• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/device.h>
15 #include <linux/regmap.h>
16 #include <linux/irq.h>
17 #include <linux/interrupt.h>
18 #include <linux/irqdomain.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 
43 	unsigned int irq_reg_stride;
44 };
45 
46 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)47 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 				     int irq)
49 {
50 	return &data->chip->irqs[irq];
51 }
52 
regmap_irq_lock(struct irq_data * data)53 static void regmap_irq_lock(struct irq_data *data)
54 {
55 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56 
57 	mutex_lock(&d->lock);
58 }
59 
regmap_irq_sync_unlock(struct irq_data * data)60 static void regmap_irq_sync_unlock(struct irq_data *data)
61 {
62 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 	struct regmap *map = d->map;
64 	int i, ret;
65 	u32 reg;
66 
67 	if (d->chip->runtime_pm) {
68 		ret = pm_runtime_get_sync(map->dev);
69 		if (ret < 0)
70 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
71 				ret);
72 	}
73 
74 	/*
75 	 * If there's been a change in the mask write it back to the
76 	 * hardware.  We rely on the use of the regmap core cache to
77 	 * suppress pointless writes.
78 	 */
79 	for (i = 0; i < d->chip->num_regs; i++) {
80 		reg = d->chip->mask_base +
81 			(i * map->reg_stride * d->irq_reg_stride);
82 		if (d->chip->mask_invert)
83 			ret = regmap_update_bits(d->map, reg,
84 					 d->mask_buf_def[i], ~d->mask_buf[i]);
85 		else
86 			ret = regmap_update_bits(d->map, reg,
87 					 d->mask_buf_def[i], d->mask_buf[i]);
88 		if (ret != 0)
89 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
90 				reg);
91 
92 		reg = d->chip->wake_base +
93 			(i * map->reg_stride * d->irq_reg_stride);
94 		if (d->wake_buf) {
95 			if (d->chip->wake_invert)
96 				ret = regmap_update_bits(d->map, reg,
97 							 d->mask_buf_def[i],
98 							 ~d->wake_buf[i]);
99 			else
100 				ret = regmap_update_bits(d->map, reg,
101 							 d->mask_buf_def[i],
102 							 d->wake_buf[i]);
103 			if (ret != 0)
104 				dev_err(d->map->dev,
105 					"Failed to sync wakes in %x: %d\n",
106 					reg, ret);
107 		}
108 	}
109 
110 	if (d->chip->runtime_pm)
111 		pm_runtime_put(map->dev);
112 
113 	/* If we've changed our wakeup count propagate it to the parent */
114 	if (d->wake_count < 0)
115 		for (i = d->wake_count; i < 0; i++)
116 			irq_set_irq_wake(d->irq, 0);
117 	else if (d->wake_count > 0)
118 		for (i = 0; i < d->wake_count; i++)
119 			irq_set_irq_wake(d->irq, 1);
120 
121 	d->wake_count = 0;
122 
123 	mutex_unlock(&d->lock);
124 }
125 
regmap_irq_enable(struct irq_data * data)126 static void regmap_irq_enable(struct irq_data *data)
127 {
128 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
129 	struct regmap *map = d->map;
130 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
131 
132 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
133 }
134 
regmap_irq_disable(struct irq_data * data)135 static void regmap_irq_disable(struct irq_data *data)
136 {
137 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
138 	struct regmap *map = d->map;
139 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
140 
141 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
142 }
143 
regmap_irq_set_wake(struct irq_data * data,unsigned int on)144 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
145 {
146 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
147 	struct regmap *map = d->map;
148 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
149 
150 	if (on) {
151 		if (d->wake_buf)
152 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
153 				&= ~irq_data->mask;
154 		d->wake_count++;
155 	} else {
156 		if (d->wake_buf)
157 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
158 				|= irq_data->mask;
159 		d->wake_count--;
160 	}
161 
162 	return 0;
163 }
164 
165 static const struct irq_chip regmap_irq_chip = {
166 	.irq_bus_lock		= regmap_irq_lock,
167 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
168 	.irq_disable		= regmap_irq_disable,
169 	.irq_enable		= regmap_irq_enable,
170 	.irq_set_wake		= regmap_irq_set_wake,
171 };
172 
regmap_irq_thread(int irq,void * d)173 static irqreturn_t regmap_irq_thread(int irq, void *d)
174 {
175 	struct regmap_irq_chip_data *data = d;
176 	const struct regmap_irq_chip *chip = data->chip;
177 	struct regmap *map = data->map;
178 	int ret, i;
179 	bool handled = false;
180 	u32 reg;
181 
182 	if (chip->runtime_pm) {
183 		ret = pm_runtime_get_sync(map->dev);
184 		if (ret < 0) {
185 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
186 				ret);
187 			pm_runtime_put(map->dev);
188 			return IRQ_NONE;
189 		}
190 	}
191 
192 	/*
193 	 * Read in the statuses, using a single bulk read if possible
194 	 * in order to reduce the I/O overheads.
195 	 */
196 	if (!map->use_single_rw && map->reg_stride == 1 &&
197 	    data->irq_reg_stride == 1) {
198 		u8 *buf8 = data->status_reg_buf;
199 		u16 *buf16 = data->status_reg_buf;
200 		u32 *buf32 = data->status_reg_buf;
201 
202 		BUG_ON(!data->status_reg_buf);
203 
204 		ret = regmap_bulk_read(map, chip->status_base,
205 				       data->status_reg_buf,
206 				       chip->num_regs);
207 		if (ret != 0) {
208 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
209 				ret);
210 			return IRQ_NONE;
211 		}
212 
213 		for (i = 0; i < data->chip->num_regs; i++) {
214 			switch (map->format.val_bytes) {
215 			case 1:
216 				data->status_buf[i] = buf8[i];
217 				break;
218 			case 2:
219 				data->status_buf[i] = buf16[i];
220 				break;
221 			case 4:
222 				data->status_buf[i] = buf32[i];
223 				break;
224 			default:
225 				BUG();
226 				return IRQ_NONE;
227 			}
228 		}
229 
230 	} else {
231 		for (i = 0; i < data->chip->num_regs; i++) {
232 			ret = regmap_read(map, chip->status_base +
233 					  (i * map->reg_stride
234 					   * data->irq_reg_stride),
235 					  &data->status_buf[i]);
236 
237 			if (ret != 0) {
238 				dev_err(map->dev,
239 					"Failed to read IRQ status: %d\n",
240 					ret);
241 				if (chip->runtime_pm)
242 					pm_runtime_put(map->dev);
243 				return IRQ_NONE;
244 			}
245 		}
246 	}
247 
248 	/*
249 	 * Ignore masked IRQs and ack if we need to; we ack early so
250 	 * there is no race between handling and acknowleding the
251 	 * interrupt.  We assume that typically few of the interrupts
252 	 * will fire simultaneously so don't worry about overhead from
253 	 * doing a write per register.
254 	 */
255 	for (i = 0; i < data->chip->num_regs; i++) {
256 		data->status_buf[i] &= ~data->mask_buf[i];
257 
258 		if (data->status_buf[i] && chip->ack_base) {
259 			reg = chip->ack_base +
260 				(i * map->reg_stride * data->irq_reg_stride);
261 			ret = regmap_write(map, reg, data->status_buf[i]);
262 			if (ret != 0)
263 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
264 					reg, ret);
265 		}
266 	}
267 
268 	for (i = 0; i < chip->num_irqs; i++) {
269 		if (data->status_buf[chip->irqs[i].reg_offset /
270 				     map->reg_stride] & chip->irqs[i].mask) {
271 			handle_nested_irq(irq_find_mapping(data->domain, i));
272 			handled = true;
273 		}
274 	}
275 
276 	if (chip->runtime_pm)
277 		pm_runtime_put(map->dev);
278 
279 	if (handled)
280 		return IRQ_HANDLED;
281 	else
282 		return IRQ_NONE;
283 }
284 
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)285 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
286 			  irq_hw_number_t hw)
287 {
288 	struct regmap_irq_chip_data *data = h->host_data;
289 
290 	irq_set_chip_data(virq, data);
291 	irq_set_chip(virq, &data->irq_chip);
292 	irq_set_nested_thread(virq, 1);
293 
294 	/* ARM needs us to explicitly flag the IRQ as valid
295 	 * and will set them noprobe when we do so. */
296 #ifdef CONFIG_ARM
297 	set_irq_flags(virq, IRQF_VALID);
298 #else
299 	irq_set_noprobe(virq);
300 #endif
301 
302 	return 0;
303 }
304 
305 static struct irq_domain_ops regmap_domain_ops = {
306 	.map	= regmap_irq_map,
307 	.xlate	= irq_domain_xlate_twocell,
308 };
309 
310 /**
311  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
312  *
313  * map:       The regmap for the device.
314  * irq:       The IRQ the device uses to signal interrupts
315  * irq_flags: The IRQF_ flags to use for the primary interrupt.
316  * chip:      Configuration for the interrupt controller.
317  * data:      Runtime data structure for the controller, allocated on success
318  *
319  * Returns 0 on success or an errno on failure.
320  *
321  * In order for this to be efficient the chip really should use a
322  * register cache.  The chip driver is responsible for restoring the
323  * register values used by the IRQ controller over suspend and resume.
324  */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)325 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
326 			int irq_base, const struct regmap_irq_chip *chip,
327 			struct regmap_irq_chip_data **data)
328 {
329 	struct regmap_irq_chip_data *d;
330 	int i;
331 	int ret = -ENOMEM;
332 	u32 reg;
333 
334 	for (i = 0; i < chip->num_irqs; i++) {
335 		if (chip->irqs[i].reg_offset % map->reg_stride)
336 			return -EINVAL;
337 		if (chip->irqs[i].reg_offset / map->reg_stride >=
338 		    chip->num_regs)
339 			return -EINVAL;
340 	}
341 
342 	if (irq_base) {
343 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
344 		if (irq_base < 0) {
345 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
346 				 irq_base);
347 			return irq_base;
348 		}
349 	}
350 
351 	d = kzalloc(sizeof(*d), GFP_KERNEL);
352 	if (!d)
353 		return -ENOMEM;
354 
355 	*data = d;
356 
357 	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
358 				GFP_KERNEL);
359 	if (!d->status_buf)
360 		goto err_alloc;
361 
362 	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
363 			      GFP_KERNEL);
364 	if (!d->mask_buf)
365 		goto err_alloc;
366 
367 	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
368 				  GFP_KERNEL);
369 	if (!d->mask_buf_def)
370 		goto err_alloc;
371 
372 	if (chip->wake_base) {
373 		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
374 				      GFP_KERNEL);
375 		if (!d->wake_buf)
376 			goto err_alloc;
377 	}
378 
379 	d->irq_chip = regmap_irq_chip;
380 	d->irq_chip.name = chip->name;
381 	d->irq = irq;
382 	d->map = map;
383 	d->chip = chip;
384 	d->irq_base = irq_base;
385 
386 	if (chip->irq_reg_stride)
387 		d->irq_reg_stride = chip->irq_reg_stride;
388 	else
389 		d->irq_reg_stride = 1;
390 
391 	if (!map->use_single_rw && map->reg_stride == 1 &&
392 	    d->irq_reg_stride == 1) {
393 		d->status_reg_buf = kmalloc(map->format.val_bytes *
394 					    chip->num_regs, GFP_KERNEL);
395 		if (!d->status_reg_buf)
396 			goto err_alloc;
397 	}
398 
399 	mutex_init(&d->lock);
400 
401 	for (i = 0; i < chip->num_irqs; i++)
402 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
403 			|= chip->irqs[i].mask;
404 
405 	/* Mask all the interrupts by default */
406 	for (i = 0; i < chip->num_regs; i++) {
407 		d->mask_buf[i] = d->mask_buf_def[i];
408 		reg = chip->mask_base +
409 			(i * map->reg_stride * d->irq_reg_stride);
410 		if (chip->mask_invert)
411 			ret = regmap_update_bits(map, reg,
412 					 d->mask_buf[i], ~d->mask_buf[i]);
413 		else
414 			ret = regmap_update_bits(map, reg,
415 					 d->mask_buf[i], d->mask_buf[i]);
416 		if (ret != 0) {
417 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
418 				reg, ret);
419 			goto err_alloc;
420 		}
421 	}
422 
423 	/* Wake is disabled by default */
424 	if (d->wake_buf) {
425 		for (i = 0; i < chip->num_regs; i++) {
426 			d->wake_buf[i] = d->mask_buf_def[i];
427 			reg = chip->wake_base +
428 				(i * map->reg_stride * d->irq_reg_stride);
429 
430 			if (chip->wake_invert)
431 				ret = regmap_update_bits(map, reg,
432 							 d->mask_buf_def[i],
433 							 0);
434 			else
435 				ret = regmap_update_bits(map, reg,
436 							 d->mask_buf_def[i],
437 							 d->wake_buf[i]);
438 			if (ret != 0) {
439 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
440 					reg, ret);
441 				goto err_alloc;
442 			}
443 		}
444 	}
445 
446 	if (irq_base)
447 		d->domain = irq_domain_add_legacy(map->dev->of_node,
448 						  chip->num_irqs, irq_base, 0,
449 						  &regmap_domain_ops, d);
450 	else
451 		d->domain = irq_domain_add_linear(map->dev->of_node,
452 						  chip->num_irqs,
453 						  &regmap_domain_ops, d);
454 	if (!d->domain) {
455 		dev_err(map->dev, "Failed to create IRQ domain\n");
456 		ret = -ENOMEM;
457 		goto err_alloc;
458 	}
459 
460 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
461 				   chip->name, d);
462 	if (ret != 0) {
463 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
464 			irq, chip->name, ret);
465 		goto err_domain;
466 	}
467 
468 	return 0;
469 
470 err_domain:
471 	/* Should really dispose of the domain but... */
472 err_alloc:
473 	kfree(d->wake_buf);
474 	kfree(d->mask_buf_def);
475 	kfree(d->mask_buf);
476 	kfree(d->status_buf);
477 	kfree(d->status_reg_buf);
478 	kfree(d);
479 	return ret;
480 }
481 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
482 
483 /**
484  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
485  *
486  * @irq: Primary IRQ for the device
487  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
488  */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)489 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
490 {
491 	if (!d)
492 		return;
493 
494 	free_irq(irq, d);
495 	/* We should unmap the domain but... */
496 	kfree(d->wake_buf);
497 	kfree(d->mask_buf_def);
498 	kfree(d->mask_buf);
499 	kfree(d->status_reg_buf);
500 	kfree(d->status_buf);
501 	kfree(d);
502 }
503 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
504 
505 /**
506  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
507  *
508  * Useful for drivers to request their own IRQs.
509  *
510  * @data: regmap_irq controller to operate on.
511  */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)512 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
513 {
514 	WARN_ON(!data->irq_base);
515 	return data->irq_base;
516 }
517 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
518 
519 /**
520  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
521  *
522  * Useful for drivers to request their own IRQs.
523  *
524  * @data: regmap_irq controller to operate on.
525  * @irq: index of the interrupt requested in the chip IRQs
526  */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)527 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
528 {
529 	/* Handle holes in the IRQ list */
530 	if (!data->chip->irqs[irq].mask)
531 		return -EINVAL;
532 
533 	return irq_create_mapping(data->domain, irq);
534 }
535 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
536 
537 /**
538  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
539  *
540  * Useful for drivers to request their own IRQs and for integration
541  * with subsystems.  For ease of integration NULL is accepted as a
542  * domain, allowing devices to just call this even if no domain is
543  * allocated.
544  *
545  * @data: regmap_irq controller to operate on.
546  */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)547 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
548 {
549 	if (data)
550 		return data->domain;
551 	else
552 		return NULL;
553 }
554 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
555