1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
19
task_mem(struct seq_file * m,struct mm_struct * mm)20 void task_mem(struct seq_file *m, struct mm_struct *mm)
21 {
22 unsigned long data, text, lib, swap;
23 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24
25 /*
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
31 */
32 hiwater_vm = total_vm = mm->total_vm;
33 if (hiwater_vm < mm->hiwater_vm)
34 hiwater_vm = mm->hiwater_vm;
35 hiwater_rss = total_rss = get_mm_rss(mm);
36 if (hiwater_rss < mm->hiwater_rss)
37 hiwater_rss = mm->hiwater_rss;
38
39 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 swap = get_mm_counter(mm, MM_SWAPENTS);
43 seq_printf(m,
44 "VmPeak:\t%8lu kB\n"
45 "VmSize:\t%8lu kB\n"
46 "VmLck:\t%8lu kB\n"
47 "VmPin:\t%8lu kB\n"
48 "VmHWM:\t%8lu kB\n"
49 "VmRSS:\t%8lu kB\n"
50 "VmData:\t%8lu kB\n"
51 "VmStk:\t%8lu kB\n"
52 "VmExe:\t%8lu kB\n"
53 "VmLib:\t%8lu kB\n"
54 "VmPTE:\t%8lu kB\n"
55 "VmSwap:\t%8lu kB\n",
56 hiwater_vm << (PAGE_SHIFT-10),
57 total_vm << (PAGE_SHIFT-10),
58 mm->locked_vm << (PAGE_SHIFT-10),
59 mm->pinned_vm << (PAGE_SHIFT-10),
60 hiwater_rss << (PAGE_SHIFT-10),
61 total_rss << (PAGE_SHIFT-10),
62 data << (PAGE_SHIFT-10),
63 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
64 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
65 swap << (PAGE_SHIFT-10));
66 }
67
task_vsize(struct mm_struct * mm)68 unsigned long task_vsize(struct mm_struct *mm)
69 {
70 return PAGE_SIZE * mm->total_vm;
71 }
72
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)73 unsigned long task_statm(struct mm_struct *mm,
74 unsigned long *shared, unsigned long *text,
75 unsigned long *data, unsigned long *resident)
76 {
77 *shared = get_mm_counter(mm, MM_FILEPAGES);
78 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
79 >> PAGE_SHIFT;
80 *data = mm->total_vm - mm->shared_vm;
81 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
82 return mm->total_vm;
83 }
84
pad_len_spaces(struct seq_file * m,int len)85 static void pad_len_spaces(struct seq_file *m, int len)
86 {
87 len = 25 + sizeof(void*) * 6 - len;
88 if (len < 1)
89 len = 1;
90 seq_printf(m, "%*c", len, ' ');
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95 * These functions are for numa_maps but called in generic **maps seq_file
96 * ->start(), ->stop() ops.
97 *
98 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
99 * Each mempolicy object is controlled by reference counting. The problem here
100 * is how to avoid accessing dead mempolicy object.
101 *
102 * Because we're holding mmap_sem while reading seq_file, it's safe to access
103 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
104 *
105 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
106 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
107 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
108 * gurantee the task never exits under us. But taking task_lock() around
109 * get_vma_plicy() causes lock order problem.
110 *
111 * To access task->mempolicy without lock, we hold a reference count of an
112 * object pointed by task->mempolicy and remember it. This will guarantee
113 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
114 */
hold_task_mempolicy(struct proc_maps_private * priv)115 static void hold_task_mempolicy(struct proc_maps_private *priv)
116 {
117 struct task_struct *task = priv->task;
118
119 task_lock(task);
120 priv->task_mempolicy = task->mempolicy;
121 mpol_get(priv->task_mempolicy);
122 task_unlock(task);
123 }
release_task_mempolicy(struct proc_maps_private * priv)124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 mpol_put(priv->task_mempolicy);
127 }
128 #else
hold_task_mempolicy(struct proc_maps_private * priv)129 static void hold_task_mempolicy(struct proc_maps_private *priv)
130 {
131 }
release_task_mempolicy(struct proc_maps_private * priv)132 static void release_task_mempolicy(struct proc_maps_private *priv)
133 {
134 }
135 #endif
136
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)137 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
138 {
139 const char __user *name = vma_get_anon_name(vma);
140 struct mm_struct *mm = vma->vm_mm;
141
142 unsigned long page_start_vaddr;
143 unsigned long page_offset;
144 unsigned long num_pages;
145 unsigned long max_len = NAME_MAX;
146 int i;
147
148 page_start_vaddr = (unsigned long)name & PAGE_MASK;
149 page_offset = (unsigned long)name - page_start_vaddr;
150 num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
151
152 seq_puts(m, "[anon:");
153
154 for (i = 0; i < num_pages; i++) {
155 int len;
156 int write_len;
157 const char *kaddr;
158 long pages_pinned;
159 struct page *page;
160
161 pages_pinned = get_user_pages(current, mm, page_start_vaddr,
162 1, 0, 0, &page, NULL);
163 if (pages_pinned < 1) {
164 seq_puts(m, "<fault>]");
165 return;
166 }
167
168 kaddr = (const char *)kmap(page);
169 len = min(max_len, PAGE_SIZE - page_offset);
170 write_len = strnlen(kaddr + page_offset, len);
171 seq_write(m, kaddr + page_offset, write_len);
172 kunmap(page);
173 put_page(page);
174
175 /* if strnlen hit a null terminator then we're done */
176 if (write_len != len)
177 break;
178
179 max_len -= len;
180 page_offset = 0;
181 page_start_vaddr += PAGE_SIZE;
182 }
183
184 seq_putc(m, ']');
185 }
186
vma_stop(struct proc_maps_private * priv,struct vm_area_struct * vma)187 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
188 {
189 if (vma && vma != priv->tail_vma) {
190 struct mm_struct *mm = vma->vm_mm;
191 release_task_mempolicy(priv);
192 up_read(&mm->mmap_sem);
193 mmput(mm);
194 }
195 }
196
m_start(struct seq_file * m,loff_t * pos)197 static void *m_start(struct seq_file *m, loff_t *pos)
198 {
199 struct proc_maps_private *priv = m->private;
200 unsigned long last_addr = m->version;
201 struct mm_struct *mm;
202 struct vm_area_struct *vma, *tail_vma = NULL;
203 loff_t l = *pos;
204
205 /* Clear the per syscall fields in priv */
206 priv->task = NULL;
207 priv->tail_vma = NULL;
208
209 /*
210 * We remember last_addr rather than next_addr to hit with
211 * mmap_cache most of the time. We have zero last_addr at
212 * the beginning and also after lseek. We will have -1 last_addr
213 * after the end of the vmas.
214 */
215
216 if (last_addr == -1UL)
217 return NULL;
218
219 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
220 if (!priv->task)
221 return ERR_PTR(-ESRCH);
222
223 mm = mm_access(priv->task, PTRACE_MODE_READ);
224 if (!mm || IS_ERR(mm))
225 return mm;
226 down_read(&mm->mmap_sem);
227
228 tail_vma = get_gate_vma(priv->task->mm);
229 priv->tail_vma = tail_vma;
230 hold_task_mempolicy(priv);
231 /* Start with last addr hint */
232 vma = find_vma(mm, last_addr);
233 if (last_addr && vma) {
234 vma = vma->vm_next;
235 goto out;
236 }
237
238 /*
239 * Check the vma index is within the range and do
240 * sequential scan until m_index.
241 */
242 vma = NULL;
243 if ((unsigned long)l < mm->map_count) {
244 vma = mm->mmap;
245 while (l-- && vma)
246 vma = vma->vm_next;
247 goto out;
248 }
249
250 if (l != mm->map_count)
251 tail_vma = NULL; /* After gate vma */
252
253 out:
254 if (vma)
255 return vma;
256
257 release_task_mempolicy(priv);
258 /* End of vmas has been reached */
259 m->version = (tail_vma != NULL)? 0: -1UL;
260 up_read(&mm->mmap_sem);
261 mmput(mm);
262 return tail_vma;
263 }
264
m_next(struct seq_file * m,void * v,loff_t * pos)265 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
266 {
267 struct proc_maps_private *priv = m->private;
268 struct vm_area_struct *vma = v;
269 struct vm_area_struct *tail_vma = priv->tail_vma;
270
271 (*pos)++;
272 if (vma && (vma != tail_vma) && vma->vm_next)
273 return vma->vm_next;
274 vma_stop(priv, vma);
275 return (vma != tail_vma)? tail_vma: NULL;
276 }
277
m_stop(struct seq_file * m,void * v)278 static void m_stop(struct seq_file *m, void *v)
279 {
280 struct proc_maps_private *priv = m->private;
281 struct vm_area_struct *vma = v;
282
283 if (!IS_ERR(vma))
284 vma_stop(priv, vma);
285 if (priv->task)
286 put_task_struct(priv->task);
287 }
288
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)289 static int do_maps_open(struct inode *inode, struct file *file,
290 const struct seq_operations *ops)
291 {
292 struct proc_maps_private *priv;
293 int ret = -ENOMEM;
294 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
295 if (priv) {
296 priv->pid = proc_pid(inode);
297 ret = seq_open(file, ops);
298 if (!ret) {
299 struct seq_file *m = file->private_data;
300 m->private = priv;
301 } else {
302 kfree(priv);
303 }
304 }
305 return ret;
306 }
307
308 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma,int is_pid)309 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
310 {
311 struct mm_struct *mm = vma->vm_mm;
312 struct file *file = vma->vm_file;
313 struct proc_maps_private *priv = m->private;
314 struct task_struct *task = priv->task;
315 vm_flags_t flags = vma->vm_flags;
316 unsigned long ino = 0;
317 unsigned long long pgoff = 0;
318 unsigned long start, end;
319 dev_t dev = 0;
320 int len;
321 const char *name = NULL;
322
323 if (file) {
324 struct inode *inode = file_inode(vma->vm_file);
325 dev = inode->i_sb->s_dev;
326 ino = inode->i_ino;
327 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
328 }
329
330 /* We don't show the stack guard page in /proc/maps */
331 start = vma->vm_start;
332 end = vma->vm_end;
333
334 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
335 start,
336 end,
337 flags & VM_READ ? 'r' : '-',
338 flags & VM_WRITE ? 'w' : '-',
339 flags & VM_EXEC ? 'x' : '-',
340 flags & VM_MAYSHARE ? 's' : 'p',
341 pgoff,
342 MAJOR(dev), MINOR(dev), ino, &len);
343
344 /*
345 * Print the dentry name for named mappings, and a
346 * special [heap] marker for the heap:
347 */
348 if (file) {
349 pad_len_spaces(m, len);
350 seq_path(m, &file->f_path, "\n");
351 goto done;
352 }
353
354 name = arch_vma_name(vma);
355 if (!name) {
356 pid_t tid;
357
358 if (!mm) {
359 name = "[vdso]";
360 goto done;
361 }
362
363 if (vma->vm_start <= mm->brk &&
364 vma->vm_end >= mm->start_brk) {
365 name = "[heap]";
366 goto done;
367 }
368
369 tid = vm_is_stack(task, vma, is_pid);
370
371 if (tid != 0) {
372 /*
373 * Thread stack in /proc/PID/task/TID/maps or
374 * the main process stack.
375 */
376 if (!is_pid || (vma->vm_start <= mm->start_stack &&
377 vma->vm_end >= mm->start_stack)) {
378 name = "[stack]";
379 } else {
380 /* Thread stack in /proc/PID/maps */
381 pad_len_spaces(m, len);
382 seq_printf(m, "[stack:%d]", tid);
383 }
384 goto done;
385 }
386
387 if (vma_get_anon_name(vma)) {
388 pad_len_spaces(m, len);
389 seq_print_vma_name(m, vma);
390 }
391 }
392
393 done:
394 if (name) {
395 pad_len_spaces(m, len);
396 seq_puts(m, name);
397 }
398 seq_putc(m, '\n');
399 }
400
show_map(struct seq_file * m,void * v,int is_pid)401 static int show_map(struct seq_file *m, void *v, int is_pid)
402 {
403 struct vm_area_struct *vma = v;
404 struct proc_maps_private *priv = m->private;
405 struct task_struct *task = priv->task;
406
407 show_map_vma(m, vma, is_pid);
408
409 if (m->count < m->size) /* vma is copied successfully */
410 m->version = (vma != get_gate_vma(task->mm))
411 ? vma->vm_start : 0;
412 return 0;
413 }
414
show_pid_map(struct seq_file * m,void * v)415 static int show_pid_map(struct seq_file *m, void *v)
416 {
417 return show_map(m, v, 1);
418 }
419
show_tid_map(struct seq_file * m,void * v)420 static int show_tid_map(struct seq_file *m, void *v)
421 {
422 return show_map(m, v, 0);
423 }
424
425 static const struct seq_operations proc_pid_maps_op = {
426 .start = m_start,
427 .next = m_next,
428 .stop = m_stop,
429 .show = show_pid_map
430 };
431
432 static const struct seq_operations proc_tid_maps_op = {
433 .start = m_start,
434 .next = m_next,
435 .stop = m_stop,
436 .show = show_tid_map
437 };
438
pid_maps_open(struct inode * inode,struct file * file)439 static int pid_maps_open(struct inode *inode, struct file *file)
440 {
441 return do_maps_open(inode, file, &proc_pid_maps_op);
442 }
443
tid_maps_open(struct inode * inode,struct file * file)444 static int tid_maps_open(struct inode *inode, struct file *file)
445 {
446 return do_maps_open(inode, file, &proc_tid_maps_op);
447 }
448
449 const struct file_operations proc_pid_maps_operations = {
450 .open = pid_maps_open,
451 .read = seq_read,
452 .llseek = seq_lseek,
453 .release = seq_release_private,
454 };
455
456 const struct file_operations proc_tid_maps_operations = {
457 .open = tid_maps_open,
458 .read = seq_read,
459 .llseek = seq_lseek,
460 .release = seq_release_private,
461 };
462
463 /*
464 * Proportional Set Size(PSS): my share of RSS.
465 *
466 * PSS of a process is the count of pages it has in memory, where each
467 * page is divided by the number of processes sharing it. So if a
468 * process has 1000 pages all to itself, and 1000 shared with one other
469 * process, its PSS will be 1500.
470 *
471 * To keep (accumulated) division errors low, we adopt a 64bit
472 * fixed-point pss counter to minimize division errors. So (pss >>
473 * PSS_SHIFT) would be the real byte count.
474 *
475 * A shift of 12 before division means (assuming 4K page size):
476 * - 1M 3-user-pages add up to 8KB errors;
477 * - supports mapcount up to 2^24, or 16M;
478 * - supports PSS up to 2^52 bytes, or 4PB.
479 */
480 #define PSS_SHIFT 12
481
482 #ifdef CONFIG_PROC_PAGE_MONITOR
483 struct mem_size_stats {
484 struct vm_area_struct *vma;
485 unsigned long resident;
486 unsigned long shared_clean;
487 unsigned long shared_dirty;
488 unsigned long private_clean;
489 unsigned long private_dirty;
490 unsigned long referenced;
491 unsigned long anonymous;
492 unsigned long anonymous_thp;
493 unsigned long swap;
494 unsigned long nonlinear;
495 u64 pss;
496 u64 swap_pss;
497 };
498
499
smaps_pte_entry(pte_t ptent,unsigned long addr,unsigned long ptent_size,struct mm_walk * walk)500 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
501 unsigned long ptent_size, struct mm_walk *walk)
502 {
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
505 pgoff_t pgoff = linear_page_index(vma, addr);
506 struct page *page = NULL;
507 int mapcount;
508
509 if (pte_present(ptent)) {
510 page = vm_normal_page(vma, addr, ptent);
511 } else if (is_swap_pte(ptent)) {
512 swp_entry_t swpent = pte_to_swp_entry(ptent);
513
514 if (!non_swap_entry(swpent)) {
515 int mapcount;
516
517 mss->swap += PAGE_SIZE;
518 mapcount = swp_swapcount(swpent);
519 if (mapcount >= 2) {
520 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
521
522 do_div(pss_delta, mapcount);
523 mss->swap_pss += pss_delta;
524 } else {
525 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
526 }
527 } else if (is_migration_entry(swpent))
528 page = migration_entry_to_page(swpent);
529 } else if (pte_file(ptent)) {
530 if (pte_to_pgoff(ptent) != pgoff)
531 mss->nonlinear += ptent_size;
532 }
533
534 if (!page)
535 return;
536
537 if (PageAnon(page))
538 mss->anonymous += ptent_size;
539
540 if (page->index != pgoff)
541 mss->nonlinear += ptent_size;
542
543 mss->resident += ptent_size;
544 /* Accumulate the size in pages that have been accessed. */
545 if (pte_young(ptent) || PageReferenced(page))
546 mss->referenced += ptent_size;
547 mapcount = page_mapcount(page);
548 if (mapcount >= 2) {
549 if (pte_dirty(ptent) || PageDirty(page))
550 mss->shared_dirty += ptent_size;
551 else
552 mss->shared_clean += ptent_size;
553 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
554 } else {
555 if (pte_dirty(ptent) || PageDirty(page))
556 mss->private_dirty += ptent_size;
557 else
558 mss->private_clean += ptent_size;
559 mss->pss += (ptent_size << PSS_SHIFT);
560 }
561 }
562
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)563 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
565 {
566 struct mem_size_stats *mss = walk->private;
567 struct vm_area_struct *vma = mss->vma;
568 pte_t *pte;
569 spinlock_t *ptl;
570
571 if (pmd_trans_huge_lock(pmd, vma) == 1) {
572 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
573 spin_unlock(&walk->mm->page_table_lock);
574 mss->anonymous_thp += HPAGE_PMD_SIZE;
575 return 0;
576 }
577
578 if (pmd_trans_unstable(pmd))
579 return 0;
580 /*
581 * The mmap_sem held all the way back in m_start() is what
582 * keeps khugepaged out of here and from collapsing things
583 * in here.
584 */
585 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
586 for (; addr != end; pte++, addr += PAGE_SIZE)
587 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
588 pte_unmap_unlock(pte - 1, ptl);
589 cond_resched();
590 return 0;
591 }
592
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)593 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
594 {
595 /*
596 * Don't forget to update Documentation/ on changes.
597 */
598 static const char mnemonics[BITS_PER_LONG][2] = {
599 /*
600 * In case if we meet a flag we don't know about.
601 */
602 [0 ... (BITS_PER_LONG-1)] = "??",
603
604 [ilog2(VM_READ)] = "rd",
605 [ilog2(VM_WRITE)] = "wr",
606 [ilog2(VM_EXEC)] = "ex",
607 [ilog2(VM_SHARED)] = "sh",
608 [ilog2(VM_MAYREAD)] = "mr",
609 [ilog2(VM_MAYWRITE)] = "mw",
610 [ilog2(VM_MAYEXEC)] = "me",
611 [ilog2(VM_MAYSHARE)] = "ms",
612 [ilog2(VM_GROWSDOWN)] = "gd",
613 [ilog2(VM_PFNMAP)] = "pf",
614 [ilog2(VM_DENYWRITE)] = "dw",
615 [ilog2(VM_LOCKED)] = "lo",
616 [ilog2(VM_IO)] = "io",
617 [ilog2(VM_SEQ_READ)] = "sr",
618 [ilog2(VM_RAND_READ)] = "rr",
619 [ilog2(VM_DONTCOPY)] = "dc",
620 [ilog2(VM_DONTEXPAND)] = "de",
621 [ilog2(VM_ACCOUNT)] = "ac",
622 [ilog2(VM_NORESERVE)] = "nr",
623 [ilog2(VM_HUGETLB)] = "ht",
624 [ilog2(VM_NONLINEAR)] = "nl",
625 [ilog2(VM_ARCH_1)] = "ar",
626 [ilog2(VM_DONTDUMP)] = "dd",
627 [ilog2(VM_MIXEDMAP)] = "mm",
628 [ilog2(VM_HUGEPAGE)] = "hg",
629 [ilog2(VM_NOHUGEPAGE)] = "nh",
630 [ilog2(VM_MERGEABLE)] = "mg",
631 };
632 size_t i;
633
634 seq_puts(m, "VmFlags: ");
635 for (i = 0; i < BITS_PER_LONG; i++) {
636 if (vma->vm_flags & (1UL << i)) {
637 seq_printf(m, "%c%c ",
638 mnemonics[i][0], mnemonics[i][1]);
639 }
640 }
641 seq_putc(m, '\n');
642 }
643
show_smap(struct seq_file * m,void * v,int is_pid)644 static int show_smap(struct seq_file *m, void *v, int is_pid)
645 {
646 struct proc_maps_private *priv = m->private;
647 struct task_struct *task = priv->task;
648 struct vm_area_struct *vma = v;
649 struct mem_size_stats mss;
650 struct mm_walk smaps_walk = {
651 .pmd_entry = smaps_pte_range,
652 .mm = vma->vm_mm,
653 .private = &mss,
654 };
655
656 memset(&mss, 0, sizeof mss);
657 mss.vma = vma;
658 /* mmap_sem is held in m_start */
659 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
660 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
661
662 show_map_vma(m, vma, is_pid);
663
664 seq_printf(m,
665 "Size: %8lu kB\n"
666 "Rss: %8lu kB\n"
667 "Pss: %8lu kB\n"
668 "Shared_Clean: %8lu kB\n"
669 "Shared_Dirty: %8lu kB\n"
670 "Private_Clean: %8lu kB\n"
671 "Private_Dirty: %8lu kB\n"
672 "Referenced: %8lu kB\n"
673 "Anonymous: %8lu kB\n"
674 "AnonHugePages: %8lu kB\n"
675 "Swap: %8lu kB\n"
676 "SwapPss: %8lu kB\n"
677 "KernelPageSize: %8lu kB\n"
678 "MMUPageSize: %8lu kB\n"
679 "Locked: %8lu kB\n",
680 (vma->vm_end - vma->vm_start) >> 10,
681 mss.resident >> 10,
682 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
683 mss.shared_clean >> 10,
684 mss.shared_dirty >> 10,
685 mss.private_clean >> 10,
686 mss.private_dirty >> 10,
687 mss.referenced >> 10,
688 mss.anonymous >> 10,
689 mss.anonymous_thp >> 10,
690 mss.swap >> 10,
691 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
692 vma_kernel_pagesize(vma) >> 10,
693 vma_mmu_pagesize(vma) >> 10,
694 (vma->vm_flags & VM_LOCKED) ?
695 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
696
697 if (vma->vm_flags & VM_NONLINEAR)
698 seq_printf(m, "Nonlinear: %8lu kB\n",
699 mss.nonlinear >> 10);
700
701 show_smap_vma_flags(m, vma);
702
703 if (vma_get_anon_name(vma)) {
704 seq_puts(m, "Name: ");
705 seq_print_vma_name(m, vma);
706 seq_putc(m, '\n');
707 }
708
709 if (m->count < m->size) /* vma is copied successfully */
710 m->version = (vma != get_gate_vma(task->mm))
711 ? vma->vm_start : 0;
712 return 0;
713 }
714
show_pid_smap(struct seq_file * m,void * v)715 static int show_pid_smap(struct seq_file *m, void *v)
716 {
717 return show_smap(m, v, 1);
718 }
719
show_tid_smap(struct seq_file * m,void * v)720 static int show_tid_smap(struct seq_file *m, void *v)
721 {
722 return show_smap(m, v, 0);
723 }
724
725 static const struct seq_operations proc_pid_smaps_op = {
726 .start = m_start,
727 .next = m_next,
728 .stop = m_stop,
729 .show = show_pid_smap
730 };
731
732 static const struct seq_operations proc_tid_smaps_op = {
733 .start = m_start,
734 .next = m_next,
735 .stop = m_stop,
736 .show = show_tid_smap
737 };
738
pid_smaps_open(struct inode * inode,struct file * file)739 static int pid_smaps_open(struct inode *inode, struct file *file)
740 {
741 return do_maps_open(inode, file, &proc_pid_smaps_op);
742 }
743
tid_smaps_open(struct inode * inode,struct file * file)744 static int tid_smaps_open(struct inode *inode, struct file *file)
745 {
746 return do_maps_open(inode, file, &proc_tid_smaps_op);
747 }
748
749 const struct file_operations proc_pid_smaps_operations = {
750 .open = pid_smaps_open,
751 .read = seq_read,
752 .llseek = seq_lseek,
753 .release = seq_release_private,
754 };
755
756 const struct file_operations proc_tid_smaps_operations = {
757 .open = tid_smaps_open,
758 .read = seq_read,
759 .llseek = seq_lseek,
760 .release = seq_release_private,
761 };
762
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)763 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
764 unsigned long end, struct mm_walk *walk)
765 {
766 struct vm_area_struct *vma = walk->private;
767 pte_t *pte, ptent;
768 spinlock_t *ptl;
769 struct page *page;
770
771 split_huge_page_pmd(vma, addr, pmd);
772 if (pmd_trans_unstable(pmd))
773 return 0;
774
775 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
776 for (; addr != end; pte++, addr += PAGE_SIZE) {
777 ptent = *pte;
778 if (!pte_present(ptent))
779 continue;
780
781 page = vm_normal_page(vma, addr, ptent);
782 if (!page)
783 continue;
784
785 /* Clear accessed and referenced bits. */
786 ptep_test_and_clear_young(vma, addr, pte);
787 ClearPageReferenced(page);
788 }
789 pte_unmap_unlock(pte - 1, ptl);
790 cond_resched();
791 return 0;
792 }
793
794 #define CLEAR_REFS_ALL 1
795 #define CLEAR_REFS_ANON 2
796 #define CLEAR_REFS_MAPPED 3
797 #define CLEAR_REFS_MM_HIWATER_RSS 5
798
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)799 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
800 size_t count, loff_t *ppos)
801 {
802 struct task_struct *task;
803 char buffer[PROC_NUMBUF];
804 struct mm_struct *mm;
805 struct vm_area_struct *vma;
806 int type;
807 int rv;
808
809 memset(buffer, 0, sizeof(buffer));
810 if (count > sizeof(buffer) - 1)
811 count = sizeof(buffer) - 1;
812 if (copy_from_user(buffer, buf, count))
813 return -EFAULT;
814 rv = kstrtoint(strstrip(buffer), 10, &type);
815 if (rv < 0)
816 return rv;
817 if ((type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED) &&
818 type != CLEAR_REFS_MM_HIWATER_RSS)
819 return -EINVAL;
820 task = get_proc_task(file_inode(file));
821 if (!task)
822 return -ESRCH;
823 mm = get_task_mm(task);
824 if (mm) {
825 struct mm_walk clear_refs_walk = {
826 .pmd_entry = clear_refs_pte_range,
827 .mm = mm,
828 };
829
830 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
831 /*
832 * Writing 5 to /proc/pid/clear_refs resets the peak
833 * resident set size to this mm's current rss value.
834 */
835 down_write(&mm->mmap_sem);
836 reset_mm_hiwater_rss(mm);
837 up_write(&mm->mmap_sem);
838 goto out_mm;
839 }
840
841 down_read(&mm->mmap_sem);
842 for (vma = mm->mmap; vma; vma = vma->vm_next) {
843 clear_refs_walk.private = vma;
844 if (is_vm_hugetlb_page(vma))
845 continue;
846 /*
847 * Writing 1 to /proc/pid/clear_refs affects all pages.
848 *
849 * Writing 2 to /proc/pid/clear_refs only affects
850 * Anonymous pages.
851 *
852 * Writing 3 to /proc/pid/clear_refs only affects file
853 * mapped pages.
854 */
855 if (type == CLEAR_REFS_ANON && vma->vm_file)
856 continue;
857 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
858 continue;
859 walk_page_range(vma->vm_start, vma->vm_end,
860 &clear_refs_walk);
861 }
862 flush_tlb_mm(mm);
863 up_read(&mm->mmap_sem);
864 out_mm:
865 mmput(mm);
866 }
867 put_task_struct(task);
868
869 return count;
870 }
871
872 const struct file_operations proc_clear_refs_operations = {
873 .write = clear_refs_write,
874 .llseek = noop_llseek,
875 };
876
877 typedef struct {
878 u64 pme;
879 } pagemap_entry_t;
880
881 struct pagemapread {
882 int pos, len;
883 pagemap_entry_t *buffer;
884 };
885
886 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
887 #define PAGEMAP_WALK_MASK (PMD_MASK)
888
889 #define PM_ENTRY_BYTES sizeof(u64)
890 #define PM_STATUS_BITS 3
891 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
892 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
893 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
894 #define PM_PSHIFT_BITS 6
895 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
896 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
897 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
898 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
899 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
900
901 #define PM_PRESENT PM_STATUS(4LL)
902 #define PM_SWAP PM_STATUS(2LL)
903 #define PM_FILE PM_STATUS(1LL)
904 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
905 #define PM_END_OF_BUFFER 1
906
make_pme(u64 val)907 static inline pagemap_entry_t make_pme(u64 val)
908 {
909 return (pagemap_entry_t) { .pme = val };
910 }
911
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)912 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
913 struct pagemapread *pm)
914 {
915 pm->buffer[pm->pos++] = *pme;
916 if (pm->pos >= pm->len)
917 return PM_END_OF_BUFFER;
918 return 0;
919 }
920
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)921 static int pagemap_pte_hole(unsigned long start, unsigned long end,
922 struct mm_walk *walk)
923 {
924 struct pagemapread *pm = walk->private;
925 unsigned long addr;
926 int err = 0;
927 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
928
929 for (addr = start; addr < end; addr += PAGE_SIZE) {
930 err = add_to_pagemap(addr, &pme, pm);
931 if (err)
932 break;
933 }
934 return err;
935 }
936
pte_to_pagemap_entry(pagemap_entry_t * pme,struct vm_area_struct * vma,unsigned long addr,pte_t pte)937 static void pte_to_pagemap_entry(pagemap_entry_t *pme,
938 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
939 {
940 u64 frame, flags;
941 struct page *page = NULL;
942
943 if (pte_present(pte)) {
944 frame = pte_pfn(pte);
945 flags = PM_PRESENT;
946 page = vm_normal_page(vma, addr, pte);
947 } else if (is_swap_pte(pte)) {
948 swp_entry_t entry = pte_to_swp_entry(pte);
949
950 frame = swp_type(entry) |
951 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
952 flags = PM_SWAP;
953 if (is_migration_entry(entry))
954 page = migration_entry_to_page(entry);
955 } else {
956 *pme = make_pme(PM_NOT_PRESENT);
957 return;
958 }
959
960 if (page && !PageAnon(page))
961 flags |= PM_FILE;
962
963 *pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
964 }
965
966 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_pmd_to_pagemap_entry(pagemap_entry_t * pme,pmd_t pmd,int offset)967 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
968 pmd_t pmd, int offset)
969 {
970 /*
971 * Currently pmd for thp is always present because thp can not be
972 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
973 * This if-check is just to prepare for future implementation.
974 */
975 if (pmd_present(pmd))
976 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
977 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
978 else
979 *pme = make_pme(PM_NOT_PRESENT);
980 }
981 #else
thp_pmd_to_pagemap_entry(pagemap_entry_t * pme,pmd_t pmd,int offset)982 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
983 pmd_t pmd, int offset)
984 {
985 }
986 #endif
987
pagemap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)988 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
989 struct mm_walk *walk)
990 {
991 struct vm_area_struct *vma;
992 struct pagemapread *pm = walk->private;
993 pte_t *pte;
994 int err = 0;
995 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
996
997 /* find the first VMA at or above 'addr' */
998 vma = find_vma(walk->mm, addr);
999 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
1000 for (; addr != end; addr += PAGE_SIZE) {
1001 unsigned long offset;
1002
1003 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1004 PAGE_SHIFT;
1005 thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
1006 err = add_to_pagemap(addr, &pme, pm);
1007 if (err)
1008 break;
1009 }
1010 spin_unlock(&walk->mm->page_table_lock);
1011 return err;
1012 }
1013
1014 if (pmd_trans_unstable(pmd))
1015 return 0;
1016 for (; addr != end; addr += PAGE_SIZE) {
1017
1018 /* check to see if we've left 'vma' behind
1019 * and need a new, higher one */
1020 if (vma && (addr >= vma->vm_end)) {
1021 vma = find_vma(walk->mm, addr);
1022 pme = make_pme(PM_NOT_PRESENT);
1023 }
1024
1025 /* check that 'vma' actually covers this address,
1026 * and that it isn't a huge page vma */
1027 if (vma && (vma->vm_start <= addr) &&
1028 !is_vm_hugetlb_page(vma)) {
1029 pte = pte_offset_map(pmd, addr);
1030 pte_to_pagemap_entry(&pme, vma, addr, *pte);
1031 /* unmap before userspace copy */
1032 pte_unmap(pte);
1033 }
1034 err = add_to_pagemap(addr, &pme, pm);
1035 if (err)
1036 return err;
1037 }
1038
1039 cond_resched();
1040
1041 return err;
1042 }
1043
1044 #ifdef CONFIG_HUGETLB_PAGE
huge_pte_to_pagemap_entry(pagemap_entry_t * pme,pte_t pte,int offset)1045 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
1046 pte_t pte, int offset)
1047 {
1048 if (pte_present(pte))
1049 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
1050 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
1051 else
1052 *pme = make_pme(PM_NOT_PRESENT);
1053 }
1054
1055 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1056 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1057 unsigned long addr, unsigned long end,
1058 struct mm_walk *walk)
1059 {
1060 struct pagemapread *pm = walk->private;
1061 int err = 0;
1062 pagemap_entry_t pme;
1063
1064 for (; addr != end; addr += PAGE_SIZE) {
1065 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1066 huge_pte_to_pagemap_entry(&pme, *pte, offset);
1067 err = add_to_pagemap(addr, &pme, pm);
1068 if (err)
1069 return err;
1070 }
1071
1072 cond_resched();
1073
1074 return err;
1075 }
1076 #endif /* HUGETLB_PAGE */
1077
1078 /*
1079 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1080 *
1081 * For each page in the address space, this file contains one 64-bit entry
1082 * consisting of the following:
1083 *
1084 * Bits 0-54 page frame number (PFN) if present
1085 * Bits 0-4 swap type if swapped
1086 * Bits 5-54 swap offset if swapped
1087 * Bits 55-60 page shift (page size = 1<<page shift)
1088 * Bit 61 page is file-page or shared-anon
1089 * Bit 62 page swapped
1090 * Bit 63 page present
1091 *
1092 * If the page is not present but in swap, then the PFN contains an
1093 * encoding of the swap file number and the page's offset into the
1094 * swap. Unmapped pages return a null PFN. This allows determining
1095 * precisely which pages are mapped (or in swap) and comparing mapped
1096 * pages between processes.
1097 *
1098 * Efficient users of this interface will use /proc/pid/maps to
1099 * determine which areas of memory are actually mapped and llseek to
1100 * skip over unmapped regions.
1101 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1102 static ssize_t pagemap_read(struct file *file, char __user *buf,
1103 size_t count, loff_t *ppos)
1104 {
1105 struct task_struct *task = get_proc_task(file_inode(file));
1106 struct mm_struct *mm;
1107 struct pagemapread pm;
1108 int ret = -ESRCH;
1109 struct mm_walk pagemap_walk = {};
1110 unsigned long src;
1111 unsigned long svpfn;
1112 unsigned long start_vaddr;
1113 unsigned long end_vaddr;
1114 int copied = 0;
1115
1116 if (!task)
1117 goto out;
1118
1119 ret = -EINVAL;
1120 /* file position must be aligned */
1121 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1122 goto out_task;
1123
1124 ret = 0;
1125 if (!count)
1126 goto out_task;
1127
1128 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1129 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
1130 ret = -ENOMEM;
1131 if (!pm.buffer)
1132 goto out_task;
1133
1134 mm = mm_access(task, PTRACE_MODE_READ);
1135 ret = PTR_ERR(mm);
1136 if (!mm || IS_ERR(mm))
1137 goto out_free;
1138
1139 pagemap_walk.pmd_entry = pagemap_pte_range;
1140 pagemap_walk.pte_hole = pagemap_pte_hole;
1141 #ifdef CONFIG_HUGETLB_PAGE
1142 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1143 #endif
1144 pagemap_walk.mm = mm;
1145 pagemap_walk.private = ±
1146
1147 src = *ppos;
1148 svpfn = src / PM_ENTRY_BYTES;
1149 start_vaddr = svpfn << PAGE_SHIFT;
1150 end_vaddr = TASK_SIZE_OF(task);
1151
1152 /* watch out for wraparound */
1153 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1154 start_vaddr = end_vaddr;
1155
1156 /*
1157 * The odds are that this will stop walking way
1158 * before end_vaddr, because the length of the
1159 * user buffer is tracked in "pm", and the walk
1160 * will stop when we hit the end of the buffer.
1161 */
1162 ret = 0;
1163 while (count && (start_vaddr < end_vaddr)) {
1164 int len;
1165 unsigned long end;
1166
1167 pm.pos = 0;
1168 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1169 /* overflow ? */
1170 if (end < start_vaddr || end > end_vaddr)
1171 end = end_vaddr;
1172 down_read(&mm->mmap_sem);
1173 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1174 up_read(&mm->mmap_sem);
1175 start_vaddr = end;
1176
1177 len = min(count, PM_ENTRY_BYTES * pm.pos);
1178 if (copy_to_user(buf, pm.buffer, len)) {
1179 ret = -EFAULT;
1180 goto out_mm;
1181 }
1182 copied += len;
1183 buf += len;
1184 count -= len;
1185 }
1186 *ppos += copied;
1187 if (!ret || ret == PM_END_OF_BUFFER)
1188 ret = copied;
1189
1190 out_mm:
1191 mmput(mm);
1192 out_free:
1193 kfree(pm.buffer);
1194 out_task:
1195 put_task_struct(task);
1196 out:
1197 return ret;
1198 }
1199
pagemap_open(struct inode * inode,struct file * file)1200 static int pagemap_open(struct inode *inode, struct file *file)
1201 {
1202 /* do not disclose physical addresses: attack vector */
1203 if (!capable(CAP_SYS_ADMIN))
1204 return -EPERM;
1205 return 0;
1206 }
1207
1208 const struct file_operations proc_pagemap_operations = {
1209 .llseek = mem_lseek, /* borrow this */
1210 .read = pagemap_read,
1211 .open = pagemap_open,
1212 };
1213 #endif /* CONFIG_PROC_PAGE_MONITOR */
1214
1215 #ifdef CONFIG_NUMA
1216
1217 struct numa_maps {
1218 struct vm_area_struct *vma;
1219 unsigned long pages;
1220 unsigned long anon;
1221 unsigned long active;
1222 unsigned long writeback;
1223 unsigned long mapcount_max;
1224 unsigned long dirty;
1225 unsigned long swapcache;
1226 unsigned long node[MAX_NUMNODES];
1227 };
1228
1229 struct numa_maps_private {
1230 struct proc_maps_private proc_maps;
1231 struct numa_maps md;
1232 };
1233
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1234 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1235 unsigned long nr_pages)
1236 {
1237 int count = page_mapcount(page);
1238
1239 md->pages += nr_pages;
1240 if (pte_dirty || PageDirty(page))
1241 md->dirty += nr_pages;
1242
1243 if (PageSwapCache(page))
1244 md->swapcache += nr_pages;
1245
1246 if (PageActive(page) || PageUnevictable(page))
1247 md->active += nr_pages;
1248
1249 if (PageWriteback(page))
1250 md->writeback += nr_pages;
1251
1252 if (PageAnon(page))
1253 md->anon += nr_pages;
1254
1255 if (count > md->mapcount_max)
1256 md->mapcount_max = count;
1257
1258 md->node[page_to_nid(page)] += nr_pages;
1259 }
1260
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1261 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1262 unsigned long addr)
1263 {
1264 struct page *page;
1265 int nid;
1266
1267 if (!pte_present(pte))
1268 return NULL;
1269
1270 page = vm_normal_page(vma, addr, pte);
1271 if (!page)
1272 return NULL;
1273
1274 if (PageReserved(page))
1275 return NULL;
1276
1277 nid = page_to_nid(page);
1278 if (!node_isset(nid, node_states[N_MEMORY]))
1279 return NULL;
1280
1281 return page;
1282 }
1283
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1284 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1285 unsigned long end, struct mm_walk *walk)
1286 {
1287 struct numa_maps *md;
1288 spinlock_t *ptl;
1289 pte_t *orig_pte;
1290 pte_t *pte;
1291
1292 md = walk->private;
1293
1294 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1295 pte_t huge_pte = *(pte_t *)pmd;
1296 struct page *page;
1297
1298 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1299 if (page)
1300 gather_stats(page, md, pte_dirty(huge_pte),
1301 HPAGE_PMD_SIZE/PAGE_SIZE);
1302 spin_unlock(&walk->mm->page_table_lock);
1303 return 0;
1304 }
1305
1306 if (pmd_trans_unstable(pmd))
1307 return 0;
1308 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1309 do {
1310 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1311 if (!page)
1312 continue;
1313 gather_stats(page, md, pte_dirty(*pte), 1);
1314
1315 } while (pte++, addr += PAGE_SIZE, addr != end);
1316 pte_unmap_unlock(orig_pte, ptl);
1317 return 0;
1318 }
1319 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetbl_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1320 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1321 unsigned long addr, unsigned long end, struct mm_walk *walk)
1322 {
1323 struct numa_maps *md;
1324 struct page *page;
1325
1326 if (pte_none(*pte))
1327 return 0;
1328
1329 page = pte_page(*pte);
1330 if (!page)
1331 return 0;
1332
1333 md = walk->private;
1334 gather_stats(page, md, pte_dirty(*pte), 1);
1335 return 0;
1336 }
1337
1338 #else
gather_hugetbl_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1339 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1340 unsigned long addr, unsigned long end, struct mm_walk *walk)
1341 {
1342 return 0;
1343 }
1344 #endif
1345
1346 /*
1347 * Display pages allocated per node and memory policy via /proc.
1348 */
show_numa_map(struct seq_file * m,void * v,int is_pid)1349 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1350 {
1351 struct numa_maps_private *numa_priv = m->private;
1352 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1353 struct vm_area_struct *vma = v;
1354 struct numa_maps *md = &numa_priv->md;
1355 struct file *file = vma->vm_file;
1356 struct task_struct *task = proc_priv->task;
1357 struct mm_struct *mm = vma->vm_mm;
1358 struct mm_walk walk = {};
1359 struct mempolicy *pol;
1360 int n;
1361 char buffer[50];
1362
1363 if (!mm)
1364 return 0;
1365
1366 /* Ensure we start with an empty set of numa_maps statistics. */
1367 memset(md, 0, sizeof(*md));
1368
1369 md->vma = vma;
1370
1371 walk.hugetlb_entry = gather_hugetbl_stats;
1372 walk.pmd_entry = gather_pte_stats;
1373 walk.private = md;
1374 walk.mm = mm;
1375
1376 pol = get_vma_policy(task, vma, vma->vm_start);
1377 mpol_to_str(buffer, sizeof(buffer), pol);
1378 mpol_cond_put(pol);
1379
1380 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1381
1382 if (file) {
1383 seq_printf(m, " file=");
1384 seq_path(m, &file->f_path, "\n\t= ");
1385 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1386 seq_printf(m, " heap");
1387 } else {
1388 pid_t tid = vm_is_stack(task, vma, is_pid);
1389 if (tid != 0) {
1390 /*
1391 * Thread stack in /proc/PID/task/TID/maps or
1392 * the main process stack.
1393 */
1394 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1395 vma->vm_end >= mm->start_stack))
1396 seq_printf(m, " stack");
1397 else
1398 seq_printf(m, " stack:%d", tid);
1399 }
1400 }
1401
1402 if (is_vm_hugetlb_page(vma))
1403 seq_printf(m, " huge");
1404
1405 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1406
1407 if (!md->pages)
1408 goto out;
1409
1410 if (md->anon)
1411 seq_printf(m, " anon=%lu", md->anon);
1412
1413 if (md->dirty)
1414 seq_printf(m, " dirty=%lu", md->dirty);
1415
1416 if (md->pages != md->anon && md->pages != md->dirty)
1417 seq_printf(m, " mapped=%lu", md->pages);
1418
1419 if (md->mapcount_max > 1)
1420 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1421
1422 if (md->swapcache)
1423 seq_printf(m, " swapcache=%lu", md->swapcache);
1424
1425 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1426 seq_printf(m, " active=%lu", md->active);
1427
1428 if (md->writeback)
1429 seq_printf(m, " writeback=%lu", md->writeback);
1430
1431 for_each_node_state(n, N_MEMORY)
1432 if (md->node[n])
1433 seq_printf(m, " N%d=%lu", n, md->node[n]);
1434 out:
1435 seq_putc(m, '\n');
1436
1437 if (m->count < m->size)
1438 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1439 return 0;
1440 }
1441
show_pid_numa_map(struct seq_file * m,void * v)1442 static int show_pid_numa_map(struct seq_file *m, void *v)
1443 {
1444 return show_numa_map(m, v, 1);
1445 }
1446
show_tid_numa_map(struct seq_file * m,void * v)1447 static int show_tid_numa_map(struct seq_file *m, void *v)
1448 {
1449 return show_numa_map(m, v, 0);
1450 }
1451
1452 static const struct seq_operations proc_pid_numa_maps_op = {
1453 .start = m_start,
1454 .next = m_next,
1455 .stop = m_stop,
1456 .show = show_pid_numa_map,
1457 };
1458
1459 static const struct seq_operations proc_tid_numa_maps_op = {
1460 .start = m_start,
1461 .next = m_next,
1462 .stop = m_stop,
1463 .show = show_tid_numa_map,
1464 };
1465
numa_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)1466 static int numa_maps_open(struct inode *inode, struct file *file,
1467 const struct seq_operations *ops)
1468 {
1469 struct numa_maps_private *priv;
1470 int ret = -ENOMEM;
1471 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1472 if (priv) {
1473 priv->proc_maps.pid = proc_pid(inode);
1474 ret = seq_open(file, ops);
1475 if (!ret) {
1476 struct seq_file *m = file->private_data;
1477 m->private = priv;
1478 } else {
1479 kfree(priv);
1480 }
1481 }
1482 return ret;
1483 }
1484
pid_numa_maps_open(struct inode * inode,struct file * file)1485 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1486 {
1487 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1488 }
1489
tid_numa_maps_open(struct inode * inode,struct file * file)1490 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1491 {
1492 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1493 }
1494
1495 const struct file_operations proc_pid_numa_maps_operations = {
1496 .open = pid_numa_maps_open,
1497 .read = seq_read,
1498 .llseek = seq_lseek,
1499 .release = seq_release_private,
1500 };
1501
1502 const struct file_operations proc_tid_numa_maps_operations = {
1503 .open = tid_numa_maps_open,
1504 .read = seq_read,
1505 .llseek = seq_lseek,
1506 .release = seq_release_private,
1507 };
1508 #endif /* CONFIG_NUMA */
1509