• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corporation, 2001
19  *
20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
21  *
22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24  * Papers:
25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27  *
28  * For detailed explanation of Read-Copy Update mechanism see -
29  *		http://lse.sourceforge.net/locking/rcupdate.html
30  *
31  */
32 
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35 
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51 
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 				      struct rcu_head *rhp,
57 				      unsigned long secs,
58 				      unsigned long c_old,
59 				      unsigned long c);
60 #else
rcutorture_record_test_transition(void)61 static inline void rcutorture_record_test_transition(void)
62 {
63 }
rcutorture_record_progress(unsigned long vernum)64 static inline void rcutorture_record_progress(unsigned long vernum)
65 {
66 }
67 #ifdef CONFIG_RCU_TRACE
68 extern void do_trace_rcu_torture_read(char *rcutorturename,
69 				      struct rcu_head *rhp,
70 				      unsigned long secs,
71 				      unsigned long c_old,
72 				      unsigned long c);
73 #else
74 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
75 	do { } while (0)
76 #endif
77 #endif
78 
79 #define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
80 #define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
81 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
82 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
83 #define ulong2long(a)		(*(long *)(&(a)))
84 
85 /* Exported common interfaces */
86 
87 #ifdef CONFIG_PREEMPT_RCU
88 
89 /**
90  * call_rcu() - Queue an RCU callback for invocation after a grace period.
91  * @head: structure to be used for queueing the RCU updates.
92  * @func: actual callback function to be invoked after the grace period
93  *
94  * The callback function will be invoked some time after a full grace
95  * period elapses, in other words after all pre-existing RCU read-side
96  * critical sections have completed.  However, the callback function
97  * might well execute concurrently with RCU read-side critical sections
98  * that started after call_rcu() was invoked.  RCU read-side critical
99  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
100  * and may be nested.
101  *
102  * Note that all CPUs must agree that the grace period extended beyond
103  * all pre-existing RCU read-side critical section.  On systems with more
104  * than one CPU, this means that when "func()" is invoked, each CPU is
105  * guaranteed to have executed a full memory barrier since the end of its
106  * last RCU read-side critical section whose beginning preceded the call
107  * to call_rcu().  It also means that each CPU executing an RCU read-side
108  * critical section that continues beyond the start of "func()" must have
109  * executed a memory barrier after the call_rcu() but before the beginning
110  * of that RCU read-side critical section.  Note that these guarantees
111  * include CPUs that are offline, idle, or executing in user mode, as
112  * well as CPUs that are executing in the kernel.
113  *
114  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
115  * resulting RCU callback function "func()", then both CPU A and CPU B are
116  * guaranteed to execute a full memory barrier during the time interval
117  * between the call to call_rcu() and the invocation of "func()" -- even
118  * if CPU A and CPU B are the same CPU (but again only if the system has
119  * more than one CPU).
120  */
121 extern void call_rcu(struct rcu_head *head,
122 			      void (*func)(struct rcu_head *head));
123 
124 #else /* #ifdef CONFIG_PREEMPT_RCU */
125 
126 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
127 #define	call_rcu	call_rcu_sched
128 
129 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
130 
131 /**
132  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
133  * @head: structure to be used for queueing the RCU updates.
134  * @func: actual callback function to be invoked after the grace period
135  *
136  * The callback function will be invoked some time after a full grace
137  * period elapses, in other words after all currently executing RCU
138  * read-side critical sections have completed. call_rcu_bh() assumes
139  * that the read-side critical sections end on completion of a softirq
140  * handler. This means that read-side critical sections in process
141  * context must not be interrupted by softirqs. This interface is to be
142  * used when most of the read-side critical sections are in softirq context.
143  * RCU read-side critical sections are delimited by :
144  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
145  *  OR
146  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
147  *  These may be nested.
148  *
149  * See the description of call_rcu() for more detailed information on
150  * memory ordering guarantees.
151  */
152 extern void call_rcu_bh(struct rcu_head *head,
153 			void (*func)(struct rcu_head *head));
154 
155 /**
156  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
157  * @head: structure to be used for queueing the RCU updates.
158  * @func: actual callback function to be invoked after the grace period
159  *
160  * The callback function will be invoked some time after a full grace
161  * period elapses, in other words after all currently executing RCU
162  * read-side critical sections have completed. call_rcu_sched() assumes
163  * that the read-side critical sections end on enabling of preemption
164  * or on voluntary preemption.
165  * RCU read-side critical sections are delimited by :
166  *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
167  *  OR
168  *  anything that disables preemption.
169  *  These may be nested.
170  *
171  * See the description of call_rcu() for more detailed information on
172  * memory ordering guarantees.
173  */
174 extern void call_rcu_sched(struct rcu_head *head,
175 			   void (*func)(struct rcu_head *rcu));
176 
177 extern void synchronize_sched(void);
178 
179 #ifdef CONFIG_PREEMPT_RCU
180 
181 extern void __rcu_read_lock(void);
182 extern void __rcu_read_unlock(void);
183 extern void rcu_read_unlock_special(struct task_struct *t);
184 void synchronize_rcu(void);
185 
186 /*
187  * Defined as a macro as it is a very low level header included from
188  * areas that don't even know about current.  This gives the rcu_read_lock()
189  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
190  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
191  */
192 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
193 
194 #else /* #ifdef CONFIG_PREEMPT_RCU */
195 
__rcu_read_lock(void)196 static inline void __rcu_read_lock(void)
197 {
198 	preempt_disable();
199 }
200 
__rcu_read_unlock(void)201 static inline void __rcu_read_unlock(void)
202 {
203 	preempt_enable();
204 }
205 
synchronize_rcu(void)206 static inline void synchronize_rcu(void)
207 {
208 	synchronize_sched();
209 }
210 
rcu_preempt_depth(void)211 static inline int rcu_preempt_depth(void)
212 {
213 	return 0;
214 }
215 
216 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
217 
218 /* Internal to kernel */
219 extern void rcu_sched_qs(int cpu);
220 extern void rcu_bh_qs(int cpu);
221 extern void rcu_check_callbacks(int cpu, int user);
222 struct notifier_block;
223 extern void rcu_idle_enter(void);
224 extern void rcu_idle_exit(void);
225 extern void rcu_irq_enter(void);
226 extern void rcu_irq_exit(void);
227 
228 #ifdef CONFIG_RCU_USER_QS
229 extern void rcu_user_enter(void);
230 extern void rcu_user_exit(void);
231 extern void rcu_user_enter_after_irq(void);
232 extern void rcu_user_exit_after_irq(void);
233 #else
rcu_user_enter(void)234 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)235 static inline void rcu_user_exit(void) { }
rcu_user_enter_after_irq(void)236 static inline void rcu_user_enter_after_irq(void) { }
rcu_user_exit_after_irq(void)237 static inline void rcu_user_exit_after_irq(void) { }
rcu_user_hooks_switch(struct task_struct * prev,struct task_struct * next)238 static inline void rcu_user_hooks_switch(struct task_struct *prev,
239 					 struct task_struct *next) { }
240 #endif /* CONFIG_RCU_USER_QS */
241 
242 extern void exit_rcu(void);
243 
244 /**
245  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
246  * @a: Code that RCU needs to pay attention to.
247  *
248  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
249  * in the inner idle loop, that is, between the rcu_idle_enter() and
250  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
251  * critical sections.  However, things like powertop need tracepoints
252  * in the inner idle loop.
253  *
254  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
255  * will tell RCU that it needs to pay attending, invoke its argument
256  * (in this example, a call to the do_something_with_RCU() function),
257  * and then tell RCU to go back to ignoring this CPU.  It is permissible
258  * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
259  * quite limited.  If deeper nesting is required, it will be necessary
260  * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
261  */
262 #define RCU_NONIDLE(a) \
263 	do { \
264 		rcu_irq_enter(); \
265 		do { a; } while (0); \
266 		rcu_irq_exit(); \
267 	} while (0)
268 
269 /*
270  * Infrastructure to implement the synchronize_() primitives in
271  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
272  */
273 
274 typedef void call_rcu_func_t(struct rcu_head *head,
275 			     void (*func)(struct rcu_head *head));
276 void wait_rcu_gp(call_rcu_func_t crf);
277 
278 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
279 #include <linux/rcutree.h>
280 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
281 #include <linux/rcutiny.h>
282 #else
283 #error "Unknown RCU implementation specified to kernel configuration"
284 #endif
285 
286 /*
287  * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
288  * initialization and destruction of rcu_head on the stack. rcu_head structures
289  * allocated dynamically in the heap or defined statically don't need any
290  * initialization.
291  */
292 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
293 extern void init_rcu_head_on_stack(struct rcu_head *head);
294 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
295 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head_on_stack(struct rcu_head * head)296 static inline void init_rcu_head_on_stack(struct rcu_head *head)
297 {
298 }
299 
destroy_rcu_head_on_stack(struct rcu_head * head)300 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
301 {
302 }
303 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
304 
305 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
306 extern int rcu_is_cpu_idle(void);
307 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
308 
309 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
310 bool rcu_lockdep_current_cpu_online(void);
311 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)312 static inline bool rcu_lockdep_current_cpu_online(void)
313 {
314 	return 1;
315 }
316 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
317 
318 #ifdef CONFIG_DEBUG_LOCK_ALLOC
319 
rcu_lock_acquire(struct lockdep_map * map)320 static inline void rcu_lock_acquire(struct lockdep_map *map)
321 {
322 	lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
323 }
324 
rcu_lock_release(struct lockdep_map * map)325 static inline void rcu_lock_release(struct lockdep_map *map)
326 {
327 	lock_release(map, 1, _THIS_IP_);
328 }
329 
330 extern struct lockdep_map rcu_lock_map;
331 extern struct lockdep_map rcu_bh_lock_map;
332 extern struct lockdep_map rcu_sched_lock_map;
333 extern int debug_lockdep_rcu_enabled(void);
334 
335 /**
336  * rcu_read_lock_held() - might we be in RCU read-side critical section?
337  *
338  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
339  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
340  * this assumes we are in an RCU read-side critical section unless it can
341  * prove otherwise.  This is useful for debug checks in functions that
342  * require that they be called within an RCU read-side critical section.
343  *
344  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
345  * and while lockdep is disabled.
346  *
347  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
348  * occur in the same context, for example, it is illegal to invoke
349  * rcu_read_unlock() in process context if the matching rcu_read_lock()
350  * was invoked from within an irq handler.
351  *
352  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
353  * offline from an RCU perspective, so check for those as well.
354  */
rcu_read_lock_held(void)355 static inline int rcu_read_lock_held(void)
356 {
357 	if (!debug_lockdep_rcu_enabled())
358 		return 1;
359 	if (rcu_is_cpu_idle())
360 		return 0;
361 	if (!rcu_lockdep_current_cpu_online())
362 		return 0;
363 	return lock_is_held(&rcu_lock_map);
364 }
365 
366 /*
367  * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
368  * hell.
369  */
370 extern int rcu_read_lock_bh_held(void);
371 
372 /**
373  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
374  *
375  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
376  * RCU-sched read-side critical section.  In absence of
377  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
378  * critical section unless it can prove otherwise.  Note that disabling
379  * of preemption (including disabling irqs) counts as an RCU-sched
380  * read-side critical section.  This is useful for debug checks in functions
381  * that required that they be called within an RCU-sched read-side
382  * critical section.
383  *
384  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
385  * and while lockdep is disabled.
386  *
387  * Note that if the CPU is in the idle loop from an RCU point of
388  * view (ie: that we are in the section between rcu_idle_enter() and
389  * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
390  * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
391  * that are in such a section, considering these as in extended quiescent
392  * state, so such a CPU is effectively never in an RCU read-side critical
393  * section regardless of what RCU primitives it invokes.  This state of
394  * affairs is required --- we need to keep an RCU-free window in idle
395  * where the CPU may possibly enter into low power mode. This way we can
396  * notice an extended quiescent state to other CPUs that started a grace
397  * period. Otherwise we would delay any grace period as long as we run in
398  * the idle task.
399  *
400  * Similarly, we avoid claiming an SRCU read lock held if the current
401  * CPU is offline.
402  */
403 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)404 static inline int rcu_read_lock_sched_held(void)
405 {
406 	int lockdep_opinion = 0;
407 
408 	if (!debug_lockdep_rcu_enabled())
409 		return 1;
410 	if (rcu_is_cpu_idle())
411 		return 0;
412 	if (!rcu_lockdep_current_cpu_online())
413 		return 0;
414 	if (debug_locks)
415 		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
416 	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
417 }
418 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)419 static inline int rcu_read_lock_sched_held(void)
420 {
421 	return 1;
422 }
423 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
424 
425 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
426 
427 # define rcu_lock_acquire(a)		do { } while (0)
428 # define rcu_lock_release(a)		do { } while (0)
429 
rcu_read_lock_held(void)430 static inline int rcu_read_lock_held(void)
431 {
432 	return 1;
433 }
434 
rcu_read_lock_bh_held(void)435 static inline int rcu_read_lock_bh_held(void)
436 {
437 	return 1;
438 }
439 
440 #ifdef CONFIG_PREEMPT_COUNT
rcu_read_lock_sched_held(void)441 static inline int rcu_read_lock_sched_held(void)
442 {
443 	return preempt_count() != 0 || irqs_disabled();
444 }
445 #else /* #ifdef CONFIG_PREEMPT_COUNT */
rcu_read_lock_sched_held(void)446 static inline int rcu_read_lock_sched_held(void)
447 {
448 	return 1;
449 }
450 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
451 
452 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
453 
454 #ifdef CONFIG_PROVE_RCU
455 
456 extern int rcu_my_thread_group_empty(void);
457 
458 /**
459  * rcu_lockdep_assert - emit lockdep splat if specified condition not met
460  * @c: condition to check
461  * @s: informative message
462  */
463 #define rcu_lockdep_assert(c, s)					\
464 	do {								\
465 		static bool __section(.data.unlikely) __warned;		\
466 		if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {	\
467 			__warned = true;				\
468 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
469 		}							\
470 	} while (0)
471 
472 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)473 static inline void rcu_preempt_sleep_check(void)
474 {
475 	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
476 			   "Illegal context switch in RCU read-side critical section");
477 }
478 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)479 static inline void rcu_preempt_sleep_check(void)
480 {
481 }
482 #endif /* #else #ifdef CONFIG_PROVE_RCU */
483 
484 #define rcu_sleep_check()						\
485 	do {								\
486 		rcu_preempt_sleep_check();				\
487 		rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),	\
488 				   "Illegal context switch in RCU-bh"	\
489 				   " read-side critical section");	\
490 		rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),	\
491 				   "Illegal context switch in RCU-sched"\
492 				   " read-side critical section");	\
493 	} while (0)
494 
495 #else /* #ifdef CONFIG_PROVE_RCU */
496 
497 #define rcu_lockdep_assert(c, s) do { } while (0)
498 #define rcu_sleep_check() do { } while (0)
499 
500 #endif /* #else #ifdef CONFIG_PROVE_RCU */
501 
502 /*
503  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
504  * and rcu_assign_pointer().  Some of these could be folded into their
505  * callers, but they are left separate in order to ease introduction of
506  * multiple flavors of pointers to match the multiple flavors of RCU
507  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
508  * the future.
509  */
510 
511 #ifdef __CHECKER__
512 #define rcu_dereference_sparse(p, space) \
513 	((void)(((typeof(*p) space *)p) == p))
514 #else /* #ifdef __CHECKER__ */
515 #define rcu_dereference_sparse(p, space)
516 #endif /* #else #ifdef __CHECKER__ */
517 
518 #define __rcu_access_pointer(p, space) \
519 	({ \
520 		typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
521 		rcu_dereference_sparse(p, space); \
522 		((typeof(*p) __force __kernel *)(_________p1)); \
523 	})
524 #define __rcu_dereference_check(p, c, space) \
525 	({ \
526 		typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
527 		rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
528 				      " usage"); \
529 		rcu_dereference_sparse(p, space); \
530 		smp_read_barrier_depends(); \
531 		((typeof(*p) __force __kernel *)(_________p1)); \
532 	})
533 #define __rcu_dereference_protected(p, c, space) \
534 	({ \
535 		rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
536 				      " usage"); \
537 		rcu_dereference_sparse(p, space); \
538 		((typeof(*p) __force __kernel *)(p)); \
539 	})
540 
541 #define __rcu_access_index(p, space) \
542 	({ \
543 		typeof(p) _________p1 = ACCESS_ONCE(p); \
544 		rcu_dereference_sparse(p, space); \
545 		(_________p1); \
546 	})
547 #define __rcu_dereference_index_check(p, c) \
548 	({ \
549 		typeof(p) _________p1 = ACCESS_ONCE(p); \
550 		rcu_lockdep_assert(c, \
551 				   "suspicious rcu_dereference_index_check()" \
552 				   " usage"); \
553 		smp_read_barrier_depends(); \
554 		(_________p1); \
555 	})
556 #define __rcu_assign_pointer(p, v, space) \
557 	do { \
558 		smp_wmb(); \
559 		(p) = (typeof(*v) __force space *)(v); \
560 	} while (0)
561 
562 
563 /**
564  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
565  * @p: The pointer to read
566  *
567  * Return the value of the specified RCU-protected pointer, but omit the
568  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
569  * when the value of this pointer is accessed, but the pointer is not
570  * dereferenced, for example, when testing an RCU-protected pointer against
571  * NULL.  Although rcu_access_pointer() may also be used in cases where
572  * update-side locks prevent the value of the pointer from changing, you
573  * should instead use rcu_dereference_protected() for this use case.
574  *
575  * It is also permissible to use rcu_access_pointer() when read-side
576  * access to the pointer was removed at least one grace period ago, as
577  * is the case in the context of the RCU callback that is freeing up
578  * the data, or after a synchronize_rcu() returns.  This can be useful
579  * when tearing down multi-linked structures after a grace period
580  * has elapsed.
581  */
582 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
583 
584 /**
585  * rcu_dereference_check() - rcu_dereference with debug checking
586  * @p: The pointer to read, prior to dereferencing
587  * @c: The conditions under which the dereference will take place
588  *
589  * Do an rcu_dereference(), but check that the conditions under which the
590  * dereference will take place are correct.  Typically the conditions
591  * indicate the various locking conditions that should be held at that
592  * point.  The check should return true if the conditions are satisfied.
593  * An implicit check for being in an RCU read-side critical section
594  * (rcu_read_lock()) is included.
595  *
596  * For example:
597  *
598  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
599  *
600  * could be used to indicate to lockdep that foo->bar may only be dereferenced
601  * if either rcu_read_lock() is held, or that the lock required to replace
602  * the bar struct at foo->bar is held.
603  *
604  * Note that the list of conditions may also include indications of when a lock
605  * need not be held, for example during initialisation or destruction of the
606  * target struct:
607  *
608  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
609  *					      atomic_read(&foo->usage) == 0);
610  *
611  * Inserts memory barriers on architectures that require them
612  * (currently only the Alpha), prevents the compiler from refetching
613  * (and from merging fetches), and, more importantly, documents exactly
614  * which pointers are protected by RCU and checks that the pointer is
615  * annotated as __rcu.
616  */
617 #define rcu_dereference_check(p, c) \
618 	__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
619 
620 /**
621  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
622  * @p: The pointer to read, prior to dereferencing
623  * @c: The conditions under which the dereference will take place
624  *
625  * This is the RCU-bh counterpart to rcu_dereference_check().
626  */
627 #define rcu_dereference_bh_check(p, c) \
628 	__rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
629 
630 /**
631  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
632  * @p: The pointer to read, prior to dereferencing
633  * @c: The conditions under which the dereference will take place
634  *
635  * This is the RCU-sched counterpart to rcu_dereference_check().
636  */
637 #define rcu_dereference_sched_check(p, c) \
638 	__rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
639 				__rcu)
640 
641 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
642 
643 /*
644  * The tracing infrastructure traces RCU (we want that), but unfortunately
645  * some of the RCU checks causes tracing to lock up the system.
646  *
647  * The tracing version of rcu_dereference_raw() must not call
648  * rcu_read_lock_held().
649  */
650 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
651 
652 /**
653  * rcu_access_index() - fetch RCU index with no dereferencing
654  * @p: The index to read
655  *
656  * Return the value of the specified RCU-protected index, but omit the
657  * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
658  * when the value of this index is accessed, but the index is not
659  * dereferenced, for example, when testing an RCU-protected index against
660  * -1.  Although rcu_access_index() may also be used in cases where
661  * update-side locks prevent the value of the index from changing, you
662  * should instead use rcu_dereference_index_protected() for this use case.
663  */
664 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
665 
666 /**
667  * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
668  * @p: The pointer to read, prior to dereferencing
669  * @c: The conditions under which the dereference will take place
670  *
671  * Similar to rcu_dereference_check(), but omits the sparse checking.
672  * This allows rcu_dereference_index_check() to be used on integers,
673  * which can then be used as array indices.  Attempting to use
674  * rcu_dereference_check() on an integer will give compiler warnings
675  * because the sparse address-space mechanism relies on dereferencing
676  * the RCU-protected pointer.  Dereferencing integers is not something
677  * that even gcc will put up with.
678  *
679  * Note that this function does not implicitly check for RCU read-side
680  * critical sections.  If this function gains lots of uses, it might
681  * make sense to provide versions for each flavor of RCU, but it does
682  * not make sense as of early 2010.
683  */
684 #define rcu_dereference_index_check(p, c) \
685 	__rcu_dereference_index_check((p), (c))
686 
687 /**
688  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
689  * @p: The pointer to read, prior to dereferencing
690  * @c: The conditions under which the dereference will take place
691  *
692  * Return the value of the specified RCU-protected pointer, but omit
693  * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
694  * is useful in cases where update-side locks prevent the value of the
695  * pointer from changing.  Please note that this primitive does -not-
696  * prevent the compiler from repeating this reference or combining it
697  * with other references, so it should not be used without protection
698  * of appropriate locks.
699  *
700  * This function is only for update-side use.  Using this function
701  * when protected only by rcu_read_lock() will result in infrequent
702  * but very ugly failures.
703  */
704 #define rcu_dereference_protected(p, c) \
705 	__rcu_dereference_protected((p), (c), __rcu)
706 
707 
708 /**
709  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
710  * @p: The pointer to read, prior to dereferencing
711  *
712  * This is a simple wrapper around rcu_dereference_check().
713  */
714 #define rcu_dereference(p) rcu_dereference_check(p, 0)
715 
716 /**
717  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
718  * @p: The pointer to read, prior to dereferencing
719  *
720  * Makes rcu_dereference_check() do the dirty work.
721  */
722 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
723 
724 /**
725  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
726  * @p: The pointer to read, prior to dereferencing
727  *
728  * Makes rcu_dereference_check() do the dirty work.
729  */
730 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
731 
732 /**
733  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
734  *
735  * When synchronize_rcu() is invoked on one CPU while other CPUs
736  * are within RCU read-side critical sections, then the
737  * synchronize_rcu() is guaranteed to block until after all the other
738  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
739  * on one CPU while other CPUs are within RCU read-side critical
740  * sections, invocation of the corresponding RCU callback is deferred
741  * until after the all the other CPUs exit their critical sections.
742  *
743  * Note, however, that RCU callbacks are permitted to run concurrently
744  * with new RCU read-side critical sections.  One way that this can happen
745  * is via the following sequence of events: (1) CPU 0 enters an RCU
746  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
747  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
748  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
749  * callback is invoked.  This is legal, because the RCU read-side critical
750  * section that was running concurrently with the call_rcu() (and which
751  * therefore might be referencing something that the corresponding RCU
752  * callback would free up) has completed before the corresponding
753  * RCU callback is invoked.
754  *
755  * RCU read-side critical sections may be nested.  Any deferred actions
756  * will be deferred until the outermost RCU read-side critical section
757  * completes.
758  *
759  * You can avoid reading and understanding the next paragraph by
760  * following this rule: don't put anything in an rcu_read_lock() RCU
761  * read-side critical section that would block in a !PREEMPT kernel.
762  * But if you want the full story, read on!
763  *
764  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
765  * is illegal to block while in an RCU read-side critical section.  In
766  * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
767  * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
768  * be preempted, but explicit blocking is illegal.  Finally, in preemptible
769  * RCU implementations in real-time (with -rt patchset) kernel builds,
770  * RCU read-side critical sections may be preempted and they may also
771  * block, but only when acquiring spinlocks that are subject to priority
772  * inheritance.
773  */
rcu_read_lock(void)774 static inline void rcu_read_lock(void)
775 {
776 	__rcu_read_lock();
777 	__acquire(RCU);
778 	rcu_lock_acquire(&rcu_lock_map);
779 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
780 			   "rcu_read_lock() used illegally while idle");
781 }
782 
783 /*
784  * So where is rcu_write_lock()?  It does not exist, as there is no
785  * way for writers to lock out RCU readers.  This is a feature, not
786  * a bug -- this property is what provides RCU's performance benefits.
787  * Of course, writers must coordinate with each other.  The normal
788  * spinlock primitives work well for this, but any other technique may be
789  * used as well.  RCU does not care how the writers keep out of each
790  * others' way, as long as they do so.
791  */
792 
793 /**
794  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
795  *
796  * See rcu_read_lock() for more information.
797  */
rcu_read_unlock(void)798 static inline void rcu_read_unlock(void)
799 {
800 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
801 			   "rcu_read_unlock() used illegally while idle");
802 	rcu_lock_release(&rcu_lock_map);
803 	__release(RCU);
804 	__rcu_read_unlock();
805 }
806 
807 /**
808  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
809  *
810  * This is equivalent of rcu_read_lock(), but to be used when updates
811  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
812  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
813  * softirq handler to be a quiescent state, a process in RCU read-side
814  * critical section must be protected by disabling softirqs. Read-side
815  * critical sections in interrupt context can use just rcu_read_lock(),
816  * though this should at least be commented to avoid confusing people
817  * reading the code.
818  *
819  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
820  * must occur in the same context, for example, it is illegal to invoke
821  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
822  * was invoked from some other task.
823  */
rcu_read_lock_bh(void)824 static inline void rcu_read_lock_bh(void)
825 {
826 	local_bh_disable();
827 	__acquire(RCU_BH);
828 	rcu_lock_acquire(&rcu_bh_lock_map);
829 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
830 			   "rcu_read_lock_bh() used illegally while idle");
831 }
832 
833 /*
834  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
835  *
836  * See rcu_read_lock_bh() for more information.
837  */
rcu_read_unlock_bh(void)838 static inline void rcu_read_unlock_bh(void)
839 {
840 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
841 			   "rcu_read_unlock_bh() used illegally while idle");
842 	rcu_lock_release(&rcu_bh_lock_map);
843 	__release(RCU_BH);
844 	local_bh_enable();
845 }
846 
847 /**
848  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
849  *
850  * This is equivalent of rcu_read_lock(), but to be used when updates
851  * are being done using call_rcu_sched() or synchronize_rcu_sched().
852  * Read-side critical sections can also be introduced by anything that
853  * disables preemption, including local_irq_disable() and friends.
854  *
855  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
856  * must occur in the same context, for example, it is illegal to invoke
857  * rcu_read_unlock_sched() from process context if the matching
858  * rcu_read_lock_sched() was invoked from an NMI handler.
859  */
rcu_read_lock_sched(void)860 static inline void rcu_read_lock_sched(void)
861 {
862 	preempt_disable();
863 	__acquire(RCU_SCHED);
864 	rcu_lock_acquire(&rcu_sched_lock_map);
865 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
866 			   "rcu_read_lock_sched() used illegally while idle");
867 }
868 
869 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)870 static inline notrace void rcu_read_lock_sched_notrace(void)
871 {
872 	preempt_disable_notrace();
873 	__acquire(RCU_SCHED);
874 }
875 
876 /*
877  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
878  *
879  * See rcu_read_lock_sched for more information.
880  */
rcu_read_unlock_sched(void)881 static inline void rcu_read_unlock_sched(void)
882 {
883 	rcu_lockdep_assert(!rcu_is_cpu_idle(),
884 			   "rcu_read_unlock_sched() used illegally while idle");
885 	rcu_lock_release(&rcu_sched_lock_map);
886 	__release(RCU_SCHED);
887 	preempt_enable();
888 }
889 
890 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)891 static inline notrace void rcu_read_unlock_sched_notrace(void)
892 {
893 	__release(RCU_SCHED);
894 	preempt_enable_notrace();
895 }
896 
897 /**
898  * rcu_assign_pointer() - assign to RCU-protected pointer
899  * @p: pointer to assign to
900  * @v: value to assign (publish)
901  *
902  * Assigns the specified value to the specified RCU-protected
903  * pointer, ensuring that any concurrent RCU readers will see
904  * any prior initialization.
905  *
906  * Inserts memory barriers on architectures that require them
907  * (which is most of them), and also prevents the compiler from
908  * reordering the code that initializes the structure after the pointer
909  * assignment.  More importantly, this call documents which pointers
910  * will be dereferenced by RCU read-side code.
911  *
912  * In some special cases, you may use RCU_INIT_POINTER() instead
913  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
914  * to the fact that it does not constrain either the CPU or the compiler.
915  * That said, using RCU_INIT_POINTER() when you should have used
916  * rcu_assign_pointer() is a very bad thing that results in
917  * impossible-to-diagnose memory corruption.  So please be careful.
918  * See the RCU_INIT_POINTER() comment header for details.
919  */
920 #define rcu_assign_pointer(p, v) \
921 	__rcu_assign_pointer((p), (v), __rcu)
922 
923 /**
924  * RCU_INIT_POINTER() - initialize an RCU protected pointer
925  *
926  * Initialize an RCU-protected pointer in special cases where readers
927  * do not need ordering constraints on the CPU or the compiler.  These
928  * special cases are:
929  *
930  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
931  * 2.	The caller has taken whatever steps are required to prevent
932  *	RCU readers from concurrently accessing this pointer -or-
933  * 3.	The referenced data structure has already been exposed to
934  *	readers either at compile time or via rcu_assign_pointer() -and-
935  *	a.	You have not made -any- reader-visible changes to
936  *		this structure since then -or-
937  *	b.	It is OK for readers accessing this structure from its
938  *		new location to see the old state of the structure.  (For
939  *		example, the changes were to statistical counters or to
940  *		other state where exact synchronization is not required.)
941  *
942  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
943  * result in impossible-to-diagnose memory corruption.  As in the structures
944  * will look OK in crash dumps, but any concurrent RCU readers might
945  * see pre-initialized values of the referenced data structure.  So
946  * please be very careful how you use RCU_INIT_POINTER()!!!
947  *
948  * If you are creating an RCU-protected linked structure that is accessed
949  * by a single external-to-structure RCU-protected pointer, then you may
950  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
951  * pointers, but you must use rcu_assign_pointer() to initialize the
952  * external-to-structure pointer -after- you have completely initialized
953  * the reader-accessible portions of the linked structure.
954  */
955 #define RCU_INIT_POINTER(p, v) \
956 	do { \
957 		p = (typeof(*v) __force __rcu *)(v); \
958 	} while (0)
959 
960 /**
961  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
962  *
963  * GCC-style initialization for an RCU-protected pointer in a structure field.
964  */
965 #define RCU_POINTER_INITIALIZER(p, v) \
966 		.p = (typeof(*v) __force __rcu *)(v)
967 
968 /*
969  * Does the specified offset indicate that the corresponding rcu_head
970  * structure can be handled by kfree_rcu()?
971  */
972 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
973 
974 /*
975  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
976  */
977 #define __kfree_rcu(head, offset) \
978 	do { \
979 		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
980 		kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
981 	} while (0)
982 
983 /**
984  * kfree_rcu() - kfree an object after a grace period.
985  * @ptr:	pointer to kfree
986  * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
987  *
988  * Many rcu callbacks functions just call kfree() on the base structure.
989  * These functions are trivial, but their size adds up, and furthermore
990  * when they are used in a kernel module, that module must invoke the
991  * high-latency rcu_barrier() function at module-unload time.
992  *
993  * The kfree_rcu() function handles this issue.  Rather than encoding a
994  * function address in the embedded rcu_head structure, kfree_rcu() instead
995  * encodes the offset of the rcu_head structure within the base structure.
996  * Because the functions are not allowed in the low-order 4096 bytes of
997  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
998  * If the offset is larger than 4095 bytes, a compile-time error will
999  * be generated in __kfree_rcu().  If this error is triggered, you can
1000  * either fall back to use of call_rcu() or rearrange the structure to
1001  * position the rcu_head structure into the first 4096 bytes.
1002  *
1003  * Note that the allowable offset might decrease in the future, for example,
1004  * to allow something like kmem_cache_free_rcu().
1005  *
1006  * The BUILD_BUG_ON check must not involve any function calls, hence the
1007  * checks are done in macros here.
1008  */
1009 #define kfree_rcu(ptr, rcu_head)					\
1010 	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1011 
1012 #ifdef CONFIG_RCU_NOCB_CPU
1013 extern bool rcu_is_nocb_cpu(int cpu);
1014 #else
rcu_is_nocb_cpu(int cpu)1015 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1016 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1017 
1018 
1019 #endif /* __LINUX_RCUPDATE_H */
1020