• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "iw.h"
41 
42 static struct kmem_cache *rds_iw_incoming_slab;
43 static struct kmem_cache *rds_iw_frag_slab;
44 static atomic_t	rds_iw_allocation = ATOMIC_INIT(0);
45 
rds_iw_frag_drop_page(struct rds_page_frag * frag)46 static void rds_iw_frag_drop_page(struct rds_page_frag *frag)
47 {
48 	rdsdebug("frag %p page %p\n", frag, frag->f_page);
49 	__free_page(frag->f_page);
50 	frag->f_page = NULL;
51 }
52 
rds_iw_frag_free(struct rds_page_frag * frag)53 static void rds_iw_frag_free(struct rds_page_frag *frag)
54 {
55 	rdsdebug("frag %p page %p\n", frag, frag->f_page);
56 	BUG_ON(frag->f_page);
57 	kmem_cache_free(rds_iw_frag_slab, frag);
58 }
59 
60 /*
61  * We map a page at a time.  Its fragments are posted in order.  This
62  * is called in fragment order as the fragments get send completion events.
63  * Only the last frag in the page performs the unmapping.
64  *
65  * It's OK for ring cleanup to call this in whatever order it likes because
66  * DMA is not in flight and so we can unmap while other ring entries still
67  * hold page references in their frags.
68  */
rds_iw_recv_unmap_page(struct rds_iw_connection * ic,struct rds_iw_recv_work * recv)69 static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic,
70 				   struct rds_iw_recv_work *recv)
71 {
72 	struct rds_page_frag *frag = recv->r_frag;
73 
74 	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75 	if (frag->f_mapped)
76 		ib_dma_unmap_page(ic->i_cm_id->device,
77 			       frag->f_mapped,
78 			       RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79 	frag->f_mapped = 0;
80 }
81 
rds_iw_recv_init_ring(struct rds_iw_connection * ic)82 void rds_iw_recv_init_ring(struct rds_iw_connection *ic)
83 {
84 	struct rds_iw_recv_work *recv;
85 	u32 i;
86 
87 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88 		struct ib_sge *sge;
89 
90 		recv->r_iwinc = NULL;
91 		recv->r_frag = NULL;
92 
93 		recv->r_wr.next = NULL;
94 		recv->r_wr.wr_id = i;
95 		recv->r_wr.sg_list = recv->r_sge;
96 		recv->r_wr.num_sge = RDS_IW_RECV_SGE;
97 
98 		sge = rds_iw_data_sge(ic, recv->r_sge);
99 		sge->addr = 0;
100 		sge->length = RDS_FRAG_SIZE;
101 		sge->lkey = 0;
102 
103 		sge = rds_iw_header_sge(ic, recv->r_sge);
104 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105 		sge->length = sizeof(struct rds_header);
106 		sge->lkey = 0;
107 	}
108 }
109 
rds_iw_recv_clear_one(struct rds_iw_connection * ic,struct rds_iw_recv_work * recv)110 static void rds_iw_recv_clear_one(struct rds_iw_connection *ic,
111 				  struct rds_iw_recv_work *recv)
112 {
113 	if (recv->r_iwinc) {
114 		rds_inc_put(&recv->r_iwinc->ii_inc);
115 		recv->r_iwinc = NULL;
116 	}
117 	if (recv->r_frag) {
118 		rds_iw_recv_unmap_page(ic, recv);
119 		if (recv->r_frag->f_page)
120 			rds_iw_frag_drop_page(recv->r_frag);
121 		rds_iw_frag_free(recv->r_frag);
122 		recv->r_frag = NULL;
123 	}
124 }
125 
rds_iw_recv_clear_ring(struct rds_iw_connection * ic)126 void rds_iw_recv_clear_ring(struct rds_iw_connection *ic)
127 {
128 	u32 i;
129 
130 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131 		rds_iw_recv_clear_one(ic, &ic->i_recvs[i]);
132 
133 	if (ic->i_frag.f_page)
134 		rds_iw_frag_drop_page(&ic->i_frag);
135 }
136 
rds_iw_recv_refill_one(struct rds_connection * conn,struct rds_iw_recv_work * recv,gfp_t kptr_gfp,gfp_t page_gfp)137 static int rds_iw_recv_refill_one(struct rds_connection *conn,
138 				  struct rds_iw_recv_work *recv,
139 				  gfp_t kptr_gfp, gfp_t page_gfp)
140 {
141 	struct rds_iw_connection *ic = conn->c_transport_data;
142 	dma_addr_t dma_addr;
143 	struct ib_sge *sge;
144 	int ret = -ENOMEM;
145 
146 	if (!recv->r_iwinc) {
147 		if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) {
148 			rds_iw_stats_inc(s_iw_rx_alloc_limit);
149 			goto out;
150 		}
151 		recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab,
152 						 kptr_gfp);
153 		if (!recv->r_iwinc) {
154 			atomic_dec(&rds_iw_allocation);
155 			goto out;
156 		}
157 		INIT_LIST_HEAD(&recv->r_iwinc->ii_frags);
158 		rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr);
159 	}
160 
161 	if (!recv->r_frag) {
162 		recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp);
163 		if (!recv->r_frag)
164 			goto out;
165 		INIT_LIST_HEAD(&recv->r_frag->f_item);
166 		recv->r_frag->f_page = NULL;
167 	}
168 
169 	if (!ic->i_frag.f_page) {
170 		ic->i_frag.f_page = alloc_page(page_gfp);
171 		if (!ic->i_frag.f_page)
172 			goto out;
173 		ic->i_frag.f_offset = 0;
174 	}
175 
176 	dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177 				  ic->i_frag.f_page,
178 				  ic->i_frag.f_offset,
179 				  RDS_FRAG_SIZE,
180 				  DMA_FROM_DEVICE);
181 	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182 		goto out;
183 
184 	/*
185 	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
186 	 * must be called on this recv.  This happens as completions hit
187 	 * in order or on connection shutdown.
188 	 */
189 	recv->r_frag->f_page = ic->i_frag.f_page;
190 	recv->r_frag->f_offset = ic->i_frag.f_offset;
191 	recv->r_frag->f_mapped = dma_addr;
192 
193 	sge = rds_iw_data_sge(ic, recv->r_sge);
194 	sge->addr = dma_addr;
195 	sge->length = RDS_FRAG_SIZE;
196 
197 	sge = rds_iw_header_sge(ic, recv->r_sge);
198 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199 	sge->length = sizeof(struct rds_header);
200 
201 	get_page(recv->r_frag->f_page);
202 
203 	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204 		ic->i_frag.f_offset += RDS_FRAG_SIZE;
205 	} else {
206 		put_page(ic->i_frag.f_page);
207 		ic->i_frag.f_page = NULL;
208 		ic->i_frag.f_offset = 0;
209 	}
210 
211 	ret = 0;
212 out:
213 	return ret;
214 }
215 
216 /*
217  * This tries to allocate and post unused work requests after making sure that
218  * they have all the allocations they need to queue received fragments into
219  * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
220  * pairs don't go unmatched.
221  *
222  * -1 is returned if posting fails due to temporary resource exhaustion.
223  */
rds_iw_recv_refill(struct rds_connection * conn,gfp_t kptr_gfp,gfp_t page_gfp,int prefill)224 int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225 		       gfp_t page_gfp, int prefill)
226 {
227 	struct rds_iw_connection *ic = conn->c_transport_data;
228 	struct rds_iw_recv_work *recv;
229 	struct ib_recv_wr *failed_wr;
230 	unsigned int posted = 0;
231 	int ret = 0;
232 	u32 pos;
233 
234 	while ((prefill || rds_conn_up(conn)) &&
235 	       rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236 		if (pos >= ic->i_recv_ring.w_nr) {
237 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238 					pos);
239 			ret = -EINVAL;
240 			break;
241 		}
242 
243 		recv = &ic->i_recvs[pos];
244 		ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245 		if (ret) {
246 			ret = -1;
247 			break;
248 		}
249 
250 		/* XXX when can this fail? */
251 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252 		rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv,
253 			 recv->r_iwinc, recv->r_frag->f_page,
254 			 (long) recv->r_frag->f_mapped, ret);
255 		if (ret) {
256 			rds_iw_conn_error(conn, "recv post on "
257 			       "%pI4 returned %d, disconnecting and "
258 			       "reconnecting\n", &conn->c_faddr,
259 			       ret);
260 			ret = -1;
261 			break;
262 		}
263 
264 		posted++;
265 	}
266 
267 	/* We're doing flow control - update the window. */
268 	if (ic->i_flowctl && posted)
269 		rds_iw_advertise_credits(conn, posted);
270 
271 	if (ret)
272 		rds_iw_ring_unalloc(&ic->i_recv_ring, 1);
273 	return ret;
274 }
275 
rds_iw_inc_purge(struct rds_incoming * inc)276 static void rds_iw_inc_purge(struct rds_incoming *inc)
277 {
278 	struct rds_iw_incoming *iwinc;
279 	struct rds_page_frag *frag;
280 	struct rds_page_frag *pos;
281 
282 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
283 	rdsdebug("purging iwinc %p inc %p\n", iwinc, inc);
284 
285 	list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) {
286 		list_del_init(&frag->f_item);
287 		rds_iw_frag_drop_page(frag);
288 		rds_iw_frag_free(frag);
289 	}
290 }
291 
rds_iw_inc_free(struct rds_incoming * inc)292 void rds_iw_inc_free(struct rds_incoming *inc)
293 {
294 	struct rds_iw_incoming *iwinc;
295 
296 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
297 
298 	rds_iw_inc_purge(inc);
299 	rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc);
300 	BUG_ON(!list_empty(&iwinc->ii_frags));
301 	kmem_cache_free(rds_iw_incoming_slab, iwinc);
302 	atomic_dec(&rds_iw_allocation);
303 	BUG_ON(atomic_read(&rds_iw_allocation) < 0);
304 }
305 
rds_iw_inc_copy_to_user(struct rds_incoming * inc,struct iovec * first_iov,size_t size)306 int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307 			    size_t size)
308 {
309 	struct rds_iw_incoming *iwinc;
310 	struct rds_page_frag *frag;
311 	struct iovec *iov = first_iov;
312 	unsigned long to_copy;
313 	unsigned long frag_off = 0;
314 	unsigned long iov_off = 0;
315 	int copied = 0;
316 	int ret;
317 	u32 len;
318 
319 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
320 	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
321 	len = be32_to_cpu(inc->i_hdr.h_len);
322 
323 	while (copied < size && copied < len) {
324 		if (frag_off == RDS_FRAG_SIZE) {
325 			frag = list_entry(frag->f_item.next,
326 					  struct rds_page_frag, f_item);
327 			frag_off = 0;
328 		}
329 		while (iov_off == iov->iov_len) {
330 			iov_off = 0;
331 			iov++;
332 		}
333 
334 		to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335 		to_copy = min_t(size_t, to_copy, size - copied);
336 		to_copy = min_t(unsigned long, to_copy, len - copied);
337 
338 		rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339 			 "[%p, %lu] + %lu\n",
340 			 to_copy, iov->iov_base, iov->iov_len, iov_off,
341 			 frag->f_page, frag->f_offset, frag_off);
342 
343 		/* XXX needs + offset for multiple recvs per page */
344 		ret = rds_page_copy_to_user(frag->f_page,
345 					    frag->f_offset + frag_off,
346 					    iov->iov_base + iov_off,
347 					    to_copy);
348 		if (ret) {
349 			copied = ret;
350 			break;
351 		}
352 
353 		iov_off += to_copy;
354 		frag_off += to_copy;
355 		copied += to_copy;
356 	}
357 
358 	return copied;
359 }
360 
361 /* ic starts out kzalloc()ed */
rds_iw_recv_init_ack(struct rds_iw_connection * ic)362 void rds_iw_recv_init_ack(struct rds_iw_connection *ic)
363 {
364 	struct ib_send_wr *wr = &ic->i_ack_wr;
365 	struct ib_sge *sge = &ic->i_ack_sge;
366 
367 	sge->addr = ic->i_ack_dma;
368 	sge->length = sizeof(struct rds_header);
369 	sge->lkey = rds_iw_local_dma_lkey(ic);
370 
371 	wr->sg_list = sge;
372 	wr->num_sge = 1;
373 	wr->opcode = IB_WR_SEND;
374 	wr->wr_id = RDS_IW_ACK_WR_ID;
375 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
376 }
377 
378 /*
379  * You'd think that with reliable IB connections you wouldn't need to ack
380  * messages that have been received.  The problem is that IB hardware generates
381  * an ack message before it has DMAed the message into memory.  This creates a
382  * potential message loss if the HCA is disabled for any reason between when it
383  * sends the ack and before the message is DMAed and processed.  This is only a
384  * potential issue if another HCA is available for fail-over.
385  *
386  * When the remote host receives our ack they'll free the sent message from
387  * their send queue.  To decrease the latency of this we always send an ack
388  * immediately after we've received messages.
389  *
390  * For simplicity, we only have one ack in flight at a time.  This puts
391  * pressure on senders to have deep enough send queues to absorb the latency of
392  * a single ack frame being in flight.  This might not be good enough.
393  *
394  * This is implemented by have a long-lived send_wr and sge which point to a
395  * statically allocated ack frame.  This ack wr does not fall under the ring
396  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
397  * room for it beyond the ring size.  Send completion notices its special
398  * wr_id and avoids working with the ring in that case.
399  */
400 #ifndef KERNEL_HAS_ATOMIC64
rds_iw_set_ack(struct rds_iw_connection * ic,u64 seq,int ack_required)401 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
402 				int ack_required)
403 {
404 	unsigned long flags;
405 
406 	spin_lock_irqsave(&ic->i_ack_lock, flags);
407 	ic->i_ack_next = seq;
408 	if (ack_required)
409 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411 }
412 
rds_iw_get_ack(struct rds_iw_connection * ic)413 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
414 {
415 	unsigned long flags;
416 	u64 seq;
417 
418 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
419 
420 	spin_lock_irqsave(&ic->i_ack_lock, flags);
421 	seq = ic->i_ack_next;
422 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
423 
424 	return seq;
425 }
426 #else
rds_iw_set_ack(struct rds_iw_connection * ic,u64 seq,int ack_required)427 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
428 				int ack_required)
429 {
430 	atomic64_set(&ic->i_ack_next, seq);
431 	if (ack_required) {
432 		smp_mb__before_clear_bit();
433 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
434 	}
435 }
436 
rds_iw_get_ack(struct rds_iw_connection * ic)437 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
438 {
439 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
440 	smp_mb__after_clear_bit();
441 
442 	return atomic64_read(&ic->i_ack_next);
443 }
444 #endif
445 
446 
rds_iw_send_ack(struct rds_iw_connection * ic,unsigned int adv_credits)447 static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits)
448 {
449 	struct rds_header *hdr = ic->i_ack;
450 	struct ib_send_wr *failed_wr;
451 	u64 seq;
452 	int ret;
453 
454 	seq = rds_iw_get_ack(ic);
455 
456 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457 	rds_message_populate_header(hdr, 0, 0, 0);
458 	hdr->h_ack = cpu_to_be64(seq);
459 	hdr->h_credit = adv_credits;
460 	rds_message_make_checksum(hdr);
461 	ic->i_ack_queued = jiffies;
462 
463 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464 	if (unlikely(ret)) {
465 		/* Failed to send. Release the WR, and
466 		 * force another ACK.
467 		 */
468 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
469 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
470 
471 		rds_iw_stats_inc(s_iw_ack_send_failure);
472 
473 		rds_iw_conn_error(ic->conn, "sending ack failed\n");
474 	} else
475 		rds_iw_stats_inc(s_iw_ack_sent);
476 }
477 
478 /*
479  * There are 3 ways of getting acknowledgements to the peer:
480  *  1.	We call rds_iw_attempt_ack from the recv completion handler
481  *	to send an ACK-only frame.
482  *	However, there can be only one such frame in the send queue
483  *	at any time, so we may have to postpone it.
484  *  2.	When another (data) packet is transmitted while there's
485  *	an ACK in the queue, we piggyback the ACK sequence number
486  *	on the data packet.
487  *  3.	If the ACK WR is done sending, we get called from the
488  *	send queue completion handler, and check whether there's
489  *	another ACK pending (postponed because the WR was on the
490  *	queue). If so, we transmit it.
491  *
492  * We maintain 2 variables:
493  *  -	i_ack_flags, which keeps track of whether the ACK WR
494  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495  *  -	i_ack_next, which is the last sequence number we received
496  *
497  * Potentially, send queue and receive queue handlers can run concurrently.
498  * It would be nice to not have to use a spinlock to synchronize things,
499  * but the one problem that rules this out is that 64bit updates are
500  * not atomic on all platforms. Things would be a lot simpler if
501  * we had atomic64 or maybe cmpxchg64 everywhere.
502  *
503  * Reconnecting complicates this picture just slightly. When we
504  * reconnect, we may be seeing duplicate packets. The peer
505  * is retransmitting them, because it hasn't seen an ACK for
506  * them. It is important that we ACK these.
507  *
508  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509  * this flag set *MUST* be acknowledged immediately.
510  */
511 
512 /*
513  * When we get here, we're called from the recv queue handler.
514  * Check whether we ought to transmit an ACK.
515  */
rds_iw_attempt_ack(struct rds_iw_connection * ic)516 void rds_iw_attempt_ack(struct rds_iw_connection *ic)
517 {
518 	unsigned int adv_credits;
519 
520 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
521 		return;
522 
523 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
524 		rds_iw_stats_inc(s_iw_ack_send_delayed);
525 		return;
526 	}
527 
528 	/* Can we get a send credit? */
529 	if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530 		rds_iw_stats_inc(s_iw_tx_throttle);
531 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
532 		return;
533 	}
534 
535 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
536 	rds_iw_send_ack(ic, adv_credits);
537 }
538 
539 /*
540  * We get here from the send completion handler, when the
541  * adapter tells us the ACK frame was sent.
542  */
rds_iw_ack_send_complete(struct rds_iw_connection * ic)543 void rds_iw_ack_send_complete(struct rds_iw_connection *ic)
544 {
545 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
546 	rds_iw_attempt_ack(ic);
547 }
548 
549 /*
550  * This is called by the regular xmit code when it wants to piggyback
551  * an ACK on an outgoing frame.
552  */
rds_iw_piggyb_ack(struct rds_iw_connection * ic)553 u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic)
554 {
555 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
556 		rds_iw_stats_inc(s_iw_ack_send_piggybacked);
557 	return rds_iw_get_ack(ic);
558 }
559 
560 /*
561  * It's kind of lame that we're copying from the posted receive pages into
562  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
563  * them.  But receiving new congestion bitmaps should be a *rare* event, so
564  * hopefully we won't need to invest that complexity in making it more
565  * efficient.  By copying we can share a simpler core with TCP which has to
566  * copy.
567  */
rds_iw_cong_recv(struct rds_connection * conn,struct rds_iw_incoming * iwinc)568 static void rds_iw_cong_recv(struct rds_connection *conn,
569 			      struct rds_iw_incoming *iwinc)
570 {
571 	struct rds_cong_map *map;
572 	unsigned int map_off;
573 	unsigned int map_page;
574 	struct rds_page_frag *frag;
575 	unsigned long frag_off;
576 	unsigned long to_copy;
577 	unsigned long copied;
578 	uint64_t uncongested = 0;
579 	void *addr;
580 
581 	/* catch completely corrupt packets */
582 	if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
583 		return;
584 
585 	map = conn->c_fcong;
586 	map_page = 0;
587 	map_off = 0;
588 
589 	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
590 	frag_off = 0;
591 
592 	copied = 0;
593 
594 	while (copied < RDS_CONG_MAP_BYTES) {
595 		uint64_t *src, *dst;
596 		unsigned int k;
597 
598 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
599 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
600 
601 		addr = kmap_atomic(frag->f_page);
602 
603 		src = addr + frag_off;
604 		dst = (void *)map->m_page_addrs[map_page] + map_off;
605 		for (k = 0; k < to_copy; k += 8) {
606 			/* Record ports that became uncongested, ie
607 			 * bits that changed from 0 to 1. */
608 			uncongested |= ~(*src) & *dst;
609 			*dst++ = *src++;
610 		}
611 		kunmap_atomic(addr);
612 
613 		copied += to_copy;
614 
615 		map_off += to_copy;
616 		if (map_off == PAGE_SIZE) {
617 			map_off = 0;
618 			map_page++;
619 		}
620 
621 		frag_off += to_copy;
622 		if (frag_off == RDS_FRAG_SIZE) {
623 			frag = list_entry(frag->f_item.next,
624 					  struct rds_page_frag, f_item);
625 			frag_off = 0;
626 		}
627 	}
628 
629 	/* the congestion map is in little endian order */
630 	uncongested = le64_to_cpu(uncongested);
631 
632 	rds_cong_map_updated(map, uncongested);
633 }
634 
635 /*
636  * Rings are posted with all the allocations they'll need to queue the
637  * incoming message to the receiving socket so this can't fail.
638  * All fragments start with a header, so we can make sure we're not receiving
639  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
640  */
641 struct rds_iw_ack_state {
642 	u64		ack_next;
643 	u64		ack_recv;
644 	unsigned int	ack_required:1;
645 	unsigned int	ack_next_valid:1;
646 	unsigned int	ack_recv_valid:1;
647 };
648 
rds_iw_process_recv(struct rds_connection * conn,struct rds_iw_recv_work * recv,u32 byte_len,struct rds_iw_ack_state * state)649 static void rds_iw_process_recv(struct rds_connection *conn,
650 				struct rds_iw_recv_work *recv, u32 byte_len,
651 				struct rds_iw_ack_state *state)
652 {
653 	struct rds_iw_connection *ic = conn->c_transport_data;
654 	struct rds_iw_incoming *iwinc = ic->i_iwinc;
655 	struct rds_header *ihdr, *hdr;
656 
657 	/* XXX shut down the connection if port 0,0 are seen? */
658 
659 	rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv,
660 		 byte_len);
661 
662 	if (byte_len < sizeof(struct rds_header)) {
663 		rds_iw_conn_error(conn, "incoming message "
664 		       "from %pI4 didn't include a "
665 		       "header, disconnecting and "
666 		       "reconnecting\n",
667 		       &conn->c_faddr);
668 		return;
669 	}
670 	byte_len -= sizeof(struct rds_header);
671 
672 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
673 
674 	/* Validate the checksum. */
675 	if (!rds_message_verify_checksum(ihdr)) {
676 		rds_iw_conn_error(conn, "incoming message "
677 		       "from %pI4 has corrupted header - "
678 		       "forcing a reconnect\n",
679 		       &conn->c_faddr);
680 		rds_stats_inc(s_recv_drop_bad_checksum);
681 		return;
682 	}
683 
684 	/* Process the ACK sequence which comes with every packet */
685 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
686 	state->ack_recv_valid = 1;
687 
688 	/* Process the credits update if there was one */
689 	if (ihdr->h_credit)
690 		rds_iw_send_add_credits(conn, ihdr->h_credit);
691 
692 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
693 		/* This is an ACK-only packet. The fact that it gets
694 		 * special treatment here is that historically, ACKs
695 		 * were rather special beasts.
696 		 */
697 		rds_iw_stats_inc(s_iw_ack_received);
698 
699 		/*
700 		 * Usually the frags make their way on to incs and are then freed as
701 		 * the inc is freed.  We don't go that route, so we have to drop the
702 		 * page ref ourselves.  We can't just leave the page on the recv
703 		 * because that confuses the dma mapping of pages and each recv's use
704 		 * of a partial page.  We can leave the frag, though, it will be
705 		 * reused.
706 		 *
707 		 * FIXME: Fold this into the code path below.
708 		 */
709 		rds_iw_frag_drop_page(recv->r_frag);
710 		return;
711 	}
712 
713 	/*
714 	 * If we don't already have an inc on the connection then this
715 	 * fragment has a header and starts a message.. copy its header
716 	 * into the inc and save the inc so we can hang upcoming fragments
717 	 * off its list.
718 	 */
719 	if (!iwinc) {
720 		iwinc = recv->r_iwinc;
721 		recv->r_iwinc = NULL;
722 		ic->i_iwinc = iwinc;
723 
724 		hdr = &iwinc->ii_inc.i_hdr;
725 		memcpy(hdr, ihdr, sizeof(*hdr));
726 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
727 
728 		rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc,
729 			 ic->i_recv_data_rem, hdr->h_flags);
730 	} else {
731 		hdr = &iwinc->ii_inc.i_hdr;
732 		/* We can't just use memcmp here; fragments of a
733 		 * single message may carry different ACKs */
734 		if (hdr->h_sequence != ihdr->h_sequence ||
735 		    hdr->h_len != ihdr->h_len ||
736 		    hdr->h_sport != ihdr->h_sport ||
737 		    hdr->h_dport != ihdr->h_dport) {
738 			rds_iw_conn_error(conn,
739 				"fragment header mismatch; forcing reconnect\n");
740 			return;
741 		}
742 	}
743 
744 	list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags);
745 	recv->r_frag = NULL;
746 
747 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
748 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
749 	else {
750 		ic->i_recv_data_rem = 0;
751 		ic->i_iwinc = NULL;
752 
753 		if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
754 			rds_iw_cong_recv(conn, iwinc);
755 		else {
756 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
757 					  &iwinc->ii_inc, GFP_ATOMIC);
758 			state->ack_next = be64_to_cpu(hdr->h_sequence);
759 			state->ack_next_valid = 1;
760 		}
761 
762 		/* Evaluate the ACK_REQUIRED flag *after* we received
763 		 * the complete frame, and after bumping the next_rx
764 		 * sequence. */
765 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
766 			rds_stats_inc(s_recv_ack_required);
767 			state->ack_required = 1;
768 		}
769 
770 		rds_inc_put(&iwinc->ii_inc);
771 	}
772 }
773 
774 /*
775  * Plucking the oldest entry from the ring can be done concurrently with
776  * the thread refilling the ring.  Each ring operation is protected by
777  * spinlocks and the transient state of refilling doesn't change the
778  * recording of which entry is oldest.
779  *
780  * This relies on IB only calling one cq comp_handler for each cq so that
781  * there will only be one caller of rds_recv_incoming() per RDS connection.
782  */
rds_iw_recv_cq_comp_handler(struct ib_cq * cq,void * context)783 void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context)
784 {
785 	struct rds_connection *conn = context;
786 	struct rds_iw_connection *ic = conn->c_transport_data;
787 
788 	rdsdebug("conn %p cq %p\n", conn, cq);
789 
790 	rds_iw_stats_inc(s_iw_rx_cq_call);
791 
792 	tasklet_schedule(&ic->i_recv_tasklet);
793 }
794 
rds_poll_cq(struct rds_iw_connection * ic,struct rds_iw_ack_state * state)795 static inline void rds_poll_cq(struct rds_iw_connection *ic,
796 			       struct rds_iw_ack_state *state)
797 {
798 	struct rds_connection *conn = ic->conn;
799 	struct ib_wc wc;
800 	struct rds_iw_recv_work *recv;
801 
802 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
803 		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
804 			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
805 			 be32_to_cpu(wc.ex.imm_data));
806 		rds_iw_stats_inc(s_iw_rx_cq_event);
807 
808 		recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)];
809 
810 		rds_iw_recv_unmap_page(ic, recv);
811 
812 		/*
813 		 * Also process recvs in connecting state because it is possible
814 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
815 		 * event is processed.
816 		 */
817 		if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
818 			/* We expect errors as the qp is drained during shutdown */
819 			if (wc.status == IB_WC_SUCCESS) {
820 				rds_iw_process_recv(conn, recv, wc.byte_len, state);
821 			} else {
822 				rds_iw_conn_error(conn, "recv completion on "
823 				       "%pI4 had status %u, disconnecting and "
824 				       "reconnecting\n", &conn->c_faddr,
825 				       wc.status);
826 			}
827 		}
828 
829 		rds_iw_ring_free(&ic->i_recv_ring, 1);
830 	}
831 }
832 
rds_iw_recv_tasklet_fn(unsigned long data)833 void rds_iw_recv_tasklet_fn(unsigned long data)
834 {
835 	struct rds_iw_connection *ic = (struct rds_iw_connection *) data;
836 	struct rds_connection *conn = ic->conn;
837 	struct rds_iw_ack_state state = { 0, };
838 
839 	rds_poll_cq(ic, &state);
840 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
841 	rds_poll_cq(ic, &state);
842 
843 	if (state.ack_next_valid)
844 		rds_iw_set_ack(ic, state.ack_next, state.ack_required);
845 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
846 		rds_send_drop_acked(conn, state.ack_recv, NULL);
847 		ic->i_ack_recv = state.ack_recv;
848 	}
849 	if (rds_conn_up(conn))
850 		rds_iw_attempt_ack(ic);
851 
852 	/* If we ever end up with a really empty receive ring, we're
853 	 * in deep trouble, as the sender will definitely see RNR
854 	 * timeouts. */
855 	if (rds_iw_ring_empty(&ic->i_recv_ring))
856 		rds_iw_stats_inc(s_iw_rx_ring_empty);
857 
858 	/*
859 	 * If the ring is running low, then schedule the thread to refill.
860 	 */
861 	if (rds_iw_ring_low(&ic->i_recv_ring))
862 		queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
863 }
864 
rds_iw_recv(struct rds_connection * conn)865 int rds_iw_recv(struct rds_connection *conn)
866 {
867 	struct rds_iw_connection *ic = conn->c_transport_data;
868 	int ret = 0;
869 
870 	rdsdebug("conn %p\n", conn);
871 
872 	/*
873 	 * If we get a temporary posting failure in this context then
874 	 * we're really low and we want the caller to back off for a bit.
875 	 */
876 	mutex_lock(&ic->i_recv_mutex);
877 	if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
878 		ret = -ENOMEM;
879 	else
880 		rds_iw_stats_inc(s_iw_rx_refill_from_thread);
881 	mutex_unlock(&ic->i_recv_mutex);
882 
883 	if (rds_conn_up(conn))
884 		rds_iw_attempt_ack(ic);
885 
886 	return ret;
887 }
888 
rds_iw_recv_init(void)889 int rds_iw_recv_init(void)
890 {
891 	struct sysinfo si;
892 	int ret = -ENOMEM;
893 
894 	/* Default to 30% of all available RAM for recv memory */
895 	si_meminfo(&si);
896 	rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
897 
898 	rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming",
899 					sizeof(struct rds_iw_incoming),
900 					0, 0, NULL);
901 	if (!rds_iw_incoming_slab)
902 		goto out;
903 
904 	rds_iw_frag_slab = kmem_cache_create("rds_iw_frag",
905 					sizeof(struct rds_page_frag),
906 					0, 0, NULL);
907 	if (!rds_iw_frag_slab)
908 		kmem_cache_destroy(rds_iw_incoming_slab);
909 	else
910 		ret = 0;
911 out:
912 	return ret;
913 }
914 
rds_iw_recv_exit(void)915 void rds_iw_recv_exit(void)
916 {
917 	kmem_cache_destroy(rds_iw_incoming_slab);
918 	kmem_cache_destroy(rds_iw_frag_slab);
919 }
920