• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 static int remove_and_add_spares(struct mddev *mddev,
76 				 struct md_rdev *this);
77 
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98 
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)101 static inline int speed_min(struct mddev *mddev)
102 {
103 	return mddev->sync_speed_min ?
104 		mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106 
speed_max(struct mddev * mddev)107 static inline int speed_max(struct mddev *mddev)
108 {
109 	return mddev->sync_speed_max ?
110 		mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112 
113 static struct ctl_table_header *raid_table_header;
114 
115 static ctl_table raid_table[] = {
116 	{
117 		.procname	= "speed_limit_min",
118 		.data		= &sysctl_speed_limit_min,
119 		.maxlen		= sizeof(int),
120 		.mode		= S_IRUGO|S_IWUSR,
121 		.proc_handler	= proc_dointvec,
122 	},
123 	{
124 		.procname	= "speed_limit_max",
125 		.data		= &sysctl_speed_limit_max,
126 		.maxlen		= sizeof(int),
127 		.mode		= S_IRUGO|S_IWUSR,
128 		.proc_handler	= proc_dointvec,
129 	},
130 	{ }
131 };
132 
133 static ctl_table raid_dir_table[] = {
134 	{
135 		.procname	= "raid",
136 		.maxlen		= 0,
137 		.mode		= S_IRUGO|S_IXUGO,
138 		.child		= raid_table,
139 	},
140 	{ }
141 };
142 
143 static ctl_table raid_root_table[] = {
144 	{
145 		.procname	= "dev",
146 		.maxlen		= 0,
147 		.mode		= 0555,
148 		.child		= raid_dir_table,
149 	},
150 	{  }
151 };
152 
153 static const struct block_device_operations md_fops;
154 
155 static int start_readonly;
156 
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160 
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 			    struct mddev *mddev)
163 {
164 	struct bio *b;
165 
166 	if (!mddev || !mddev->bio_set)
167 		return bio_alloc(gfp_mask, nr_iovecs);
168 
169 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 	if (!b)
171 		return NULL;
172 	return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175 
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 			    struct mddev *mddev)
178 {
179 	if (!mddev || !mddev->bio_set)
180 		return bio_clone(bio, gfp_mask);
181 
182 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185 
md_trim_bio(struct bio * bio,int offset,int size)186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188 	/* 'bio' is a cloned bio which we need to trim to match
189 	 * the given offset and size.
190 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
191 	 */
192 	int i;
193 	struct bio_vec *bvec;
194 	int sofar = 0;
195 
196 	size <<= 9;
197 	if (offset == 0 && size == bio->bi_size)
198 		return;
199 
200 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201 
202 	bio_advance(bio, offset << 9);
203 
204 	bio->bi_size = size;
205 
206 	/* avoid any complications with bi_idx being non-zero*/
207 	if (bio->bi_idx) {
208 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 		bio->bi_vcnt -= bio->bi_idx;
211 		bio->bi_idx = 0;
212 	}
213 	/* Make sure vcnt and last bv are not too big */
214 	bio_for_each_segment(bvec, bio, i) {
215 		if (sofar + bvec->bv_len > size)
216 			bvec->bv_len = size - sofar;
217 		if (bvec->bv_len == 0) {
218 			bio->bi_vcnt = i;
219 			break;
220 		}
221 		sofar += bvec->bv_len;
222 	}
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225 
226 /*
227  * We have a system wide 'event count' that is incremented
228  * on any 'interesting' event, and readers of /proc/mdstat
229  * can use 'poll' or 'select' to find out when the event
230  * count increases.
231  *
232  * Events are:
233  *  start array, stop array, error, add device, remove device,
234  *  start build, activate spare
235  */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)238 void md_new_event(struct mddev *mddev)
239 {
240 	atomic_inc(&md_event_count);
241 	wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244 
245 /* Alternate version that can be called from interrupts
246  * when calling sysfs_notify isn't needed.
247  */
md_new_event_inintr(struct mddev * mddev)248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250 	atomic_inc(&md_event_count);
251 	wake_up(&md_event_waiters);
252 }
253 
254 /*
255  * Enables to iterate over all existing md arrays
256  * all_mddevs_lock protects this list.
257  */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260 
261 
262 /*
263  * iterates through all used mddevs in the system.
264  * We take care to grab the all_mddevs_lock whenever navigating
265  * the list, and to always hold a refcount when unlocked.
266  * Any code which breaks out of this loop while own
267  * a reference to the current mddev and must mddev_put it.
268  */
269 #define for_each_mddev(_mddev,_tmp)					\
270 									\
271 	for (({ spin_lock(&all_mddevs_lock); 				\
272 		_tmp = all_mddevs.next;					\
273 		_mddev = NULL;});					\
274 	     ({ if (_tmp != &all_mddevs)				\
275 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 		spin_unlock(&all_mddevs_lock);				\
277 		if (_mddev) mddev_put(_mddev);				\
278 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
279 		_tmp != &all_mddevs;});					\
280 	     ({ spin_lock(&all_mddevs_lock);				\
281 		_tmp = _tmp->next;})					\
282 		)
283 
284 
285 /* Rather than calling directly into the personality make_request function,
286  * IO requests come here first so that we can check if the device is
287  * being suspended pending a reconfiguration.
288  * We hold a refcount over the call to ->make_request.  By the time that
289  * call has finished, the bio has been linked into some internal structure
290  * and so is visible to ->quiesce(), so we don't need the refcount any more.
291  */
md_make_request(struct request_queue * q,struct bio * bio)292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294 	const int rw = bio_data_dir(bio);
295 	struct mddev *mddev = q->queuedata;
296 	int cpu;
297 	unsigned int sectors;
298 
299 	if (mddev == NULL || mddev->pers == NULL
300 	    || !mddev->ready) {
301 		bio_io_error(bio);
302 		return;
303 	}
304 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306 		return;
307 	}
308 	smp_rmb(); /* Ensure implications of  'active' are visible */
309 	rcu_read_lock();
310 	if (mddev->suspended) {
311 		DEFINE_WAIT(__wait);
312 		for (;;) {
313 			prepare_to_wait(&mddev->sb_wait, &__wait,
314 					TASK_UNINTERRUPTIBLE);
315 			if (!mddev->suspended)
316 				break;
317 			rcu_read_unlock();
318 			schedule();
319 			rcu_read_lock();
320 		}
321 		finish_wait(&mddev->sb_wait, &__wait);
322 	}
323 	atomic_inc(&mddev->active_io);
324 	rcu_read_unlock();
325 
326 	/*
327 	 * save the sectors now since our bio can
328 	 * go away inside make_request
329 	 */
330 	sectors = bio_sectors(bio);
331 	mddev->pers->make_request(mddev, bio);
332 
333 	cpu = part_stat_lock();
334 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336 	part_stat_unlock();
337 
338 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 		wake_up(&mddev->sb_wait);
340 }
341 
342 /* mddev_suspend makes sure no new requests are submitted
343  * to the device, and that any requests that have been submitted
344  * are completely handled.
345  * Once ->stop is called and completes, the module will be completely
346  * unused.
347  */
mddev_suspend(struct mddev * mddev)348 void mddev_suspend(struct mddev *mddev)
349 {
350 	BUG_ON(mddev->suspended);
351 	mddev->suspended = 1;
352 	synchronize_rcu();
353 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 	mddev->pers->quiesce(mddev, 1);
355 
356 	del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359 
mddev_resume(struct mddev * mddev)360 void mddev_resume(struct mddev *mddev)
361 {
362 	mddev->suspended = 0;
363 	wake_up(&mddev->sb_wait);
364 	mddev->pers->quiesce(mddev, 0);
365 
366 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 	md_wakeup_thread(mddev->thread);
368 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371 
mddev_congested(struct mddev * mddev,int bits)372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374 	return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377 
378 /*
379  * Generic flush handling for md
380  */
381 
md_end_flush(struct bio * bio,int err)382 static void md_end_flush(struct bio *bio, int err)
383 {
384 	struct md_rdev *rdev = bio->bi_private;
385 	struct mddev *mddev = rdev->mddev;
386 
387 	rdev_dec_pending(rdev, mddev);
388 
389 	if (atomic_dec_and_test(&mddev->flush_pending)) {
390 		/* The pre-request flush has finished */
391 		queue_work(md_wq, &mddev->flush_work);
392 	}
393 	bio_put(bio);
394 }
395 
396 static void md_submit_flush_data(struct work_struct *ws);
397 
submit_flushes(struct work_struct * ws)398 static void submit_flushes(struct work_struct *ws)
399 {
400 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 	struct md_rdev *rdev;
402 
403 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 	atomic_set(&mddev->flush_pending, 1);
405 	rcu_read_lock();
406 	rdev_for_each_rcu(rdev, mddev)
407 		if (rdev->raid_disk >= 0 &&
408 		    !test_bit(Faulty, &rdev->flags)) {
409 			/* Take two references, one is dropped
410 			 * when request finishes, one after
411 			 * we reclaim rcu_read_lock
412 			 */
413 			struct bio *bi;
414 			atomic_inc(&rdev->nr_pending);
415 			atomic_inc(&rdev->nr_pending);
416 			rcu_read_unlock();
417 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 			bi->bi_end_io = md_end_flush;
419 			bi->bi_private = rdev;
420 			bi->bi_bdev = rdev->bdev;
421 			atomic_inc(&mddev->flush_pending);
422 			submit_bio(WRITE_FLUSH, bi);
423 			rcu_read_lock();
424 			rdev_dec_pending(rdev, mddev);
425 		}
426 	rcu_read_unlock();
427 	if (atomic_dec_and_test(&mddev->flush_pending))
428 		queue_work(md_wq, &mddev->flush_work);
429 }
430 
md_submit_flush_data(struct work_struct * ws)431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 	struct bio *bio = mddev->flush_bio;
435 
436 	if (bio->bi_size == 0)
437 		/* an empty barrier - all done */
438 		bio_endio(bio, 0);
439 	else {
440 		bio->bi_rw &= ~REQ_FLUSH;
441 		mddev->pers->make_request(mddev, bio);
442 	}
443 
444 	mddev->flush_bio = NULL;
445 	wake_up(&mddev->sb_wait);
446 }
447 
md_flush_request(struct mddev * mddev,struct bio * bio)448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 	spin_lock_irq(&mddev->write_lock);
451 	wait_event_lock_irq(mddev->sb_wait,
452 			    !mddev->flush_bio,
453 			    mddev->write_lock);
454 	mddev->flush_bio = bio;
455 	spin_unlock_irq(&mddev->write_lock);
456 
457 	INIT_WORK(&mddev->flush_work, submit_flushes);
458 	queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461 
md_unplug(struct blk_plug_cb * cb,bool from_schedule)462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 	struct mddev *mddev = cb->data;
465 	md_wakeup_thread(mddev->thread);
466 	kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469 
mddev_get(struct mddev * mddev)470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 	atomic_inc(&mddev->active);
473 	return mddev;
474 }
475 
476 static void mddev_delayed_delete(struct work_struct *ws);
477 
mddev_put(struct mddev * mddev)478 static void mddev_put(struct mddev *mddev)
479 {
480 	struct bio_set *bs = NULL;
481 
482 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 		return;
484 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 	    mddev->ctime == 0 && !mddev->hold_active) {
486 		/* Array is not configured at all, and not held active,
487 		 * so destroy it */
488 		list_del_init(&mddev->all_mddevs);
489 		bs = mddev->bio_set;
490 		mddev->bio_set = NULL;
491 		if (mddev->gendisk) {
492 			/* We did a probe so need to clean up.  Call
493 			 * queue_work inside the spinlock so that
494 			 * flush_workqueue() after mddev_find will
495 			 * succeed in waiting for the work to be done.
496 			 */
497 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 			queue_work(md_misc_wq, &mddev->del_work);
499 		} else
500 			kfree(mddev);
501 	}
502 	spin_unlock(&all_mddevs_lock);
503 	if (bs)
504 		bioset_free(bs);
505 }
506 
mddev_init(struct mddev * mddev)507 void mddev_init(struct mddev *mddev)
508 {
509 	mutex_init(&mddev->open_mutex);
510 	mutex_init(&mddev->reconfig_mutex);
511 	mutex_init(&mddev->bitmap_info.mutex);
512 	INIT_LIST_HEAD(&mddev->disks);
513 	INIT_LIST_HEAD(&mddev->all_mddevs);
514 	init_timer(&mddev->safemode_timer);
515 	atomic_set(&mddev->active, 1);
516 	atomic_set(&mddev->openers, 0);
517 	atomic_set(&mddev->active_io, 0);
518 	spin_lock_init(&mddev->write_lock);
519 	atomic_set(&mddev->flush_pending, 0);
520 	init_waitqueue_head(&mddev->sb_wait);
521 	init_waitqueue_head(&mddev->recovery_wait);
522 	mddev->reshape_position = MaxSector;
523 	mddev->reshape_backwards = 0;
524 	mddev->resync_min = 0;
525 	mddev->resync_max = MaxSector;
526 	mddev->level = LEVEL_NONE;
527 }
528 EXPORT_SYMBOL_GPL(mddev_init);
529 
mddev_find(dev_t unit)530 static struct mddev * mddev_find(dev_t unit)
531 {
532 	struct mddev *mddev, *new = NULL;
533 
534 	if (unit && MAJOR(unit) != MD_MAJOR)
535 		unit &= ~((1<<MdpMinorShift)-1);
536 
537  retry:
538 	spin_lock(&all_mddevs_lock);
539 
540 	if (unit) {
541 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
542 			if (mddev->unit == unit) {
543 				mddev_get(mddev);
544 				spin_unlock(&all_mddevs_lock);
545 				kfree(new);
546 				return mddev;
547 			}
548 
549 		if (new) {
550 			list_add(&new->all_mddevs, &all_mddevs);
551 			spin_unlock(&all_mddevs_lock);
552 			new->hold_active = UNTIL_IOCTL;
553 			return new;
554 		}
555 	} else if (new) {
556 		/* find an unused unit number */
557 		static int next_minor = 512;
558 		int start = next_minor;
559 		int is_free = 0;
560 		int dev = 0;
561 		while (!is_free) {
562 			dev = MKDEV(MD_MAJOR, next_minor);
563 			next_minor++;
564 			if (next_minor > MINORMASK)
565 				next_minor = 0;
566 			if (next_minor == start) {
567 				/* Oh dear, all in use. */
568 				spin_unlock(&all_mddevs_lock);
569 				kfree(new);
570 				return NULL;
571 			}
572 
573 			is_free = 1;
574 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575 				if (mddev->unit == dev) {
576 					is_free = 0;
577 					break;
578 				}
579 		}
580 		new->unit = dev;
581 		new->md_minor = MINOR(dev);
582 		new->hold_active = UNTIL_STOP;
583 		list_add(&new->all_mddevs, &all_mddevs);
584 		spin_unlock(&all_mddevs_lock);
585 		return new;
586 	}
587 	spin_unlock(&all_mddevs_lock);
588 
589 	new = kzalloc(sizeof(*new), GFP_KERNEL);
590 	if (!new)
591 		return NULL;
592 
593 	new->unit = unit;
594 	if (MAJOR(unit) == MD_MAJOR)
595 		new->md_minor = MINOR(unit);
596 	else
597 		new->md_minor = MINOR(unit) >> MdpMinorShift;
598 
599 	mddev_init(new);
600 
601 	goto retry;
602 }
603 
mddev_lock(struct mddev * mddev)604 static inline int mddev_lock(struct mddev * mddev)
605 {
606 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
607 }
608 
mddev_is_locked(struct mddev * mddev)609 static inline int mddev_is_locked(struct mddev *mddev)
610 {
611 	return mutex_is_locked(&mddev->reconfig_mutex);
612 }
613 
mddev_trylock(struct mddev * mddev)614 static inline int mddev_trylock(struct mddev * mddev)
615 {
616 	return mutex_trylock(&mddev->reconfig_mutex);
617 }
618 
619 static struct attribute_group md_redundancy_group;
620 
mddev_unlock(struct mddev * mddev)621 static void mddev_unlock(struct mddev * mddev)
622 {
623 	if (mddev->to_remove) {
624 		/* These cannot be removed under reconfig_mutex as
625 		 * an access to the files will try to take reconfig_mutex
626 		 * while holding the file unremovable, which leads to
627 		 * a deadlock.
628 		 * So hold set sysfs_active while the remove in happeing,
629 		 * and anything else which might set ->to_remove or my
630 		 * otherwise change the sysfs namespace will fail with
631 		 * -EBUSY if sysfs_active is still set.
632 		 * We set sysfs_active under reconfig_mutex and elsewhere
633 		 * test it under the same mutex to ensure its correct value
634 		 * is seen.
635 		 */
636 		struct attribute_group *to_remove = mddev->to_remove;
637 		mddev->to_remove = NULL;
638 		mddev->sysfs_active = 1;
639 		mutex_unlock(&mddev->reconfig_mutex);
640 
641 		if (mddev->kobj.sd) {
642 			if (to_remove != &md_redundancy_group)
643 				sysfs_remove_group(&mddev->kobj, to_remove);
644 			if (mddev->pers == NULL ||
645 			    mddev->pers->sync_request == NULL) {
646 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
647 				if (mddev->sysfs_action)
648 					sysfs_put(mddev->sysfs_action);
649 				mddev->sysfs_action = NULL;
650 			}
651 		}
652 		mddev->sysfs_active = 0;
653 	} else
654 		mutex_unlock(&mddev->reconfig_mutex);
655 
656 	/* As we've dropped the mutex we need a spinlock to
657 	 * make sure the thread doesn't disappear
658 	 */
659 	spin_lock(&pers_lock);
660 	md_wakeup_thread(mddev->thread);
661 	spin_unlock(&pers_lock);
662 }
663 
find_rdev_nr(struct mddev * mddev,int nr)664 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
665 {
666 	struct md_rdev *rdev;
667 
668 	rdev_for_each(rdev, mddev)
669 		if (rdev->desc_nr == nr)
670 			return rdev;
671 
672 	return NULL;
673 }
674 
find_rdev_nr_rcu(struct mddev * mddev,int nr)675 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
676 {
677 	struct md_rdev *rdev;
678 
679 	rdev_for_each_rcu(rdev, mddev)
680 		if (rdev->desc_nr == nr)
681 			return rdev;
682 
683 	return NULL;
684 }
685 
find_rdev(struct mddev * mddev,dev_t dev)686 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
687 {
688 	struct md_rdev *rdev;
689 
690 	rdev_for_each(rdev, mddev)
691 		if (rdev->bdev->bd_dev == dev)
692 			return rdev;
693 
694 	return NULL;
695 }
696 
find_rdev_rcu(struct mddev * mddev,dev_t dev)697 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
698 {
699 	struct md_rdev *rdev;
700 
701 	rdev_for_each_rcu(rdev, mddev)
702 		if (rdev->bdev->bd_dev == dev)
703 			return rdev;
704 
705 	return NULL;
706 }
707 
find_pers(int level,char * clevel)708 static struct md_personality *find_pers(int level, char *clevel)
709 {
710 	struct md_personality *pers;
711 	list_for_each_entry(pers, &pers_list, list) {
712 		if (level != LEVEL_NONE && pers->level == level)
713 			return pers;
714 		if (strcmp(pers->name, clevel)==0)
715 			return pers;
716 	}
717 	return NULL;
718 }
719 
720 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)721 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
722 {
723 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
724 	return MD_NEW_SIZE_SECTORS(num_sectors);
725 }
726 
alloc_disk_sb(struct md_rdev * rdev)727 static int alloc_disk_sb(struct md_rdev * rdev)
728 {
729 	if (rdev->sb_page)
730 		MD_BUG();
731 
732 	rdev->sb_page = alloc_page(GFP_KERNEL);
733 	if (!rdev->sb_page) {
734 		printk(KERN_ALERT "md: out of memory.\n");
735 		return -ENOMEM;
736 	}
737 
738 	return 0;
739 }
740 
md_rdev_clear(struct md_rdev * rdev)741 void md_rdev_clear(struct md_rdev *rdev)
742 {
743 	if (rdev->sb_page) {
744 		put_page(rdev->sb_page);
745 		rdev->sb_loaded = 0;
746 		rdev->sb_page = NULL;
747 		rdev->sb_start = 0;
748 		rdev->sectors = 0;
749 	}
750 	if (rdev->bb_page) {
751 		put_page(rdev->bb_page);
752 		rdev->bb_page = NULL;
753 	}
754 	kfree(rdev->badblocks.page);
755 	rdev->badblocks.page = NULL;
756 }
757 EXPORT_SYMBOL_GPL(md_rdev_clear);
758 
super_written(struct bio * bio,int error)759 static void super_written(struct bio *bio, int error)
760 {
761 	struct md_rdev *rdev = bio->bi_private;
762 	struct mddev *mddev = rdev->mddev;
763 
764 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
765 		printk("md: super_written gets error=%d, uptodate=%d\n",
766 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
767 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
768 		md_error(mddev, rdev);
769 	}
770 
771 	if (atomic_dec_and_test(&mddev->pending_writes))
772 		wake_up(&mddev->sb_wait);
773 	bio_put(bio);
774 }
775 
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)776 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
777 		   sector_t sector, int size, struct page *page)
778 {
779 	/* write first size bytes of page to sector of rdev
780 	 * Increment mddev->pending_writes before returning
781 	 * and decrement it on completion, waking up sb_wait
782 	 * if zero is reached.
783 	 * If an error occurred, call md_error
784 	 */
785 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
786 
787 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
788 	bio->bi_sector = sector;
789 	bio_add_page(bio, page, size, 0);
790 	bio->bi_private = rdev;
791 	bio->bi_end_io = super_written;
792 
793 	atomic_inc(&mddev->pending_writes);
794 	submit_bio(WRITE_FLUSH_FUA, bio);
795 }
796 
md_super_wait(struct mddev * mddev)797 void md_super_wait(struct mddev *mddev)
798 {
799 	/* wait for all superblock writes that were scheduled to complete */
800 	DEFINE_WAIT(wq);
801 	for(;;) {
802 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
803 		if (atomic_read(&mddev->pending_writes)==0)
804 			break;
805 		schedule();
806 	}
807 	finish_wait(&mddev->sb_wait, &wq);
808 }
809 
bi_complete(struct bio * bio,int error)810 static void bi_complete(struct bio *bio, int error)
811 {
812 	complete((struct completion*)bio->bi_private);
813 }
814 
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)815 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
816 		 struct page *page, int rw, bool metadata_op)
817 {
818 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
819 	struct completion event;
820 	int ret;
821 
822 	rw |= REQ_SYNC;
823 
824 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
825 		rdev->meta_bdev : rdev->bdev;
826 	if (metadata_op)
827 		bio->bi_sector = sector + rdev->sb_start;
828 	else if (rdev->mddev->reshape_position != MaxSector &&
829 		 (rdev->mddev->reshape_backwards ==
830 		  (sector >= rdev->mddev->reshape_position)))
831 		bio->bi_sector = sector + rdev->new_data_offset;
832 	else
833 		bio->bi_sector = sector + rdev->data_offset;
834 	bio_add_page(bio, page, size, 0);
835 	init_completion(&event);
836 	bio->bi_private = &event;
837 	bio->bi_end_io = bi_complete;
838 	submit_bio(rw, bio);
839 	wait_for_completion(&event);
840 
841 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842 	bio_put(bio);
843 	return ret;
844 }
845 EXPORT_SYMBOL_GPL(sync_page_io);
846 
read_disk_sb(struct md_rdev * rdev,int size)847 static int read_disk_sb(struct md_rdev * rdev, int size)
848 {
849 	char b[BDEVNAME_SIZE];
850 	if (!rdev->sb_page) {
851 		MD_BUG();
852 		return -EINVAL;
853 	}
854 	if (rdev->sb_loaded)
855 		return 0;
856 
857 
858 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859 		goto fail;
860 	rdev->sb_loaded = 1;
861 	return 0;
862 
863 fail:
864 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865 		bdevname(rdev->bdev,b));
866 	return -EINVAL;
867 }
868 
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
872 		sb1->set_uuid1 == sb2->set_uuid1 &&
873 		sb1->set_uuid2 == sb2->set_uuid2 &&
874 		sb1->set_uuid3 == sb2->set_uuid3;
875 }
876 
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878 {
879 	int ret;
880 	mdp_super_t *tmp1, *tmp2;
881 
882 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884 
885 	if (!tmp1 || !tmp2) {
886 		ret = 0;
887 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888 		goto abort;
889 	}
890 
891 	*tmp1 = *sb1;
892 	*tmp2 = *sb2;
893 
894 	/*
895 	 * nr_disks is not constant
896 	 */
897 	tmp1->nr_disks = 0;
898 	tmp2->nr_disks = 0;
899 
900 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901 abort:
902 	kfree(tmp1);
903 	kfree(tmp2);
904 	return ret;
905 }
906 
907 
md_csum_fold(u32 csum)908 static u32 md_csum_fold(u32 csum)
909 {
910 	csum = (csum & 0xffff) + (csum >> 16);
911 	return (csum & 0xffff) + (csum >> 16);
912 }
913 
calc_sb_csum(mdp_super_t * sb)914 static unsigned int calc_sb_csum(mdp_super_t * sb)
915 {
916 	u64 newcsum = 0;
917 	u32 *sb32 = (u32*)sb;
918 	int i;
919 	unsigned int disk_csum, csum;
920 
921 	disk_csum = sb->sb_csum;
922 	sb->sb_csum = 0;
923 
924 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
925 		newcsum += sb32[i];
926 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
927 
928 
929 #ifdef CONFIG_ALPHA
930 	/* This used to use csum_partial, which was wrong for several
931 	 * reasons including that different results are returned on
932 	 * different architectures.  It isn't critical that we get exactly
933 	 * the same return value as before (we always csum_fold before
934 	 * testing, and that removes any differences).  However as we
935 	 * know that csum_partial always returned a 16bit value on
936 	 * alphas, do a fold to maximise conformity to previous behaviour.
937 	 */
938 	sb->sb_csum = md_csum_fold(disk_csum);
939 #else
940 	sb->sb_csum = disk_csum;
941 #endif
942 	return csum;
943 }
944 
945 
946 /*
947  * Handle superblock details.
948  * We want to be able to handle multiple superblock formats
949  * so we have a common interface to them all, and an array of
950  * different handlers.
951  * We rely on user-space to write the initial superblock, and support
952  * reading and updating of superblocks.
953  * Interface methods are:
954  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
955  *      loads and validates a superblock on dev.
956  *      if refdev != NULL, compare superblocks on both devices
957  *    Return:
958  *      0 - dev has a superblock that is compatible with refdev
959  *      1 - dev has a superblock that is compatible and newer than refdev
960  *          so dev should be used as the refdev in future
961  *     -EINVAL superblock incompatible or invalid
962  *     -othererror e.g. -EIO
963  *
964  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
965  *      Verify that dev is acceptable into mddev.
966  *       The first time, mddev->raid_disks will be 0, and data from
967  *       dev should be merged in.  Subsequent calls check that dev
968  *       is new enough.  Return 0 or -EINVAL
969  *
970  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
971  *     Update the superblock for rdev with data in mddev
972  *     This does not write to disc.
973  *
974  */
975 
976 struct super_type  {
977 	char		    *name;
978 	struct module	    *owner;
979 	int		    (*load_super)(struct md_rdev *rdev,
980 					  struct md_rdev *refdev,
981 					  int minor_version);
982 	int		    (*validate_super)(struct mddev *mddev,
983 					      struct md_rdev *rdev);
984 	void		    (*sync_super)(struct mddev *mddev,
985 					  struct md_rdev *rdev);
986 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
987 						sector_t num_sectors);
988 	int		    (*allow_new_offset)(struct md_rdev *rdev,
989 						unsigned long long new_offset);
990 };
991 
992 /*
993  * Check that the given mddev has no bitmap.
994  *
995  * This function is called from the run method of all personalities that do not
996  * support bitmaps. It prints an error message and returns non-zero if mddev
997  * has a bitmap. Otherwise, it returns 0.
998  *
999  */
md_check_no_bitmap(struct mddev * mddev)1000 int md_check_no_bitmap(struct mddev *mddev)
1001 {
1002 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1003 		return 0;
1004 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1005 		mdname(mddev), mddev->pers->name);
1006 	return 1;
1007 }
1008 EXPORT_SYMBOL(md_check_no_bitmap);
1009 
1010 /*
1011  * load_super for 0.90.0
1012  */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1013 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1014 {
1015 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1016 	mdp_super_t *sb;
1017 	int ret;
1018 
1019 	/*
1020 	 * Calculate the position of the superblock (512byte sectors),
1021 	 * it's at the end of the disk.
1022 	 *
1023 	 * It also happens to be a multiple of 4Kb.
1024 	 */
1025 	rdev->sb_start = calc_dev_sboffset(rdev);
1026 
1027 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1028 	if (ret) return ret;
1029 
1030 	ret = -EINVAL;
1031 
1032 	bdevname(rdev->bdev, b);
1033 	sb = page_address(rdev->sb_page);
1034 
1035 	if (sb->md_magic != MD_SB_MAGIC) {
1036 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1037 		       b);
1038 		goto abort;
1039 	}
1040 
1041 	if (sb->major_version != 0 ||
1042 	    sb->minor_version < 90 ||
1043 	    sb->minor_version > 91) {
1044 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1045 			sb->major_version, sb->minor_version,
1046 			b);
1047 		goto abort;
1048 	}
1049 
1050 	if (sb->raid_disks <= 0)
1051 		goto abort;
1052 
1053 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1054 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1055 			b);
1056 		goto abort;
1057 	}
1058 
1059 	rdev->preferred_minor = sb->md_minor;
1060 	rdev->data_offset = 0;
1061 	rdev->new_data_offset = 0;
1062 	rdev->sb_size = MD_SB_BYTES;
1063 	rdev->badblocks.shift = -1;
1064 
1065 	if (sb->level == LEVEL_MULTIPATH)
1066 		rdev->desc_nr = -1;
1067 	else
1068 		rdev->desc_nr = sb->this_disk.number;
1069 
1070 	if (!refdev) {
1071 		ret = 1;
1072 	} else {
1073 		__u64 ev1, ev2;
1074 		mdp_super_t *refsb = page_address(refdev->sb_page);
1075 		if (!uuid_equal(refsb, sb)) {
1076 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1077 				b, bdevname(refdev->bdev,b2));
1078 			goto abort;
1079 		}
1080 		if (!sb_equal(refsb, sb)) {
1081 			printk(KERN_WARNING "md: %s has same UUID"
1082 			       " but different superblock to %s\n",
1083 			       b, bdevname(refdev->bdev, b2));
1084 			goto abort;
1085 		}
1086 		ev1 = md_event(sb);
1087 		ev2 = md_event(refsb);
1088 		if (ev1 > ev2)
1089 			ret = 1;
1090 		else
1091 			ret = 0;
1092 	}
1093 	rdev->sectors = rdev->sb_start;
1094 	/* Limit to 4TB as metadata cannot record more than that.
1095 	 * (not needed for Linear and RAID0 as metadata doesn't
1096 	 * record this size)
1097 	 */
1098 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1099 		rdev->sectors = (2ULL << 32) - 2;
1100 
1101 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1102 		/* "this cannot possibly happen" ... */
1103 		ret = -EINVAL;
1104 
1105  abort:
1106 	return ret;
1107 }
1108 
1109 /*
1110  * validate_super for 0.90.0
1111  */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1112 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1113 {
1114 	mdp_disk_t *desc;
1115 	mdp_super_t *sb = page_address(rdev->sb_page);
1116 	__u64 ev1 = md_event(sb);
1117 
1118 	rdev->raid_disk = -1;
1119 	clear_bit(Faulty, &rdev->flags);
1120 	clear_bit(In_sync, &rdev->flags);
1121 	clear_bit(WriteMostly, &rdev->flags);
1122 
1123 	if (mddev->raid_disks == 0) {
1124 		mddev->major_version = 0;
1125 		mddev->minor_version = sb->minor_version;
1126 		mddev->patch_version = sb->patch_version;
1127 		mddev->external = 0;
1128 		mddev->chunk_sectors = sb->chunk_size >> 9;
1129 		mddev->ctime = sb->ctime;
1130 		mddev->utime = sb->utime;
1131 		mddev->level = sb->level;
1132 		mddev->clevel[0] = 0;
1133 		mddev->layout = sb->layout;
1134 		mddev->raid_disks = sb->raid_disks;
1135 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1136 		mddev->events = ev1;
1137 		mddev->bitmap_info.offset = 0;
1138 		mddev->bitmap_info.space = 0;
1139 		/* bitmap can use 60 K after the 4K superblocks */
1140 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1141 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1142 		mddev->reshape_backwards = 0;
1143 
1144 		if (mddev->minor_version >= 91) {
1145 			mddev->reshape_position = sb->reshape_position;
1146 			mddev->delta_disks = sb->delta_disks;
1147 			mddev->new_level = sb->new_level;
1148 			mddev->new_layout = sb->new_layout;
1149 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1150 			if (mddev->delta_disks < 0)
1151 				mddev->reshape_backwards = 1;
1152 		} else {
1153 			mddev->reshape_position = MaxSector;
1154 			mddev->delta_disks = 0;
1155 			mddev->new_level = mddev->level;
1156 			mddev->new_layout = mddev->layout;
1157 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1158 		}
1159 
1160 		if (sb->state & (1<<MD_SB_CLEAN))
1161 			mddev->recovery_cp = MaxSector;
1162 		else {
1163 			if (sb->events_hi == sb->cp_events_hi &&
1164 				sb->events_lo == sb->cp_events_lo) {
1165 				mddev->recovery_cp = sb->recovery_cp;
1166 			} else
1167 				mddev->recovery_cp = 0;
1168 		}
1169 
1170 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1171 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1172 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1173 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1174 
1175 		mddev->max_disks = MD_SB_DISKS;
1176 
1177 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1178 		    mddev->bitmap_info.file == NULL) {
1179 			mddev->bitmap_info.offset =
1180 				mddev->bitmap_info.default_offset;
1181 			mddev->bitmap_info.space =
1182 				mddev->bitmap_info.space;
1183 		}
1184 
1185 	} else if (mddev->pers == NULL) {
1186 		/* Insist on good event counter while assembling, except
1187 		 * for spares (which don't need an event count) */
1188 		++ev1;
1189 		if (sb->disks[rdev->desc_nr].state & (
1190 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1191 			if (ev1 < mddev->events)
1192 				return -EINVAL;
1193 	} else if (mddev->bitmap) {
1194 		/* if adding to array with a bitmap, then we can accept an
1195 		 * older device ... but not too old.
1196 		 */
1197 		if (ev1 < mddev->bitmap->events_cleared)
1198 			return 0;
1199 	} else {
1200 		if (ev1 < mddev->events)
1201 			/* just a hot-add of a new device, leave raid_disk at -1 */
1202 			return 0;
1203 	}
1204 
1205 	if (mddev->level != LEVEL_MULTIPATH) {
1206 		desc = sb->disks + rdev->desc_nr;
1207 
1208 		if (desc->state & (1<<MD_DISK_FAULTY))
1209 			set_bit(Faulty, &rdev->flags);
1210 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1211 			    desc->raid_disk < mddev->raid_disks */) {
1212 			set_bit(In_sync, &rdev->flags);
1213 			rdev->raid_disk = desc->raid_disk;
1214 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1215 			/* active but not in sync implies recovery up to
1216 			 * reshape position.  We don't know exactly where
1217 			 * that is, so set to zero for now */
1218 			if (mddev->minor_version >= 91) {
1219 				rdev->recovery_offset = 0;
1220 				rdev->raid_disk = desc->raid_disk;
1221 			}
1222 		}
1223 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1224 			set_bit(WriteMostly, &rdev->flags);
1225 	} else /* MULTIPATH are always insync */
1226 		set_bit(In_sync, &rdev->flags);
1227 	return 0;
1228 }
1229 
1230 /*
1231  * sync_super for 0.90.0
1232  */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1233 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1234 {
1235 	mdp_super_t *sb;
1236 	struct md_rdev *rdev2;
1237 	int next_spare = mddev->raid_disks;
1238 
1239 
1240 	/* make rdev->sb match mddev data..
1241 	 *
1242 	 * 1/ zero out disks
1243 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1244 	 * 3/ any empty disks < next_spare become removed
1245 	 *
1246 	 * disks[0] gets initialised to REMOVED because
1247 	 * we cannot be sure from other fields if it has
1248 	 * been initialised or not.
1249 	 */
1250 	int i;
1251 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1252 
1253 	rdev->sb_size = MD_SB_BYTES;
1254 
1255 	sb = page_address(rdev->sb_page);
1256 
1257 	memset(sb, 0, sizeof(*sb));
1258 
1259 	sb->md_magic = MD_SB_MAGIC;
1260 	sb->major_version = mddev->major_version;
1261 	sb->patch_version = mddev->patch_version;
1262 	sb->gvalid_words  = 0; /* ignored */
1263 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1264 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1265 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1266 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1267 
1268 	sb->ctime = mddev->ctime;
1269 	sb->level = mddev->level;
1270 	sb->size = mddev->dev_sectors / 2;
1271 	sb->raid_disks = mddev->raid_disks;
1272 	sb->md_minor = mddev->md_minor;
1273 	sb->not_persistent = 0;
1274 	sb->utime = mddev->utime;
1275 	sb->state = 0;
1276 	sb->events_hi = (mddev->events>>32);
1277 	sb->events_lo = (u32)mddev->events;
1278 
1279 	if (mddev->reshape_position == MaxSector)
1280 		sb->minor_version = 90;
1281 	else {
1282 		sb->minor_version = 91;
1283 		sb->reshape_position = mddev->reshape_position;
1284 		sb->new_level = mddev->new_level;
1285 		sb->delta_disks = mddev->delta_disks;
1286 		sb->new_layout = mddev->new_layout;
1287 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1288 	}
1289 	mddev->minor_version = sb->minor_version;
1290 	if (mddev->in_sync)
1291 	{
1292 		sb->recovery_cp = mddev->recovery_cp;
1293 		sb->cp_events_hi = (mddev->events>>32);
1294 		sb->cp_events_lo = (u32)mddev->events;
1295 		if (mddev->recovery_cp == MaxSector)
1296 			sb->state = (1<< MD_SB_CLEAN);
1297 	} else
1298 		sb->recovery_cp = 0;
1299 
1300 	sb->layout = mddev->layout;
1301 	sb->chunk_size = mddev->chunk_sectors << 9;
1302 
1303 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1304 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1305 
1306 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1307 	rdev_for_each(rdev2, mddev) {
1308 		mdp_disk_t *d;
1309 		int desc_nr;
1310 		int is_active = test_bit(In_sync, &rdev2->flags);
1311 
1312 		if (rdev2->raid_disk >= 0 &&
1313 		    sb->minor_version >= 91)
1314 			/* we have nowhere to store the recovery_offset,
1315 			 * but if it is not below the reshape_position,
1316 			 * we can piggy-back on that.
1317 			 */
1318 			is_active = 1;
1319 		if (rdev2->raid_disk < 0 ||
1320 		    test_bit(Faulty, &rdev2->flags))
1321 			is_active = 0;
1322 		if (is_active)
1323 			desc_nr = rdev2->raid_disk;
1324 		else
1325 			desc_nr = next_spare++;
1326 		rdev2->desc_nr = desc_nr;
1327 		d = &sb->disks[rdev2->desc_nr];
1328 		nr_disks++;
1329 		d->number = rdev2->desc_nr;
1330 		d->major = MAJOR(rdev2->bdev->bd_dev);
1331 		d->minor = MINOR(rdev2->bdev->bd_dev);
1332 		if (is_active)
1333 			d->raid_disk = rdev2->raid_disk;
1334 		else
1335 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1336 		if (test_bit(Faulty, &rdev2->flags))
1337 			d->state = (1<<MD_DISK_FAULTY);
1338 		else if (is_active) {
1339 			d->state = (1<<MD_DISK_ACTIVE);
1340 			if (test_bit(In_sync, &rdev2->flags))
1341 				d->state |= (1<<MD_DISK_SYNC);
1342 			active++;
1343 			working++;
1344 		} else {
1345 			d->state = 0;
1346 			spare++;
1347 			working++;
1348 		}
1349 		if (test_bit(WriteMostly, &rdev2->flags))
1350 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1351 	}
1352 	/* now set the "removed" and "faulty" bits on any missing devices */
1353 	for (i=0 ; i < mddev->raid_disks ; i++) {
1354 		mdp_disk_t *d = &sb->disks[i];
1355 		if (d->state == 0 && d->number == 0) {
1356 			d->number = i;
1357 			d->raid_disk = i;
1358 			d->state = (1<<MD_DISK_REMOVED);
1359 			d->state |= (1<<MD_DISK_FAULTY);
1360 			failed++;
1361 		}
1362 	}
1363 	sb->nr_disks = nr_disks;
1364 	sb->active_disks = active;
1365 	sb->working_disks = working;
1366 	sb->failed_disks = failed;
1367 	sb->spare_disks = spare;
1368 
1369 	sb->this_disk = sb->disks[rdev->desc_nr];
1370 	sb->sb_csum = calc_sb_csum(sb);
1371 }
1372 
1373 /*
1374  * rdev_size_change for 0.90.0
1375  */
1376 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1377 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1378 {
1379 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1380 		return 0; /* component must fit device */
1381 	if (rdev->mddev->bitmap_info.offset)
1382 		return 0; /* can't move bitmap */
1383 	rdev->sb_start = calc_dev_sboffset(rdev);
1384 	if (!num_sectors || num_sectors > rdev->sb_start)
1385 		num_sectors = rdev->sb_start;
1386 	/* Limit to 4TB as metadata cannot record more than that.
1387 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1388 	 */
1389 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1390 		num_sectors = (2ULL << 32) - 2;
1391 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1392 		       rdev->sb_page);
1393 	md_super_wait(rdev->mddev);
1394 	return num_sectors;
1395 }
1396 
1397 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1398 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1399 {
1400 	/* non-zero offset changes not possible with v0.90 */
1401 	return new_offset == 0;
1402 }
1403 
1404 /*
1405  * version 1 superblock
1406  */
1407 
calc_sb_1_csum(struct mdp_superblock_1 * sb)1408 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1409 {
1410 	__le32 disk_csum;
1411 	u32 csum;
1412 	unsigned long long newcsum;
1413 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1414 	__le32 *isuper = (__le32*)sb;
1415 
1416 	disk_csum = sb->sb_csum;
1417 	sb->sb_csum = 0;
1418 	newcsum = 0;
1419 	for (; size >= 4; size -= 4)
1420 		newcsum += le32_to_cpu(*isuper++);
1421 
1422 	if (size == 2)
1423 		newcsum += le16_to_cpu(*(__le16*) isuper);
1424 
1425 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1426 	sb->sb_csum = disk_csum;
1427 	return cpu_to_le32(csum);
1428 }
1429 
1430 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1431 			    int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1432 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1433 {
1434 	struct mdp_superblock_1 *sb;
1435 	int ret;
1436 	sector_t sb_start;
1437 	sector_t sectors;
1438 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1439 	int bmask;
1440 
1441 	/*
1442 	 * Calculate the position of the superblock in 512byte sectors.
1443 	 * It is always aligned to a 4K boundary and
1444 	 * depeding on minor_version, it can be:
1445 	 * 0: At least 8K, but less than 12K, from end of device
1446 	 * 1: At start of device
1447 	 * 2: 4K from start of device.
1448 	 */
1449 	switch(minor_version) {
1450 	case 0:
1451 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1452 		sb_start -= 8*2;
1453 		sb_start &= ~(sector_t)(4*2-1);
1454 		break;
1455 	case 1:
1456 		sb_start = 0;
1457 		break;
1458 	case 2:
1459 		sb_start = 8;
1460 		break;
1461 	default:
1462 		return -EINVAL;
1463 	}
1464 	rdev->sb_start = sb_start;
1465 
1466 	/* superblock is rarely larger than 1K, but it can be larger,
1467 	 * and it is safe to read 4k, so we do that
1468 	 */
1469 	ret = read_disk_sb(rdev, 4096);
1470 	if (ret) return ret;
1471 
1472 
1473 	sb = page_address(rdev->sb_page);
1474 
1475 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1476 	    sb->major_version != cpu_to_le32(1) ||
1477 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1478 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1479 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1480 		return -EINVAL;
1481 
1482 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1483 		printk("md: invalid superblock checksum on %s\n",
1484 			bdevname(rdev->bdev,b));
1485 		return -EINVAL;
1486 	}
1487 	if (le64_to_cpu(sb->data_size) < 10) {
1488 		printk("md: data_size too small on %s\n",
1489 		       bdevname(rdev->bdev,b));
1490 		return -EINVAL;
1491 	}
1492 	if (sb->pad0 ||
1493 	    sb->pad3[0] ||
1494 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1495 		/* Some padding is non-zero, might be a new feature */
1496 		return -EINVAL;
1497 
1498 	rdev->preferred_minor = 0xffff;
1499 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1500 	rdev->new_data_offset = rdev->data_offset;
1501 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1502 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1503 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1504 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1505 
1506 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1507 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1508 	if (rdev->sb_size & bmask)
1509 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1510 
1511 	if (minor_version
1512 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1513 		return -EINVAL;
1514 	if (minor_version
1515 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1516 		return -EINVAL;
1517 
1518 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1519 		rdev->desc_nr = -1;
1520 	else
1521 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1522 
1523 	if (!rdev->bb_page) {
1524 		rdev->bb_page = alloc_page(GFP_KERNEL);
1525 		if (!rdev->bb_page)
1526 			return -ENOMEM;
1527 	}
1528 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1529 	    rdev->badblocks.count == 0) {
1530 		/* need to load the bad block list.
1531 		 * Currently we limit it to one page.
1532 		 */
1533 		s32 offset;
1534 		sector_t bb_sector;
1535 		u64 *bbp;
1536 		int i;
1537 		int sectors = le16_to_cpu(sb->bblog_size);
1538 		if (sectors > (PAGE_SIZE / 512))
1539 			return -EINVAL;
1540 		offset = le32_to_cpu(sb->bblog_offset);
1541 		if (offset == 0)
1542 			return -EINVAL;
1543 		bb_sector = (long long)offset;
1544 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1545 				  rdev->bb_page, READ, true))
1546 			return -EIO;
1547 		bbp = (u64 *)page_address(rdev->bb_page);
1548 		rdev->badblocks.shift = sb->bblog_shift;
1549 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1550 			u64 bb = le64_to_cpu(*bbp);
1551 			int count = bb & (0x3ff);
1552 			u64 sector = bb >> 10;
1553 			sector <<= sb->bblog_shift;
1554 			count <<= sb->bblog_shift;
1555 			if (bb + 1 == 0)
1556 				break;
1557 			if (md_set_badblocks(&rdev->badblocks,
1558 					     sector, count, 1) == 0)
1559 				return -EINVAL;
1560 		}
1561 	} else if (sb->bblog_offset != 0)
1562 		rdev->badblocks.shift = 0;
1563 
1564 	if (!refdev) {
1565 		ret = 1;
1566 	} else {
1567 		__u64 ev1, ev2;
1568 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1569 
1570 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1571 		    sb->level != refsb->level ||
1572 		    sb->layout != refsb->layout ||
1573 		    sb->chunksize != refsb->chunksize) {
1574 			printk(KERN_WARNING "md: %s has strangely different"
1575 				" superblock to %s\n",
1576 				bdevname(rdev->bdev,b),
1577 				bdevname(refdev->bdev,b2));
1578 			return -EINVAL;
1579 		}
1580 		ev1 = le64_to_cpu(sb->events);
1581 		ev2 = le64_to_cpu(refsb->events);
1582 
1583 		if (ev1 > ev2)
1584 			ret = 1;
1585 		else
1586 			ret = 0;
1587 	}
1588 	if (minor_version) {
1589 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1590 		sectors -= rdev->data_offset;
1591 	} else
1592 		sectors = rdev->sb_start;
1593 	if (sectors < le64_to_cpu(sb->data_size))
1594 		return -EINVAL;
1595 	rdev->sectors = le64_to_cpu(sb->data_size);
1596 	return ret;
1597 }
1598 
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1599 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1600 {
1601 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1602 	__u64 ev1 = le64_to_cpu(sb->events);
1603 
1604 	rdev->raid_disk = -1;
1605 	clear_bit(Faulty, &rdev->flags);
1606 	clear_bit(In_sync, &rdev->flags);
1607 	clear_bit(WriteMostly, &rdev->flags);
1608 
1609 	if (mddev->raid_disks == 0) {
1610 		mddev->major_version = 1;
1611 		mddev->patch_version = 0;
1612 		mddev->external = 0;
1613 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1614 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1615 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1616 		mddev->level = le32_to_cpu(sb->level);
1617 		mddev->clevel[0] = 0;
1618 		mddev->layout = le32_to_cpu(sb->layout);
1619 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1620 		mddev->dev_sectors = le64_to_cpu(sb->size);
1621 		mddev->events = ev1;
1622 		mddev->bitmap_info.offset = 0;
1623 		mddev->bitmap_info.space = 0;
1624 		/* Default location for bitmap is 1K after superblock
1625 		 * using 3K - total of 4K
1626 		 */
1627 		mddev->bitmap_info.default_offset = 1024 >> 9;
1628 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1629 		mddev->reshape_backwards = 0;
1630 
1631 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1632 		memcpy(mddev->uuid, sb->set_uuid, 16);
1633 
1634 		mddev->max_disks =  (4096-256)/2;
1635 
1636 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1637 		    mddev->bitmap_info.file == NULL) {
1638 			mddev->bitmap_info.offset =
1639 				(__s32)le32_to_cpu(sb->bitmap_offset);
1640 			/* Metadata doesn't record how much space is available.
1641 			 * For 1.0, we assume we can use up to the superblock
1642 			 * if before, else to 4K beyond superblock.
1643 			 * For others, assume no change is possible.
1644 			 */
1645 			if (mddev->minor_version > 0)
1646 				mddev->bitmap_info.space = 0;
1647 			else if (mddev->bitmap_info.offset > 0)
1648 				mddev->bitmap_info.space =
1649 					8 - mddev->bitmap_info.offset;
1650 			else
1651 				mddev->bitmap_info.space =
1652 					-mddev->bitmap_info.offset;
1653 		}
1654 
1655 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1656 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1657 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1658 			mddev->new_level = le32_to_cpu(sb->new_level);
1659 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1660 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1661 			if (mddev->delta_disks < 0 ||
1662 			    (mddev->delta_disks == 0 &&
1663 			     (le32_to_cpu(sb->feature_map)
1664 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1665 				mddev->reshape_backwards = 1;
1666 		} else {
1667 			mddev->reshape_position = MaxSector;
1668 			mddev->delta_disks = 0;
1669 			mddev->new_level = mddev->level;
1670 			mddev->new_layout = mddev->layout;
1671 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1672 		}
1673 
1674 	} else if (mddev->pers == NULL) {
1675 		/* Insist of good event counter while assembling, except for
1676 		 * spares (which don't need an event count) */
1677 		++ev1;
1678 		if (rdev->desc_nr >= 0 &&
1679 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1680 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1681 			if (ev1 < mddev->events)
1682 				return -EINVAL;
1683 	} else if (mddev->bitmap) {
1684 		/* If adding to array with a bitmap, then we can accept an
1685 		 * older device, but not too old.
1686 		 */
1687 		if (ev1 < mddev->bitmap->events_cleared)
1688 			return 0;
1689 	} else {
1690 		if (ev1 < mddev->events)
1691 			/* just a hot-add of a new device, leave raid_disk at -1 */
1692 			return 0;
1693 	}
1694 	if (mddev->level != LEVEL_MULTIPATH) {
1695 		int role;
1696 		if (rdev->desc_nr < 0 ||
1697 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1698 			role = 0xffff;
1699 			rdev->desc_nr = -1;
1700 		} else
1701 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1702 		switch(role) {
1703 		case 0xffff: /* spare */
1704 			break;
1705 		case 0xfffe: /* faulty */
1706 			set_bit(Faulty, &rdev->flags);
1707 			break;
1708 		default:
1709 			if ((le32_to_cpu(sb->feature_map) &
1710 			     MD_FEATURE_RECOVERY_OFFSET))
1711 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1712 			else
1713 				set_bit(In_sync, &rdev->flags);
1714 			rdev->raid_disk = role;
1715 			break;
1716 		}
1717 		if (sb->devflags & WriteMostly1)
1718 			set_bit(WriteMostly, &rdev->flags);
1719 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1720 			set_bit(Replacement, &rdev->flags);
1721 	} else /* MULTIPATH are always insync */
1722 		set_bit(In_sync, &rdev->flags);
1723 
1724 	return 0;
1725 }
1726 
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1727 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1728 {
1729 	struct mdp_superblock_1 *sb;
1730 	struct md_rdev *rdev2;
1731 	int max_dev, i;
1732 	/* make rdev->sb match mddev and rdev data. */
1733 
1734 	sb = page_address(rdev->sb_page);
1735 
1736 	sb->feature_map = 0;
1737 	sb->pad0 = 0;
1738 	sb->recovery_offset = cpu_to_le64(0);
1739 	memset(sb->pad3, 0, sizeof(sb->pad3));
1740 
1741 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 	sb->events = cpu_to_le64(mddev->events);
1743 	if (mddev->in_sync)
1744 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 	else
1746 		sb->resync_offset = cpu_to_le64(0);
1747 
1748 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749 
1750 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 	sb->size = cpu_to_le64(mddev->dev_sectors);
1752 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 	sb->level = cpu_to_le32(mddev->level);
1754 	sb->layout = cpu_to_le32(mddev->layout);
1755 
1756 	if (test_bit(WriteMostly, &rdev->flags))
1757 		sb->devflags |= WriteMostly1;
1758 	else
1759 		sb->devflags &= ~WriteMostly1;
1760 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1761 	sb->data_size = cpu_to_le64(rdev->sectors);
1762 
1763 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1764 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1765 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1766 	}
1767 
1768 	if (rdev->raid_disk >= 0 &&
1769 	    !test_bit(In_sync, &rdev->flags)) {
1770 		sb->feature_map |=
1771 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1772 		sb->recovery_offset =
1773 			cpu_to_le64(rdev->recovery_offset);
1774 	}
1775 	if (test_bit(Replacement, &rdev->flags))
1776 		sb->feature_map |=
1777 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1778 
1779 	if (mddev->reshape_position != MaxSector) {
1780 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1781 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1782 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1783 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1784 		sb->new_level = cpu_to_le32(mddev->new_level);
1785 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1786 		if (mddev->delta_disks == 0 &&
1787 		    mddev->reshape_backwards)
1788 			sb->feature_map
1789 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1790 		if (rdev->new_data_offset != rdev->data_offset) {
1791 			sb->feature_map
1792 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1793 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1794 							     - rdev->data_offset));
1795 		}
1796 	}
1797 
1798 	if (rdev->badblocks.count == 0)
1799 		/* Nothing to do for bad blocks*/ ;
1800 	else if (sb->bblog_offset == 0)
1801 		/* Cannot record bad blocks on this device */
1802 		md_error(mddev, rdev);
1803 	else {
1804 		struct badblocks *bb = &rdev->badblocks;
1805 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1806 		u64 *p = bb->page;
1807 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1808 		if (bb->changed) {
1809 			unsigned seq;
1810 
1811 retry:
1812 			seq = read_seqbegin(&bb->lock);
1813 
1814 			memset(bbp, 0xff, PAGE_SIZE);
1815 
1816 			for (i = 0 ; i < bb->count ; i++) {
1817 				u64 internal_bb = p[i];
1818 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1819 						| BB_LEN(internal_bb));
1820 				bbp[i] = cpu_to_le64(store_bb);
1821 			}
1822 			bb->changed = 0;
1823 			if (read_seqretry(&bb->lock, seq))
1824 				goto retry;
1825 
1826 			bb->sector = (rdev->sb_start +
1827 				      (int)le32_to_cpu(sb->bblog_offset));
1828 			bb->size = le16_to_cpu(sb->bblog_size);
1829 		}
1830 	}
1831 
1832 	max_dev = 0;
1833 	rdev_for_each(rdev2, mddev)
1834 		if (rdev2->desc_nr+1 > max_dev)
1835 			max_dev = rdev2->desc_nr+1;
1836 
1837 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1838 		int bmask;
1839 		sb->max_dev = cpu_to_le32(max_dev);
1840 		rdev->sb_size = max_dev * 2 + 256;
1841 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1842 		if (rdev->sb_size & bmask)
1843 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1844 	} else
1845 		max_dev = le32_to_cpu(sb->max_dev);
1846 
1847 	for (i=0; i<max_dev;i++)
1848 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1849 
1850 	rdev_for_each(rdev2, mddev) {
1851 		i = rdev2->desc_nr;
1852 		if (test_bit(Faulty, &rdev2->flags))
1853 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1854 		else if (test_bit(In_sync, &rdev2->flags))
1855 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1856 		else if (rdev2->raid_disk >= 0)
1857 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1858 		else
1859 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1860 	}
1861 
1862 	sb->sb_csum = calc_sb_1_csum(sb);
1863 }
1864 
1865 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1866 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1867 {
1868 	struct mdp_superblock_1 *sb;
1869 	sector_t max_sectors;
1870 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1871 		return 0; /* component must fit device */
1872 	if (rdev->data_offset != rdev->new_data_offset)
1873 		return 0; /* too confusing */
1874 	if (rdev->sb_start < rdev->data_offset) {
1875 		/* minor versions 1 and 2; superblock before data */
1876 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1877 		max_sectors -= rdev->data_offset;
1878 		if (!num_sectors || num_sectors > max_sectors)
1879 			num_sectors = max_sectors;
1880 	} else if (rdev->mddev->bitmap_info.offset) {
1881 		/* minor version 0 with bitmap we can't move */
1882 		return 0;
1883 	} else {
1884 		/* minor version 0; superblock after data */
1885 		sector_t sb_start;
1886 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1887 		sb_start &= ~(sector_t)(4*2 - 1);
1888 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1889 		if (!num_sectors || num_sectors > max_sectors)
1890 			num_sectors = max_sectors;
1891 		rdev->sb_start = sb_start;
1892 	}
1893 	sb = page_address(rdev->sb_page);
1894 	sb->data_size = cpu_to_le64(num_sectors);
1895 	sb->super_offset = rdev->sb_start;
1896 	sb->sb_csum = calc_sb_1_csum(sb);
1897 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1898 		       rdev->sb_page);
1899 	md_super_wait(rdev->mddev);
1900 	return num_sectors;
1901 
1902 }
1903 
1904 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1905 super_1_allow_new_offset(struct md_rdev *rdev,
1906 			 unsigned long long new_offset)
1907 {
1908 	/* All necessary checks on new >= old have been done */
1909 	struct bitmap *bitmap;
1910 	if (new_offset >= rdev->data_offset)
1911 		return 1;
1912 
1913 	/* with 1.0 metadata, there is no metadata to tread on
1914 	 * so we can always move back */
1915 	if (rdev->mddev->minor_version == 0)
1916 		return 1;
1917 
1918 	/* otherwise we must be sure not to step on
1919 	 * any metadata, so stay:
1920 	 * 36K beyond start of superblock
1921 	 * beyond end of badblocks
1922 	 * beyond write-intent bitmap
1923 	 */
1924 	if (rdev->sb_start + (32+4)*2 > new_offset)
1925 		return 0;
1926 	bitmap = rdev->mddev->bitmap;
1927 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1928 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1929 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1930 		return 0;
1931 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1932 		return 0;
1933 
1934 	return 1;
1935 }
1936 
1937 static struct super_type super_types[] = {
1938 	[0] = {
1939 		.name	= "0.90.0",
1940 		.owner	= THIS_MODULE,
1941 		.load_super	    = super_90_load,
1942 		.validate_super	    = super_90_validate,
1943 		.sync_super	    = super_90_sync,
1944 		.rdev_size_change   = super_90_rdev_size_change,
1945 		.allow_new_offset   = super_90_allow_new_offset,
1946 	},
1947 	[1] = {
1948 		.name	= "md-1",
1949 		.owner	= THIS_MODULE,
1950 		.load_super	    = super_1_load,
1951 		.validate_super	    = super_1_validate,
1952 		.sync_super	    = super_1_sync,
1953 		.rdev_size_change   = super_1_rdev_size_change,
1954 		.allow_new_offset   = super_1_allow_new_offset,
1955 	},
1956 };
1957 
sync_super(struct mddev * mddev,struct md_rdev * rdev)1958 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1959 {
1960 	if (mddev->sync_super) {
1961 		mddev->sync_super(mddev, rdev);
1962 		return;
1963 	}
1964 
1965 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1966 
1967 	super_types[mddev->major_version].sync_super(mddev, rdev);
1968 }
1969 
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1970 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1971 {
1972 	struct md_rdev *rdev, *rdev2;
1973 
1974 	rcu_read_lock();
1975 	rdev_for_each_rcu(rdev, mddev1)
1976 		rdev_for_each_rcu(rdev2, mddev2)
1977 			if (rdev->bdev->bd_contains ==
1978 			    rdev2->bdev->bd_contains) {
1979 				rcu_read_unlock();
1980 				return 1;
1981 			}
1982 	rcu_read_unlock();
1983 	return 0;
1984 }
1985 
1986 static LIST_HEAD(pending_raid_disks);
1987 
1988 /*
1989  * Try to register data integrity profile for an mddev
1990  *
1991  * This is called when an array is started and after a disk has been kicked
1992  * from the array. It only succeeds if all working and active component devices
1993  * are integrity capable with matching profiles.
1994  */
md_integrity_register(struct mddev * mddev)1995 int md_integrity_register(struct mddev *mddev)
1996 {
1997 	struct md_rdev *rdev, *reference = NULL;
1998 
1999 	if (list_empty(&mddev->disks))
2000 		return 0; /* nothing to do */
2001 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2002 		return 0; /* shouldn't register, or already is */
2003 	rdev_for_each(rdev, mddev) {
2004 		/* skip spares and non-functional disks */
2005 		if (test_bit(Faulty, &rdev->flags))
2006 			continue;
2007 		if (rdev->raid_disk < 0)
2008 			continue;
2009 		if (!reference) {
2010 			/* Use the first rdev as the reference */
2011 			reference = rdev;
2012 			continue;
2013 		}
2014 		/* does this rdev's profile match the reference profile? */
2015 		if (blk_integrity_compare(reference->bdev->bd_disk,
2016 				rdev->bdev->bd_disk) < 0)
2017 			return -EINVAL;
2018 	}
2019 	if (!reference || !bdev_get_integrity(reference->bdev))
2020 		return 0;
2021 	/*
2022 	 * All component devices are integrity capable and have matching
2023 	 * profiles, register the common profile for the md device.
2024 	 */
2025 	if (blk_integrity_register(mddev->gendisk,
2026 			bdev_get_integrity(reference->bdev)) != 0) {
2027 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2028 			mdname(mddev));
2029 		return -EINVAL;
2030 	}
2031 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2032 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2033 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2034 		       mdname(mddev));
2035 		return -EINVAL;
2036 	}
2037 	return 0;
2038 }
2039 EXPORT_SYMBOL(md_integrity_register);
2040 
2041 /* Disable data integrity if non-capable/non-matching disk is being added */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2042 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044 	struct blk_integrity *bi_rdev;
2045 	struct blk_integrity *bi_mddev;
2046 
2047 	if (!mddev->gendisk)
2048 		return;
2049 
2050 	bi_rdev = bdev_get_integrity(rdev->bdev);
2051 	bi_mddev = blk_get_integrity(mddev->gendisk);
2052 
2053 	if (!bi_mddev) /* nothing to do */
2054 		return;
2055 	if (rdev->raid_disk < 0) /* skip spares */
2056 		return;
2057 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2058 					     rdev->bdev->bd_disk) >= 0)
2059 		return;
2060 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2061 	blk_integrity_unregister(mddev->gendisk);
2062 }
2063 EXPORT_SYMBOL(md_integrity_add_rdev);
2064 
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2065 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2066 {
2067 	char b[BDEVNAME_SIZE];
2068 	struct kobject *ko;
2069 	char *s;
2070 	int err;
2071 
2072 	if (rdev->mddev) {
2073 		MD_BUG();
2074 		return -EINVAL;
2075 	}
2076 
2077 	/* prevent duplicates */
2078 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2079 		return -EEXIST;
2080 
2081 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2082 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2083 			rdev->sectors < mddev->dev_sectors)) {
2084 		if (mddev->pers) {
2085 			/* Cannot change size, so fail
2086 			 * If mddev->level <= 0, then we don't care
2087 			 * about aligning sizes (e.g. linear)
2088 			 */
2089 			if (mddev->level > 0)
2090 				return -ENOSPC;
2091 		} else
2092 			mddev->dev_sectors = rdev->sectors;
2093 	}
2094 
2095 	/* Verify rdev->desc_nr is unique.
2096 	 * If it is -1, assign a free number, else
2097 	 * check number is not in use
2098 	 */
2099 	if (rdev->desc_nr < 0) {
2100 		int choice = 0;
2101 		if (mddev->pers) choice = mddev->raid_disks;
2102 		while (find_rdev_nr(mddev, choice))
2103 			choice++;
2104 		rdev->desc_nr = choice;
2105 	} else {
2106 		if (find_rdev_nr(mddev, rdev->desc_nr))
2107 			return -EBUSY;
2108 	}
2109 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2110 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2111 		       mdname(mddev), mddev->max_disks);
2112 		return -EBUSY;
2113 	}
2114 	bdevname(rdev->bdev,b);
2115 	while ( (s=strchr(b, '/')) != NULL)
2116 		*s = '!';
2117 
2118 	rdev->mddev = mddev;
2119 	printk(KERN_INFO "md: bind<%s>\n", b);
2120 
2121 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2122 		goto fail;
2123 
2124 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2125 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2126 		/* failure here is OK */;
2127 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2128 
2129 	list_add_rcu(&rdev->same_set, &mddev->disks);
2130 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2131 
2132 	/* May as well allow recovery to be retried once */
2133 	mddev->recovery_disabled++;
2134 
2135 	return 0;
2136 
2137  fail:
2138 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2139 	       b, mdname(mddev));
2140 	return err;
2141 }
2142 
md_delayed_delete(struct work_struct * ws)2143 static void md_delayed_delete(struct work_struct *ws)
2144 {
2145 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2146 	kobject_del(&rdev->kobj);
2147 	kobject_put(&rdev->kobj);
2148 }
2149 
unbind_rdev_from_array(struct md_rdev * rdev)2150 static void unbind_rdev_from_array(struct md_rdev * rdev)
2151 {
2152 	char b[BDEVNAME_SIZE];
2153 	if (!rdev->mddev) {
2154 		MD_BUG();
2155 		return;
2156 	}
2157 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2158 	list_del_rcu(&rdev->same_set);
2159 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2160 	rdev->mddev = NULL;
2161 	sysfs_remove_link(&rdev->kobj, "block");
2162 	sysfs_put(rdev->sysfs_state);
2163 	rdev->sysfs_state = NULL;
2164 	rdev->badblocks.count = 0;
2165 	/* We need to delay this, otherwise we can deadlock when
2166 	 * writing to 'remove' to "dev/state".  We also need
2167 	 * to delay it due to rcu usage.
2168 	 */
2169 	synchronize_rcu();
2170 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2171 	kobject_get(&rdev->kobj);
2172 	queue_work(md_misc_wq, &rdev->del_work);
2173 }
2174 
2175 /*
2176  * prevent the device from being mounted, repartitioned or
2177  * otherwise reused by a RAID array (or any other kernel
2178  * subsystem), by bd_claiming the device.
2179  */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2180 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2181 {
2182 	int err = 0;
2183 	struct block_device *bdev;
2184 	char b[BDEVNAME_SIZE];
2185 
2186 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2187 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2188 	if (IS_ERR(bdev)) {
2189 		printk(KERN_ERR "md: could not open %s.\n",
2190 			__bdevname(dev, b));
2191 		return PTR_ERR(bdev);
2192 	}
2193 	rdev->bdev = bdev;
2194 	return err;
2195 }
2196 
unlock_rdev(struct md_rdev * rdev)2197 static void unlock_rdev(struct md_rdev *rdev)
2198 {
2199 	struct block_device *bdev = rdev->bdev;
2200 	rdev->bdev = NULL;
2201 	if (!bdev)
2202 		MD_BUG();
2203 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2204 }
2205 
2206 void md_autodetect_dev(dev_t dev);
2207 
export_rdev(struct md_rdev * rdev)2208 static void export_rdev(struct md_rdev * rdev)
2209 {
2210 	char b[BDEVNAME_SIZE];
2211 	printk(KERN_INFO "md: export_rdev(%s)\n",
2212 		bdevname(rdev->bdev,b));
2213 	if (rdev->mddev)
2214 		MD_BUG();
2215 	md_rdev_clear(rdev);
2216 #ifndef MODULE
2217 	if (test_bit(AutoDetected, &rdev->flags))
2218 		md_autodetect_dev(rdev->bdev->bd_dev);
2219 #endif
2220 	unlock_rdev(rdev);
2221 	kobject_put(&rdev->kobj);
2222 }
2223 
kick_rdev_from_array(struct md_rdev * rdev)2224 static void kick_rdev_from_array(struct md_rdev * rdev)
2225 {
2226 	unbind_rdev_from_array(rdev);
2227 	export_rdev(rdev);
2228 }
2229 
export_array(struct mddev * mddev)2230 static void export_array(struct mddev *mddev)
2231 {
2232 	struct md_rdev *rdev, *tmp;
2233 
2234 	rdev_for_each_safe(rdev, tmp, mddev) {
2235 		if (!rdev->mddev) {
2236 			MD_BUG();
2237 			continue;
2238 		}
2239 		kick_rdev_from_array(rdev);
2240 	}
2241 	if (!list_empty(&mddev->disks))
2242 		MD_BUG();
2243 	mddev->raid_disks = 0;
2244 	mddev->major_version = 0;
2245 }
2246 
print_desc(mdp_disk_t * desc)2247 static void print_desc(mdp_disk_t *desc)
2248 {
2249 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2250 		desc->major,desc->minor,desc->raid_disk,desc->state);
2251 }
2252 
print_sb_90(mdp_super_t * sb)2253 static void print_sb_90(mdp_super_t *sb)
2254 {
2255 	int i;
2256 
2257 	printk(KERN_INFO
2258 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2259 		sb->major_version, sb->minor_version, sb->patch_version,
2260 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2261 		sb->ctime);
2262 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2263 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2264 		sb->md_minor, sb->layout, sb->chunk_size);
2265 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2266 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2267 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2268 		sb->failed_disks, sb->spare_disks,
2269 		sb->sb_csum, (unsigned long)sb->events_lo);
2270 
2271 	printk(KERN_INFO);
2272 	for (i = 0; i < MD_SB_DISKS; i++) {
2273 		mdp_disk_t *desc;
2274 
2275 		desc = sb->disks + i;
2276 		if (desc->number || desc->major || desc->minor ||
2277 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2278 			printk("     D %2d: ", i);
2279 			print_desc(desc);
2280 		}
2281 	}
2282 	printk(KERN_INFO "md:     THIS: ");
2283 	print_desc(&sb->this_disk);
2284 }
2285 
print_sb_1(struct mdp_superblock_1 * sb)2286 static void print_sb_1(struct mdp_superblock_1 *sb)
2287 {
2288 	__u8 *uuid;
2289 
2290 	uuid = sb->set_uuid;
2291 	printk(KERN_INFO
2292 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2293 	       "md:    Name: \"%s\" CT:%llu\n",
2294 		le32_to_cpu(sb->major_version),
2295 		le32_to_cpu(sb->feature_map),
2296 		uuid,
2297 		sb->set_name,
2298 		(unsigned long long)le64_to_cpu(sb->ctime)
2299 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2300 
2301 	uuid = sb->device_uuid;
2302 	printk(KERN_INFO
2303 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2304 			" RO:%llu\n"
2305 	       "md:     Dev:%08x UUID: %pU\n"
2306 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2307 	       "md:         (MaxDev:%u) \n",
2308 		le32_to_cpu(sb->level),
2309 		(unsigned long long)le64_to_cpu(sb->size),
2310 		le32_to_cpu(sb->raid_disks),
2311 		le32_to_cpu(sb->layout),
2312 		le32_to_cpu(sb->chunksize),
2313 		(unsigned long long)le64_to_cpu(sb->data_offset),
2314 		(unsigned long long)le64_to_cpu(sb->data_size),
2315 		(unsigned long long)le64_to_cpu(sb->super_offset),
2316 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2317 		le32_to_cpu(sb->dev_number),
2318 		uuid,
2319 		sb->devflags,
2320 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2321 		(unsigned long long)le64_to_cpu(sb->events),
2322 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2323 		le32_to_cpu(sb->sb_csum),
2324 		le32_to_cpu(sb->max_dev)
2325 		);
2326 }
2327 
print_rdev(struct md_rdev * rdev,int major_version)2328 static void print_rdev(struct md_rdev *rdev, int major_version)
2329 {
2330 	char b[BDEVNAME_SIZE];
2331 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2332 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2333 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2334 	        rdev->desc_nr);
2335 	if (rdev->sb_loaded) {
2336 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2337 		switch (major_version) {
2338 		case 0:
2339 			print_sb_90(page_address(rdev->sb_page));
2340 			break;
2341 		case 1:
2342 			print_sb_1(page_address(rdev->sb_page));
2343 			break;
2344 		}
2345 	} else
2346 		printk(KERN_INFO "md: no rdev superblock!\n");
2347 }
2348 
md_print_devices(void)2349 static void md_print_devices(void)
2350 {
2351 	struct list_head *tmp;
2352 	struct md_rdev *rdev;
2353 	struct mddev *mddev;
2354 	char b[BDEVNAME_SIZE];
2355 
2356 	printk("\n");
2357 	printk("md:	**********************************\n");
2358 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2359 	printk("md:	**********************************\n");
2360 	for_each_mddev(mddev, tmp) {
2361 
2362 		if (mddev->bitmap)
2363 			bitmap_print_sb(mddev->bitmap);
2364 		else
2365 			printk("%s: ", mdname(mddev));
2366 		rdev_for_each(rdev, mddev)
2367 			printk("<%s>", bdevname(rdev->bdev,b));
2368 		printk("\n");
2369 
2370 		rdev_for_each(rdev, mddev)
2371 			print_rdev(rdev, mddev->major_version);
2372 	}
2373 	printk("md:	**********************************\n");
2374 	printk("\n");
2375 }
2376 
2377 
sync_sbs(struct mddev * mddev,int nospares)2378 static void sync_sbs(struct mddev * mddev, int nospares)
2379 {
2380 	/* Update each superblock (in-memory image), but
2381 	 * if we are allowed to, skip spares which already
2382 	 * have the right event counter, or have one earlier
2383 	 * (which would mean they aren't being marked as dirty
2384 	 * with the rest of the array)
2385 	 */
2386 	struct md_rdev *rdev;
2387 	rdev_for_each(rdev, mddev) {
2388 		if (rdev->sb_events == mddev->events ||
2389 		    (nospares &&
2390 		     rdev->raid_disk < 0 &&
2391 		     rdev->sb_events+1 == mddev->events)) {
2392 			/* Don't update this superblock */
2393 			rdev->sb_loaded = 2;
2394 		} else {
2395 			sync_super(mddev, rdev);
2396 			rdev->sb_loaded = 1;
2397 		}
2398 	}
2399 }
2400 
md_update_sb(struct mddev * mddev,int force_change)2401 static void md_update_sb(struct mddev * mddev, int force_change)
2402 {
2403 	struct md_rdev *rdev;
2404 	int sync_req;
2405 	int nospares = 0;
2406 	int any_badblocks_changed = 0;
2407 
2408 	if (mddev->ro) {
2409 		if (force_change)
2410 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2411 		return;
2412 	}
2413 repeat:
2414 	/* First make sure individual recovery_offsets are correct */
2415 	rdev_for_each(rdev, mddev) {
2416 		if (rdev->raid_disk >= 0 &&
2417 		    mddev->delta_disks >= 0 &&
2418 		    !test_bit(In_sync, &rdev->flags) &&
2419 		    mddev->curr_resync_completed > rdev->recovery_offset)
2420 				rdev->recovery_offset = mddev->curr_resync_completed;
2421 
2422 	}
2423 	if (!mddev->persistent) {
2424 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2425 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2426 		if (!mddev->external) {
2427 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2428 			rdev_for_each(rdev, mddev) {
2429 				if (rdev->badblocks.changed) {
2430 					rdev->badblocks.changed = 0;
2431 					md_ack_all_badblocks(&rdev->badblocks);
2432 					md_error(mddev, rdev);
2433 				}
2434 				clear_bit(Blocked, &rdev->flags);
2435 				clear_bit(BlockedBadBlocks, &rdev->flags);
2436 				wake_up(&rdev->blocked_wait);
2437 			}
2438 		}
2439 		wake_up(&mddev->sb_wait);
2440 		return;
2441 	}
2442 
2443 	spin_lock_irq(&mddev->write_lock);
2444 
2445 	mddev->utime = get_seconds();
2446 
2447 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2448 		force_change = 1;
2449 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2450 		/* just a clean<-> dirty transition, possibly leave spares alone,
2451 		 * though if events isn't the right even/odd, we will have to do
2452 		 * spares after all
2453 		 */
2454 		nospares = 1;
2455 	if (force_change)
2456 		nospares = 0;
2457 	if (mddev->degraded)
2458 		/* If the array is degraded, then skipping spares is both
2459 		 * dangerous and fairly pointless.
2460 		 * Dangerous because a device that was removed from the array
2461 		 * might have a event_count that still looks up-to-date,
2462 		 * so it can be re-added without a resync.
2463 		 * Pointless because if there are any spares to skip,
2464 		 * then a recovery will happen and soon that array won't
2465 		 * be degraded any more and the spare can go back to sleep then.
2466 		 */
2467 		nospares = 0;
2468 
2469 	sync_req = mddev->in_sync;
2470 
2471 	/* If this is just a dirty<->clean transition, and the array is clean
2472 	 * and 'events' is odd, we can roll back to the previous clean state */
2473 	if (nospares
2474 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2475 	    && mddev->can_decrease_events
2476 	    && mddev->events != 1) {
2477 		mddev->events--;
2478 		mddev->can_decrease_events = 0;
2479 	} else {
2480 		/* otherwise we have to go forward and ... */
2481 		mddev->events ++;
2482 		mddev->can_decrease_events = nospares;
2483 	}
2484 
2485 	if (!mddev->events) {
2486 		/*
2487 		 * oops, this 64-bit counter should never wrap.
2488 		 * Either we are in around ~1 trillion A.C., assuming
2489 		 * 1 reboot per second, or we have a bug:
2490 		 */
2491 		MD_BUG();
2492 		mddev->events --;
2493 	}
2494 
2495 	rdev_for_each(rdev, mddev) {
2496 		if (rdev->badblocks.changed)
2497 			any_badblocks_changed++;
2498 		if (test_bit(Faulty, &rdev->flags))
2499 			set_bit(FaultRecorded, &rdev->flags);
2500 	}
2501 
2502 	sync_sbs(mddev, nospares);
2503 	spin_unlock_irq(&mddev->write_lock);
2504 
2505 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2506 		 mdname(mddev), mddev->in_sync);
2507 
2508 	bitmap_update_sb(mddev->bitmap);
2509 	rdev_for_each(rdev, mddev) {
2510 		char b[BDEVNAME_SIZE];
2511 
2512 		if (rdev->sb_loaded != 1)
2513 			continue; /* no noise on spare devices */
2514 
2515 		if (!test_bit(Faulty, &rdev->flags) &&
2516 		    rdev->saved_raid_disk == -1) {
2517 			md_super_write(mddev,rdev,
2518 				       rdev->sb_start, rdev->sb_size,
2519 				       rdev->sb_page);
2520 			pr_debug("md: (write) %s's sb offset: %llu\n",
2521 				 bdevname(rdev->bdev, b),
2522 				 (unsigned long long)rdev->sb_start);
2523 			rdev->sb_events = mddev->events;
2524 			if (rdev->badblocks.size) {
2525 				md_super_write(mddev, rdev,
2526 					       rdev->badblocks.sector,
2527 					       rdev->badblocks.size << 9,
2528 					       rdev->bb_page);
2529 				rdev->badblocks.size = 0;
2530 			}
2531 
2532 		} else if (test_bit(Faulty, &rdev->flags))
2533 			pr_debug("md: %s (skipping faulty)\n",
2534 				 bdevname(rdev->bdev, b));
2535 		else
2536 			pr_debug("(skipping incremental s/r ");
2537 
2538 		if (mddev->level == LEVEL_MULTIPATH)
2539 			/* only need to write one superblock... */
2540 			break;
2541 	}
2542 	md_super_wait(mddev);
2543 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2544 
2545 	spin_lock_irq(&mddev->write_lock);
2546 	if (mddev->in_sync != sync_req ||
2547 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2548 		/* have to write it out again */
2549 		spin_unlock_irq(&mddev->write_lock);
2550 		goto repeat;
2551 	}
2552 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2553 	spin_unlock_irq(&mddev->write_lock);
2554 	wake_up(&mddev->sb_wait);
2555 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2556 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2557 
2558 	rdev_for_each(rdev, mddev) {
2559 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2560 			clear_bit(Blocked, &rdev->flags);
2561 
2562 		if (any_badblocks_changed)
2563 			md_ack_all_badblocks(&rdev->badblocks);
2564 		clear_bit(BlockedBadBlocks, &rdev->flags);
2565 		wake_up(&rdev->blocked_wait);
2566 	}
2567 }
2568 
2569 /* words written to sysfs files may, or may not, be \n terminated.
2570  * We want to accept with case. For this we use cmd_match.
2571  */
cmd_match(const char * cmd,const char * str)2572 static int cmd_match(const char *cmd, const char *str)
2573 {
2574 	/* See if cmd, written into a sysfs file, matches
2575 	 * str.  They must either be the same, or cmd can
2576 	 * have a trailing newline
2577 	 */
2578 	while (*cmd && *str && *cmd == *str) {
2579 		cmd++;
2580 		str++;
2581 	}
2582 	if (*cmd == '\n')
2583 		cmd++;
2584 	if (*str || *cmd)
2585 		return 0;
2586 	return 1;
2587 }
2588 
2589 struct rdev_sysfs_entry {
2590 	struct attribute attr;
2591 	ssize_t (*show)(struct md_rdev *, char *);
2592 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2593 };
2594 
2595 static ssize_t
state_show(struct md_rdev * rdev,char * page)2596 state_show(struct md_rdev *rdev, char *page)
2597 {
2598 	char *sep = "";
2599 	size_t len = 0;
2600 
2601 	if (test_bit(Faulty, &rdev->flags) ||
2602 	    rdev->badblocks.unacked_exist) {
2603 		len+= sprintf(page+len, "%sfaulty",sep);
2604 		sep = ",";
2605 	}
2606 	if (test_bit(In_sync, &rdev->flags)) {
2607 		len += sprintf(page+len, "%sin_sync",sep);
2608 		sep = ",";
2609 	}
2610 	if (test_bit(WriteMostly, &rdev->flags)) {
2611 		len += sprintf(page+len, "%swrite_mostly",sep);
2612 		sep = ",";
2613 	}
2614 	if (test_bit(Blocked, &rdev->flags) ||
2615 	    (rdev->badblocks.unacked_exist
2616 	     && !test_bit(Faulty, &rdev->flags))) {
2617 		len += sprintf(page+len, "%sblocked", sep);
2618 		sep = ",";
2619 	}
2620 	if (!test_bit(Faulty, &rdev->flags) &&
2621 	    !test_bit(In_sync, &rdev->flags)) {
2622 		len += sprintf(page+len, "%sspare", sep);
2623 		sep = ",";
2624 	}
2625 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2626 		len += sprintf(page+len, "%swrite_error", sep);
2627 		sep = ",";
2628 	}
2629 	if (test_bit(WantReplacement, &rdev->flags)) {
2630 		len += sprintf(page+len, "%swant_replacement", sep);
2631 		sep = ",";
2632 	}
2633 	if (test_bit(Replacement, &rdev->flags)) {
2634 		len += sprintf(page+len, "%sreplacement", sep);
2635 		sep = ",";
2636 	}
2637 
2638 	return len+sprintf(page+len, "\n");
2639 }
2640 
2641 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2642 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2643 {
2644 	/* can write
2645 	 *  faulty  - simulates an error
2646 	 *  remove  - disconnects the device
2647 	 *  writemostly - sets write_mostly
2648 	 *  -writemostly - clears write_mostly
2649 	 *  blocked - sets the Blocked flags
2650 	 *  -blocked - clears the Blocked and possibly simulates an error
2651 	 *  insync - sets Insync providing device isn't active
2652 	 *  write_error - sets WriteErrorSeen
2653 	 *  -write_error - clears WriteErrorSeen
2654 	 */
2655 	int err = -EINVAL;
2656 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2657 		md_error(rdev->mddev, rdev);
2658 		if (test_bit(Faulty, &rdev->flags))
2659 			err = 0;
2660 		else
2661 			err = -EBUSY;
2662 	} else if (cmd_match(buf, "remove")) {
2663 		if (rdev->raid_disk >= 0)
2664 			err = -EBUSY;
2665 		else {
2666 			struct mddev *mddev = rdev->mddev;
2667 			kick_rdev_from_array(rdev);
2668 			if (mddev->pers)
2669 				md_update_sb(mddev, 1);
2670 			md_new_event(mddev);
2671 			err = 0;
2672 		}
2673 	} else if (cmd_match(buf, "writemostly")) {
2674 		set_bit(WriteMostly, &rdev->flags);
2675 		err = 0;
2676 	} else if (cmd_match(buf, "-writemostly")) {
2677 		clear_bit(WriteMostly, &rdev->flags);
2678 		err = 0;
2679 	} else if (cmd_match(buf, "blocked")) {
2680 		set_bit(Blocked, &rdev->flags);
2681 		err = 0;
2682 	} else if (cmd_match(buf, "-blocked")) {
2683 		if (!test_bit(Faulty, &rdev->flags) &&
2684 		    rdev->badblocks.unacked_exist) {
2685 			/* metadata handler doesn't understand badblocks,
2686 			 * so we need to fail the device
2687 			 */
2688 			md_error(rdev->mddev, rdev);
2689 		}
2690 		clear_bit(Blocked, &rdev->flags);
2691 		clear_bit(BlockedBadBlocks, &rdev->flags);
2692 		wake_up(&rdev->blocked_wait);
2693 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2694 		md_wakeup_thread(rdev->mddev->thread);
2695 
2696 		err = 0;
2697 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2698 		set_bit(In_sync, &rdev->flags);
2699 		err = 0;
2700 	} else if (cmd_match(buf, "write_error")) {
2701 		set_bit(WriteErrorSeen, &rdev->flags);
2702 		err = 0;
2703 	} else if (cmd_match(buf, "-write_error")) {
2704 		clear_bit(WriteErrorSeen, &rdev->flags);
2705 		err = 0;
2706 	} else if (cmd_match(buf, "want_replacement")) {
2707 		/* Any non-spare device that is not a replacement can
2708 		 * become want_replacement at any time, but we then need to
2709 		 * check if recovery is needed.
2710 		 */
2711 		if (rdev->raid_disk >= 0 &&
2712 		    !test_bit(Replacement, &rdev->flags))
2713 			set_bit(WantReplacement, &rdev->flags);
2714 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2715 		md_wakeup_thread(rdev->mddev->thread);
2716 		err = 0;
2717 	} else if (cmd_match(buf, "-want_replacement")) {
2718 		/* Clearing 'want_replacement' is always allowed.
2719 		 * Once replacements starts it is too late though.
2720 		 */
2721 		err = 0;
2722 		clear_bit(WantReplacement, &rdev->flags);
2723 	} else if (cmd_match(buf, "replacement")) {
2724 		/* Can only set a device as a replacement when array has not
2725 		 * yet been started.  Once running, replacement is automatic
2726 		 * from spares, or by assigning 'slot'.
2727 		 */
2728 		if (rdev->mddev->pers)
2729 			err = -EBUSY;
2730 		else {
2731 			set_bit(Replacement, &rdev->flags);
2732 			err = 0;
2733 		}
2734 	} else if (cmd_match(buf, "-replacement")) {
2735 		/* Similarly, can only clear Replacement before start */
2736 		if (rdev->mddev->pers)
2737 			err = -EBUSY;
2738 		else {
2739 			clear_bit(Replacement, &rdev->flags);
2740 			err = 0;
2741 		}
2742 	}
2743 	if (!err)
2744 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2745 	return err ? err : len;
2746 }
2747 static struct rdev_sysfs_entry rdev_state =
2748 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2749 
2750 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2751 errors_show(struct md_rdev *rdev, char *page)
2752 {
2753 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2754 }
2755 
2756 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2757 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2758 {
2759 	char *e;
2760 	unsigned long n = simple_strtoul(buf, &e, 10);
2761 	if (*buf && (*e == 0 || *e == '\n')) {
2762 		atomic_set(&rdev->corrected_errors, n);
2763 		return len;
2764 	}
2765 	return -EINVAL;
2766 }
2767 static struct rdev_sysfs_entry rdev_errors =
2768 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2769 
2770 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2771 slot_show(struct md_rdev *rdev, char *page)
2772 {
2773 	if (rdev->raid_disk < 0)
2774 		return sprintf(page, "none\n");
2775 	else
2776 		return sprintf(page, "%d\n", rdev->raid_disk);
2777 }
2778 
2779 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2780 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2781 {
2782 	char *e;
2783 	int err;
2784 	int slot = simple_strtoul(buf, &e, 10);
2785 	if (strncmp(buf, "none", 4)==0)
2786 		slot = -1;
2787 	else if (e==buf || (*e && *e!= '\n'))
2788 		return -EINVAL;
2789 	if (rdev->mddev->pers && slot == -1) {
2790 		/* Setting 'slot' on an active array requires also
2791 		 * updating the 'rd%d' link, and communicating
2792 		 * with the personality with ->hot_*_disk.
2793 		 * For now we only support removing
2794 		 * failed/spare devices.  This normally happens automatically,
2795 		 * but not when the metadata is externally managed.
2796 		 */
2797 		if (rdev->raid_disk == -1)
2798 			return -EEXIST;
2799 		/* personality does all needed checks */
2800 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2801 			return -EINVAL;
2802 		clear_bit(Blocked, &rdev->flags);
2803 		remove_and_add_spares(rdev->mddev, rdev);
2804 		if (rdev->raid_disk >= 0)
2805 			return -EBUSY;
2806 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807 		md_wakeup_thread(rdev->mddev->thread);
2808 	} else if (rdev->mddev->pers) {
2809 		/* Activating a spare .. or possibly reactivating
2810 		 * if we ever get bitmaps working here.
2811 		 */
2812 
2813 		if (rdev->raid_disk != -1)
2814 			return -EBUSY;
2815 
2816 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817 			return -EBUSY;
2818 
2819 		if (rdev->mddev->pers->hot_add_disk == NULL)
2820 			return -EINVAL;
2821 
2822 		if (slot >= rdev->mddev->raid_disks &&
2823 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824 			return -ENOSPC;
2825 
2826 		rdev->raid_disk = slot;
2827 		if (test_bit(In_sync, &rdev->flags))
2828 			rdev->saved_raid_disk = slot;
2829 		else
2830 			rdev->saved_raid_disk = -1;
2831 		clear_bit(In_sync, &rdev->flags);
2832 		err = rdev->mddev->pers->
2833 			hot_add_disk(rdev->mddev, rdev);
2834 		if (err) {
2835 			rdev->raid_disk = -1;
2836 			return err;
2837 		} else
2838 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2839 		if (sysfs_link_rdev(rdev->mddev, rdev))
2840 			/* failure here is OK */;
2841 		/* don't wakeup anyone, leave that to userspace. */
2842 	} else {
2843 		if (slot >= rdev->mddev->raid_disks &&
2844 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845 			return -ENOSPC;
2846 		rdev->raid_disk = slot;
2847 		/* assume it is working */
2848 		clear_bit(Faulty, &rdev->flags);
2849 		clear_bit(WriteMostly, &rdev->flags);
2850 		set_bit(In_sync, &rdev->flags);
2851 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2852 	}
2853 	return len;
2854 }
2855 
2856 
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859 
2860 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865 
2866 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869 	unsigned long long offset;
2870 	if (strict_strtoull(buf, 10, &offset) < 0)
2871 		return -EINVAL;
2872 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873 		return -EBUSY;
2874 	if (rdev->sectors && rdev->mddev->external)
2875 		/* Must set offset before size, so overlap checks
2876 		 * can be sane */
2877 		return -EBUSY;
2878 	rdev->data_offset = offset;
2879 	rdev->new_data_offset = offset;
2880 	return len;
2881 }
2882 
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885 
new_offset_show(struct md_rdev * rdev,char * page)2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888 	return sprintf(page, "%llu\n",
2889 		       (unsigned long long)rdev->new_data_offset);
2890 }
2891 
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893 				const char *buf, size_t len)
2894 {
2895 	unsigned long long new_offset;
2896 	struct mddev *mddev = rdev->mddev;
2897 
2898 	if (strict_strtoull(buf, 10, &new_offset) < 0)
2899 		return -EINVAL;
2900 
2901 	if (mddev->sync_thread)
2902 		return -EBUSY;
2903 	if (new_offset == rdev->data_offset)
2904 		/* reset is always permitted */
2905 		;
2906 	else if (new_offset > rdev->data_offset) {
2907 		/* must not push array size beyond rdev_sectors */
2908 		if (new_offset - rdev->data_offset
2909 		    + mddev->dev_sectors > rdev->sectors)
2910 				return -E2BIG;
2911 	}
2912 	/* Metadata worries about other space details. */
2913 
2914 	/* decreasing the offset is inconsistent with a backwards
2915 	 * reshape.
2916 	 */
2917 	if (new_offset < rdev->data_offset &&
2918 	    mddev->reshape_backwards)
2919 		return -EINVAL;
2920 	/* Increasing offset is inconsistent with forwards
2921 	 * reshape.  reshape_direction should be set to
2922 	 * 'backwards' first.
2923 	 */
2924 	if (new_offset > rdev->data_offset &&
2925 	    !mddev->reshape_backwards)
2926 		return -EINVAL;
2927 
2928 	if (mddev->pers && mddev->persistent &&
2929 	    !super_types[mddev->major_version]
2930 	    .allow_new_offset(rdev, new_offset))
2931 		return -E2BIG;
2932 	rdev->new_data_offset = new_offset;
2933 	if (new_offset > rdev->data_offset)
2934 		mddev->reshape_backwards = 1;
2935 	else if (new_offset < rdev->data_offset)
2936 		mddev->reshape_backwards = 0;
2937 
2938 	return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942 
2943 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948 
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951 	/* check if two start/length pairs overlap */
2952 	if (s1+l1 <= s2)
2953 		return 0;
2954 	if (s2+l2 <= s1)
2955 		return 0;
2956 	return 1;
2957 }
2958 
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961 	unsigned long long blocks;
2962 	sector_t new;
2963 
2964 	if (strict_strtoull(buf, 10, &blocks) < 0)
2965 		return -EINVAL;
2966 
2967 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968 		return -EINVAL; /* sector conversion overflow */
2969 
2970 	new = blocks * 2;
2971 	if (new != blocks * 2)
2972 		return -EINVAL; /* unsigned long long to sector_t overflow */
2973 
2974 	*sectors = new;
2975 	return 0;
2976 }
2977 
2978 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981 	struct mddev *my_mddev = rdev->mddev;
2982 	sector_t oldsectors = rdev->sectors;
2983 	sector_t sectors;
2984 
2985 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986 		return -EINVAL;
2987 	if (rdev->data_offset != rdev->new_data_offset)
2988 		return -EINVAL; /* too confusing */
2989 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2990 		if (my_mddev->persistent) {
2991 			sectors = super_types[my_mddev->major_version].
2992 				rdev_size_change(rdev, sectors);
2993 			if (!sectors)
2994 				return -EBUSY;
2995 		} else if (!sectors)
2996 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997 				rdev->data_offset;
2998 		if (!my_mddev->pers->resize)
2999 			/* Cannot change size for RAID0 or Linear etc */
3000 			return -EINVAL;
3001 	}
3002 	if (sectors < my_mddev->dev_sectors)
3003 		return -EINVAL; /* component must fit device */
3004 
3005 	rdev->sectors = sectors;
3006 	if (sectors > oldsectors && my_mddev->external) {
3007 		/* need to check that all other rdevs with the same ->bdev
3008 		 * do not overlap.  We need to unlock the mddev to avoid
3009 		 * a deadlock.  We have already changed rdev->sectors, and if
3010 		 * we have to change it back, we will have the lock again.
3011 		 */
3012 		struct mddev *mddev;
3013 		int overlap = 0;
3014 		struct list_head *tmp;
3015 
3016 		mddev_unlock(my_mddev);
3017 		for_each_mddev(mddev, tmp) {
3018 			struct md_rdev *rdev2;
3019 
3020 			mddev_lock(mddev);
3021 			rdev_for_each(rdev2, mddev)
3022 				if (rdev->bdev == rdev2->bdev &&
3023 				    rdev != rdev2 &&
3024 				    overlaps(rdev->data_offset, rdev->sectors,
3025 					     rdev2->data_offset,
3026 					     rdev2->sectors)) {
3027 					overlap = 1;
3028 					break;
3029 				}
3030 			mddev_unlock(mddev);
3031 			if (overlap) {
3032 				mddev_put(mddev);
3033 				break;
3034 			}
3035 		}
3036 		mddev_lock(my_mddev);
3037 		if (overlap) {
3038 			/* Someone else could have slipped in a size
3039 			 * change here, but doing so is just silly.
3040 			 * We put oldsectors back because we *know* it is
3041 			 * safe, and trust userspace not to race with
3042 			 * itself
3043 			 */
3044 			rdev->sectors = oldsectors;
3045 			return -EBUSY;
3046 		}
3047 	}
3048 	return len;
3049 }
3050 
3051 static struct rdev_sysfs_entry rdev_size =
3052 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3053 
3054 
recovery_start_show(struct md_rdev * rdev,char * page)3055 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3056 {
3057 	unsigned long long recovery_start = rdev->recovery_offset;
3058 
3059 	if (test_bit(In_sync, &rdev->flags) ||
3060 	    recovery_start == MaxSector)
3061 		return sprintf(page, "none\n");
3062 
3063 	return sprintf(page, "%llu\n", recovery_start);
3064 }
3065 
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3066 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3067 {
3068 	unsigned long long recovery_start;
3069 
3070 	if (cmd_match(buf, "none"))
3071 		recovery_start = MaxSector;
3072 	else if (strict_strtoull(buf, 10, &recovery_start))
3073 		return -EINVAL;
3074 
3075 	if (rdev->mddev->pers &&
3076 	    rdev->raid_disk >= 0)
3077 		return -EBUSY;
3078 
3079 	rdev->recovery_offset = recovery_start;
3080 	if (recovery_start == MaxSector)
3081 		set_bit(In_sync, &rdev->flags);
3082 	else
3083 		clear_bit(In_sync, &rdev->flags);
3084 	return len;
3085 }
3086 
3087 static struct rdev_sysfs_entry rdev_recovery_start =
3088 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3089 
3090 
3091 static ssize_t
3092 badblocks_show(struct badblocks *bb, char *page, int unack);
3093 static ssize_t
3094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3095 
bb_show(struct md_rdev * rdev,char * page)3096 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3097 {
3098 	return badblocks_show(&rdev->badblocks, page, 0);
3099 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3100 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3101 {
3102 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3103 	/* Maybe that ack was all we needed */
3104 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3105 		wake_up(&rdev->blocked_wait);
3106 	return rv;
3107 }
3108 static struct rdev_sysfs_entry rdev_bad_blocks =
3109 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3110 
3111 
ubb_show(struct md_rdev * rdev,char * page)3112 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3113 {
3114 	return badblocks_show(&rdev->badblocks, page, 1);
3115 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3116 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3117 {
3118 	return badblocks_store(&rdev->badblocks, page, len, 1);
3119 }
3120 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3121 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3122 
3123 static struct attribute *rdev_default_attrs[] = {
3124 	&rdev_state.attr,
3125 	&rdev_errors.attr,
3126 	&rdev_slot.attr,
3127 	&rdev_offset.attr,
3128 	&rdev_new_offset.attr,
3129 	&rdev_size.attr,
3130 	&rdev_recovery_start.attr,
3131 	&rdev_bad_blocks.attr,
3132 	&rdev_unack_bad_blocks.attr,
3133 	NULL,
3134 };
3135 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3136 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3137 {
3138 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3139 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3140 	struct mddev *mddev = rdev->mddev;
3141 	ssize_t rv;
3142 
3143 	if (!entry->show)
3144 		return -EIO;
3145 
3146 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3147 	if (!rv) {
3148 		if (rdev->mddev == NULL)
3149 			rv = -EBUSY;
3150 		else
3151 			rv = entry->show(rdev, page);
3152 		mddev_unlock(mddev);
3153 	}
3154 	return rv;
3155 }
3156 
3157 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3158 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3159 	      const char *page, size_t length)
3160 {
3161 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3162 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3163 	ssize_t rv;
3164 	struct mddev *mddev = rdev->mddev;
3165 
3166 	if (!entry->store)
3167 		return -EIO;
3168 	if (!capable(CAP_SYS_ADMIN))
3169 		return -EACCES;
3170 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3171 	if (!rv) {
3172 		if (rdev->mddev == NULL)
3173 			rv = -EBUSY;
3174 		else
3175 			rv = entry->store(rdev, page, length);
3176 		mddev_unlock(mddev);
3177 	}
3178 	return rv;
3179 }
3180 
rdev_free(struct kobject * ko)3181 static void rdev_free(struct kobject *ko)
3182 {
3183 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3184 	kfree(rdev);
3185 }
3186 static const struct sysfs_ops rdev_sysfs_ops = {
3187 	.show		= rdev_attr_show,
3188 	.store		= rdev_attr_store,
3189 };
3190 static struct kobj_type rdev_ktype = {
3191 	.release	= rdev_free,
3192 	.sysfs_ops	= &rdev_sysfs_ops,
3193 	.default_attrs	= rdev_default_attrs,
3194 };
3195 
md_rdev_init(struct md_rdev * rdev)3196 int md_rdev_init(struct md_rdev *rdev)
3197 {
3198 	rdev->desc_nr = -1;
3199 	rdev->saved_raid_disk = -1;
3200 	rdev->raid_disk = -1;
3201 	rdev->flags = 0;
3202 	rdev->data_offset = 0;
3203 	rdev->new_data_offset = 0;
3204 	rdev->sb_events = 0;
3205 	rdev->last_read_error.tv_sec  = 0;
3206 	rdev->last_read_error.tv_nsec = 0;
3207 	rdev->sb_loaded = 0;
3208 	rdev->bb_page = NULL;
3209 	atomic_set(&rdev->nr_pending, 0);
3210 	atomic_set(&rdev->read_errors, 0);
3211 	atomic_set(&rdev->corrected_errors, 0);
3212 
3213 	INIT_LIST_HEAD(&rdev->same_set);
3214 	init_waitqueue_head(&rdev->blocked_wait);
3215 
3216 	/* Add space to store bad block list.
3217 	 * This reserves the space even on arrays where it cannot
3218 	 * be used - I wonder if that matters
3219 	 */
3220 	rdev->badblocks.count = 0;
3221 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3222 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3223 	seqlock_init(&rdev->badblocks.lock);
3224 	if (rdev->badblocks.page == NULL)
3225 		return -ENOMEM;
3226 
3227 	return 0;
3228 }
3229 EXPORT_SYMBOL_GPL(md_rdev_init);
3230 /*
3231  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3232  *
3233  * mark the device faulty if:
3234  *
3235  *   - the device is nonexistent (zero size)
3236  *   - the device has no valid superblock
3237  *
3238  * a faulty rdev _never_ has rdev->sb set.
3239  */
md_import_device(dev_t newdev,int super_format,int super_minor)3240 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3241 {
3242 	char b[BDEVNAME_SIZE];
3243 	int err;
3244 	struct md_rdev *rdev;
3245 	sector_t size;
3246 
3247 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3248 	if (!rdev) {
3249 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3250 		return ERR_PTR(-ENOMEM);
3251 	}
3252 
3253 	err = md_rdev_init(rdev);
3254 	if (err)
3255 		goto abort_free;
3256 	err = alloc_disk_sb(rdev);
3257 	if (err)
3258 		goto abort_free;
3259 
3260 	err = lock_rdev(rdev, newdev, super_format == -2);
3261 	if (err)
3262 		goto abort_free;
3263 
3264 	kobject_init(&rdev->kobj, &rdev_ktype);
3265 
3266 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3267 	if (!size) {
3268 		printk(KERN_WARNING
3269 			"md: %s has zero or unknown size, marking faulty!\n",
3270 			bdevname(rdev->bdev,b));
3271 		err = -EINVAL;
3272 		goto abort_free;
3273 	}
3274 
3275 	if (super_format >= 0) {
3276 		err = super_types[super_format].
3277 			load_super(rdev, NULL, super_minor);
3278 		if (err == -EINVAL) {
3279 			printk(KERN_WARNING
3280 				"md: %s does not have a valid v%d.%d "
3281 			       "superblock, not importing!\n",
3282 				bdevname(rdev->bdev,b),
3283 			       super_format, super_minor);
3284 			goto abort_free;
3285 		}
3286 		if (err < 0) {
3287 			printk(KERN_WARNING
3288 				"md: could not read %s's sb, not importing!\n",
3289 				bdevname(rdev->bdev,b));
3290 			goto abort_free;
3291 		}
3292 	}
3293 
3294 	return rdev;
3295 
3296 abort_free:
3297 	if (rdev->bdev)
3298 		unlock_rdev(rdev);
3299 	md_rdev_clear(rdev);
3300 	kfree(rdev);
3301 	return ERR_PTR(err);
3302 }
3303 
3304 /*
3305  * Check a full RAID array for plausibility
3306  */
3307 
3308 
analyze_sbs(struct mddev * mddev)3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311 	int i;
3312 	struct md_rdev *rdev, *freshest, *tmp;
3313 	char b[BDEVNAME_SIZE];
3314 
3315 	freshest = NULL;
3316 	rdev_for_each_safe(rdev, tmp, mddev)
3317 		switch (super_types[mddev->major_version].
3318 			load_super(rdev, freshest, mddev->minor_version)) {
3319 		case 1:
3320 			freshest = rdev;
3321 			break;
3322 		case 0:
3323 			break;
3324 		default:
3325 			printk( KERN_ERR \
3326 				"md: fatal superblock inconsistency in %s"
3327 				" -- removing from array\n",
3328 				bdevname(rdev->bdev,b));
3329 			kick_rdev_from_array(rdev);
3330 		}
3331 
3332 
3333 	super_types[mddev->major_version].
3334 		validate_super(mddev, freshest);
3335 
3336 	i = 0;
3337 	rdev_for_each_safe(rdev, tmp, mddev) {
3338 		if (mddev->max_disks &&
3339 		    (rdev->desc_nr >= mddev->max_disks ||
3340 		     i > mddev->max_disks)) {
3341 			printk(KERN_WARNING
3342 			       "md: %s: %s: only %d devices permitted\n",
3343 			       mdname(mddev), bdevname(rdev->bdev, b),
3344 			       mddev->max_disks);
3345 			kick_rdev_from_array(rdev);
3346 			continue;
3347 		}
3348 		if (rdev != freshest)
3349 			if (super_types[mddev->major_version].
3350 			    validate_super(mddev, rdev)) {
3351 				printk(KERN_WARNING "md: kicking non-fresh %s"
3352 					" from array!\n",
3353 					bdevname(rdev->bdev,b));
3354 				kick_rdev_from_array(rdev);
3355 				continue;
3356 			}
3357 		if (mddev->level == LEVEL_MULTIPATH) {
3358 			rdev->desc_nr = i++;
3359 			rdev->raid_disk = rdev->desc_nr;
3360 			set_bit(In_sync, &rdev->flags);
3361 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362 			rdev->raid_disk = -1;
3363 			clear_bit(In_sync, &rdev->flags);
3364 		}
3365 	}
3366 }
3367 
3368 /* Read a fixed-point number.
3369  * Numbers in sysfs attributes should be in "standard" units where
3370  * possible, so time should be in seconds.
3371  * However we internally use a a much smaller unit such as
3372  * milliseconds or jiffies.
3373  * This function takes a decimal number with a possible fractional
3374  * component, and produces an integer which is the result of
3375  * multiplying that number by 10^'scale'.
3376  * all without any floating-point arithmetic.
3377  */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380 	unsigned long result = 0;
3381 	long decimals = -1;
3382 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383 		if (*cp == '.')
3384 			decimals = 0;
3385 		else if (decimals < scale) {
3386 			unsigned int value;
3387 			value = *cp - '0';
3388 			result = result * 10 + value;
3389 			if (decimals >= 0)
3390 				decimals++;
3391 		}
3392 		cp++;
3393 	}
3394 	if (*cp == '\n')
3395 		cp++;
3396 	if (*cp)
3397 		return -EINVAL;
3398 	if (decimals < 0)
3399 		decimals = 0;
3400 	while (decimals < scale) {
3401 		result *= 10;
3402 		decimals ++;
3403 	}
3404 	*res = result;
3405 	return 0;
3406 }
3407 
3408 
3409 static void md_safemode_timeout(unsigned long data);
3410 
3411 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414 	int msec = (mddev->safemode_delay*1000)/HZ;
3415 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420 	unsigned long msec;
3421 
3422 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423 		return -EINVAL;
3424 	if (msec == 0)
3425 		mddev->safemode_delay = 0;
3426 	else {
3427 		unsigned long old_delay = mddev->safemode_delay;
3428 		mddev->safemode_delay = (msec*HZ)/1000;
3429 		if (mddev->safemode_delay == 0)
3430 			mddev->safemode_delay = 1;
3431 		if (mddev->safemode_delay < old_delay)
3432 			md_safemode_timeout((unsigned long)mddev);
3433 	}
3434 	return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438 
3439 static ssize_t
level_show(struct mddev * mddev,char * page)3440 level_show(struct mddev *mddev, char *page)
3441 {
3442 	struct md_personality *p = mddev->pers;
3443 	if (p)
3444 		return sprintf(page, "%s\n", p->name);
3445 	else if (mddev->clevel[0])
3446 		return sprintf(page, "%s\n", mddev->clevel);
3447 	else if (mddev->level != LEVEL_NONE)
3448 		return sprintf(page, "%d\n", mddev->level);
3449 	else
3450 		return 0;
3451 }
3452 
3453 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456 	char clevel[16];
3457 	ssize_t rv = len;
3458 	struct md_personality *pers;
3459 	long level;
3460 	void *priv;
3461 	struct md_rdev *rdev;
3462 
3463 	if (mddev->pers == NULL) {
3464 		if (len == 0)
3465 			return 0;
3466 		if (len >= sizeof(mddev->clevel))
3467 			return -ENOSPC;
3468 		strncpy(mddev->clevel, buf, len);
3469 		if (mddev->clevel[len-1] == '\n')
3470 			len--;
3471 		mddev->clevel[len] = 0;
3472 		mddev->level = LEVEL_NONE;
3473 		return rv;
3474 	}
3475 
3476 	/* request to change the personality.  Need to ensure:
3477 	 *  - array is not engaged in resync/recovery/reshape
3478 	 *  - old personality can be suspended
3479 	 *  - new personality will access other array.
3480 	 */
3481 
3482 	if (mddev->sync_thread ||
3483 	    mddev->reshape_position != MaxSector ||
3484 	    mddev->sysfs_active)
3485 		return -EBUSY;
3486 
3487 	if (!mddev->pers->quiesce) {
3488 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489 		       mdname(mddev), mddev->pers->name);
3490 		return -EINVAL;
3491 	}
3492 
3493 	/* Now find the new personality */
3494 	if (len == 0 || len >= sizeof(clevel))
3495 		return -EINVAL;
3496 	strncpy(clevel, buf, len);
3497 	if (clevel[len-1] == '\n')
3498 		len--;
3499 	clevel[len] = 0;
3500 	if (strict_strtol(clevel, 10, &level))
3501 		level = LEVEL_NONE;
3502 
3503 	if (request_module("md-%s", clevel) != 0)
3504 		request_module("md-level-%s", clevel);
3505 	spin_lock(&pers_lock);
3506 	pers = find_pers(level, clevel);
3507 	if (!pers || !try_module_get(pers->owner)) {
3508 		spin_unlock(&pers_lock);
3509 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510 		return -EINVAL;
3511 	}
3512 	spin_unlock(&pers_lock);
3513 
3514 	if (pers == mddev->pers) {
3515 		/* Nothing to do! */
3516 		module_put(pers->owner);
3517 		return rv;
3518 	}
3519 	if (!pers->takeover) {
3520 		module_put(pers->owner);
3521 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522 		       mdname(mddev), clevel);
3523 		return -EINVAL;
3524 	}
3525 
3526 	rdev_for_each(rdev, mddev)
3527 		rdev->new_raid_disk = rdev->raid_disk;
3528 
3529 	/* ->takeover must set new_* and/or delta_disks
3530 	 * if it succeeds, and may set them when it fails.
3531 	 */
3532 	priv = pers->takeover(mddev);
3533 	if (IS_ERR(priv)) {
3534 		mddev->new_level = mddev->level;
3535 		mddev->new_layout = mddev->layout;
3536 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3537 		mddev->raid_disks -= mddev->delta_disks;
3538 		mddev->delta_disks = 0;
3539 		mddev->reshape_backwards = 0;
3540 		module_put(pers->owner);
3541 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542 		       mdname(mddev), clevel);
3543 		return PTR_ERR(priv);
3544 	}
3545 
3546 	/* Looks like we have a winner */
3547 	mddev_suspend(mddev);
3548 	mddev->pers->stop(mddev);
3549 
3550 	if (mddev->pers->sync_request == NULL &&
3551 	    pers->sync_request != NULL) {
3552 		/* need to add the md_redundancy_group */
3553 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554 			printk(KERN_WARNING
3555 			       "md: cannot register extra attributes for %s\n",
3556 			       mdname(mddev));
3557 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558 	}
3559 	if (mddev->pers->sync_request != NULL &&
3560 	    pers->sync_request == NULL) {
3561 		/* need to remove the md_redundancy_group */
3562 		if (mddev->to_remove == NULL)
3563 			mddev->to_remove = &md_redundancy_group;
3564 	}
3565 
3566 	if (mddev->pers->sync_request == NULL &&
3567 	    mddev->external) {
3568 		/* We are converting from a no-redundancy array
3569 		 * to a redundancy array and metadata is managed
3570 		 * externally so we need to be sure that writes
3571 		 * won't block due to a need to transition
3572 		 *      clean->dirty
3573 		 * until external management is started.
3574 		 */
3575 		mddev->in_sync = 0;
3576 		mddev->safemode_delay = 0;
3577 		mddev->safemode = 0;
3578 	}
3579 
3580 	rdev_for_each(rdev, mddev) {
3581 		if (rdev->raid_disk < 0)
3582 			continue;
3583 		if (rdev->new_raid_disk >= mddev->raid_disks)
3584 			rdev->new_raid_disk = -1;
3585 		if (rdev->new_raid_disk == rdev->raid_disk)
3586 			continue;
3587 		sysfs_unlink_rdev(mddev, rdev);
3588 	}
3589 	rdev_for_each(rdev, mddev) {
3590 		if (rdev->raid_disk < 0)
3591 			continue;
3592 		if (rdev->new_raid_disk == rdev->raid_disk)
3593 			continue;
3594 		rdev->raid_disk = rdev->new_raid_disk;
3595 		if (rdev->raid_disk < 0)
3596 			clear_bit(In_sync, &rdev->flags);
3597 		else {
3598 			if (sysfs_link_rdev(mddev, rdev))
3599 				printk(KERN_WARNING "md: cannot register rd%d"
3600 				       " for %s after level change\n",
3601 				       rdev->raid_disk, mdname(mddev));
3602 		}
3603 	}
3604 
3605 	module_put(mddev->pers->owner);
3606 	mddev->pers = pers;
3607 	mddev->private = priv;
3608 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609 	mddev->level = mddev->new_level;
3610 	mddev->layout = mddev->new_layout;
3611 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3612 	mddev->delta_disks = 0;
3613 	mddev->reshape_backwards = 0;
3614 	mddev->degraded = 0;
3615 	if (mddev->pers->sync_request == NULL) {
3616 		/* this is now an array without redundancy, so
3617 		 * it must always be in_sync
3618 		 */
3619 		mddev->in_sync = 1;
3620 		del_timer_sync(&mddev->safemode_timer);
3621 	}
3622 	pers->run(mddev);
3623 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624 	mddev_resume(mddev);
3625 	sysfs_notify(&mddev->kobj, NULL, "level");
3626 	md_new_event(mddev);
3627 	return rv;
3628 }
3629 
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632 
3633 
3634 static ssize_t
layout_show(struct mddev * mddev,char * page)3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637 	/* just a number, not meaningful for all levels */
3638 	if (mddev->reshape_position != MaxSector &&
3639 	    mddev->layout != mddev->new_layout)
3640 		return sprintf(page, "%d (%d)\n",
3641 			       mddev->new_layout, mddev->layout);
3642 	return sprintf(page, "%d\n", mddev->layout);
3643 }
3644 
3645 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648 	char *e;
3649 	unsigned long n = simple_strtoul(buf, &e, 10);
3650 
3651 	if (!*buf || (*e && *e != '\n'))
3652 		return -EINVAL;
3653 
3654 	if (mddev->pers) {
3655 		int err;
3656 		if (mddev->pers->check_reshape == NULL)
3657 			return -EBUSY;
3658 		mddev->new_layout = n;
3659 		err = mddev->pers->check_reshape(mddev);
3660 		if (err) {
3661 			mddev->new_layout = mddev->layout;
3662 			return err;
3663 		}
3664 	} else {
3665 		mddev->new_layout = n;
3666 		if (mddev->reshape_position == MaxSector)
3667 			mddev->layout = n;
3668 	}
3669 	return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673 
3674 
3675 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678 	if (mddev->raid_disks == 0)
3679 		return 0;
3680 	if (mddev->reshape_position != MaxSector &&
3681 	    mddev->delta_disks != 0)
3682 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683 			       mddev->raid_disks - mddev->delta_disks);
3684 	return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686 
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688 
3689 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692 	char *e;
3693 	int rv = 0;
3694 	unsigned long n = simple_strtoul(buf, &e, 10);
3695 
3696 	if (!*buf || (*e && *e != '\n'))
3697 		return -EINVAL;
3698 
3699 	if (mddev->pers)
3700 		rv = update_raid_disks(mddev, n);
3701 	else if (mddev->reshape_position != MaxSector) {
3702 		struct md_rdev *rdev;
3703 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3704 
3705 		rdev_for_each(rdev, mddev) {
3706 			if (olddisks < n &&
3707 			    rdev->data_offset < rdev->new_data_offset)
3708 				return -EINVAL;
3709 			if (olddisks > n &&
3710 			    rdev->data_offset > rdev->new_data_offset)
3711 				return -EINVAL;
3712 		}
3713 		mddev->delta_disks = n - olddisks;
3714 		mddev->raid_disks = n;
3715 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 	} else
3717 		mddev->raid_disks = n;
3718 	return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722 
3723 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726 	if (mddev->reshape_position != MaxSector &&
3727 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3728 		return sprintf(page, "%d (%d)\n",
3729 			       mddev->new_chunk_sectors << 9,
3730 			       mddev->chunk_sectors << 9);
3731 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733 
3734 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737 	char *e;
3738 	unsigned long n = simple_strtoul(buf, &e, 10);
3739 
3740 	if (!*buf || (*e && *e != '\n'))
3741 		return -EINVAL;
3742 
3743 	if (mddev->pers) {
3744 		int err;
3745 		if (mddev->pers->check_reshape == NULL)
3746 			return -EBUSY;
3747 		mddev->new_chunk_sectors = n >> 9;
3748 		err = mddev->pers->check_reshape(mddev);
3749 		if (err) {
3750 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3751 			return err;
3752 		}
3753 	} else {
3754 		mddev->new_chunk_sectors = n >> 9;
3755 		if (mddev->reshape_position == MaxSector)
3756 			mddev->chunk_sectors = n >> 9;
3757 	}
3758 	return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762 
3763 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766 	if (mddev->recovery_cp == MaxSector)
3767 		return sprintf(page, "none\n");
3768 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770 
3771 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774 	char *e;
3775 	unsigned long long n = simple_strtoull(buf, &e, 10);
3776 
3777 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778 		return -EBUSY;
3779 	if (cmd_match(buf, "none"))
3780 		n = MaxSector;
3781 	else if (!*buf || (*e && *e != '\n'))
3782 		return -EINVAL;
3783 
3784 	mddev->recovery_cp = n;
3785 	if (mddev->pers)
3786 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3787 	return len;
3788 }
3789 static struct md_sysfs_entry md_resync_start =
3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3791 
3792 /*
3793  * The array state can be:
3794  *
3795  * clear
3796  *     No devices, no size, no level
3797  *     Equivalent to STOP_ARRAY ioctl
3798  * inactive
3799  *     May have some settings, but array is not active
3800  *        all IO results in error
3801  *     When written, doesn't tear down array, but just stops it
3802  * suspended (not supported yet)
3803  *     All IO requests will block. The array can be reconfigured.
3804  *     Writing this, if accepted, will block until array is quiescent
3805  * readonly
3806  *     no resync can happen.  no superblocks get written.
3807  *     write requests fail
3808  * read-auto
3809  *     like readonly, but behaves like 'clean' on a write request.
3810  *
3811  * clean - no pending writes, but otherwise active.
3812  *     When written to inactive array, starts without resync
3813  *     If a write request arrives then
3814  *       if metadata is known, mark 'dirty' and switch to 'active'.
3815  *       if not known, block and switch to write-pending
3816  *     If written to an active array that has pending writes, then fails.
3817  * active
3818  *     fully active: IO and resync can be happening.
3819  *     When written to inactive array, starts with resync
3820  *
3821  * write-pending
3822  *     clean, but writes are blocked waiting for 'active' to be written.
3823  *
3824  * active-idle
3825  *     like active, but no writes have been seen for a while (100msec).
3826  *
3827  */
3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3829 		   write_pending, active_idle, bad_word};
3830 static char *array_states[] = {
3831 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3832 	"write-pending", "active-idle", NULL };
3833 
match_word(const char * word,char ** list)3834 static int match_word(const char *word, char **list)
3835 {
3836 	int n;
3837 	for (n=0; list[n]; n++)
3838 		if (cmd_match(word, list[n]))
3839 			break;
3840 	return n;
3841 }
3842 
3843 static ssize_t
array_state_show(struct mddev * mddev,char * page)3844 array_state_show(struct mddev *mddev, char *page)
3845 {
3846 	enum array_state st = inactive;
3847 
3848 	if (mddev->pers)
3849 		switch(mddev->ro) {
3850 		case 1:
3851 			st = readonly;
3852 			break;
3853 		case 2:
3854 			st = read_auto;
3855 			break;
3856 		case 0:
3857 			if (mddev->in_sync)
3858 				st = clean;
3859 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3860 				st = write_pending;
3861 			else if (mddev->safemode)
3862 				st = active_idle;
3863 			else
3864 				st = active;
3865 		}
3866 	else {
3867 		if (list_empty(&mddev->disks) &&
3868 		    mddev->raid_disks == 0 &&
3869 		    mddev->dev_sectors == 0)
3870 			st = clear;
3871 		else
3872 			st = inactive;
3873 	}
3874 	return sprintf(page, "%s\n", array_states[st]);
3875 }
3876 
3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3879 static int do_md_run(struct mddev * mddev);
3880 static int restart_array(struct mddev *mddev);
3881 
3882 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3883 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885 	int err = -EINVAL;
3886 	enum array_state st = match_word(buf, array_states);
3887 	switch(st) {
3888 	case bad_word:
3889 		break;
3890 	case clear:
3891 		/* stopping an active array */
3892 		err = do_md_stop(mddev, 0, NULL);
3893 		break;
3894 	case inactive:
3895 		/* stopping an active array */
3896 		if (mddev->pers)
3897 			err = do_md_stop(mddev, 2, NULL);
3898 		else
3899 			err = 0; /* already inactive */
3900 		break;
3901 	case suspended:
3902 		break; /* not supported yet */
3903 	case readonly:
3904 		if (mddev->pers)
3905 			err = md_set_readonly(mddev, NULL);
3906 		else {
3907 			mddev->ro = 1;
3908 			set_disk_ro(mddev->gendisk, 1);
3909 			err = do_md_run(mddev);
3910 		}
3911 		break;
3912 	case read_auto:
3913 		if (mddev->pers) {
3914 			if (mddev->ro == 0)
3915 				err = md_set_readonly(mddev, NULL);
3916 			else if (mddev->ro == 1)
3917 				err = restart_array(mddev);
3918 			if (err == 0) {
3919 				mddev->ro = 2;
3920 				set_disk_ro(mddev->gendisk, 0);
3921 			}
3922 		} else {
3923 			mddev->ro = 2;
3924 			err = do_md_run(mddev);
3925 		}
3926 		break;
3927 	case clean:
3928 		if (mddev->pers) {
3929 			restart_array(mddev);
3930 			spin_lock_irq(&mddev->write_lock);
3931 			if (atomic_read(&mddev->writes_pending) == 0) {
3932 				if (mddev->in_sync == 0) {
3933 					mddev->in_sync = 1;
3934 					if (mddev->safemode == 1)
3935 						mddev->safemode = 0;
3936 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3937 				}
3938 				err = 0;
3939 			} else
3940 				err = -EBUSY;
3941 			spin_unlock_irq(&mddev->write_lock);
3942 		} else
3943 			err = -EINVAL;
3944 		break;
3945 	case active:
3946 		if (mddev->pers) {
3947 			restart_array(mddev);
3948 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3949 			wake_up(&mddev->sb_wait);
3950 			err = 0;
3951 		} else {
3952 			mddev->ro = 0;
3953 			set_disk_ro(mddev->gendisk, 0);
3954 			err = do_md_run(mddev);
3955 		}
3956 		break;
3957 	case write_pending:
3958 	case active_idle:
3959 		/* these cannot be set */
3960 		break;
3961 	}
3962 	if (err)
3963 		return err;
3964 	else {
3965 		if (mddev->hold_active == UNTIL_IOCTL)
3966 			mddev->hold_active = 0;
3967 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3968 		return len;
3969 	}
3970 }
3971 static struct md_sysfs_entry md_array_state =
3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3973 
3974 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3976 	return sprintf(page, "%d\n",
3977 		       atomic_read(&mddev->max_corr_read_errors));
3978 }
3979 
3980 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983 	char *e;
3984 	unsigned long n = simple_strtoul(buf, &e, 10);
3985 
3986 	if (*buf && (*e == 0 || *e == '\n')) {
3987 		atomic_set(&mddev->max_corr_read_errors, n);
3988 		return len;
3989 	}
3990 	return -EINVAL;
3991 }
3992 
3993 static struct md_sysfs_entry max_corr_read_errors =
3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3995 	max_corrected_read_errors_store);
3996 
3997 static ssize_t
null_show(struct mddev * mddev,char * page)3998 null_show(struct mddev *mddev, char *page)
3999 {
4000 	return -EINVAL;
4001 }
4002 
4003 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4005 {
4006 	/* buf must be %d:%d\n? giving major and minor numbers */
4007 	/* The new device is added to the array.
4008 	 * If the array has a persistent superblock, we read the
4009 	 * superblock to initialise info and check validity.
4010 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4011 	 * which mainly checks size.
4012 	 */
4013 	char *e;
4014 	int major = simple_strtoul(buf, &e, 10);
4015 	int minor;
4016 	dev_t dev;
4017 	struct md_rdev *rdev;
4018 	int err;
4019 
4020 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4021 		return -EINVAL;
4022 	minor = simple_strtoul(e+1, &e, 10);
4023 	if (*e && *e != '\n')
4024 		return -EINVAL;
4025 	dev = MKDEV(major, minor);
4026 	if (major != MAJOR(dev) ||
4027 	    minor != MINOR(dev))
4028 		return -EOVERFLOW;
4029 
4030 
4031 	if (mddev->persistent) {
4032 		rdev = md_import_device(dev, mddev->major_version,
4033 					mddev->minor_version);
4034 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4035 			struct md_rdev *rdev0
4036 				= list_entry(mddev->disks.next,
4037 					     struct md_rdev, same_set);
4038 			err = super_types[mddev->major_version]
4039 				.load_super(rdev, rdev0, mddev->minor_version);
4040 			if (err < 0)
4041 				goto out;
4042 		}
4043 	} else if (mddev->external)
4044 		rdev = md_import_device(dev, -2, -1);
4045 	else
4046 		rdev = md_import_device(dev, -1, -1);
4047 
4048 	if (IS_ERR(rdev))
4049 		return PTR_ERR(rdev);
4050 	err = bind_rdev_to_array(rdev, mddev);
4051  out:
4052 	if (err)
4053 		export_rdev(rdev);
4054 	return err ? err : len;
4055 }
4056 
4057 static struct md_sysfs_entry md_new_device =
4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4059 
4060 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 	char *end;
4064 	unsigned long chunk, end_chunk;
4065 
4066 	if (!mddev->bitmap)
4067 		goto out;
4068 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4069 	while (*buf) {
4070 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4071 		if (buf == end) break;
4072 		if (*end == '-') { /* range */
4073 			buf = end + 1;
4074 			end_chunk = simple_strtoul(buf, &end, 0);
4075 			if (buf == end) break;
4076 		}
4077 		if (*end && !isspace(*end)) break;
4078 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4079 		buf = skip_spaces(end);
4080 	}
4081 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4082 out:
4083 	return len;
4084 }
4085 
4086 static struct md_sysfs_entry md_bitmap =
4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4088 
4089 static ssize_t
size_show(struct mddev * mddev,char * page)4090 size_show(struct mddev *mddev, char *page)
4091 {
4092 	return sprintf(page, "%llu\n",
4093 		(unsigned long long)mddev->dev_sectors / 2);
4094 }
4095 
4096 static int update_size(struct mddev *mddev, sector_t num_sectors);
4097 
4098 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4099 size_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 	/* If array is inactive, we can reduce the component size, but
4102 	 * not increase it (except from 0).
4103 	 * If array is active, we can try an on-line resize
4104 	 */
4105 	sector_t sectors;
4106 	int err = strict_blocks_to_sectors(buf, &sectors);
4107 
4108 	if (err < 0)
4109 		return err;
4110 	if (mddev->pers) {
4111 		err = update_size(mddev, sectors);
4112 		md_update_sb(mddev, 1);
4113 	} else {
4114 		if (mddev->dev_sectors == 0 ||
4115 		    mddev->dev_sectors > sectors)
4116 			mddev->dev_sectors = sectors;
4117 		else
4118 			err = -ENOSPC;
4119 	}
4120 	return err ? err : len;
4121 }
4122 
4123 static struct md_sysfs_entry md_size =
4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4125 
4126 
4127 /* Metadata version.
4128  * This is one of
4129  *   'none' for arrays with no metadata (good luck...)
4130  *   'external' for arrays with externally managed metadata,
4131  * or N.M for internally known formats
4132  */
4133 static ssize_t
metadata_show(struct mddev * mddev,char * page)4134 metadata_show(struct mddev *mddev, char *page)
4135 {
4136 	if (mddev->persistent)
4137 		return sprintf(page, "%d.%d\n",
4138 			       mddev->major_version, mddev->minor_version);
4139 	else if (mddev->external)
4140 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4141 	else
4142 		return sprintf(page, "none\n");
4143 }
4144 
4145 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4146 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148 	int major, minor;
4149 	char *e;
4150 	/* Changing the details of 'external' metadata is
4151 	 * always permitted.  Otherwise there must be
4152 	 * no devices attached to the array.
4153 	 */
4154 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4155 		;
4156 	else if (!list_empty(&mddev->disks))
4157 		return -EBUSY;
4158 
4159 	if (cmd_match(buf, "none")) {
4160 		mddev->persistent = 0;
4161 		mddev->external = 0;
4162 		mddev->major_version = 0;
4163 		mddev->minor_version = 90;
4164 		return len;
4165 	}
4166 	if (strncmp(buf, "external:", 9) == 0) {
4167 		size_t namelen = len-9;
4168 		if (namelen >= sizeof(mddev->metadata_type))
4169 			namelen = sizeof(mddev->metadata_type)-1;
4170 		strncpy(mddev->metadata_type, buf+9, namelen);
4171 		mddev->metadata_type[namelen] = 0;
4172 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4173 			mddev->metadata_type[--namelen] = 0;
4174 		mddev->persistent = 0;
4175 		mddev->external = 1;
4176 		mddev->major_version = 0;
4177 		mddev->minor_version = 90;
4178 		return len;
4179 	}
4180 	major = simple_strtoul(buf, &e, 10);
4181 	if (e==buf || *e != '.')
4182 		return -EINVAL;
4183 	buf = e+1;
4184 	minor = simple_strtoul(buf, &e, 10);
4185 	if (e==buf || (*e && *e != '\n') )
4186 		return -EINVAL;
4187 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4188 		return -ENOENT;
4189 	mddev->major_version = major;
4190 	mddev->minor_version = minor;
4191 	mddev->persistent = 1;
4192 	mddev->external = 0;
4193 	return len;
4194 }
4195 
4196 static struct md_sysfs_entry md_metadata =
4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4198 
4199 static ssize_t
action_show(struct mddev * mddev,char * page)4200 action_show(struct mddev *mddev, char *page)
4201 {
4202 	char *type = "idle";
4203 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4204 		type = "frozen";
4205 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4207 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208 			type = "reshape";
4209 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4210 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4211 				type = "resync";
4212 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4213 				type = "check";
4214 			else
4215 				type = "repair";
4216 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4217 			type = "recover";
4218 	}
4219 	return sprintf(page, "%s\n", type);
4220 }
4221 
4222 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4223 action_store(struct mddev *mddev, const char *page, size_t len)
4224 {
4225 	if (!mddev->pers || !mddev->pers->sync_request)
4226 		return -EINVAL;
4227 
4228 	if (cmd_match(page, "frozen"))
4229 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4230 	else
4231 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232 
4233 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4234 		if (mddev->sync_thread) {
4235 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4236 			md_reap_sync_thread(mddev);
4237 		}
4238 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240 		return -EBUSY;
4241 	else if (cmd_match(page, "resync"))
4242 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4243 	else if (cmd_match(page, "recover")) {
4244 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4245 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4246 	} else if (cmd_match(page, "reshape")) {
4247 		int err;
4248 		if (mddev->pers->start_reshape == NULL)
4249 			return -EINVAL;
4250 		err = mddev->pers->start_reshape(mddev);
4251 		if (err)
4252 			return err;
4253 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4254 	} else {
4255 		if (cmd_match(page, "check"))
4256 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4257 		else if (!cmd_match(page, "repair"))
4258 			return -EINVAL;
4259 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4260 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4261 	}
4262 	if (mddev->ro == 2) {
4263 		/* A write to sync_action is enough to justify
4264 		 * canceling read-auto mode
4265 		 */
4266 		mddev->ro = 0;
4267 		md_wakeup_thread(mddev->sync_thread);
4268 	}
4269 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4270 	md_wakeup_thread(mddev->thread);
4271 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4272 	return len;
4273 }
4274 
4275 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4276 mismatch_cnt_show(struct mddev *mddev, char *page)
4277 {
4278 	return sprintf(page, "%llu\n",
4279 		       (unsigned long long)
4280 		       atomic64_read(&mddev->resync_mismatches));
4281 }
4282 
4283 static struct md_sysfs_entry md_scan_mode =
4284 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4285 
4286 
4287 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4288 
4289 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4290 sync_min_show(struct mddev *mddev, char *page)
4291 {
4292 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4293 		       mddev->sync_speed_min ? "local": "system");
4294 }
4295 
4296 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4297 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299 	int min;
4300 	char *e;
4301 	if (strncmp(buf, "system", 6)==0) {
4302 		mddev->sync_speed_min = 0;
4303 		return len;
4304 	}
4305 	min = simple_strtoul(buf, &e, 10);
4306 	if (buf == e || (*e && *e != '\n') || min <= 0)
4307 		return -EINVAL;
4308 	mddev->sync_speed_min = min;
4309 	return len;
4310 }
4311 
4312 static struct md_sysfs_entry md_sync_min =
4313 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4314 
4315 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4316 sync_max_show(struct mddev *mddev, char *page)
4317 {
4318 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4319 		       mddev->sync_speed_max ? "local": "system");
4320 }
4321 
4322 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4323 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4324 {
4325 	int max;
4326 	char *e;
4327 	if (strncmp(buf, "system", 6)==0) {
4328 		mddev->sync_speed_max = 0;
4329 		return len;
4330 	}
4331 	max = simple_strtoul(buf, &e, 10);
4332 	if (buf == e || (*e && *e != '\n') || max <= 0)
4333 		return -EINVAL;
4334 	mddev->sync_speed_max = max;
4335 	return len;
4336 }
4337 
4338 static struct md_sysfs_entry md_sync_max =
4339 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4340 
4341 static ssize_t
degraded_show(struct mddev * mddev,char * page)4342 degraded_show(struct mddev *mddev, char *page)
4343 {
4344 	return sprintf(page, "%d\n", mddev->degraded);
4345 }
4346 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4347 
4348 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4349 sync_force_parallel_show(struct mddev *mddev, char *page)
4350 {
4351 	return sprintf(page, "%d\n", mddev->parallel_resync);
4352 }
4353 
4354 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4355 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357 	long n;
4358 
4359 	if (strict_strtol(buf, 10, &n))
4360 		return -EINVAL;
4361 
4362 	if (n != 0 && n != 1)
4363 		return -EINVAL;
4364 
4365 	mddev->parallel_resync = n;
4366 
4367 	if (mddev->sync_thread)
4368 		wake_up(&resync_wait);
4369 
4370 	return len;
4371 }
4372 
4373 /* force parallel resync, even with shared block devices */
4374 static struct md_sysfs_entry md_sync_force_parallel =
4375 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4376        sync_force_parallel_show, sync_force_parallel_store);
4377 
4378 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4379 sync_speed_show(struct mddev *mddev, char *page)
4380 {
4381 	unsigned long resync, dt, db;
4382 	if (mddev->curr_resync == 0)
4383 		return sprintf(page, "none\n");
4384 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4385 	dt = (jiffies - mddev->resync_mark) / HZ;
4386 	if (!dt) dt++;
4387 	db = resync - mddev->resync_mark_cnt;
4388 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4389 }
4390 
4391 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4392 
4393 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4394 sync_completed_show(struct mddev *mddev, char *page)
4395 {
4396 	unsigned long long max_sectors, resync;
4397 
4398 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4399 		return sprintf(page, "none\n");
4400 
4401 	if (mddev->curr_resync == 1 ||
4402 	    mddev->curr_resync == 2)
4403 		return sprintf(page, "delayed\n");
4404 
4405 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4406 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4407 		max_sectors = mddev->resync_max_sectors;
4408 	else
4409 		max_sectors = mddev->dev_sectors;
4410 
4411 	resync = mddev->curr_resync_completed;
4412 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4413 }
4414 
4415 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4416 
4417 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4418 min_sync_show(struct mddev *mddev, char *page)
4419 {
4420 	return sprintf(page, "%llu\n",
4421 		       (unsigned long long)mddev->resync_min);
4422 }
4423 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4424 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4425 {
4426 	unsigned long long min;
4427 	if (strict_strtoull(buf, 10, &min))
4428 		return -EINVAL;
4429 	if (min > mddev->resync_max)
4430 		return -EINVAL;
4431 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4432 		return -EBUSY;
4433 
4434 	/* Must be a multiple of chunk_size */
4435 	if (mddev->chunk_sectors) {
4436 		sector_t temp = min;
4437 		if (sector_div(temp, mddev->chunk_sectors))
4438 			return -EINVAL;
4439 	}
4440 	mddev->resync_min = min;
4441 
4442 	return len;
4443 }
4444 
4445 static struct md_sysfs_entry md_min_sync =
4446 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4447 
4448 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4449 max_sync_show(struct mddev *mddev, char *page)
4450 {
4451 	if (mddev->resync_max == MaxSector)
4452 		return sprintf(page, "max\n");
4453 	else
4454 		return sprintf(page, "%llu\n",
4455 			       (unsigned long long)mddev->resync_max);
4456 }
4457 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4458 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460 	if (strncmp(buf, "max", 3) == 0)
4461 		mddev->resync_max = MaxSector;
4462 	else {
4463 		unsigned long long max;
4464 		if (strict_strtoull(buf, 10, &max))
4465 			return -EINVAL;
4466 		if (max < mddev->resync_min)
4467 			return -EINVAL;
4468 		if (max < mddev->resync_max &&
4469 		    mddev->ro == 0 &&
4470 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4471 			return -EBUSY;
4472 
4473 		/* Must be a multiple of chunk_size */
4474 		if (mddev->chunk_sectors) {
4475 			sector_t temp = max;
4476 			if (sector_div(temp, mddev->chunk_sectors))
4477 				return -EINVAL;
4478 		}
4479 		mddev->resync_max = max;
4480 	}
4481 	wake_up(&mddev->recovery_wait);
4482 	return len;
4483 }
4484 
4485 static struct md_sysfs_entry md_max_sync =
4486 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4487 
4488 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4489 suspend_lo_show(struct mddev *mddev, char *page)
4490 {
4491 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4492 }
4493 
4494 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4495 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4496 {
4497 	char *e;
4498 	unsigned long long new = simple_strtoull(buf, &e, 10);
4499 	unsigned long long old = mddev->suspend_lo;
4500 
4501 	if (mddev->pers == NULL ||
4502 	    mddev->pers->quiesce == NULL)
4503 		return -EINVAL;
4504 	if (buf == e || (*e && *e != '\n'))
4505 		return -EINVAL;
4506 
4507 	mddev->suspend_lo = new;
4508 	if (new >= old)
4509 		/* Shrinking suspended region */
4510 		mddev->pers->quiesce(mddev, 2);
4511 	else {
4512 		/* Expanding suspended region - need to wait */
4513 		mddev->pers->quiesce(mddev, 1);
4514 		mddev->pers->quiesce(mddev, 0);
4515 	}
4516 	return len;
4517 }
4518 static struct md_sysfs_entry md_suspend_lo =
4519 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4520 
4521 
4522 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4523 suspend_hi_show(struct mddev *mddev, char *page)
4524 {
4525 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4526 }
4527 
4528 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4529 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4530 {
4531 	char *e;
4532 	unsigned long long new = simple_strtoull(buf, &e, 10);
4533 	unsigned long long old = mddev->suspend_hi;
4534 
4535 	if (mddev->pers == NULL ||
4536 	    mddev->pers->quiesce == NULL)
4537 		return -EINVAL;
4538 	if (buf == e || (*e && *e != '\n'))
4539 		return -EINVAL;
4540 
4541 	mddev->suspend_hi = new;
4542 	if (new <= old)
4543 		/* Shrinking suspended region */
4544 		mddev->pers->quiesce(mddev, 2);
4545 	else {
4546 		/* Expanding suspended region - need to wait */
4547 		mddev->pers->quiesce(mddev, 1);
4548 		mddev->pers->quiesce(mddev, 0);
4549 	}
4550 	return len;
4551 }
4552 static struct md_sysfs_entry md_suspend_hi =
4553 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4554 
4555 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4556 reshape_position_show(struct mddev *mddev, char *page)
4557 {
4558 	if (mddev->reshape_position != MaxSector)
4559 		return sprintf(page, "%llu\n",
4560 			       (unsigned long long)mddev->reshape_position);
4561 	strcpy(page, "none\n");
4562 	return 5;
4563 }
4564 
4565 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4566 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 	struct md_rdev *rdev;
4569 	char *e;
4570 	unsigned long long new = simple_strtoull(buf, &e, 10);
4571 	if (mddev->pers)
4572 		return -EBUSY;
4573 	if (buf == e || (*e && *e != '\n'))
4574 		return -EINVAL;
4575 	mddev->reshape_position = new;
4576 	mddev->delta_disks = 0;
4577 	mddev->reshape_backwards = 0;
4578 	mddev->new_level = mddev->level;
4579 	mddev->new_layout = mddev->layout;
4580 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4581 	rdev_for_each(rdev, mddev)
4582 		rdev->new_data_offset = rdev->data_offset;
4583 	return len;
4584 }
4585 
4586 static struct md_sysfs_entry md_reshape_position =
4587 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4588        reshape_position_store);
4589 
4590 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4591 reshape_direction_show(struct mddev *mddev, char *page)
4592 {
4593 	return sprintf(page, "%s\n",
4594 		       mddev->reshape_backwards ? "backwards" : "forwards");
4595 }
4596 
4597 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4598 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4599 {
4600 	int backwards = 0;
4601 	if (cmd_match(buf, "forwards"))
4602 		backwards = 0;
4603 	else if (cmd_match(buf, "backwards"))
4604 		backwards = 1;
4605 	else
4606 		return -EINVAL;
4607 	if (mddev->reshape_backwards == backwards)
4608 		return len;
4609 
4610 	/* check if we are allowed to change */
4611 	if (mddev->delta_disks)
4612 		return -EBUSY;
4613 
4614 	if (mddev->persistent &&
4615 	    mddev->major_version == 0)
4616 		return -EINVAL;
4617 
4618 	mddev->reshape_backwards = backwards;
4619 	return len;
4620 }
4621 
4622 static struct md_sysfs_entry md_reshape_direction =
4623 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4624        reshape_direction_store);
4625 
4626 static ssize_t
array_size_show(struct mddev * mddev,char * page)4627 array_size_show(struct mddev *mddev, char *page)
4628 {
4629 	if (mddev->external_size)
4630 		return sprintf(page, "%llu\n",
4631 			       (unsigned long long)mddev->array_sectors/2);
4632 	else
4633 		return sprintf(page, "default\n");
4634 }
4635 
4636 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4637 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4638 {
4639 	sector_t sectors;
4640 
4641 	if (strncmp(buf, "default", 7) == 0) {
4642 		if (mddev->pers)
4643 			sectors = mddev->pers->size(mddev, 0, 0);
4644 		else
4645 			sectors = mddev->array_sectors;
4646 
4647 		mddev->external_size = 0;
4648 	} else {
4649 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4650 			return -EINVAL;
4651 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4652 			return -E2BIG;
4653 
4654 		mddev->external_size = 1;
4655 	}
4656 
4657 	mddev->array_sectors = sectors;
4658 	if (mddev->pers) {
4659 		set_capacity(mddev->gendisk, mddev->array_sectors);
4660 		revalidate_disk(mddev->gendisk);
4661 	}
4662 	return len;
4663 }
4664 
4665 static struct md_sysfs_entry md_array_size =
4666 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4667        array_size_store);
4668 
4669 static struct attribute *md_default_attrs[] = {
4670 	&md_level.attr,
4671 	&md_layout.attr,
4672 	&md_raid_disks.attr,
4673 	&md_chunk_size.attr,
4674 	&md_size.attr,
4675 	&md_resync_start.attr,
4676 	&md_metadata.attr,
4677 	&md_new_device.attr,
4678 	&md_safe_delay.attr,
4679 	&md_array_state.attr,
4680 	&md_reshape_position.attr,
4681 	&md_reshape_direction.attr,
4682 	&md_array_size.attr,
4683 	&max_corr_read_errors.attr,
4684 	NULL,
4685 };
4686 
4687 static struct attribute *md_redundancy_attrs[] = {
4688 	&md_scan_mode.attr,
4689 	&md_mismatches.attr,
4690 	&md_sync_min.attr,
4691 	&md_sync_max.attr,
4692 	&md_sync_speed.attr,
4693 	&md_sync_force_parallel.attr,
4694 	&md_sync_completed.attr,
4695 	&md_min_sync.attr,
4696 	&md_max_sync.attr,
4697 	&md_suspend_lo.attr,
4698 	&md_suspend_hi.attr,
4699 	&md_bitmap.attr,
4700 	&md_degraded.attr,
4701 	NULL,
4702 };
4703 static struct attribute_group md_redundancy_group = {
4704 	.name = NULL,
4705 	.attrs = md_redundancy_attrs,
4706 };
4707 
4708 
4709 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4710 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4711 {
4712 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4713 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4714 	ssize_t rv;
4715 
4716 	if (!entry->show)
4717 		return -EIO;
4718 	spin_lock(&all_mddevs_lock);
4719 	if (list_empty(&mddev->all_mddevs)) {
4720 		spin_unlock(&all_mddevs_lock);
4721 		return -EBUSY;
4722 	}
4723 	mddev_get(mddev);
4724 	spin_unlock(&all_mddevs_lock);
4725 
4726 	rv = mddev_lock(mddev);
4727 	if (!rv) {
4728 		rv = entry->show(mddev, page);
4729 		mddev_unlock(mddev);
4730 	}
4731 	mddev_put(mddev);
4732 	return rv;
4733 }
4734 
4735 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4736 md_attr_store(struct kobject *kobj, struct attribute *attr,
4737 	      const char *page, size_t length)
4738 {
4739 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4740 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4741 	ssize_t rv;
4742 
4743 	if (!entry->store)
4744 		return -EIO;
4745 	if (!capable(CAP_SYS_ADMIN))
4746 		return -EACCES;
4747 	spin_lock(&all_mddevs_lock);
4748 	if (list_empty(&mddev->all_mddevs)) {
4749 		spin_unlock(&all_mddevs_lock);
4750 		return -EBUSY;
4751 	}
4752 	mddev_get(mddev);
4753 	spin_unlock(&all_mddevs_lock);
4754 	if (entry->store == new_dev_store)
4755 		flush_workqueue(md_misc_wq);
4756 	rv = mddev_lock(mddev);
4757 	if (!rv) {
4758 		rv = entry->store(mddev, page, length);
4759 		mddev_unlock(mddev);
4760 	}
4761 	mddev_put(mddev);
4762 	return rv;
4763 }
4764 
md_free(struct kobject * ko)4765 static void md_free(struct kobject *ko)
4766 {
4767 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4768 
4769 	if (mddev->sysfs_state)
4770 		sysfs_put(mddev->sysfs_state);
4771 
4772 	if (mddev->gendisk) {
4773 		del_gendisk(mddev->gendisk);
4774 		put_disk(mddev->gendisk);
4775 	}
4776 	if (mddev->queue)
4777 		blk_cleanup_queue(mddev->queue);
4778 
4779 	kfree(mddev);
4780 }
4781 
4782 static const struct sysfs_ops md_sysfs_ops = {
4783 	.show	= md_attr_show,
4784 	.store	= md_attr_store,
4785 };
4786 static struct kobj_type md_ktype = {
4787 	.release	= md_free,
4788 	.sysfs_ops	= &md_sysfs_ops,
4789 	.default_attrs	= md_default_attrs,
4790 };
4791 
4792 int mdp_major = 0;
4793 
mddev_delayed_delete(struct work_struct * ws)4794 static void mddev_delayed_delete(struct work_struct *ws)
4795 {
4796 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4797 
4798 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4799 	kobject_del(&mddev->kobj);
4800 	kobject_put(&mddev->kobj);
4801 }
4802 
md_alloc(dev_t dev,char * name)4803 static int md_alloc(dev_t dev, char *name)
4804 {
4805 	static DEFINE_MUTEX(disks_mutex);
4806 	struct mddev *mddev = mddev_find(dev);
4807 	struct gendisk *disk;
4808 	int partitioned;
4809 	int shift;
4810 	int unit;
4811 	int error;
4812 
4813 	if (!mddev)
4814 		return -ENODEV;
4815 
4816 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4817 	shift = partitioned ? MdpMinorShift : 0;
4818 	unit = MINOR(mddev->unit) >> shift;
4819 
4820 	/* wait for any previous instance of this device to be
4821 	 * completely removed (mddev_delayed_delete).
4822 	 */
4823 	flush_workqueue(md_misc_wq);
4824 
4825 	mutex_lock(&disks_mutex);
4826 	error = -EEXIST;
4827 	if (mddev->gendisk)
4828 		goto abort;
4829 
4830 	if (name) {
4831 		/* Need to ensure that 'name' is not a duplicate.
4832 		 */
4833 		struct mddev *mddev2;
4834 		spin_lock(&all_mddevs_lock);
4835 
4836 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4837 			if (mddev2->gendisk &&
4838 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4839 				spin_unlock(&all_mddevs_lock);
4840 				goto abort;
4841 			}
4842 		spin_unlock(&all_mddevs_lock);
4843 	}
4844 
4845 	error = -ENOMEM;
4846 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4847 	if (!mddev->queue)
4848 		goto abort;
4849 	mddev->queue->queuedata = mddev;
4850 
4851 	blk_queue_make_request(mddev->queue, md_make_request);
4852 	blk_set_stacking_limits(&mddev->queue->limits);
4853 
4854 	disk = alloc_disk(1 << shift);
4855 	if (!disk) {
4856 		blk_cleanup_queue(mddev->queue);
4857 		mddev->queue = NULL;
4858 		goto abort;
4859 	}
4860 	disk->major = MAJOR(mddev->unit);
4861 	disk->first_minor = unit << shift;
4862 	if (name)
4863 		strcpy(disk->disk_name, name);
4864 	else if (partitioned)
4865 		sprintf(disk->disk_name, "md_d%d", unit);
4866 	else
4867 		sprintf(disk->disk_name, "md%d", unit);
4868 	disk->fops = &md_fops;
4869 	disk->private_data = mddev;
4870 	disk->queue = mddev->queue;
4871 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4872 	/* Allow extended partitions.  This makes the
4873 	 * 'mdp' device redundant, but we can't really
4874 	 * remove it now.
4875 	 */
4876 	disk->flags |= GENHD_FL_EXT_DEVT;
4877 	mddev->gendisk = disk;
4878 	/* As soon as we call add_disk(), another thread could get
4879 	 * through to md_open, so make sure it doesn't get too far
4880 	 */
4881 	mutex_lock(&mddev->open_mutex);
4882 	add_disk(disk);
4883 
4884 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4885 				     &disk_to_dev(disk)->kobj, "%s", "md");
4886 	if (error) {
4887 		/* This isn't possible, but as kobject_init_and_add is marked
4888 		 * __must_check, we must do something with the result
4889 		 */
4890 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891 		       disk->disk_name);
4892 		error = 0;
4893 	}
4894 	if (mddev->kobj.sd &&
4895 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4896 		printk(KERN_DEBUG "pointless warning\n");
4897 	mutex_unlock(&mddev->open_mutex);
4898  abort:
4899 	mutex_unlock(&disks_mutex);
4900 	if (!error && mddev->kobj.sd) {
4901 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4902 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4903 	}
4904 	mddev_put(mddev);
4905 	return error;
4906 }
4907 
md_probe(dev_t dev,int * part,void * data)4908 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4909 {
4910 	md_alloc(dev, NULL);
4911 	return NULL;
4912 }
4913 
add_named_array(const char * val,struct kernel_param * kp)4914 static int add_named_array(const char *val, struct kernel_param *kp)
4915 {
4916 	/* val must be "md_*" where * is not all digits.
4917 	 * We allocate an array with a large free minor number, and
4918 	 * set the name to val.  val must not already be an active name.
4919 	 */
4920 	int len = strlen(val);
4921 	char buf[DISK_NAME_LEN];
4922 
4923 	while (len && val[len-1] == '\n')
4924 		len--;
4925 	if (len >= DISK_NAME_LEN)
4926 		return -E2BIG;
4927 	strlcpy(buf, val, len+1);
4928 	if (strncmp(buf, "md_", 3) != 0)
4929 		return -EINVAL;
4930 	return md_alloc(0, buf);
4931 }
4932 
md_safemode_timeout(unsigned long data)4933 static void md_safemode_timeout(unsigned long data)
4934 {
4935 	struct mddev *mddev = (struct mddev *) data;
4936 
4937 	if (!atomic_read(&mddev->writes_pending)) {
4938 		mddev->safemode = 1;
4939 		if (mddev->external)
4940 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4941 	}
4942 	md_wakeup_thread(mddev->thread);
4943 }
4944 
4945 static int start_dirty_degraded;
4946 
md_run(struct mddev * mddev)4947 int md_run(struct mddev *mddev)
4948 {
4949 	int err;
4950 	struct md_rdev *rdev;
4951 	struct md_personality *pers;
4952 
4953 	if (list_empty(&mddev->disks))
4954 		/* cannot run an array with no devices.. */
4955 		return -EINVAL;
4956 
4957 	if (mddev->pers)
4958 		return -EBUSY;
4959 	/* Cannot run until previous stop completes properly */
4960 	if (mddev->sysfs_active)
4961 		return -EBUSY;
4962 
4963 	/*
4964 	 * Analyze all RAID superblock(s)
4965 	 */
4966 	if (!mddev->raid_disks) {
4967 		if (!mddev->persistent)
4968 			return -EINVAL;
4969 		analyze_sbs(mddev);
4970 	}
4971 
4972 	if (mddev->level != LEVEL_NONE)
4973 		request_module("md-level-%d", mddev->level);
4974 	else if (mddev->clevel[0])
4975 		request_module("md-%s", mddev->clevel);
4976 
4977 	/*
4978 	 * Drop all container device buffers, from now on
4979 	 * the only valid external interface is through the md
4980 	 * device.
4981 	 */
4982 	rdev_for_each(rdev, mddev) {
4983 		if (test_bit(Faulty, &rdev->flags))
4984 			continue;
4985 		sync_blockdev(rdev->bdev);
4986 		invalidate_bdev(rdev->bdev);
4987 
4988 		/* perform some consistency tests on the device.
4989 		 * We don't want the data to overlap the metadata,
4990 		 * Internal Bitmap issues have been handled elsewhere.
4991 		 */
4992 		if (rdev->meta_bdev) {
4993 			/* Nothing to check */;
4994 		} else if (rdev->data_offset < rdev->sb_start) {
4995 			if (mddev->dev_sectors &&
4996 			    rdev->data_offset + mddev->dev_sectors
4997 			    > rdev->sb_start) {
4998 				printk("md: %s: data overlaps metadata\n",
4999 				       mdname(mddev));
5000 				return -EINVAL;
5001 			}
5002 		} else {
5003 			if (rdev->sb_start + rdev->sb_size/512
5004 			    > rdev->data_offset) {
5005 				printk("md: %s: metadata overlaps data\n",
5006 				       mdname(mddev));
5007 				return -EINVAL;
5008 			}
5009 		}
5010 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5011 	}
5012 
5013 	if (mddev->bio_set == NULL)
5014 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5015 
5016 	spin_lock(&pers_lock);
5017 	pers = find_pers(mddev->level, mddev->clevel);
5018 	if (!pers || !try_module_get(pers->owner)) {
5019 		spin_unlock(&pers_lock);
5020 		if (mddev->level != LEVEL_NONE)
5021 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5022 			       mddev->level);
5023 		else
5024 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5025 			       mddev->clevel);
5026 		return -EINVAL;
5027 	}
5028 	mddev->pers = pers;
5029 	spin_unlock(&pers_lock);
5030 	if (mddev->level != pers->level) {
5031 		mddev->level = pers->level;
5032 		mddev->new_level = pers->level;
5033 	}
5034 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5035 
5036 	if (mddev->reshape_position != MaxSector &&
5037 	    pers->start_reshape == NULL) {
5038 		/* This personality cannot handle reshaping... */
5039 		mddev->pers = NULL;
5040 		module_put(pers->owner);
5041 		return -EINVAL;
5042 	}
5043 
5044 	if (pers->sync_request) {
5045 		/* Warn if this is a potentially silly
5046 		 * configuration.
5047 		 */
5048 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5049 		struct md_rdev *rdev2;
5050 		int warned = 0;
5051 
5052 		rdev_for_each(rdev, mddev)
5053 			rdev_for_each(rdev2, mddev) {
5054 				if (rdev < rdev2 &&
5055 				    rdev->bdev->bd_contains ==
5056 				    rdev2->bdev->bd_contains) {
5057 					printk(KERN_WARNING
5058 					       "%s: WARNING: %s appears to be"
5059 					       " on the same physical disk as"
5060 					       " %s.\n",
5061 					       mdname(mddev),
5062 					       bdevname(rdev->bdev,b),
5063 					       bdevname(rdev2->bdev,b2));
5064 					warned = 1;
5065 				}
5066 			}
5067 
5068 		if (warned)
5069 			printk(KERN_WARNING
5070 			       "True protection against single-disk"
5071 			       " failure might be compromised.\n");
5072 	}
5073 
5074 	mddev->recovery = 0;
5075 	/* may be over-ridden by personality */
5076 	mddev->resync_max_sectors = mddev->dev_sectors;
5077 
5078 	mddev->ok_start_degraded = start_dirty_degraded;
5079 
5080 	if (start_readonly && mddev->ro == 0)
5081 		mddev->ro = 2; /* read-only, but switch on first write */
5082 
5083 	err = mddev->pers->run(mddev);
5084 	if (err)
5085 		printk(KERN_ERR "md: pers->run() failed ...\n");
5086 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5087 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5088 			  " but 'external_size' not in effect?\n", __func__);
5089 		printk(KERN_ERR
5090 		       "md: invalid array_size %llu > default size %llu\n",
5091 		       (unsigned long long)mddev->array_sectors / 2,
5092 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5093 		err = -EINVAL;
5094 		mddev->pers->stop(mddev);
5095 	}
5096 	if (err == 0 && mddev->pers->sync_request &&
5097 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5098 		err = bitmap_create(mddev);
5099 		if (err) {
5100 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5101 			       mdname(mddev), err);
5102 			mddev->pers->stop(mddev);
5103 		}
5104 	}
5105 	if (err) {
5106 		module_put(mddev->pers->owner);
5107 		mddev->pers = NULL;
5108 		bitmap_destroy(mddev);
5109 		return err;
5110 	}
5111 	if (mddev->pers->sync_request) {
5112 		if (mddev->kobj.sd &&
5113 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5114 			printk(KERN_WARNING
5115 			       "md: cannot register extra attributes for %s\n",
5116 			       mdname(mddev));
5117 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5118 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5119 		mddev->ro = 0;
5120 
5121  	atomic_set(&mddev->writes_pending,0);
5122 	atomic_set(&mddev->max_corr_read_errors,
5123 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5124 	mddev->safemode = 0;
5125 	mddev->safemode_timer.function = md_safemode_timeout;
5126 	mddev->safemode_timer.data = (unsigned long) mddev;
5127 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128 	mddev->in_sync = 1;
5129 	smp_wmb();
5130 	mddev->ready = 1;
5131 	rdev_for_each(rdev, mddev)
5132 		if (rdev->raid_disk >= 0)
5133 			if (sysfs_link_rdev(mddev, rdev))
5134 				/* failure here is OK */;
5135 
5136 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5137 
5138 	if (mddev->flags)
5139 		md_update_sb(mddev, 0);
5140 
5141 	md_new_event(mddev);
5142 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5143 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5144 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5145 	return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(md_run);
5148 
do_md_run(struct mddev * mddev)5149 static int do_md_run(struct mddev *mddev)
5150 {
5151 	int err;
5152 
5153 	err = md_run(mddev);
5154 	if (err)
5155 		goto out;
5156 	err = bitmap_load(mddev);
5157 	if (err) {
5158 		bitmap_destroy(mddev);
5159 		goto out;
5160 	}
5161 
5162 	md_wakeup_thread(mddev->thread);
5163 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5164 
5165 	set_capacity(mddev->gendisk, mddev->array_sectors);
5166 	revalidate_disk(mddev->gendisk);
5167 	mddev->changed = 1;
5168 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5169 out:
5170 	return err;
5171 }
5172 
restart_array(struct mddev * mddev)5173 static int restart_array(struct mddev *mddev)
5174 {
5175 	struct gendisk *disk = mddev->gendisk;
5176 
5177 	/* Complain if it has no devices */
5178 	if (list_empty(&mddev->disks))
5179 		return -ENXIO;
5180 	if (!mddev->pers)
5181 		return -EINVAL;
5182 	if (!mddev->ro)
5183 		return -EBUSY;
5184 	mddev->safemode = 0;
5185 	mddev->ro = 0;
5186 	set_disk_ro(disk, 0);
5187 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5188 		mdname(mddev));
5189 	/* Kick recovery or resync if necessary */
5190 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191 	md_wakeup_thread(mddev->thread);
5192 	md_wakeup_thread(mddev->sync_thread);
5193 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5194 	return 0;
5195 }
5196 
5197 /* similar to deny_write_access, but accounts for our holding a reference
5198  * to the file ourselves */
deny_bitmap_write_access(struct file * file)5199 static int deny_bitmap_write_access(struct file * file)
5200 {
5201 	struct inode *inode = file->f_mapping->host;
5202 
5203 	spin_lock(&inode->i_lock);
5204 	if (atomic_read(&inode->i_writecount) > 1) {
5205 		spin_unlock(&inode->i_lock);
5206 		return -ETXTBSY;
5207 	}
5208 	atomic_set(&inode->i_writecount, -1);
5209 	spin_unlock(&inode->i_lock);
5210 
5211 	return 0;
5212 }
5213 
restore_bitmap_write_access(struct file * file)5214 void restore_bitmap_write_access(struct file *file)
5215 {
5216 	struct inode *inode = file->f_mapping->host;
5217 
5218 	spin_lock(&inode->i_lock);
5219 	atomic_set(&inode->i_writecount, 1);
5220 	spin_unlock(&inode->i_lock);
5221 }
5222 
md_clean(struct mddev * mddev)5223 static void md_clean(struct mddev *mddev)
5224 {
5225 	mddev->array_sectors = 0;
5226 	mddev->external_size = 0;
5227 	mddev->dev_sectors = 0;
5228 	mddev->raid_disks = 0;
5229 	mddev->recovery_cp = 0;
5230 	mddev->resync_min = 0;
5231 	mddev->resync_max = MaxSector;
5232 	mddev->reshape_position = MaxSector;
5233 	mddev->external = 0;
5234 	mddev->persistent = 0;
5235 	mddev->level = LEVEL_NONE;
5236 	mddev->clevel[0] = 0;
5237 	mddev->flags = 0;
5238 	mddev->ro = 0;
5239 	mddev->metadata_type[0] = 0;
5240 	mddev->chunk_sectors = 0;
5241 	mddev->ctime = mddev->utime = 0;
5242 	mddev->layout = 0;
5243 	mddev->max_disks = 0;
5244 	mddev->events = 0;
5245 	mddev->can_decrease_events = 0;
5246 	mddev->delta_disks = 0;
5247 	mddev->reshape_backwards = 0;
5248 	mddev->new_level = LEVEL_NONE;
5249 	mddev->new_layout = 0;
5250 	mddev->new_chunk_sectors = 0;
5251 	mddev->curr_resync = 0;
5252 	atomic64_set(&mddev->resync_mismatches, 0);
5253 	mddev->suspend_lo = mddev->suspend_hi = 0;
5254 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5255 	mddev->recovery = 0;
5256 	mddev->in_sync = 0;
5257 	mddev->changed = 0;
5258 	mddev->degraded = 0;
5259 	mddev->safemode = 0;
5260 	mddev->merge_check_needed = 0;
5261 	mddev->bitmap_info.offset = 0;
5262 	mddev->bitmap_info.default_offset = 0;
5263 	mddev->bitmap_info.default_space = 0;
5264 	mddev->bitmap_info.chunksize = 0;
5265 	mddev->bitmap_info.daemon_sleep = 0;
5266 	mddev->bitmap_info.max_write_behind = 0;
5267 }
5268 
__md_stop_writes(struct mddev * mddev)5269 static void __md_stop_writes(struct mddev *mddev)
5270 {
5271 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5272 	if (mddev->sync_thread) {
5273 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274 		md_reap_sync_thread(mddev);
5275 	}
5276 
5277 	del_timer_sync(&mddev->safemode_timer);
5278 
5279 	bitmap_flush(mddev);
5280 	md_super_wait(mddev);
5281 
5282 	if (mddev->ro == 0 &&
5283 	    (!mddev->in_sync || mddev->flags)) {
5284 		/* mark array as shutdown cleanly */
5285 		mddev->in_sync = 1;
5286 		md_update_sb(mddev, 1);
5287 	}
5288 }
5289 
md_stop_writes(struct mddev * mddev)5290 void md_stop_writes(struct mddev *mddev)
5291 {
5292 	mddev_lock(mddev);
5293 	__md_stop_writes(mddev);
5294 	mddev_unlock(mddev);
5295 }
5296 EXPORT_SYMBOL_GPL(md_stop_writes);
5297 
__md_stop(struct mddev * mddev)5298 static void __md_stop(struct mddev *mddev)
5299 {
5300 	mddev->ready = 0;
5301 	mddev->pers->stop(mddev);
5302 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5303 		mddev->to_remove = &md_redundancy_group;
5304 	module_put(mddev->pers->owner);
5305 	mddev->pers = NULL;
5306 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5307 }
5308 
md_stop(struct mddev * mddev)5309 void md_stop(struct mddev *mddev)
5310 {
5311 	/* stop the array and free an attached data structures.
5312 	 * This is called from dm-raid
5313 	 */
5314 	__md_stop(mddev);
5315 	bitmap_destroy(mddev);
5316 	if (mddev->bio_set)
5317 		bioset_free(mddev->bio_set);
5318 }
5319 
5320 EXPORT_SYMBOL_GPL(md_stop);
5321 
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5322 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5323 {
5324 	int err = 0;
5325 	mutex_lock(&mddev->open_mutex);
5326 	if (atomic_read(&mddev->openers) > !!bdev) {
5327 		printk("md: %s still in use.\n",mdname(mddev));
5328 		err = -EBUSY;
5329 		goto out;
5330 	}
5331 	if (bdev)
5332 		sync_blockdev(bdev);
5333 	if (mddev->pers) {
5334 		__md_stop_writes(mddev);
5335 
5336 		err  = -ENXIO;
5337 		if (mddev->ro==1)
5338 			goto out;
5339 		mddev->ro = 1;
5340 		set_disk_ro(mddev->gendisk, 1);
5341 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5342 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5343 		err = 0;
5344 	}
5345 out:
5346 	mutex_unlock(&mddev->open_mutex);
5347 	return err;
5348 }
5349 
5350 /* mode:
5351  *   0 - completely stop and dis-assemble array
5352  *   2 - stop but do not disassemble array
5353  */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5354 static int do_md_stop(struct mddev * mddev, int mode,
5355 		      struct block_device *bdev)
5356 {
5357 	struct gendisk *disk = mddev->gendisk;
5358 	struct md_rdev *rdev;
5359 
5360 	mutex_lock(&mddev->open_mutex);
5361 	if (atomic_read(&mddev->openers) > !!bdev ||
5362 	    mddev->sysfs_active) {
5363 		printk("md: %s still in use.\n",mdname(mddev));
5364 		mutex_unlock(&mddev->open_mutex);
5365 		return -EBUSY;
5366 	}
5367 	if (bdev)
5368 		/* It is possible IO was issued on some other
5369 		 * open file which was closed before we took ->open_mutex.
5370 		 * As that was not the last close __blkdev_put will not
5371 		 * have called sync_blockdev, so we must.
5372 		 */
5373 		sync_blockdev(bdev);
5374 
5375 	if (mddev->pers) {
5376 		if (mddev->ro)
5377 			set_disk_ro(disk, 0);
5378 
5379 		__md_stop_writes(mddev);
5380 		__md_stop(mddev);
5381 		mddev->queue->merge_bvec_fn = NULL;
5382 		mddev->queue->backing_dev_info.congested_fn = NULL;
5383 
5384 		/* tell userspace to handle 'inactive' */
5385 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5386 
5387 		rdev_for_each(rdev, mddev)
5388 			if (rdev->raid_disk >= 0)
5389 				sysfs_unlink_rdev(mddev, rdev);
5390 
5391 		set_capacity(disk, 0);
5392 		mutex_unlock(&mddev->open_mutex);
5393 		mddev->changed = 1;
5394 		revalidate_disk(disk);
5395 
5396 		if (mddev->ro)
5397 			mddev->ro = 0;
5398 	} else
5399 		mutex_unlock(&mddev->open_mutex);
5400 	/*
5401 	 * Free resources if final stop
5402 	 */
5403 	if (mode == 0) {
5404 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5405 
5406 		bitmap_destroy(mddev);
5407 		if (mddev->bitmap_info.file) {
5408 			restore_bitmap_write_access(mddev->bitmap_info.file);
5409 			fput(mddev->bitmap_info.file);
5410 			mddev->bitmap_info.file = NULL;
5411 		}
5412 		mddev->bitmap_info.offset = 0;
5413 
5414 		export_array(mddev);
5415 
5416 		md_clean(mddev);
5417 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5418 		if (mddev->hold_active == UNTIL_STOP)
5419 			mddev->hold_active = 0;
5420 	}
5421 	blk_integrity_unregister(disk);
5422 	md_new_event(mddev);
5423 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5424 	return 0;
5425 }
5426 
5427 #ifndef MODULE
autorun_array(struct mddev * mddev)5428 static void autorun_array(struct mddev *mddev)
5429 {
5430 	struct md_rdev *rdev;
5431 	int err;
5432 
5433 	if (list_empty(&mddev->disks))
5434 		return;
5435 
5436 	printk(KERN_INFO "md: running: ");
5437 
5438 	rdev_for_each(rdev, mddev) {
5439 		char b[BDEVNAME_SIZE];
5440 		printk("<%s>", bdevname(rdev->bdev,b));
5441 	}
5442 	printk("\n");
5443 
5444 	err = do_md_run(mddev);
5445 	if (err) {
5446 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5447 		do_md_stop(mddev, 0, NULL);
5448 	}
5449 }
5450 
5451 /*
5452  * lets try to run arrays based on all disks that have arrived
5453  * until now. (those are in pending_raid_disks)
5454  *
5455  * the method: pick the first pending disk, collect all disks with
5456  * the same UUID, remove all from the pending list and put them into
5457  * the 'same_array' list. Then order this list based on superblock
5458  * update time (freshest comes first), kick out 'old' disks and
5459  * compare superblocks. If everything's fine then run it.
5460  *
5461  * If "unit" is allocated, then bump its reference count
5462  */
autorun_devices(int part)5463 static void autorun_devices(int part)
5464 {
5465 	struct md_rdev *rdev0, *rdev, *tmp;
5466 	struct mddev *mddev;
5467 	char b[BDEVNAME_SIZE];
5468 
5469 	printk(KERN_INFO "md: autorun ...\n");
5470 	while (!list_empty(&pending_raid_disks)) {
5471 		int unit;
5472 		dev_t dev;
5473 		LIST_HEAD(candidates);
5474 		rdev0 = list_entry(pending_raid_disks.next,
5475 					 struct md_rdev, same_set);
5476 
5477 		printk(KERN_INFO "md: considering %s ...\n",
5478 			bdevname(rdev0->bdev,b));
5479 		INIT_LIST_HEAD(&candidates);
5480 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5481 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5482 				printk(KERN_INFO "md:  adding %s ...\n",
5483 					bdevname(rdev->bdev,b));
5484 				list_move(&rdev->same_set, &candidates);
5485 			}
5486 		/*
5487 		 * now we have a set of devices, with all of them having
5488 		 * mostly sane superblocks. It's time to allocate the
5489 		 * mddev.
5490 		 */
5491 		if (part) {
5492 			dev = MKDEV(mdp_major,
5493 				    rdev0->preferred_minor << MdpMinorShift);
5494 			unit = MINOR(dev) >> MdpMinorShift;
5495 		} else {
5496 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5497 			unit = MINOR(dev);
5498 		}
5499 		if (rdev0->preferred_minor != unit) {
5500 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5501 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5502 			break;
5503 		}
5504 
5505 		md_probe(dev, NULL, NULL);
5506 		mddev = mddev_find(dev);
5507 		if (!mddev || !mddev->gendisk) {
5508 			if (mddev)
5509 				mddev_put(mddev);
5510 			printk(KERN_ERR
5511 				"md: cannot allocate memory for md drive.\n");
5512 			break;
5513 		}
5514 		if (mddev_lock(mddev))
5515 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5516 			       mdname(mddev));
5517 		else if (mddev->raid_disks || mddev->major_version
5518 			 || !list_empty(&mddev->disks)) {
5519 			printk(KERN_WARNING
5520 				"md: %s already running, cannot run %s\n",
5521 				mdname(mddev), bdevname(rdev0->bdev,b));
5522 			mddev_unlock(mddev);
5523 		} else {
5524 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5525 			mddev->persistent = 1;
5526 			rdev_for_each_list(rdev, tmp, &candidates) {
5527 				list_del_init(&rdev->same_set);
5528 				if (bind_rdev_to_array(rdev, mddev))
5529 					export_rdev(rdev);
5530 			}
5531 			autorun_array(mddev);
5532 			mddev_unlock(mddev);
5533 		}
5534 		/* on success, candidates will be empty, on error
5535 		 * it won't...
5536 		 */
5537 		rdev_for_each_list(rdev, tmp, &candidates) {
5538 			list_del_init(&rdev->same_set);
5539 			export_rdev(rdev);
5540 		}
5541 		mddev_put(mddev);
5542 	}
5543 	printk(KERN_INFO "md: ... autorun DONE.\n");
5544 }
5545 #endif /* !MODULE */
5546 
get_version(void __user * arg)5547 static int get_version(void __user * arg)
5548 {
5549 	mdu_version_t ver;
5550 
5551 	ver.major = MD_MAJOR_VERSION;
5552 	ver.minor = MD_MINOR_VERSION;
5553 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5554 
5555 	if (copy_to_user(arg, &ver, sizeof(ver)))
5556 		return -EFAULT;
5557 
5558 	return 0;
5559 }
5560 
get_array_info(struct mddev * mddev,void __user * arg)5561 static int get_array_info(struct mddev * mddev, void __user * arg)
5562 {
5563 	mdu_array_info_t info;
5564 	int nr,working,insync,failed,spare;
5565 	struct md_rdev *rdev;
5566 
5567 	nr = working = insync = failed = spare = 0;
5568 	rcu_read_lock();
5569 	rdev_for_each_rcu(rdev, mddev) {
5570 		nr++;
5571 		if (test_bit(Faulty, &rdev->flags))
5572 			failed++;
5573 		else {
5574 			working++;
5575 			if (test_bit(In_sync, &rdev->flags))
5576 				insync++;
5577 			else
5578 				spare++;
5579 		}
5580 	}
5581 	rcu_read_unlock();
5582 
5583 	info.major_version = mddev->major_version;
5584 	info.minor_version = mddev->minor_version;
5585 	info.patch_version = MD_PATCHLEVEL_VERSION;
5586 	info.ctime         = mddev->ctime;
5587 	info.level         = mddev->level;
5588 	info.size          = mddev->dev_sectors / 2;
5589 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5590 		info.size = -1;
5591 	info.nr_disks      = nr;
5592 	info.raid_disks    = mddev->raid_disks;
5593 	info.md_minor      = mddev->md_minor;
5594 	info.not_persistent= !mddev->persistent;
5595 
5596 	info.utime         = mddev->utime;
5597 	info.state         = 0;
5598 	if (mddev->in_sync)
5599 		info.state = (1<<MD_SB_CLEAN);
5600 	if (mddev->bitmap && mddev->bitmap_info.offset)
5601 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5602 	info.active_disks  = insync;
5603 	info.working_disks = working;
5604 	info.failed_disks  = failed;
5605 	info.spare_disks   = spare;
5606 
5607 	info.layout        = mddev->layout;
5608 	info.chunk_size    = mddev->chunk_sectors << 9;
5609 
5610 	if (copy_to_user(arg, &info, sizeof(info)))
5611 		return -EFAULT;
5612 
5613 	return 0;
5614 }
5615 
get_bitmap_file(struct mddev * mddev,void __user * arg)5616 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5617 {
5618 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5619 	char *ptr, *buf = NULL;
5620 	int err = -ENOMEM;
5621 
5622 	if (md_allow_write(mddev))
5623 		file = kmalloc(sizeof(*file), GFP_NOIO);
5624 	else
5625 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5626 
5627 	if (!file)
5628 		goto out;
5629 
5630 	/* bitmap disabled, zero the first byte and copy out */
5631 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5632 		file->pathname[0] = '\0';
5633 		goto copy_out;
5634 	}
5635 
5636 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5637 	if (!buf)
5638 		goto out;
5639 
5640 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5641 		     buf, sizeof(file->pathname));
5642 	if (IS_ERR(ptr))
5643 		goto out;
5644 
5645 	strcpy(file->pathname, ptr);
5646 
5647 copy_out:
5648 	err = 0;
5649 	if (copy_to_user(arg, file, sizeof(*file)))
5650 		err = -EFAULT;
5651 out:
5652 	kfree(buf);
5653 	kfree(file);
5654 	return err;
5655 }
5656 
get_disk_info(struct mddev * mddev,void __user * arg)5657 static int get_disk_info(struct mddev * mddev, void __user * arg)
5658 {
5659 	mdu_disk_info_t info;
5660 	struct md_rdev *rdev;
5661 
5662 	if (copy_from_user(&info, arg, sizeof(info)))
5663 		return -EFAULT;
5664 
5665 	rcu_read_lock();
5666 	rdev = find_rdev_nr_rcu(mddev, info.number);
5667 	if (rdev) {
5668 		info.major = MAJOR(rdev->bdev->bd_dev);
5669 		info.minor = MINOR(rdev->bdev->bd_dev);
5670 		info.raid_disk = rdev->raid_disk;
5671 		info.state = 0;
5672 		if (test_bit(Faulty, &rdev->flags))
5673 			info.state |= (1<<MD_DISK_FAULTY);
5674 		else if (test_bit(In_sync, &rdev->flags)) {
5675 			info.state |= (1<<MD_DISK_ACTIVE);
5676 			info.state |= (1<<MD_DISK_SYNC);
5677 		}
5678 		if (test_bit(WriteMostly, &rdev->flags))
5679 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5680 	} else {
5681 		info.major = info.minor = 0;
5682 		info.raid_disk = -1;
5683 		info.state = (1<<MD_DISK_REMOVED);
5684 	}
5685 	rcu_read_unlock();
5686 
5687 	if (copy_to_user(arg, &info, sizeof(info)))
5688 		return -EFAULT;
5689 
5690 	return 0;
5691 }
5692 
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5693 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5694 {
5695 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5696 	struct md_rdev *rdev;
5697 	dev_t dev = MKDEV(info->major,info->minor);
5698 
5699 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5700 		return -EOVERFLOW;
5701 
5702 	if (!mddev->raid_disks) {
5703 		int err;
5704 		/* expecting a device which has a superblock */
5705 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5706 		if (IS_ERR(rdev)) {
5707 			printk(KERN_WARNING
5708 				"md: md_import_device returned %ld\n",
5709 				PTR_ERR(rdev));
5710 			return PTR_ERR(rdev);
5711 		}
5712 		if (!list_empty(&mddev->disks)) {
5713 			struct md_rdev *rdev0
5714 				= list_entry(mddev->disks.next,
5715 					     struct md_rdev, same_set);
5716 			err = super_types[mddev->major_version]
5717 				.load_super(rdev, rdev0, mddev->minor_version);
5718 			if (err < 0) {
5719 				printk(KERN_WARNING
5720 					"md: %s has different UUID to %s\n",
5721 					bdevname(rdev->bdev,b),
5722 					bdevname(rdev0->bdev,b2));
5723 				export_rdev(rdev);
5724 				return -EINVAL;
5725 			}
5726 		}
5727 		err = bind_rdev_to_array(rdev, mddev);
5728 		if (err)
5729 			export_rdev(rdev);
5730 		return err;
5731 	}
5732 
5733 	/*
5734 	 * add_new_disk can be used once the array is assembled
5735 	 * to add "hot spares".  They must already have a superblock
5736 	 * written
5737 	 */
5738 	if (mddev->pers) {
5739 		int err;
5740 		if (!mddev->pers->hot_add_disk) {
5741 			printk(KERN_WARNING
5742 				"%s: personality does not support diskops!\n",
5743 			       mdname(mddev));
5744 			return -EINVAL;
5745 		}
5746 		if (mddev->persistent)
5747 			rdev = md_import_device(dev, mddev->major_version,
5748 						mddev->minor_version);
5749 		else
5750 			rdev = md_import_device(dev, -1, -1);
5751 		if (IS_ERR(rdev)) {
5752 			printk(KERN_WARNING
5753 				"md: md_import_device returned %ld\n",
5754 				PTR_ERR(rdev));
5755 			return PTR_ERR(rdev);
5756 		}
5757 		/* set saved_raid_disk if appropriate */
5758 		if (!mddev->persistent) {
5759 			if (info->state & (1<<MD_DISK_SYNC)  &&
5760 			    info->raid_disk < mddev->raid_disks) {
5761 				rdev->raid_disk = info->raid_disk;
5762 				set_bit(In_sync, &rdev->flags);
5763 			} else
5764 				rdev->raid_disk = -1;
5765 		} else
5766 			super_types[mddev->major_version].
5767 				validate_super(mddev, rdev);
5768 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5769 		     rdev->raid_disk != info->raid_disk) {
5770 			/* This was a hot-add request, but events doesn't
5771 			 * match, so reject it.
5772 			 */
5773 			export_rdev(rdev);
5774 			return -EINVAL;
5775 		}
5776 
5777 		if (test_bit(In_sync, &rdev->flags))
5778 			rdev->saved_raid_disk = rdev->raid_disk;
5779 		else
5780 			rdev->saved_raid_disk = -1;
5781 
5782 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5783 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5784 			set_bit(WriteMostly, &rdev->flags);
5785 		else
5786 			clear_bit(WriteMostly, &rdev->flags);
5787 
5788 		rdev->raid_disk = -1;
5789 		err = bind_rdev_to_array(rdev, mddev);
5790 		if (!err && !mddev->pers->hot_remove_disk) {
5791 			/* If there is hot_add_disk but no hot_remove_disk
5792 			 * then added disks for geometry changes,
5793 			 * and should be added immediately.
5794 			 */
5795 			super_types[mddev->major_version].
5796 				validate_super(mddev, rdev);
5797 			err = mddev->pers->hot_add_disk(mddev, rdev);
5798 			if (err)
5799 				unbind_rdev_from_array(rdev);
5800 		}
5801 		if (err)
5802 			export_rdev(rdev);
5803 		else
5804 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5805 
5806 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807 		if (mddev->degraded)
5808 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5809 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5810 		if (!err)
5811 			md_new_event(mddev);
5812 		md_wakeup_thread(mddev->thread);
5813 		return err;
5814 	}
5815 
5816 	/* otherwise, add_new_disk is only allowed
5817 	 * for major_version==0 superblocks
5818 	 */
5819 	if (mddev->major_version != 0) {
5820 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5821 		       mdname(mddev));
5822 		return -EINVAL;
5823 	}
5824 
5825 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5826 		int err;
5827 		rdev = md_import_device(dev, -1, 0);
5828 		if (IS_ERR(rdev)) {
5829 			printk(KERN_WARNING
5830 				"md: error, md_import_device() returned %ld\n",
5831 				PTR_ERR(rdev));
5832 			return PTR_ERR(rdev);
5833 		}
5834 		rdev->desc_nr = info->number;
5835 		if (info->raid_disk < mddev->raid_disks)
5836 			rdev->raid_disk = info->raid_disk;
5837 		else
5838 			rdev->raid_disk = -1;
5839 
5840 		if (rdev->raid_disk < mddev->raid_disks)
5841 			if (info->state & (1<<MD_DISK_SYNC))
5842 				set_bit(In_sync, &rdev->flags);
5843 
5844 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5845 			set_bit(WriteMostly, &rdev->flags);
5846 
5847 		if (!mddev->persistent) {
5848 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5849 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5850 		} else
5851 			rdev->sb_start = calc_dev_sboffset(rdev);
5852 		rdev->sectors = rdev->sb_start;
5853 
5854 		err = bind_rdev_to_array(rdev, mddev);
5855 		if (err) {
5856 			export_rdev(rdev);
5857 			return err;
5858 		}
5859 	}
5860 
5861 	return 0;
5862 }
5863 
hot_remove_disk(struct mddev * mddev,dev_t dev)5864 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5865 {
5866 	char b[BDEVNAME_SIZE];
5867 	struct md_rdev *rdev;
5868 
5869 	rdev = find_rdev(mddev, dev);
5870 	if (!rdev)
5871 		return -ENXIO;
5872 
5873 	clear_bit(Blocked, &rdev->flags);
5874 	remove_and_add_spares(mddev, rdev);
5875 
5876 	if (rdev->raid_disk >= 0)
5877 		goto busy;
5878 
5879 	kick_rdev_from_array(rdev);
5880 	md_update_sb(mddev, 1);
5881 	md_new_event(mddev);
5882 
5883 	return 0;
5884 busy:
5885 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5886 		bdevname(rdev->bdev,b), mdname(mddev));
5887 	return -EBUSY;
5888 }
5889 
hot_add_disk(struct mddev * mddev,dev_t dev)5890 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5891 {
5892 	char b[BDEVNAME_SIZE];
5893 	int err;
5894 	struct md_rdev *rdev;
5895 
5896 	if (!mddev->pers)
5897 		return -ENODEV;
5898 
5899 	if (mddev->major_version != 0) {
5900 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5901 			" version-0 superblocks.\n",
5902 			mdname(mddev));
5903 		return -EINVAL;
5904 	}
5905 	if (!mddev->pers->hot_add_disk) {
5906 		printk(KERN_WARNING
5907 			"%s: personality does not support diskops!\n",
5908 			mdname(mddev));
5909 		return -EINVAL;
5910 	}
5911 
5912 	rdev = md_import_device(dev, -1, 0);
5913 	if (IS_ERR(rdev)) {
5914 		printk(KERN_WARNING
5915 			"md: error, md_import_device() returned %ld\n",
5916 			PTR_ERR(rdev));
5917 		return -EINVAL;
5918 	}
5919 
5920 	if (mddev->persistent)
5921 		rdev->sb_start = calc_dev_sboffset(rdev);
5922 	else
5923 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5924 
5925 	rdev->sectors = rdev->sb_start;
5926 
5927 	if (test_bit(Faulty, &rdev->flags)) {
5928 		printk(KERN_WARNING
5929 			"md: can not hot-add faulty %s disk to %s!\n",
5930 			bdevname(rdev->bdev,b), mdname(mddev));
5931 		err = -EINVAL;
5932 		goto abort_export;
5933 	}
5934 	clear_bit(In_sync, &rdev->flags);
5935 	rdev->desc_nr = -1;
5936 	rdev->saved_raid_disk = -1;
5937 	err = bind_rdev_to_array(rdev, mddev);
5938 	if (err)
5939 		goto abort_export;
5940 
5941 	/*
5942 	 * The rest should better be atomic, we can have disk failures
5943 	 * noticed in interrupt contexts ...
5944 	 */
5945 
5946 	rdev->raid_disk = -1;
5947 
5948 	md_update_sb(mddev, 1);
5949 
5950 	/*
5951 	 * Kick recovery, maybe this spare has to be added to the
5952 	 * array immediately.
5953 	 */
5954 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5955 	md_wakeup_thread(mddev->thread);
5956 	md_new_event(mddev);
5957 	return 0;
5958 
5959 abort_export:
5960 	export_rdev(rdev);
5961 	return err;
5962 }
5963 
set_bitmap_file(struct mddev * mddev,int fd)5964 static int set_bitmap_file(struct mddev *mddev, int fd)
5965 {
5966 	int err;
5967 
5968 	if (mddev->pers) {
5969 		if (!mddev->pers->quiesce)
5970 			return -EBUSY;
5971 		if (mddev->recovery || mddev->sync_thread)
5972 			return -EBUSY;
5973 		/* we should be able to change the bitmap.. */
5974 	}
5975 
5976 
5977 	if (fd >= 0) {
5978 		if (mddev->bitmap)
5979 			return -EEXIST; /* cannot add when bitmap is present */
5980 		mddev->bitmap_info.file = fget(fd);
5981 
5982 		if (mddev->bitmap_info.file == NULL) {
5983 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5984 			       mdname(mddev));
5985 			return -EBADF;
5986 		}
5987 
5988 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5989 		if (err) {
5990 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5991 			       mdname(mddev));
5992 			fput(mddev->bitmap_info.file);
5993 			mddev->bitmap_info.file = NULL;
5994 			return err;
5995 		}
5996 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5997 	} else if (mddev->bitmap == NULL)
5998 		return -ENOENT; /* cannot remove what isn't there */
5999 	err = 0;
6000 	if (mddev->pers) {
6001 		mddev->pers->quiesce(mddev, 1);
6002 		if (fd >= 0) {
6003 			err = bitmap_create(mddev);
6004 			if (!err)
6005 				err = bitmap_load(mddev);
6006 		}
6007 		if (fd < 0 || err) {
6008 			bitmap_destroy(mddev);
6009 			fd = -1; /* make sure to put the file */
6010 		}
6011 		mddev->pers->quiesce(mddev, 0);
6012 	}
6013 	if (fd < 0) {
6014 		if (mddev->bitmap_info.file) {
6015 			restore_bitmap_write_access(mddev->bitmap_info.file);
6016 			fput(mddev->bitmap_info.file);
6017 		}
6018 		mddev->bitmap_info.file = NULL;
6019 	}
6020 
6021 	return err;
6022 }
6023 
6024 /*
6025  * set_array_info is used two different ways
6026  * The original usage is when creating a new array.
6027  * In this usage, raid_disks is > 0 and it together with
6028  *  level, size, not_persistent,layout,chunksize determine the
6029  *  shape of the array.
6030  *  This will always create an array with a type-0.90.0 superblock.
6031  * The newer usage is when assembling an array.
6032  *  In this case raid_disks will be 0, and the major_version field is
6033  *  use to determine which style super-blocks are to be found on the devices.
6034  *  The minor and patch _version numbers are also kept incase the
6035  *  super_block handler wishes to interpret them.
6036  */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)6037 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6038 {
6039 
6040 	if (info->raid_disks == 0) {
6041 		/* just setting version number for superblock loading */
6042 		if (info->major_version < 0 ||
6043 		    info->major_version >= ARRAY_SIZE(super_types) ||
6044 		    super_types[info->major_version].name == NULL) {
6045 			/* maybe try to auto-load a module? */
6046 			printk(KERN_INFO
6047 				"md: superblock version %d not known\n",
6048 				info->major_version);
6049 			return -EINVAL;
6050 		}
6051 		mddev->major_version = info->major_version;
6052 		mddev->minor_version = info->minor_version;
6053 		mddev->patch_version = info->patch_version;
6054 		mddev->persistent = !info->not_persistent;
6055 		/* ensure mddev_put doesn't delete this now that there
6056 		 * is some minimal configuration.
6057 		 */
6058 		mddev->ctime         = get_seconds();
6059 		return 0;
6060 	}
6061 	mddev->major_version = MD_MAJOR_VERSION;
6062 	mddev->minor_version = MD_MINOR_VERSION;
6063 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6064 	mddev->ctime         = get_seconds();
6065 
6066 	mddev->level         = info->level;
6067 	mddev->clevel[0]     = 0;
6068 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6069 	mddev->raid_disks    = info->raid_disks;
6070 	/* don't set md_minor, it is determined by which /dev/md* was
6071 	 * openned
6072 	 */
6073 	if (info->state & (1<<MD_SB_CLEAN))
6074 		mddev->recovery_cp = MaxSector;
6075 	else
6076 		mddev->recovery_cp = 0;
6077 	mddev->persistent    = ! info->not_persistent;
6078 	mddev->external	     = 0;
6079 
6080 	mddev->layout        = info->layout;
6081 	mddev->chunk_sectors = info->chunk_size >> 9;
6082 
6083 	mddev->max_disks     = MD_SB_DISKS;
6084 
6085 	if (mddev->persistent)
6086 		mddev->flags         = 0;
6087 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6088 
6089 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6090 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6091 	mddev->bitmap_info.offset = 0;
6092 
6093 	mddev->reshape_position = MaxSector;
6094 
6095 	/*
6096 	 * Generate a 128 bit UUID
6097 	 */
6098 	get_random_bytes(mddev->uuid, 16);
6099 
6100 	mddev->new_level = mddev->level;
6101 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6102 	mddev->new_layout = mddev->layout;
6103 	mddev->delta_disks = 0;
6104 	mddev->reshape_backwards = 0;
6105 
6106 	return 0;
6107 }
6108 
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)6109 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6110 {
6111 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6112 
6113 	if (mddev->external_size)
6114 		return;
6115 
6116 	mddev->array_sectors = array_sectors;
6117 }
6118 EXPORT_SYMBOL(md_set_array_sectors);
6119 
update_size(struct mddev * mddev,sector_t num_sectors)6120 static int update_size(struct mddev *mddev, sector_t num_sectors)
6121 {
6122 	struct md_rdev *rdev;
6123 	int rv;
6124 	int fit = (num_sectors == 0);
6125 
6126 	if (mddev->pers->resize == NULL)
6127 		return -EINVAL;
6128 	/* The "num_sectors" is the number of sectors of each device that
6129 	 * is used.  This can only make sense for arrays with redundancy.
6130 	 * linear and raid0 always use whatever space is available. We can only
6131 	 * consider changing this number if no resync or reconstruction is
6132 	 * happening, and if the new size is acceptable. It must fit before the
6133 	 * sb_start or, if that is <data_offset, it must fit before the size
6134 	 * of each device.  If num_sectors is zero, we find the largest size
6135 	 * that fits.
6136 	 */
6137 	if (mddev->sync_thread)
6138 		return -EBUSY;
6139 
6140 	rdev_for_each(rdev, mddev) {
6141 		sector_t avail = rdev->sectors;
6142 
6143 		if (fit && (num_sectors == 0 || num_sectors > avail))
6144 			num_sectors = avail;
6145 		if (avail < num_sectors)
6146 			return -ENOSPC;
6147 	}
6148 	rv = mddev->pers->resize(mddev, num_sectors);
6149 	if (!rv)
6150 		revalidate_disk(mddev->gendisk);
6151 	return rv;
6152 }
6153 
update_raid_disks(struct mddev * mddev,int raid_disks)6154 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6155 {
6156 	int rv;
6157 	struct md_rdev *rdev;
6158 	/* change the number of raid disks */
6159 	if (mddev->pers->check_reshape == NULL)
6160 		return -EINVAL;
6161 	if (raid_disks <= 0 ||
6162 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6163 		return -EINVAL;
6164 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6165 		return -EBUSY;
6166 
6167 	rdev_for_each(rdev, mddev) {
6168 		if (mddev->raid_disks < raid_disks &&
6169 		    rdev->data_offset < rdev->new_data_offset)
6170 			return -EINVAL;
6171 		if (mddev->raid_disks > raid_disks &&
6172 		    rdev->data_offset > rdev->new_data_offset)
6173 			return -EINVAL;
6174 	}
6175 
6176 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6177 	if (mddev->delta_disks < 0)
6178 		mddev->reshape_backwards = 1;
6179 	else if (mddev->delta_disks > 0)
6180 		mddev->reshape_backwards = 0;
6181 
6182 	rv = mddev->pers->check_reshape(mddev);
6183 	if (rv < 0) {
6184 		mddev->delta_disks = 0;
6185 		mddev->reshape_backwards = 0;
6186 	}
6187 	return rv;
6188 }
6189 
6190 
6191 /*
6192  * update_array_info is used to change the configuration of an
6193  * on-line array.
6194  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6195  * fields in the info are checked against the array.
6196  * Any differences that cannot be handled will cause an error.
6197  * Normally, only one change can be managed at a time.
6198  */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6199 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6200 {
6201 	int rv = 0;
6202 	int cnt = 0;
6203 	int state = 0;
6204 
6205 	/* calculate expected state,ignoring low bits */
6206 	if (mddev->bitmap && mddev->bitmap_info.offset)
6207 		state |= (1 << MD_SB_BITMAP_PRESENT);
6208 
6209 	if (mddev->major_version != info->major_version ||
6210 	    mddev->minor_version != info->minor_version ||
6211 /*	    mddev->patch_version != info->patch_version || */
6212 	    mddev->ctime         != info->ctime         ||
6213 	    mddev->level         != info->level         ||
6214 /*	    mddev->layout        != info->layout        || */
6215 	    !mddev->persistent	 != info->not_persistent||
6216 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6217 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6218 	    ((state^info->state) & 0xfffffe00)
6219 		)
6220 		return -EINVAL;
6221 	/* Check there is only one change */
6222 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6223 		cnt++;
6224 	if (mddev->raid_disks != info->raid_disks)
6225 		cnt++;
6226 	if (mddev->layout != info->layout)
6227 		cnt++;
6228 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6229 		cnt++;
6230 	if (cnt == 0)
6231 		return 0;
6232 	if (cnt > 1)
6233 		return -EINVAL;
6234 
6235 	if (mddev->layout != info->layout) {
6236 		/* Change layout
6237 		 * we don't need to do anything at the md level, the
6238 		 * personality will take care of it all.
6239 		 */
6240 		if (mddev->pers->check_reshape == NULL)
6241 			return -EINVAL;
6242 		else {
6243 			mddev->new_layout = info->layout;
6244 			rv = mddev->pers->check_reshape(mddev);
6245 			if (rv)
6246 				mddev->new_layout = mddev->layout;
6247 			return rv;
6248 		}
6249 	}
6250 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6251 		rv = update_size(mddev, (sector_t)info->size * 2);
6252 
6253 	if (mddev->raid_disks    != info->raid_disks)
6254 		rv = update_raid_disks(mddev, info->raid_disks);
6255 
6256 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6257 		if (mddev->pers->quiesce == NULL)
6258 			return -EINVAL;
6259 		if (mddev->recovery || mddev->sync_thread)
6260 			return -EBUSY;
6261 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6262 			/* add the bitmap */
6263 			if (mddev->bitmap)
6264 				return -EEXIST;
6265 			if (mddev->bitmap_info.default_offset == 0)
6266 				return -EINVAL;
6267 			mddev->bitmap_info.offset =
6268 				mddev->bitmap_info.default_offset;
6269 			mddev->bitmap_info.space =
6270 				mddev->bitmap_info.default_space;
6271 			mddev->pers->quiesce(mddev, 1);
6272 			rv = bitmap_create(mddev);
6273 			if (!rv)
6274 				rv = bitmap_load(mddev);
6275 			if (rv)
6276 				bitmap_destroy(mddev);
6277 			mddev->pers->quiesce(mddev, 0);
6278 		} else {
6279 			/* remove the bitmap */
6280 			if (!mddev->bitmap)
6281 				return -ENOENT;
6282 			if (mddev->bitmap->storage.file)
6283 				return -EINVAL;
6284 			mddev->pers->quiesce(mddev, 1);
6285 			bitmap_destroy(mddev);
6286 			mddev->pers->quiesce(mddev, 0);
6287 			mddev->bitmap_info.offset = 0;
6288 		}
6289 	}
6290 	md_update_sb(mddev, 1);
6291 	return rv;
6292 }
6293 
set_disk_faulty(struct mddev * mddev,dev_t dev)6294 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6295 {
6296 	struct md_rdev *rdev;
6297 	int err = 0;
6298 
6299 	if (mddev->pers == NULL)
6300 		return -ENODEV;
6301 
6302 	rcu_read_lock();
6303 	rdev = find_rdev_rcu(mddev, dev);
6304 	if (!rdev)
6305 		err =  -ENODEV;
6306 	else {
6307 		md_error(mddev, rdev);
6308 		if (!test_bit(Faulty, &rdev->flags))
6309 			err = -EBUSY;
6310 	}
6311 	rcu_read_unlock();
6312 	return err;
6313 }
6314 
6315 /*
6316  * We have a problem here : there is no easy way to give a CHS
6317  * virtual geometry. We currently pretend that we have a 2 heads
6318  * 4 sectors (with a BIG number of cylinders...). This drives
6319  * dosfs just mad... ;-)
6320  */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6321 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6322 {
6323 	struct mddev *mddev = bdev->bd_disk->private_data;
6324 
6325 	geo->heads = 2;
6326 	geo->sectors = 4;
6327 	geo->cylinders = mddev->array_sectors / 8;
6328 	return 0;
6329 }
6330 
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6331 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6332 			unsigned int cmd, unsigned long arg)
6333 {
6334 	int err = 0;
6335 	void __user *argp = (void __user *)arg;
6336 	struct mddev *mddev = NULL;
6337 	int ro;
6338 
6339 	switch (cmd) {
6340 	case RAID_VERSION:
6341 	case GET_ARRAY_INFO:
6342 	case GET_DISK_INFO:
6343 		break;
6344 	default:
6345 		if (!capable(CAP_SYS_ADMIN))
6346 			return -EACCES;
6347 	}
6348 
6349 	/*
6350 	 * Commands dealing with the RAID driver but not any
6351 	 * particular array:
6352 	 */
6353 	switch (cmd) {
6354 	case RAID_VERSION:
6355 		err = get_version(argp);
6356 		goto done;
6357 
6358 	case PRINT_RAID_DEBUG:
6359 		err = 0;
6360 		md_print_devices();
6361 		goto done;
6362 
6363 #ifndef MODULE
6364 	case RAID_AUTORUN:
6365 		err = 0;
6366 		autostart_arrays(arg);
6367 		goto done;
6368 #endif
6369 	default:;
6370 	}
6371 
6372 	/*
6373 	 * Commands creating/starting a new array:
6374 	 */
6375 
6376 	mddev = bdev->bd_disk->private_data;
6377 
6378 	if (!mddev) {
6379 		BUG();
6380 		goto abort;
6381 	}
6382 
6383 	/* Some actions do not requires the mutex */
6384 	switch (cmd) {
6385 	case GET_ARRAY_INFO:
6386 		if (!mddev->raid_disks && !mddev->external)
6387 			err = -ENODEV;
6388 		else
6389 			err = get_array_info(mddev, argp);
6390 		goto abort;
6391 
6392 	case GET_DISK_INFO:
6393 		if (!mddev->raid_disks && !mddev->external)
6394 			err = -ENODEV;
6395 		else
6396 			err = get_disk_info(mddev, argp);
6397 		goto abort;
6398 
6399 	case SET_DISK_FAULTY:
6400 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6401 		goto abort;
6402 	}
6403 
6404 	if (cmd == ADD_NEW_DISK)
6405 		/* need to ensure md_delayed_delete() has completed */
6406 		flush_workqueue(md_misc_wq);
6407 
6408 	err = mddev_lock(mddev);
6409 	if (err) {
6410 		printk(KERN_INFO
6411 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6412 			err, cmd);
6413 		goto abort;
6414 	}
6415 
6416 	if (cmd == SET_ARRAY_INFO) {
6417 		mdu_array_info_t info;
6418 		if (!arg)
6419 			memset(&info, 0, sizeof(info));
6420 		else if (copy_from_user(&info, argp, sizeof(info))) {
6421 			err = -EFAULT;
6422 			goto abort_unlock;
6423 		}
6424 		if (mddev->pers) {
6425 			err = update_array_info(mddev, &info);
6426 			if (err) {
6427 				printk(KERN_WARNING "md: couldn't update"
6428 				       " array info. %d\n", err);
6429 				goto abort_unlock;
6430 			}
6431 			goto done_unlock;
6432 		}
6433 		if (!list_empty(&mddev->disks)) {
6434 			printk(KERN_WARNING
6435 			       "md: array %s already has disks!\n",
6436 			       mdname(mddev));
6437 			err = -EBUSY;
6438 			goto abort_unlock;
6439 		}
6440 		if (mddev->raid_disks) {
6441 			printk(KERN_WARNING
6442 			       "md: array %s already initialised!\n",
6443 			       mdname(mddev));
6444 			err = -EBUSY;
6445 			goto abort_unlock;
6446 		}
6447 		err = set_array_info(mddev, &info);
6448 		if (err) {
6449 			printk(KERN_WARNING "md: couldn't set"
6450 			       " array info. %d\n", err);
6451 			goto abort_unlock;
6452 		}
6453 		goto done_unlock;
6454 	}
6455 
6456 	/*
6457 	 * Commands querying/configuring an existing array:
6458 	 */
6459 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6460 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6461 	if ((!mddev->raid_disks && !mddev->external)
6462 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6463 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6464 	    && cmd != GET_BITMAP_FILE) {
6465 		err = -ENODEV;
6466 		goto abort_unlock;
6467 	}
6468 
6469 	/*
6470 	 * Commands even a read-only array can execute:
6471 	 */
6472 	switch (cmd) {
6473 	case GET_BITMAP_FILE:
6474 		err = get_bitmap_file(mddev, argp);
6475 		goto done_unlock;
6476 
6477 	case RESTART_ARRAY_RW:
6478 		err = restart_array(mddev);
6479 		goto done_unlock;
6480 
6481 	case STOP_ARRAY:
6482 		err = do_md_stop(mddev, 0, bdev);
6483 		goto done_unlock;
6484 
6485 	case STOP_ARRAY_RO:
6486 		err = md_set_readonly(mddev, bdev);
6487 		goto done_unlock;
6488 
6489 	case HOT_REMOVE_DISK:
6490 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6491 		goto done_unlock;
6492 
6493 	case ADD_NEW_DISK:
6494 		/* We can support ADD_NEW_DISK on read-only arrays
6495 		 * on if we are re-adding a preexisting device.
6496 		 * So require mddev->pers and MD_DISK_SYNC.
6497 		 */
6498 		if (mddev->pers) {
6499 			mdu_disk_info_t info;
6500 			if (copy_from_user(&info, argp, sizeof(info)))
6501 				err = -EFAULT;
6502 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6503 				/* Need to clear read-only for this */
6504 				break;
6505 			else
6506 				err = add_new_disk(mddev, &info);
6507 			goto done_unlock;
6508 		}
6509 		break;
6510 
6511 	case BLKROSET:
6512 		if (get_user(ro, (int __user *)(arg))) {
6513 			err = -EFAULT;
6514 			goto done_unlock;
6515 		}
6516 		err = -EINVAL;
6517 
6518 		/* if the bdev is going readonly the value of mddev->ro
6519 		 * does not matter, no writes are coming
6520 		 */
6521 		if (ro)
6522 			goto done_unlock;
6523 
6524 		/* are we are already prepared for writes? */
6525 		if (mddev->ro != 1)
6526 			goto done_unlock;
6527 
6528 		/* transitioning to readauto need only happen for
6529 		 * arrays that call md_write_start
6530 		 */
6531 		if (mddev->pers) {
6532 			err = restart_array(mddev);
6533 			if (err == 0) {
6534 				mddev->ro = 2;
6535 				set_disk_ro(mddev->gendisk, 0);
6536 			}
6537 		}
6538 		goto done_unlock;
6539 	}
6540 
6541 	/*
6542 	 * The remaining ioctls are changing the state of the
6543 	 * superblock, so we do not allow them on read-only arrays.
6544 	 * However non-MD ioctls (e.g. get-size) will still come through
6545 	 * here and hit the 'default' below, so only disallow
6546 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6547 	 */
6548 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6549 		if (mddev->ro == 2) {
6550 			mddev->ro = 0;
6551 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6552 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6553 			/* mddev_unlock will wake thread */
6554 			/* If a device failed while we were read-only, we
6555 			 * need to make sure the metadata is updated now.
6556 			 */
6557 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6558 				mddev_unlock(mddev);
6559 				wait_event(mddev->sb_wait,
6560 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6561 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6562 				mddev_lock(mddev);
6563 			}
6564 		} else {
6565 			err = -EROFS;
6566 			goto abort_unlock;
6567 		}
6568 	}
6569 
6570 	switch (cmd) {
6571 	case ADD_NEW_DISK:
6572 	{
6573 		mdu_disk_info_t info;
6574 		if (copy_from_user(&info, argp, sizeof(info)))
6575 			err = -EFAULT;
6576 		else
6577 			err = add_new_disk(mddev, &info);
6578 		goto done_unlock;
6579 	}
6580 
6581 	case HOT_ADD_DISK:
6582 		err = hot_add_disk(mddev, new_decode_dev(arg));
6583 		goto done_unlock;
6584 
6585 	case RUN_ARRAY:
6586 		err = do_md_run(mddev);
6587 		goto done_unlock;
6588 
6589 	case SET_BITMAP_FILE:
6590 		err = set_bitmap_file(mddev, (int)arg);
6591 		goto done_unlock;
6592 
6593 	default:
6594 		err = -EINVAL;
6595 		goto abort_unlock;
6596 	}
6597 
6598 done_unlock:
6599 abort_unlock:
6600 	if (mddev->hold_active == UNTIL_IOCTL &&
6601 	    err != -EINVAL)
6602 		mddev->hold_active = 0;
6603 	mddev_unlock(mddev);
6604 
6605 	return err;
6606 done:
6607 	if (err)
6608 		MD_BUG();
6609 abort:
6610 	return err;
6611 }
6612 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6613 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6614 		    unsigned int cmd, unsigned long arg)
6615 {
6616 	switch (cmd) {
6617 	case HOT_REMOVE_DISK:
6618 	case HOT_ADD_DISK:
6619 	case SET_DISK_FAULTY:
6620 	case SET_BITMAP_FILE:
6621 		/* These take in integer arg, do not convert */
6622 		break;
6623 	default:
6624 		arg = (unsigned long)compat_ptr(arg);
6625 		break;
6626 	}
6627 
6628 	return md_ioctl(bdev, mode, cmd, arg);
6629 }
6630 #endif /* CONFIG_COMPAT */
6631 
md_open(struct block_device * bdev,fmode_t mode)6632 static int md_open(struct block_device *bdev, fmode_t mode)
6633 {
6634 	/*
6635 	 * Succeed if we can lock the mddev, which confirms that
6636 	 * it isn't being stopped right now.
6637 	 */
6638 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6639 	int err;
6640 
6641 	if (!mddev)
6642 		return -ENODEV;
6643 
6644 	if (mddev->gendisk != bdev->bd_disk) {
6645 		/* we are racing with mddev_put which is discarding this
6646 		 * bd_disk.
6647 		 */
6648 		mddev_put(mddev);
6649 		/* Wait until bdev->bd_disk is definitely gone */
6650 		flush_workqueue(md_misc_wq);
6651 		/* Then retry the open from the top */
6652 		return -ERESTARTSYS;
6653 	}
6654 	BUG_ON(mddev != bdev->bd_disk->private_data);
6655 
6656 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6657 		goto out;
6658 
6659 	err = 0;
6660 	atomic_inc(&mddev->openers);
6661 	mutex_unlock(&mddev->open_mutex);
6662 
6663 	check_disk_change(bdev);
6664  out:
6665 	return err;
6666 }
6667 
md_release(struct gendisk * disk,fmode_t mode)6668 static void md_release(struct gendisk *disk, fmode_t mode)
6669 {
6670  	struct mddev *mddev = disk->private_data;
6671 
6672 	BUG_ON(!mddev);
6673 	atomic_dec(&mddev->openers);
6674 	mddev_put(mddev);
6675 }
6676 
md_media_changed(struct gendisk * disk)6677 static int md_media_changed(struct gendisk *disk)
6678 {
6679 	struct mddev *mddev = disk->private_data;
6680 
6681 	return mddev->changed;
6682 }
6683 
md_revalidate(struct gendisk * disk)6684 static int md_revalidate(struct gendisk *disk)
6685 {
6686 	struct mddev *mddev = disk->private_data;
6687 
6688 	mddev->changed = 0;
6689 	return 0;
6690 }
6691 static const struct block_device_operations md_fops =
6692 {
6693 	.owner		= THIS_MODULE,
6694 	.open		= md_open,
6695 	.release	= md_release,
6696 	.ioctl		= md_ioctl,
6697 #ifdef CONFIG_COMPAT
6698 	.compat_ioctl	= md_compat_ioctl,
6699 #endif
6700 	.getgeo		= md_getgeo,
6701 	.media_changed  = md_media_changed,
6702 	.revalidate_disk= md_revalidate,
6703 };
6704 
md_thread(void * arg)6705 static int md_thread(void * arg)
6706 {
6707 	struct md_thread *thread = arg;
6708 
6709 	/*
6710 	 * md_thread is a 'system-thread', it's priority should be very
6711 	 * high. We avoid resource deadlocks individually in each
6712 	 * raid personality. (RAID5 does preallocation) We also use RR and
6713 	 * the very same RT priority as kswapd, thus we will never get
6714 	 * into a priority inversion deadlock.
6715 	 *
6716 	 * we definitely have to have equal or higher priority than
6717 	 * bdflush, otherwise bdflush will deadlock if there are too
6718 	 * many dirty RAID5 blocks.
6719 	 */
6720 
6721 	allow_signal(SIGKILL);
6722 	while (!kthread_should_stop()) {
6723 
6724 		/* We need to wait INTERRUPTIBLE so that
6725 		 * we don't add to the load-average.
6726 		 * That means we need to be sure no signals are
6727 		 * pending
6728 		 */
6729 		if (signal_pending(current))
6730 			flush_signals(current);
6731 
6732 		wait_event_interruptible_timeout
6733 			(thread->wqueue,
6734 			 test_bit(THREAD_WAKEUP, &thread->flags)
6735 			 || kthread_should_stop(),
6736 			 thread->timeout);
6737 
6738 		clear_bit(THREAD_WAKEUP, &thread->flags);
6739 		if (!kthread_should_stop())
6740 			thread->run(thread);
6741 	}
6742 
6743 	return 0;
6744 }
6745 
md_wakeup_thread(struct md_thread * thread)6746 void md_wakeup_thread(struct md_thread *thread)
6747 {
6748 	if (thread) {
6749 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6750 		set_bit(THREAD_WAKEUP, &thread->flags);
6751 		wake_up(&thread->wqueue);
6752 	}
6753 }
6754 
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)6755 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6756 		struct mddev *mddev, const char *name)
6757 {
6758 	struct md_thread *thread;
6759 
6760 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6761 	if (!thread)
6762 		return NULL;
6763 
6764 	init_waitqueue_head(&thread->wqueue);
6765 
6766 	thread->run = run;
6767 	thread->mddev = mddev;
6768 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6769 	thread->tsk = kthread_run(md_thread, thread,
6770 				  "%s_%s",
6771 				  mdname(thread->mddev),
6772 				  name);
6773 	if (IS_ERR(thread->tsk)) {
6774 		kfree(thread);
6775 		return NULL;
6776 	}
6777 	return thread;
6778 }
6779 
md_unregister_thread(struct md_thread ** threadp)6780 void md_unregister_thread(struct md_thread **threadp)
6781 {
6782 	struct md_thread *thread = *threadp;
6783 	if (!thread)
6784 		return;
6785 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6786 	/* Locking ensures that mddev_unlock does not wake_up a
6787 	 * non-existent thread
6788 	 */
6789 	spin_lock(&pers_lock);
6790 	*threadp = NULL;
6791 	spin_unlock(&pers_lock);
6792 
6793 	kthread_stop(thread->tsk);
6794 	kfree(thread);
6795 }
6796 
md_error(struct mddev * mddev,struct md_rdev * rdev)6797 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6798 {
6799 	if (!mddev) {
6800 		MD_BUG();
6801 		return;
6802 	}
6803 
6804 	if (!rdev || test_bit(Faulty, &rdev->flags))
6805 		return;
6806 
6807 	if (!mddev->pers || !mddev->pers->error_handler)
6808 		return;
6809 	mddev->pers->error_handler(mddev,rdev);
6810 	if (mddev->degraded)
6811 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6812 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6813 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6814 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6815 	md_wakeup_thread(mddev->thread);
6816 	if (mddev->event_work.func)
6817 		queue_work(md_misc_wq, &mddev->event_work);
6818 	md_new_event_inintr(mddev);
6819 }
6820 
6821 /* seq_file implementation /proc/mdstat */
6822 
status_unused(struct seq_file * seq)6823 static void status_unused(struct seq_file *seq)
6824 {
6825 	int i = 0;
6826 	struct md_rdev *rdev;
6827 
6828 	seq_printf(seq, "unused devices: ");
6829 
6830 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6831 		char b[BDEVNAME_SIZE];
6832 		i++;
6833 		seq_printf(seq, "%s ",
6834 			      bdevname(rdev->bdev,b));
6835 	}
6836 	if (!i)
6837 		seq_printf(seq, "<none>");
6838 
6839 	seq_printf(seq, "\n");
6840 }
6841 
6842 
status_resync(struct seq_file * seq,struct mddev * mddev)6843 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6844 {
6845 	sector_t max_sectors, resync, res;
6846 	unsigned long dt, db;
6847 	sector_t rt;
6848 	int scale;
6849 	unsigned int per_milli;
6850 
6851 	if (mddev->curr_resync <= 3)
6852 		resync = 0;
6853 	else
6854 		resync = mddev->curr_resync
6855 			- atomic_read(&mddev->recovery_active);
6856 
6857 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6858 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6859 		max_sectors = mddev->resync_max_sectors;
6860 	else
6861 		max_sectors = mddev->dev_sectors;
6862 
6863 	/*
6864 	 * Should not happen.
6865 	 */
6866 	if (!max_sectors) {
6867 		MD_BUG();
6868 		return;
6869 	}
6870 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6871 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6872 	 * u32, as those are the requirements for sector_div.
6873 	 * Thus 'scale' must be at least 10
6874 	 */
6875 	scale = 10;
6876 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6877 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6878 			scale++;
6879 	}
6880 	res = (resync>>scale)*1000;
6881 	sector_div(res, (u32)((max_sectors>>scale)+1));
6882 
6883 	per_milli = res;
6884 	{
6885 		int i, x = per_milli/50, y = 20-x;
6886 		seq_printf(seq, "[");
6887 		for (i = 0; i < x; i++)
6888 			seq_printf(seq, "=");
6889 		seq_printf(seq, ">");
6890 		for (i = 0; i < y; i++)
6891 			seq_printf(seq, ".");
6892 		seq_printf(seq, "] ");
6893 	}
6894 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6895 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6896 		    "reshape" :
6897 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6898 		     "check" :
6899 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6900 		      "resync" : "recovery"))),
6901 		   per_milli/10, per_milli % 10,
6902 		   (unsigned long long) resync/2,
6903 		   (unsigned long long) max_sectors/2);
6904 
6905 	/*
6906 	 * dt: time from mark until now
6907 	 * db: blocks written from mark until now
6908 	 * rt: remaining time
6909 	 *
6910 	 * rt is a sector_t, so could be 32bit or 64bit.
6911 	 * So we divide before multiply in case it is 32bit and close
6912 	 * to the limit.
6913 	 * We scale the divisor (db) by 32 to avoid losing precision
6914 	 * near the end of resync when the number of remaining sectors
6915 	 * is close to 'db'.
6916 	 * We then divide rt by 32 after multiplying by db to compensate.
6917 	 * The '+1' avoids division by zero if db is very small.
6918 	 */
6919 	dt = ((jiffies - mddev->resync_mark) / HZ);
6920 	if (!dt) dt++;
6921 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6922 		- mddev->resync_mark_cnt;
6923 
6924 	rt = max_sectors - resync;    /* number of remaining sectors */
6925 	sector_div(rt, db/32+1);
6926 	rt *= dt;
6927 	rt >>= 5;
6928 
6929 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6930 		   ((unsigned long)rt % 60)/6);
6931 
6932 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6933 }
6934 
md_seq_start(struct seq_file * seq,loff_t * pos)6935 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6936 {
6937 	struct list_head *tmp;
6938 	loff_t l = *pos;
6939 	struct mddev *mddev;
6940 
6941 	if (l >= 0x10000)
6942 		return NULL;
6943 	if (!l--)
6944 		/* header */
6945 		return (void*)1;
6946 
6947 	spin_lock(&all_mddevs_lock);
6948 	list_for_each(tmp,&all_mddevs)
6949 		if (!l--) {
6950 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6951 			mddev_get(mddev);
6952 			spin_unlock(&all_mddevs_lock);
6953 			return mddev;
6954 		}
6955 	spin_unlock(&all_mddevs_lock);
6956 	if (!l--)
6957 		return (void*)2;/* tail */
6958 	return NULL;
6959 }
6960 
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)6961 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6962 {
6963 	struct list_head *tmp;
6964 	struct mddev *next_mddev, *mddev = v;
6965 
6966 	++*pos;
6967 	if (v == (void*)2)
6968 		return NULL;
6969 
6970 	spin_lock(&all_mddevs_lock);
6971 	if (v == (void*)1)
6972 		tmp = all_mddevs.next;
6973 	else
6974 		tmp = mddev->all_mddevs.next;
6975 	if (tmp != &all_mddevs)
6976 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6977 	else {
6978 		next_mddev = (void*)2;
6979 		*pos = 0x10000;
6980 	}
6981 	spin_unlock(&all_mddevs_lock);
6982 
6983 	if (v != (void*)1)
6984 		mddev_put(mddev);
6985 	return next_mddev;
6986 
6987 }
6988 
md_seq_stop(struct seq_file * seq,void * v)6989 static void md_seq_stop(struct seq_file *seq, void *v)
6990 {
6991 	struct mddev *mddev = v;
6992 
6993 	if (mddev && v != (void*)1 && v != (void*)2)
6994 		mddev_put(mddev);
6995 }
6996 
md_seq_show(struct seq_file * seq,void * v)6997 static int md_seq_show(struct seq_file *seq, void *v)
6998 {
6999 	struct mddev *mddev = v;
7000 	sector_t sectors;
7001 	struct md_rdev *rdev;
7002 
7003 	if (v == (void*)1) {
7004 		struct md_personality *pers;
7005 		seq_printf(seq, "Personalities : ");
7006 		spin_lock(&pers_lock);
7007 		list_for_each_entry(pers, &pers_list, list)
7008 			seq_printf(seq, "[%s] ", pers->name);
7009 
7010 		spin_unlock(&pers_lock);
7011 		seq_printf(seq, "\n");
7012 		seq->poll_event = atomic_read(&md_event_count);
7013 		return 0;
7014 	}
7015 	if (v == (void*)2) {
7016 		status_unused(seq);
7017 		return 0;
7018 	}
7019 
7020 	if (mddev_lock(mddev) < 0)
7021 		return -EINTR;
7022 
7023 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7024 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7025 						mddev->pers ? "" : "in");
7026 		if (mddev->pers) {
7027 			if (mddev->ro==1)
7028 				seq_printf(seq, " (read-only)");
7029 			if (mddev->ro==2)
7030 				seq_printf(seq, " (auto-read-only)");
7031 			seq_printf(seq, " %s", mddev->pers->name);
7032 		}
7033 
7034 		sectors = 0;
7035 		rdev_for_each(rdev, mddev) {
7036 			char b[BDEVNAME_SIZE];
7037 			seq_printf(seq, " %s[%d]",
7038 				bdevname(rdev->bdev,b), rdev->desc_nr);
7039 			if (test_bit(WriteMostly, &rdev->flags))
7040 				seq_printf(seq, "(W)");
7041 			if (test_bit(Faulty, &rdev->flags)) {
7042 				seq_printf(seq, "(F)");
7043 				continue;
7044 			}
7045 			if (rdev->raid_disk < 0)
7046 				seq_printf(seq, "(S)"); /* spare */
7047 			if (test_bit(Replacement, &rdev->flags))
7048 				seq_printf(seq, "(R)");
7049 			sectors += rdev->sectors;
7050 		}
7051 
7052 		if (!list_empty(&mddev->disks)) {
7053 			if (mddev->pers)
7054 				seq_printf(seq, "\n      %llu blocks",
7055 					   (unsigned long long)
7056 					   mddev->array_sectors / 2);
7057 			else
7058 				seq_printf(seq, "\n      %llu blocks",
7059 					   (unsigned long long)sectors / 2);
7060 		}
7061 		if (mddev->persistent) {
7062 			if (mddev->major_version != 0 ||
7063 			    mddev->minor_version != 90) {
7064 				seq_printf(seq," super %d.%d",
7065 					   mddev->major_version,
7066 					   mddev->minor_version);
7067 			}
7068 		} else if (mddev->external)
7069 			seq_printf(seq, " super external:%s",
7070 				   mddev->metadata_type);
7071 		else
7072 			seq_printf(seq, " super non-persistent");
7073 
7074 		if (mddev->pers) {
7075 			mddev->pers->status(seq, mddev);
7076 	 		seq_printf(seq, "\n      ");
7077 			if (mddev->pers->sync_request) {
7078 				if (mddev->curr_resync > 2) {
7079 					status_resync(seq, mddev);
7080 					seq_printf(seq, "\n      ");
7081 				} else if (mddev->curr_resync >= 1)
7082 					seq_printf(seq, "\tresync=DELAYED\n      ");
7083 				else if (mddev->recovery_cp < MaxSector)
7084 					seq_printf(seq, "\tresync=PENDING\n      ");
7085 			}
7086 		} else
7087 			seq_printf(seq, "\n       ");
7088 
7089 		bitmap_status(seq, mddev->bitmap);
7090 
7091 		seq_printf(seq, "\n");
7092 	}
7093 	mddev_unlock(mddev);
7094 
7095 	return 0;
7096 }
7097 
7098 static const struct seq_operations md_seq_ops = {
7099 	.start  = md_seq_start,
7100 	.next   = md_seq_next,
7101 	.stop   = md_seq_stop,
7102 	.show   = md_seq_show,
7103 };
7104 
md_seq_open(struct inode * inode,struct file * file)7105 static int md_seq_open(struct inode *inode, struct file *file)
7106 {
7107 	struct seq_file *seq;
7108 	int error;
7109 
7110 	error = seq_open(file, &md_seq_ops);
7111 	if (error)
7112 		return error;
7113 
7114 	seq = file->private_data;
7115 	seq->poll_event = atomic_read(&md_event_count);
7116 	return error;
7117 }
7118 
mdstat_poll(struct file * filp,poll_table * wait)7119 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7120 {
7121 	struct seq_file *seq = filp->private_data;
7122 	int mask;
7123 
7124 	poll_wait(filp, &md_event_waiters, wait);
7125 
7126 	/* always allow read */
7127 	mask = POLLIN | POLLRDNORM;
7128 
7129 	if (seq->poll_event != atomic_read(&md_event_count))
7130 		mask |= POLLERR | POLLPRI;
7131 	return mask;
7132 }
7133 
7134 static const struct file_operations md_seq_fops = {
7135 	.owner		= THIS_MODULE,
7136 	.open           = md_seq_open,
7137 	.read           = seq_read,
7138 	.llseek         = seq_lseek,
7139 	.release	= seq_release_private,
7140 	.poll		= mdstat_poll,
7141 };
7142 
register_md_personality(struct md_personality * p)7143 int register_md_personality(struct md_personality *p)
7144 {
7145 	spin_lock(&pers_lock);
7146 	list_add_tail(&p->list, &pers_list);
7147 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7148 	spin_unlock(&pers_lock);
7149 	return 0;
7150 }
7151 
unregister_md_personality(struct md_personality * p)7152 int unregister_md_personality(struct md_personality *p)
7153 {
7154 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7155 	spin_lock(&pers_lock);
7156 	list_del_init(&p->list);
7157 	spin_unlock(&pers_lock);
7158 	return 0;
7159 }
7160 
is_mddev_idle(struct mddev * mddev,int init)7161 static int is_mddev_idle(struct mddev *mddev, int init)
7162 {
7163 	struct md_rdev * rdev;
7164 	int idle;
7165 	int curr_events;
7166 
7167 	idle = 1;
7168 	rcu_read_lock();
7169 	rdev_for_each_rcu(rdev, mddev) {
7170 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7171 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7172 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7173 			      atomic_read(&disk->sync_io);
7174 		/* sync IO will cause sync_io to increase before the disk_stats
7175 		 * as sync_io is counted when a request starts, and
7176 		 * disk_stats is counted when it completes.
7177 		 * So resync activity will cause curr_events to be smaller than
7178 		 * when there was no such activity.
7179 		 * non-sync IO will cause disk_stat to increase without
7180 		 * increasing sync_io so curr_events will (eventually)
7181 		 * be larger than it was before.  Once it becomes
7182 		 * substantially larger, the test below will cause
7183 		 * the array to appear non-idle, and resync will slow
7184 		 * down.
7185 		 * If there is a lot of outstanding resync activity when
7186 		 * we set last_event to curr_events, then all that activity
7187 		 * completing might cause the array to appear non-idle
7188 		 * and resync will be slowed down even though there might
7189 		 * not have been non-resync activity.  This will only
7190 		 * happen once though.  'last_events' will soon reflect
7191 		 * the state where there is little or no outstanding
7192 		 * resync requests, and further resync activity will
7193 		 * always make curr_events less than last_events.
7194 		 *
7195 		 */
7196 		if (init || curr_events - rdev->last_events > 64) {
7197 			rdev->last_events = curr_events;
7198 			idle = 0;
7199 		}
7200 	}
7201 	rcu_read_unlock();
7202 	return idle;
7203 }
7204 
md_done_sync(struct mddev * mddev,int blocks,int ok)7205 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7206 {
7207 	/* another "blocks" (512byte) blocks have been synced */
7208 	atomic_sub(blocks, &mddev->recovery_active);
7209 	wake_up(&mddev->recovery_wait);
7210 	if (!ok) {
7211 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7212 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7213 		md_wakeup_thread(mddev->thread);
7214 		// stop recovery, signal do_sync ....
7215 	}
7216 }
7217 
7218 
7219 /* md_write_start(mddev, bi)
7220  * If we need to update some array metadata (e.g. 'active' flag
7221  * in superblock) before writing, schedule a superblock update
7222  * and wait for it to complete.
7223  */
md_write_start(struct mddev * mddev,struct bio * bi)7224 void md_write_start(struct mddev *mddev, struct bio *bi)
7225 {
7226 	int did_change = 0;
7227 	if (bio_data_dir(bi) != WRITE)
7228 		return;
7229 
7230 	BUG_ON(mddev->ro == 1);
7231 	if (mddev->ro == 2) {
7232 		/* need to switch to read/write */
7233 		mddev->ro = 0;
7234 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7235 		md_wakeup_thread(mddev->thread);
7236 		md_wakeup_thread(mddev->sync_thread);
7237 		did_change = 1;
7238 	}
7239 	atomic_inc(&mddev->writes_pending);
7240 	if (mddev->safemode == 1)
7241 		mddev->safemode = 0;
7242 	if (mddev->in_sync) {
7243 		spin_lock_irq(&mddev->write_lock);
7244 		if (mddev->in_sync) {
7245 			mddev->in_sync = 0;
7246 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7247 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7248 			md_wakeup_thread(mddev->thread);
7249 			did_change = 1;
7250 		}
7251 		spin_unlock_irq(&mddev->write_lock);
7252 	}
7253 	if (did_change)
7254 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7255 	wait_event(mddev->sb_wait,
7256 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7257 }
7258 
md_write_end(struct mddev * mddev)7259 void md_write_end(struct mddev *mddev)
7260 {
7261 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7262 		if (mddev->safemode == 2)
7263 			md_wakeup_thread(mddev->thread);
7264 		else if (mddev->safemode_delay)
7265 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7266 	}
7267 }
7268 
7269 /* md_allow_write(mddev)
7270  * Calling this ensures that the array is marked 'active' so that writes
7271  * may proceed without blocking.  It is important to call this before
7272  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7273  * Must be called with mddev_lock held.
7274  *
7275  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7276  * is dropped, so return -EAGAIN after notifying userspace.
7277  */
md_allow_write(struct mddev * mddev)7278 int md_allow_write(struct mddev *mddev)
7279 {
7280 	if (!mddev->pers)
7281 		return 0;
7282 	if (mddev->ro)
7283 		return 0;
7284 	if (!mddev->pers->sync_request)
7285 		return 0;
7286 
7287 	spin_lock_irq(&mddev->write_lock);
7288 	if (mddev->in_sync) {
7289 		mddev->in_sync = 0;
7290 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7291 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7292 		if (mddev->safemode_delay &&
7293 		    mddev->safemode == 0)
7294 			mddev->safemode = 1;
7295 		spin_unlock_irq(&mddev->write_lock);
7296 		md_update_sb(mddev, 0);
7297 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7298 	} else
7299 		spin_unlock_irq(&mddev->write_lock);
7300 
7301 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7302 		return -EAGAIN;
7303 	else
7304 		return 0;
7305 }
7306 EXPORT_SYMBOL_GPL(md_allow_write);
7307 
7308 #define SYNC_MARKS	10
7309 #define	SYNC_MARK_STEP	(3*HZ)
7310 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7311 void md_do_sync(struct md_thread *thread)
7312 {
7313 	struct mddev *mddev = thread->mddev;
7314 	struct mddev *mddev2;
7315 	unsigned int currspeed = 0,
7316 		 window;
7317 	sector_t max_sectors,j, io_sectors;
7318 	unsigned long mark[SYNC_MARKS];
7319 	unsigned long update_time;
7320 	sector_t mark_cnt[SYNC_MARKS];
7321 	int last_mark,m;
7322 	struct list_head *tmp;
7323 	sector_t last_check;
7324 	int skipped = 0;
7325 	struct md_rdev *rdev;
7326 	char *desc;
7327 	struct blk_plug plug;
7328 
7329 	/* just incase thread restarts... */
7330 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7331 		return;
7332 	if (mddev->ro) /* never try to sync a read-only array */
7333 		return;
7334 
7335 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7336 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7337 			desc = "data-check";
7338 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7339 			desc = "requested-resync";
7340 		else
7341 			desc = "resync";
7342 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7343 		desc = "reshape";
7344 	else
7345 		desc = "recovery";
7346 
7347 	/* we overload curr_resync somewhat here.
7348 	 * 0 == not engaged in resync at all
7349 	 * 2 == checking that there is no conflict with another sync
7350 	 * 1 == like 2, but have yielded to allow conflicting resync to
7351 	 *		commense
7352 	 * other == active in resync - this many blocks
7353 	 *
7354 	 * Before starting a resync we must have set curr_resync to
7355 	 * 2, and then checked that every "conflicting" array has curr_resync
7356 	 * less than ours.  When we find one that is the same or higher
7357 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7358 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7359 	 * This will mean we have to start checking from the beginning again.
7360 	 *
7361 	 */
7362 
7363 	do {
7364 		mddev->curr_resync = 2;
7365 
7366 	try_again:
7367 		if (kthread_should_stop())
7368 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7369 
7370 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7371 			goto skip;
7372 		for_each_mddev(mddev2, tmp) {
7373 			if (mddev2 == mddev)
7374 				continue;
7375 			if (!mddev->parallel_resync
7376 			&&  mddev2->curr_resync
7377 			&&  match_mddev_units(mddev, mddev2)) {
7378 				DEFINE_WAIT(wq);
7379 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7380 					/* arbitrarily yield */
7381 					mddev->curr_resync = 1;
7382 					wake_up(&resync_wait);
7383 				}
7384 				if (mddev > mddev2 && mddev->curr_resync == 1)
7385 					/* no need to wait here, we can wait the next
7386 					 * time 'round when curr_resync == 2
7387 					 */
7388 					continue;
7389 				/* We need to wait 'interruptible' so as not to
7390 				 * contribute to the load average, and not to
7391 				 * be caught by 'softlockup'
7392 				 */
7393 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7394 				if (!kthread_should_stop() &&
7395 				    mddev2->curr_resync >= mddev->curr_resync) {
7396 					printk(KERN_INFO "md: delaying %s of %s"
7397 					       " until %s has finished (they"
7398 					       " share one or more physical units)\n",
7399 					       desc, mdname(mddev), mdname(mddev2));
7400 					mddev_put(mddev2);
7401 					if (signal_pending(current))
7402 						flush_signals(current);
7403 					schedule();
7404 					finish_wait(&resync_wait, &wq);
7405 					goto try_again;
7406 				}
7407 				finish_wait(&resync_wait, &wq);
7408 			}
7409 		}
7410 	} while (mddev->curr_resync < 2);
7411 
7412 	j = 0;
7413 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7414 		/* resync follows the size requested by the personality,
7415 		 * which defaults to physical size, but can be virtual size
7416 		 */
7417 		max_sectors = mddev->resync_max_sectors;
7418 		atomic64_set(&mddev->resync_mismatches, 0);
7419 		/* we don't use the checkpoint if there's a bitmap */
7420 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7421 			j = mddev->resync_min;
7422 		else if (!mddev->bitmap)
7423 			j = mddev->recovery_cp;
7424 
7425 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7426 		max_sectors = mddev->resync_max_sectors;
7427 	else {
7428 		/* recovery follows the physical size of devices */
7429 		max_sectors = mddev->dev_sectors;
7430 		j = MaxSector;
7431 		rcu_read_lock();
7432 		rdev_for_each_rcu(rdev, mddev)
7433 			if (rdev->raid_disk >= 0 &&
7434 			    !test_bit(Faulty, &rdev->flags) &&
7435 			    !test_bit(In_sync, &rdev->flags) &&
7436 			    rdev->recovery_offset < j)
7437 				j = rdev->recovery_offset;
7438 		rcu_read_unlock();
7439 	}
7440 
7441 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7442 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7443 		" %d KB/sec/disk.\n", speed_min(mddev));
7444 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7445 	       "(but not more than %d KB/sec) for %s.\n",
7446 	       speed_max(mddev), desc);
7447 
7448 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7449 
7450 	io_sectors = 0;
7451 	for (m = 0; m < SYNC_MARKS; m++) {
7452 		mark[m] = jiffies;
7453 		mark_cnt[m] = io_sectors;
7454 	}
7455 	last_mark = 0;
7456 	mddev->resync_mark = mark[last_mark];
7457 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7458 
7459 	/*
7460 	 * Tune reconstruction:
7461 	 */
7462 	window = 32*(PAGE_SIZE/512);
7463 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7464 		window/2, (unsigned long long)max_sectors/2);
7465 
7466 	atomic_set(&mddev->recovery_active, 0);
7467 	last_check = 0;
7468 
7469 	if (j>2) {
7470 		printk(KERN_INFO
7471 		       "md: resuming %s of %s from checkpoint.\n",
7472 		       desc, mdname(mddev));
7473 		mddev->curr_resync = j;
7474 	} else
7475 		mddev->curr_resync = 3; /* no longer delayed */
7476 	mddev->curr_resync_completed = j;
7477 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7478 	md_new_event(mddev);
7479 	update_time = jiffies;
7480 
7481 	blk_start_plug(&plug);
7482 	while (j < max_sectors) {
7483 		sector_t sectors;
7484 
7485 		skipped = 0;
7486 
7487 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7488 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7489 		      (mddev->curr_resync - mddev->curr_resync_completed)
7490 		      > (max_sectors >> 4)) ||
7491 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7492 		     (j - mddev->curr_resync_completed)*2
7493 		     >= mddev->resync_max - mddev->curr_resync_completed
7494 			    )) {
7495 			/* time to update curr_resync_completed */
7496 			wait_event(mddev->recovery_wait,
7497 				   atomic_read(&mddev->recovery_active) == 0);
7498 			mddev->curr_resync_completed = j;
7499 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7500 			    j > mddev->recovery_cp)
7501 				mddev->recovery_cp = j;
7502 			update_time = jiffies;
7503 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7504 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7505 		}
7506 
7507 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7508 			/* As this condition is controlled by user-space,
7509 			 * we can block indefinitely, so use '_interruptible'
7510 			 * to avoid triggering warnings.
7511 			 */
7512 			flush_signals(current); /* just in case */
7513 			wait_event_interruptible(mddev->recovery_wait,
7514 						 mddev->resync_max > j
7515 						 || kthread_should_stop());
7516 		}
7517 
7518 		if (kthread_should_stop())
7519 			goto interrupted;
7520 
7521 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7522 						  currspeed < speed_min(mddev));
7523 		if (sectors == 0) {
7524 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7525 			goto out;
7526 		}
7527 
7528 		if (!skipped) { /* actual IO requested */
7529 			io_sectors += sectors;
7530 			atomic_add(sectors, &mddev->recovery_active);
7531 		}
7532 
7533 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7534 			break;
7535 
7536 		j += sectors;
7537 		if (j > 2)
7538 			mddev->curr_resync = j;
7539 		mddev->curr_mark_cnt = io_sectors;
7540 		if (last_check == 0)
7541 			/* this is the earliest that rebuild will be
7542 			 * visible in /proc/mdstat
7543 			 */
7544 			md_new_event(mddev);
7545 
7546 		if (last_check + window > io_sectors || j == max_sectors)
7547 			continue;
7548 
7549 		last_check = io_sectors;
7550 	repeat:
7551 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7552 			/* step marks */
7553 			int next = (last_mark+1) % SYNC_MARKS;
7554 
7555 			mddev->resync_mark = mark[next];
7556 			mddev->resync_mark_cnt = mark_cnt[next];
7557 			mark[next] = jiffies;
7558 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7559 			last_mark = next;
7560 		}
7561 
7562 
7563 		if (kthread_should_stop())
7564 			goto interrupted;
7565 
7566 
7567 		/*
7568 		 * this loop exits only if either when we are slower than
7569 		 * the 'hard' speed limit, or the system was IO-idle for
7570 		 * a jiffy.
7571 		 * the system might be non-idle CPU-wise, but we only care
7572 		 * about not overloading the IO subsystem. (things like an
7573 		 * e2fsck being done on the RAID array should execute fast)
7574 		 */
7575 		cond_resched();
7576 
7577 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7578 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7579 
7580 		if (currspeed > speed_min(mddev)) {
7581 			if ((currspeed > speed_max(mddev)) ||
7582 					!is_mddev_idle(mddev, 0)) {
7583 				msleep(500);
7584 				goto repeat;
7585 			}
7586 		}
7587 	}
7588 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7589 	/*
7590 	 * this also signals 'finished resyncing' to md_stop
7591 	 */
7592  out:
7593 	blk_finish_plug(&plug);
7594 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7595 
7596 	/* tell personality that we are finished */
7597 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7598 
7599 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7600 	    mddev->curr_resync > 2) {
7601 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7602 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7603 				if (mddev->curr_resync >= mddev->recovery_cp) {
7604 					printk(KERN_INFO
7605 					       "md: checkpointing %s of %s.\n",
7606 					       desc, mdname(mddev));
7607 					if (test_bit(MD_RECOVERY_ERROR,
7608 						&mddev->recovery))
7609 						mddev->recovery_cp =
7610 							mddev->curr_resync_completed;
7611 					else
7612 						mddev->recovery_cp =
7613 							mddev->curr_resync;
7614 				}
7615 			} else
7616 				mddev->recovery_cp = MaxSector;
7617 		} else {
7618 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7619 				mddev->curr_resync = MaxSector;
7620 			rcu_read_lock();
7621 			rdev_for_each_rcu(rdev, mddev)
7622 				if (rdev->raid_disk >= 0 &&
7623 				    mddev->delta_disks >= 0 &&
7624 				    !test_bit(Faulty, &rdev->flags) &&
7625 				    !test_bit(In_sync, &rdev->flags) &&
7626 				    rdev->recovery_offset < mddev->curr_resync)
7627 					rdev->recovery_offset = mddev->curr_resync;
7628 			rcu_read_unlock();
7629 		}
7630 	}
7631  skip:
7632 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7633 
7634 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7635 		/* We completed so min/max setting can be forgotten if used. */
7636 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7637 			mddev->resync_min = 0;
7638 		mddev->resync_max = MaxSector;
7639 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7640 		mddev->resync_min = mddev->curr_resync_completed;
7641 	mddev->curr_resync = 0;
7642 	wake_up(&resync_wait);
7643 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7644 	md_wakeup_thread(mddev->thread);
7645 	return;
7646 
7647  interrupted:
7648 	/*
7649 	 * got a signal, exit.
7650 	 */
7651 	printk(KERN_INFO
7652 	       "md: md_do_sync() got signal ... exiting\n");
7653 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7654 	goto out;
7655 
7656 }
7657 EXPORT_SYMBOL_GPL(md_do_sync);
7658 
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)7659 static int remove_and_add_spares(struct mddev *mddev,
7660 				 struct md_rdev *this)
7661 {
7662 	struct md_rdev *rdev;
7663 	int spares = 0;
7664 	int removed = 0;
7665 
7666 	rdev_for_each(rdev, mddev)
7667 		if ((this == NULL || rdev == this) &&
7668 		    rdev->raid_disk >= 0 &&
7669 		    !test_bit(Blocked, &rdev->flags) &&
7670 		    (test_bit(Faulty, &rdev->flags) ||
7671 		     ! test_bit(In_sync, &rdev->flags)) &&
7672 		    atomic_read(&rdev->nr_pending)==0) {
7673 			if (mddev->pers->hot_remove_disk(
7674 				    mddev, rdev) == 0) {
7675 				sysfs_unlink_rdev(mddev, rdev);
7676 				rdev->raid_disk = -1;
7677 				removed++;
7678 			}
7679 		}
7680 	if (removed && mddev->kobj.sd)
7681 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7682 
7683 	if (this)
7684 		goto no_add;
7685 
7686 	rdev_for_each(rdev, mddev) {
7687 		if (rdev->raid_disk >= 0 &&
7688 		    !test_bit(In_sync, &rdev->flags) &&
7689 		    !test_bit(Faulty, &rdev->flags))
7690 			spares++;
7691 		if (rdev->raid_disk >= 0)
7692 			continue;
7693 		if (test_bit(Faulty, &rdev->flags))
7694 			continue;
7695 		if (mddev->ro &&
7696 		    rdev->saved_raid_disk < 0)
7697 			continue;
7698 
7699 		rdev->recovery_offset = 0;
7700 		if (rdev->saved_raid_disk >= 0 && mddev->in_sync) {
7701 			spin_lock_irq(&mddev->write_lock);
7702 			if (mddev->in_sync)
7703 				/* OK, this device, which is in_sync,
7704 				 * will definitely be noticed before
7705 				 * the next write, so recovery isn't
7706 				 * needed.
7707 				 */
7708 				rdev->recovery_offset = mddev->recovery_cp;
7709 			spin_unlock_irq(&mddev->write_lock);
7710 		}
7711 		if (mddev->ro && rdev->recovery_offset != MaxSector)
7712 			/* not safe to add this disk now */
7713 			continue;
7714 		if (mddev->pers->
7715 		    hot_add_disk(mddev, rdev) == 0) {
7716 			if (sysfs_link_rdev(mddev, rdev))
7717 				/* failure here is OK */;
7718 			spares++;
7719 			md_new_event(mddev);
7720 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7721 		}
7722 	}
7723 no_add:
7724 	if (removed)
7725 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7726 	return spares;
7727 }
7728 
7729 /*
7730  * This routine is regularly called by all per-raid-array threads to
7731  * deal with generic issues like resync and super-block update.
7732  * Raid personalities that don't have a thread (linear/raid0) do not
7733  * need this as they never do any recovery or update the superblock.
7734  *
7735  * It does not do any resync itself, but rather "forks" off other threads
7736  * to do that as needed.
7737  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7738  * "->recovery" and create a thread at ->sync_thread.
7739  * When the thread finishes it sets MD_RECOVERY_DONE
7740  * and wakeups up this thread which will reap the thread and finish up.
7741  * This thread also removes any faulty devices (with nr_pending == 0).
7742  *
7743  * The overall approach is:
7744  *  1/ if the superblock needs updating, update it.
7745  *  2/ If a recovery thread is running, don't do anything else.
7746  *  3/ If recovery has finished, clean up, possibly marking spares active.
7747  *  4/ If there are any faulty devices, remove them.
7748  *  5/ If array is degraded, try to add spares devices
7749  *  6/ If array has spares or is not in-sync, start a resync thread.
7750  */
md_check_recovery(struct mddev * mddev)7751 void md_check_recovery(struct mddev *mddev)
7752 {
7753 	if (mddev->suspended)
7754 		return;
7755 
7756 	if (mddev->bitmap)
7757 		bitmap_daemon_work(mddev);
7758 
7759 	if (signal_pending(current)) {
7760 		if (mddev->pers->sync_request && !mddev->external) {
7761 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7762 			       mdname(mddev));
7763 			mddev->safemode = 2;
7764 		}
7765 		flush_signals(current);
7766 	}
7767 
7768 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7769 		return;
7770 	if ( ! (
7771 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7772 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7773 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7774 		(mddev->external == 0 && mddev->safemode == 1) ||
7775 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7776 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7777 		))
7778 		return;
7779 
7780 	if (mddev_trylock(mddev)) {
7781 		int spares = 0;
7782 
7783 		if (mddev->ro) {
7784 			/* On a read-only array we can:
7785 			 * - remove failed devices
7786 			 * - add already-in_sync devices if the array itself
7787 			 *   is in-sync.
7788 			 * As we only add devices that are already in-sync,
7789 			 * we can activate the spares immediately.
7790 			 */
7791 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7792 			remove_and_add_spares(mddev, NULL);
7793 			mddev->pers->spare_active(mddev);
7794 			goto unlock;
7795 		}
7796 
7797 		if (!mddev->external) {
7798 			int did_change = 0;
7799 			spin_lock_irq(&mddev->write_lock);
7800 			if (mddev->safemode &&
7801 			    !atomic_read(&mddev->writes_pending) &&
7802 			    !mddev->in_sync &&
7803 			    mddev->recovery_cp == MaxSector) {
7804 				mddev->in_sync = 1;
7805 				did_change = 1;
7806 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7807 			}
7808 			if (mddev->safemode == 1)
7809 				mddev->safemode = 0;
7810 			spin_unlock_irq(&mddev->write_lock);
7811 			if (did_change)
7812 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7813 		}
7814 
7815 		if (mddev->flags)
7816 			md_update_sb(mddev, 0);
7817 
7818 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7819 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7820 			/* resync/recovery still happening */
7821 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7822 			goto unlock;
7823 		}
7824 		if (mddev->sync_thread) {
7825 			md_reap_sync_thread(mddev);
7826 			goto unlock;
7827 		}
7828 		/* Set RUNNING before clearing NEEDED to avoid
7829 		 * any transients in the value of "sync_action".
7830 		 */
7831 		mddev->curr_resync_completed = 0;
7832 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7833 		/* Clear some bits that don't mean anything, but
7834 		 * might be left set
7835 		 */
7836 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7837 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7838 
7839 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7840 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7841 			goto unlock;
7842 		/* no recovery is running.
7843 		 * remove any failed drives, then
7844 		 * add spares if possible.
7845 		 * Spares are also removed and re-added, to allow
7846 		 * the personality to fail the re-add.
7847 		 */
7848 
7849 		if (mddev->reshape_position != MaxSector) {
7850 			if (mddev->pers->check_reshape == NULL ||
7851 			    mddev->pers->check_reshape(mddev) != 0)
7852 				/* Cannot proceed */
7853 				goto unlock;
7854 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7855 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7856 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7857 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7858 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7859 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7860 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7861 		} else if (mddev->recovery_cp < MaxSector) {
7862 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7863 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7864 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7865 			/* nothing to be done ... */
7866 			goto unlock;
7867 
7868 		if (mddev->pers->sync_request) {
7869 			if (spares) {
7870 				/* We are adding a device or devices to an array
7871 				 * which has the bitmap stored on all devices.
7872 				 * So make sure all bitmap pages get written
7873 				 */
7874 				bitmap_write_all(mddev->bitmap);
7875 			}
7876 			mddev->sync_thread = md_register_thread(md_do_sync,
7877 								mddev,
7878 								"resync");
7879 			if (!mddev->sync_thread) {
7880 				printk(KERN_ERR "%s: could not start resync"
7881 					" thread...\n",
7882 					mdname(mddev));
7883 				/* leave the spares where they are, it shouldn't hurt */
7884 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7885 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7886 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7887 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7888 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7889 			} else
7890 				md_wakeup_thread(mddev->sync_thread);
7891 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7892 			md_new_event(mddev);
7893 		}
7894 	unlock:
7895 		if (!mddev->sync_thread) {
7896 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7897 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7898 					       &mddev->recovery))
7899 				if (mddev->sysfs_action)
7900 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7901 		}
7902 		mddev_unlock(mddev);
7903 	}
7904 }
7905 
md_reap_sync_thread(struct mddev * mddev)7906 void md_reap_sync_thread(struct mddev *mddev)
7907 {
7908 	struct md_rdev *rdev;
7909 
7910 	/* resync has finished, collect result */
7911 	md_unregister_thread(&mddev->sync_thread);
7912 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7913 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7914 		/* success...*/
7915 		/* activate any spares */
7916 		if (mddev->pers->spare_active(mddev)) {
7917 			sysfs_notify(&mddev->kobj, NULL,
7918 				     "degraded");
7919 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7920 		}
7921 	}
7922 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7923 	    mddev->pers->finish_reshape)
7924 		mddev->pers->finish_reshape(mddev);
7925 
7926 	/* If array is no-longer degraded, then any saved_raid_disk
7927 	 * information must be scrapped.  Also if any device is now
7928 	 * In_sync we must scrape the saved_raid_disk for that device
7929 	 * do the superblock for an incrementally recovered device
7930 	 * written out.
7931 	 */
7932 	rdev_for_each(rdev, mddev)
7933 		if (!mddev->degraded ||
7934 		    test_bit(In_sync, &rdev->flags))
7935 			rdev->saved_raid_disk = -1;
7936 
7937 	md_update_sb(mddev, 1);
7938 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7939 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7940 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7941 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7942 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7943 	/* flag recovery needed just to double check */
7944 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7945 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7946 	md_new_event(mddev);
7947 	if (mddev->event_work.func)
7948 		queue_work(md_misc_wq, &mddev->event_work);
7949 }
7950 
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)7951 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7952 {
7953 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7954 	wait_event_timeout(rdev->blocked_wait,
7955 			   !test_bit(Blocked, &rdev->flags) &&
7956 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7957 			   msecs_to_jiffies(5000));
7958 	rdev_dec_pending(rdev, mddev);
7959 }
7960 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7961 
md_finish_reshape(struct mddev * mddev)7962 void md_finish_reshape(struct mddev *mddev)
7963 {
7964 	/* called be personality module when reshape completes. */
7965 	struct md_rdev *rdev;
7966 
7967 	rdev_for_each(rdev, mddev) {
7968 		if (rdev->data_offset > rdev->new_data_offset)
7969 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7970 		else
7971 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7972 		rdev->data_offset = rdev->new_data_offset;
7973 	}
7974 }
7975 EXPORT_SYMBOL(md_finish_reshape);
7976 
7977 /* Bad block management.
7978  * We can record which blocks on each device are 'bad' and so just
7979  * fail those blocks, or that stripe, rather than the whole device.
7980  * Entries in the bad-block table are 64bits wide.  This comprises:
7981  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7982  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7983  *  A 'shift' can be set so that larger blocks are tracked and
7984  *  consequently larger devices can be covered.
7985  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7986  *
7987  * Locking of the bad-block table uses a seqlock so md_is_badblock
7988  * might need to retry if it is very unlucky.
7989  * We will sometimes want to check for bad blocks in a bi_end_io function,
7990  * so we use the write_seqlock_irq variant.
7991  *
7992  * When looking for a bad block we specify a range and want to
7993  * know if any block in the range is bad.  So we binary-search
7994  * to the last range that starts at-or-before the given endpoint,
7995  * (or "before the sector after the target range")
7996  * then see if it ends after the given start.
7997  * We return
7998  *  0 if there are no known bad blocks in the range
7999  *  1 if there are known bad block which are all acknowledged
8000  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8001  * plus the start/length of the first bad section we overlap.
8002  */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)8003 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8004 		   sector_t *first_bad, int *bad_sectors)
8005 {
8006 	int hi;
8007 	int lo;
8008 	u64 *p = bb->page;
8009 	int rv;
8010 	sector_t target = s + sectors;
8011 	unsigned seq;
8012 
8013 	if (bb->shift > 0) {
8014 		/* round the start down, and the end up */
8015 		s >>= bb->shift;
8016 		target += (1<<bb->shift) - 1;
8017 		target >>= bb->shift;
8018 		sectors = target - s;
8019 	}
8020 	/* 'target' is now the first block after the bad range */
8021 
8022 retry:
8023 	seq = read_seqbegin(&bb->lock);
8024 	lo = 0;
8025 	rv = 0;
8026 	hi = bb->count;
8027 
8028 	/* Binary search between lo and hi for 'target'
8029 	 * i.e. for the last range that starts before 'target'
8030 	 */
8031 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8032 	 * are known not to be the last range before target.
8033 	 * VARIANT: hi-lo is the number of possible
8034 	 * ranges, and decreases until it reaches 1
8035 	 */
8036 	while (hi - lo > 1) {
8037 		int mid = (lo + hi) / 2;
8038 		sector_t a = BB_OFFSET(p[mid]);
8039 		if (a < target)
8040 			/* This could still be the one, earlier ranges
8041 			 * could not. */
8042 			lo = mid;
8043 		else
8044 			/* This and later ranges are definitely out. */
8045 			hi = mid;
8046 	}
8047 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8048 	if (hi > lo) {
8049 		/* need to check all range that end after 's' to see if
8050 		 * any are unacknowledged.
8051 		 */
8052 		while (lo >= 0 &&
8053 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8054 			if (BB_OFFSET(p[lo]) < target) {
8055 				/* starts before the end, and finishes after
8056 				 * the start, so they must overlap
8057 				 */
8058 				if (rv != -1 && BB_ACK(p[lo]))
8059 					rv = 1;
8060 				else
8061 					rv = -1;
8062 				*first_bad = BB_OFFSET(p[lo]);
8063 				*bad_sectors = BB_LEN(p[lo]);
8064 			}
8065 			lo--;
8066 		}
8067 	}
8068 
8069 	if (read_seqretry(&bb->lock, seq))
8070 		goto retry;
8071 
8072 	return rv;
8073 }
8074 EXPORT_SYMBOL_GPL(md_is_badblock);
8075 
8076 /*
8077  * Add a range of bad blocks to the table.
8078  * This might extend the table, or might contract it
8079  * if two adjacent ranges can be merged.
8080  * We binary-search to find the 'insertion' point, then
8081  * decide how best to handle it.
8082  */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)8083 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8084 			    int acknowledged)
8085 {
8086 	u64 *p;
8087 	int lo, hi;
8088 	int rv = 1;
8089 
8090 	if (bb->shift < 0)
8091 		/* badblocks are disabled */
8092 		return 0;
8093 
8094 	if (bb->shift) {
8095 		/* round the start down, and the end up */
8096 		sector_t next = s + sectors;
8097 		s >>= bb->shift;
8098 		next += (1<<bb->shift) - 1;
8099 		next >>= bb->shift;
8100 		sectors = next - s;
8101 	}
8102 
8103 	write_seqlock_irq(&bb->lock);
8104 
8105 	p = bb->page;
8106 	lo = 0;
8107 	hi = bb->count;
8108 	/* Find the last range that starts at-or-before 's' */
8109 	while (hi - lo > 1) {
8110 		int mid = (lo + hi) / 2;
8111 		sector_t a = BB_OFFSET(p[mid]);
8112 		if (a <= s)
8113 			lo = mid;
8114 		else
8115 			hi = mid;
8116 	}
8117 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8118 		hi = lo;
8119 
8120 	if (hi > lo) {
8121 		/* we found a range that might merge with the start
8122 		 * of our new range
8123 		 */
8124 		sector_t a = BB_OFFSET(p[lo]);
8125 		sector_t e = a + BB_LEN(p[lo]);
8126 		int ack = BB_ACK(p[lo]);
8127 		if (e >= s) {
8128 			/* Yes, we can merge with a previous range */
8129 			if (s == a && s + sectors >= e)
8130 				/* new range covers old */
8131 				ack = acknowledged;
8132 			else
8133 				ack = ack && acknowledged;
8134 
8135 			if (e < s + sectors)
8136 				e = s + sectors;
8137 			if (e - a <= BB_MAX_LEN) {
8138 				p[lo] = BB_MAKE(a, e-a, ack);
8139 				s = e;
8140 			} else {
8141 				/* does not all fit in one range,
8142 				 * make p[lo] maximal
8143 				 */
8144 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8145 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8146 				s = a + BB_MAX_LEN;
8147 			}
8148 			sectors = e - s;
8149 		}
8150 	}
8151 	if (sectors && hi < bb->count) {
8152 		/* 'hi' points to the first range that starts after 's'.
8153 		 * Maybe we can merge with the start of that range */
8154 		sector_t a = BB_OFFSET(p[hi]);
8155 		sector_t e = a + BB_LEN(p[hi]);
8156 		int ack = BB_ACK(p[hi]);
8157 		if (a <= s + sectors) {
8158 			/* merging is possible */
8159 			if (e <= s + sectors) {
8160 				/* full overlap */
8161 				e = s + sectors;
8162 				ack = acknowledged;
8163 			} else
8164 				ack = ack && acknowledged;
8165 
8166 			a = s;
8167 			if (e - a <= BB_MAX_LEN) {
8168 				p[hi] = BB_MAKE(a, e-a, ack);
8169 				s = e;
8170 			} else {
8171 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8172 				s = a + BB_MAX_LEN;
8173 			}
8174 			sectors = e - s;
8175 			lo = hi;
8176 			hi++;
8177 		}
8178 	}
8179 	if (sectors == 0 && hi < bb->count) {
8180 		/* we might be able to combine lo and hi */
8181 		/* Note: 's' is at the end of 'lo' */
8182 		sector_t a = BB_OFFSET(p[hi]);
8183 		int lolen = BB_LEN(p[lo]);
8184 		int hilen = BB_LEN(p[hi]);
8185 		int newlen = lolen + hilen - (s - a);
8186 		if (s >= a && newlen < BB_MAX_LEN) {
8187 			/* yes, we can combine them */
8188 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8189 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8190 			memmove(p + hi, p + hi + 1,
8191 				(bb->count - hi - 1) * 8);
8192 			bb->count--;
8193 		}
8194 	}
8195 	while (sectors) {
8196 		/* didn't merge (it all).
8197 		 * Need to add a range just before 'hi' */
8198 		if (bb->count >= MD_MAX_BADBLOCKS) {
8199 			/* No room for more */
8200 			rv = 0;
8201 			break;
8202 		} else {
8203 			int this_sectors = sectors;
8204 			memmove(p + hi + 1, p + hi,
8205 				(bb->count - hi) * 8);
8206 			bb->count++;
8207 
8208 			if (this_sectors > BB_MAX_LEN)
8209 				this_sectors = BB_MAX_LEN;
8210 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8211 			sectors -= this_sectors;
8212 			s += this_sectors;
8213 		}
8214 	}
8215 
8216 	bb->changed = 1;
8217 	if (!acknowledged)
8218 		bb->unacked_exist = 1;
8219 	write_sequnlock_irq(&bb->lock);
8220 
8221 	return rv;
8222 }
8223 
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8224 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8225 		       int is_new)
8226 {
8227 	int rv;
8228 	if (is_new)
8229 		s += rdev->new_data_offset;
8230 	else
8231 		s += rdev->data_offset;
8232 	rv = md_set_badblocks(&rdev->badblocks,
8233 			      s, sectors, 0);
8234 	if (rv) {
8235 		/* Make sure they get written out promptly */
8236 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8237 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8238 		md_wakeup_thread(rdev->mddev->thread);
8239 	}
8240 	return rv;
8241 }
8242 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8243 
8244 /*
8245  * Remove a range of bad blocks from the table.
8246  * This may involve extending the table if we spilt a region,
8247  * but it must not fail.  So if the table becomes full, we just
8248  * drop the remove request.
8249  */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8250 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8251 {
8252 	u64 *p;
8253 	int lo, hi;
8254 	sector_t target = s + sectors;
8255 	int rv = 0;
8256 
8257 	if (bb->shift > 0) {
8258 		/* When clearing we round the start up and the end down.
8259 		 * This should not matter as the shift should align with
8260 		 * the block size and no rounding should ever be needed.
8261 		 * However it is better the think a block is bad when it
8262 		 * isn't than to think a block is not bad when it is.
8263 		 */
8264 		s += (1<<bb->shift) - 1;
8265 		s >>= bb->shift;
8266 		target >>= bb->shift;
8267 		sectors = target - s;
8268 	}
8269 
8270 	write_seqlock_irq(&bb->lock);
8271 
8272 	p = bb->page;
8273 	lo = 0;
8274 	hi = bb->count;
8275 	/* Find the last range that starts before 'target' */
8276 	while (hi - lo > 1) {
8277 		int mid = (lo + hi) / 2;
8278 		sector_t a = BB_OFFSET(p[mid]);
8279 		if (a < target)
8280 			lo = mid;
8281 		else
8282 			hi = mid;
8283 	}
8284 	if (hi > lo) {
8285 		/* p[lo] is the last range that could overlap the
8286 		 * current range.  Earlier ranges could also overlap,
8287 		 * but only this one can overlap the end of the range.
8288 		 */
8289 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8290 			/* Partial overlap, leave the tail of this range */
8291 			int ack = BB_ACK(p[lo]);
8292 			sector_t a = BB_OFFSET(p[lo]);
8293 			sector_t end = a + BB_LEN(p[lo]);
8294 
8295 			if (a < s) {
8296 				/* we need to split this range */
8297 				if (bb->count >= MD_MAX_BADBLOCKS) {
8298 					rv = 0;
8299 					goto out;
8300 				}
8301 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8302 				bb->count++;
8303 				p[lo] = BB_MAKE(a, s-a, ack);
8304 				lo++;
8305 			}
8306 			p[lo] = BB_MAKE(target, end - target, ack);
8307 			/* there is no longer an overlap */
8308 			hi = lo;
8309 			lo--;
8310 		}
8311 		while (lo >= 0 &&
8312 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8313 			/* This range does overlap */
8314 			if (BB_OFFSET(p[lo]) < s) {
8315 				/* Keep the early parts of this range. */
8316 				int ack = BB_ACK(p[lo]);
8317 				sector_t start = BB_OFFSET(p[lo]);
8318 				p[lo] = BB_MAKE(start, s - start, ack);
8319 				/* now low doesn't overlap, so.. */
8320 				break;
8321 			}
8322 			lo--;
8323 		}
8324 		/* 'lo' is strictly before, 'hi' is strictly after,
8325 		 * anything between needs to be discarded
8326 		 */
8327 		if (hi - lo > 1) {
8328 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8329 			bb->count -= (hi - lo - 1);
8330 		}
8331 	}
8332 
8333 	bb->changed = 1;
8334 out:
8335 	write_sequnlock_irq(&bb->lock);
8336 	return rv;
8337 }
8338 
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8339 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8340 			 int is_new)
8341 {
8342 	if (is_new)
8343 		s += rdev->new_data_offset;
8344 	else
8345 		s += rdev->data_offset;
8346 	return md_clear_badblocks(&rdev->badblocks,
8347 				  s, sectors);
8348 }
8349 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8350 
8351 /*
8352  * Acknowledge all bad blocks in a list.
8353  * This only succeeds if ->changed is clear.  It is used by
8354  * in-kernel metadata updates
8355  */
md_ack_all_badblocks(struct badblocks * bb)8356 void md_ack_all_badblocks(struct badblocks *bb)
8357 {
8358 	if (bb->page == NULL || bb->changed)
8359 		/* no point even trying */
8360 		return;
8361 	write_seqlock_irq(&bb->lock);
8362 
8363 	if (bb->changed == 0 && bb->unacked_exist) {
8364 		u64 *p = bb->page;
8365 		int i;
8366 		for (i = 0; i < bb->count ; i++) {
8367 			if (!BB_ACK(p[i])) {
8368 				sector_t start = BB_OFFSET(p[i]);
8369 				int len = BB_LEN(p[i]);
8370 				p[i] = BB_MAKE(start, len, 1);
8371 			}
8372 		}
8373 		bb->unacked_exist = 0;
8374 	}
8375 	write_sequnlock_irq(&bb->lock);
8376 }
8377 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8378 
8379 /* sysfs access to bad-blocks list.
8380  * We present two files.
8381  * 'bad-blocks' lists sector numbers and lengths of ranges that
8382  *    are recorded as bad.  The list is truncated to fit within
8383  *    the one-page limit of sysfs.
8384  *    Writing "sector length" to this file adds an acknowledged
8385  *    bad block list.
8386  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8387  *    been acknowledged.  Writing to this file adds bad blocks
8388  *    without acknowledging them.  This is largely for testing.
8389  */
8390 
8391 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8392 badblocks_show(struct badblocks *bb, char *page, int unack)
8393 {
8394 	size_t len;
8395 	int i;
8396 	u64 *p = bb->page;
8397 	unsigned seq;
8398 
8399 	if (bb->shift < 0)
8400 		return 0;
8401 
8402 retry:
8403 	seq = read_seqbegin(&bb->lock);
8404 
8405 	len = 0;
8406 	i = 0;
8407 
8408 	while (len < PAGE_SIZE && i < bb->count) {
8409 		sector_t s = BB_OFFSET(p[i]);
8410 		unsigned int length = BB_LEN(p[i]);
8411 		int ack = BB_ACK(p[i]);
8412 		i++;
8413 
8414 		if (unack && ack)
8415 			continue;
8416 
8417 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8418 				(unsigned long long)s << bb->shift,
8419 				length << bb->shift);
8420 	}
8421 	if (unack && len == 0)
8422 		bb->unacked_exist = 0;
8423 
8424 	if (read_seqretry(&bb->lock, seq))
8425 		goto retry;
8426 
8427 	return len;
8428 }
8429 
8430 #define DO_DEBUG 1
8431 
8432 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8433 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8434 {
8435 	unsigned long long sector;
8436 	int length;
8437 	char newline;
8438 #ifdef DO_DEBUG
8439 	/* Allow clearing via sysfs *only* for testing/debugging.
8440 	 * Normally only a successful write may clear a badblock
8441 	 */
8442 	int clear = 0;
8443 	if (page[0] == '-') {
8444 		clear = 1;
8445 		page++;
8446 	}
8447 #endif /* DO_DEBUG */
8448 
8449 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8450 	case 3:
8451 		if (newline != '\n')
8452 			return -EINVAL;
8453 	case 2:
8454 		if (length <= 0)
8455 			return -EINVAL;
8456 		break;
8457 	default:
8458 		return -EINVAL;
8459 	}
8460 
8461 #ifdef DO_DEBUG
8462 	if (clear) {
8463 		md_clear_badblocks(bb, sector, length);
8464 		return len;
8465 	}
8466 #endif /* DO_DEBUG */
8467 	if (md_set_badblocks(bb, sector, length, !unack))
8468 		return len;
8469 	else
8470 		return -ENOSPC;
8471 }
8472 
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)8473 static int md_notify_reboot(struct notifier_block *this,
8474 			    unsigned long code, void *x)
8475 {
8476 	struct list_head *tmp;
8477 	struct mddev *mddev;
8478 	int need_delay = 0;
8479 
8480 	for_each_mddev(mddev, tmp) {
8481 		if (mddev_trylock(mddev)) {
8482 			if (mddev->pers)
8483 				__md_stop_writes(mddev);
8484 			mddev->safemode = 2;
8485 			mddev_unlock(mddev);
8486 		}
8487 		need_delay = 1;
8488 	}
8489 	/*
8490 	 * certain more exotic SCSI devices are known to be
8491 	 * volatile wrt too early system reboots. While the
8492 	 * right place to handle this issue is the given
8493 	 * driver, we do want to have a safe RAID driver ...
8494 	 */
8495 	if (need_delay)
8496 		mdelay(1000*1);
8497 
8498 	return NOTIFY_DONE;
8499 }
8500 
8501 static struct notifier_block md_notifier = {
8502 	.notifier_call	= md_notify_reboot,
8503 	.next		= NULL,
8504 	.priority	= INT_MAX, /* before any real devices */
8505 };
8506 
md_geninit(void)8507 static void md_geninit(void)
8508 {
8509 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8510 
8511 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8512 }
8513 
md_init(void)8514 static int __init md_init(void)
8515 {
8516 	int ret = -ENOMEM;
8517 
8518 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8519 	if (!md_wq)
8520 		goto err_wq;
8521 
8522 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8523 	if (!md_misc_wq)
8524 		goto err_misc_wq;
8525 
8526 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8527 		goto err_md;
8528 
8529 	if ((ret = register_blkdev(0, "mdp")) < 0)
8530 		goto err_mdp;
8531 	mdp_major = ret;
8532 
8533 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8534 			    md_probe, NULL, NULL);
8535 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8536 			    md_probe, NULL, NULL);
8537 
8538 	register_reboot_notifier(&md_notifier);
8539 	raid_table_header = register_sysctl_table(raid_root_table);
8540 
8541 	md_geninit();
8542 	return 0;
8543 
8544 err_mdp:
8545 	unregister_blkdev(MD_MAJOR, "md");
8546 err_md:
8547 	destroy_workqueue(md_misc_wq);
8548 err_misc_wq:
8549 	destroy_workqueue(md_wq);
8550 err_wq:
8551 	return ret;
8552 }
8553 
8554 #ifndef MODULE
8555 
8556 /*
8557  * Searches all registered partitions for autorun RAID arrays
8558  * at boot time.
8559  */
8560 
8561 static LIST_HEAD(all_detected_devices);
8562 struct detected_devices_node {
8563 	struct list_head list;
8564 	dev_t dev;
8565 };
8566 
md_autodetect_dev(dev_t dev)8567 void md_autodetect_dev(dev_t dev)
8568 {
8569 	struct detected_devices_node *node_detected_dev;
8570 
8571 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8572 	if (node_detected_dev) {
8573 		node_detected_dev->dev = dev;
8574 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8575 	} else {
8576 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8577 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8578 	}
8579 }
8580 
8581 
autostart_arrays(int part)8582 static void autostart_arrays(int part)
8583 {
8584 	struct md_rdev *rdev;
8585 	struct detected_devices_node *node_detected_dev;
8586 	dev_t dev;
8587 	int i_scanned, i_passed;
8588 
8589 	i_scanned = 0;
8590 	i_passed = 0;
8591 
8592 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8593 
8594 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8595 		i_scanned++;
8596 		node_detected_dev = list_entry(all_detected_devices.next,
8597 					struct detected_devices_node, list);
8598 		list_del(&node_detected_dev->list);
8599 		dev = node_detected_dev->dev;
8600 		kfree(node_detected_dev);
8601 		rdev = md_import_device(dev,0, 90);
8602 		if (IS_ERR(rdev))
8603 			continue;
8604 
8605 		if (test_bit(Faulty, &rdev->flags)) {
8606 			MD_BUG();
8607 			continue;
8608 		}
8609 		set_bit(AutoDetected, &rdev->flags);
8610 		list_add(&rdev->same_set, &pending_raid_disks);
8611 		i_passed++;
8612 	}
8613 
8614 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8615 						i_scanned, i_passed);
8616 
8617 	autorun_devices(part);
8618 }
8619 
8620 #endif /* !MODULE */
8621 
md_exit(void)8622 static __exit void md_exit(void)
8623 {
8624 	struct mddev *mddev;
8625 	struct list_head *tmp;
8626 
8627 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8628 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8629 
8630 	unregister_blkdev(MD_MAJOR,"md");
8631 	unregister_blkdev(mdp_major, "mdp");
8632 	unregister_reboot_notifier(&md_notifier);
8633 	unregister_sysctl_table(raid_table_header);
8634 	remove_proc_entry("mdstat", NULL);
8635 	for_each_mddev(mddev, tmp) {
8636 		export_array(mddev);
8637 		mddev->hold_active = 0;
8638 	}
8639 	destroy_workqueue(md_misc_wq);
8640 	destroy_workqueue(md_wq);
8641 }
8642 
8643 subsys_initcall(md_init);
module_exit(md_exit)8644 module_exit(md_exit)
8645 
8646 static int get_ro(char *buffer, struct kernel_param *kp)
8647 {
8648 	return sprintf(buffer, "%d", start_readonly);
8649 }
set_ro(const char * val,struct kernel_param * kp)8650 static int set_ro(const char *val, struct kernel_param *kp)
8651 {
8652 	char *e;
8653 	int num = simple_strtoul(val, &e, 10);
8654 	if (*val && (*e == '\0' || *e == '\n')) {
8655 		start_readonly = num;
8656 		return 0;
8657 	}
8658 	return -EINVAL;
8659 }
8660 
8661 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8662 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8663 
8664 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8665 
8666 EXPORT_SYMBOL(register_md_personality);
8667 EXPORT_SYMBOL(unregister_md_personality);
8668 EXPORT_SYMBOL(md_error);
8669 EXPORT_SYMBOL(md_done_sync);
8670 EXPORT_SYMBOL(md_write_start);
8671 EXPORT_SYMBOL(md_write_end);
8672 EXPORT_SYMBOL(md_register_thread);
8673 EXPORT_SYMBOL(md_unregister_thread);
8674 EXPORT_SYMBOL(md_wakeup_thread);
8675 EXPORT_SYMBOL(md_check_recovery);
8676 EXPORT_SYMBOL(md_reap_sync_thread);
8677 MODULE_LICENSE("GPL");
8678 MODULE_DESCRIPTION("MD RAID framework");
8679 MODULE_ALIAS("md");
8680 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8681