• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
pinctrl_provide_dummies(void)70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
get_pinctrl_dev_from_devname(const char * devname)101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 	bool found = false;
105 
106 	if (!devname)
107 		return NULL;
108 
109 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 		if (!strcmp(dev_name(pctldev->dev), devname)) {
111 			/* Matched on device name */
112 			found = true;
113 			break;
114 		}
115 	}
116 
117 	return found ? pctldev : NULL;
118 }
119 
get_pinctrl_dev_from_of_node(struct device_node * np)120 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
121 {
122 	struct pinctrl_dev *pctldev;
123 
124 	mutex_lock(&pinctrldev_list_mutex);
125 
126 	list_for_each_entry(pctldev, &pinctrldev_list, node)
127 		if (pctldev->dev->of_node == np) {
128 			mutex_unlock(&pinctrldev_list_mutex);
129 			return pctldev;
130 		}
131 
132 	mutex_unlock(&pinctrldev_list_mutex);
133 
134 	return NULL;
135 }
136 
137 /**
138  * pin_get_from_name() - look up a pin number from a name
139  * @pctldev: the pin control device to lookup the pin on
140  * @name: the name of the pin to look up
141  */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)142 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
143 {
144 	unsigned i, pin;
145 
146 	/* The pin number can be retrived from the pin controller descriptor */
147 	for (i = 0; i < pctldev->desc->npins; i++) {
148 		struct pin_desc *desc;
149 
150 		pin = pctldev->desc->pins[i].number;
151 		desc = pin_desc_get(pctldev, pin);
152 		/* Pin space may be sparse */
153 		if (desc == NULL)
154 			continue;
155 		if (desc->name && !strcmp(name, desc->name))
156 			return pin;
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 /**
163  * pin_get_name_from_id() - look up a pin name from a pin id
164  * @pctldev: the pin control device to lookup the pin on
165  * @name: the name of the pin to look up
166  */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 	const struct pin_desc *desc;
170 
171 	desc = pin_desc_get(pctldev, pin);
172 	if (desc == NULL) {
173 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 			pin);
175 		return NULL;
176 	}
177 
178 	return desc->name;
179 }
180 
181 /**
182  * pin_is_valid() - check if pin exists on controller
183  * @pctldev: the pin control device to check the pin on
184  * @pin: pin to check, use the local pin controller index number
185  *
186  * This tells us whether a certain pin exist on a certain pin controller or
187  * not. Pin lists may be sparse, so some pins may not exist.
188  */
pin_is_valid(struct pinctrl_dev * pctldev,int pin)189 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
190 {
191 	struct pin_desc *pindesc;
192 
193 	if (pin < 0)
194 		return false;
195 
196 	mutex_lock(&pctldev->mutex);
197 	pindesc = pin_desc_get(pctldev, pin);
198 	mutex_unlock(&pctldev->mutex);
199 
200 	return pindesc != NULL;
201 }
202 EXPORT_SYMBOL_GPL(pin_is_valid);
203 
204 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)205 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
206 				  const struct pinctrl_pin_desc *pins,
207 				  unsigned num_pins)
208 {
209 	int i;
210 
211 	for (i = 0; i < num_pins; i++) {
212 		struct pin_desc *pindesc;
213 
214 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
215 					    pins[i].number);
216 		if (pindesc != NULL) {
217 			radix_tree_delete(&pctldev->pin_desc_tree,
218 					  pins[i].number);
219 			if (pindesc->dynamic_name)
220 				kfree(pindesc->name);
221 		}
222 		kfree(pindesc);
223 	}
224 }
225 
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,unsigned number,const char * name)226 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
227 				    unsigned number, const char *name)
228 {
229 	struct pin_desc *pindesc;
230 
231 	pindesc = pin_desc_get(pctldev, number);
232 	if (pindesc != NULL) {
233 		pr_err("pin %d already registered on %s\n", number,
234 		       pctldev->desc->name);
235 		return -EINVAL;
236 	}
237 
238 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 	if (pindesc == NULL) {
240 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 		return -ENOMEM;
242 	}
243 
244 	/* Set owner */
245 	pindesc->pctldev = pctldev;
246 
247 	/* Copy basic pin info */
248 	if (name) {
249 		pindesc->name = name;
250 	} else {
251 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 		if (pindesc->name == NULL) {
253 			kfree(pindesc);
254 			return -ENOMEM;
255 		}
256 		pindesc->dynamic_name = true;
257 	}
258 
259 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 	pr_debug("registered pin %d (%s) on %s\n",
261 		 number, pindesc->name, pctldev->desc->name);
262 	return 0;
263 }
264 
pinctrl_register_pins(struct pinctrl_dev * pctldev,struct pinctrl_pin_desc const * pins,unsigned num_descs)265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 				 struct pinctrl_pin_desc const *pins,
267 				 unsigned num_descs)
268 {
269 	unsigned i;
270 	int ret = 0;
271 
272 	for (i = 0; i < num_descs; i++) {
273 		ret = pinctrl_register_one_pin(pctldev,
274 					       pins[i].number, pins[i].name);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284  * @pctldev: pin controller device to check
285  * @gpio: gpio pin to check taken from the global GPIO pin space
286  *
287  * Tries to match a GPIO pin number to the ranges handled by a certain pin
288  * controller, return the range or NULL
289  */
290 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292 {
293 	struct pinctrl_gpio_range *range = NULL;
294 
295 	mutex_lock(&pctldev->mutex);
296 	/* Loop over the ranges */
297 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 		/* Check if we're in the valid range */
299 		if (gpio >= range->base &&
300 		    gpio < range->base + range->npins) {
301 			mutex_unlock(&pctldev->mutex);
302 			return range;
303 		}
304 	}
305 	mutex_unlock(&pctldev->mutex);
306 	return NULL;
307 }
308 
309 /**
310  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311  * the same GPIO chip are in range
312  * @gpio: gpio pin to check taken from the global GPIO pin space
313  *
314  * This function is complement of pinctrl_match_gpio_range(). If the return
315  * value of pinctrl_match_gpio_range() is NULL, this function could be used
316  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317  * of the same GPIO chip don't have back-end pinctrl interface.
318  * If the return value is true, it means that pinctrl device is ready & the
319  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320  * is false, it means that pinctrl device may not be ready.
321  */
322 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)323 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324 {
325 	struct pinctrl_dev *pctldev;
326 	struct pinctrl_gpio_range *range = NULL;
327 	struct gpio_chip *chip = gpio_to_chip(gpio);
328 
329 	/* Loop over the pin controllers */
330 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
331 		/* Loop over the ranges */
332 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
333 			/* Check if any gpio range overlapped with gpio chip */
334 			if (range->base + range->npins - 1 < chip->base ||
335 			    range->base > chip->base + chip->ngpio - 1)
336 				continue;
337 			return true;
338 		}
339 	}
340 	return false;
341 }
342 #else
pinctrl_ready_for_gpio_range(unsigned gpio)343 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
344 #endif
345 
346 /**
347  * pinctrl_get_device_gpio_range() - find device for GPIO range
348  * @gpio: the pin to locate the pin controller for
349  * @outdev: the pin control device if found
350  * @outrange: the GPIO range if found
351  *
352  * Find the pin controller handling a certain GPIO pin from the pinspace of
353  * the GPIO subsystem, return the device and the matching GPIO range. Returns
354  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
355  * may still have not been registered.
356  */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)357 static int pinctrl_get_device_gpio_range(unsigned gpio,
358 					 struct pinctrl_dev **outdev,
359 					 struct pinctrl_gpio_range **outrange)
360 {
361 	struct pinctrl_dev *pctldev = NULL;
362 
363 	/* Loop over the pin controllers */
364 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
365 		struct pinctrl_gpio_range *range;
366 
367 		range = pinctrl_match_gpio_range(pctldev, gpio);
368 		if (range != NULL) {
369 			*outdev = pctldev;
370 			*outrange = range;
371 			return 0;
372 		}
373 	}
374 
375 	return -EPROBE_DEFER;
376 }
377 
378 /**
379  * pinctrl_add_gpio_range() - register a GPIO range for a controller
380  * @pctldev: pin controller device to add the range to
381  * @range: the GPIO range to add
382  *
383  * This adds a range of GPIOs to be handled by a certain pin controller. Call
384  * this to register handled ranges after registering your pin controller.
385  */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)386 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
387 			    struct pinctrl_gpio_range *range)
388 {
389 	mutex_lock(&pctldev->mutex);
390 	list_add_tail(&range->node, &pctldev->gpio_ranges);
391 	mutex_unlock(&pctldev->mutex);
392 }
393 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
394 
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)395 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
396 			     struct pinctrl_gpio_range *ranges,
397 			     unsigned nranges)
398 {
399 	int i;
400 
401 	for (i = 0; i < nranges; i++)
402 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
403 }
404 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
405 
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)406 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
407 		struct pinctrl_gpio_range *range)
408 {
409 	struct pinctrl_dev *pctldev;
410 
411 	mutex_lock(&pinctrldev_list_mutex);
412 
413 	pctldev = get_pinctrl_dev_from_devname(devname);
414 
415 	/*
416 	 * If we can't find this device, let's assume that is because
417 	 * it has not probed yet, so the driver trying to register this
418 	 * range need to defer probing.
419 	 */
420 	if (!pctldev) {
421 		mutex_unlock(&pinctrldev_list_mutex);
422 		return ERR_PTR(-EPROBE_DEFER);
423 	}
424 	pinctrl_add_gpio_range(pctldev, range);
425 
426 	mutex_unlock(&pinctrldev_list_mutex);
427 
428 	return pctldev;
429 }
430 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
431 
432 /**
433  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
434  * @pctldev: the pin controller device to look in
435  * @pin: a controller-local number to find the range for
436  */
437 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)438 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
439 				 unsigned int pin)
440 {
441 	struct pinctrl_gpio_range *range = NULL;
442 
443 	mutex_lock(&pctldev->mutex);
444 	/* Loop over the ranges */
445 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
446 		/* Check if we're in the valid range */
447 		if (pin >= range->pin_base &&
448 		    pin < range->pin_base + range->npins) {
449 			mutex_unlock(&pctldev->mutex);
450 			return range;
451 		}
452 	}
453 	mutex_unlock(&pctldev->mutex);
454 
455 	return NULL;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
458 
459 /**
460  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
461  * @pctldev: pin controller device to remove the range from
462  * @range: the GPIO range to remove
463  */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)464 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
465 			       struct pinctrl_gpio_range *range)
466 {
467 	mutex_lock(&pctldev->mutex);
468 	list_del(&range->node);
469 	mutex_unlock(&pctldev->mutex);
470 }
471 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
472 
473 /**
474  * pinctrl_get_group_selector() - returns the group selector for a group
475  * @pctldev: the pin controller handling the group
476  * @pin_group: the pin group to look up
477  */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)478 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
479 			       const char *pin_group)
480 {
481 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
482 	unsigned ngroups = pctlops->get_groups_count(pctldev);
483 	unsigned group_selector = 0;
484 
485 	while (group_selector < ngroups) {
486 		const char *gname = pctlops->get_group_name(pctldev,
487 							    group_selector);
488 		if (!strcmp(gname, pin_group)) {
489 			dev_dbg(pctldev->dev,
490 				"found group selector %u for %s\n",
491 				group_selector,
492 				pin_group);
493 			return group_selector;
494 		}
495 
496 		group_selector++;
497 	}
498 
499 	dev_err(pctldev->dev, "does not have pin group %s\n",
500 		pin_group);
501 
502 	return -EINVAL;
503 }
504 
505 /**
506  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
507  * @gpio: the GPIO pin number from the GPIO subsystem number space
508  *
509  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
510  * as part of their gpio_request() semantics, platforms and individual drivers
511  * shall *NOT* request GPIO pins to be muxed in.
512  */
pinctrl_request_gpio(unsigned gpio)513 int pinctrl_request_gpio(unsigned gpio)
514 {
515 	struct pinctrl_dev *pctldev;
516 	struct pinctrl_gpio_range *range;
517 	int ret;
518 	int pin;
519 
520 	mutex_lock(&pinctrldev_list_mutex);
521 
522 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
523 	if (ret) {
524 		if (pinctrl_ready_for_gpio_range(gpio))
525 			ret = 0;
526 		mutex_unlock(&pinctrldev_list_mutex);
527 		return ret;
528 	}
529 
530 	/* Convert to the pin controllers number space */
531 	pin = gpio - range->base + range->pin_base;
532 
533 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
534 
535 	mutex_unlock(&pinctrldev_list_mutex);
536 	return ret;
537 }
538 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
539 
540 /**
541  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
542  * @gpio: the GPIO pin number from the GPIO subsystem number space
543  *
544  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
545  * as part of their gpio_free() semantics, platforms and individual drivers
546  * shall *NOT* request GPIO pins to be muxed out.
547  */
pinctrl_free_gpio(unsigned gpio)548 void pinctrl_free_gpio(unsigned gpio)
549 {
550 	struct pinctrl_dev *pctldev;
551 	struct pinctrl_gpio_range *range;
552 	int ret;
553 	int pin;
554 
555 	mutex_lock(&pinctrldev_list_mutex);
556 
557 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
558 	if (ret) {
559 		mutex_unlock(&pinctrldev_list_mutex);
560 		return;
561 	}
562 	mutex_lock(&pctldev->mutex);
563 
564 	/* Convert to the pin controllers number space */
565 	pin = gpio - range->base + range->pin_base;
566 
567 	pinmux_free_gpio(pctldev, pin, range);
568 
569 	mutex_unlock(&pctldev->mutex);
570 	mutex_unlock(&pinctrldev_list_mutex);
571 }
572 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
573 
pinctrl_gpio_direction(unsigned gpio,bool input)574 static int pinctrl_gpio_direction(unsigned gpio, bool input)
575 {
576 	struct pinctrl_dev *pctldev;
577 	struct pinctrl_gpio_range *range;
578 	int ret;
579 	int pin;
580 
581 	mutex_lock(&pinctrldev_list_mutex);
582 
583 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
584 	if (ret) {
585 		mutex_unlock(&pinctrldev_list_mutex);
586 		return ret;
587 	}
588 
589 	mutex_lock(&pctldev->mutex);
590 
591 	/* Convert to the pin controllers number space */
592 	pin = gpio - range->base + range->pin_base;
593 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
594 
595 	mutex_unlock(&pctldev->mutex);
596 	mutex_unlock(&pinctrldev_list_mutex);
597 
598 	return ret;
599 }
600 
601 /**
602  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
603  * @gpio: the GPIO pin number from the GPIO subsystem number space
604  *
605  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
606  * as part of their gpio_direction_input() semantics, platforms and individual
607  * drivers shall *NOT* touch pin control GPIO calls.
608  */
pinctrl_gpio_direction_input(unsigned gpio)609 int pinctrl_gpio_direction_input(unsigned gpio)
610 {
611 	return pinctrl_gpio_direction(gpio, true);
612 }
613 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
614 
615 /**
616  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
617  * @gpio: the GPIO pin number from the GPIO subsystem number space
618  *
619  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
620  * as part of their gpio_direction_output() semantics, platforms and individual
621  * drivers shall *NOT* touch pin control GPIO calls.
622  */
pinctrl_gpio_direction_output(unsigned gpio)623 int pinctrl_gpio_direction_output(unsigned gpio)
624 {
625 	return pinctrl_gpio_direction(gpio, false);
626 }
627 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
628 
find_state(struct pinctrl * p,const char * name)629 static struct pinctrl_state *find_state(struct pinctrl *p,
630 					const char *name)
631 {
632 	struct pinctrl_state *state;
633 
634 	list_for_each_entry(state, &p->states, node)
635 		if (!strcmp(state->name, name))
636 			return state;
637 
638 	return NULL;
639 }
640 
create_state(struct pinctrl * p,const char * name)641 static struct pinctrl_state *create_state(struct pinctrl *p,
642 					  const char *name)
643 {
644 	struct pinctrl_state *state;
645 
646 	state = kzalloc(sizeof(*state), GFP_KERNEL);
647 	if (state == NULL) {
648 		dev_err(p->dev,
649 			"failed to alloc struct pinctrl_state\n");
650 		return ERR_PTR(-ENOMEM);
651 	}
652 
653 	state->name = name;
654 	INIT_LIST_HEAD(&state->settings);
655 
656 	list_add_tail(&state->node, &p->states);
657 
658 	return state;
659 }
660 
add_setting(struct pinctrl * p,struct pinctrl_map const * map)661 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
662 {
663 	struct pinctrl_state *state;
664 	struct pinctrl_setting *setting;
665 	int ret;
666 
667 	state = find_state(p, map->name);
668 	if (!state)
669 		state = create_state(p, map->name);
670 	if (IS_ERR(state))
671 		return PTR_ERR(state);
672 
673 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
674 		return 0;
675 
676 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
677 	if (setting == NULL) {
678 		dev_err(p->dev,
679 			"failed to alloc struct pinctrl_setting\n");
680 		return -ENOMEM;
681 	}
682 
683 	setting->type = map->type;
684 
685 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
686 	if (setting->pctldev == NULL) {
687 		kfree(setting);
688 		/* Do not defer probing of hogs (circular loop) */
689 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
690 			return -ENODEV;
691 		/*
692 		 * OK let us guess that the driver is not there yet, and
693 		 * let's defer obtaining this pinctrl handle to later...
694 		 */
695 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
696 			map->ctrl_dev_name);
697 		return -EPROBE_DEFER;
698 	}
699 
700 	setting->dev_name = map->dev_name;
701 
702 	switch (map->type) {
703 	case PIN_MAP_TYPE_MUX_GROUP:
704 		ret = pinmux_map_to_setting(map, setting);
705 		break;
706 	case PIN_MAP_TYPE_CONFIGS_PIN:
707 	case PIN_MAP_TYPE_CONFIGS_GROUP:
708 		ret = pinconf_map_to_setting(map, setting);
709 		break;
710 	default:
711 		ret = -EINVAL;
712 		break;
713 	}
714 	if (ret < 0) {
715 		kfree(setting);
716 		return ret;
717 	}
718 
719 	list_add_tail(&setting->node, &state->settings);
720 
721 	return 0;
722 }
723 
find_pinctrl(struct device * dev)724 static struct pinctrl *find_pinctrl(struct device *dev)
725 {
726 	struct pinctrl *p;
727 
728 	mutex_lock(&pinctrl_list_mutex);
729 	list_for_each_entry(p, &pinctrl_list, node)
730 		if (p->dev == dev) {
731 			mutex_unlock(&pinctrl_list_mutex);
732 			return p;
733 		}
734 
735 	mutex_unlock(&pinctrl_list_mutex);
736 	return NULL;
737 }
738 
739 static void pinctrl_free(struct pinctrl *p, bool inlist);
740 
create_pinctrl(struct device * dev)741 static struct pinctrl *create_pinctrl(struct device *dev)
742 {
743 	struct pinctrl *p;
744 	const char *devname;
745 	struct pinctrl_maps *maps_node;
746 	int i;
747 	struct pinctrl_map const *map;
748 	int ret;
749 
750 	/*
751 	 * create the state cookie holder struct pinctrl for each
752 	 * mapping, this is what consumers will get when requesting
753 	 * a pin control handle with pinctrl_get()
754 	 */
755 	p = kzalloc(sizeof(*p), GFP_KERNEL);
756 	if (p == NULL) {
757 		dev_err(dev, "failed to alloc struct pinctrl\n");
758 		return ERR_PTR(-ENOMEM);
759 	}
760 	p->dev = dev;
761 	INIT_LIST_HEAD(&p->states);
762 	INIT_LIST_HEAD(&p->dt_maps);
763 
764 	ret = pinctrl_dt_to_map(p);
765 	if (ret < 0) {
766 		kfree(p);
767 		return ERR_PTR(ret);
768 	}
769 
770 	devname = dev_name(dev);
771 
772 	mutex_lock(&pinctrl_maps_mutex);
773 	/* Iterate over the pin control maps to locate the right ones */
774 	for_each_maps(maps_node, i, map) {
775 		/* Map must be for this device */
776 		if (strcmp(map->dev_name, devname))
777 			continue;
778 
779 		ret = add_setting(p, map);
780 		/*
781 		 * At this point the adding of a setting may:
782 		 *
783 		 * - Defer, if the pinctrl device is not yet available
784 		 * - Fail, if the pinctrl device is not yet available,
785 		 *   AND the setting is a hog. We cannot defer that, since
786 		 *   the hog will kick in immediately after the device
787 		 *   is registered.
788 		 *
789 		 * If the error returned was not -EPROBE_DEFER then we
790 		 * accumulate the errors to see if we end up with
791 		 * an -EPROBE_DEFER later, as that is the worst case.
792 		 */
793 		if (ret == -EPROBE_DEFER) {
794 			pinctrl_free(p, false);
795 			mutex_unlock(&pinctrl_maps_mutex);
796 			return ERR_PTR(ret);
797 		}
798 	}
799 	mutex_unlock(&pinctrl_maps_mutex);
800 
801 	if (ret < 0) {
802 		/* If some other error than deferral occured, return here */
803 		pinctrl_free(p, false);
804 		return ERR_PTR(ret);
805 	}
806 
807 	kref_init(&p->users);
808 
809 	/* Add the pinctrl handle to the global list */
810 	list_add_tail(&p->node, &pinctrl_list);
811 
812 	return p;
813 }
814 
815 /**
816  * pinctrl_get() - retrieves the pinctrl handle for a device
817  * @dev: the device to obtain the handle for
818  */
pinctrl_get(struct device * dev)819 struct pinctrl *pinctrl_get(struct device *dev)
820 {
821 	struct pinctrl *p;
822 
823 	if (WARN_ON(!dev))
824 		return ERR_PTR(-EINVAL);
825 
826 	/*
827 	 * See if somebody else (such as the device core) has already
828 	 * obtained a handle to the pinctrl for this device. In that case,
829 	 * return another pointer to it.
830 	 */
831 	p = find_pinctrl(dev);
832 	if (p != NULL) {
833 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
834 		kref_get(&p->users);
835 		return p;
836 	}
837 
838 	return create_pinctrl(dev);
839 }
840 EXPORT_SYMBOL_GPL(pinctrl_get);
841 
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)842 static void pinctrl_free_setting(bool disable_setting,
843 				 struct pinctrl_setting *setting)
844 {
845 	switch (setting->type) {
846 	case PIN_MAP_TYPE_MUX_GROUP:
847 		if (disable_setting)
848 			pinmux_disable_setting(setting);
849 		pinmux_free_setting(setting);
850 		break;
851 	case PIN_MAP_TYPE_CONFIGS_PIN:
852 	case PIN_MAP_TYPE_CONFIGS_GROUP:
853 		pinconf_free_setting(setting);
854 		break;
855 	default:
856 		break;
857 	}
858 }
859 
pinctrl_free(struct pinctrl * p,bool inlist)860 static void pinctrl_free(struct pinctrl *p, bool inlist)
861 {
862 	struct pinctrl_state *state, *n1;
863 	struct pinctrl_setting *setting, *n2;
864 
865 	mutex_lock(&pinctrl_list_mutex);
866 	list_for_each_entry_safe(state, n1, &p->states, node) {
867 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
868 			pinctrl_free_setting(state == p->state, setting);
869 			list_del(&setting->node);
870 			kfree(setting);
871 		}
872 		list_del(&state->node);
873 		kfree(state);
874 	}
875 
876 	pinctrl_dt_free_maps(p);
877 
878 	if (inlist)
879 		list_del(&p->node);
880 	kfree(p);
881 	mutex_unlock(&pinctrl_list_mutex);
882 }
883 
884 /**
885  * pinctrl_release() - release the pinctrl handle
886  * @kref: the kref in the pinctrl being released
887  */
pinctrl_release(struct kref * kref)888 static void pinctrl_release(struct kref *kref)
889 {
890 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
891 
892 	pinctrl_free(p, true);
893 }
894 
895 /**
896  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
897  * @p: the pinctrl handle to release
898  */
pinctrl_put(struct pinctrl * p)899 void pinctrl_put(struct pinctrl *p)
900 {
901 	kref_put(&p->users, pinctrl_release);
902 }
903 EXPORT_SYMBOL_GPL(pinctrl_put);
904 
905 /**
906  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
907  * @p: the pinctrl handle to retrieve the state from
908  * @name: the state name to retrieve
909  */
pinctrl_lookup_state(struct pinctrl * p,const char * name)910 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
911 						 const char *name)
912 {
913 	struct pinctrl_state *state;
914 
915 	state = find_state(p, name);
916 	if (!state) {
917 		if (pinctrl_dummy_state) {
918 			/* create dummy state */
919 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
920 				name);
921 			state = create_state(p, name);
922 		} else
923 			state = ERR_PTR(-ENODEV);
924 	}
925 
926 	return state;
927 }
928 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
929 
930 /**
931  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
932  * @p: the pinctrl handle for the device that requests configuration
933  * @state: the state handle to select/activate/program
934  */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)935 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
936 {
937 	struct pinctrl_setting *setting, *setting2;
938 	struct pinctrl_state *old_state = p->state;
939 	int ret;
940 
941 	if (p->state == state)
942 		return 0;
943 
944 	if (p->state) {
945 		/*
946 		 * The set of groups with a mux configuration in the old state
947 		 * may not be identical to the set of groups with a mux setting
948 		 * in the new state. While this might be unusual, it's entirely
949 		 * possible for the "user"-supplied mapping table to be written
950 		 * that way. For each group that was configured in the old state
951 		 * but not in the new state, this code puts that group into a
952 		 * safe/disabled state.
953 		 */
954 		list_for_each_entry(setting, &p->state->settings, node) {
955 			bool found = false;
956 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
957 				continue;
958 			list_for_each_entry(setting2, &state->settings, node) {
959 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
960 					continue;
961 				if (setting2->data.mux.group ==
962 						setting->data.mux.group) {
963 					found = true;
964 					break;
965 				}
966 			}
967 			if (!found)
968 				pinmux_disable_setting(setting);
969 		}
970 	}
971 
972 	p->state = NULL;
973 
974 	/* Apply all the settings for the new state */
975 	list_for_each_entry(setting, &state->settings, node) {
976 		switch (setting->type) {
977 		case PIN_MAP_TYPE_MUX_GROUP:
978 			ret = pinmux_enable_setting(setting);
979 			break;
980 		case PIN_MAP_TYPE_CONFIGS_PIN:
981 		case PIN_MAP_TYPE_CONFIGS_GROUP:
982 			ret = pinconf_apply_setting(setting);
983 			break;
984 		default:
985 			ret = -EINVAL;
986 			break;
987 		}
988 
989 		if (ret < 0) {
990 			goto unapply_new_state;
991 		}
992 	}
993 
994 	p->state = state;
995 
996 	return 0;
997 
998 unapply_new_state:
999 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1000 
1001 	list_for_each_entry(setting2, &state->settings, node) {
1002 		if (&setting2->node == &setting->node)
1003 			break;
1004 		/*
1005 		 * All we can do here is pinmux_disable_setting.
1006 		 * That means that some pins are muxed differently now
1007 		 * than they were before applying the setting (We can't
1008 		 * "unmux a pin"!), but it's not a big deal since the pins
1009 		 * are free to be muxed by another apply_setting.
1010 		 */
1011 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1012 			pinmux_disable_setting(setting2);
1013 	}
1014 
1015 	/* There's no infinite recursive loop here because p->state is NULL */
1016 	if (old_state)
1017 		pinctrl_select_state(p, old_state);
1018 
1019 	return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1022 
devm_pinctrl_release(struct device * dev,void * res)1023 static void devm_pinctrl_release(struct device *dev, void *res)
1024 {
1025 	pinctrl_put(*(struct pinctrl **)res);
1026 }
1027 
1028 /**
1029  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1030  * @dev: the device to obtain the handle for
1031  *
1032  * If there is a need to explicitly destroy the returned struct pinctrl,
1033  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1034  */
devm_pinctrl_get(struct device * dev)1035 struct pinctrl *devm_pinctrl_get(struct device *dev)
1036 {
1037 	struct pinctrl **ptr, *p;
1038 
1039 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1040 	if (!ptr)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	p = pinctrl_get(dev);
1044 	if (!IS_ERR(p)) {
1045 		*ptr = p;
1046 		devres_add(dev, ptr);
1047 	} else {
1048 		devres_free(ptr);
1049 	}
1050 
1051 	return p;
1052 }
1053 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1054 
devm_pinctrl_match(struct device * dev,void * res,void * data)1055 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1056 {
1057 	struct pinctrl **p = res;
1058 
1059 	return *p == data;
1060 }
1061 
1062 /**
1063  * devm_pinctrl_put() - Resource managed pinctrl_put()
1064  * @p: the pinctrl handle to release
1065  *
1066  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1067  * this function will not need to be called and the resource management
1068  * code will ensure that the resource is freed.
1069  */
devm_pinctrl_put(struct pinctrl * p)1070 void devm_pinctrl_put(struct pinctrl *p)
1071 {
1072 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1073 			       devm_pinctrl_match, p));
1074 }
1075 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1076 
pinctrl_register_map(struct pinctrl_map const * maps,unsigned num_maps,bool dup,bool locked)1077 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1078 			 bool dup, bool locked)
1079 {
1080 	int i, ret;
1081 	struct pinctrl_maps *maps_node;
1082 
1083 	pr_debug("add %d pinmux maps\n", num_maps);
1084 
1085 	/* First sanity check the new mapping */
1086 	for (i = 0; i < num_maps; i++) {
1087 		if (!maps[i].dev_name) {
1088 			pr_err("failed to register map %s (%d): no device given\n",
1089 			       maps[i].name, i);
1090 			return -EINVAL;
1091 		}
1092 
1093 		if (!maps[i].name) {
1094 			pr_err("failed to register map %d: no map name given\n",
1095 			       i);
1096 			return -EINVAL;
1097 		}
1098 
1099 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1100 				!maps[i].ctrl_dev_name) {
1101 			pr_err("failed to register map %s (%d): no pin control device given\n",
1102 			       maps[i].name, i);
1103 			return -EINVAL;
1104 		}
1105 
1106 		switch (maps[i].type) {
1107 		case PIN_MAP_TYPE_DUMMY_STATE:
1108 			break;
1109 		case PIN_MAP_TYPE_MUX_GROUP:
1110 			ret = pinmux_validate_map(&maps[i], i);
1111 			if (ret < 0)
1112 				return ret;
1113 			break;
1114 		case PIN_MAP_TYPE_CONFIGS_PIN:
1115 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1116 			ret = pinconf_validate_map(&maps[i], i);
1117 			if (ret < 0)
1118 				return ret;
1119 			break;
1120 		default:
1121 			pr_err("failed to register map %s (%d): invalid type given\n",
1122 			       maps[i].name, i);
1123 			return -EINVAL;
1124 		}
1125 	}
1126 
1127 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1128 	if (!maps_node) {
1129 		pr_err("failed to alloc struct pinctrl_maps\n");
1130 		return -ENOMEM;
1131 	}
1132 
1133 	maps_node->num_maps = num_maps;
1134 	if (dup) {
1135 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1136 					  GFP_KERNEL);
1137 		if (!maps_node->maps) {
1138 			pr_err("failed to duplicate mapping table\n");
1139 			kfree(maps_node);
1140 			return -ENOMEM;
1141 		}
1142 	} else {
1143 		maps_node->maps = maps;
1144 	}
1145 
1146 	if (!locked)
1147 		mutex_lock(&pinctrl_maps_mutex);
1148 	list_add_tail(&maps_node->node, &pinctrl_maps);
1149 	if (!locked)
1150 		mutex_unlock(&pinctrl_maps_mutex);
1151 
1152 	return 0;
1153 }
1154 
1155 /**
1156  * pinctrl_register_mappings() - register a set of pin controller mappings
1157  * @maps: the pincontrol mappings table to register. This should probably be
1158  *	marked with __initdata so it can be discarded after boot. This
1159  *	function will perform a shallow copy for the mapping entries.
1160  * @num_maps: the number of maps in the mapping table
1161  */
pinctrl_register_mappings(struct pinctrl_map const * maps,unsigned num_maps)1162 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1163 			      unsigned num_maps)
1164 {
1165 	return pinctrl_register_map(maps, num_maps, true, false);
1166 }
1167 
pinctrl_unregister_map(struct pinctrl_map const * map)1168 void pinctrl_unregister_map(struct pinctrl_map const *map)
1169 {
1170 	struct pinctrl_maps *maps_node;
1171 
1172 	mutex_lock(&pinctrl_maps_mutex);
1173 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1174 		if (maps_node->maps == map) {
1175 			list_del(&maps_node->node);
1176 			mutex_unlock(&pinctrl_maps_mutex);
1177 			return;
1178 		}
1179 	}
1180 	mutex_unlock(&pinctrl_maps_mutex);
1181 }
1182 
1183 /**
1184  * pinctrl_force_sleep() - turn a given controller device into sleep state
1185  * @pctldev: pin controller device
1186  */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1187 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1188 {
1189 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1190 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1191 	return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1194 
1195 /**
1196  * pinctrl_force_default() - turn a given controller device into default state
1197  * @pctldev: pin controller device
1198  */
pinctrl_force_default(struct pinctrl_dev * pctldev)1199 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1200 {
1201 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1202 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1203 	return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1206 
1207 #ifdef CONFIG_DEBUG_FS
1208 
pinctrl_pins_show(struct seq_file * s,void * what)1209 static int pinctrl_pins_show(struct seq_file *s, void *what)
1210 {
1211 	struct pinctrl_dev *pctldev = s->private;
1212 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1213 	unsigned i, pin;
1214 
1215 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1216 
1217 	mutex_lock(&pctldev->mutex);
1218 
1219 	/* The pin number can be retrived from the pin controller descriptor */
1220 	for (i = 0; i < pctldev->desc->npins; i++) {
1221 		struct pin_desc *desc;
1222 
1223 		pin = pctldev->desc->pins[i].number;
1224 		desc = pin_desc_get(pctldev, pin);
1225 		/* Pin space may be sparse */
1226 		if (desc == NULL)
1227 			continue;
1228 
1229 		seq_printf(s, "pin %d (%s) ", pin,
1230 			   desc->name ? desc->name : "unnamed");
1231 
1232 		/* Driver-specific info per pin */
1233 		if (ops->pin_dbg_show)
1234 			ops->pin_dbg_show(pctldev, s, pin);
1235 
1236 		seq_puts(s, "\n");
1237 	}
1238 
1239 	mutex_unlock(&pctldev->mutex);
1240 
1241 	return 0;
1242 }
1243 
pinctrl_groups_show(struct seq_file * s,void * what)1244 static int pinctrl_groups_show(struct seq_file *s, void *what)
1245 {
1246 	struct pinctrl_dev *pctldev = s->private;
1247 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1248 	unsigned ngroups, selector = 0;
1249 
1250 	mutex_lock(&pctldev->mutex);
1251 
1252 	ngroups = ops->get_groups_count(pctldev);
1253 
1254 	seq_puts(s, "registered pin groups:\n");
1255 	while (selector < ngroups) {
1256 		const unsigned *pins;
1257 		unsigned num_pins;
1258 		const char *gname = ops->get_group_name(pctldev, selector);
1259 		const char *pname;
1260 		int ret;
1261 		int i;
1262 
1263 		ret = ops->get_group_pins(pctldev, selector,
1264 					  &pins, &num_pins);
1265 		if (ret)
1266 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1267 				   gname);
1268 		else {
1269 			seq_printf(s, "group: %s\n", gname);
1270 			for (i = 0; i < num_pins; i++) {
1271 				pname = pin_get_name(pctldev, pins[i]);
1272 				if (WARN_ON(!pname)) {
1273 					mutex_unlock(&pctldev->mutex);
1274 					return -EINVAL;
1275 				}
1276 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1277 			}
1278 			seq_puts(s, "\n");
1279 		}
1280 		selector++;
1281 	}
1282 
1283 	mutex_unlock(&pctldev->mutex);
1284 
1285 	return 0;
1286 }
1287 
pinctrl_gpioranges_show(struct seq_file * s,void * what)1288 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1289 {
1290 	struct pinctrl_dev *pctldev = s->private;
1291 	struct pinctrl_gpio_range *range = NULL;
1292 
1293 	seq_puts(s, "GPIO ranges handled:\n");
1294 
1295 	mutex_lock(&pctldev->mutex);
1296 
1297 	/* Loop over the ranges */
1298 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1299 		seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1300 			   range->id, range->name,
1301 			   range->base, (range->base + range->npins - 1),
1302 			   range->pin_base,
1303 			   (range->pin_base + range->npins - 1));
1304 	}
1305 
1306 	mutex_unlock(&pctldev->mutex);
1307 
1308 	return 0;
1309 }
1310 
pinctrl_devices_show(struct seq_file * s,void * what)1311 static int pinctrl_devices_show(struct seq_file *s, void *what)
1312 {
1313 	struct pinctrl_dev *pctldev;
1314 
1315 	seq_puts(s, "name [pinmux] [pinconf]\n");
1316 
1317 	mutex_lock(&pinctrldev_list_mutex);
1318 
1319 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1320 		seq_printf(s, "%s ", pctldev->desc->name);
1321 		if (pctldev->desc->pmxops)
1322 			seq_puts(s, "yes ");
1323 		else
1324 			seq_puts(s, "no ");
1325 		if (pctldev->desc->confops)
1326 			seq_puts(s, "yes");
1327 		else
1328 			seq_puts(s, "no");
1329 		seq_puts(s, "\n");
1330 	}
1331 
1332 	mutex_unlock(&pinctrldev_list_mutex);
1333 
1334 	return 0;
1335 }
1336 
map_type(enum pinctrl_map_type type)1337 static inline const char *map_type(enum pinctrl_map_type type)
1338 {
1339 	static const char * const names[] = {
1340 		"INVALID",
1341 		"DUMMY_STATE",
1342 		"MUX_GROUP",
1343 		"CONFIGS_PIN",
1344 		"CONFIGS_GROUP",
1345 	};
1346 
1347 	if (type >= ARRAY_SIZE(names))
1348 		return "UNKNOWN";
1349 
1350 	return names[type];
1351 }
1352 
pinctrl_maps_show(struct seq_file * s,void * what)1353 static int pinctrl_maps_show(struct seq_file *s, void *what)
1354 {
1355 	struct pinctrl_maps *maps_node;
1356 	int i;
1357 	struct pinctrl_map const *map;
1358 
1359 	seq_puts(s, "Pinctrl maps:\n");
1360 
1361 	mutex_lock(&pinctrl_maps_mutex);
1362 	for_each_maps(maps_node, i, map) {
1363 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1364 			   map->dev_name, map->name, map_type(map->type),
1365 			   map->type);
1366 
1367 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1368 			seq_printf(s, "controlling device %s\n",
1369 				   map->ctrl_dev_name);
1370 
1371 		switch (map->type) {
1372 		case PIN_MAP_TYPE_MUX_GROUP:
1373 			pinmux_show_map(s, map);
1374 			break;
1375 		case PIN_MAP_TYPE_CONFIGS_PIN:
1376 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1377 			pinconf_show_map(s, map);
1378 			break;
1379 		default:
1380 			break;
1381 		}
1382 
1383 		seq_printf(s, "\n");
1384 	}
1385 	mutex_unlock(&pinctrl_maps_mutex);
1386 
1387 	return 0;
1388 }
1389 
pinctrl_show(struct seq_file * s,void * what)1390 static int pinctrl_show(struct seq_file *s, void *what)
1391 {
1392 	struct pinctrl *p;
1393 	struct pinctrl_state *state;
1394 	struct pinctrl_setting *setting;
1395 
1396 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1397 
1398 	mutex_lock(&pinctrl_list_mutex);
1399 
1400 	list_for_each_entry(p, &pinctrl_list, node) {
1401 		seq_printf(s, "device: %s current state: %s\n",
1402 			   dev_name(p->dev),
1403 			   p->state ? p->state->name : "none");
1404 
1405 		list_for_each_entry(state, &p->states, node) {
1406 			seq_printf(s, "  state: %s\n", state->name);
1407 
1408 			list_for_each_entry(setting, &state->settings, node) {
1409 				struct pinctrl_dev *pctldev = setting->pctldev;
1410 
1411 				seq_printf(s, "    type: %s controller %s ",
1412 					   map_type(setting->type),
1413 					   pinctrl_dev_get_name(pctldev));
1414 
1415 				switch (setting->type) {
1416 				case PIN_MAP_TYPE_MUX_GROUP:
1417 					pinmux_show_setting(s, setting);
1418 					break;
1419 				case PIN_MAP_TYPE_CONFIGS_PIN:
1420 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1421 					pinconf_show_setting(s, setting);
1422 					break;
1423 				default:
1424 					break;
1425 				}
1426 			}
1427 		}
1428 	}
1429 
1430 	mutex_unlock(&pinctrl_list_mutex);
1431 
1432 	return 0;
1433 }
1434 
pinctrl_pins_open(struct inode * inode,struct file * file)1435 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1436 {
1437 	return single_open(file, pinctrl_pins_show, inode->i_private);
1438 }
1439 
pinctrl_groups_open(struct inode * inode,struct file * file)1440 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1441 {
1442 	return single_open(file, pinctrl_groups_show, inode->i_private);
1443 }
1444 
pinctrl_gpioranges_open(struct inode * inode,struct file * file)1445 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1446 {
1447 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1448 }
1449 
pinctrl_devices_open(struct inode * inode,struct file * file)1450 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1451 {
1452 	return single_open(file, pinctrl_devices_show, NULL);
1453 }
1454 
pinctrl_maps_open(struct inode * inode,struct file * file)1455 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1456 {
1457 	return single_open(file, pinctrl_maps_show, NULL);
1458 }
1459 
pinctrl_open(struct inode * inode,struct file * file)1460 static int pinctrl_open(struct inode *inode, struct file *file)
1461 {
1462 	return single_open(file, pinctrl_show, NULL);
1463 }
1464 
1465 static const struct file_operations pinctrl_pins_ops = {
1466 	.open		= pinctrl_pins_open,
1467 	.read		= seq_read,
1468 	.llseek		= seq_lseek,
1469 	.release	= single_release,
1470 };
1471 
1472 static const struct file_operations pinctrl_groups_ops = {
1473 	.open		= pinctrl_groups_open,
1474 	.read		= seq_read,
1475 	.llseek		= seq_lseek,
1476 	.release	= single_release,
1477 };
1478 
1479 static const struct file_operations pinctrl_gpioranges_ops = {
1480 	.open		= pinctrl_gpioranges_open,
1481 	.read		= seq_read,
1482 	.llseek		= seq_lseek,
1483 	.release	= single_release,
1484 };
1485 
1486 static const struct file_operations pinctrl_devices_ops = {
1487 	.open		= pinctrl_devices_open,
1488 	.read		= seq_read,
1489 	.llseek		= seq_lseek,
1490 	.release	= single_release,
1491 };
1492 
1493 static const struct file_operations pinctrl_maps_ops = {
1494 	.open		= pinctrl_maps_open,
1495 	.read		= seq_read,
1496 	.llseek		= seq_lseek,
1497 	.release	= single_release,
1498 };
1499 
1500 static const struct file_operations pinctrl_ops = {
1501 	.open		= pinctrl_open,
1502 	.read		= seq_read,
1503 	.llseek		= seq_lseek,
1504 	.release	= single_release,
1505 };
1506 
1507 static struct dentry *debugfs_root;
1508 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1509 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1510 {
1511 	struct dentry *device_root;
1512 
1513 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1514 					 debugfs_root);
1515 	pctldev->device_root = device_root;
1516 
1517 	if (IS_ERR(device_root) || !device_root) {
1518 		pr_warn("failed to create debugfs directory for %s\n",
1519 			dev_name(pctldev->dev));
1520 		return;
1521 	}
1522 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1523 			    device_root, pctldev, &pinctrl_pins_ops);
1524 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1525 			    device_root, pctldev, &pinctrl_groups_ops);
1526 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1527 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1528 	pinmux_init_device_debugfs(device_root, pctldev);
1529 	pinconf_init_device_debugfs(device_root, pctldev);
1530 }
1531 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1532 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1533 {
1534 	debugfs_remove_recursive(pctldev->device_root);
1535 }
1536 
pinctrl_init_debugfs(void)1537 static void pinctrl_init_debugfs(void)
1538 {
1539 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1540 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1541 		pr_warn("failed to create debugfs directory\n");
1542 		debugfs_root = NULL;
1543 		return;
1544 	}
1545 
1546 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1547 			    debugfs_root, NULL, &pinctrl_devices_ops);
1548 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1549 			    debugfs_root, NULL, &pinctrl_maps_ops);
1550 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1551 			    debugfs_root, NULL, &pinctrl_ops);
1552 }
1553 
1554 #else /* CONFIG_DEBUG_FS */
1555 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1556 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1557 {
1558 }
1559 
pinctrl_init_debugfs(void)1560 static void pinctrl_init_debugfs(void)
1561 {
1562 }
1563 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1564 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1565 {
1566 }
1567 
1568 #endif
1569 
pinctrl_check_ops(struct pinctrl_dev * pctldev)1570 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1571 {
1572 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1573 
1574 	if (!ops ||
1575 	    !ops->get_groups_count ||
1576 	    !ops->get_group_name ||
1577 	    !ops->get_group_pins)
1578 		return -EINVAL;
1579 
1580 	if (ops->dt_node_to_map && !ops->dt_free_map)
1581 		return -EINVAL;
1582 
1583 	return 0;
1584 }
1585 
1586 /**
1587  * pinctrl_register() - register a pin controller device
1588  * @pctldesc: descriptor for this pin controller
1589  * @dev: parent device for this pin controller
1590  * @driver_data: private pin controller data for this pin controller
1591  */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)1592 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1593 				    struct device *dev, void *driver_data)
1594 {
1595 	struct pinctrl_dev *pctldev;
1596 	int ret;
1597 
1598 	if (!pctldesc)
1599 		return NULL;
1600 	if (!pctldesc->name)
1601 		return NULL;
1602 
1603 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1604 	if (pctldev == NULL) {
1605 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1606 		return NULL;
1607 	}
1608 
1609 	/* Initialize pin control device struct */
1610 	pctldev->owner = pctldesc->owner;
1611 	pctldev->desc = pctldesc;
1612 	pctldev->driver_data = driver_data;
1613 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1614 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1615 	pctldev->dev = dev;
1616 	mutex_init(&pctldev->mutex);
1617 
1618 	/* check core ops for sanity */
1619 	if (pinctrl_check_ops(pctldev)) {
1620 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1621 		goto out_err;
1622 	}
1623 
1624 	/* If we're implementing pinmuxing, check the ops for sanity */
1625 	if (pctldesc->pmxops) {
1626 		if (pinmux_check_ops(pctldev))
1627 			goto out_err;
1628 	}
1629 
1630 	/* If we're implementing pinconfig, check the ops for sanity */
1631 	if (pctldesc->confops) {
1632 		if (pinconf_check_ops(pctldev))
1633 			goto out_err;
1634 	}
1635 
1636 	/* Register all the pins */
1637 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1638 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1639 	if (ret) {
1640 		dev_err(dev, "error during pin registration\n");
1641 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1642 				      pctldesc->npins);
1643 		goto out_err;
1644 	}
1645 
1646 	mutex_lock(&pinctrldev_list_mutex);
1647 	list_add_tail(&pctldev->node, &pinctrldev_list);
1648 	mutex_unlock(&pinctrldev_list_mutex);
1649 
1650 	pctldev->p = pinctrl_get(pctldev->dev);
1651 
1652 	if (!IS_ERR(pctldev->p)) {
1653 		pctldev->hog_default =
1654 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1655 		if (IS_ERR(pctldev->hog_default)) {
1656 			dev_dbg(dev, "failed to lookup the default state\n");
1657 		} else {
1658 			if (pinctrl_select_state(pctldev->p,
1659 						pctldev->hog_default))
1660 				dev_err(dev,
1661 					"failed to select default state\n");
1662 		}
1663 
1664 		pctldev->hog_sleep =
1665 			pinctrl_lookup_state(pctldev->p,
1666 						    PINCTRL_STATE_SLEEP);
1667 		if (IS_ERR(pctldev->hog_sleep))
1668 			dev_dbg(dev, "failed to lookup the sleep state\n");
1669 	}
1670 
1671 	pinctrl_init_device_debugfs(pctldev);
1672 
1673 	return pctldev;
1674 
1675 out_err:
1676 	mutex_destroy(&pctldev->mutex);
1677 	kfree(pctldev);
1678 	return NULL;
1679 }
1680 EXPORT_SYMBOL_GPL(pinctrl_register);
1681 
1682 /**
1683  * pinctrl_unregister() - unregister pinmux
1684  * @pctldev: pin controller to unregister
1685  *
1686  * Called by pinmux drivers to unregister a pinmux.
1687  */
pinctrl_unregister(struct pinctrl_dev * pctldev)1688 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1689 {
1690 	struct pinctrl_gpio_range *range, *n;
1691 	if (pctldev == NULL)
1692 		return;
1693 
1694 	mutex_lock(&pinctrldev_list_mutex);
1695 	mutex_lock(&pctldev->mutex);
1696 
1697 	pinctrl_remove_device_debugfs(pctldev);
1698 
1699 	if (!IS_ERR(pctldev->p))
1700 		pinctrl_put(pctldev->p);
1701 
1702 	/* TODO: check that no pinmuxes are still active? */
1703 	list_del(&pctldev->node);
1704 	/* Destroy descriptor tree */
1705 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1706 			      pctldev->desc->npins);
1707 	/* remove gpio ranges map */
1708 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1709 		list_del(&range->node);
1710 
1711 	mutex_unlock(&pctldev->mutex);
1712 	mutex_destroy(&pctldev->mutex);
1713 	kfree(pctldev);
1714 	mutex_unlock(&pinctrldev_list_mutex);
1715 }
1716 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1717 
pinctrl_init(void)1718 static int __init pinctrl_init(void)
1719 {
1720 	pr_info("initialized pinctrl subsystem\n");
1721 	pinctrl_init_debugfs();
1722 	return 0;
1723 }
1724 
1725 /* init early since many drivers really need to initialized pinmux early */
1726 core_initcall(pinctrl_init);
1727