, data);
4639 }
4640 }
4641
4642 static void
perf_event_aux(perf_event_aux_match_cb match,perf_event_aux_output_cb output,void * data,struct perf_event_context * task_ctx)4643 perf_event_aux(perf_event_aux_match_cb match,
4644 perf_event_aux_output_cb output,
4645 void *data,
4646 struct perf_event_context *task_ctx)
4647 {
4648 struct perf_cpu_context *cpuctx;
4649 struct perf_event_context *ctx;
4650 struct pmu *pmu;
4651 int ctxn;
4652
4653 rcu_read_lock();
4654 list_for_each_entry_rcu(pmu, &pmus, entry) {
4655 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4656 if (cpuctx->unique_pmu != pmu)
4657 goto next;
4658 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4659 if (task_ctx)
4660 goto next;
4661 ctxn = pmu->task_ctx_nr;
4662 if (ctxn < 0)
4663 goto next;
4664 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4665 if (ctx)
4666 perf_event_aux_ctx(ctx, match, output, data);
4667 next:
4668 put_cpu_ptr(pmu->pmu_cpu_context);
4669 }
4670
4671 if (task_ctx) {
4672 preempt_disable();
4673 perf_event_aux_ctx(task_ctx, match, output, data);
4674 preempt_enable();
4675 }
4676 rcu_read_unlock();
4677 }
4678
4679 /*
4680 * task tracking -- fork/exit
4681 *
4682 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4683 */
4684
4685 struct perf_task_event {
4686 struct task_struct *task;
4687 struct perf_event_context *task_ctx;
4688
4689 struct {
4690 struct perf_event_header header;
4691
4692 u32 pid;
4693 u32 ppid;
4694 u32 tid;
4695 u32 ptid;
4696 u64 time;
4697 } event_id;
4698 };
4699
perf_event_task_output(struct perf_event * event,void * data)4700 static void perf_event_task_output(struct perf_event *event,
4701 void *data)
4702 {
4703 struct perf_task_event *task_event = data;
4704 struct perf_output_handle handle;
4705 struct perf_sample_data sample;
4706 struct task_struct *task = task_event->task;
4707 int ret, size = task_event->event_id.header.size;
4708
4709 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4710
4711 ret = perf_output_begin(&handle, event,
4712 task_event->event_id.header.size);
4713 if (ret)
4714 goto out;
4715
4716 task_event->event_id.pid = perf_event_pid(event, task);
4717 task_event->event_id.ppid = perf_event_pid(event, current);
4718
4719 task_event->event_id.tid = perf_event_tid(event, task);
4720 task_event->event_id.ptid = perf_event_tid(event, current);
4721
4722 perf_output_put(&handle, task_event->event_id);
4723
4724 perf_event__output_id_sample(event, &handle, &sample);
4725
4726 perf_output_end(&handle);
4727 out:
4728 task_event->event_id.header.size = size;
4729 }
4730
perf_event_task_match(struct perf_event * event,void * data __maybe_unused)4731 static int perf_event_task_match(struct perf_event *event,
4732 void *data __maybe_unused)
4733 {
4734 return event->attr.comm || event->attr.mmap ||
4735 event->attr.mmap_data || event->attr.task;
4736 }
4737
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)4738 static void perf_event_task(struct task_struct *task,
4739 struct perf_event_context *task_ctx,
4740 int new)
4741 {
4742 struct perf_task_event task_event;
4743
4744 if (!atomic_read(&nr_comm_events) &&
4745 !atomic_read(&nr_mmap_events) &&
4746 !atomic_read(&nr_task_events))
4747 return;
4748
4749 task_event = (struct perf_task_event){
4750 .task = task,
4751 .task_ctx = task_ctx,
4752 .event_id = {
4753 .header = {
4754 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4755 .misc = 0,
4756 .size = sizeof(task_event.event_id),
4757 },
4758 /* .pid */
4759 /* .ppid */
4760 /* .tid */
4761 /* .ptid */
4762 .time = perf_clock(),
4763 },
4764 };
4765
4766 perf_event_aux(perf_event_task_match,
4767 perf_event_task_output,
4768 &task_event,
4769 task_ctx);
4770 }
4771
perf_event_fork(struct task_struct * task)4772 void perf_event_fork(struct task_struct *task)
4773 {
4774 perf_event_task(task, NULL, 1);
4775 }
4776
4777 /*
4778 * comm tracking
4779 */
4780
4781 struct perf_comm_event {
4782 struct task_struct *task;
4783 char *comm;
4784 int comm_size;
4785
4786 struct {
4787 struct perf_event_header header;
4788
4789 u32 pid;
4790 u32 tid;
4791 } event_id;
4792 };
4793
perf_event_comm_output(struct perf_event * event,void * data)4794 static void perf_event_comm_output(struct perf_event *event,
4795 void *data)
4796 {
4797 struct perf_comm_event *comm_event = data;
4798 struct perf_output_handle handle;
4799 struct perf_sample_data sample;
4800 int size = comm_event->event_id.header.size;
4801 int ret;
4802
4803 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4804 ret = perf_output_begin(&handle, event,
4805 comm_event->event_id.header.size);
4806
4807 if (ret)
4808 goto out;
4809
4810 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4811 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4812
4813 perf_output_put(&handle, comm_event->event_id);
4814 __output_copy(&handle, comm_event->comm,
4815 comm_event->comm_size);
4816
4817 perf_event__output_id_sample(event, &handle, &sample);
4818
4819 perf_output_end(&handle);
4820 out:
4821 comm_event->event_id.header.size = size;
4822 }
4823
perf_event_comm_match(struct perf_event * event,void * data __maybe_unused)4824 static int perf_event_comm_match(struct perf_event *event,
4825 void *data __maybe_unused)
4826 {
4827 return event->attr.comm;
4828 }
4829
perf_event_comm_event(struct perf_comm_event * comm_event)4830 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4831 {
4832 char comm[TASK_COMM_LEN];
4833 unsigned int size;
4834
4835 memset(comm, 0, sizeof(comm));
4836 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4837 size = ALIGN(strlen(comm)+1, sizeof(u64));
4838
4839 comm_event->comm = comm;
4840 comm_event->comm_size = size;
4841
4842 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4843
4844 perf_event_aux(perf_event_comm_match,
4845 perf_event_comm_output,
4846 comm_event,
4847 NULL);
4848 }
4849
perf_event_comm(struct task_struct * task)4850 void perf_event_comm(struct task_struct *task)
4851 {
4852 struct perf_comm_event comm_event;
4853 struct perf_event_context *ctx;
4854 int ctxn;
4855
4856 rcu_read_lock();
4857 for_each_task_context_nr(ctxn) {
4858 ctx = task->perf_event_ctxp[ctxn];
4859 if (!ctx)
4860 continue;
4861
4862 perf_event_enable_on_exec(ctx);
4863 }
4864 rcu_read_unlock();
4865
4866 if (!atomic_read(&nr_comm_events))
4867 return;
4868
4869 comm_event = (struct perf_comm_event){
4870 .task = task,
4871 /* .comm */
4872 /* .comm_size */
4873 .event_id = {
4874 .header = {
4875 .type = PERF_RECORD_COMM,
4876 .misc = 0,
4877 /* .size */
4878 },
4879 /* .pid */
4880 /* .tid */
4881 },
4882 };
4883
4884 perf_event_comm_event(&comm_event);
4885 }
4886
4887 /*
4888 * mmap tracking
4889 */
4890
4891 struct perf_mmap_event {
4892 struct vm_area_struct *vma;
4893
4894 const char *file_name;
4895 int file_size;
4896
4897 struct {
4898 struct perf_event_header header;
4899
4900 u32 pid;
4901 u32 tid;
4902 u64 start;
4903 u64 len;
4904 u64 pgoff;
4905 } event_id;
4906 };
4907
perf_event_mmap_output(struct perf_event * event,void * data)4908 static void perf_event_mmap_output(struct perf_event *event,
4909 void *data)
4910 {
4911 struct perf_mmap_event *mmap_event = data;
4912 struct perf_output_handle handle;
4913 struct perf_sample_data sample;
4914 int size = mmap_event->event_id.header.size;
4915 int ret;
4916
4917 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4918 ret = perf_output_begin(&handle, event,
4919 mmap_event->event_id.header.size);
4920 if (ret)
4921 goto out;
4922
4923 mmap_event->event_id.pid = perf_event_pid(event, current);
4924 mmap_event->event_id.tid = perf_event_tid(event, current);
4925
4926 perf_output_put(&handle, mmap_event->event_id);
4927 __output_copy(&handle, mmap_event->file_name,
4928 mmap_event->file_size);
4929
4930 perf_event__output_id_sample(event, &handle, &sample);
4931
4932 perf_output_end(&handle);
4933 out:
4934 mmap_event->event_id.header.size = size;
4935 }
4936
perf_event_mmap_match(struct perf_event * event,void * data)4937 static int perf_event_mmap_match(struct perf_event *event,
4938 void *data)
4939 {
4940 struct perf_mmap_event *mmap_event = data;
4941 struct vm_area_struct *vma = mmap_event->vma;
4942 int executable = vma->vm_flags & VM_EXEC;
4943
4944 return (!executable && event->attr.mmap_data) ||
4945 (executable && event->attr.mmap);
4946 }
4947
perf_event_mmap_event(struct perf_mmap_event * mmap_event)4948 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4949 {
4950 struct vm_area_struct *vma = mmap_event->vma;
4951 struct file *file = vma->vm_file;
4952 unsigned int size;
4953 char tmp[16];
4954 char *buf = NULL;
4955 const char *name;
4956
4957 memset(tmp, 0, sizeof(tmp));
4958
4959 if (file) {
4960 /*
4961 * d_path works from the end of the rb backwards, so we
4962 * need to add enough zero bytes after the string to handle
4963 * the 64bit alignment we do later.
4964 */
4965 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4966 if (!buf) {
4967 name = strncpy(tmp, "//enomem", sizeof(tmp));
4968 goto got_name;
4969 }
4970 name = d_path(&file->f_path, buf, PATH_MAX);
4971 if (IS_ERR(name)) {
4972 name = strncpy(tmp, "//toolong", sizeof(tmp));
4973 goto got_name;
4974 }
4975 } else {
4976 if (arch_vma_name(mmap_event->vma)) {
4977 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4978 sizeof(tmp) - 1);
4979 tmp[sizeof(tmp) - 1] = '\0';
4980 goto got_name;
4981 }
4982
4983 if (!vma->vm_mm) {
4984 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4985 goto got_name;
4986 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4987 vma->vm_end >= vma->vm_mm->brk) {
4988 name = strncpy(tmp, "[heap]", sizeof(tmp));
4989 goto got_name;
4990 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4991 vma->vm_end >= vma->vm_mm->start_stack) {
4992 name = strncpy(tmp, "[stack]", sizeof(tmp));
4993 goto got_name;
4994 }
4995
4996 name = strncpy(tmp, "//anon", sizeof(tmp));
4997 goto got_name;
4998 }
4999
5000 got_name:
5001 size = ALIGN(strlen(name)+1, sizeof(u64));
5002
5003 mmap_event->file_name = name;
5004 mmap_event->file_size = size;
5005
5006 if (!(vma->vm_flags & VM_EXEC))
5007 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5008
5009 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5010
5011 perf_event_aux(perf_event_mmap_match,
5012 perf_event_mmap_output,
5013 mmap_event,
5014 NULL);
5015
5016 kfree(buf);
5017 }
5018
perf_event_mmap(struct vm_area_struct * vma)5019 void perf_event_mmap(struct vm_area_struct *vma)
5020 {
5021 struct perf_mmap_event mmap_event;
5022
5023 if (!atomic_read(&nr_mmap_events))
5024 return;
5025
5026 mmap_event = (struct perf_mmap_event){
5027 .vma = vma,
5028 /* .file_name */
5029 /* .file_size */
5030 .event_id = {
5031 .header = {
5032 .type = PERF_RECORD_MMAP,
5033 .misc = PERF_RECORD_MISC_USER,
5034 /* .size */
5035 },
5036 /* .pid */
5037 /* .tid */
5038 .start = vma->vm_start,
5039 .len = vma->vm_end - vma->vm_start,
5040 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5041 },
5042 };
5043
5044 perf_event_mmap_event(&mmap_event);
5045 }
5046
5047 /*
5048 * IRQ throttle logging
5049 */
5050
perf_log_throttle(struct perf_event * event,int enable)5051 static void perf_log_throttle(struct perf_event *event, int enable)
5052 {
5053 struct perf_output_handle handle;
5054 struct perf_sample_data sample;
5055 int ret;
5056
5057 struct {
5058 struct perf_event_header header;
5059 u64 time;
5060 u64 id;
5061 u64 stream_id;
5062 } throttle_event = {
5063 .header = {
5064 .type = PERF_RECORD_THROTTLE,
5065 .misc = 0,
5066 .size = sizeof(throttle_event),
5067 },
5068 .time = perf_clock(),
5069 .id = primary_event_id(event),
5070 .stream_id = event->id,
5071 };
5072
5073 if (enable)
5074 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5075
5076 perf_event_header__init_id(&throttle_event.header, &sample, event);
5077
5078 ret = perf_output_begin(&handle, event,
5079 throttle_event.header.size);
5080 if (ret)
5081 return;
5082
5083 perf_output_put(&handle, throttle_event);
5084 perf_event__output_id_sample(event, &handle, &sample);
5085 perf_output_end(&handle);
5086 }
5087
5088 /*
5089 * Generic event overflow handling, sampling.
5090 */
5091
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)5092 static int __perf_event_overflow(struct perf_event *event,
5093 int throttle, struct perf_sample_data *data,
5094 struct pt_regs *regs)
5095 {
5096 int events = atomic_read(&event->event_limit);
5097 struct hw_perf_event *hwc = &event->hw;
5098 u64 seq;
5099 int ret = 0;
5100
5101 /*
5102 * Non-sampling counters might still use the PMI to fold short
5103 * hardware counters, ignore those.
5104 */
5105 if (unlikely(!is_sampling_event(event)))
5106 return 0;
5107
5108 seq = __this_cpu_read(perf_throttled_seq);
5109 if (seq != hwc->interrupts_seq) {
5110 hwc->interrupts_seq = seq;
5111 hwc->interrupts = 1;
5112 } else {
5113 hwc->interrupts++;
5114 if (unlikely(throttle
5115 && hwc->interrupts >= max_samples_per_tick)) {
5116 __this_cpu_inc(perf_throttled_count);
5117 hwc->interrupts = MAX_INTERRUPTS;
5118 perf_log_throttle(event, 0);
5119 ret = 1;
5120 }
5121 }
5122
5123 if (event->attr.freq) {
5124 u64 now = perf_clock();
5125 s64 delta = now - hwc->freq_time_stamp;
5126
5127 hwc->freq_time_stamp = now;
5128
5129 if (delta > 0 && delta < 2*TICK_NSEC)
5130 perf_adjust_period(event, delta, hwc->last_period, true);
5131 }
5132
5133 /*
5134 * XXX event_limit might not quite work as expected on inherited
5135 * events
5136 */
5137
5138 event->pending_kill = POLL_IN;
5139 if (events && atomic_dec_and_test(&event->event_limit)) {
5140 ret = 1;
5141 event->pending_kill = POLL_HUP;
5142 event->pending_disable = 1;
5143 irq_work_queue(&event->pending);
5144 }
5145
5146 if (event->overflow_handler)
5147 event->overflow_handler(event, data, regs);
5148 else
5149 perf_event_output(event, data, regs);
5150
5151 if (event->fasync && event->pending_kill) {
5152 event->pending_wakeup = 1;
5153 irq_work_queue(&event->pending);
5154 }
5155
5156 return ret;
5157 }
5158
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)5159 int perf_event_overflow(struct perf_event *event,
5160 struct perf_sample_data *data,
5161 struct pt_regs *regs)
5162 {
5163 return __perf_event_overflow(event, 1, data, regs);
5164 }
5165
5166 /*
5167 * Generic software event infrastructure
5168 */
5169
5170 struct swevent_htable {
5171 struct swevent_hlist *swevent_hlist;
5172 struct mutex hlist_mutex;
5173 int hlist_refcount;
5174
5175 /* Recursion avoidance in each contexts */
5176 int recursion[PERF_NR_CONTEXTS];
5177 };
5178
5179 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5180
5181 /*
5182 * We directly increment event->count and keep a second value in
5183 * event->hw.period_left to count intervals. This period event
5184 * is kept in the range [-sample_period, 0] so that we can use the
5185 * sign as trigger.
5186 */
5187
perf_swevent_set_period(struct perf_event * event)5188 static u64 perf_swevent_set_period(struct perf_event *event)
5189 {
5190 struct hw_perf_event *hwc = &event->hw;
5191 u64 period = hwc->last_period;
5192 u64 nr, offset;
5193 s64 old, val;
5194
5195 hwc->last_period = hwc->sample_period;
5196
5197 again:
5198 old = val = local64_read(&hwc->period_left);
5199 if (val < 0)
5200 return 0;
5201
5202 nr = div64_u64(period + val, period);
5203 offset = nr * period;
5204 val -= offset;
5205 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5206 goto again;
5207
5208 return nr;
5209 }
5210
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)5211 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5212 struct perf_sample_data *data,
5213 struct pt_regs *regs)
5214 {
5215 struct hw_perf_event *hwc = &event->hw;
5216 int throttle = 0;
5217
5218 if (!overflow)
5219 overflow = perf_swevent_set_period(event);
5220
5221 if (hwc->interrupts == MAX_INTERRUPTS)
5222 return;
5223
5224 for (; overflow; overflow--) {
5225 if (__perf_event_overflow(event, throttle,
5226 data, regs)) {
5227 /*
5228 * We inhibit the overflow from happening when
5229 * hwc->interrupts == MAX_INTERRUPTS.
5230 */
5231 break;
5232 }
5233 throttle = 1;
5234 }
5235 }
5236
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)5237 static void perf_swevent_event(struct perf_event *event, u64 nr,
5238 struct perf_sample_data *data,
5239 struct pt_regs *regs)
5240 {
5241 struct hw_perf_event *hwc = &event->hw;
5242
5243 local64_add(nr, &event->count);
5244
5245 if (!regs)
5246 return;
5247
5248 if (!is_sampling_event(event))
5249 return;
5250
5251 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5252 data->period = nr;
5253 return perf_swevent_overflow(event, 1, data, regs);
5254 } else
5255 data->period = event->hw.last_period;
5256
5257 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5258 return perf_swevent_overflow(event, 1, data, regs);
5259
5260 if (local64_add_negative(nr, &hwc->period_left))
5261 return;
5262
5263 perf_swevent_overflow(event, 0, data, regs);
5264 }
5265
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)5266 static int perf_exclude_event(struct perf_event *event,
5267 struct pt_regs *regs)
5268 {
5269 if (event->hw.state & PERF_HES_STOPPED)
5270 return 1;
5271
5272 if (regs) {
5273 if (event->attr.exclude_user && user_mode(regs))
5274 return 1;
5275
5276 if (event->attr.exclude_kernel && !user_mode(regs))
5277 return 1;
5278 }
5279
5280 return 0;
5281 }
5282
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)5283 static int perf_swevent_match(struct perf_event *event,
5284 enum perf_type_id type,
5285 u32 event_id,
5286 struct perf_sample_data *data,
5287 struct pt_regs *regs)
5288 {
5289 if (event->attr.type != type)
5290 return 0;
5291
5292 if (event->attr.config != event_id)
5293 return 0;
5294
5295 if (perf_exclude_event(event, regs))
5296 return 0;
5297
5298 return 1;
5299 }
5300
swevent_hash(u64 type,u32 event_id)5301 static inline u64 swevent_hash(u64 type, u32 event_id)
5302 {
5303 u64 val = event_id | (type << 32);
5304
5305 return hash_64(val, SWEVENT_HLIST_BITS);
5306 }
5307
5308 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)5309 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5310 {
5311 u64 hash = swevent_hash(type, event_id);
5312
5313 return &hlist->heads[hash];
5314 }
5315
5316 /* For the read side: events when they trigger */
5317 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)5318 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5319 {
5320 struct swevent_hlist *hlist;
5321
5322 hlist = rcu_dereference(swhash->swevent_hlist);
5323 if (!hlist)
5324 return NULL;
5325
5326 return __find_swevent_head(hlist, type, event_id);
5327 }
5328
5329 /* For the event head insertion and removal in the hlist */
5330 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)5331 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5332 {
5333 struct swevent_hlist *hlist;
5334 u32 event_id = event->attr.config;
5335 u64 type = event->attr.type;
5336
5337 /*
5338 * Event scheduling is always serialized against hlist allocation
5339 * and release. Which makes the protected version suitable here.
5340 * The context lock guarantees that.
5341 */
5342 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5343 lockdep_is_held(&event->ctx->lock));
5344 if (!hlist)
5345 return NULL;
5346
5347 return __find_swevent_head(hlist, type, event_id);
5348 }
5349
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)5350 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5351 u64 nr,
5352 struct perf_sample_data *data,
5353 struct pt_regs *regs)
5354 {
5355 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5356 struct perf_event *event;
5357 struct hlist_head *head;
5358
5359 rcu_read_lock();
5360 head = find_swevent_head_rcu(swhash, type, event_id);
5361 if (!head)
5362 goto end;
5363
5364 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5365 if (perf_swevent_match(event, type, event_id, data, regs))
5366 perf_swevent_event(event, nr, data, regs);
5367 }
5368 end:
5369 rcu_read_unlock();
5370 }
5371
perf_swevent_get_recursion_context(void)5372 int perf_swevent_get_recursion_context(void)
5373 {
5374 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5375
5376 return get_recursion_context(swhash->recursion);
5377 }
5378 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5379
perf_swevent_put_recursion_context(int rctx)5380 inline void perf_swevent_put_recursion_context(int rctx)
5381 {
5382 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5383
5384 put_recursion_context(swhash->recursion, rctx);
5385 }
5386
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)5387 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5388 {
5389 struct perf_sample_data data;
5390 int rctx;
5391
5392 preempt_disable_notrace();
5393 rctx = perf_swevent_get_recursion_context();
5394 if (rctx < 0)
5395 return;
5396
5397 perf_sample_data_init(&data, addr, 0);
5398
5399 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5400
5401 perf_swevent_put_recursion_context(rctx);
5402 preempt_enable_notrace();
5403 }
5404
perf_swevent_read(struct perf_event * event)5405 static void perf_swevent_read(struct perf_event *event)
5406 {
5407 }
5408
perf_swevent_add(struct perf_event * event,int flags)5409 static int perf_swevent_add(struct perf_event *event, int flags)
5410 {
5411 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5412 struct hw_perf_event *hwc = &event->hw;
5413 struct hlist_head *head;
5414
5415 if (is_sampling_event(event)) {
5416 hwc->last_period = hwc->sample_period;
5417 perf_swevent_set_period(event);
5418 }
5419
5420 hwc->state = !(flags & PERF_EF_START);
5421
5422 head = find_swevent_head(swhash, event);
5423 if (WARN_ON_ONCE(!head))
5424 return -EINVAL;
5425
5426 hlist_add_head_rcu(&event->hlist_entry, head);
5427
5428 return 0;
5429 }
5430
perf_swevent_del(struct perf_event * event,int flags)5431 static void perf_swevent_del(struct perf_event *event, int flags)
5432 {
5433 hlist_del_rcu(&event->hlist_entry);
5434 }
5435
perf_swevent_start(struct perf_event * event,int flags)5436 static void perf_swevent_start(struct perf_event *event, int flags)
5437 {
5438 event->hw.state = 0;
5439 }
5440
perf_swevent_stop(struct perf_event * event,int flags)5441 static void perf_swevent_stop(struct perf_event *event, int flags)
5442 {
5443 event->hw.state = PERF_HES_STOPPED;
5444 }
5445
5446 /* Deref the hlist from the update side */
5447 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)5448 swevent_hlist_deref(struct swevent_htable *swhash)
5449 {
5450 return rcu_dereference_protected(swhash->swevent_hlist,
5451 lockdep_is_held(&swhash->hlist_mutex));
5452 }
5453
swevent_hlist_release(struct swevent_htable * swhash)5454 static void swevent_hlist_release(struct swevent_htable *swhash)
5455 {
5456 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5457
5458 if (!hlist)
5459 return;
5460
5461 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5462 kfree_rcu(hlist, rcu_head);
5463 }
5464
swevent_hlist_put_cpu(struct perf_event * event,int cpu)5465 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5466 {
5467 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5468
5469 mutex_lock(&swhash->hlist_mutex);
5470
5471 if (!--swhash->hlist_refcount)
5472 swevent_hlist_release(swhash);
5473
5474 mutex_unlock(&swhash->hlist_mutex);
5475 }
5476
swevent_hlist_put(struct perf_event * event)5477 static void swevent_hlist_put(struct perf_event *event)
5478 {
5479 int cpu;
5480
5481 if (event->cpu != -1) {
5482 swevent_hlist_put_cpu(event, event->cpu);
5483 return;
5484 }
5485
5486 for_each_possible_cpu(cpu)
5487 swevent_hlist_put_cpu(event, cpu);
5488 }
5489
swevent_hlist_get_cpu(struct perf_event * event,int cpu)5490 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5491 {
5492 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5493 int err = 0;
5494
5495 mutex_lock(&swhash->hlist_mutex);
5496 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5497 struct swevent_hlist *hlist;
5498
5499 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5500 if (!hlist) {
5501 err = -ENOMEM;
5502 goto exit;
5503 }
5504 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5505 }
5506 swhash->hlist_refcount++;
5507 exit:
5508 mutex_unlock(&swhash->hlist_mutex);
5509
5510 return err;
5511 }
5512
swevent_hlist_get(struct perf_event * event)5513 static int swevent_hlist_get(struct perf_event *event)
5514 {
5515 int err;
5516 int cpu, failed_cpu;
5517
5518 if (event->cpu != -1)
5519 return swevent_hlist_get_cpu(event, event->cpu);
5520
5521 get_online_cpus();
5522 for_each_possible_cpu(cpu) {
5523 err = swevent_hlist_get_cpu(event, cpu);
5524 if (err) {
5525 failed_cpu = cpu;
5526 goto fail;
5527 }
5528 }
5529 put_online_cpus();
5530
5531 return 0;
5532 fail:
5533 for_each_possible_cpu(cpu) {
5534 if (cpu == failed_cpu)
5535 break;
5536 swevent_hlist_put_cpu(event, cpu);
5537 }
5538
5539 put_online_cpus();
5540 return err;
5541 }
5542
5543 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5544
sw_perf_event_destroy(struct perf_event * event)5545 static void sw_perf_event_destroy(struct perf_event *event)
5546 {
5547 u64 event_id = event->attr.config;
5548
5549 WARN_ON(event->parent);
5550
5551 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5552 swevent_hlist_put(event);
5553 }
5554
perf_swevent_init(struct perf_event * event)5555 static int perf_swevent_init(struct perf_event *event)
5556 {
5557 u64 event_id = event->attr.config;
5558
5559 if (event->attr.type != PERF_TYPE_SOFTWARE)
5560 return -ENOENT;
5561
5562 /*
5563 * no branch sampling for software events
5564 */
5565 if (has_branch_stack(event))
5566 return -EOPNOTSUPP;
5567
5568 switch (event_id) {
5569 case PERF_COUNT_SW_CPU_CLOCK:
5570 case PERF_COUNT_SW_TASK_CLOCK:
5571 return -ENOENT;
5572
5573 default:
5574 break;
5575 }
5576
5577 if (event_id >= PERF_COUNT_SW_MAX)
5578 return -ENOENT;
5579
5580 if (!event->parent) {
5581 int err;
5582
5583 err = swevent_hlist_get(event);
5584 if (err)
5585 return err;
5586
5587 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5588 event->destroy = sw_perf_event_destroy;
5589 }
5590
5591 return 0;
5592 }
5593
perf_swevent_event_idx(struct perf_event * event)5594 static int perf_swevent_event_idx(struct perf_event *event)
5595 {
5596 return 0;
5597 }
5598
5599 static struct pmu perf_swevent = {
5600 .task_ctx_nr = perf_sw_context,
5601
5602 .event_init = perf_swevent_init,
5603 .add = perf_swevent_add,
5604 .del = perf_swevent_del,
5605 .start = perf_swevent_start,
5606 .stop = perf_swevent_stop,
5607 .read = perf_swevent_read,
5608
5609 .event_idx = perf_swevent_event_idx,
5610 };
5611
5612 #ifdef CONFIG_EVENT_TRACING
5613
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)5614 static int perf_tp_filter_match(struct perf_event *event,
5615 struct perf_sample_data *data)
5616 {
5617 void *record = data->raw->data;
5618
5619 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5620 return 1;
5621 return 0;
5622 }
5623
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)5624 static int perf_tp_event_match(struct perf_event *event,
5625 struct perf_sample_data *data,
5626 struct pt_regs *regs)
5627 {
5628 if (event->hw.state & PERF_HES_STOPPED)
5629 return 0;
5630 /*
5631 * All tracepoints are from kernel-space.
5632 */
5633 if (event->attr.exclude_kernel)
5634 return 0;
5635
5636 if (!perf_tp_filter_match(event, data))
5637 return 0;
5638
5639 return 1;
5640 }
5641
perf_tp_event(u64 addr,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)5642 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5643 struct pt_regs *regs, struct hlist_head *head, int rctx,
5644 struct task_struct *task)
5645 {
5646 struct perf_sample_data data;
5647 struct perf_event *event;
5648
5649 struct perf_raw_record raw = {
5650 .size = entry_size,
5651 .data = record,
5652 };
5653
5654 perf_sample_data_init(&data, addr, 0);
5655 data.raw = &raw;
5656
5657 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5658 if (perf_tp_event_match(event, &data, regs))
5659 perf_swevent_event(event, count, &data, regs);
5660 }
5661
5662 /*
5663 * If we got specified a target task, also iterate its context and
5664 * deliver this event there too.
5665 */
5666 if (task && task != current) {
5667 struct perf_event_context *ctx;
5668 struct trace_entry *entry = record;
5669
5670 rcu_read_lock();
5671 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5672 if (!ctx)
5673 goto unlock;
5674
5675 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5676 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5677 continue;
5678 if (event->attr.config != entry->type)
5679 continue;
5680 if (perf_tp_event_match(event, &data, regs))
5681 perf_swevent_event(event, count, &data, regs);
5682 }
5683 unlock:
5684 rcu_read_unlock();
5685 }
5686
5687 perf_swevent_put_recursion_context(rctx);
5688 }
5689 EXPORT_SYMBOL_GPL(perf_tp_event);
5690
tp_perf_event_destroy(struct perf_event * event)5691 static void tp_perf_event_destroy(struct perf_event *event)
5692 {
5693 perf_trace_destroy(event);
5694 }
5695
perf_tp_event_init(struct perf_event * event)5696 static int perf_tp_event_init(struct perf_event *event)
5697 {
5698 int err;
5699
5700 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5701 return -ENOENT;
5702
5703 /*
5704 * no branch sampling for tracepoint events
5705 */
5706 if (has_branch_stack(event))
5707 return -EOPNOTSUPP;
5708
5709 err = perf_trace_init(event);
5710 if (err)
5711 return err;
5712
5713 event->destroy = tp_perf_event_destroy;
5714
5715 return 0;
5716 }
5717
5718 static struct pmu perf_tracepoint = {
5719 .task_ctx_nr = perf_sw_context,
5720
5721 .event_init = perf_tp_event_init,
5722 .add = perf_trace_add,
5723 .del = perf_trace_del,
5724 .start = perf_swevent_start,
5725 .stop = perf_swevent_stop,
5726 .read = perf_swevent_read,
5727
5728 .event_idx = perf_swevent_event_idx,
5729 };
5730
perf_tp_register(void)5731 static inline void perf_tp_register(void)
5732 {
5733 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5734 }
5735
perf_event_set_filter(struct perf_event * event,void __user * arg)5736 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5737 {
5738 char *filter_str;
5739 int ret;
5740
5741 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5742 return -EINVAL;
5743
5744 filter_str = strndup_user(arg, PAGE_SIZE);
5745 if (IS_ERR(filter_str))
5746 return PTR_ERR(filter_str);
5747
5748 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5749
5750 kfree(filter_str);
5751 return ret;
5752 }
5753
perf_event_free_filter(struct perf_event * event)5754 static void perf_event_free_filter(struct perf_event *event)
5755 {
5756 ftrace_profile_free_filter(event);
5757 }
5758
5759 #else
5760
perf_tp_register(void)5761 static inline void perf_tp_register(void)
5762 {
5763 }
5764
perf_event_set_filter(struct perf_event * event,void __user * arg)5765 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5766 {
5767 return -ENOENT;
5768 }
5769
perf_event_free_filter(struct perf_event * event)5770 static void perf_event_free_filter(struct perf_event *event)
5771 {
5772 }
5773
5774 #endif /* CONFIG_EVENT_TRACING */
5775
5776 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)5777 void perf_bp_event(struct perf_event *bp, void *data)
5778 {
5779 struct perf_sample_data sample;
5780 struct pt_regs *regs = data;
5781
5782 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5783
5784 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5785 perf_swevent_event(bp, 1, &sample, regs);
5786 }
5787 #endif
5788
5789 /*
5790 * hrtimer based swevent callback
5791 */
5792
perf_swevent_hrtimer(struct hrtimer * hrtimer)5793 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5794 {
5795 enum hrtimer_restart ret = HRTIMER_RESTART;
5796 struct perf_sample_data data;
5797 struct pt_regs *regs;
5798 struct perf_event *event;
5799 u64 period;
5800
5801 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5802
5803 if (event->state != PERF_EVENT_STATE_ACTIVE)
5804 return HRTIMER_NORESTART;
5805
5806 event->pmu->read(event);
5807
5808 perf_sample_data_init(&data, 0, event->hw.last_period);
5809 regs = get_irq_regs();
5810
5811 if (regs && !perf_exclude_event(event, regs)) {
5812 if (!(event->attr.exclude_idle && is_idle_task(current)))
5813 if (__perf_event_overflow(event, 1, &data, regs))
5814 ret = HRTIMER_NORESTART;
5815 }
5816
5817 period = max_t(u64, 10000, event->hw.sample_period);
5818 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5819
5820 return ret;
5821 }
5822
perf_swevent_start_hrtimer(struct perf_event * event)5823 static void perf_swevent_start_hrtimer(struct perf_event *event)
5824 {
5825 struct hw_perf_event *hwc = &event->hw;
5826 s64 period;
5827
5828 if (!is_sampling_event(event))
5829 return;
5830
5831 period = local64_read(&hwc->period_left);
5832 if (period) {
5833 if (period < 0)
5834 period = 10000;
5835
5836 local64_set(&hwc->period_left, 0);
5837 } else {
5838 period = max_t(u64, 10000, hwc->sample_period);
5839 }
5840 __hrtimer_start_range_ns(&hwc->hrtimer,
5841 ns_to_ktime(period), 0,
5842 HRTIMER_MODE_REL_PINNED, 0);
5843 }
5844
perf_swevent_cancel_hrtimer(struct perf_event * event)5845 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5846 {
5847 struct hw_perf_event *hwc = &event->hw;
5848
5849 if (is_sampling_event(event)) {
5850 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5851 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5852
5853 hrtimer_cancel(&hwc->hrtimer);
5854 }
5855 }
5856
perf_swevent_init_hrtimer(struct perf_event * event)5857 static void perf_swevent_init_hrtimer(struct perf_event *event)
5858 {
5859 struct hw_perf_event *hwc = &event->hw;
5860
5861 if (!is_sampling_event(event))
5862 return;
5863
5864 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5865 hwc->hrtimer.function = perf_swevent_hrtimer;
5866
5867 /*
5868 * Since hrtimers have a fixed rate, we can do a static freq->period
5869 * mapping and avoid the whole period adjust feedback stuff.
5870 */
5871 if (event->attr.freq) {
5872 long freq = event->attr.sample_freq;
5873
5874 event->attr.sample_period = NSEC_PER_SEC / freq;
5875 hwc->sample_period = event->attr.sample_period;
5876 local64_set(&hwc->period_left, hwc->sample_period);
5877 hwc->last_period = hwc->sample_period;
5878 event->attr.freq = 0;
5879 }
5880 }
5881
5882 /*
5883 * Software event: cpu wall time clock
5884 */
5885
cpu_clock_event_update(struct perf_event * event)5886 static void cpu_clock_event_update(struct perf_event *event)
5887 {
5888 s64 prev;
5889 u64 now;
5890
5891 now = local_clock();
5892 prev = local64_xchg(&event->hw.prev_count, now);
5893 local64_add(now - prev, &event->count);
5894 }
5895
cpu_clock_event_start(struct perf_event * event,int flags)5896 static void cpu_clock_event_start(struct perf_event *event, int flags)
5897 {
5898 local64_set(&event->hw.prev_count, local_clock());
5899 perf_swevent_start_hrtimer(event);
5900 }
5901
cpu_clock_event_stop(struct perf_event * event,int flags)5902 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5903 {
5904 perf_swevent_cancel_hrtimer(event);
5905 cpu_clock_event_update(event);
5906 }
5907
cpu_clock_event_add(struct perf_event * event,int flags)5908 static int cpu_clock_event_add(struct perf_event *event, int flags)
5909 {
5910 if (flags & PERF_EF_START)
5911 cpu_clock_event_start(event, flags);
5912
5913 return 0;
5914 }
5915
cpu_clock_event_del(struct perf_event * event,int flags)5916 static void cpu_clock_event_del(struct perf_event *event, int flags)
5917 {
5918 cpu_clock_event_stop(event, flags);
5919 }
5920
cpu_clock_event_read(struct perf_event * event)5921 static void cpu_clock_event_read(struct perf_event *event)
5922 {
5923 cpu_clock_event_update(event);
5924 }
5925
cpu_clock_event_init(struct perf_event * event)5926 static int cpu_clock_event_init(struct perf_event *event)
5927 {
5928 if (event->attr.type != PERF_TYPE_SOFTWARE)
5929 return -ENOENT;
5930
5931 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5932 return -ENOENT;
5933
5934 /*
5935 * no branch sampling for software events
5936 */
5937 if (has_branch_stack(event))
5938 return -EOPNOTSUPP;
5939
5940 perf_swevent_init_hrtimer(event);
5941
5942 return 0;
5943 }
5944
5945 static struct pmu perf_cpu_clock = {
5946 .task_ctx_nr = perf_sw_context,
5947
5948 .event_init = cpu_clock_event_init,
5949 .add = cpu_clock_event_add,
5950 .del = cpu_clock_event_del,
5951 .start = cpu_clock_event_start,
5952 .stop = cpu_clock_event_stop,
5953 .read = cpu_clock_event_read,
5954
5955 .event_idx = perf_swevent_event_idx,
5956 };
5957
5958 /*
5959 * Software event: task time clock
5960 */
5961
task_clock_event_update(struct perf_event * event,u64 now)5962 static void task_clock_event_update(struct perf_event *event, u64 now)
5963 {
5964 u64 prev;
5965 s64 delta;
5966
5967 prev = local64_xchg(&event->hw.prev_count, now);
5968 delta = now - prev;
5969 local64_add(delta, &event->count);
5970 }
5971
task_clock_event_start(struct perf_event * event,int flags)5972 static void task_clock_event_start(struct perf_event *event, int flags)
5973 {
5974 local64_set(&event->hw.prev_count, event->ctx->time);
5975 perf_swevent_start_hrtimer(event);
5976 }
5977
task_clock_event_stop(struct perf_event * event,int flags)5978 static void task_clock_event_stop(struct perf_event *event, int flags)
5979 {
5980 perf_swevent_cancel_hrtimer(event);
5981 task_clock_event_update(event, event->ctx->time);
5982 }
5983
task_clock_event_add(struct perf_event * event,int flags)5984 static int task_clock_event_add(struct perf_event *event, int flags)
5985 {
5986 if (flags & PERF_EF_START)
5987 task_clock_event_start(event, flags);
5988
5989 return 0;
5990 }
5991
task_clock_event_del(struct perf_event * event,int flags)5992 static void task_clock_event_del(struct perf_event *event, int flags)
5993 {
5994 task_clock_event_stop(event, PERF_EF_UPDATE);
5995 }
5996
task_clock_event_read(struct perf_event * event)5997 static void task_clock_event_read(struct perf_event *event)
5998 {
5999 u64 now = perf_clock();
6000 u64 delta = now - event->ctx->timestamp;
6001 u64 time = event->ctx->time + delta;
6002
6003 task_clock_event_update(event, time);
6004 }
6005
task_clock_event_init(struct perf_event * event)6006 static int task_clock_event_init(struct perf_event *event)
6007 {
6008 if (event->attr.type != PERF_TYPE_SOFTWARE)
6009 return -ENOENT;
6010
6011 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6012 return -ENOENT;
6013
6014 /*
6015 * no branch sampling for software events
6016 */
6017 if (has_branch_stack(event))
6018 return -EOPNOTSUPP;
6019
6020 perf_swevent_init_hrtimer(event);
6021
6022 return 0;
6023 }
6024
6025 static struct pmu perf_task_clock = {
6026 .task_ctx_nr = perf_sw_context,
6027
6028 .event_init = task_clock_event_init,
6029 .add = task_clock_event_add,
6030 .del = task_clock_event_del,
6031 .start = task_clock_event_start,
6032 .stop = task_clock_event_stop,
6033 .read = task_clock_event_read,
6034
6035 .event_idx = perf_swevent_event_idx,
6036 };
6037
perf_pmu_nop_void(struct pmu * pmu)6038 static void perf_pmu_nop_void(struct pmu *pmu)
6039 {
6040 }
6041
perf_pmu_nop_int(struct pmu * pmu)6042 static int perf_pmu_nop_int(struct pmu *pmu)
6043 {
6044 return 0;
6045 }
6046
perf_pmu_start_txn(struct pmu * pmu)6047 static void perf_pmu_start_txn(struct pmu *pmu)
6048 {
6049 perf_pmu_disable(pmu);
6050 }
6051
perf_pmu_commit_txn(struct pmu * pmu)6052 static int perf_pmu_commit_txn(struct pmu *pmu)
6053 {
6054 perf_pmu_enable(pmu);
6055 return 0;
6056 }
6057
perf_pmu_cancel_txn(struct pmu * pmu)6058 static void perf_pmu_cancel_txn(struct pmu *pmu)
6059 {
6060 perf_pmu_enable(pmu);
6061 }
6062
perf_event_idx_default(struct perf_event * event)6063 static int perf_event_idx_default(struct perf_event *event)
6064 {
6065 return event->hw.idx + 1;
6066 }
6067
6068 /*
6069 * Ensures all contexts with the same task_ctx_nr have the same
6070 * pmu_cpu_context too.
6071 */
find_pmu_context(int ctxn)6072 static void *find_pmu_context(int ctxn)
6073 {
6074 struct pmu *pmu;
6075
6076 if (ctxn < 0)
6077 return NULL;
6078
6079 list_for_each_entry(pmu, &pmus, entry) {
6080 if (pmu->task_ctx_nr == ctxn)
6081 return pmu->pmu_cpu_context;
6082 }
6083
6084 return NULL;
6085 }
6086
update_pmu_context(struct pmu * pmu,struct pmu * old_pmu)6087 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6088 {
6089 int cpu;
6090
6091 for_each_possible_cpu(cpu) {
6092 struct perf_cpu_context *cpuctx;
6093
6094 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6095
6096 if (cpuctx->unique_pmu == old_pmu)
6097 cpuctx->unique_pmu = pmu;
6098 }
6099 }
6100
free_pmu_context(struct pmu * pmu)6101 static void free_pmu_context(struct pmu *pmu)
6102 {
6103 struct pmu *i;
6104
6105 mutex_lock(&pmus_lock);
6106 /*
6107 * Like a real lame refcount.
6108 */
6109 list_for_each_entry(i, &pmus, entry) {
6110 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6111 update_pmu_context(i, pmu);
6112 goto out;
6113 }
6114 }
6115
6116 free_percpu(pmu->pmu_cpu_context);
6117 out:
6118 mutex_unlock(&pmus_lock);
6119 }
6120 static struct idr pmu_idr;
6121
6122 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)6123 type_show(struct device *dev, struct device_attribute *attr, char *page)
6124 {
6125 struct pmu *pmu = dev_get_drvdata(dev);
6126
6127 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6128 }
6129
6130 static struct device_attribute pmu_dev_attrs[] = {
6131 __ATTR_RO(type),
6132 __ATTR_NULL,
6133 };
6134
6135 static int pmu_bus_running;
6136 static struct bus_type pmu_bus = {
6137 .name = "event_source",
6138 .dev_attrs = pmu_dev_attrs,
6139 };
6140
pmu_dev_release(struct device * dev)6141 static void pmu_dev_release(struct device *dev)
6142 {
6143 kfree(dev);
6144 }
6145
pmu_dev_alloc(struct pmu * pmu)6146 static int pmu_dev_alloc(struct pmu *pmu)
6147 {
6148 int ret = -ENOMEM;
6149
6150 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6151 if (!pmu->dev)
6152 goto out;
6153
6154 pmu->dev->groups = pmu->attr_groups;
6155 device_initialize(pmu->dev);
6156 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6157 if (ret)
6158 goto free_dev;
6159
6160 dev_set_drvdata(pmu->dev, pmu);
6161 pmu->dev->bus = &pmu_bus;
6162 pmu->dev->release = pmu_dev_release;
6163 ret = device_add(pmu->dev);
6164 if (ret)
6165 goto free_dev;
6166
6167 out:
6168 return ret;
6169
6170 free_dev:
6171 put_device(pmu->dev);
6172 goto out;
6173 }
6174
6175 static struct lock_class_key cpuctx_mutex;
6176 static struct lock_class_key cpuctx_lock;
6177
perf_pmu_register(struct pmu * pmu,char * name,int type)6178 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6179 {
6180 int cpu, ret;
6181
6182 mutex_lock(&pmus_lock);
6183 ret = -ENOMEM;
6184 pmu->pmu_disable_count = alloc_percpu(int);
6185 if (!pmu->pmu_disable_count)
6186 goto unlock;
6187
6188 pmu->type = -1;
6189 if (!name)
6190 goto skip_type;
6191 pmu->name = name;
6192
6193 if (type < 0) {
6194 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6195 if (type < 0) {
6196 ret = type;
6197 goto free_pdc;
6198 }
6199 }
6200 pmu->type = type;
6201
6202 if (pmu_bus_running) {
6203 ret = pmu_dev_alloc(pmu);
6204 if (ret)
6205 goto free_idr;
6206 }
6207
6208 skip_type:
6209 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6210 if (pmu->pmu_cpu_context)
6211 goto got_cpu_context;
6212
6213 ret = -ENOMEM;
6214 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6215 if (!pmu->pmu_cpu_context)
6216 goto free_dev;
6217
6218 for_each_possible_cpu(cpu) {
6219 struct perf_cpu_context *cpuctx;
6220
6221 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6222 __perf_event_init_context(&cpuctx->ctx);
6223 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6224 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6225 cpuctx->ctx.pmu = pmu;
6226 cpuctx->jiffies_interval = 1;
6227 INIT_LIST_HEAD(&cpuctx->rotation_list);
6228 cpuctx->unique_pmu = pmu;
6229 }
6230
6231 got_cpu_context:
6232 if (!pmu->start_txn) {
6233 if (pmu->pmu_enable) {
6234 /*
6235 * If we have pmu_enable/pmu_disable calls, install
6236 * transaction stubs that use that to try and batch
6237 * hardware accesses.
6238 */
6239 pmu->start_txn = perf_pmu_start_txn;
6240 pmu->commit_txn = perf_pmu_commit_txn;
6241 pmu->cancel_txn = perf_pmu_cancel_txn;
6242 } else {
6243 pmu->start_txn = perf_pmu_nop_void;
6244 pmu->commit_txn = perf_pmu_nop_int;
6245 pmu->cancel_txn = perf_pmu_nop_void;
6246 }
6247 }
6248
6249 if (!pmu->pmu_enable) {
6250 pmu->pmu_enable = perf_pmu_nop_void;
6251 pmu->pmu_disable = perf_pmu_nop_void;
6252 }
6253
6254 if (!pmu->event_idx)
6255 pmu->event_idx = perf_event_idx_default;
6256
6257 list_add_rcu(&pmu->entry, &pmus);
6258 ret = 0;
6259 unlock:
6260 mutex_unlock(&pmus_lock);
6261
6262 return ret;
6263
6264 free_dev:
6265 device_del(pmu->dev);
6266 put_device(pmu->dev);
6267
6268 free_idr:
6269 if (pmu->type >= PERF_TYPE_MAX)
6270 idr_remove(&pmu_idr, pmu->type);
6271
6272 free_pdc:
6273 free_percpu(pmu->pmu_disable_count);
6274 goto unlock;
6275 }
6276
perf_pmu_unregister(struct pmu * pmu)6277 void perf_pmu_unregister(struct pmu *pmu)
6278 {
6279 mutex_lock(&pmus_lock);
6280 list_del_rcu(&pmu->entry);
6281 mutex_unlock(&pmus_lock);
6282
6283 /*
6284 * We dereference the pmu list under both SRCU and regular RCU, so
6285 * synchronize against both of those.
6286 */
6287 synchronize_srcu(&pmus_srcu);
6288 synchronize_rcu();
6289
6290 free_percpu(pmu->pmu_disable_count);
6291 if (pmu->type >= PERF_TYPE_MAX)
6292 idr_remove(&pmu_idr, pmu->type);
6293 device_del(pmu->dev);
6294 put_device(pmu->dev);
6295 free_pmu_context(pmu);
6296 }
6297
perf_init_event(struct perf_event * event)6298 struct pmu *perf_init_event(struct perf_event *event)
6299 {
6300 struct pmu *pmu = NULL;
6301 int idx;
6302 int ret;
6303
6304 idx = srcu_read_lock(&pmus_srcu);
6305
6306 rcu_read_lock();
6307 pmu = idr_find(&pmu_idr, event->attr.type);
6308 rcu_read_unlock();
6309 if (pmu) {
6310 event->pmu = pmu;
6311 ret = pmu->event_init(event);
6312 if (ret)
6313 pmu = ERR_PTR(ret);
6314 goto unlock;
6315 }
6316
6317 list_for_each_entry_rcu(pmu, &pmus, entry) {
6318 event->pmu = pmu;
6319 ret = pmu->event_init(event);
6320 if (!ret)
6321 goto unlock;
6322
6323 if (ret != -ENOENT) {
6324 pmu = ERR_PTR(ret);
6325 goto unlock;
6326 }
6327 }
6328 pmu = ERR_PTR(-ENOENT);
6329 unlock:
6330 srcu_read_unlock(&pmus_srcu, idx);
6331
6332 return pmu;
6333 }
6334
6335 /*
6336 * Allocate and initialize a event structure
6337 */
6338 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context)6339 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6340 struct task_struct *task,
6341 struct perf_event *group_leader,
6342 struct perf_event *parent_event,
6343 perf_overflow_handler_t overflow_handler,
6344 void *context)
6345 {
6346 struct pmu *pmu;
6347 struct perf_event *event;
6348 struct hw_perf_event *hwc;
6349 long err;
6350
6351 if ((unsigned)cpu >= nr_cpu_ids) {
6352 if (!task || cpu != -1)
6353 return ERR_PTR(-EINVAL);
6354 }
6355
6356 event = kzalloc(sizeof(*event), GFP_KERNEL);
6357 if (!event)
6358 return ERR_PTR(-ENOMEM);
6359
6360 /*
6361 * Single events are their own group leaders, with an
6362 * empty sibling list:
6363 */
6364 if (!group_leader)
6365 group_leader = event;
6366
6367 mutex_init(&event->child_mutex);
6368 INIT_LIST_HEAD(&event->child_list);
6369
6370 INIT_LIST_HEAD(&event->group_entry);
6371 INIT_LIST_HEAD(&event->event_entry);
6372 INIT_LIST_HEAD(&event->sibling_list);
6373 INIT_LIST_HEAD(&event->rb_entry);
6374
6375 init_waitqueue_head(&event->waitq);
6376 init_irq_work(&event->pending, perf_pending_event);
6377
6378 mutex_init(&event->mmap_mutex);
6379
6380 atomic_long_set(&event->refcount, 1);
6381 event->cpu = cpu;
6382 event->attr = *attr;
6383 event->group_leader = group_leader;
6384 event->pmu = NULL;
6385 event->oncpu = -1;
6386
6387 event->parent = parent_event;
6388
6389 event->ns = get_pid_ns(task_active_pid_ns(current));
6390 event->id = atomic64_inc_return(&perf_event_id);
6391
6392 event->state = PERF_EVENT_STATE_INACTIVE;
6393
6394 if (task) {
6395 event->attach_state = PERF_ATTACH_TASK;
6396
6397 if (attr->type == PERF_TYPE_TRACEPOINT)
6398 event->hw.tp_target = task;
6399 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6400 /*
6401 * hw_breakpoint is a bit difficult here..
6402 */
6403 else if (attr->type == PERF_TYPE_BREAKPOINT)
6404 event->hw.bp_target = task;
6405 #endif
6406 }
6407
6408 if (!overflow_handler && parent_event) {
6409 overflow_handler = parent_event->overflow_handler;
6410 context = parent_event->overflow_handler_context;
6411 }
6412
6413 event->overflow_handler = overflow_handler;
6414 event->overflow_handler_context = context;
6415
6416 perf_event__state_init(event);
6417
6418 pmu = NULL;
6419
6420 hwc = &event->hw;
6421 hwc->sample_period = attr->sample_period;
6422 if (attr->freq && attr->sample_freq)
6423 hwc->sample_period = 1;
6424 hwc->last_period = hwc->sample_period;
6425
6426 local64_set(&hwc->period_left, hwc->sample_period);
6427
6428 /*
6429 * we currently do not support PERF_FORMAT_GROUP on inherited events
6430 */
6431 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6432 goto done;
6433
6434 pmu = perf_init_event(event);
6435
6436 done:
6437 err = 0;
6438 if (!pmu)
6439 err = -EINVAL;
6440 else if (IS_ERR(pmu))
6441 err = PTR_ERR(pmu);
6442
6443 if (err) {
6444 if (event->ns)
6445 put_pid_ns(event->ns);
6446 kfree(event);
6447 return ERR_PTR(err);
6448 }
6449
6450 if (!event->parent) {
6451 if (event->attach_state & PERF_ATTACH_TASK)
6452 static_key_slow_inc(&perf_sched_events.key);
6453 if (event->attr.mmap || event->attr.mmap_data)
6454 atomic_inc(&nr_mmap_events);
6455 if (event->attr.comm)
6456 atomic_inc(&nr_comm_events);
6457 if (event->attr.task)
6458 atomic_inc(&nr_task_events);
6459 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6460 err = get_callchain_buffers();
6461 if (err) {
6462 free_event(event);
6463 return ERR_PTR(err);
6464 }
6465 }
6466 if (has_branch_stack(event)) {
6467 static_key_slow_inc(&perf_sched_events.key);
6468 if (!(event->attach_state & PERF_ATTACH_TASK))
6469 atomic_inc(&per_cpu(perf_branch_stack_events,
6470 event->cpu));
6471 }
6472 }
6473
6474 return event;
6475 }
6476
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)6477 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6478 struct perf_event_attr *attr)
6479 {
6480 u32 size;
6481 int ret;
6482
6483 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6484 return -EFAULT;
6485
6486 /*
6487 * zero the full structure, so that a short copy will be nice.
6488 */
6489 memset(attr, 0, sizeof(*attr));
6490
6491 ret = get_user(size, &uattr->size);
6492 if (ret)
6493 return ret;
6494
6495 if (size > PAGE_SIZE) /* silly large */
6496 goto err_size;
6497
6498 if (!size) /* abi compat */
6499 size = PERF_ATTR_SIZE_VER0;
6500
6501 if (size < PERF_ATTR_SIZE_VER0)
6502 goto err_size;
6503
6504 /*
6505 * If we're handed a bigger struct than we know of,
6506 * ensure all the unknown bits are 0 - i.e. new
6507 * user-space does not rely on any kernel feature
6508 * extensions we dont know about yet.
6509 */
6510 if (size > sizeof(*attr)) {
6511 unsigned char __user *addr;
6512 unsigned char __user *end;
6513 unsigned char val;
6514
6515 addr = (void __user *)uattr + sizeof(*attr);
6516 end = (void __user *)uattr + size;
6517
6518 for (; addr < end; addr++) {
6519 ret = get_user(val, addr);
6520 if (ret)
6521 return ret;
6522 if (val)
6523 goto err_size;
6524 }
6525 size = sizeof(*attr);
6526 }
6527
6528 ret = copy_from_user(attr, uattr, size);
6529 if (ret)
6530 return -EFAULT;
6531
6532 if (attr->__reserved_1)
6533 return -EINVAL;
6534
6535 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6536 return -EINVAL;
6537
6538 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6539 return -EINVAL;
6540
6541 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6542 u64 mask = attr->branch_sample_type;
6543
6544 /* only using defined bits */
6545 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6546 return -EINVAL;
6547
6548 /* at least one branch bit must be set */
6549 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6550 return -EINVAL;
6551
6552 /* kernel level capture: check permissions */
6553 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6554 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6555 return -EACCES;
6556
6557 /* propagate priv level, when not set for branch */
6558 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6559
6560 /* exclude_kernel checked on syscall entry */
6561 if (!attr->exclude_kernel)
6562 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6563
6564 if (!attr->exclude_user)
6565 mask |= PERF_SAMPLE_BRANCH_USER;
6566
6567 if (!attr->exclude_hv)
6568 mask |= PERF_SAMPLE_BRANCH_HV;
6569 /*
6570 * adjust user setting (for HW filter setup)
6571 */
6572 attr->branch_sample_type = mask;
6573 }
6574 }
6575
6576 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6577 ret = perf_reg_validate(attr->sample_regs_user);
6578 if (ret)
6579 return ret;
6580 }
6581
6582 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6583 if (!arch_perf_have_user_stack_dump())
6584 return -ENOSYS;
6585
6586 /*
6587 * We have __u32 type for the size, but so far
6588 * we can only use __u16 as maximum due to the
6589 * __u16 sample size limit.
6590 */
6591 if (attr->sample_stack_user >= USHRT_MAX)
6592 ret = -EINVAL;
6593 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6594 ret = -EINVAL;
6595 }
6596
6597 out:
6598 return ret;
6599
6600 err_size:
6601 put_user(sizeof(*attr), &uattr->size);
6602 ret = -E2BIG;
6603 goto out;
6604 }
6605
6606 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)6607 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6608 {
6609 struct ring_buffer *rb = NULL, *old_rb = NULL;
6610 int ret = -EINVAL;
6611
6612 if (!output_event)
6613 goto set;
6614
6615 /* don't allow circular references */
6616 if (event == output_event)
6617 goto out;
6618
6619 /*
6620 * Don't allow cross-cpu buffers
6621 */
6622 if (output_event->cpu != event->cpu)
6623 goto out;
6624
6625 /*
6626 * If its not a per-cpu rb, it must be the same task.
6627 */
6628 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6629 goto out;
6630
6631 set:
6632 mutex_lock(&event->mmap_mutex);
6633 /* Can't redirect output if we've got an active mmap() */
6634 if (atomic_read(&event->mmap_count))
6635 goto unlock;
6636
6637 old_rb = event->rb;
6638
6639 if (output_event) {
6640 /* get the rb we want to redirect to */
6641 rb = ring_buffer_get(output_event);
6642 if (!rb)
6643 goto unlock;
6644 }
6645
6646 if (old_rb)
6647 ring_buffer_detach(event, old_rb);
6648
6649 if (rb)
6650 ring_buffer_attach(event, rb);
6651
6652 rcu_assign_pointer(event->rb, rb);
6653
6654 if (old_rb) {
6655 ring_buffer_put(old_rb);
6656 /*
6657 * Since we detached before setting the new rb, so that we
6658 * could attach the new rb, we could have missed a wakeup.
6659 * Provide it now.
6660 */
6661 wake_up_all(&event->waitq);
6662 }
6663
6664 ret = 0;
6665 unlock:
6666 mutex_unlock(&event->mmap_mutex);
6667
6668 out:
6669 return ret;
6670 }
6671
mutex_lock_double(struct mutex * a,struct mutex * b)6672 static void mutex_lock_double(struct mutex *a, struct mutex *b)
6673 {
6674 if (b < a)
6675 swap(a, b);
6676
6677 mutex_lock(a);
6678 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
6679 }
6680
6681 /*
6682 * Variation on perf_event_ctx_lock_nested(), except we take two context
6683 * mutexes.
6684 */
6685 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)6686 __perf_event_ctx_lock_double(struct perf_event *group_leader,
6687 struct perf_event_context *ctx)
6688 {
6689 struct perf_event_context *gctx;
6690
6691 again:
6692 rcu_read_lock();
6693 gctx = ACCESS_ONCE(group_leader->ctx);
6694 if (!atomic_inc_not_zero(&gctx->refcount)) {
6695 rcu_read_unlock();
6696 goto again;
6697 }
6698 rcu_read_unlock();
6699
6700 mutex_lock_double(&gctx->mutex, &ctx->mutex);
6701
6702 if (group_leader->ctx != gctx) {
6703 mutex_unlock(&ctx->mutex);
6704 mutex_unlock(&gctx->mutex);
6705 put_ctx(gctx);
6706 goto again;
6707 }
6708
6709 return gctx;
6710 }
6711
6712 /**
6713 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6714 *
6715 * @attr_uptr: event_id type attributes for monitoring/sampling
6716 * @pid: target pid
6717 * @cpu: target cpu
6718 * @group_fd: group leader event fd
6719 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)6720 SYSCALL_DEFINE5(perf_event_open,
6721 struct perf_event_attr __user *, attr_uptr,
6722 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6723 {
6724 struct perf_event *group_leader = NULL, *output_event = NULL;
6725 struct perf_event *event, *sibling;
6726 struct perf_event_attr attr;
6727 struct perf_event_context *ctx, *uninitialized_var(gctx);
6728 struct file *event_file = NULL;
6729 struct fd group = {NULL, 0};
6730 struct task_struct *task = NULL;
6731 struct pmu *pmu;
6732 int event_fd;
6733 int move_group = 0;
6734 int err;
6735
6736 /* for future expandability... */
6737 if (flags & ~PERF_FLAG_ALL)
6738 return -EINVAL;
6739
6740 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
6741 return -EACCES;
6742
6743 err = perf_copy_attr(attr_uptr, &attr);
6744 if (err)
6745 return err;
6746
6747 if (!attr.exclude_kernel) {
6748 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6749 return -EACCES;
6750 }
6751
6752 if (attr.freq) {
6753 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6754 return -EINVAL;
6755 }
6756
6757 /*
6758 * In cgroup mode, the pid argument is used to pass the fd
6759 * opened to the cgroup directory in cgroupfs. The cpu argument
6760 * designates the cpu on which to monitor threads from that
6761 * cgroup.
6762 */
6763 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6764 return -EINVAL;
6765
6766 event_fd = get_unused_fd();
6767 if (event_fd < 0)
6768 return event_fd;
6769
6770 if (group_fd != -1) {
6771 err = perf_fget_light(group_fd, &group);
6772 if (err)
6773 goto err_fd;
6774 group_leader = group.file->private_data;
6775 if (flags & PERF_FLAG_FD_OUTPUT)
6776 output_event = group_leader;
6777 if (flags & PERF_FLAG_FD_NO_GROUP)
6778 group_leader = NULL;
6779 }
6780
6781 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6782 task = find_lively_task_by_vpid(pid);
6783 if (IS_ERR(task)) {
6784 err = PTR_ERR(task);
6785 goto err_group_fd;
6786 }
6787 }
6788
6789 get_online_cpus();
6790
6791 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6792 NULL, NULL);
6793 if (IS_ERR(event)) {
6794 err = PTR_ERR(event);
6795 goto err_task;
6796 }
6797
6798 if (flags & PERF_FLAG_PID_CGROUP) {
6799 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6800 if (err)
6801 goto err_alloc;
6802 /*
6803 * one more event:
6804 * - that has cgroup constraint on event->cpu
6805 * - that may need work on context switch
6806 */
6807 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6808 static_key_slow_inc(&perf_sched_events.key);
6809 }
6810
6811 /*
6812 * Special case software events and allow them to be part of
6813 * any hardware group.
6814 */
6815 pmu = event->pmu;
6816
6817 if (group_leader &&
6818 (is_software_event(event) != is_software_event(group_leader))) {
6819 if (is_software_event(event)) {
6820 /*
6821 * If event and group_leader are not both a software
6822 * event, and event is, then group leader is not.
6823 *
6824 * Allow the addition of software events to !software
6825 * groups, this is safe because software events never
6826 * fail to schedule.
6827 */
6828 pmu = group_leader->pmu;
6829 } else if (is_software_event(group_leader) &&
6830 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6831 /*
6832 * In case the group is a pure software group, and we
6833 * try to add a hardware event, move the whole group to
6834 * the hardware context.
6835 */
6836 move_group = 1;
6837 }
6838 }
6839
6840 /*
6841 * Get the target context (task or percpu):
6842 */
6843 ctx = find_get_context(pmu, task, event->cpu);
6844 if (IS_ERR(ctx)) {
6845 err = PTR_ERR(ctx);
6846 goto err_alloc;
6847 }
6848
6849 if (task) {
6850 put_task_struct(task);
6851 task = NULL;
6852 }
6853
6854 /*
6855 * Look up the group leader (we will attach this event to it):
6856 */
6857 if (group_leader) {
6858 err = -EINVAL;
6859
6860 /*
6861 * Do not allow a recursive hierarchy (this new sibling
6862 * becoming part of another group-sibling):
6863 */
6864 if (group_leader->group_leader != group_leader)
6865 goto err_context;
6866 /*
6867 * Do not allow to attach to a group in a different
6868 * task or CPU context:
6869 */
6870 if (move_group) {
6871 /*
6872 * Make sure we're both on the same task, or both
6873 * per-cpu events.
6874 */
6875 if (group_leader->ctx->task != ctx->task)
6876 goto err_context;
6877
6878 /*
6879 * Make sure we're both events for the same CPU;
6880 * grouping events for different CPUs is broken; since
6881 * you can never concurrently schedule them anyhow.
6882 */
6883 if (group_leader->cpu != event->cpu)
6884 goto err_context;
6885 } else {
6886 if (group_leader->ctx != ctx)
6887 goto err_context;
6888 }
6889
6890 /*
6891 * Only a group leader can be exclusive or pinned
6892 */
6893 if (attr.exclusive || attr.pinned)
6894 goto err_context;
6895 }
6896
6897 if (output_event) {
6898 err = perf_event_set_output(event, output_event);
6899 if (err)
6900 goto err_context;
6901 }
6902
6903 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6904 if (IS_ERR(event_file)) {
6905 err = PTR_ERR(event_file);
6906 goto err_context;
6907 }
6908
6909 if (move_group) {
6910 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
6911
6912 /*
6913 * Check if we raced against another sys_perf_event_open() call
6914 * moving the software group underneath us.
6915 */
6916 if (!(group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6917 /*
6918 * If someone moved the group out from under us, check
6919 * if this new event wound up on the same ctx, if so
6920 * its the regular !move_group case, otherwise fail.
6921 */
6922 if (gctx != ctx) {
6923 err = -EINVAL;
6924 goto err_locked;
6925 } else {
6926 perf_event_ctx_unlock(group_leader, gctx);
6927 move_group = 0;
6928 }
6929 }
6930
6931 /*
6932 * See perf_event_ctx_lock() for comments on the details
6933 * of swizzling perf_event::ctx.
6934 */
6935 perf_remove_from_context(group_leader);
6936
6937 /*
6938 * Removing from the context ends up with disabled
6939 * event. What we want here is event in the initial
6940 * startup state, ready to be add into new context.
6941 */
6942 perf_event__state_init(group_leader);
6943 list_for_each_entry(sibling, &group_leader->sibling_list,
6944 group_entry) {
6945 perf_remove_from_context(sibling);
6946 perf_event__state_init(sibling);
6947 put_ctx(gctx);
6948 }
6949 } else {
6950 mutex_lock(&ctx->mutex);
6951 }
6952
6953 WARN_ON_ONCE(ctx->parent_ctx);
6954
6955 if (move_group) {
6956 /*
6957 * Wait for everybody to stop referencing the events through
6958 * the old lists, before installing it on new lists.
6959 */
6960 synchronize_rcu();
6961
6962 perf_install_in_context(ctx, group_leader, event->cpu);
6963 get_ctx(ctx);
6964 list_for_each_entry(sibling, &group_leader->sibling_list,
6965 group_entry) {
6966 perf_install_in_context(ctx, sibling, event->cpu);
6967 get_ctx(ctx);
6968 }
6969 }
6970
6971 perf_install_in_context(ctx, event, event->cpu);
6972 ++ctx->generation;
6973 perf_unpin_context(ctx);
6974
6975 if (move_group) {
6976 perf_event_ctx_unlock(group_leader, gctx);
6977 put_ctx(gctx);
6978 }
6979 mutex_unlock(&ctx->mutex);
6980
6981 put_online_cpus();
6982
6983 event->owner = current;
6984
6985 mutex_lock(¤t->perf_event_mutex);
6986 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
6987 mutex_unlock(¤t->perf_event_mutex);
6988
6989 /*
6990 * Precalculate sample_data sizes
6991 */
6992 perf_event__header_size(event);
6993 perf_event__id_header_size(event);
6994
6995 /*
6996 * Drop the reference on the group_event after placing the
6997 * new event on the sibling_list. This ensures destruction
6998 * of the group leader will find the pointer to itself in
6999 * perf_group_detach().
7000 */
7001 fdput(group);
7002 fd_install(event_fd, event_file);
7003 return event_fd;
7004
7005 err_locked:
7006 if (move_group)
7007 perf_event_ctx_unlock(group_leader, gctx);
7008 mutex_unlock(&ctx->mutex);
7009 fput(event_file);
7010 err_context:
7011 perf_unpin_context(ctx);
7012 put_ctx(ctx);
7013 err_alloc:
7014 free_event(event);
7015 err_task:
7016 put_online_cpus();
7017 if (task)
7018 put_task_struct(task);
7019 err_group_fd:
7020 fdput(group);
7021 err_fd:
7022 put_unused_fd(event_fd);
7023 return err;
7024 }
7025
7026 /**
7027 * perf_event_create_kernel_counter
7028 *
7029 * @attr: attributes of the counter to create
7030 * @cpu: cpu in which the counter is bound
7031 * @task: task to profile (NULL for percpu)
7032 */
7033 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)7034 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7035 struct task_struct *task,
7036 perf_overflow_handler_t overflow_handler,
7037 void *context)
7038 {
7039 struct perf_event_context *ctx;
7040 struct perf_event *event;
7041 int err;
7042
7043 /*
7044 * Get the target context (task or percpu):
7045 */
7046
7047 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7048 overflow_handler, context);
7049 if (IS_ERR(event)) {
7050 err = PTR_ERR(event);
7051 goto err;
7052 }
7053
7054 ctx = find_get_context(event->pmu, task, cpu);
7055 if (IS_ERR(ctx)) {
7056 err = PTR_ERR(ctx);
7057 goto err_free;
7058 }
7059
7060 WARN_ON_ONCE(ctx->parent_ctx);
7061 mutex_lock(&ctx->mutex);
7062 perf_install_in_context(ctx, event, cpu);
7063 ++ctx->generation;
7064 perf_unpin_context(ctx);
7065 mutex_unlock(&ctx->mutex);
7066
7067 return event;
7068
7069 err_free:
7070 free_event(event);
7071 err:
7072 return ERR_PTR(err);
7073 }
7074 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7075
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)7076 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7077 {
7078 struct perf_event_context *src_ctx;
7079 struct perf_event_context *dst_ctx;
7080 struct perf_event *event, *tmp;
7081 LIST_HEAD(events);
7082
7083 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7084 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7085
7086 /*
7087 * See perf_event_ctx_lock() for comments on the details
7088 * of swizzling perf_event::ctx.
7089 */
7090 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7091 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7092 event_entry) {
7093 perf_remove_from_context(event);
7094 put_ctx(src_ctx);
7095 list_add(&event->event_entry, &events);
7096 }
7097
7098 synchronize_rcu();
7099
7100 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7101 list_del(&event->event_entry);
7102 if (event->state >= PERF_EVENT_STATE_OFF)
7103 event->state = PERF_EVENT_STATE_INACTIVE;
7104 perf_install_in_context(dst_ctx, event, dst_cpu);
7105 get_ctx(dst_ctx);
7106 }
7107 mutex_unlock(&dst_ctx->mutex);
7108 mutex_unlock(&src_ctx->mutex);
7109 }
7110 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7111
sync_child_event(struct perf_event * child_event,struct task_struct * child)7112 static void sync_child_event(struct perf_event *child_event,
7113 struct task_struct *child)
7114 {
7115 struct perf_event *parent_event = child_event->parent;
7116 u64 child_val;
7117
7118 if (child_event->attr.inherit_stat)
7119 perf_event_read_event(child_event, child);
7120
7121 child_val = perf_event_count(child_event);
7122
7123 /*
7124 * Add back the child's count to the parent's count:
7125 */
7126 atomic64_add(child_val, &parent_event->child_count);
7127 atomic64_add(child_event->total_time_enabled,
7128 &parent_event->child_total_time_enabled);
7129 atomic64_add(child_event->total_time_running,
7130 &parent_event->child_total_time_running);
7131
7132 /*
7133 * Remove this event from the parent's list
7134 */
7135 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7136 mutex_lock(&parent_event->child_mutex);
7137 list_del_init(&child_event->child_list);
7138 mutex_unlock(&parent_event->child_mutex);
7139
7140 /*
7141 * Release the parent event, if this was the last
7142 * reference to it.
7143 */
7144 put_event(parent_event);
7145 }
7146
7147 static void
__perf_event_exit_task(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)7148 __perf_event_exit_task(struct perf_event *child_event,
7149 struct perf_event_context *child_ctx,
7150 struct task_struct *child)
7151 {
7152 if (child_event->parent) {
7153 raw_spin_lock_irq(&child_ctx->lock);
7154 perf_group_detach(child_event);
7155 raw_spin_unlock_irq(&child_ctx->lock);
7156 }
7157
7158 perf_remove_from_context(child_event);
7159
7160 /*
7161 * It can happen that the parent exits first, and has events
7162 * that are still around due to the child reference. These
7163 * events need to be zapped.
7164 */
7165 if (child_event->parent) {
7166 sync_child_event(child_event, child);
7167 free_event(child_event);
7168 }
7169 }
7170
perf_event_exit_task_context(struct task_struct * child,int ctxn)7171 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7172 {
7173 struct perf_event *child_event, *tmp;
7174 struct perf_event_context *child_ctx;
7175 unsigned long flags;
7176
7177 if (likely(!child->perf_event_ctxp[ctxn])) {
7178 perf_event_task(child, NULL, 0);
7179 return;
7180 }
7181
7182 local_irq_save(flags);
7183 /*
7184 * We can't reschedule here because interrupts are disabled,
7185 * and either child is current or it is a task that can't be
7186 * scheduled, so we are now safe from rescheduling changing
7187 * our context.
7188 */
7189 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7190
7191 /*
7192 * Take the context lock here so that if find_get_context is
7193 * reading child->perf_event_ctxp, we wait until it has
7194 * incremented the context's refcount before we do put_ctx below.
7195 */
7196 raw_spin_lock(&child_ctx->lock);
7197 task_ctx_sched_out(child_ctx);
7198 child->perf_event_ctxp[ctxn] = NULL;
7199 /*
7200 * If this context is a clone; unclone it so it can't get
7201 * swapped to another process while we're removing all
7202 * the events from it.
7203 */
7204 unclone_ctx(child_ctx);
7205 update_context_time(child_ctx);
7206 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7207
7208 /*
7209 * Report the task dead after unscheduling the events so that we
7210 * won't get any samples after PERF_RECORD_EXIT. We can however still
7211 * get a few PERF_RECORD_READ events.
7212 */
7213 perf_event_task(child, child_ctx, 0);
7214
7215 /*
7216 * We can recurse on the same lock type through:
7217 *
7218 * __perf_event_exit_task()
7219 * sync_child_event()
7220 * put_event()
7221 * mutex_lock(&ctx->mutex)
7222 *
7223 * But since its the parent context it won't be the same instance.
7224 */
7225 mutex_lock(&child_ctx->mutex);
7226
7227 again:
7228 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7229 group_entry)
7230 __perf_event_exit_task(child_event, child_ctx, child);
7231
7232 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7233 group_entry)
7234 __perf_event_exit_task(child_event, child_ctx, child);
7235
7236 /*
7237 * If the last event was a group event, it will have appended all
7238 * its siblings to the list, but we obtained 'tmp' before that which
7239 * will still point to the list head terminating the iteration.
7240 */
7241 if (!list_empty(&child_ctx->pinned_groups) ||
7242 !list_empty(&child_ctx->flexible_groups))
7243 goto again;
7244
7245 mutex_unlock(&child_ctx->mutex);
7246
7247 put_ctx(child_ctx);
7248 }
7249
7250 /*
7251 * When a child task exits, feed back event values to parent events.
7252 */
perf_event_exit_task(struct task_struct * child)7253 void perf_event_exit_task(struct task_struct *child)
7254 {
7255 struct perf_event *event, *tmp;
7256 int ctxn;
7257
7258 mutex_lock(&child->perf_event_mutex);
7259 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7260 owner_entry) {
7261 list_del_init(&event->owner_entry);
7262
7263 /*
7264 * Ensure the list deletion is visible before we clear
7265 * the owner, closes a race against perf_release() where
7266 * we need to serialize on the owner->perf_event_mutex.
7267 */
7268 smp_wmb();
7269 event->owner = NULL;
7270 }
7271 mutex_unlock(&child->perf_event_mutex);
7272
7273 for_each_task_context_nr(ctxn)
7274 perf_event_exit_task_context(child, ctxn);
7275 }
7276
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)7277 static void perf_free_event(struct perf_event *event,
7278 struct perf_event_context *ctx)
7279 {
7280 struct perf_event *parent = event->parent;
7281
7282 if (WARN_ON_ONCE(!parent))
7283 return;
7284
7285 mutex_lock(&parent->child_mutex);
7286 list_del_init(&event->child_list);
7287 mutex_unlock(&parent->child_mutex);
7288
7289 put_event(parent);
7290
7291 perf_group_detach(event);
7292 list_del_event(event, ctx);
7293 free_event(event);
7294 }
7295
7296 /*
7297 * free an unexposed, unused context as created by inheritance by
7298 * perf_event_init_task below, used by fork() in case of fail.
7299 */
perf_event_free_task(struct task_struct * task)7300 void perf_event_free_task(struct task_struct *task)
7301 {
7302 struct perf_event_context *ctx;
7303 struct perf_event *event, *tmp;
7304 int ctxn;
7305
7306 for_each_task_context_nr(ctxn) {
7307 ctx = task->perf_event_ctxp[ctxn];
7308 if (!ctx)
7309 continue;
7310
7311 mutex_lock(&ctx->mutex);
7312 again:
7313 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7314 group_entry)
7315 perf_free_event(event, ctx);
7316
7317 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7318 group_entry)
7319 perf_free_event(event, ctx);
7320
7321 if (!list_empty(&ctx->pinned_groups) ||
7322 !list_empty(&ctx->flexible_groups))
7323 goto again;
7324
7325 mutex_unlock(&ctx->mutex);
7326
7327 put_ctx(ctx);
7328 }
7329 }
7330
perf_event_delayed_put(struct task_struct * task)7331 void perf_event_delayed_put(struct task_struct *task)
7332 {
7333 int ctxn;
7334
7335 for_each_task_context_nr(ctxn)
7336 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7337 }
7338
7339 /*
7340 * inherit a event from parent task to child task:
7341 */
7342 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)7343 inherit_event(struct perf_event *parent_event,
7344 struct task_struct *parent,
7345 struct perf_event_context *parent_ctx,
7346 struct task_struct *child,
7347 struct perf_event *group_leader,
7348 struct perf_event_context *child_ctx)
7349 {
7350 struct perf_event *child_event;
7351 unsigned long flags;
7352
7353 /*
7354 * Instead of creating recursive hierarchies of events,
7355 * we link inherited events back to the original parent,
7356 * which has a filp for sure, which we use as the reference
7357 * count:
7358 */
7359 if (parent_event->parent)
7360 parent_event = parent_event->parent;
7361
7362 child_event = perf_event_alloc(&parent_event->attr,
7363 parent_event->cpu,
7364 child,
7365 group_leader, parent_event,
7366 NULL, NULL);
7367 if (IS_ERR(child_event))
7368 return child_event;
7369
7370 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7371 free_event(child_event);
7372 return NULL;
7373 }
7374
7375 get_ctx(child_ctx);
7376
7377 /*
7378 * Make the child state follow the state of the parent event,
7379 * not its attr.disabled bit. We hold the parent's mutex,
7380 * so we won't race with perf_event_{en, dis}able_family.
7381 */
7382 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7383 child_event->state = PERF_EVENT_STATE_INACTIVE;
7384 else
7385 child_event->state = PERF_EVENT_STATE_OFF;
7386
7387 if (parent_event->attr.freq) {
7388 u64 sample_period = parent_event->hw.sample_period;
7389 struct hw_perf_event *hwc = &child_event->hw;
7390
7391 hwc->sample_period = sample_period;
7392 hwc->last_period = sample_period;
7393
7394 local64_set(&hwc->period_left, sample_period);
7395 }
7396
7397 child_event->ctx = child_ctx;
7398 child_event->overflow_handler = parent_event->overflow_handler;
7399 child_event->overflow_handler_context
7400 = parent_event->overflow_handler_context;
7401
7402 /*
7403 * Precalculate sample_data sizes
7404 */
7405 perf_event__header_size(child_event);
7406 perf_event__id_header_size(child_event);
7407
7408 /*
7409 * Link it up in the child's context:
7410 */
7411 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7412 add_event_to_ctx(child_event, child_ctx);
7413 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7414
7415 /*
7416 * Link this into the parent event's child list
7417 */
7418 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7419 mutex_lock(&parent_event->child_mutex);
7420 list_add_tail(&child_event->child_list, &parent_event->child_list);
7421 mutex_unlock(&parent_event->child_mutex);
7422
7423 return child_event;
7424 }
7425
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)7426 static int inherit_group(struct perf_event *parent_event,
7427 struct task_struct *parent,
7428 struct perf_event_context *parent_ctx,
7429 struct task_struct *child,
7430 struct perf_event_context *child_ctx)
7431 {
7432 struct perf_event *leader;
7433 struct perf_event *sub;
7434 struct perf_event *child_ctr;
7435
7436 leader = inherit_event(parent_event, parent, parent_ctx,
7437 child, NULL, child_ctx);
7438 if (IS_ERR(leader))
7439 return PTR_ERR(leader);
7440 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7441 child_ctr = inherit_event(sub, parent, parent_ctx,
7442 child, leader, child_ctx);
7443 if (IS_ERR(child_ctr))
7444 return PTR_ERR(child_ctr);
7445 }
7446 return 0;
7447 }
7448
7449 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)7450 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7451 struct perf_event_context *parent_ctx,
7452 struct task_struct *child, int ctxn,
7453 int *inherited_all)
7454 {
7455 int ret;
7456 struct perf_event_context *child_ctx;
7457
7458 if (!event->attr.inherit) {
7459 *inherited_all = 0;
7460 return 0;
7461 }
7462
7463 child_ctx = child->perf_event_ctxp[ctxn];
7464 if (!child_ctx) {
7465 /*
7466 * This is executed from the parent task context, so
7467 * inherit events that have been marked for cloning.
7468 * First allocate and initialize a context for the
7469 * child.
7470 */
7471
7472 child_ctx = alloc_perf_context(event->pmu, child);
7473 if (!child_ctx)
7474 return -ENOMEM;
7475
7476 child->perf_event_ctxp[ctxn] = child_ctx;
7477 }
7478
7479 ret = inherit_group(event, parent, parent_ctx,
7480 child, child_ctx);
7481
7482 if (ret)
7483 *inherited_all = 0;
7484
7485 return ret;
7486 }
7487
7488 /*
7489 * Initialize the perf_event context in task_struct
7490 */
perf_event_init_context(struct task_struct * child,int ctxn)7491 int perf_event_init_context(struct task_struct *child, int ctxn)
7492 {
7493 struct perf_event_context *child_ctx, *parent_ctx;
7494 struct perf_event_context *cloned_ctx;
7495 struct perf_event *event;
7496 struct task_struct *parent = current;
7497 int inherited_all = 1;
7498 unsigned long flags;
7499 int ret = 0;
7500
7501 if (likely(!parent->perf_event_ctxp[ctxn]))
7502 return 0;
7503
7504 /*
7505 * If the parent's context is a clone, pin it so it won't get
7506 * swapped under us.
7507 */
7508 parent_ctx = perf_pin_task_context(parent, ctxn);
7509
7510 /*
7511 * No need to check if parent_ctx != NULL here; since we saw
7512 * it non-NULL earlier, the only reason for it to become NULL
7513 * is if we exit, and since we're currently in the middle of
7514 * a fork we can't be exiting at the same time.
7515 */
7516
7517 /*
7518 * Lock the parent list. No need to lock the child - not PID
7519 * hashed yet and not running, so nobody can access it.
7520 */
7521 mutex_lock(&parent_ctx->mutex);
7522
7523 /*
7524 * We dont have to disable NMIs - we are only looking at
7525 * the list, not manipulating it:
7526 */
7527 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7528 ret = inherit_task_group(event, parent, parent_ctx,
7529 child, ctxn, &inherited_all);
7530 if (ret)
7531 break;
7532 }
7533
7534 /*
7535 * We can't hold ctx->lock when iterating the ->flexible_group list due
7536 * to allocations, but we need to prevent rotation because
7537 * rotate_ctx() will change the list from interrupt context.
7538 */
7539 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7540 parent_ctx->rotate_disable = 1;
7541 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7542
7543 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7544 ret = inherit_task_group(event, parent, parent_ctx,
7545 child, ctxn, &inherited_all);
7546 if (ret)
7547 break;
7548 }
7549
7550 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7551 parent_ctx->rotate_disable = 0;
7552
7553 child_ctx = child->perf_event_ctxp[ctxn];
7554
7555 if (child_ctx && inherited_all) {
7556 /*
7557 * Mark the child context as a clone of the parent
7558 * context, or of whatever the parent is a clone of.
7559 *
7560 * Note that if the parent is a clone, the holding of
7561 * parent_ctx->lock avoids it from being uncloned.
7562 */
7563 cloned_ctx = parent_ctx->parent_ctx;
7564 if (cloned_ctx) {
7565 child_ctx->parent_ctx = cloned_ctx;
7566 child_ctx->parent_gen = parent_ctx->parent_gen;
7567 } else {
7568 child_ctx->parent_ctx = parent_ctx;
7569 child_ctx->parent_gen = parent_ctx->generation;
7570 }
7571 get_ctx(child_ctx->parent_ctx);
7572 }
7573
7574 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7575 mutex_unlock(&parent_ctx->mutex);
7576
7577 perf_unpin_context(parent_ctx);
7578 put_ctx(parent_ctx);
7579
7580 return ret;
7581 }
7582
7583 /*
7584 * Initialize the perf_event context in task_struct
7585 */
perf_event_init_task(struct task_struct * child)7586 int perf_event_init_task(struct task_struct *child)
7587 {
7588 int ctxn, ret;
7589
7590 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7591 mutex_init(&child->perf_event_mutex);
7592 INIT_LIST_HEAD(&child->perf_event_list);
7593
7594 for_each_task_context_nr(ctxn) {
7595 ret = perf_event_init_context(child, ctxn);
7596 if (ret)
7597 return ret;
7598 }
7599
7600 return 0;
7601 }
7602
perf_event_init_all_cpus(void)7603 static void __init perf_event_init_all_cpus(void)
7604 {
7605 struct swevent_htable *swhash;
7606 int cpu;
7607
7608 for_each_possible_cpu(cpu) {
7609 swhash = &per_cpu(swevent_htable, cpu);
7610 mutex_init(&swhash->hlist_mutex);
7611 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7612 }
7613 }
7614
perf_event_init_cpu(int cpu)7615 static void __cpuinit perf_event_init_cpu(int cpu)
7616 {
7617 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7618
7619 mutex_lock(&swhash->hlist_mutex);
7620 if (swhash->hlist_refcount > 0) {
7621 struct swevent_hlist *hlist;
7622
7623 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7624 WARN_ON(!hlist);
7625 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7626 }
7627 mutex_unlock(&swhash->hlist_mutex);
7628 }
7629
7630 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
perf_pmu_rotate_stop(struct pmu * pmu)7631 static void perf_pmu_rotate_stop(struct pmu *pmu)
7632 {
7633 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7634
7635 WARN_ON(!irqs_disabled());
7636
7637 list_del_init(&cpuctx->rotation_list);
7638 }
7639
__perf_event_exit_context(void * __info)7640 static void __perf_event_exit_context(void *__info)
7641 {
7642 struct perf_event_context *ctx = __info;
7643 struct perf_event *event;
7644
7645 perf_pmu_rotate_stop(ctx->pmu);
7646
7647 rcu_read_lock();
7648 list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
7649 __perf_remove_from_context(event);
7650 rcu_read_unlock();
7651 }
7652
perf_event_exit_cpu_context(int cpu)7653 static void perf_event_exit_cpu_context(int cpu)
7654 {
7655 struct perf_event_context *ctx;
7656 struct pmu *pmu;
7657 int idx;
7658
7659 idx = srcu_read_lock(&pmus_srcu);
7660 list_for_each_entry_rcu(pmu, &pmus, entry) {
7661 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7662
7663 mutex_lock(&ctx->mutex);
7664 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7665 mutex_unlock(&ctx->mutex);
7666 }
7667 srcu_read_unlock(&pmus_srcu, idx);
7668 }
7669
perf_event_exit_cpu(int cpu)7670 static void perf_event_exit_cpu(int cpu)
7671 {
7672 perf_event_exit_cpu_context(cpu);
7673 }
7674 #else
perf_event_exit_cpu(int cpu)7675 static inline void perf_event_exit_cpu(int cpu) { }
7676 #endif
7677
7678 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)7679 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7680 {
7681 int cpu;
7682
7683 for_each_online_cpu(cpu)
7684 perf_event_exit_cpu(cpu);
7685
7686 return NOTIFY_OK;
7687 }
7688
7689 /*
7690 * Run the perf reboot notifier at the very last possible moment so that
7691 * the generic watchdog code runs as long as possible.
7692 */
7693 static struct notifier_block perf_reboot_notifier = {
7694 .notifier_call = perf_reboot,
7695 .priority = INT_MIN,
7696 };
7697
7698 static int __cpuinit
perf_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)7699 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7700 {
7701 unsigned int cpu = (long)hcpu;
7702
7703 switch (action & ~CPU_TASKS_FROZEN) {
7704
7705 case CPU_UP_PREPARE:
7706 case CPU_DOWN_FAILED:
7707 perf_event_init_cpu(cpu);
7708 break;
7709
7710 case CPU_UP_CANCELED:
7711 case CPU_DOWN_PREPARE:
7712 perf_event_exit_cpu(cpu);
7713 break;
7714
7715 default:
7716 break;
7717 }
7718
7719 return NOTIFY_OK;
7720 }
7721
perf_event_init(void)7722 void __init perf_event_init(void)
7723 {
7724 int ret;
7725
7726 idr_init(&pmu_idr);
7727
7728 perf_event_init_all_cpus();
7729 init_srcu_struct(&pmus_srcu);
7730 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7731 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7732 perf_pmu_register(&perf_task_clock, NULL, -1);
7733 perf_tp_register();
7734 perf_cpu_notifier(perf_cpu_notify);
7735 register_reboot_notifier(&perf_reboot_notifier);
7736
7737 ret = init_hw_breakpoint();
7738 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7739
7740 /* do not patch jump label more than once per second */
7741 jump_label_rate_limit(&perf_sched_events, HZ);
7742
7743 /*
7744 * Build time assertion that we keep the data_head at the intended
7745 * location. IOW, validation we got the __reserved[] size right.
7746 */
7747 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7748 != 1024);
7749 }
7750
perf_event_sysfs_init(void)7751 static int __init perf_event_sysfs_init(void)
7752 {
7753 struct pmu *pmu;
7754 int ret;
7755
7756 mutex_lock(&pmus_lock);
7757
7758 ret = bus_register(&pmu_bus);
7759 if (ret)
7760 goto unlock;
7761
7762 list_for_each_entry(pmu, &pmus, entry) {
7763 if (!pmu->name || pmu->type < 0)
7764 continue;
7765
7766 ret = pmu_dev_alloc(pmu);
7767 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7768 }
7769 pmu_bus_running = 1;
7770 ret = 0;
7771
7772 unlock:
7773 mutex_unlock(&pmus_lock);
7774
7775 return ret;
7776 }
7777 device_initcall(perf_event_sysfs_init);
7778
7779 #ifdef CONFIG_CGROUP_PERF
perf_cgroup_css_alloc(struct cgroup * cont)7780 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7781 {
7782 struct perf_cgroup *jc;
7783
7784 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7785 if (!jc)
7786 return ERR_PTR(-ENOMEM);
7787
7788 jc->info = alloc_percpu(struct perf_cgroup_info);
7789 if (!jc->info) {
7790 kfree(jc);
7791 return ERR_PTR(-ENOMEM);
7792 }
7793
7794 return &jc->css;
7795 }
7796
perf_cgroup_css_free(struct cgroup * cont)7797 static void perf_cgroup_css_free(struct cgroup *cont)
7798 {
7799 struct perf_cgroup *jc;
7800 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7801 struct perf_cgroup, css);
7802 free_percpu(jc->info);
7803 kfree(jc);
7804 }
7805
__perf_cgroup_move(void * info)7806 static int __perf_cgroup_move(void *info)
7807 {
7808 struct task_struct *task = info;
7809 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7810 return 0;
7811 }
7812
perf_cgroup_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)7813 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7814 {
7815 struct task_struct *task;
7816
7817 cgroup_taskset_for_each(task, cgrp, tset)
7818 task_function_call(task, __perf_cgroup_move, task);
7819 }
7820
perf_cgroup_exit(struct cgroup * cgrp,struct cgroup * old_cgrp,struct task_struct * task)7821 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7822 struct task_struct *task)
7823 {
7824 /*
7825 * cgroup_exit() is called in the copy_process() failure path.
7826 * Ignore this case since the task hasn't ran yet, this avoids
7827 * trying to poke a half freed task state from generic code.
7828 */
7829 if (!(task->flags & PF_EXITING))
7830 return;
7831
7832 task_function_call(task, __perf_cgroup_move, task);
7833 }
7834
7835 struct cgroup_subsys perf_subsys = {
7836 .name = "perf_event",
7837 .subsys_id = perf_subsys_id,
7838 .css_alloc = perf_cgroup_css_alloc,
7839 .css_free = perf_cgroup_css_free,
7840 .exit = perf_cgroup_exit,
7841 .attach = perf_cgroup_attach,
7842 };
7843 #endif /* CONFIG_CGROUP_PERF */
7844