• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *	This program is free software; you can redistribute it and/or modify
24  *	it under the terms of the GNU General Public License as published by
25  *	the Free Software Foundation, version 2.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36 
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41 
42 #define _DEBUG_HASHES
43 
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46 	"common prefixes",
47 	"classes",
48 	"roles",
49 	"types",
50 	"users",
51 	"bools",
52 	"levels",
53 	"categories",
54 };
55 #endif
56 
57 static unsigned int symtab_sizes[SYM_NUM] = {
58 	2,
59 	32,
60 	16,
61 	512,
62 	128,
63 	16,
64 	16,
65 	16,
66 };
67 
68 struct policydb_compat_info {
69 	int version;
70 	int sym_num;
71 	int ocon_num;
72 };
73 
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76 	{
77 		.version	= POLICYDB_VERSION_BASE,
78 		.sym_num	= SYM_NUM - 3,
79 		.ocon_num	= OCON_NUM - 1,
80 	},
81 	{
82 		.version	= POLICYDB_VERSION_BOOL,
83 		.sym_num	= SYM_NUM - 2,
84 		.ocon_num	= OCON_NUM - 1,
85 	},
86 	{
87 		.version	= POLICYDB_VERSION_IPV6,
88 		.sym_num	= SYM_NUM - 2,
89 		.ocon_num	= OCON_NUM,
90 	},
91 	{
92 		.version	= POLICYDB_VERSION_NLCLASS,
93 		.sym_num	= SYM_NUM - 2,
94 		.ocon_num	= OCON_NUM,
95 	},
96 	{
97 		.version	= POLICYDB_VERSION_MLS,
98 		.sym_num	= SYM_NUM,
99 		.ocon_num	= OCON_NUM,
100 	},
101 	{
102 		.version	= POLICYDB_VERSION_AVTAB,
103 		.sym_num	= SYM_NUM,
104 		.ocon_num	= OCON_NUM,
105 	},
106 	{
107 		.version	= POLICYDB_VERSION_RANGETRANS,
108 		.sym_num	= SYM_NUM,
109 		.ocon_num	= OCON_NUM,
110 	},
111 	{
112 		.version	= POLICYDB_VERSION_POLCAP,
113 		.sym_num	= SYM_NUM,
114 		.ocon_num	= OCON_NUM,
115 	},
116 	{
117 		.version	= POLICYDB_VERSION_PERMISSIVE,
118 		.sym_num	= SYM_NUM,
119 		.ocon_num	= OCON_NUM,
120 	},
121 	{
122 		.version	= POLICYDB_VERSION_BOUNDARY,
123 		.sym_num	= SYM_NUM,
124 		.ocon_num	= OCON_NUM,
125 	},
126 	{
127 		.version	= POLICYDB_VERSION_FILENAME_TRANS,
128 		.sym_num	= SYM_NUM,
129 		.ocon_num	= OCON_NUM,
130 	},
131 	{
132 		.version	= POLICYDB_VERSION_ROLETRANS,
133 		.sym_num	= SYM_NUM,
134 		.ocon_num	= OCON_NUM,
135 	},
136 	{
137 		.version	= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS,
138 		.sym_num	= SYM_NUM,
139 		.ocon_num	= OCON_NUM,
140 	},
141 	{
142 		.version	= POLICYDB_VERSION_DEFAULT_TYPE,
143 		.sym_num	= SYM_NUM,
144 		.ocon_num	= OCON_NUM,
145 	},
146 	{
147 		.version	= POLICYDB_VERSION_CONSTRAINT_NAMES,
148 		.sym_num	= SYM_NUM,
149 		.ocon_num	= OCON_NUM,
150 	},
151 	{
152 		.version	= POLICYDB_VERSION_XPERMS_IOCTL,
153 		.sym_num	= SYM_NUM,
154 		.ocon_num	= OCON_NUM,
155 	},
156 };
157 
policydb_lookup_compat(int version)158 static struct policydb_compat_info *policydb_lookup_compat(int version)
159 {
160 	int i;
161 	struct policydb_compat_info *info = NULL;
162 
163 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
164 		if (policydb_compat[i].version == version) {
165 			info = &policydb_compat[i];
166 			break;
167 		}
168 	}
169 	return info;
170 }
171 
172 /*
173  * Initialize the role table.
174  */
roles_init(struct policydb * p)175 static int roles_init(struct policydb *p)
176 {
177 	char *key = NULL;
178 	int rc;
179 	struct role_datum *role;
180 
181 	rc = -ENOMEM;
182 	role = kzalloc(sizeof(*role), GFP_KERNEL);
183 	if (!role)
184 		goto out;
185 
186 	rc = -EINVAL;
187 	role->value = ++p->p_roles.nprim;
188 	if (role->value != OBJECT_R_VAL)
189 		goto out;
190 
191 	rc = -ENOMEM;
192 	key = kstrdup(OBJECT_R, GFP_KERNEL);
193 	if (!key)
194 		goto out;
195 
196 	rc = hashtab_insert(p->p_roles.table, key, role);
197 	if (rc)
198 		goto out;
199 
200 	return 0;
201 out:
202 	kfree(key);
203 	kfree(role);
204 	return rc;
205 }
206 
filenametr_hash(struct hashtab * h,const void * k)207 static u32 filenametr_hash(struct hashtab *h, const void *k)
208 {
209 	const struct filename_trans *ft = k;
210 	unsigned long hash;
211 	unsigned int byte_num;
212 	unsigned char focus;
213 
214 	hash = ft->stype ^ ft->ttype ^ ft->tclass;
215 
216 	byte_num = 0;
217 	while ((focus = ft->name[byte_num++]))
218 		hash = partial_name_hash(focus, hash);
219 	return hash & (h->size - 1);
220 }
221 
filenametr_cmp(struct hashtab * h,const void * k1,const void * k2)222 static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2)
223 {
224 	const struct filename_trans *ft1 = k1;
225 	const struct filename_trans *ft2 = k2;
226 	int v;
227 
228 	v = ft1->stype - ft2->stype;
229 	if (v)
230 		return v;
231 
232 	v = ft1->ttype - ft2->ttype;
233 	if (v)
234 		return v;
235 
236 	v = ft1->tclass - ft2->tclass;
237 	if (v)
238 		return v;
239 
240 	return strcmp(ft1->name, ft2->name);
241 
242 }
243 
rangetr_hash(struct hashtab * h,const void * k)244 static u32 rangetr_hash(struct hashtab *h, const void *k)
245 {
246 	const struct range_trans *key = k;
247 	return (key->source_type + (key->target_type << 3) +
248 		(key->target_class << 5)) & (h->size - 1);
249 }
250 
rangetr_cmp(struct hashtab * h,const void * k1,const void * k2)251 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
252 {
253 	const struct range_trans *key1 = k1, *key2 = k2;
254 	int v;
255 
256 	v = key1->source_type - key2->source_type;
257 	if (v)
258 		return v;
259 
260 	v = key1->target_type - key2->target_type;
261 	if (v)
262 		return v;
263 
264 	v = key1->target_class - key2->target_class;
265 
266 	return v;
267 }
268 
269 /*
270  * Initialize a policy database structure.
271  */
policydb_init(struct policydb * p)272 static int policydb_init(struct policydb *p)
273 {
274 	int i, rc;
275 
276 	memset(p, 0, sizeof(*p));
277 
278 	for (i = 0; i < SYM_NUM; i++) {
279 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
280 		if (rc)
281 			goto out;
282 	}
283 
284 	rc = avtab_init(&p->te_avtab);
285 	if (rc)
286 		goto out;
287 
288 	rc = roles_init(p);
289 	if (rc)
290 		goto out;
291 
292 	rc = cond_policydb_init(p);
293 	if (rc)
294 		goto out;
295 
296 	p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp, (1 << 10));
297 	if (!p->filename_trans)
298 		goto out;
299 
300 	p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
301 	if (!p->range_tr)
302 		goto out;
303 
304 	ebitmap_init(&p->filename_trans_ttypes);
305 	ebitmap_init(&p->policycaps);
306 	ebitmap_init(&p->permissive_map);
307 
308 	return 0;
309 out:
310 	hashtab_destroy(p->filename_trans);
311 	hashtab_destroy(p->range_tr);
312 	for (i = 0; i < SYM_NUM; i++)
313 		hashtab_destroy(p->symtab[i].table);
314 	return rc;
315 }
316 
317 /*
318  * The following *_index functions are used to
319  * define the val_to_name and val_to_struct arrays
320  * in a policy database structure.  The val_to_name
321  * arrays are used when converting security context
322  * structures into string representations.  The
323  * val_to_struct arrays are used when the attributes
324  * of a class, role, or user are needed.
325  */
326 
common_index(void * key,void * datum,void * datap)327 static int common_index(void *key, void *datum, void *datap)
328 {
329 	struct policydb *p;
330 	struct common_datum *comdatum;
331 	struct flex_array *fa;
332 
333 	comdatum = datum;
334 	p = datap;
335 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
336 		return -EINVAL;
337 
338 	fa = p->sym_val_to_name[SYM_COMMONS];
339 	if (flex_array_put_ptr(fa, comdatum->value - 1, key,
340 			       GFP_KERNEL | __GFP_ZERO))
341 		BUG();
342 	return 0;
343 }
344 
class_index(void * key,void * datum,void * datap)345 static int class_index(void *key, void *datum, void *datap)
346 {
347 	struct policydb *p;
348 	struct class_datum *cladatum;
349 	struct flex_array *fa;
350 
351 	cladatum = datum;
352 	p = datap;
353 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
354 		return -EINVAL;
355 	fa = p->sym_val_to_name[SYM_CLASSES];
356 	if (flex_array_put_ptr(fa, cladatum->value - 1, key,
357 			       GFP_KERNEL | __GFP_ZERO))
358 		BUG();
359 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
360 	return 0;
361 }
362 
role_index(void * key,void * datum,void * datap)363 static int role_index(void *key, void *datum, void *datap)
364 {
365 	struct policydb *p;
366 	struct role_datum *role;
367 	struct flex_array *fa;
368 
369 	role = datum;
370 	p = datap;
371 	if (!role->value
372 	    || role->value > p->p_roles.nprim
373 	    || role->bounds > p->p_roles.nprim)
374 		return -EINVAL;
375 
376 	fa = p->sym_val_to_name[SYM_ROLES];
377 	if (flex_array_put_ptr(fa, role->value - 1, key,
378 			       GFP_KERNEL | __GFP_ZERO))
379 		BUG();
380 	p->role_val_to_struct[role->value - 1] = role;
381 	return 0;
382 }
383 
type_index(void * key,void * datum,void * datap)384 static int type_index(void *key, void *datum, void *datap)
385 {
386 	struct policydb *p;
387 	struct type_datum *typdatum;
388 	struct flex_array *fa;
389 
390 	typdatum = datum;
391 	p = datap;
392 
393 	if (typdatum->primary) {
394 		if (!typdatum->value
395 		    || typdatum->value > p->p_types.nprim
396 		    || typdatum->bounds > p->p_types.nprim)
397 			return -EINVAL;
398 		fa = p->sym_val_to_name[SYM_TYPES];
399 		if (flex_array_put_ptr(fa, typdatum->value - 1, key,
400 				       GFP_KERNEL | __GFP_ZERO))
401 			BUG();
402 
403 		fa = p->type_val_to_struct_array;
404 		if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
405 				       GFP_KERNEL | __GFP_ZERO))
406 			BUG();
407 	}
408 
409 	return 0;
410 }
411 
user_index(void * key,void * datum,void * datap)412 static int user_index(void *key, void *datum, void *datap)
413 {
414 	struct policydb *p;
415 	struct user_datum *usrdatum;
416 	struct flex_array *fa;
417 
418 	usrdatum = datum;
419 	p = datap;
420 	if (!usrdatum->value
421 	    || usrdatum->value > p->p_users.nprim
422 	    || usrdatum->bounds > p->p_users.nprim)
423 		return -EINVAL;
424 
425 	fa = p->sym_val_to_name[SYM_USERS];
426 	if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
427 			       GFP_KERNEL | __GFP_ZERO))
428 		BUG();
429 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
430 	return 0;
431 }
432 
sens_index(void * key,void * datum,void * datap)433 static int sens_index(void *key, void *datum, void *datap)
434 {
435 	struct policydb *p;
436 	struct level_datum *levdatum;
437 	struct flex_array *fa;
438 
439 	levdatum = datum;
440 	p = datap;
441 
442 	if (!levdatum->isalias) {
443 		if (!levdatum->level->sens ||
444 		    levdatum->level->sens > p->p_levels.nprim)
445 			return -EINVAL;
446 		fa = p->sym_val_to_name[SYM_LEVELS];
447 		if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
448 				       GFP_KERNEL | __GFP_ZERO))
449 			BUG();
450 	}
451 
452 	return 0;
453 }
454 
cat_index(void * key,void * datum,void * datap)455 static int cat_index(void *key, void *datum, void *datap)
456 {
457 	struct policydb *p;
458 	struct cat_datum *catdatum;
459 	struct flex_array *fa;
460 
461 	catdatum = datum;
462 	p = datap;
463 
464 	if (!catdatum->isalias) {
465 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
466 			return -EINVAL;
467 		fa = p->sym_val_to_name[SYM_CATS];
468 		if (flex_array_put_ptr(fa, catdatum->value - 1, key,
469 				       GFP_KERNEL | __GFP_ZERO))
470 			BUG();
471 	}
472 
473 	return 0;
474 }
475 
476 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
477 {
478 	common_index,
479 	class_index,
480 	role_index,
481 	type_index,
482 	user_index,
483 	cond_index_bool,
484 	sens_index,
485 	cat_index,
486 };
487 
488 #ifdef DEBUG_HASHES
hash_eval(struct hashtab * h,const char * hash_name)489 static void hash_eval(struct hashtab *h, const char *hash_name)
490 {
491 	struct hashtab_info info;
492 
493 	hashtab_stat(h, &info);
494 	printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
495 	       "longest chain length %d\n", hash_name, h->nel,
496 	       info.slots_used, h->size, info.max_chain_len);
497 }
498 
symtab_hash_eval(struct symtab * s)499 static void symtab_hash_eval(struct symtab *s)
500 {
501 	int i;
502 
503 	for (i = 0; i < SYM_NUM; i++)
504 		hash_eval(s[i].table, symtab_name[i]);
505 }
506 
507 #else
hash_eval(struct hashtab * h,char * hash_name)508 static inline void hash_eval(struct hashtab *h, char *hash_name)
509 {
510 }
511 #endif
512 
513 /*
514  * Define the other val_to_name and val_to_struct arrays
515  * in a policy database structure.
516  *
517  * Caller must clean up on failure.
518  */
policydb_index(struct policydb * p)519 static int policydb_index(struct policydb *p)
520 {
521 	int i, rc;
522 
523 	printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
524 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
525 	if (p->mls_enabled)
526 		printk(", %d sens, %d cats", p->p_levels.nprim,
527 		       p->p_cats.nprim);
528 	printk("\n");
529 
530 	printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
531 	       p->p_classes.nprim, p->te_avtab.nel);
532 
533 #ifdef DEBUG_HASHES
534 	avtab_hash_eval(&p->te_avtab, "rules");
535 	symtab_hash_eval(p->symtab);
536 #endif
537 
538 	rc = -ENOMEM;
539 	p->class_val_to_struct =
540 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
541 			GFP_KERNEL);
542 	if (!p->class_val_to_struct)
543 		goto out;
544 
545 	rc = -ENOMEM;
546 	p->role_val_to_struct =
547 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
548 			GFP_KERNEL);
549 	if (!p->role_val_to_struct)
550 		goto out;
551 
552 	rc = -ENOMEM;
553 	p->user_val_to_struct =
554 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
555 			GFP_KERNEL);
556 	if (!p->user_val_to_struct)
557 		goto out;
558 
559 	/* Yes, I want the sizeof the pointer, not the structure */
560 	rc = -ENOMEM;
561 	p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
562 						       p->p_types.nprim,
563 						       GFP_KERNEL | __GFP_ZERO);
564 	if (!p->type_val_to_struct_array)
565 		goto out;
566 
567 	rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
568 				 p->p_types.nprim, GFP_KERNEL | __GFP_ZERO);
569 	if (rc)
570 		goto out;
571 
572 	rc = cond_init_bool_indexes(p);
573 	if (rc)
574 		goto out;
575 
576 	for (i = 0; i < SYM_NUM; i++) {
577 		rc = -ENOMEM;
578 		p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
579 							 p->symtab[i].nprim,
580 							 GFP_KERNEL | __GFP_ZERO);
581 		if (!p->sym_val_to_name[i])
582 			goto out;
583 
584 		rc = flex_array_prealloc(p->sym_val_to_name[i],
585 					 0, p->symtab[i].nprim,
586 					 GFP_KERNEL | __GFP_ZERO);
587 		if (rc)
588 			goto out;
589 
590 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
591 		if (rc)
592 			goto out;
593 	}
594 	rc = 0;
595 out:
596 	return rc;
597 }
598 
599 /*
600  * The following *_destroy functions are used to
601  * free any memory allocated for each kind of
602  * symbol data in the policy database.
603  */
604 
perm_destroy(void * key,void * datum,void * p)605 static int perm_destroy(void *key, void *datum, void *p)
606 {
607 	kfree(key);
608 	kfree(datum);
609 	return 0;
610 }
611 
common_destroy(void * key,void * datum,void * p)612 static int common_destroy(void *key, void *datum, void *p)
613 {
614 	struct common_datum *comdatum;
615 
616 	kfree(key);
617 	if (datum) {
618 		comdatum = datum;
619 		hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
620 		hashtab_destroy(comdatum->permissions.table);
621 	}
622 	kfree(datum);
623 	return 0;
624 }
625 
constraint_expr_destroy(struct constraint_expr * expr)626 static void constraint_expr_destroy(struct constraint_expr *expr)
627 {
628 	if (expr) {
629 		ebitmap_destroy(&expr->names);
630 		if (expr->type_names) {
631 			ebitmap_destroy(&expr->type_names->types);
632 			ebitmap_destroy(&expr->type_names->negset);
633 			kfree(expr->type_names);
634 		}
635 		kfree(expr);
636 	}
637 }
638 
cls_destroy(void * key,void * datum,void * p)639 static int cls_destroy(void *key, void *datum, void *p)
640 {
641 	struct class_datum *cladatum;
642 	struct constraint_node *constraint, *ctemp;
643 	struct constraint_expr *e, *etmp;
644 
645 	kfree(key);
646 	if (datum) {
647 		cladatum = datum;
648 		hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
649 		hashtab_destroy(cladatum->permissions.table);
650 		constraint = cladatum->constraints;
651 		while (constraint) {
652 			e = constraint->expr;
653 			while (e) {
654 				etmp = e;
655 				e = e->next;
656 				constraint_expr_destroy(etmp);
657 			}
658 			ctemp = constraint;
659 			constraint = constraint->next;
660 			kfree(ctemp);
661 		}
662 
663 		constraint = cladatum->validatetrans;
664 		while (constraint) {
665 			e = constraint->expr;
666 			while (e) {
667 				etmp = e;
668 				e = e->next;
669 				constraint_expr_destroy(etmp);
670 			}
671 			ctemp = constraint;
672 			constraint = constraint->next;
673 			kfree(ctemp);
674 		}
675 		kfree(cladatum->comkey);
676 	}
677 	kfree(datum);
678 	return 0;
679 }
680 
role_destroy(void * key,void * datum,void * p)681 static int role_destroy(void *key, void *datum, void *p)
682 {
683 	struct role_datum *role;
684 
685 	kfree(key);
686 	if (datum) {
687 		role = datum;
688 		ebitmap_destroy(&role->dominates);
689 		ebitmap_destroy(&role->types);
690 	}
691 	kfree(datum);
692 	return 0;
693 }
694 
type_destroy(void * key,void * datum,void * p)695 static int type_destroy(void *key, void *datum, void *p)
696 {
697 	kfree(key);
698 	kfree(datum);
699 	return 0;
700 }
701 
user_destroy(void * key,void * datum,void * p)702 static int user_destroy(void *key, void *datum, void *p)
703 {
704 	struct user_datum *usrdatum;
705 
706 	kfree(key);
707 	if (datum) {
708 		usrdatum = datum;
709 		ebitmap_destroy(&usrdatum->roles);
710 		ebitmap_destroy(&usrdatum->range.level[0].cat);
711 		ebitmap_destroy(&usrdatum->range.level[1].cat);
712 		ebitmap_destroy(&usrdatum->dfltlevel.cat);
713 	}
714 	kfree(datum);
715 	return 0;
716 }
717 
sens_destroy(void * key,void * datum,void * p)718 static int sens_destroy(void *key, void *datum, void *p)
719 {
720 	struct level_datum *levdatum;
721 
722 	kfree(key);
723 	if (datum) {
724 		levdatum = datum;
725 		ebitmap_destroy(&levdatum->level->cat);
726 		kfree(levdatum->level);
727 	}
728 	kfree(datum);
729 	return 0;
730 }
731 
cat_destroy(void * key,void * datum,void * p)732 static int cat_destroy(void *key, void *datum, void *p)
733 {
734 	kfree(key);
735 	kfree(datum);
736 	return 0;
737 }
738 
739 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
740 {
741 	common_destroy,
742 	cls_destroy,
743 	role_destroy,
744 	type_destroy,
745 	user_destroy,
746 	cond_destroy_bool,
747 	sens_destroy,
748 	cat_destroy,
749 };
750 
filenametr_destroy(void * key,void * datum,void * p)751 static int filenametr_destroy(void *key, void *datum, void *p)
752 {
753 	struct filename_trans *ft = key;
754 	kfree(ft->name);
755 	kfree(key);
756 	kfree(datum);
757 	cond_resched();
758 	return 0;
759 }
760 
range_tr_destroy(void * key,void * datum,void * p)761 static int range_tr_destroy(void *key, void *datum, void *p)
762 {
763 	struct mls_range *rt = datum;
764 	kfree(key);
765 	ebitmap_destroy(&rt->level[0].cat);
766 	ebitmap_destroy(&rt->level[1].cat);
767 	kfree(datum);
768 	cond_resched();
769 	return 0;
770 }
771 
ocontext_destroy(struct ocontext * c,int i)772 static void ocontext_destroy(struct ocontext *c, int i)
773 {
774 	if (!c)
775 		return;
776 
777 	context_destroy(&c->context[0]);
778 	context_destroy(&c->context[1]);
779 	if (i == OCON_ISID || i == OCON_FS ||
780 	    i == OCON_NETIF || i == OCON_FSUSE)
781 		kfree(c->u.name);
782 	kfree(c);
783 }
784 
785 /*
786  * Free any memory allocated by a policy database structure.
787  */
policydb_destroy(struct policydb * p)788 void policydb_destroy(struct policydb *p)
789 {
790 	struct ocontext *c, *ctmp;
791 	struct genfs *g, *gtmp;
792 	int i;
793 	struct role_allow *ra, *lra = NULL;
794 	struct role_trans *tr, *ltr = NULL;
795 
796 	for (i = 0; i < SYM_NUM; i++) {
797 		cond_resched();
798 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
799 		hashtab_destroy(p->symtab[i].table);
800 	}
801 
802 	for (i = 0; i < SYM_NUM; i++) {
803 		if (p->sym_val_to_name[i])
804 			flex_array_free(p->sym_val_to_name[i]);
805 	}
806 
807 	kfree(p->class_val_to_struct);
808 	kfree(p->role_val_to_struct);
809 	kfree(p->user_val_to_struct);
810 	if (p->type_val_to_struct_array)
811 		flex_array_free(p->type_val_to_struct_array);
812 
813 	avtab_destroy(&p->te_avtab);
814 
815 	for (i = 0; i < OCON_NUM; i++) {
816 		cond_resched();
817 		c = p->ocontexts[i];
818 		while (c) {
819 			ctmp = c;
820 			c = c->next;
821 			ocontext_destroy(ctmp, i);
822 		}
823 		p->ocontexts[i] = NULL;
824 	}
825 
826 	g = p->genfs;
827 	while (g) {
828 		cond_resched();
829 		kfree(g->fstype);
830 		c = g->head;
831 		while (c) {
832 			ctmp = c;
833 			c = c->next;
834 			ocontext_destroy(ctmp, OCON_FSUSE);
835 		}
836 		gtmp = g;
837 		g = g->next;
838 		kfree(gtmp);
839 	}
840 	p->genfs = NULL;
841 
842 	cond_policydb_destroy(p);
843 
844 	for (tr = p->role_tr; tr; tr = tr->next) {
845 		cond_resched();
846 		kfree(ltr);
847 		ltr = tr;
848 	}
849 	kfree(ltr);
850 
851 	for (ra = p->role_allow; ra; ra = ra->next) {
852 		cond_resched();
853 		kfree(lra);
854 		lra = ra;
855 	}
856 	kfree(lra);
857 
858 	hashtab_map(p->filename_trans, filenametr_destroy, NULL);
859 	hashtab_destroy(p->filename_trans);
860 
861 	hashtab_map(p->range_tr, range_tr_destroy, NULL);
862 	hashtab_destroy(p->range_tr);
863 
864 	if (p->type_attr_map_array) {
865 		for (i = 0; i < p->p_types.nprim; i++) {
866 			struct ebitmap *e;
867 
868 			e = flex_array_get(p->type_attr_map_array, i);
869 			if (!e)
870 				continue;
871 			ebitmap_destroy(e);
872 		}
873 		flex_array_free(p->type_attr_map_array);
874 	}
875 
876 	ebitmap_destroy(&p->filename_trans_ttypes);
877 	ebitmap_destroy(&p->policycaps);
878 	ebitmap_destroy(&p->permissive_map);
879 
880 	return;
881 }
882 
883 /*
884  * Load the initial SIDs specified in a policy database
885  * structure into a SID table.
886  */
policydb_load_isids(struct policydb * p,struct sidtab * s)887 int policydb_load_isids(struct policydb *p, struct sidtab *s)
888 {
889 	struct ocontext *head, *c;
890 	int rc;
891 
892 	rc = sidtab_init(s);
893 	if (rc) {
894 		printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
895 		goto out;
896 	}
897 
898 	head = p->ocontexts[OCON_ISID];
899 	for (c = head; c; c = c->next) {
900 		rc = -EINVAL;
901 		if (!c->context[0].user) {
902 			printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
903 				c->u.name);
904 			goto out;
905 		}
906 
907 		rc = sidtab_insert(s, c->sid[0], &c->context[0]);
908 		if (rc) {
909 			printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
910 				c->u.name);
911 			goto out;
912 		}
913 	}
914 	rc = 0;
915 out:
916 	return rc;
917 }
918 
policydb_class_isvalid(struct policydb * p,unsigned int class)919 int policydb_class_isvalid(struct policydb *p, unsigned int class)
920 {
921 	if (!class || class > p->p_classes.nprim)
922 		return 0;
923 	return 1;
924 }
925 
policydb_role_isvalid(struct policydb * p,unsigned int role)926 int policydb_role_isvalid(struct policydb *p, unsigned int role)
927 {
928 	if (!role || role > p->p_roles.nprim)
929 		return 0;
930 	return 1;
931 }
932 
policydb_type_isvalid(struct policydb * p,unsigned int type)933 int policydb_type_isvalid(struct policydb *p, unsigned int type)
934 {
935 	if (!type || type > p->p_types.nprim)
936 		return 0;
937 	return 1;
938 }
939 
940 /*
941  * Return 1 if the fields in the security context
942  * structure `c' are valid.  Return 0 otherwise.
943  */
policydb_context_isvalid(struct policydb * p,struct context * c)944 int policydb_context_isvalid(struct policydb *p, struct context *c)
945 {
946 	struct role_datum *role;
947 	struct user_datum *usrdatum;
948 
949 	if (!c->role || c->role > p->p_roles.nprim)
950 		return 0;
951 
952 	if (!c->user || c->user > p->p_users.nprim)
953 		return 0;
954 
955 	if (!c->type || c->type > p->p_types.nprim)
956 		return 0;
957 
958 	if (c->role != OBJECT_R_VAL) {
959 		/*
960 		 * Role must be authorized for the type.
961 		 */
962 		role = p->role_val_to_struct[c->role - 1];
963 		if (!ebitmap_get_bit(&role->types, c->type - 1))
964 			/* role may not be associated with type */
965 			return 0;
966 
967 		/*
968 		 * User must be authorized for the role.
969 		 */
970 		usrdatum = p->user_val_to_struct[c->user - 1];
971 		if (!usrdatum)
972 			return 0;
973 
974 		if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
975 			/* user may not be associated with role */
976 			return 0;
977 	}
978 
979 	if (!mls_context_isvalid(p, c))
980 		return 0;
981 
982 	return 1;
983 }
984 
985 /*
986  * Read a MLS range structure from a policydb binary
987  * representation file.
988  */
mls_read_range_helper(struct mls_range * r,void * fp)989 static int mls_read_range_helper(struct mls_range *r, void *fp)
990 {
991 	__le32 buf[2];
992 	u32 items;
993 	int rc;
994 
995 	rc = next_entry(buf, fp, sizeof(u32));
996 	if (rc)
997 		goto out;
998 
999 	rc = -EINVAL;
1000 	items = le32_to_cpu(buf[0]);
1001 	if (items > ARRAY_SIZE(buf)) {
1002 		printk(KERN_ERR "SELinux: mls:  range overflow\n");
1003 		goto out;
1004 	}
1005 
1006 	rc = next_entry(buf, fp, sizeof(u32) * items);
1007 	if (rc) {
1008 		printk(KERN_ERR "SELinux: mls:  truncated range\n");
1009 		goto out;
1010 	}
1011 
1012 	r->level[0].sens = le32_to_cpu(buf[0]);
1013 	if (items > 1)
1014 		r->level[1].sens = le32_to_cpu(buf[1]);
1015 	else
1016 		r->level[1].sens = r->level[0].sens;
1017 
1018 	rc = ebitmap_read(&r->level[0].cat, fp);
1019 	if (rc) {
1020 		printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
1021 		goto out;
1022 	}
1023 	if (items > 1) {
1024 		rc = ebitmap_read(&r->level[1].cat, fp);
1025 		if (rc) {
1026 			printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
1027 			goto bad_high;
1028 		}
1029 	} else {
1030 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
1031 		if (rc) {
1032 			printk(KERN_ERR "SELinux: mls:  out of memory\n");
1033 			goto bad_high;
1034 		}
1035 	}
1036 
1037 	return 0;
1038 bad_high:
1039 	ebitmap_destroy(&r->level[0].cat);
1040 out:
1041 	return rc;
1042 }
1043 
1044 /*
1045  * Read and validate a security context structure
1046  * from a policydb binary representation file.
1047  */
context_read_and_validate(struct context * c,struct policydb * p,void * fp)1048 static int context_read_and_validate(struct context *c,
1049 				     struct policydb *p,
1050 				     void *fp)
1051 {
1052 	__le32 buf[3];
1053 	int rc;
1054 
1055 	rc = next_entry(buf, fp, sizeof buf);
1056 	if (rc) {
1057 		printk(KERN_ERR "SELinux: context truncated\n");
1058 		goto out;
1059 	}
1060 	c->user = le32_to_cpu(buf[0]);
1061 	c->role = le32_to_cpu(buf[1]);
1062 	c->type = le32_to_cpu(buf[2]);
1063 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1064 		rc = mls_read_range_helper(&c->range, fp);
1065 		if (rc) {
1066 			printk(KERN_ERR "SELinux: error reading MLS range of context\n");
1067 			goto out;
1068 		}
1069 	}
1070 
1071 	rc = -EINVAL;
1072 	if (!policydb_context_isvalid(p, c)) {
1073 		printk(KERN_ERR "SELinux:  invalid security context\n");
1074 		context_destroy(c);
1075 		goto out;
1076 	}
1077 	rc = 0;
1078 out:
1079 	return rc;
1080 }
1081 
1082 /*
1083  * The following *_read functions are used to
1084  * read the symbol data from a policy database
1085  * binary representation file.
1086  */
1087 
perm_read(struct policydb * p,struct hashtab * h,void * fp)1088 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
1089 {
1090 	char *key = NULL;
1091 	struct perm_datum *perdatum;
1092 	int rc;
1093 	__le32 buf[2];
1094 	u32 len;
1095 
1096 	rc = -ENOMEM;
1097 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1098 	if (!perdatum)
1099 		goto bad;
1100 
1101 	rc = next_entry(buf, fp, sizeof buf);
1102 	if (rc)
1103 		goto bad;
1104 
1105 	len = le32_to_cpu(buf[0]);
1106 	perdatum->value = le32_to_cpu(buf[1]);
1107 
1108 	rc = -ENOMEM;
1109 	key = kmalloc(len + 1, GFP_KERNEL);
1110 	if (!key)
1111 		goto bad;
1112 
1113 	rc = next_entry(key, fp, len);
1114 	if (rc)
1115 		goto bad;
1116 	key[len] = '\0';
1117 
1118 	rc = hashtab_insert(h, key, perdatum);
1119 	if (rc)
1120 		goto bad;
1121 
1122 	return 0;
1123 bad:
1124 	perm_destroy(key, perdatum, NULL);
1125 	return rc;
1126 }
1127 
common_read(struct policydb * p,struct hashtab * h,void * fp)1128 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1129 {
1130 	char *key = NULL;
1131 	struct common_datum *comdatum;
1132 	__le32 buf[4];
1133 	u32 len, nel;
1134 	int i, rc;
1135 
1136 	rc = -ENOMEM;
1137 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1138 	if (!comdatum)
1139 		goto bad;
1140 
1141 	rc = next_entry(buf, fp, sizeof buf);
1142 	if (rc)
1143 		goto bad;
1144 
1145 	len = le32_to_cpu(buf[0]);
1146 	comdatum->value = le32_to_cpu(buf[1]);
1147 
1148 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1149 	if (rc)
1150 		goto bad;
1151 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1152 	nel = le32_to_cpu(buf[3]);
1153 
1154 	rc = -ENOMEM;
1155 	key = kmalloc(len + 1, GFP_KERNEL);
1156 	if (!key)
1157 		goto bad;
1158 
1159 	rc = next_entry(key, fp, len);
1160 	if (rc)
1161 		goto bad;
1162 	key[len] = '\0';
1163 
1164 	for (i = 0; i < nel; i++) {
1165 		rc = perm_read(p, comdatum->permissions.table, fp);
1166 		if (rc)
1167 			goto bad;
1168 	}
1169 
1170 	rc = hashtab_insert(h, key, comdatum);
1171 	if (rc)
1172 		goto bad;
1173 	return 0;
1174 bad:
1175 	common_destroy(key, comdatum, NULL);
1176 	return rc;
1177 }
1178 
type_set_init(struct type_set * t)1179 static void type_set_init(struct type_set *t)
1180 {
1181 	ebitmap_init(&t->types);
1182 	ebitmap_init(&t->negset);
1183 }
1184 
type_set_read(struct type_set * t,void * fp)1185 static int type_set_read(struct type_set *t, void *fp)
1186 {
1187 	__le32 buf[1];
1188 	int rc;
1189 
1190 	if (ebitmap_read(&t->types, fp))
1191 		return -EINVAL;
1192 	if (ebitmap_read(&t->negset, fp))
1193 		return -EINVAL;
1194 
1195 	rc = next_entry(buf, fp, sizeof(u32));
1196 	if (rc < 0)
1197 		return -EINVAL;
1198 	t->flags = le32_to_cpu(buf[0]);
1199 
1200 	return 0;
1201 }
1202 
1203 
read_cons_helper(struct policydb * p,struct constraint_node ** nodep,int ncons,int allowxtarget,void * fp)1204 static int read_cons_helper(struct policydb *p,
1205 				struct constraint_node **nodep,
1206 				int ncons, int allowxtarget, void *fp)
1207 {
1208 	struct constraint_node *c, *lc;
1209 	struct constraint_expr *e, *le;
1210 	__le32 buf[3];
1211 	u32 nexpr;
1212 	int rc, i, j, depth;
1213 
1214 	lc = NULL;
1215 	for (i = 0; i < ncons; i++) {
1216 		c = kzalloc(sizeof(*c), GFP_KERNEL);
1217 		if (!c)
1218 			return -ENOMEM;
1219 
1220 		if (lc)
1221 			lc->next = c;
1222 		else
1223 			*nodep = c;
1224 
1225 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1226 		if (rc)
1227 			return rc;
1228 		c->permissions = le32_to_cpu(buf[0]);
1229 		nexpr = le32_to_cpu(buf[1]);
1230 		le = NULL;
1231 		depth = -1;
1232 		for (j = 0; j < nexpr; j++) {
1233 			e = kzalloc(sizeof(*e), GFP_KERNEL);
1234 			if (!e)
1235 				return -ENOMEM;
1236 
1237 			if (le)
1238 				le->next = e;
1239 			else
1240 				c->expr = e;
1241 
1242 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1243 			if (rc)
1244 				return rc;
1245 			e->expr_type = le32_to_cpu(buf[0]);
1246 			e->attr = le32_to_cpu(buf[1]);
1247 			e->op = le32_to_cpu(buf[2]);
1248 
1249 			switch (e->expr_type) {
1250 			case CEXPR_NOT:
1251 				if (depth < 0)
1252 					return -EINVAL;
1253 				break;
1254 			case CEXPR_AND:
1255 			case CEXPR_OR:
1256 				if (depth < 1)
1257 					return -EINVAL;
1258 				depth--;
1259 				break;
1260 			case CEXPR_ATTR:
1261 				if (depth == (CEXPR_MAXDEPTH - 1))
1262 					return -EINVAL;
1263 				depth++;
1264 				break;
1265 			case CEXPR_NAMES:
1266 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1267 					return -EINVAL;
1268 				if (depth == (CEXPR_MAXDEPTH - 1))
1269 					return -EINVAL;
1270 				depth++;
1271 				rc = ebitmap_read(&e->names, fp);
1272 				if (rc)
1273 					return rc;
1274 				if (p->policyvers >=
1275 					POLICYDB_VERSION_CONSTRAINT_NAMES) {
1276 						e->type_names = kzalloc(sizeof
1277 						(*e->type_names),
1278 						GFP_KERNEL);
1279 					if (!e->type_names)
1280 						return -ENOMEM;
1281 					type_set_init(e->type_names);
1282 					rc = type_set_read(e->type_names, fp);
1283 					if (rc)
1284 						return rc;
1285 				}
1286 				break;
1287 			default:
1288 				return -EINVAL;
1289 			}
1290 			le = e;
1291 		}
1292 		if (depth != 0)
1293 			return -EINVAL;
1294 		lc = c;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
class_read(struct policydb * p,struct hashtab * h,void * fp)1300 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1301 {
1302 	char *key = NULL;
1303 	struct class_datum *cladatum;
1304 	__le32 buf[6];
1305 	u32 len, len2, ncons, nel;
1306 	int i, rc;
1307 
1308 	rc = -ENOMEM;
1309 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1310 	if (!cladatum)
1311 		goto bad;
1312 
1313 	rc = next_entry(buf, fp, sizeof(u32)*6);
1314 	if (rc)
1315 		goto bad;
1316 
1317 	len = le32_to_cpu(buf[0]);
1318 	len2 = le32_to_cpu(buf[1]);
1319 	cladatum->value = le32_to_cpu(buf[2]);
1320 
1321 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1322 	if (rc)
1323 		goto bad;
1324 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1325 	nel = le32_to_cpu(buf[4]);
1326 
1327 	ncons = le32_to_cpu(buf[5]);
1328 
1329 	rc = -ENOMEM;
1330 	key = kmalloc(len + 1, GFP_KERNEL);
1331 	if (!key)
1332 		goto bad;
1333 
1334 	rc = next_entry(key, fp, len);
1335 	if (rc)
1336 		goto bad;
1337 	key[len] = '\0';
1338 
1339 	if (len2) {
1340 		rc = -ENOMEM;
1341 		cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1342 		if (!cladatum->comkey)
1343 			goto bad;
1344 		rc = next_entry(cladatum->comkey, fp, len2);
1345 		if (rc)
1346 			goto bad;
1347 		cladatum->comkey[len2] = '\0';
1348 
1349 		rc = -EINVAL;
1350 		cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1351 		if (!cladatum->comdatum) {
1352 			printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1353 			goto bad;
1354 		}
1355 	}
1356 	for (i = 0; i < nel; i++) {
1357 		rc = perm_read(p, cladatum->permissions.table, fp);
1358 		if (rc)
1359 			goto bad;
1360 	}
1361 
1362 	rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp);
1363 	if (rc)
1364 		goto bad;
1365 
1366 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1367 		/* grab the validatetrans rules */
1368 		rc = next_entry(buf, fp, sizeof(u32));
1369 		if (rc)
1370 			goto bad;
1371 		ncons = le32_to_cpu(buf[0]);
1372 		rc = read_cons_helper(p, &cladatum->validatetrans,
1373 				ncons, 1, fp);
1374 		if (rc)
1375 			goto bad;
1376 	}
1377 
1378 	if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
1379 		rc = next_entry(buf, fp, sizeof(u32) * 3);
1380 		if (rc)
1381 			goto bad;
1382 
1383 		cladatum->default_user = le32_to_cpu(buf[0]);
1384 		cladatum->default_role = le32_to_cpu(buf[1]);
1385 		cladatum->default_range = le32_to_cpu(buf[2]);
1386 	}
1387 
1388 	if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
1389 		rc = next_entry(buf, fp, sizeof(u32) * 1);
1390 		if (rc)
1391 			goto bad;
1392 		cladatum->default_type = le32_to_cpu(buf[0]);
1393 	}
1394 
1395 	rc = hashtab_insert(h, key, cladatum);
1396 	if (rc)
1397 		goto bad;
1398 
1399 	return 0;
1400 bad:
1401 	cls_destroy(key, cladatum, NULL);
1402 	return rc;
1403 }
1404 
role_read(struct policydb * p,struct hashtab * h,void * fp)1405 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1406 {
1407 	char *key = NULL;
1408 	struct role_datum *role;
1409 	int rc, to_read = 2;
1410 	__le32 buf[3];
1411 	u32 len;
1412 
1413 	rc = -ENOMEM;
1414 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1415 	if (!role)
1416 		goto bad;
1417 
1418 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1419 		to_read = 3;
1420 
1421 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1422 	if (rc)
1423 		goto bad;
1424 
1425 	len = le32_to_cpu(buf[0]);
1426 	role->value = le32_to_cpu(buf[1]);
1427 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1428 		role->bounds = le32_to_cpu(buf[2]);
1429 
1430 	rc = -ENOMEM;
1431 	key = kmalloc(len + 1, GFP_KERNEL);
1432 	if (!key)
1433 		goto bad;
1434 
1435 	rc = next_entry(key, fp, len);
1436 	if (rc)
1437 		goto bad;
1438 	key[len] = '\0';
1439 
1440 	rc = ebitmap_read(&role->dominates, fp);
1441 	if (rc)
1442 		goto bad;
1443 
1444 	rc = ebitmap_read(&role->types, fp);
1445 	if (rc)
1446 		goto bad;
1447 
1448 	if (strcmp(key, OBJECT_R) == 0) {
1449 		rc = -EINVAL;
1450 		if (role->value != OBJECT_R_VAL) {
1451 			printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1452 			       OBJECT_R, role->value);
1453 			goto bad;
1454 		}
1455 		rc = 0;
1456 		goto bad;
1457 	}
1458 
1459 	rc = hashtab_insert(h, key, role);
1460 	if (rc)
1461 		goto bad;
1462 	return 0;
1463 bad:
1464 	role_destroy(key, role, NULL);
1465 	return rc;
1466 }
1467 
type_read(struct policydb * p,struct hashtab * h,void * fp)1468 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1469 {
1470 	char *key = NULL;
1471 	struct type_datum *typdatum;
1472 	int rc, to_read = 3;
1473 	__le32 buf[4];
1474 	u32 len;
1475 
1476 	rc = -ENOMEM;
1477 	typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1478 	if (!typdatum)
1479 		goto bad;
1480 
1481 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1482 		to_read = 4;
1483 
1484 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1485 	if (rc)
1486 		goto bad;
1487 
1488 	len = le32_to_cpu(buf[0]);
1489 	typdatum->value = le32_to_cpu(buf[1]);
1490 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1491 		u32 prop = le32_to_cpu(buf[2]);
1492 
1493 		if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1494 			typdatum->primary = 1;
1495 		if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1496 			typdatum->attribute = 1;
1497 
1498 		typdatum->bounds = le32_to_cpu(buf[3]);
1499 	} else {
1500 		typdatum->primary = le32_to_cpu(buf[2]);
1501 	}
1502 
1503 	rc = -ENOMEM;
1504 	key = kmalloc(len + 1, GFP_KERNEL);
1505 	if (!key)
1506 		goto bad;
1507 	rc = next_entry(key, fp, len);
1508 	if (rc)
1509 		goto bad;
1510 	key[len] = '\0';
1511 
1512 	rc = hashtab_insert(h, key, typdatum);
1513 	if (rc)
1514 		goto bad;
1515 	return 0;
1516 bad:
1517 	type_destroy(key, typdatum, NULL);
1518 	return rc;
1519 }
1520 
1521 
1522 /*
1523  * Read a MLS level structure from a policydb binary
1524  * representation file.
1525  */
mls_read_level(struct mls_level * lp,void * fp)1526 static int mls_read_level(struct mls_level *lp, void *fp)
1527 {
1528 	__le32 buf[1];
1529 	int rc;
1530 
1531 	memset(lp, 0, sizeof(*lp));
1532 
1533 	rc = next_entry(buf, fp, sizeof buf);
1534 	if (rc) {
1535 		printk(KERN_ERR "SELinux: mls: truncated level\n");
1536 		return rc;
1537 	}
1538 	lp->sens = le32_to_cpu(buf[0]);
1539 
1540 	rc = ebitmap_read(&lp->cat, fp);
1541 	if (rc) {
1542 		printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1543 		return rc;
1544 	}
1545 	return 0;
1546 }
1547 
user_read(struct policydb * p,struct hashtab * h,void * fp)1548 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1549 {
1550 	char *key = NULL;
1551 	struct user_datum *usrdatum;
1552 	int rc, to_read = 2;
1553 	__le32 buf[3];
1554 	u32 len;
1555 
1556 	rc = -ENOMEM;
1557 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1558 	if (!usrdatum)
1559 		goto bad;
1560 
1561 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1562 		to_read = 3;
1563 
1564 	rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1565 	if (rc)
1566 		goto bad;
1567 
1568 	len = le32_to_cpu(buf[0]);
1569 	usrdatum->value = le32_to_cpu(buf[1]);
1570 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1571 		usrdatum->bounds = le32_to_cpu(buf[2]);
1572 
1573 	rc = -ENOMEM;
1574 	key = kmalloc(len + 1, GFP_KERNEL);
1575 	if (!key)
1576 		goto bad;
1577 	rc = next_entry(key, fp, len);
1578 	if (rc)
1579 		goto bad;
1580 	key[len] = '\0';
1581 
1582 	rc = ebitmap_read(&usrdatum->roles, fp);
1583 	if (rc)
1584 		goto bad;
1585 
1586 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1587 		rc = mls_read_range_helper(&usrdatum->range, fp);
1588 		if (rc)
1589 			goto bad;
1590 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1591 		if (rc)
1592 			goto bad;
1593 	}
1594 
1595 	rc = hashtab_insert(h, key, usrdatum);
1596 	if (rc)
1597 		goto bad;
1598 	return 0;
1599 bad:
1600 	user_destroy(key, usrdatum, NULL);
1601 	return rc;
1602 }
1603 
sens_read(struct policydb * p,struct hashtab * h,void * fp)1604 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1605 {
1606 	char *key = NULL;
1607 	struct level_datum *levdatum;
1608 	int rc;
1609 	__le32 buf[2];
1610 	u32 len;
1611 
1612 	rc = -ENOMEM;
1613 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1614 	if (!levdatum)
1615 		goto bad;
1616 
1617 	rc = next_entry(buf, fp, sizeof buf);
1618 	if (rc)
1619 		goto bad;
1620 
1621 	len = le32_to_cpu(buf[0]);
1622 	levdatum->isalias = le32_to_cpu(buf[1]);
1623 
1624 	rc = -ENOMEM;
1625 	key = kmalloc(len + 1, GFP_ATOMIC);
1626 	if (!key)
1627 		goto bad;
1628 	rc = next_entry(key, fp, len);
1629 	if (rc)
1630 		goto bad;
1631 	key[len] = '\0';
1632 
1633 	rc = -ENOMEM;
1634 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1635 	if (!levdatum->level)
1636 		goto bad;
1637 
1638 	rc = mls_read_level(levdatum->level, fp);
1639 	if (rc)
1640 		goto bad;
1641 
1642 	rc = hashtab_insert(h, key, levdatum);
1643 	if (rc)
1644 		goto bad;
1645 	return 0;
1646 bad:
1647 	sens_destroy(key, levdatum, NULL);
1648 	return rc;
1649 }
1650 
cat_read(struct policydb * p,struct hashtab * h,void * fp)1651 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1652 {
1653 	char *key = NULL;
1654 	struct cat_datum *catdatum;
1655 	int rc;
1656 	__le32 buf[3];
1657 	u32 len;
1658 
1659 	rc = -ENOMEM;
1660 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1661 	if (!catdatum)
1662 		goto bad;
1663 
1664 	rc = next_entry(buf, fp, sizeof buf);
1665 	if (rc)
1666 		goto bad;
1667 
1668 	len = le32_to_cpu(buf[0]);
1669 	catdatum->value = le32_to_cpu(buf[1]);
1670 	catdatum->isalias = le32_to_cpu(buf[2]);
1671 
1672 	rc = -ENOMEM;
1673 	key = kmalloc(len + 1, GFP_ATOMIC);
1674 	if (!key)
1675 		goto bad;
1676 	rc = next_entry(key, fp, len);
1677 	if (rc)
1678 		goto bad;
1679 	key[len] = '\0';
1680 
1681 	rc = hashtab_insert(h, key, catdatum);
1682 	if (rc)
1683 		goto bad;
1684 	return 0;
1685 bad:
1686 	cat_destroy(key, catdatum, NULL);
1687 	return rc;
1688 }
1689 
1690 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1691 {
1692 	common_read,
1693 	class_read,
1694 	role_read,
1695 	type_read,
1696 	user_read,
1697 	cond_read_bool,
1698 	sens_read,
1699 	cat_read,
1700 };
1701 
user_bounds_sanity_check(void * key,void * datum,void * datap)1702 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1703 {
1704 	struct user_datum *upper, *user;
1705 	struct policydb *p = datap;
1706 	int depth = 0;
1707 
1708 	upper = user = datum;
1709 	while (upper->bounds) {
1710 		struct ebitmap_node *node;
1711 		unsigned long bit;
1712 
1713 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1714 			printk(KERN_ERR "SELinux: user %s: "
1715 			       "too deep or looped boundary",
1716 			       (char *) key);
1717 			return -EINVAL;
1718 		}
1719 
1720 		upper = p->user_val_to_struct[upper->bounds - 1];
1721 		ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1722 			if (ebitmap_get_bit(&upper->roles, bit))
1723 				continue;
1724 
1725 			printk(KERN_ERR
1726 			       "SELinux: boundary violated policy: "
1727 			       "user=%s role=%s bounds=%s\n",
1728 			       sym_name(p, SYM_USERS, user->value - 1),
1729 			       sym_name(p, SYM_ROLES, bit),
1730 			       sym_name(p, SYM_USERS, upper->value - 1));
1731 
1732 			return -EINVAL;
1733 		}
1734 	}
1735 
1736 	return 0;
1737 }
1738 
role_bounds_sanity_check(void * key,void * datum,void * datap)1739 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1740 {
1741 	struct role_datum *upper, *role;
1742 	struct policydb *p = datap;
1743 	int depth = 0;
1744 
1745 	upper = role = datum;
1746 	while (upper->bounds) {
1747 		struct ebitmap_node *node;
1748 		unsigned long bit;
1749 
1750 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1751 			printk(KERN_ERR "SELinux: role %s: "
1752 			       "too deep or looped bounds\n",
1753 			       (char *) key);
1754 			return -EINVAL;
1755 		}
1756 
1757 		upper = p->role_val_to_struct[upper->bounds - 1];
1758 		ebitmap_for_each_positive_bit(&role->types, node, bit) {
1759 			if (ebitmap_get_bit(&upper->types, bit))
1760 				continue;
1761 
1762 			printk(KERN_ERR
1763 			       "SELinux: boundary violated policy: "
1764 			       "role=%s type=%s bounds=%s\n",
1765 			       sym_name(p, SYM_ROLES, role->value - 1),
1766 			       sym_name(p, SYM_TYPES, bit),
1767 			       sym_name(p, SYM_ROLES, upper->value - 1));
1768 
1769 			return -EINVAL;
1770 		}
1771 	}
1772 
1773 	return 0;
1774 }
1775 
type_bounds_sanity_check(void * key,void * datum,void * datap)1776 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1777 {
1778 	struct type_datum *upper;
1779 	struct policydb *p = datap;
1780 	int depth = 0;
1781 
1782 	upper = datum;
1783 	while (upper->bounds) {
1784 		if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1785 			printk(KERN_ERR "SELinux: type %s: "
1786 			       "too deep or looped boundary\n",
1787 			       (char *) key);
1788 			return -EINVAL;
1789 		}
1790 
1791 		upper = flex_array_get_ptr(p->type_val_to_struct_array,
1792 					   upper->bounds - 1);
1793 		BUG_ON(!upper);
1794 
1795 		if (upper->attribute) {
1796 			printk(KERN_ERR "SELinux: type %s: "
1797 			       "bounded by attribute %s",
1798 			       (char *) key,
1799 			       sym_name(p, SYM_TYPES, upper->value - 1));
1800 			return -EINVAL;
1801 		}
1802 	}
1803 
1804 	return 0;
1805 }
1806 
policydb_bounds_sanity_check(struct policydb * p)1807 static int policydb_bounds_sanity_check(struct policydb *p)
1808 {
1809 	int rc;
1810 
1811 	if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1812 		return 0;
1813 
1814 	rc = hashtab_map(p->p_users.table,
1815 			 user_bounds_sanity_check, p);
1816 	if (rc)
1817 		return rc;
1818 
1819 	rc = hashtab_map(p->p_roles.table,
1820 			 role_bounds_sanity_check, p);
1821 	if (rc)
1822 		return rc;
1823 
1824 	rc = hashtab_map(p->p_types.table,
1825 			 type_bounds_sanity_check, p);
1826 	if (rc)
1827 		return rc;
1828 
1829 	return 0;
1830 }
1831 
string_to_security_class(struct policydb * p,const char * name)1832 u16 string_to_security_class(struct policydb *p, const char *name)
1833 {
1834 	struct class_datum *cladatum;
1835 
1836 	cladatum = hashtab_search(p->p_classes.table, name);
1837 	if (!cladatum)
1838 		return 0;
1839 
1840 	return cladatum->value;
1841 }
1842 
string_to_av_perm(struct policydb * p,u16 tclass,const char * name)1843 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1844 {
1845 	struct class_datum *cladatum;
1846 	struct perm_datum *perdatum = NULL;
1847 	struct common_datum *comdatum;
1848 
1849 	if (!tclass || tclass > p->p_classes.nprim)
1850 		return 0;
1851 
1852 	cladatum = p->class_val_to_struct[tclass-1];
1853 	comdatum = cladatum->comdatum;
1854 	if (comdatum)
1855 		perdatum = hashtab_search(comdatum->permissions.table,
1856 					  name);
1857 	if (!perdatum)
1858 		perdatum = hashtab_search(cladatum->permissions.table,
1859 					  name);
1860 	if (!perdatum)
1861 		return 0;
1862 
1863 	return 1U << (perdatum->value-1);
1864 }
1865 
range_read(struct policydb * p,void * fp)1866 static int range_read(struct policydb *p, void *fp)
1867 {
1868 	struct range_trans *rt = NULL;
1869 	struct mls_range *r = NULL;
1870 	int i, rc;
1871 	__le32 buf[2];
1872 	u32 nel;
1873 
1874 	if (p->policyvers < POLICYDB_VERSION_MLS)
1875 		return 0;
1876 
1877 	rc = next_entry(buf, fp, sizeof(u32));
1878 	if (rc)
1879 		goto out;
1880 
1881 	nel = le32_to_cpu(buf[0]);
1882 	for (i = 0; i < nel; i++) {
1883 		rc = -ENOMEM;
1884 		rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1885 		if (!rt)
1886 			goto out;
1887 
1888 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
1889 		if (rc)
1890 			goto out;
1891 
1892 		rt->source_type = le32_to_cpu(buf[0]);
1893 		rt->target_type = le32_to_cpu(buf[1]);
1894 		if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1895 			rc = next_entry(buf, fp, sizeof(u32));
1896 			if (rc)
1897 				goto out;
1898 			rt->target_class = le32_to_cpu(buf[0]);
1899 		} else
1900 			rt->target_class = p->process_class;
1901 
1902 		rc = -EINVAL;
1903 		if (!policydb_type_isvalid(p, rt->source_type) ||
1904 		    !policydb_type_isvalid(p, rt->target_type) ||
1905 		    !policydb_class_isvalid(p, rt->target_class))
1906 			goto out;
1907 
1908 		rc = -ENOMEM;
1909 		r = kzalloc(sizeof(*r), GFP_KERNEL);
1910 		if (!r)
1911 			goto out;
1912 
1913 		rc = mls_read_range_helper(r, fp);
1914 		if (rc)
1915 			goto out;
1916 
1917 		rc = -EINVAL;
1918 		if (!mls_range_isvalid(p, r)) {
1919 			printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1920 			goto out;
1921 		}
1922 
1923 		rc = hashtab_insert(p->range_tr, rt, r);
1924 		if (rc)
1925 			goto out;
1926 
1927 		rt = NULL;
1928 		r = NULL;
1929 	}
1930 	hash_eval(p->range_tr, "rangetr");
1931 	rc = 0;
1932 out:
1933 	kfree(rt);
1934 	kfree(r);
1935 	return rc;
1936 }
1937 
filename_trans_read(struct policydb * p,void * fp)1938 static int filename_trans_read(struct policydb *p, void *fp)
1939 {
1940 	struct filename_trans *ft;
1941 	struct filename_trans_datum *otype;
1942 	char *name;
1943 	u32 nel, len;
1944 	__le32 buf[4];
1945 	int rc, i;
1946 
1947 	if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
1948 		return 0;
1949 
1950 	rc = next_entry(buf, fp, sizeof(u32));
1951 	if (rc)
1952 		return rc;
1953 	nel = le32_to_cpu(buf[0]);
1954 
1955 	for (i = 0; i < nel; i++) {
1956 		ft = NULL;
1957 		otype = NULL;
1958 		name = NULL;
1959 
1960 		rc = -ENOMEM;
1961 		ft = kzalloc(sizeof(*ft), GFP_KERNEL);
1962 		if (!ft)
1963 			goto out;
1964 
1965 		rc = -ENOMEM;
1966 		otype = kmalloc(sizeof(*otype), GFP_KERNEL);
1967 		if (!otype)
1968 			goto out;
1969 
1970 		/* length of the path component string */
1971 		rc = next_entry(buf, fp, sizeof(u32));
1972 		if (rc)
1973 			goto out;
1974 		len = le32_to_cpu(buf[0]);
1975 
1976 		rc = -ENOMEM;
1977 		name = kmalloc(len + 1, GFP_KERNEL);
1978 		if (!name)
1979 			goto out;
1980 
1981 		ft->name = name;
1982 
1983 		/* path component string */
1984 		rc = next_entry(name, fp, len);
1985 		if (rc)
1986 			goto out;
1987 		name[len] = 0;
1988 
1989 		rc = next_entry(buf, fp, sizeof(u32) * 4);
1990 		if (rc)
1991 			goto out;
1992 
1993 		ft->stype = le32_to_cpu(buf[0]);
1994 		ft->ttype = le32_to_cpu(buf[1]);
1995 		ft->tclass = le32_to_cpu(buf[2]);
1996 
1997 		otype->otype = le32_to_cpu(buf[3]);
1998 
1999 		rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1);
2000 		if (rc)
2001 			goto out;
2002 
2003 		hashtab_insert(p->filename_trans, ft, otype);
2004 	}
2005 	hash_eval(p->filename_trans, "filenametr");
2006 	return 0;
2007 out:
2008 	kfree(ft);
2009 	kfree(name);
2010 	kfree(otype);
2011 
2012 	return rc;
2013 }
2014 
genfs_read(struct policydb * p,void * fp)2015 static int genfs_read(struct policydb *p, void *fp)
2016 {
2017 	int i, j, rc;
2018 	u32 nel, nel2, len, len2;
2019 	__le32 buf[1];
2020 	struct ocontext *l, *c;
2021 	struct ocontext *newc = NULL;
2022 	struct genfs *genfs_p, *genfs;
2023 	struct genfs *newgenfs = NULL;
2024 
2025 	rc = next_entry(buf, fp, sizeof(u32));
2026 	if (rc)
2027 		goto out;
2028 	nel = le32_to_cpu(buf[0]);
2029 
2030 	for (i = 0; i < nel; i++) {
2031 		rc = next_entry(buf, fp, sizeof(u32));
2032 		if (rc)
2033 			goto out;
2034 		len = le32_to_cpu(buf[0]);
2035 
2036 		rc = -ENOMEM;
2037 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
2038 		if (!newgenfs)
2039 			goto out;
2040 
2041 		rc = -ENOMEM;
2042 		newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
2043 		if (!newgenfs->fstype)
2044 			goto out;
2045 
2046 		rc = next_entry(newgenfs->fstype, fp, len);
2047 		if (rc)
2048 			goto out;
2049 
2050 		newgenfs->fstype[len] = 0;
2051 
2052 		for (genfs_p = NULL, genfs = p->genfs; genfs;
2053 		     genfs_p = genfs, genfs = genfs->next) {
2054 			rc = -EINVAL;
2055 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
2056 				printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
2057 				       newgenfs->fstype);
2058 				goto out;
2059 			}
2060 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
2061 				break;
2062 		}
2063 		newgenfs->next = genfs;
2064 		if (genfs_p)
2065 			genfs_p->next = newgenfs;
2066 		else
2067 			p->genfs = newgenfs;
2068 		genfs = newgenfs;
2069 		newgenfs = NULL;
2070 
2071 		rc = next_entry(buf, fp, sizeof(u32));
2072 		if (rc)
2073 			goto out;
2074 
2075 		nel2 = le32_to_cpu(buf[0]);
2076 		for (j = 0; j < nel2; j++) {
2077 			rc = next_entry(buf, fp, sizeof(u32));
2078 			if (rc)
2079 				goto out;
2080 			len = le32_to_cpu(buf[0]);
2081 
2082 			rc = -ENOMEM;
2083 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
2084 			if (!newc)
2085 				goto out;
2086 
2087 			rc = -ENOMEM;
2088 			newc->u.name = kmalloc(len + 1, GFP_KERNEL);
2089 			if (!newc->u.name)
2090 				goto out;
2091 
2092 			rc = next_entry(newc->u.name, fp, len);
2093 			if (rc)
2094 				goto out;
2095 			newc->u.name[len] = 0;
2096 
2097 			rc = next_entry(buf, fp, sizeof(u32));
2098 			if (rc)
2099 				goto out;
2100 
2101 			newc->v.sclass = le32_to_cpu(buf[0]);
2102 			rc = context_read_and_validate(&newc->context[0], p, fp);
2103 			if (rc)
2104 				goto out;
2105 
2106 			for (l = NULL, c = genfs->head; c;
2107 			     l = c, c = c->next) {
2108 				rc = -EINVAL;
2109 				if (!strcmp(newc->u.name, c->u.name) &&
2110 				    (!c->v.sclass || !newc->v.sclass ||
2111 				     newc->v.sclass == c->v.sclass)) {
2112 					printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
2113 					       genfs->fstype, c->u.name);
2114 					goto out;
2115 				}
2116 				len = strlen(newc->u.name);
2117 				len2 = strlen(c->u.name);
2118 				if (len > len2)
2119 					break;
2120 			}
2121 
2122 			newc->next = c;
2123 			if (l)
2124 				l->next = newc;
2125 			else
2126 				genfs->head = newc;
2127 			newc = NULL;
2128 		}
2129 	}
2130 	rc = 0;
2131 out:
2132 	if (newgenfs)
2133 		kfree(newgenfs->fstype);
2134 	kfree(newgenfs);
2135 	ocontext_destroy(newc, OCON_FSUSE);
2136 
2137 	return rc;
2138 }
2139 
ocontext_read(struct policydb * p,struct policydb_compat_info * info,void * fp)2140 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
2141 			 void *fp)
2142 {
2143 	int i, j, rc;
2144 	u32 nel, len;
2145 	__le32 buf[3];
2146 	struct ocontext *l, *c;
2147 	u32 nodebuf[8];
2148 
2149 	for (i = 0; i < info->ocon_num; i++) {
2150 		rc = next_entry(buf, fp, sizeof(u32));
2151 		if (rc)
2152 			goto out;
2153 		nel = le32_to_cpu(buf[0]);
2154 
2155 		l = NULL;
2156 		for (j = 0; j < nel; j++) {
2157 			rc = -ENOMEM;
2158 			c = kzalloc(sizeof(*c), GFP_KERNEL);
2159 			if (!c)
2160 				goto out;
2161 			if (l)
2162 				l->next = c;
2163 			else
2164 				p->ocontexts[i] = c;
2165 			l = c;
2166 
2167 			switch (i) {
2168 			case OCON_ISID:
2169 				rc = next_entry(buf, fp, sizeof(u32));
2170 				if (rc)
2171 					goto out;
2172 
2173 				c->sid[0] = le32_to_cpu(buf[0]);
2174 				rc = context_read_and_validate(&c->context[0], p, fp);
2175 				if (rc)
2176 					goto out;
2177 				break;
2178 			case OCON_FS:
2179 			case OCON_NETIF:
2180 				rc = next_entry(buf, fp, sizeof(u32));
2181 				if (rc)
2182 					goto out;
2183 				len = le32_to_cpu(buf[0]);
2184 
2185 				rc = -ENOMEM;
2186 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2187 				if (!c->u.name)
2188 					goto out;
2189 
2190 				rc = next_entry(c->u.name, fp, len);
2191 				if (rc)
2192 					goto out;
2193 
2194 				c->u.name[len] = 0;
2195 				rc = context_read_and_validate(&c->context[0], p, fp);
2196 				if (rc)
2197 					goto out;
2198 				rc = context_read_and_validate(&c->context[1], p, fp);
2199 				if (rc)
2200 					goto out;
2201 				break;
2202 			case OCON_PORT:
2203 				rc = next_entry(buf, fp, sizeof(u32)*3);
2204 				if (rc)
2205 					goto out;
2206 				c->u.port.protocol = le32_to_cpu(buf[0]);
2207 				c->u.port.low_port = le32_to_cpu(buf[1]);
2208 				c->u.port.high_port = le32_to_cpu(buf[2]);
2209 				rc = context_read_and_validate(&c->context[0], p, fp);
2210 				if (rc)
2211 					goto out;
2212 				break;
2213 			case OCON_NODE:
2214 				rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
2215 				if (rc)
2216 					goto out;
2217 				c->u.node.addr = nodebuf[0]; /* network order */
2218 				c->u.node.mask = nodebuf[1]; /* network order */
2219 				rc = context_read_and_validate(&c->context[0], p, fp);
2220 				if (rc)
2221 					goto out;
2222 				break;
2223 			case OCON_FSUSE:
2224 				rc = next_entry(buf, fp, sizeof(u32)*2);
2225 				if (rc)
2226 					goto out;
2227 
2228 				rc = -EINVAL;
2229 				c->v.behavior = le32_to_cpu(buf[0]);
2230 				if (c->v.behavior > SECURITY_FS_USE_NONE)
2231 					goto out;
2232 
2233 				rc = -ENOMEM;
2234 				len = le32_to_cpu(buf[1]);
2235 				c->u.name = kmalloc(len + 1, GFP_KERNEL);
2236 				if (!c->u.name)
2237 					goto out;
2238 
2239 				rc = next_entry(c->u.name, fp, len);
2240 				if (rc)
2241 					goto out;
2242 				c->u.name[len] = 0;
2243 				rc = context_read_and_validate(&c->context[0], p, fp);
2244 				if (rc)
2245 					goto out;
2246 				break;
2247 			case OCON_NODE6: {
2248 				int k;
2249 
2250 				rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2251 				if (rc)
2252 					goto out;
2253 				for (k = 0; k < 4; k++)
2254 					c->u.node6.addr[k] = nodebuf[k];
2255 				for (k = 0; k < 4; k++)
2256 					c->u.node6.mask[k] = nodebuf[k+4];
2257 				rc = context_read_and_validate(&c->context[0], p, fp);
2258 				if (rc)
2259 					goto out;
2260 				break;
2261 			}
2262 			}
2263 		}
2264 	}
2265 	rc = 0;
2266 out:
2267 	return rc;
2268 }
2269 
2270 /*
2271  * Read the configuration data from a policy database binary
2272  * representation file into a policy database structure.
2273  */
policydb_read(struct policydb * p,void * fp)2274 int policydb_read(struct policydb *p, void *fp)
2275 {
2276 	struct role_allow *ra, *lra;
2277 	struct role_trans *tr, *ltr;
2278 	int i, j, rc;
2279 	__le32 buf[4];
2280 	u32 len, nprim, nel;
2281 
2282 	char *policydb_str;
2283 	struct policydb_compat_info *info;
2284 
2285 	rc = policydb_init(p);
2286 	if (rc)
2287 		return rc;
2288 
2289 	/* Read the magic number and string length. */
2290 	rc = next_entry(buf, fp, sizeof(u32) * 2);
2291 	if (rc)
2292 		goto bad;
2293 
2294 	rc = -EINVAL;
2295 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2296 		printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2297 		       "not match expected magic number 0x%x\n",
2298 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2299 		goto bad;
2300 	}
2301 
2302 	rc = -EINVAL;
2303 	len = le32_to_cpu(buf[1]);
2304 	if (len != strlen(POLICYDB_STRING)) {
2305 		printk(KERN_ERR "SELinux:  policydb string length %d does not "
2306 		       "match expected length %Zu\n",
2307 		       len, strlen(POLICYDB_STRING));
2308 		goto bad;
2309 	}
2310 
2311 	rc = -ENOMEM;
2312 	policydb_str = kmalloc(len + 1, GFP_KERNEL);
2313 	if (!policydb_str) {
2314 		printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2315 		       "string of length %d\n", len);
2316 		goto bad;
2317 	}
2318 
2319 	rc = next_entry(policydb_str, fp, len);
2320 	if (rc) {
2321 		printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2322 		kfree(policydb_str);
2323 		goto bad;
2324 	}
2325 
2326 	rc = -EINVAL;
2327 	policydb_str[len] = '\0';
2328 	if (strcmp(policydb_str, POLICYDB_STRING)) {
2329 		printk(KERN_ERR "SELinux:  policydb string %s does not match "
2330 		       "my string %s\n", policydb_str, POLICYDB_STRING);
2331 		kfree(policydb_str);
2332 		goto bad;
2333 	}
2334 	/* Done with policydb_str. */
2335 	kfree(policydb_str);
2336 	policydb_str = NULL;
2337 
2338 	/* Read the version and table sizes. */
2339 	rc = next_entry(buf, fp, sizeof(u32)*4);
2340 	if (rc)
2341 		goto bad;
2342 
2343 	rc = -EINVAL;
2344 	p->policyvers = le32_to_cpu(buf[0]);
2345 	if (p->policyvers < POLICYDB_VERSION_MIN ||
2346 	    p->policyvers > POLICYDB_VERSION_MAX) {
2347 		printk(KERN_ERR "SELinux:  policydb version %d does not match "
2348 		       "my version range %d-%d\n",
2349 		       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2350 		goto bad;
2351 	}
2352 
2353 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2354 		p->mls_enabled = 1;
2355 
2356 		rc = -EINVAL;
2357 		if (p->policyvers < POLICYDB_VERSION_MLS) {
2358 			printk(KERN_ERR "SELinux: security policydb version %d "
2359 				"(MLS) not backwards compatible\n",
2360 				p->policyvers);
2361 			goto bad;
2362 		}
2363 	}
2364 	p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2365 	p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2366 
2367 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2368 		rc = ebitmap_read(&p->policycaps, fp);
2369 		if (rc)
2370 			goto bad;
2371 	}
2372 
2373 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2374 		rc = ebitmap_read(&p->permissive_map, fp);
2375 		if (rc)
2376 			goto bad;
2377 	}
2378 
2379 	rc = -EINVAL;
2380 	info = policydb_lookup_compat(p->policyvers);
2381 	if (!info) {
2382 		printk(KERN_ERR "SELinux:  unable to find policy compat info "
2383 		       "for version %d\n", p->policyvers);
2384 		goto bad;
2385 	}
2386 
2387 	rc = -EINVAL;
2388 	if (le32_to_cpu(buf[2]) != info->sym_num ||
2389 		le32_to_cpu(buf[3]) != info->ocon_num) {
2390 		printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2391 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2392 			le32_to_cpu(buf[3]),
2393 		       info->sym_num, info->ocon_num);
2394 		goto bad;
2395 	}
2396 
2397 	for (i = 0; i < info->sym_num; i++) {
2398 		rc = next_entry(buf, fp, sizeof(u32)*2);
2399 		if (rc)
2400 			goto bad;
2401 		nprim = le32_to_cpu(buf[0]);
2402 		nel = le32_to_cpu(buf[1]);
2403 		for (j = 0; j < nel; j++) {
2404 			rc = read_f[i](p, p->symtab[i].table, fp);
2405 			if (rc)
2406 				goto bad;
2407 		}
2408 
2409 		p->symtab[i].nprim = nprim;
2410 	}
2411 
2412 	rc = -EINVAL;
2413 	p->process_class = string_to_security_class(p, "process");
2414 	if (!p->process_class)
2415 		goto bad;
2416 
2417 	rc = avtab_read(&p->te_avtab, fp, p);
2418 	if (rc)
2419 		goto bad;
2420 
2421 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2422 		rc = cond_read_list(p, fp);
2423 		if (rc)
2424 			goto bad;
2425 	}
2426 
2427 	rc = next_entry(buf, fp, sizeof(u32));
2428 	if (rc)
2429 		goto bad;
2430 	nel = le32_to_cpu(buf[0]);
2431 	ltr = NULL;
2432 	for (i = 0; i < nel; i++) {
2433 		rc = -ENOMEM;
2434 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2435 		if (!tr)
2436 			goto bad;
2437 		if (ltr)
2438 			ltr->next = tr;
2439 		else
2440 			p->role_tr = tr;
2441 		rc = next_entry(buf, fp, sizeof(u32)*3);
2442 		if (rc)
2443 			goto bad;
2444 
2445 		rc = -EINVAL;
2446 		tr->role = le32_to_cpu(buf[0]);
2447 		tr->type = le32_to_cpu(buf[1]);
2448 		tr->new_role = le32_to_cpu(buf[2]);
2449 		if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2450 			rc = next_entry(buf, fp, sizeof(u32));
2451 			if (rc)
2452 				goto bad;
2453 			tr->tclass = le32_to_cpu(buf[0]);
2454 		} else
2455 			tr->tclass = p->process_class;
2456 
2457 		if (!policydb_role_isvalid(p, tr->role) ||
2458 		    !policydb_type_isvalid(p, tr->type) ||
2459 		    !policydb_class_isvalid(p, tr->tclass) ||
2460 		    !policydb_role_isvalid(p, tr->new_role))
2461 			goto bad;
2462 		ltr = tr;
2463 	}
2464 
2465 	rc = next_entry(buf, fp, sizeof(u32));
2466 	if (rc)
2467 		goto bad;
2468 	nel = le32_to_cpu(buf[0]);
2469 	lra = NULL;
2470 	for (i = 0; i < nel; i++) {
2471 		rc = -ENOMEM;
2472 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2473 		if (!ra)
2474 			goto bad;
2475 		if (lra)
2476 			lra->next = ra;
2477 		else
2478 			p->role_allow = ra;
2479 		rc = next_entry(buf, fp, sizeof(u32)*2);
2480 		if (rc)
2481 			goto bad;
2482 
2483 		rc = -EINVAL;
2484 		ra->role = le32_to_cpu(buf[0]);
2485 		ra->new_role = le32_to_cpu(buf[1]);
2486 		if (!policydb_role_isvalid(p, ra->role) ||
2487 		    !policydb_role_isvalid(p, ra->new_role))
2488 			goto bad;
2489 		lra = ra;
2490 	}
2491 
2492 	rc = filename_trans_read(p, fp);
2493 	if (rc)
2494 		goto bad;
2495 
2496 	rc = policydb_index(p);
2497 	if (rc)
2498 		goto bad;
2499 
2500 	rc = -EINVAL;
2501 	p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2502 	p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2503 	if (!p->process_trans_perms)
2504 		goto bad;
2505 
2506 	rc = ocontext_read(p, info, fp);
2507 	if (rc)
2508 		goto bad;
2509 
2510 	rc = genfs_read(p, fp);
2511 	if (rc)
2512 		goto bad;
2513 
2514 	rc = range_read(p, fp);
2515 	if (rc)
2516 		goto bad;
2517 
2518 	rc = -ENOMEM;
2519 	p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2520 						  p->p_types.nprim,
2521 						  GFP_KERNEL | __GFP_ZERO);
2522 	if (!p->type_attr_map_array)
2523 		goto bad;
2524 
2525 	/* preallocate so we don't have to worry about the put ever failing */
2526 	rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim,
2527 				 GFP_KERNEL | __GFP_ZERO);
2528 	if (rc)
2529 		goto bad;
2530 
2531 	for (i = 0; i < p->p_types.nprim; i++) {
2532 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2533 
2534 		BUG_ON(!e);
2535 		ebitmap_init(e);
2536 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2537 			rc = ebitmap_read(e, fp);
2538 			if (rc)
2539 				goto bad;
2540 		}
2541 		/* add the type itself as the degenerate case */
2542 		rc = ebitmap_set_bit(e, i, 1);
2543 		if (rc)
2544 			goto bad;
2545 	}
2546 
2547 	rc = policydb_bounds_sanity_check(p);
2548 	if (rc)
2549 		goto bad;
2550 
2551 	rc = 0;
2552 out:
2553 	return rc;
2554 bad:
2555 	policydb_destroy(p);
2556 	goto out;
2557 }
2558 
2559 /*
2560  * Write a MLS level structure to a policydb binary
2561  * representation file.
2562  */
mls_write_level(struct mls_level * l,void * fp)2563 static int mls_write_level(struct mls_level *l, void *fp)
2564 {
2565 	__le32 buf[1];
2566 	int rc;
2567 
2568 	buf[0] = cpu_to_le32(l->sens);
2569 	rc = put_entry(buf, sizeof(u32), 1, fp);
2570 	if (rc)
2571 		return rc;
2572 
2573 	rc = ebitmap_write(&l->cat, fp);
2574 	if (rc)
2575 		return rc;
2576 
2577 	return 0;
2578 }
2579 
2580 /*
2581  * Write a MLS range structure to a policydb binary
2582  * representation file.
2583  */
mls_write_range_helper(struct mls_range * r,void * fp)2584 static int mls_write_range_helper(struct mls_range *r, void *fp)
2585 {
2586 	__le32 buf[3];
2587 	size_t items;
2588 	int rc, eq;
2589 
2590 	eq = mls_level_eq(&r->level[1], &r->level[0]);
2591 
2592 	if (eq)
2593 		items = 2;
2594 	else
2595 		items = 3;
2596 	buf[0] = cpu_to_le32(items-1);
2597 	buf[1] = cpu_to_le32(r->level[0].sens);
2598 	if (!eq)
2599 		buf[2] = cpu_to_le32(r->level[1].sens);
2600 
2601 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2602 
2603 	rc = put_entry(buf, sizeof(u32), items, fp);
2604 	if (rc)
2605 		return rc;
2606 
2607 	rc = ebitmap_write(&r->level[0].cat, fp);
2608 	if (rc)
2609 		return rc;
2610 	if (!eq) {
2611 		rc = ebitmap_write(&r->level[1].cat, fp);
2612 		if (rc)
2613 			return rc;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
sens_write(void * vkey,void * datum,void * ptr)2619 static int sens_write(void *vkey, void *datum, void *ptr)
2620 {
2621 	char *key = vkey;
2622 	struct level_datum *levdatum = datum;
2623 	struct policy_data *pd = ptr;
2624 	void *fp = pd->fp;
2625 	__le32 buf[2];
2626 	size_t len;
2627 	int rc;
2628 
2629 	len = strlen(key);
2630 	buf[0] = cpu_to_le32(len);
2631 	buf[1] = cpu_to_le32(levdatum->isalias);
2632 	rc = put_entry(buf, sizeof(u32), 2, fp);
2633 	if (rc)
2634 		return rc;
2635 
2636 	rc = put_entry(key, 1, len, fp);
2637 	if (rc)
2638 		return rc;
2639 
2640 	rc = mls_write_level(levdatum->level, fp);
2641 	if (rc)
2642 		return rc;
2643 
2644 	return 0;
2645 }
2646 
cat_write(void * vkey,void * datum,void * ptr)2647 static int cat_write(void *vkey, void *datum, void *ptr)
2648 {
2649 	char *key = vkey;
2650 	struct cat_datum *catdatum = datum;
2651 	struct policy_data *pd = ptr;
2652 	void *fp = pd->fp;
2653 	__le32 buf[3];
2654 	size_t len;
2655 	int rc;
2656 
2657 	len = strlen(key);
2658 	buf[0] = cpu_to_le32(len);
2659 	buf[1] = cpu_to_le32(catdatum->value);
2660 	buf[2] = cpu_to_le32(catdatum->isalias);
2661 	rc = put_entry(buf, sizeof(u32), 3, fp);
2662 	if (rc)
2663 		return rc;
2664 
2665 	rc = put_entry(key, 1, len, fp);
2666 	if (rc)
2667 		return rc;
2668 
2669 	return 0;
2670 }
2671 
role_trans_write(struct policydb * p,void * fp)2672 static int role_trans_write(struct policydb *p, void *fp)
2673 {
2674 	struct role_trans *r = p->role_tr;
2675 	struct role_trans *tr;
2676 	u32 buf[3];
2677 	size_t nel;
2678 	int rc;
2679 
2680 	nel = 0;
2681 	for (tr = r; tr; tr = tr->next)
2682 		nel++;
2683 	buf[0] = cpu_to_le32(nel);
2684 	rc = put_entry(buf, sizeof(u32), 1, fp);
2685 	if (rc)
2686 		return rc;
2687 	for (tr = r; tr; tr = tr->next) {
2688 		buf[0] = cpu_to_le32(tr->role);
2689 		buf[1] = cpu_to_le32(tr->type);
2690 		buf[2] = cpu_to_le32(tr->new_role);
2691 		rc = put_entry(buf, sizeof(u32), 3, fp);
2692 		if (rc)
2693 			return rc;
2694 		if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2695 			buf[0] = cpu_to_le32(tr->tclass);
2696 			rc = put_entry(buf, sizeof(u32), 1, fp);
2697 			if (rc)
2698 				return rc;
2699 		}
2700 	}
2701 
2702 	return 0;
2703 }
2704 
role_allow_write(struct role_allow * r,void * fp)2705 static int role_allow_write(struct role_allow *r, void *fp)
2706 {
2707 	struct role_allow *ra;
2708 	u32 buf[2];
2709 	size_t nel;
2710 	int rc;
2711 
2712 	nel = 0;
2713 	for (ra = r; ra; ra = ra->next)
2714 		nel++;
2715 	buf[0] = cpu_to_le32(nel);
2716 	rc = put_entry(buf, sizeof(u32), 1, fp);
2717 	if (rc)
2718 		return rc;
2719 	for (ra = r; ra; ra = ra->next) {
2720 		buf[0] = cpu_to_le32(ra->role);
2721 		buf[1] = cpu_to_le32(ra->new_role);
2722 		rc = put_entry(buf, sizeof(u32), 2, fp);
2723 		if (rc)
2724 			return rc;
2725 	}
2726 	return 0;
2727 }
2728 
2729 /*
2730  * Write a security context structure
2731  * to a policydb binary representation file.
2732  */
context_write(struct policydb * p,struct context * c,void * fp)2733 static int context_write(struct policydb *p, struct context *c,
2734 			 void *fp)
2735 {
2736 	int rc;
2737 	__le32 buf[3];
2738 
2739 	buf[0] = cpu_to_le32(c->user);
2740 	buf[1] = cpu_to_le32(c->role);
2741 	buf[2] = cpu_to_le32(c->type);
2742 
2743 	rc = put_entry(buf, sizeof(u32), 3, fp);
2744 	if (rc)
2745 		return rc;
2746 
2747 	rc = mls_write_range_helper(&c->range, fp);
2748 	if (rc)
2749 		return rc;
2750 
2751 	return 0;
2752 }
2753 
2754 /*
2755  * The following *_write functions are used to
2756  * write the symbol data to a policy database
2757  * binary representation file.
2758  */
2759 
perm_write(void * vkey,void * datum,void * fp)2760 static int perm_write(void *vkey, void *datum, void *fp)
2761 {
2762 	char *key = vkey;
2763 	struct perm_datum *perdatum = datum;
2764 	__le32 buf[2];
2765 	size_t len;
2766 	int rc;
2767 
2768 	len = strlen(key);
2769 	buf[0] = cpu_to_le32(len);
2770 	buf[1] = cpu_to_le32(perdatum->value);
2771 	rc = put_entry(buf, sizeof(u32), 2, fp);
2772 	if (rc)
2773 		return rc;
2774 
2775 	rc = put_entry(key, 1, len, fp);
2776 	if (rc)
2777 		return rc;
2778 
2779 	return 0;
2780 }
2781 
common_write(void * vkey,void * datum,void * ptr)2782 static int common_write(void *vkey, void *datum, void *ptr)
2783 {
2784 	char *key = vkey;
2785 	struct common_datum *comdatum = datum;
2786 	struct policy_data *pd = ptr;
2787 	void *fp = pd->fp;
2788 	__le32 buf[4];
2789 	size_t len;
2790 	int rc;
2791 
2792 	len = strlen(key);
2793 	buf[0] = cpu_to_le32(len);
2794 	buf[1] = cpu_to_le32(comdatum->value);
2795 	buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2796 	buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2797 	rc = put_entry(buf, sizeof(u32), 4, fp);
2798 	if (rc)
2799 		return rc;
2800 
2801 	rc = put_entry(key, 1, len, fp);
2802 	if (rc)
2803 		return rc;
2804 
2805 	rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2806 	if (rc)
2807 		return rc;
2808 
2809 	return 0;
2810 }
2811 
type_set_write(struct type_set * t,void * fp)2812 static int type_set_write(struct type_set *t, void *fp)
2813 {
2814 	int rc;
2815 	__le32 buf[1];
2816 
2817 	if (ebitmap_write(&t->types, fp))
2818 		return -EINVAL;
2819 	if (ebitmap_write(&t->negset, fp))
2820 		return -EINVAL;
2821 
2822 	buf[0] = cpu_to_le32(t->flags);
2823 	rc = put_entry(buf, sizeof(u32), 1, fp);
2824 	if (rc)
2825 		return -EINVAL;
2826 
2827 	return 0;
2828 }
2829 
write_cons_helper(struct policydb * p,struct constraint_node * node,void * fp)2830 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2831 			     void *fp)
2832 {
2833 	struct constraint_node *c;
2834 	struct constraint_expr *e;
2835 	__le32 buf[3];
2836 	u32 nel;
2837 	int rc;
2838 
2839 	for (c = node; c; c = c->next) {
2840 		nel = 0;
2841 		for (e = c->expr; e; e = e->next)
2842 			nel++;
2843 		buf[0] = cpu_to_le32(c->permissions);
2844 		buf[1] = cpu_to_le32(nel);
2845 		rc = put_entry(buf, sizeof(u32), 2, fp);
2846 		if (rc)
2847 			return rc;
2848 		for (e = c->expr; e; e = e->next) {
2849 			buf[0] = cpu_to_le32(e->expr_type);
2850 			buf[1] = cpu_to_le32(e->attr);
2851 			buf[2] = cpu_to_le32(e->op);
2852 			rc = put_entry(buf, sizeof(u32), 3, fp);
2853 			if (rc)
2854 				return rc;
2855 
2856 			switch (e->expr_type) {
2857 			case CEXPR_NAMES:
2858 				rc = ebitmap_write(&e->names, fp);
2859 				if (rc)
2860 					return rc;
2861 				if (p->policyvers >=
2862 					POLICYDB_VERSION_CONSTRAINT_NAMES) {
2863 					rc = type_set_write(e->type_names, fp);
2864 					if (rc)
2865 						return rc;
2866 				}
2867 				break;
2868 			default:
2869 				break;
2870 			}
2871 		}
2872 	}
2873 
2874 	return 0;
2875 }
2876 
class_write(void * vkey,void * datum,void * ptr)2877 static int class_write(void *vkey, void *datum, void *ptr)
2878 {
2879 	char *key = vkey;
2880 	struct class_datum *cladatum = datum;
2881 	struct policy_data *pd = ptr;
2882 	void *fp = pd->fp;
2883 	struct policydb *p = pd->p;
2884 	struct constraint_node *c;
2885 	__le32 buf[6];
2886 	u32 ncons;
2887 	size_t len, len2;
2888 	int rc;
2889 
2890 	len = strlen(key);
2891 	if (cladatum->comkey)
2892 		len2 = strlen(cladatum->comkey);
2893 	else
2894 		len2 = 0;
2895 
2896 	ncons = 0;
2897 	for (c = cladatum->constraints; c; c = c->next)
2898 		ncons++;
2899 
2900 	buf[0] = cpu_to_le32(len);
2901 	buf[1] = cpu_to_le32(len2);
2902 	buf[2] = cpu_to_le32(cladatum->value);
2903 	buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2904 	if (cladatum->permissions.table)
2905 		buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2906 	else
2907 		buf[4] = 0;
2908 	buf[5] = cpu_to_le32(ncons);
2909 	rc = put_entry(buf, sizeof(u32), 6, fp);
2910 	if (rc)
2911 		return rc;
2912 
2913 	rc = put_entry(key, 1, len, fp);
2914 	if (rc)
2915 		return rc;
2916 
2917 	if (cladatum->comkey) {
2918 		rc = put_entry(cladatum->comkey, 1, len2, fp);
2919 		if (rc)
2920 			return rc;
2921 	}
2922 
2923 	rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2924 	if (rc)
2925 		return rc;
2926 
2927 	rc = write_cons_helper(p, cladatum->constraints, fp);
2928 	if (rc)
2929 		return rc;
2930 
2931 	/* write out the validatetrans rule */
2932 	ncons = 0;
2933 	for (c = cladatum->validatetrans; c; c = c->next)
2934 		ncons++;
2935 
2936 	buf[0] = cpu_to_le32(ncons);
2937 	rc = put_entry(buf, sizeof(u32), 1, fp);
2938 	if (rc)
2939 		return rc;
2940 
2941 	rc = write_cons_helper(p, cladatum->validatetrans, fp);
2942 	if (rc)
2943 		return rc;
2944 
2945 	if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
2946 		buf[0] = cpu_to_le32(cladatum->default_user);
2947 		buf[1] = cpu_to_le32(cladatum->default_role);
2948 		buf[2] = cpu_to_le32(cladatum->default_range);
2949 
2950 		rc = put_entry(buf, sizeof(uint32_t), 3, fp);
2951 		if (rc)
2952 			return rc;
2953 	}
2954 
2955 	if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
2956 		buf[0] = cpu_to_le32(cladatum->default_type);
2957 		rc = put_entry(buf, sizeof(uint32_t), 1, fp);
2958 		if (rc)
2959 			return rc;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
role_write(void * vkey,void * datum,void * ptr)2965 static int role_write(void *vkey, void *datum, void *ptr)
2966 {
2967 	char *key = vkey;
2968 	struct role_datum *role = datum;
2969 	struct policy_data *pd = ptr;
2970 	void *fp = pd->fp;
2971 	struct policydb *p = pd->p;
2972 	__le32 buf[3];
2973 	size_t items, len;
2974 	int rc;
2975 
2976 	len = strlen(key);
2977 	items = 0;
2978 	buf[items++] = cpu_to_le32(len);
2979 	buf[items++] = cpu_to_le32(role->value);
2980 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2981 		buf[items++] = cpu_to_le32(role->bounds);
2982 
2983 	BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2984 
2985 	rc = put_entry(buf, sizeof(u32), items, fp);
2986 	if (rc)
2987 		return rc;
2988 
2989 	rc = put_entry(key, 1, len, fp);
2990 	if (rc)
2991 		return rc;
2992 
2993 	rc = ebitmap_write(&role->dominates, fp);
2994 	if (rc)
2995 		return rc;
2996 
2997 	rc = ebitmap_write(&role->types, fp);
2998 	if (rc)
2999 		return rc;
3000 
3001 	return 0;
3002 }
3003 
type_write(void * vkey,void * datum,void * ptr)3004 static int type_write(void *vkey, void *datum, void *ptr)
3005 {
3006 	char *key = vkey;
3007 	struct type_datum *typdatum = datum;
3008 	struct policy_data *pd = ptr;
3009 	struct policydb *p = pd->p;
3010 	void *fp = pd->fp;
3011 	__le32 buf[4];
3012 	int rc;
3013 	size_t items, len;
3014 
3015 	len = strlen(key);
3016 	items = 0;
3017 	buf[items++] = cpu_to_le32(len);
3018 	buf[items++] = cpu_to_le32(typdatum->value);
3019 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
3020 		u32 properties = 0;
3021 
3022 		if (typdatum->primary)
3023 			properties |= TYPEDATUM_PROPERTY_PRIMARY;
3024 
3025 		if (typdatum->attribute)
3026 			properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
3027 
3028 		buf[items++] = cpu_to_le32(properties);
3029 		buf[items++] = cpu_to_le32(typdatum->bounds);
3030 	} else {
3031 		buf[items++] = cpu_to_le32(typdatum->primary);
3032 	}
3033 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
3034 	rc = put_entry(buf, sizeof(u32), items, fp);
3035 	if (rc)
3036 		return rc;
3037 
3038 	rc = put_entry(key, 1, len, fp);
3039 	if (rc)
3040 		return rc;
3041 
3042 	return 0;
3043 }
3044 
user_write(void * vkey,void * datum,void * ptr)3045 static int user_write(void *vkey, void *datum, void *ptr)
3046 {
3047 	char *key = vkey;
3048 	struct user_datum *usrdatum = datum;
3049 	struct policy_data *pd = ptr;
3050 	struct policydb *p = pd->p;
3051 	void *fp = pd->fp;
3052 	__le32 buf[3];
3053 	size_t items, len;
3054 	int rc;
3055 
3056 	len = strlen(key);
3057 	items = 0;
3058 	buf[items++] = cpu_to_le32(len);
3059 	buf[items++] = cpu_to_le32(usrdatum->value);
3060 	if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
3061 		buf[items++] = cpu_to_le32(usrdatum->bounds);
3062 	BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
3063 	rc = put_entry(buf, sizeof(u32), items, fp);
3064 	if (rc)
3065 		return rc;
3066 
3067 	rc = put_entry(key, 1, len, fp);
3068 	if (rc)
3069 		return rc;
3070 
3071 	rc = ebitmap_write(&usrdatum->roles, fp);
3072 	if (rc)
3073 		return rc;
3074 
3075 	rc = mls_write_range_helper(&usrdatum->range, fp);
3076 	if (rc)
3077 		return rc;
3078 
3079 	rc = mls_write_level(&usrdatum->dfltlevel, fp);
3080 	if (rc)
3081 		return rc;
3082 
3083 	return 0;
3084 }
3085 
3086 static int (*write_f[SYM_NUM]) (void *key, void *datum,
3087 				void *datap) =
3088 {
3089 	common_write,
3090 	class_write,
3091 	role_write,
3092 	type_write,
3093 	user_write,
3094 	cond_write_bool,
3095 	sens_write,
3096 	cat_write,
3097 };
3098 
ocontext_write(struct policydb * p,struct policydb_compat_info * info,void * fp)3099 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
3100 			  void *fp)
3101 {
3102 	unsigned int i, j, rc;
3103 	size_t nel, len;
3104 	__le32 buf[3];
3105 	u32 nodebuf[8];
3106 	struct ocontext *c;
3107 	for (i = 0; i < info->ocon_num; i++) {
3108 		nel = 0;
3109 		for (c = p->ocontexts[i]; c; c = c->next)
3110 			nel++;
3111 		buf[0] = cpu_to_le32(nel);
3112 		rc = put_entry(buf, sizeof(u32), 1, fp);
3113 		if (rc)
3114 			return rc;
3115 		for (c = p->ocontexts[i]; c; c = c->next) {
3116 			switch (i) {
3117 			case OCON_ISID:
3118 				buf[0] = cpu_to_le32(c->sid[0]);
3119 				rc = put_entry(buf, sizeof(u32), 1, fp);
3120 				if (rc)
3121 					return rc;
3122 				rc = context_write(p, &c->context[0], fp);
3123 				if (rc)
3124 					return rc;
3125 				break;
3126 			case OCON_FS:
3127 			case OCON_NETIF:
3128 				len = strlen(c->u.name);
3129 				buf[0] = cpu_to_le32(len);
3130 				rc = put_entry(buf, sizeof(u32), 1, fp);
3131 				if (rc)
3132 					return rc;
3133 				rc = put_entry(c->u.name, 1, len, fp);
3134 				if (rc)
3135 					return rc;
3136 				rc = context_write(p, &c->context[0], fp);
3137 				if (rc)
3138 					return rc;
3139 				rc = context_write(p, &c->context[1], fp);
3140 				if (rc)
3141 					return rc;
3142 				break;
3143 			case OCON_PORT:
3144 				buf[0] = cpu_to_le32(c->u.port.protocol);
3145 				buf[1] = cpu_to_le32(c->u.port.low_port);
3146 				buf[2] = cpu_to_le32(c->u.port.high_port);
3147 				rc = put_entry(buf, sizeof(u32), 3, fp);
3148 				if (rc)
3149 					return rc;
3150 				rc = context_write(p, &c->context[0], fp);
3151 				if (rc)
3152 					return rc;
3153 				break;
3154 			case OCON_NODE:
3155 				nodebuf[0] = c->u.node.addr; /* network order */
3156 				nodebuf[1] = c->u.node.mask; /* network order */
3157 				rc = put_entry(nodebuf, sizeof(u32), 2, fp);
3158 				if (rc)
3159 					return rc;
3160 				rc = context_write(p, &c->context[0], fp);
3161 				if (rc)
3162 					return rc;
3163 				break;
3164 			case OCON_FSUSE:
3165 				buf[0] = cpu_to_le32(c->v.behavior);
3166 				len = strlen(c->u.name);
3167 				buf[1] = cpu_to_le32(len);
3168 				rc = put_entry(buf, sizeof(u32), 2, fp);
3169 				if (rc)
3170 					return rc;
3171 				rc = put_entry(c->u.name, 1, len, fp);
3172 				if (rc)
3173 					return rc;
3174 				rc = context_write(p, &c->context[0], fp);
3175 				if (rc)
3176 					return rc;
3177 				break;
3178 			case OCON_NODE6:
3179 				for (j = 0; j < 4; j++)
3180 					nodebuf[j] = c->u.node6.addr[j]; /* network order */
3181 				for (j = 0; j < 4; j++)
3182 					nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
3183 				rc = put_entry(nodebuf, sizeof(u32), 8, fp);
3184 				if (rc)
3185 					return rc;
3186 				rc = context_write(p, &c->context[0], fp);
3187 				if (rc)
3188 					return rc;
3189 				break;
3190 			}
3191 		}
3192 	}
3193 	return 0;
3194 }
3195 
genfs_write(struct policydb * p,void * fp)3196 static int genfs_write(struct policydb *p, void *fp)
3197 {
3198 	struct genfs *genfs;
3199 	struct ocontext *c;
3200 	size_t len;
3201 	__le32 buf[1];
3202 	int rc;
3203 
3204 	len = 0;
3205 	for (genfs = p->genfs; genfs; genfs = genfs->next)
3206 		len++;
3207 	buf[0] = cpu_to_le32(len);
3208 	rc = put_entry(buf, sizeof(u32), 1, fp);
3209 	if (rc)
3210 		return rc;
3211 	for (genfs = p->genfs; genfs; genfs = genfs->next) {
3212 		len = strlen(genfs->fstype);
3213 		buf[0] = cpu_to_le32(len);
3214 		rc = put_entry(buf, sizeof(u32), 1, fp);
3215 		if (rc)
3216 			return rc;
3217 		rc = put_entry(genfs->fstype, 1, len, fp);
3218 		if (rc)
3219 			return rc;
3220 		len = 0;
3221 		for (c = genfs->head; c; c = c->next)
3222 			len++;
3223 		buf[0] = cpu_to_le32(len);
3224 		rc = put_entry(buf, sizeof(u32), 1, fp);
3225 		if (rc)
3226 			return rc;
3227 		for (c = genfs->head; c; c = c->next) {
3228 			len = strlen(c->u.name);
3229 			buf[0] = cpu_to_le32(len);
3230 			rc = put_entry(buf, sizeof(u32), 1, fp);
3231 			if (rc)
3232 				return rc;
3233 			rc = put_entry(c->u.name, 1, len, fp);
3234 			if (rc)
3235 				return rc;
3236 			buf[0] = cpu_to_le32(c->v.sclass);
3237 			rc = put_entry(buf, sizeof(u32), 1, fp);
3238 			if (rc)
3239 				return rc;
3240 			rc = context_write(p, &c->context[0], fp);
3241 			if (rc)
3242 				return rc;
3243 		}
3244 	}
3245 	return 0;
3246 }
3247 
hashtab_cnt(void * key,void * data,void * ptr)3248 static int hashtab_cnt(void *key, void *data, void *ptr)
3249 {
3250 	int *cnt = ptr;
3251 	*cnt = *cnt + 1;
3252 
3253 	return 0;
3254 }
3255 
range_write_helper(void * key,void * data,void * ptr)3256 static int range_write_helper(void *key, void *data, void *ptr)
3257 {
3258 	__le32 buf[2];
3259 	struct range_trans *rt = key;
3260 	struct mls_range *r = data;
3261 	struct policy_data *pd = ptr;
3262 	void *fp = pd->fp;
3263 	struct policydb *p = pd->p;
3264 	int rc;
3265 
3266 	buf[0] = cpu_to_le32(rt->source_type);
3267 	buf[1] = cpu_to_le32(rt->target_type);
3268 	rc = put_entry(buf, sizeof(u32), 2, fp);
3269 	if (rc)
3270 		return rc;
3271 	if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
3272 		buf[0] = cpu_to_le32(rt->target_class);
3273 		rc = put_entry(buf, sizeof(u32), 1, fp);
3274 		if (rc)
3275 			return rc;
3276 	}
3277 	rc = mls_write_range_helper(r, fp);
3278 	if (rc)
3279 		return rc;
3280 
3281 	return 0;
3282 }
3283 
range_write(struct policydb * p,void * fp)3284 static int range_write(struct policydb *p, void *fp)
3285 {
3286 	size_t nel;
3287 	__le32 buf[1];
3288 	int rc;
3289 	struct policy_data pd;
3290 
3291 	pd.p = p;
3292 	pd.fp = fp;
3293 
3294 	/* count the number of entries in the hashtab */
3295 	nel = 0;
3296 	rc = hashtab_map(p->range_tr, hashtab_cnt, &nel);
3297 	if (rc)
3298 		return rc;
3299 
3300 	buf[0] = cpu_to_le32(nel);
3301 	rc = put_entry(buf, sizeof(u32), 1, fp);
3302 	if (rc)
3303 		return rc;
3304 
3305 	/* actually write all of the entries */
3306 	rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3307 	if (rc)
3308 		return rc;
3309 
3310 	return 0;
3311 }
3312 
filename_write_helper(void * key,void * data,void * ptr)3313 static int filename_write_helper(void *key, void *data, void *ptr)
3314 {
3315 	__le32 buf[4];
3316 	struct filename_trans *ft = key;
3317 	struct filename_trans_datum *otype = data;
3318 	void *fp = ptr;
3319 	int rc;
3320 	u32 len;
3321 
3322 	len = strlen(ft->name);
3323 	buf[0] = cpu_to_le32(len);
3324 	rc = put_entry(buf, sizeof(u32), 1, fp);
3325 	if (rc)
3326 		return rc;
3327 
3328 	rc = put_entry(ft->name, sizeof(char), len, fp);
3329 	if (rc)
3330 		return rc;
3331 
3332 	buf[0] = ft->stype;
3333 	buf[1] = ft->ttype;
3334 	buf[2] = ft->tclass;
3335 	buf[3] = otype->otype;
3336 
3337 	rc = put_entry(buf, sizeof(u32), 4, fp);
3338 	if (rc)
3339 		return rc;
3340 
3341 	return 0;
3342 }
3343 
filename_trans_write(struct policydb * p,void * fp)3344 static int filename_trans_write(struct policydb *p, void *fp)
3345 {
3346 	u32 nel;
3347 	__le32 buf[1];
3348 	int rc;
3349 
3350 	if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
3351 		return 0;
3352 
3353 	nel = 0;
3354 	rc = hashtab_map(p->filename_trans, hashtab_cnt, &nel);
3355 	if (rc)
3356 		return rc;
3357 
3358 	buf[0] = cpu_to_le32(nel);
3359 	rc = put_entry(buf, sizeof(u32), 1, fp);
3360 	if (rc)
3361 		return rc;
3362 
3363 	rc = hashtab_map(p->filename_trans, filename_write_helper, fp);
3364 	if (rc)
3365 		return rc;
3366 
3367 	return 0;
3368 }
3369 
3370 /*
3371  * Write the configuration data in a policy database
3372  * structure to a policy database binary representation
3373  * file.
3374  */
policydb_write(struct policydb * p,void * fp)3375 int policydb_write(struct policydb *p, void *fp)
3376 {
3377 	unsigned int i, num_syms;
3378 	int rc;
3379 	__le32 buf[4];
3380 	u32 config;
3381 	size_t len;
3382 	struct policydb_compat_info *info;
3383 
3384 	/*
3385 	 * refuse to write policy older than compressed avtab
3386 	 * to simplify the writer.  There are other tests dropped
3387 	 * since we assume this throughout the writer code.  Be
3388 	 * careful if you ever try to remove this restriction
3389 	 */
3390 	if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3391 		printk(KERN_ERR "SELinux: refusing to write policy version %d."
3392 		       "  Because it is less than version %d\n", p->policyvers,
3393 		       POLICYDB_VERSION_AVTAB);
3394 		return -EINVAL;
3395 	}
3396 
3397 	config = 0;
3398 	if (p->mls_enabled)
3399 		config |= POLICYDB_CONFIG_MLS;
3400 
3401 	if (p->reject_unknown)
3402 		config |= REJECT_UNKNOWN;
3403 	if (p->allow_unknown)
3404 		config |= ALLOW_UNKNOWN;
3405 
3406 	/* Write the magic number and string identifiers. */
3407 	buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3408 	len = strlen(POLICYDB_STRING);
3409 	buf[1] = cpu_to_le32(len);
3410 	rc = put_entry(buf, sizeof(u32), 2, fp);
3411 	if (rc)
3412 		return rc;
3413 	rc = put_entry(POLICYDB_STRING, 1, len, fp);
3414 	if (rc)
3415 		return rc;
3416 
3417 	/* Write the version, config, and table sizes. */
3418 	info = policydb_lookup_compat(p->policyvers);
3419 	if (!info) {
3420 		printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3421 		    "version %d", p->policyvers);
3422 		return -EINVAL;
3423 	}
3424 
3425 	buf[0] = cpu_to_le32(p->policyvers);
3426 	buf[1] = cpu_to_le32(config);
3427 	buf[2] = cpu_to_le32(info->sym_num);
3428 	buf[3] = cpu_to_le32(info->ocon_num);
3429 
3430 	rc = put_entry(buf, sizeof(u32), 4, fp);
3431 	if (rc)
3432 		return rc;
3433 
3434 	if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3435 		rc = ebitmap_write(&p->policycaps, fp);
3436 		if (rc)
3437 			return rc;
3438 	}
3439 
3440 	if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3441 		rc = ebitmap_write(&p->permissive_map, fp);
3442 		if (rc)
3443 			return rc;
3444 	}
3445 
3446 	num_syms = info->sym_num;
3447 	for (i = 0; i < num_syms; i++) {
3448 		struct policy_data pd;
3449 
3450 		pd.fp = fp;
3451 		pd.p = p;
3452 
3453 		buf[0] = cpu_to_le32(p->symtab[i].nprim);
3454 		buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3455 
3456 		rc = put_entry(buf, sizeof(u32), 2, fp);
3457 		if (rc)
3458 			return rc;
3459 		rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3460 		if (rc)
3461 			return rc;
3462 	}
3463 
3464 	rc = avtab_write(p, &p->te_avtab, fp);
3465 	if (rc)
3466 		return rc;
3467 
3468 	rc = cond_write_list(p, p->cond_list, fp);
3469 	if (rc)
3470 		return rc;
3471 
3472 	rc = role_trans_write(p, fp);
3473 	if (rc)
3474 		return rc;
3475 
3476 	rc = role_allow_write(p->role_allow, fp);
3477 	if (rc)
3478 		return rc;
3479 
3480 	rc = filename_trans_write(p, fp);
3481 	if (rc)
3482 		return rc;
3483 
3484 	rc = ocontext_write(p, info, fp);
3485 	if (rc)
3486 		return rc;
3487 
3488 	rc = genfs_write(p, fp);
3489 	if (rc)
3490 		return rc;
3491 
3492 	rc = range_write(p, fp);
3493 	if (rc)
3494 		return rc;
3495 
3496 	for (i = 0; i < p->p_types.nprim; i++) {
3497 		struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3498 
3499 		BUG_ON(!e);
3500 		rc = ebitmap_write(e, fp);
3501 		if (rc)
3502 			return rc;
3503 	}
3504 
3505 	return 0;
3506 }
3507