1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41
42 #define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47
48 int pid_max = PID_MAX_DEFAULT;
49
50 #define RESERVED_PIDS 300
51
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54
mk_pid(struct pid_namespace * pid_ns,struct pidmap * map,int off)55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
57 {
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63
64 /*
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
69 */
70 struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
73 },
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 },
77 .last_pid = 0,
78 .level = 0,
79 .child_reaper = &init_task,
80 .user_ns = &init_user_ns,
81 .proc_inum = PROC_PID_INIT_INO,
82 };
83 EXPORT_SYMBOL_GPL(init_pid_ns);
84
85 /*
86 * Note: disable interrupts while the pidmap_lock is held as an
87 * interrupt might come in and do read_lock(&tasklist_lock).
88 *
89 * If we don't disable interrupts there is a nasty deadlock between
90 * detach_pid()->free_pid() and another cpu that does
91 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
92 * read_lock(&tasklist_lock);
93 *
94 * After we clean up the tasklist_lock and know there are no
95 * irq handlers that take it we can leave the interrupts enabled.
96 * For now it is easier to be safe than to prove it can't happen.
97 */
98
99 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
100
free_pidmap(struct upid * upid)101 static void free_pidmap(struct upid *upid)
102 {
103 int nr = upid->nr;
104 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
105 int offset = nr & BITS_PER_PAGE_MASK;
106
107 clear_bit(offset, map->page);
108 atomic_inc(&map->nr_free);
109 }
110
111 /*
112 * If we started walking pids at 'base', is 'a' seen before 'b'?
113 */
pid_before(int base,int a,int b)114 static int pid_before(int base, int a, int b)
115 {
116 /*
117 * This is the same as saying
118 *
119 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
120 * and that mapping orders 'a' and 'b' with respect to 'base'.
121 */
122 return (unsigned)(a - base) < (unsigned)(b - base);
123 }
124
125 /*
126 * We might be racing with someone else trying to set pid_ns->last_pid
127 * at the pid allocation time (there's also a sysctl for this, but racing
128 * with this one is OK, see comment in kernel/pid_namespace.c about it).
129 * We want the winner to have the "later" value, because if the
130 * "earlier" value prevails, then a pid may get reused immediately.
131 *
132 * Since pids rollover, it is not sufficient to just pick the bigger
133 * value. We have to consider where we started counting from.
134 *
135 * 'base' is the value of pid_ns->last_pid that we observed when
136 * we started looking for a pid.
137 *
138 * 'pid' is the pid that we eventually found.
139 */
set_last_pid(struct pid_namespace * pid_ns,int base,int pid)140 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
141 {
142 int prev;
143 int last_write = base;
144 do {
145 prev = last_write;
146 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
147 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
148 }
149
alloc_pidmap(struct pid_namespace * pid_ns)150 static int alloc_pidmap(struct pid_namespace *pid_ns)
151 {
152 int i, offset, max_scan, pid, last = pid_ns->last_pid;
153 struct pidmap *map;
154
155 pid = last + 1;
156 if (pid >= pid_max)
157 pid = RESERVED_PIDS;
158 offset = pid & BITS_PER_PAGE_MASK;
159 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
160 /*
161 * If last_pid points into the middle of the map->page we
162 * want to scan this bitmap block twice, the second time
163 * we start with offset == 0 (or RESERVED_PIDS).
164 */
165 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
166 for (i = 0; i <= max_scan; ++i) {
167 if (unlikely(!map->page)) {
168 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
169 /*
170 * Free the page if someone raced with us
171 * installing it:
172 */
173 spin_lock_irq(&pidmap_lock);
174 if (!map->page) {
175 map->page = page;
176 page = NULL;
177 }
178 spin_unlock_irq(&pidmap_lock);
179 kfree(page);
180 if (unlikely(!map->page))
181 break;
182 }
183 if (likely(atomic_read(&map->nr_free))) {
184 for ( ; ; ) {
185 if (!test_and_set_bit(offset, map->page)) {
186 atomic_dec(&map->nr_free);
187 set_last_pid(pid_ns, last, pid);
188 return pid;
189 }
190 offset = find_next_offset(map, offset);
191 if (offset >= BITS_PER_PAGE)
192 break;
193 pid = mk_pid(pid_ns, map, offset);
194 if (pid >= pid_max)
195 break;
196 }
197 }
198 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
199 ++map;
200 offset = 0;
201 } else {
202 map = &pid_ns->pidmap[0];
203 offset = RESERVED_PIDS;
204 if (unlikely(last == offset))
205 break;
206 }
207 pid = mk_pid(pid_ns, map, offset);
208 }
209 return -1;
210 }
211
next_pidmap(struct pid_namespace * pid_ns,unsigned int last)212 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
213 {
214 int offset;
215 struct pidmap *map, *end;
216
217 if (last >= PID_MAX_LIMIT)
218 return -1;
219
220 offset = (last + 1) & BITS_PER_PAGE_MASK;
221 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
222 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
223 for (; map < end; map++, offset = 0) {
224 if (unlikely(!map->page))
225 continue;
226 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
227 if (offset < BITS_PER_PAGE)
228 return mk_pid(pid_ns, map, offset);
229 }
230 return -1;
231 }
232
put_pid(struct pid * pid)233 void put_pid(struct pid *pid)
234 {
235 struct pid_namespace *ns;
236
237 if (!pid)
238 return;
239
240 ns = pid->numbers[pid->level].ns;
241 if ((atomic_read(&pid->count) == 1) ||
242 atomic_dec_and_test(&pid->count)) {
243 kmem_cache_free(ns->pid_cachep, pid);
244 put_pid_ns(ns);
245 }
246 }
247 EXPORT_SYMBOL_GPL(put_pid);
248
delayed_put_pid(struct rcu_head * rhp)249 static void delayed_put_pid(struct rcu_head *rhp)
250 {
251 struct pid *pid = container_of(rhp, struct pid, rcu);
252 put_pid(pid);
253 }
254
free_pid(struct pid * pid)255 void free_pid(struct pid *pid)
256 {
257 /* We can be called with write_lock_irq(&tasklist_lock) held */
258 int i;
259 unsigned long flags;
260
261 spin_lock_irqsave(&pidmap_lock, flags);
262 for (i = 0; i <= pid->level; i++) {
263 struct upid *upid = pid->numbers + i;
264 struct pid_namespace *ns = upid->ns;
265 hlist_del_rcu(&upid->pid_chain);
266 switch(--ns->nr_hashed) {
267 case 1:
268 /* When all that is left in the pid namespace
269 * is the reaper wake up the reaper. The reaper
270 * may be sleeping in zap_pid_ns_processes().
271 */
272 wake_up_process(ns->child_reaper);
273 break;
274 case 0:
275 schedule_work(&ns->proc_work);
276 break;
277 }
278 }
279 spin_unlock_irqrestore(&pidmap_lock, flags);
280
281 for (i = 0; i <= pid->level; i++)
282 free_pidmap(pid->numbers + i);
283
284 call_rcu(&pid->rcu, delayed_put_pid);
285 }
286
alloc_pid(struct pid_namespace * ns)287 struct pid *alloc_pid(struct pid_namespace *ns)
288 {
289 struct pid *pid;
290 enum pid_type type;
291 int i, nr;
292 struct pid_namespace *tmp;
293 struct upid *upid;
294
295 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
296 if (!pid)
297 goto out;
298
299 tmp = ns;
300 pid->level = ns->level;
301 for (i = ns->level; i >= 0; i--) {
302 nr = alloc_pidmap(tmp);
303 if (nr < 0)
304 goto out_free;
305
306 pid->numbers[i].nr = nr;
307 pid->numbers[i].ns = tmp;
308 tmp = tmp->parent;
309 }
310
311 if (unlikely(is_child_reaper(pid))) {
312 if (pid_ns_prepare_proc(ns))
313 goto out_free;
314 }
315
316 get_pid_ns(ns);
317 atomic_set(&pid->count, 1);
318 for (type = 0; type < PIDTYPE_MAX; ++type)
319 INIT_HLIST_HEAD(&pid->tasks[type]);
320
321 upid = pid->numbers + ns->level;
322 spin_lock_irq(&pidmap_lock);
323 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
324 goto out_unlock;
325 for ( ; upid >= pid->numbers; --upid) {
326 hlist_add_head_rcu(&upid->pid_chain,
327 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
328 upid->ns->nr_hashed++;
329 }
330 spin_unlock_irq(&pidmap_lock);
331
332 out:
333 return pid;
334
335 out_unlock:
336 spin_unlock_irq(&pidmap_lock);
337 out_free:
338 while (++i <= ns->level)
339 free_pidmap(pid->numbers + i);
340
341 kmem_cache_free(ns->pid_cachep, pid);
342 pid = NULL;
343 goto out;
344 }
345
disable_pid_allocation(struct pid_namespace * ns)346 void disable_pid_allocation(struct pid_namespace *ns)
347 {
348 spin_lock_irq(&pidmap_lock);
349 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
350 spin_unlock_irq(&pidmap_lock);
351 }
352
find_pid_ns(int nr,struct pid_namespace * ns)353 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
354 {
355 struct upid *pnr;
356
357 hlist_for_each_entry_rcu(pnr,
358 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
359 if (pnr->nr == nr && pnr->ns == ns)
360 return container_of(pnr, struct pid,
361 numbers[ns->level]);
362
363 return NULL;
364 }
365 EXPORT_SYMBOL_GPL(find_pid_ns);
366
find_vpid(int nr)367 struct pid *find_vpid(int nr)
368 {
369 return find_pid_ns(nr, task_active_pid_ns(current));
370 }
371 EXPORT_SYMBOL_GPL(find_vpid);
372
373 /*
374 * attach_pid() must be called with the tasklist_lock write-held.
375 */
attach_pid(struct task_struct * task,enum pid_type type,struct pid * pid)376 void attach_pid(struct task_struct *task, enum pid_type type,
377 struct pid *pid)
378 {
379 struct pid_link *link;
380
381 link = &task->pids[type];
382 link->pid = pid;
383 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
384 }
385
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)386 static void __change_pid(struct task_struct *task, enum pid_type type,
387 struct pid *new)
388 {
389 struct pid_link *link;
390 struct pid *pid;
391 int tmp;
392
393 link = &task->pids[type];
394 pid = link->pid;
395
396 hlist_del_rcu(&link->node);
397 link->pid = new;
398
399 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
400 if (!hlist_empty(&pid->tasks[tmp]))
401 return;
402
403 free_pid(pid);
404 }
405
detach_pid(struct task_struct * task,enum pid_type type)406 void detach_pid(struct task_struct *task, enum pid_type type)
407 {
408 __change_pid(task, type, NULL);
409 }
410
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)411 void change_pid(struct task_struct *task, enum pid_type type,
412 struct pid *pid)
413 {
414 __change_pid(task, type, pid);
415 attach_pid(task, type, pid);
416 }
417
418 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)419 void transfer_pid(struct task_struct *old, struct task_struct *new,
420 enum pid_type type)
421 {
422 new->pids[type].pid = old->pids[type].pid;
423 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
424 }
425
pid_task(struct pid * pid,enum pid_type type)426 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
427 {
428 struct task_struct *result = NULL;
429 if (pid) {
430 struct hlist_node *first;
431 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
432 lockdep_tasklist_lock_is_held());
433 if (first)
434 result = hlist_entry(first, struct task_struct, pids[(type)].node);
435 }
436 return result;
437 }
438 EXPORT_SYMBOL(pid_task);
439
440 /*
441 * Must be called under rcu_read_lock().
442 */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)443 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
444 {
445 rcu_lockdep_assert(rcu_read_lock_held(),
446 "find_task_by_pid_ns() needs rcu_read_lock()"
447 " protection");
448 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
449 }
450
find_task_by_vpid(pid_t vnr)451 struct task_struct *find_task_by_vpid(pid_t vnr)
452 {
453 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
454 }
455
get_task_pid(struct task_struct * task,enum pid_type type)456 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
457 {
458 struct pid *pid;
459 rcu_read_lock();
460 if (type != PIDTYPE_PID)
461 task = task->group_leader;
462 pid = get_pid(task->pids[type].pid);
463 rcu_read_unlock();
464 return pid;
465 }
466 EXPORT_SYMBOL_GPL(get_task_pid);
467
get_pid_task(struct pid * pid,enum pid_type type)468 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
469 {
470 struct task_struct *result;
471 rcu_read_lock();
472 result = pid_task(pid, type);
473 if (result)
474 get_task_struct(result);
475 rcu_read_unlock();
476 return result;
477 }
478 EXPORT_SYMBOL_GPL(get_pid_task);
479
find_get_pid(pid_t nr)480 struct pid *find_get_pid(pid_t nr)
481 {
482 struct pid *pid;
483
484 rcu_read_lock();
485 pid = get_pid(find_vpid(nr));
486 rcu_read_unlock();
487
488 return pid;
489 }
490 EXPORT_SYMBOL_GPL(find_get_pid);
491
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)492 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
493 {
494 struct upid *upid;
495 pid_t nr = 0;
496
497 if (pid && ns->level <= pid->level) {
498 upid = &pid->numbers[ns->level];
499 if (upid->ns == ns)
500 nr = upid->nr;
501 }
502 return nr;
503 }
504 EXPORT_SYMBOL_GPL(pid_nr_ns);
505
pid_vnr(struct pid * pid)506 pid_t pid_vnr(struct pid *pid)
507 {
508 return pid_nr_ns(pid, task_active_pid_ns(current));
509 }
510 EXPORT_SYMBOL_GPL(pid_vnr);
511
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)512 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
513 struct pid_namespace *ns)
514 {
515 pid_t nr = 0;
516
517 rcu_read_lock();
518 if (!ns)
519 ns = task_active_pid_ns(current);
520 if (likely(pid_alive(task))) {
521 if (type != PIDTYPE_PID) {
522 if (type == __PIDTYPE_TGID)
523 type = PIDTYPE_PID;
524 task = task->group_leader;
525 }
526 nr = pid_nr_ns(task->pids[type].pid, ns);
527 }
528 rcu_read_unlock();
529
530 return nr;
531 }
532 EXPORT_SYMBOL(__task_pid_nr_ns);
533
task_active_pid_ns(struct task_struct * tsk)534 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
535 {
536 return ns_of_pid(task_pid(tsk));
537 }
538 EXPORT_SYMBOL_GPL(task_active_pid_ns);
539
540 /*
541 * Used by proc to find the first pid that is greater than or equal to nr.
542 *
543 * If there is a pid at nr this function is exactly the same as find_pid_ns.
544 */
find_ge_pid(int nr,struct pid_namespace * ns)545 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
546 {
547 struct pid *pid;
548
549 do {
550 pid = find_pid_ns(nr, ns);
551 if (pid)
552 break;
553 nr = next_pidmap(ns, nr);
554 } while (nr > 0);
555
556 return pid;
557 }
558
559 /*
560 * The pid hash table is scaled according to the amount of memory in the
561 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
562 * more.
563 */
pidhash_init(void)564 void __init pidhash_init(void)
565 {
566 unsigned int i, pidhash_size;
567
568 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
569 HASH_EARLY | HASH_SMALL,
570 &pidhash_shift, NULL,
571 0, 4096);
572 pidhash_size = 1U << pidhash_shift;
573
574 for (i = 0; i < pidhash_size; i++)
575 INIT_HLIST_HEAD(&pid_hash[i]);
576 }
577
pidmap_init(void)578 void __init pidmap_init(void)
579 {
580 /* Veryify no one has done anything silly */
581 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
582
583 /* bump default and minimum pid_max based on number of cpus */
584 pid_max = min(pid_max_max, max_t(int, pid_max,
585 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
586 pid_max_min = max_t(int, pid_max_min,
587 PIDS_PER_CPU_MIN * num_possible_cpus());
588 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
589
590 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
591 /* Reserve PID 0. We never call free_pidmap(0) */
592 set_bit(0, init_pid_ns.pidmap[0].page);
593 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
594 init_pid_ns.nr_hashed = PIDNS_HASH_ADDING;
595
596 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
597 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
598 }
599