• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
20 
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
23 
24 #include "internal.h"
25 
26 /*
27  * Sometimes for failures during very early init the trace
28  * infrastructure isn't available early enough to be used.  For this
29  * sort of problem defining LOG_DEVICE will add printks for basic
30  * register I/O on a specific device.
31  */
32 #undef LOG_DEVICE
33 
34 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
35 			       unsigned int mask, unsigned int val,
36 			       bool *change);
37 
38 static int _regmap_bus_read(void *context, unsigned int reg,
39 			    unsigned int *val);
40 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
41 				       unsigned int val);
42 static int _regmap_bus_raw_write(void *context, unsigned int reg,
43 				 unsigned int val);
44 
async_cleanup(struct work_struct * work)45 static void async_cleanup(struct work_struct *work)
46 {
47 	struct regmap_async *async = container_of(work, struct regmap_async,
48 						  cleanup);
49 
50 	kfree(async->work_buf);
51 	kfree(async);
52 }
53 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)54 bool regmap_reg_in_ranges(unsigned int reg,
55 			  const struct regmap_range *ranges,
56 			  unsigned int nranges)
57 {
58 	const struct regmap_range *r;
59 	int i;
60 
61 	for (i = 0, r = ranges; i < nranges; i++, r++)
62 		if (regmap_reg_in_range(reg, r))
63 			return true;
64 	return false;
65 }
66 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67 
_regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)68 static bool _regmap_check_range_table(struct regmap *map,
69 				      unsigned int reg,
70 				      const struct regmap_access_table *table)
71 {
72 	/* Check "no ranges" first */
73 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
74 		return false;
75 
76 	/* In case zero "yes ranges" are supplied, any reg is OK */
77 	if (!table->n_yes_ranges)
78 		return true;
79 
80 	return regmap_reg_in_ranges(reg, table->yes_ranges,
81 				    table->n_yes_ranges);
82 }
83 
regmap_writeable(struct regmap * map,unsigned int reg)84 bool regmap_writeable(struct regmap *map, unsigned int reg)
85 {
86 	if (map->max_register && reg > map->max_register)
87 		return false;
88 
89 	if (map->writeable_reg)
90 		return map->writeable_reg(map->dev, reg);
91 
92 	if (map->wr_table)
93 		return _regmap_check_range_table(map, reg, map->wr_table);
94 
95 	return true;
96 }
97 
regmap_readable(struct regmap * map,unsigned int reg)98 bool regmap_readable(struct regmap *map, unsigned int reg)
99 {
100 	if (map->max_register && reg > map->max_register)
101 		return false;
102 
103 	if (map->format.format_write)
104 		return false;
105 
106 	if (map->readable_reg)
107 		return map->readable_reg(map->dev, reg);
108 
109 	if (map->rd_table)
110 		return _regmap_check_range_table(map, reg, map->rd_table);
111 
112 	return true;
113 }
114 
regmap_volatile(struct regmap * map,unsigned int reg)115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117 	if (!regmap_readable(map, reg))
118 		return false;
119 
120 	if (map->volatile_reg)
121 		return map->volatile_reg(map->dev, reg);
122 
123 	if (map->volatile_table)
124 		return _regmap_check_range_table(map, reg, map->volatile_table);
125 
126 	return true;
127 }
128 
regmap_precious(struct regmap * map,unsigned int reg)129 bool regmap_precious(struct regmap *map, unsigned int reg)
130 {
131 	if (!regmap_readable(map, reg))
132 		return false;
133 
134 	if (map->precious_reg)
135 		return map->precious_reg(map->dev, reg);
136 
137 	if (map->precious_table)
138 		return _regmap_check_range_table(map, reg, map->precious_table);
139 
140 	return false;
141 }
142 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)143 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
144 	size_t num)
145 {
146 	unsigned int i;
147 
148 	for (i = 0; i < num; i++)
149 		if (!regmap_volatile(map, reg + i))
150 			return false;
151 
152 	return true;
153 }
154 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)155 static void regmap_format_2_6_write(struct regmap *map,
156 				     unsigned int reg, unsigned int val)
157 {
158 	u8 *out = map->work_buf;
159 
160 	*out = (reg << 6) | val;
161 }
162 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)163 static void regmap_format_4_12_write(struct regmap *map,
164 				     unsigned int reg, unsigned int val)
165 {
166 	__be16 *out = map->work_buf;
167 	*out = cpu_to_be16((reg << 12) | val);
168 }
169 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)170 static void regmap_format_7_9_write(struct regmap *map,
171 				    unsigned int reg, unsigned int val)
172 {
173 	__be16 *out = map->work_buf;
174 	*out = cpu_to_be16((reg << 9) | val);
175 }
176 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)177 static void regmap_format_10_14_write(struct regmap *map,
178 				    unsigned int reg, unsigned int val)
179 {
180 	u8 *out = map->work_buf;
181 
182 	out[2] = val;
183 	out[1] = (val >> 8) | (reg << 6);
184 	out[0] = reg >> 2;
185 }
186 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)187 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
188 {
189 	u8 *b = buf;
190 
191 	b[0] = val << shift;
192 }
193 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)194 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
195 {
196 	__be16 *b = buf;
197 
198 	b[0] = cpu_to_be16(val << shift);
199 }
200 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)201 static void regmap_format_16_native(void *buf, unsigned int val,
202 				    unsigned int shift)
203 {
204 	*(u16 *)buf = val << shift;
205 }
206 
regmap_format_24(void * buf,unsigned int val,unsigned int shift)207 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
208 {
209 	u8 *b = buf;
210 
211 	val <<= shift;
212 
213 	b[0] = val >> 16;
214 	b[1] = val >> 8;
215 	b[2] = val;
216 }
217 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)218 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
219 {
220 	__be32 *b = buf;
221 
222 	b[0] = cpu_to_be32(val << shift);
223 }
224 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)225 static void regmap_format_32_native(void *buf, unsigned int val,
226 				    unsigned int shift)
227 {
228 	*(u32 *)buf = val << shift;
229 }
230 
regmap_parse_inplace_noop(void * buf)231 static void regmap_parse_inplace_noop(void *buf)
232 {
233 }
234 
regmap_parse_8(const void * buf)235 static unsigned int regmap_parse_8(const void *buf)
236 {
237 	const u8 *b = buf;
238 
239 	return b[0];
240 }
241 
regmap_parse_16_be(const void * buf)242 static unsigned int regmap_parse_16_be(const void *buf)
243 {
244 	const __be16 *b = buf;
245 
246 	return be16_to_cpu(b[0]);
247 }
248 
regmap_parse_16_be_inplace(void * buf)249 static void regmap_parse_16_be_inplace(void *buf)
250 {
251 	__be16 *b = buf;
252 
253 	b[0] = be16_to_cpu(b[0]);
254 }
255 
regmap_parse_16_native(const void * buf)256 static unsigned int regmap_parse_16_native(const void *buf)
257 {
258 	return *(u16 *)buf;
259 }
260 
regmap_parse_24(const void * buf)261 static unsigned int regmap_parse_24(const void *buf)
262 {
263 	const u8 *b = buf;
264 	unsigned int ret = b[2];
265 	ret |= ((unsigned int)b[1]) << 8;
266 	ret |= ((unsigned int)b[0]) << 16;
267 
268 	return ret;
269 }
270 
regmap_parse_32_be(const void * buf)271 static unsigned int regmap_parse_32_be(const void *buf)
272 {
273 	const __be32 *b = buf;
274 
275 	return be32_to_cpu(b[0]);
276 }
277 
regmap_parse_32_be_inplace(void * buf)278 static void regmap_parse_32_be_inplace(void *buf)
279 {
280 	__be32 *b = buf;
281 
282 	b[0] = be32_to_cpu(b[0]);
283 }
284 
regmap_parse_32_native(const void * buf)285 static unsigned int regmap_parse_32_native(const void *buf)
286 {
287 	return *(u32 *)buf;
288 }
289 
regmap_lock_mutex(void * __map)290 static void regmap_lock_mutex(void *__map)
291 {
292 	struct regmap *map = __map;
293 	mutex_lock(&map->mutex);
294 }
295 
regmap_unlock_mutex(void * __map)296 static void regmap_unlock_mutex(void *__map)
297 {
298 	struct regmap *map = __map;
299 	mutex_unlock(&map->mutex);
300 }
301 
regmap_lock_spinlock(void * __map)302 static void regmap_lock_spinlock(void *__map)
303 {
304 	struct regmap *map = __map;
305 	spin_lock(&map->spinlock);
306 }
307 
regmap_unlock_spinlock(void * __map)308 static void regmap_unlock_spinlock(void *__map)
309 {
310 	struct regmap *map = __map;
311 	spin_unlock(&map->spinlock);
312 }
313 
dev_get_regmap_release(struct device * dev,void * res)314 static void dev_get_regmap_release(struct device *dev, void *res)
315 {
316 	/*
317 	 * We don't actually have anything to do here; the goal here
318 	 * is not to manage the regmap but to provide a simple way to
319 	 * get the regmap back given a struct device.
320 	 */
321 }
322 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)323 static bool _regmap_range_add(struct regmap *map,
324 			      struct regmap_range_node *data)
325 {
326 	struct rb_root *root = &map->range_tree;
327 	struct rb_node **new = &(root->rb_node), *parent = NULL;
328 
329 	while (*new) {
330 		struct regmap_range_node *this =
331 			container_of(*new, struct regmap_range_node, node);
332 
333 		parent = *new;
334 		if (data->range_max < this->range_min)
335 			new = &((*new)->rb_left);
336 		else if (data->range_min > this->range_max)
337 			new = &((*new)->rb_right);
338 		else
339 			return false;
340 	}
341 
342 	rb_link_node(&data->node, parent, new);
343 	rb_insert_color(&data->node, root);
344 
345 	return true;
346 }
347 
_regmap_range_lookup(struct regmap * map,unsigned int reg)348 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
349 						      unsigned int reg)
350 {
351 	struct rb_node *node = map->range_tree.rb_node;
352 
353 	while (node) {
354 		struct regmap_range_node *this =
355 			container_of(node, struct regmap_range_node, node);
356 
357 		if (reg < this->range_min)
358 			node = node->rb_left;
359 		else if (reg > this->range_max)
360 			node = node->rb_right;
361 		else
362 			return this;
363 	}
364 
365 	return NULL;
366 }
367 
regmap_range_exit(struct regmap * map)368 static void regmap_range_exit(struct regmap *map)
369 {
370 	struct rb_node *next;
371 	struct regmap_range_node *range_node;
372 
373 	next = rb_first(&map->range_tree);
374 	while (next) {
375 		range_node = rb_entry(next, struct regmap_range_node, node);
376 		next = rb_next(&range_node->node);
377 		rb_erase(&range_node->node, &map->range_tree);
378 		kfree(range_node);
379 	}
380 
381 	kfree(map->selector_work_buf);
382 }
383 
384 /**
385  * regmap_init(): Initialise register map
386  *
387  * @dev: Device that will be interacted with
388  * @bus: Bus-specific callbacks to use with device
389  * @bus_context: Data passed to bus-specific callbacks
390  * @config: Configuration for register map
391  *
392  * The return value will be an ERR_PTR() on error or a valid pointer to
393  * a struct regmap.  This function should generally not be called
394  * directly, it should be called by bus-specific init functions.
395  */
regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config)396 struct regmap *regmap_init(struct device *dev,
397 			   const struct regmap_bus *bus,
398 			   void *bus_context,
399 			   const struct regmap_config *config)
400 {
401 	struct regmap *map, **m;
402 	int ret = -EINVAL;
403 	enum regmap_endian reg_endian, val_endian;
404 	int i, j;
405 
406 	if (!config)
407 		goto err;
408 
409 	map = kzalloc(sizeof(*map), GFP_KERNEL);
410 	if (map == NULL) {
411 		ret = -ENOMEM;
412 		goto err;
413 	}
414 
415 	if (config->lock && config->unlock) {
416 		map->lock = config->lock;
417 		map->unlock = config->unlock;
418 		map->lock_arg = config->lock_arg;
419 	} else {
420 		if ((bus && bus->fast_io) ||
421 		    config->fast_io) {
422 			spin_lock_init(&map->spinlock);
423 			map->lock = regmap_lock_spinlock;
424 			map->unlock = regmap_unlock_spinlock;
425 		} else {
426 			mutex_init(&map->mutex);
427 			map->lock = regmap_lock_mutex;
428 			map->unlock = regmap_unlock_mutex;
429 		}
430 		map->lock_arg = map;
431 	}
432 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
433 	map->format.pad_bytes = config->pad_bits / 8;
434 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
435 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
436 			config->val_bits + config->pad_bits, 8);
437 	map->reg_shift = config->pad_bits % 8;
438 	if (config->reg_stride)
439 		map->reg_stride = config->reg_stride;
440 	else
441 		map->reg_stride = 1;
442 	map->use_single_rw = config->use_single_rw;
443 	map->dev = dev;
444 	map->bus = bus;
445 	map->bus_context = bus_context;
446 	map->max_register = config->max_register;
447 	map->wr_table = config->wr_table;
448 	map->rd_table = config->rd_table;
449 	map->volatile_table = config->volatile_table;
450 	map->precious_table = config->precious_table;
451 	map->writeable_reg = config->writeable_reg;
452 	map->readable_reg = config->readable_reg;
453 	map->volatile_reg = config->volatile_reg;
454 	map->precious_reg = config->precious_reg;
455 	map->cache_type = config->cache_type;
456 	map->name = config->name;
457 
458 	spin_lock_init(&map->async_lock);
459 	INIT_LIST_HEAD(&map->async_list);
460 	init_waitqueue_head(&map->async_waitq);
461 
462 	if (config->read_flag_mask || config->write_flag_mask) {
463 		map->read_flag_mask = config->read_flag_mask;
464 		map->write_flag_mask = config->write_flag_mask;
465 	} else if (bus) {
466 		map->read_flag_mask = bus->read_flag_mask;
467 	}
468 
469 	if (!bus) {
470 		map->reg_read  = config->reg_read;
471 		map->reg_write = config->reg_write;
472 
473 		map->defer_caching = false;
474 		goto skip_format_initialization;
475 	} else {
476 		map->reg_read  = _regmap_bus_read;
477 	}
478 
479 	reg_endian = config->reg_format_endian;
480 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
481 		reg_endian = bus->reg_format_endian_default;
482 	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
483 		reg_endian = REGMAP_ENDIAN_BIG;
484 
485 	val_endian = config->val_format_endian;
486 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
487 		val_endian = bus->val_format_endian_default;
488 	if (val_endian == REGMAP_ENDIAN_DEFAULT)
489 		val_endian = REGMAP_ENDIAN_BIG;
490 
491 	switch (config->reg_bits + map->reg_shift) {
492 	case 2:
493 		switch (config->val_bits) {
494 		case 6:
495 			map->format.format_write = regmap_format_2_6_write;
496 			break;
497 		default:
498 			goto err_map;
499 		}
500 		break;
501 
502 	case 4:
503 		switch (config->val_bits) {
504 		case 12:
505 			map->format.format_write = regmap_format_4_12_write;
506 			break;
507 		default:
508 			goto err_map;
509 		}
510 		break;
511 
512 	case 7:
513 		switch (config->val_bits) {
514 		case 9:
515 			map->format.format_write = regmap_format_7_9_write;
516 			break;
517 		default:
518 			goto err_map;
519 		}
520 		break;
521 
522 	case 10:
523 		switch (config->val_bits) {
524 		case 14:
525 			map->format.format_write = regmap_format_10_14_write;
526 			break;
527 		default:
528 			goto err_map;
529 		}
530 		break;
531 
532 	case 8:
533 		map->format.format_reg = regmap_format_8;
534 		break;
535 
536 	case 16:
537 		switch (reg_endian) {
538 		case REGMAP_ENDIAN_BIG:
539 			map->format.format_reg = regmap_format_16_be;
540 			break;
541 		case REGMAP_ENDIAN_NATIVE:
542 			map->format.format_reg = regmap_format_16_native;
543 			break;
544 		default:
545 			goto err_map;
546 		}
547 		break;
548 
549 	case 24:
550 		if (reg_endian != REGMAP_ENDIAN_BIG)
551 			goto err_map;
552 		map->format.format_reg = regmap_format_24;
553 		break;
554 
555 	case 32:
556 		switch (reg_endian) {
557 		case REGMAP_ENDIAN_BIG:
558 			map->format.format_reg = regmap_format_32_be;
559 			break;
560 		case REGMAP_ENDIAN_NATIVE:
561 			map->format.format_reg = regmap_format_32_native;
562 			break;
563 		default:
564 			goto err_map;
565 		}
566 		break;
567 
568 	default:
569 		goto err_map;
570 	}
571 
572 	if (val_endian == REGMAP_ENDIAN_NATIVE)
573 		map->format.parse_inplace = regmap_parse_inplace_noop;
574 
575 	switch (config->val_bits) {
576 	case 8:
577 		map->format.format_val = regmap_format_8;
578 		map->format.parse_val = regmap_parse_8;
579 		map->format.parse_inplace = regmap_parse_inplace_noop;
580 		break;
581 	case 16:
582 		switch (val_endian) {
583 		case REGMAP_ENDIAN_BIG:
584 			map->format.format_val = regmap_format_16_be;
585 			map->format.parse_val = regmap_parse_16_be;
586 			map->format.parse_inplace = regmap_parse_16_be_inplace;
587 			break;
588 		case REGMAP_ENDIAN_NATIVE:
589 			map->format.format_val = regmap_format_16_native;
590 			map->format.parse_val = regmap_parse_16_native;
591 			break;
592 		default:
593 			goto err_map;
594 		}
595 		break;
596 	case 24:
597 		if (val_endian != REGMAP_ENDIAN_BIG)
598 			goto err_map;
599 		map->format.format_val = regmap_format_24;
600 		map->format.parse_val = regmap_parse_24;
601 		break;
602 	case 32:
603 		switch (val_endian) {
604 		case REGMAP_ENDIAN_BIG:
605 			map->format.format_val = regmap_format_32_be;
606 			map->format.parse_val = regmap_parse_32_be;
607 			map->format.parse_inplace = regmap_parse_32_be_inplace;
608 			break;
609 		case REGMAP_ENDIAN_NATIVE:
610 			map->format.format_val = regmap_format_32_native;
611 			map->format.parse_val = regmap_parse_32_native;
612 			break;
613 		default:
614 			goto err_map;
615 		}
616 		break;
617 	}
618 
619 	if (map->format.format_write) {
620 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
621 		    (val_endian != REGMAP_ENDIAN_BIG))
622 			goto err_map;
623 		map->use_single_rw = true;
624 	}
625 
626 	if (!map->format.format_write &&
627 	    !(map->format.format_reg && map->format.format_val))
628 		goto err_map;
629 
630 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 	if (map->work_buf == NULL) {
632 		ret = -ENOMEM;
633 		goto err_map;
634 	}
635 
636 	if (map->format.format_write) {
637 		map->defer_caching = false;
638 		map->reg_write = _regmap_bus_formatted_write;
639 	} else if (map->format.format_val) {
640 		map->defer_caching = true;
641 		map->reg_write = _regmap_bus_raw_write;
642 	}
643 
644 skip_format_initialization:
645 
646 	map->range_tree = RB_ROOT;
647 	for (i = 0; i < config->num_ranges; i++) {
648 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
649 		struct regmap_range_node *new;
650 
651 		/* Sanity check */
652 		if (range_cfg->range_max < range_cfg->range_min) {
653 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
654 				range_cfg->range_max, range_cfg->range_min);
655 			goto err_range;
656 		}
657 
658 		if (range_cfg->range_max > map->max_register) {
659 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
660 				range_cfg->range_max, map->max_register);
661 			goto err_range;
662 		}
663 
664 		if (range_cfg->selector_reg > map->max_register) {
665 			dev_err(map->dev,
666 				"Invalid range %d: selector out of map\n", i);
667 			goto err_range;
668 		}
669 
670 		if (range_cfg->window_len == 0) {
671 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
672 				i);
673 			goto err_range;
674 		}
675 
676 		/* Make sure, that this register range has no selector
677 		   or data window within its boundary */
678 		for (j = 0; j < config->num_ranges; j++) {
679 			unsigned sel_reg = config->ranges[j].selector_reg;
680 			unsigned win_min = config->ranges[j].window_start;
681 			unsigned win_max = win_min +
682 					   config->ranges[j].window_len - 1;
683 
684 			if (range_cfg->range_min <= sel_reg &&
685 			    sel_reg <= range_cfg->range_max) {
686 				dev_err(map->dev,
687 					"Range %d: selector for %d in window\n",
688 					i, j);
689 				goto err_range;
690 			}
691 
692 			if (!(win_max < range_cfg->range_min ||
693 			      win_min > range_cfg->range_max)) {
694 				dev_err(map->dev,
695 					"Range %d: window for %d in window\n",
696 					i, j);
697 				goto err_range;
698 			}
699 		}
700 
701 		new = kzalloc(sizeof(*new), GFP_KERNEL);
702 		if (new == NULL) {
703 			ret = -ENOMEM;
704 			goto err_range;
705 		}
706 
707 		new->map = map;
708 		new->name = range_cfg->name;
709 		new->range_min = range_cfg->range_min;
710 		new->range_max = range_cfg->range_max;
711 		new->selector_reg = range_cfg->selector_reg;
712 		new->selector_mask = range_cfg->selector_mask;
713 		new->selector_shift = range_cfg->selector_shift;
714 		new->window_start = range_cfg->window_start;
715 		new->window_len = range_cfg->window_len;
716 
717 		if (_regmap_range_add(map, new) == false) {
718 			dev_err(map->dev, "Failed to add range %d\n", i);
719 			kfree(new);
720 			goto err_range;
721 		}
722 
723 		if (map->selector_work_buf == NULL) {
724 			map->selector_work_buf =
725 				kzalloc(map->format.buf_size, GFP_KERNEL);
726 			if (map->selector_work_buf == NULL) {
727 				ret = -ENOMEM;
728 				goto err_range;
729 			}
730 		}
731 	}
732 
733 	regmap_debugfs_init(map, config->name);
734 
735 	ret = regcache_init(map, config);
736 	if (ret != 0)
737 		goto err_range;
738 
739 	/* Add a devres resource for dev_get_regmap() */
740 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
741 	if (!m) {
742 		ret = -ENOMEM;
743 		goto err_debugfs;
744 	}
745 	*m = map;
746 	devres_add(dev, m);
747 
748 	return map;
749 
750 err_debugfs:
751 	regmap_debugfs_exit(map);
752 	regcache_exit(map);
753 err_range:
754 	regmap_range_exit(map);
755 	kfree(map->work_buf);
756 err_map:
757 	kfree(map);
758 err:
759 	return ERR_PTR(ret);
760 }
761 EXPORT_SYMBOL_GPL(regmap_init);
762 
devm_regmap_release(struct device * dev,void * res)763 static void devm_regmap_release(struct device *dev, void *res)
764 {
765 	regmap_exit(*(struct regmap **)res);
766 }
767 
768 /**
769  * devm_regmap_init(): Initialise managed register map
770  *
771  * @dev: Device that will be interacted with
772  * @bus: Bus-specific callbacks to use with device
773  * @bus_context: Data passed to bus-specific callbacks
774  * @config: Configuration for register map
775  *
776  * The return value will be an ERR_PTR() on error or a valid pointer
777  * to a struct regmap.  This function should generally not be called
778  * directly, it should be called by bus-specific init functions.  The
779  * map will be automatically freed by the device management code.
780  */
devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config)781 struct regmap *devm_regmap_init(struct device *dev,
782 				const struct regmap_bus *bus,
783 				void *bus_context,
784 				const struct regmap_config *config)
785 {
786 	struct regmap **ptr, *regmap;
787 
788 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
789 	if (!ptr)
790 		return ERR_PTR(-ENOMEM);
791 
792 	regmap = regmap_init(dev, bus, bus_context, config);
793 	if (!IS_ERR(regmap)) {
794 		*ptr = regmap;
795 		devres_add(dev, ptr);
796 	} else {
797 		devres_free(ptr);
798 	}
799 
800 	return regmap;
801 }
802 EXPORT_SYMBOL_GPL(devm_regmap_init);
803 
804 /**
805  * regmap_reinit_cache(): Reinitialise the current register cache
806  *
807  * @map: Register map to operate on.
808  * @config: New configuration.  Only the cache data will be used.
809  *
810  * Discard any existing register cache for the map and initialize a
811  * new cache.  This can be used to restore the cache to defaults or to
812  * update the cache configuration to reflect runtime discovery of the
813  * hardware.
814  *
815  * No explicit locking is done here, the user needs to ensure that
816  * this function will not race with other calls to regmap.
817  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)818 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
819 {
820 	regcache_exit(map);
821 	regmap_debugfs_exit(map);
822 
823 	map->max_register = config->max_register;
824 	map->writeable_reg = config->writeable_reg;
825 	map->readable_reg = config->readable_reg;
826 	map->volatile_reg = config->volatile_reg;
827 	map->precious_reg = config->precious_reg;
828 	map->cache_type = config->cache_type;
829 
830 	regmap_debugfs_init(map, config->name);
831 
832 	map->cache_bypass = false;
833 	map->cache_only = false;
834 
835 	return regcache_init(map, config);
836 }
837 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
838 
839 /**
840  * regmap_exit(): Free a previously allocated register map
841  */
regmap_exit(struct regmap * map)842 void regmap_exit(struct regmap *map)
843 {
844 	regcache_exit(map);
845 	regmap_debugfs_exit(map);
846 	regmap_range_exit(map);
847 	if (map->bus && map->bus->free_context)
848 		map->bus->free_context(map->bus_context);
849 	kfree(map->work_buf);
850 	kfree(map);
851 }
852 EXPORT_SYMBOL_GPL(regmap_exit);
853 
dev_get_regmap_match(struct device * dev,void * res,void * data)854 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
855 {
856 	struct regmap **r = res;
857 	if (!r || !*r) {
858 		WARN_ON(!r || !*r);
859 		return 0;
860 	}
861 
862 	/* If the user didn't specify a name match any */
863 	if (data)
864 		return (*r)->name == data;
865 	else
866 		return 1;
867 }
868 
869 /**
870  * dev_get_regmap(): Obtain the regmap (if any) for a device
871  *
872  * @dev: Device to retrieve the map for
873  * @name: Optional name for the register map, usually NULL.
874  *
875  * Returns the regmap for the device if one is present, or NULL.  If
876  * name is specified then it must match the name specified when
877  * registering the device, if it is NULL then the first regmap found
878  * will be used.  Devices with multiple register maps are very rare,
879  * generic code should normally not need to specify a name.
880  */
dev_get_regmap(struct device * dev,const char * name)881 struct regmap *dev_get_regmap(struct device *dev, const char *name)
882 {
883 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
884 					dev_get_regmap_match, (void *)name);
885 
886 	if (!r)
887 		return NULL;
888 	return *r;
889 }
890 EXPORT_SYMBOL_GPL(dev_get_regmap);
891 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)892 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
893 			       struct regmap_range_node *range,
894 			       unsigned int val_num)
895 {
896 	void *orig_work_buf;
897 	unsigned int win_offset;
898 	unsigned int win_page;
899 	bool page_chg;
900 	int ret;
901 
902 	win_offset = (*reg - range->range_min) % range->window_len;
903 	win_page = (*reg - range->range_min) / range->window_len;
904 
905 	if (val_num > 1) {
906 		/* Bulk write shouldn't cross range boundary */
907 		if (*reg + val_num - 1 > range->range_max)
908 			return -EINVAL;
909 
910 		/* ... or single page boundary */
911 		if (val_num > range->window_len - win_offset)
912 			return -EINVAL;
913 	}
914 
915 	/* It is possible to have selector register inside data window.
916 	   In that case, selector register is located on every page and
917 	   it needs no page switching, when accessed alone. */
918 	if (val_num > 1 ||
919 	    range->window_start + win_offset != range->selector_reg) {
920 		/* Use separate work_buf during page switching */
921 		orig_work_buf = map->work_buf;
922 		map->work_buf = map->selector_work_buf;
923 
924 		ret = _regmap_update_bits(map, range->selector_reg,
925 					  range->selector_mask,
926 					  win_page << range->selector_shift,
927 					  &page_chg);
928 
929 		map->work_buf = orig_work_buf;
930 
931 		if (ret != 0)
932 			return ret;
933 	}
934 
935 	*reg = range->window_start + win_offset;
936 
937 	return 0;
938 }
939 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool async)940 int _regmap_raw_write(struct regmap *map, unsigned int reg,
941 		      const void *val, size_t val_len, bool async)
942 {
943 	struct regmap_range_node *range;
944 	unsigned long flags;
945 	u8 *u8 = map->work_buf;
946 	void *work_val = map->work_buf + map->format.reg_bytes +
947 		map->format.pad_bytes;
948 	void *buf;
949 	int ret = -ENOTSUPP;
950 	size_t len;
951 	int i;
952 
953 	WARN_ON(!map->bus);
954 
955 	/* Check for unwritable registers before we start */
956 	if (map->writeable_reg)
957 		for (i = 0; i < val_len / map->format.val_bytes; i++)
958 			if (!map->writeable_reg(map->dev,
959 						reg + (i * map->reg_stride)))
960 				return -EINVAL;
961 
962 	if (!map->cache_bypass && map->format.parse_val) {
963 		unsigned int ival;
964 		int val_bytes = map->format.val_bytes;
965 		for (i = 0; i < val_len / val_bytes; i++) {
966 			ival = map->format.parse_val(val + (i * val_bytes));
967 			ret = regcache_write(map, reg + (i * map->reg_stride),
968 					     ival);
969 			if (ret) {
970 				dev_err(map->dev,
971 					"Error in caching of register: %x ret: %d\n",
972 					reg + i, ret);
973 				return ret;
974 			}
975 		}
976 		if (map->cache_only) {
977 			map->cache_dirty = true;
978 			return 0;
979 		}
980 	}
981 
982 	range = _regmap_range_lookup(map, reg);
983 	if (range) {
984 		int val_num = val_len / map->format.val_bytes;
985 		int win_offset = (reg - range->range_min) % range->window_len;
986 		int win_residue = range->window_len - win_offset;
987 
988 		/* If the write goes beyond the end of the window split it */
989 		while (val_num > win_residue) {
990 			dev_dbg(map->dev, "Writing window %d/%zu\n",
991 				win_residue, val_len / map->format.val_bytes);
992 			ret = _regmap_raw_write(map, reg, val, win_residue *
993 						map->format.val_bytes, async);
994 			if (ret != 0)
995 				return ret;
996 
997 			reg += win_residue;
998 			val_num -= win_residue;
999 			val += win_residue * map->format.val_bytes;
1000 			val_len -= win_residue * map->format.val_bytes;
1001 
1002 			win_offset = (reg - range->range_min) %
1003 				range->window_len;
1004 			win_residue = range->window_len - win_offset;
1005 		}
1006 
1007 		ret = _regmap_select_page(map, &reg, range, val_num);
1008 		if (ret != 0)
1009 			return ret;
1010 	}
1011 
1012 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1013 
1014 	u8[0] |= map->write_flag_mask;
1015 
1016 	if (async && map->bus->async_write) {
1017 		struct regmap_async *async = map->bus->async_alloc();
1018 		if (!async)
1019 			return -ENOMEM;
1020 
1021 		trace_regmap_async_write_start(map->dev, reg, val_len);
1022 
1023 		async->work_buf = kzalloc(map->format.buf_size,
1024 					  GFP_KERNEL | GFP_DMA);
1025 		if (!async->work_buf) {
1026 			kfree(async);
1027 			return -ENOMEM;
1028 		}
1029 
1030 		INIT_WORK(&async->cleanup, async_cleanup);
1031 		async->map = map;
1032 
1033 		/* If the caller supplied the value we can use it safely. */
1034 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1035 		       map->format.reg_bytes + map->format.val_bytes);
1036 		if (val == work_val)
1037 			val = async->work_buf + map->format.pad_bytes +
1038 				map->format.reg_bytes;
1039 
1040 		spin_lock_irqsave(&map->async_lock, flags);
1041 		list_add_tail(&async->list, &map->async_list);
1042 		spin_unlock_irqrestore(&map->async_lock, flags);
1043 
1044 		ret = map->bus->async_write(map->bus_context, async->work_buf,
1045 					    map->format.reg_bytes +
1046 					    map->format.pad_bytes,
1047 					    val, val_len, async);
1048 
1049 		if (ret != 0) {
1050 			dev_err(map->dev, "Failed to schedule write: %d\n",
1051 				ret);
1052 
1053 			spin_lock_irqsave(&map->async_lock, flags);
1054 			list_del(&async->list);
1055 			spin_unlock_irqrestore(&map->async_lock, flags);
1056 
1057 			kfree(async->work_buf);
1058 			kfree(async);
1059 		}
1060 
1061 		return ret;
1062 	}
1063 
1064 	trace_regmap_hw_write_start(map->dev, reg,
1065 				    val_len / map->format.val_bytes);
1066 
1067 	/* If we're doing a single register write we can probably just
1068 	 * send the work_buf directly, otherwise try to do a gather
1069 	 * write.
1070 	 */
1071 	if (val == work_val)
1072 		ret = map->bus->write(map->bus_context, map->work_buf,
1073 				      map->format.reg_bytes +
1074 				      map->format.pad_bytes +
1075 				      val_len);
1076 	else if (map->bus->gather_write)
1077 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1078 					     map->format.reg_bytes +
1079 					     map->format.pad_bytes,
1080 					     val, val_len);
1081 
1082 	/* If that didn't work fall back on linearising by hand. */
1083 	if (ret == -ENOTSUPP) {
1084 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1085 		buf = kzalloc(len, GFP_KERNEL);
1086 		if (!buf)
1087 			return -ENOMEM;
1088 
1089 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1090 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1091 		       val, val_len);
1092 		ret = map->bus->write(map->bus_context, buf, len);
1093 
1094 		kfree(buf);
1095 	}
1096 
1097 	trace_regmap_hw_write_done(map->dev, reg,
1098 				   val_len / map->format.val_bytes);
1099 
1100 	return ret;
1101 }
1102 
1103 /**
1104  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1105  *
1106  * @map: Map to check.
1107  */
regmap_can_raw_write(struct regmap * map)1108 bool regmap_can_raw_write(struct regmap *map)
1109 {
1110 	return map->bus && map->format.format_val && map->format.format_reg;
1111 }
1112 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1113 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1114 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1115 				       unsigned int val)
1116 {
1117 	int ret;
1118 	struct regmap_range_node *range;
1119 	struct regmap *map = context;
1120 
1121 	WARN_ON(!map->bus || !map->format.format_write);
1122 
1123 	range = _regmap_range_lookup(map, reg);
1124 	if (range) {
1125 		ret = _regmap_select_page(map, &reg, range, 1);
1126 		if (ret != 0)
1127 			return ret;
1128 	}
1129 
1130 	map->format.format_write(map, reg, val);
1131 
1132 	trace_regmap_hw_write_start(map->dev, reg, 1);
1133 
1134 	ret = map->bus->write(map->bus_context, map->work_buf,
1135 			      map->format.buf_size);
1136 
1137 	trace_regmap_hw_write_done(map->dev, reg, 1);
1138 
1139 	return ret;
1140 }
1141 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1142 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1143 				 unsigned int val)
1144 {
1145 	struct regmap *map = context;
1146 
1147 	WARN_ON(!map->bus || !map->format.format_val);
1148 
1149 	map->format.format_val(map->work_buf + map->format.reg_bytes
1150 			       + map->format.pad_bytes, val, 0);
1151 	return _regmap_raw_write(map, reg,
1152 				 map->work_buf +
1153 				 map->format.reg_bytes +
1154 				 map->format.pad_bytes,
1155 				 map->format.val_bytes, false);
1156 }
1157 
_regmap_map_get_context(struct regmap * map)1158 static inline void *_regmap_map_get_context(struct regmap *map)
1159 {
1160 	return (map->bus) ? map : map->bus_context;
1161 }
1162 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1163 int _regmap_write(struct regmap *map, unsigned int reg,
1164 		  unsigned int val)
1165 {
1166 	int ret;
1167 	void *context = _regmap_map_get_context(map);
1168 
1169 	if (!map->cache_bypass && !map->defer_caching) {
1170 		ret = regcache_write(map, reg, val);
1171 		if (ret != 0)
1172 			return ret;
1173 		if (map->cache_only) {
1174 			map->cache_dirty = true;
1175 			return 0;
1176 		}
1177 	}
1178 
1179 #ifdef LOG_DEVICE
1180 	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1181 		dev_info(map->dev, "%x <= %x\n", reg, val);
1182 #endif
1183 
1184 	trace_regmap_reg_write(map->dev, reg, val);
1185 
1186 	return map->reg_write(context, reg, val);
1187 }
1188 
1189 /**
1190  * regmap_write(): Write a value to a single register
1191  *
1192  * @map: Register map to write to
1193  * @reg: Register to write to
1194  * @val: Value to be written
1195  *
1196  * A value of zero will be returned on success, a negative errno will
1197  * be returned in error cases.
1198  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1199 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1200 {
1201 	int ret;
1202 
1203 	if (reg % map->reg_stride)
1204 		return -EINVAL;
1205 
1206 	map->lock(map->lock_arg);
1207 
1208 	ret = _regmap_write(map, reg, val);
1209 
1210 	map->unlock(map->lock_arg);
1211 
1212 	return ret;
1213 }
1214 EXPORT_SYMBOL_GPL(regmap_write);
1215 
1216 /**
1217  * regmap_raw_write(): Write raw values to one or more registers
1218  *
1219  * @map: Register map to write to
1220  * @reg: Initial register to write to
1221  * @val: Block of data to be written, laid out for direct transmission to the
1222  *       device
1223  * @val_len: Length of data pointed to by val.
1224  *
1225  * This function is intended to be used for things like firmware
1226  * download where a large block of data needs to be transferred to the
1227  * device.  No formatting will be done on the data provided.
1228  *
1229  * A value of zero will be returned on success, a negative errno will
1230  * be returned in error cases.
1231  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1232 int regmap_raw_write(struct regmap *map, unsigned int reg,
1233 		     const void *val, size_t val_len)
1234 {
1235 	int ret;
1236 
1237 	if (!regmap_can_raw_write(map))
1238 		return -EINVAL;
1239 	if (val_len % map->format.val_bytes)
1240 		return -EINVAL;
1241 
1242 	map->lock(map->lock_arg);
1243 
1244 	ret = _regmap_raw_write(map, reg, val, val_len, false);
1245 
1246 	map->unlock(map->lock_arg);
1247 
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL_GPL(regmap_raw_write);
1251 
1252 /*
1253  * regmap_bulk_write(): Write multiple registers to the device
1254  *
1255  * @map: Register map to write to
1256  * @reg: First register to be write from
1257  * @val: Block of data to be written, in native register size for device
1258  * @val_count: Number of registers to write
1259  *
1260  * This function is intended to be used for writing a large block of
1261  * data to the device either in single transfer or multiple transfer.
1262  *
1263  * A value of zero will be returned on success, a negative errno will
1264  * be returned in error cases.
1265  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)1266 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1267 		     size_t val_count)
1268 {
1269 	int ret = 0, i;
1270 	size_t val_bytes = map->format.val_bytes;
1271 	void *wval;
1272 
1273 	if (!map->bus)
1274 		return -EINVAL;
1275 	if (!map->format.parse_inplace)
1276 		return -EINVAL;
1277 	if (reg % map->reg_stride)
1278 		return -EINVAL;
1279 
1280 	map->lock(map->lock_arg);
1281 
1282 	/* No formatting is require if val_byte is 1 */
1283 	if (val_bytes == 1) {
1284 		wval = (void *)val;
1285 	} else {
1286 		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1287 		if (!wval) {
1288 			ret = -ENOMEM;
1289 			dev_err(map->dev, "Error in memory allocation\n");
1290 			goto out;
1291 		}
1292 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1293 			map->format.parse_inplace(wval + i);
1294 	}
1295 	/*
1296 	 * Some devices does not support bulk write, for
1297 	 * them we have a series of single write operations.
1298 	 */
1299 	if (map->use_single_rw) {
1300 		for (i = 0; i < val_count; i++) {
1301 			ret = regmap_raw_write(map,
1302 					       reg + (i * map->reg_stride),
1303 					       val + (i * val_bytes),
1304 					       val_bytes);
1305 			if (ret != 0)
1306 				return ret;
1307 		}
1308 	} else {
1309 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count,
1310 					false);
1311 	}
1312 
1313 	if (val_bytes != 1)
1314 		kfree(wval);
1315 
1316 out:
1317 	map->unlock(map->lock_arg);
1318 	return ret;
1319 }
1320 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1321 
1322 /**
1323  * regmap_raw_write_async(): Write raw values to one or more registers
1324  *                           asynchronously
1325  *
1326  * @map: Register map to write to
1327  * @reg: Initial register to write to
1328  * @val: Block of data to be written, laid out for direct transmission to the
1329  *       device.  Must be valid until regmap_async_complete() is called.
1330  * @val_len: Length of data pointed to by val.
1331  *
1332  * This function is intended to be used for things like firmware
1333  * download where a large block of data needs to be transferred to the
1334  * device.  No formatting will be done on the data provided.
1335  *
1336  * If supported by the underlying bus the write will be scheduled
1337  * asynchronously, helping maximise I/O speed on higher speed buses
1338  * like SPI.  regmap_async_complete() can be called to ensure that all
1339  * asynchrnous writes have been completed.
1340  *
1341  * A value of zero will be returned on success, a negative errno will
1342  * be returned in error cases.
1343  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1344 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
1345 			   const void *val, size_t val_len)
1346 {
1347 	int ret;
1348 
1349 	if (val_len % map->format.val_bytes)
1350 		return -EINVAL;
1351 	if (reg % map->reg_stride)
1352 		return -EINVAL;
1353 
1354 	map->lock(map->lock_arg);
1355 
1356 	ret = _regmap_raw_write(map, reg, val, val_len, true);
1357 
1358 	map->unlock(map->lock_arg);
1359 
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
1363 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len)1364 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1365 			    unsigned int val_len)
1366 {
1367 	struct regmap_range_node *range;
1368 	u8 *u8 = map->work_buf;
1369 	int ret;
1370 
1371 	WARN_ON(!map->bus);
1372 
1373 	range = _regmap_range_lookup(map, reg);
1374 	if (range) {
1375 		ret = _regmap_select_page(map, &reg, range,
1376 					  val_len / map->format.val_bytes);
1377 		if (ret != 0)
1378 			return ret;
1379 	}
1380 
1381 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1382 
1383 	/*
1384 	 * Some buses or devices flag reads by setting the high bits in the
1385 	 * register addresss; since it's always the high bits for all
1386 	 * current formats we can do this here rather than in
1387 	 * formatting.  This may break if we get interesting formats.
1388 	 */
1389 	u8[0] |= map->read_flag_mask;
1390 
1391 	trace_regmap_hw_read_start(map->dev, reg,
1392 				   val_len / map->format.val_bytes);
1393 
1394 	ret = map->bus->read(map->bus_context, map->work_buf,
1395 			     map->format.reg_bytes + map->format.pad_bytes,
1396 			     val, val_len);
1397 
1398 	trace_regmap_hw_read_done(map->dev, reg,
1399 				  val_len / map->format.val_bytes);
1400 
1401 	return ret;
1402 }
1403 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)1404 static int _regmap_bus_read(void *context, unsigned int reg,
1405 			    unsigned int *val)
1406 {
1407 	int ret;
1408 	struct regmap *map = context;
1409 
1410 	if (!map->format.parse_val)
1411 		return -EINVAL;
1412 
1413 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
1414 	if (ret == 0)
1415 		*val = map->format.parse_val(map->work_buf);
1416 
1417 	return ret;
1418 }
1419 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)1420 static int _regmap_read(struct regmap *map, unsigned int reg,
1421 			unsigned int *val)
1422 {
1423 	int ret;
1424 	void *context = _regmap_map_get_context(map);
1425 
1426 	WARN_ON(!map->reg_read);
1427 
1428 	if (!map->cache_bypass) {
1429 		ret = regcache_read(map, reg, val);
1430 		if (ret == 0)
1431 			return 0;
1432 	}
1433 
1434 	if (map->cache_only)
1435 		return -EBUSY;
1436 
1437 	ret = map->reg_read(context, reg, val);
1438 	if (ret == 0) {
1439 #ifdef LOG_DEVICE
1440 		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1441 			dev_info(map->dev, "%x => %x\n", reg, *val);
1442 #endif
1443 
1444 		trace_regmap_reg_read(map->dev, reg, *val);
1445 
1446 		if (!map->cache_bypass)
1447 			regcache_write(map, reg, *val);
1448 	}
1449 
1450 	return ret;
1451 }
1452 
1453 /**
1454  * regmap_read(): Read a value from a single register
1455  *
1456  * @map: Register map to write to
1457  * @reg: Register to be read from
1458  * @val: Pointer to store read value
1459  *
1460  * A value of zero will be returned on success, a negative errno will
1461  * be returned in error cases.
1462  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)1463 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
1464 {
1465 	int ret;
1466 
1467 	if (reg % map->reg_stride)
1468 		return -EINVAL;
1469 
1470 	map->lock(map->lock_arg);
1471 
1472 	ret = _regmap_read(map, reg, val);
1473 
1474 	map->unlock(map->lock_arg);
1475 
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(regmap_read);
1479 
1480 /**
1481  * regmap_raw_read(): Read raw data from the device
1482  *
1483  * @map: Register map to write to
1484  * @reg: First register to be read from
1485  * @val: Pointer to store read value
1486  * @val_len: Size of data to read
1487  *
1488  * A value of zero will be returned on success, a negative errno will
1489  * be returned in error cases.
1490  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)1491 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
1492 		    size_t val_len)
1493 {
1494 	size_t val_bytes = map->format.val_bytes;
1495 	size_t val_count = val_len / val_bytes;
1496 	unsigned int v;
1497 	int ret, i;
1498 
1499 	if (!map->bus)
1500 		return -EINVAL;
1501 	if (val_len % map->format.val_bytes)
1502 		return -EINVAL;
1503 	if (reg % map->reg_stride)
1504 		return -EINVAL;
1505 
1506 	map->lock(map->lock_arg);
1507 
1508 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
1509 	    map->cache_type == REGCACHE_NONE) {
1510 		/* Physical block read if there's no cache involved */
1511 		ret = _regmap_raw_read(map, reg, val, val_len);
1512 
1513 	} else {
1514 		/* Otherwise go word by word for the cache; should be low
1515 		 * cost as we expect to hit the cache.
1516 		 */
1517 		for (i = 0; i < val_count; i++) {
1518 			ret = _regmap_read(map, reg + (i * map->reg_stride),
1519 					   &v);
1520 			if (ret != 0)
1521 				goto out;
1522 
1523 			map->format.format_val(val + (i * val_bytes), v, 0);
1524 		}
1525 	}
1526 
1527  out:
1528 	map->unlock(map->lock_arg);
1529 
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(regmap_raw_read);
1533 
1534 /**
1535  * regmap_bulk_read(): Read multiple registers from the device
1536  *
1537  * @map: Register map to write to
1538  * @reg: First register to be read from
1539  * @val: Pointer to store read value, in native register size for device
1540  * @val_count: Number of registers to read
1541  *
1542  * A value of zero will be returned on success, a negative errno will
1543  * be returned in error cases.
1544  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)1545 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
1546 		     size_t val_count)
1547 {
1548 	int ret, i;
1549 	size_t val_bytes = map->format.val_bytes;
1550 	bool vol = regmap_volatile_range(map, reg, val_count);
1551 
1552 	if (!map->bus)
1553 		return -EINVAL;
1554 	if (!map->format.parse_inplace)
1555 		return -EINVAL;
1556 	if (reg % map->reg_stride)
1557 		return -EINVAL;
1558 
1559 	if (vol || map->cache_type == REGCACHE_NONE) {
1560 		/*
1561 		 * Some devices does not support bulk read, for
1562 		 * them we have a series of single read operations.
1563 		 */
1564 		if (map->use_single_rw) {
1565 			for (i = 0; i < val_count; i++) {
1566 				ret = regmap_raw_read(map,
1567 						reg + (i * map->reg_stride),
1568 						val + (i * val_bytes),
1569 						val_bytes);
1570 				if (ret != 0)
1571 					return ret;
1572 			}
1573 		} else {
1574 			ret = regmap_raw_read(map, reg, val,
1575 					      val_bytes * val_count);
1576 			if (ret != 0)
1577 				return ret;
1578 		}
1579 
1580 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1581 			map->format.parse_inplace(val + i);
1582 	} else {
1583 		for (i = 0; i < val_count; i++) {
1584 			unsigned int ival;
1585 			ret = regmap_read(map, reg + (i * map->reg_stride),
1586 					  &ival);
1587 			if (ret != 0)
1588 				return ret;
1589 			memcpy(val + (i * val_bytes), &ival, val_bytes);
1590 		}
1591 	}
1592 
1593 	return 0;
1594 }
1595 EXPORT_SYMBOL_GPL(regmap_bulk_read);
1596 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change)1597 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
1598 			       unsigned int mask, unsigned int val,
1599 			       bool *change)
1600 {
1601 	int ret;
1602 	unsigned int tmp, orig;
1603 
1604 	ret = _regmap_read(map, reg, &orig);
1605 	if (ret != 0)
1606 		return ret;
1607 
1608 	tmp = orig & ~mask;
1609 	tmp |= val & mask;
1610 
1611 	if (tmp != orig) {
1612 		ret = _regmap_write(map, reg, tmp);
1613 		*change = true;
1614 	} else {
1615 		*change = false;
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 /**
1622  * regmap_update_bits: Perform a read/modify/write cycle on the register map
1623  *
1624  * @map: Register map to update
1625  * @reg: Register to update
1626  * @mask: Bitmask to change
1627  * @val: New value for bitmask
1628  *
1629  * Returns zero for success, a negative number on error.
1630  */
regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val)1631 int regmap_update_bits(struct regmap *map, unsigned int reg,
1632 		       unsigned int mask, unsigned int val)
1633 {
1634 	bool change;
1635 	int ret;
1636 
1637 	map->lock(map->lock_arg);
1638 	ret = _regmap_update_bits(map, reg, mask, val, &change);
1639 	map->unlock(map->lock_arg);
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regmap_update_bits);
1644 
1645 /**
1646  * regmap_update_bits_check: Perform a read/modify/write cycle on the
1647  *                           register map and report if updated
1648  *
1649  * @map: Register map to update
1650  * @reg: Register to update
1651  * @mask: Bitmask to change
1652  * @val: New value for bitmask
1653  * @change: Boolean indicating if a write was done
1654  *
1655  * Returns zero for success, a negative number on error.
1656  */
regmap_update_bits_check(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change)1657 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
1658 			     unsigned int mask, unsigned int val,
1659 			     bool *change)
1660 {
1661 	int ret;
1662 
1663 	map->lock(map->lock_arg);
1664 	ret = _regmap_update_bits(map, reg, mask, val, change);
1665 	map->unlock(map->lock_arg);
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
1669 
regmap_async_complete_cb(struct regmap_async * async,int ret)1670 void regmap_async_complete_cb(struct regmap_async *async, int ret)
1671 {
1672 	struct regmap *map = async->map;
1673 	bool wake;
1674 
1675 	trace_regmap_async_io_complete(map->dev);
1676 
1677 	spin_lock(&map->async_lock);
1678 
1679 	list_del(&async->list);
1680 	wake = list_empty(&map->async_list);
1681 
1682 	if (ret != 0)
1683 		map->async_ret = ret;
1684 
1685 	spin_unlock(&map->async_lock);
1686 
1687 	schedule_work(&async->cleanup);
1688 
1689 	if (wake)
1690 		wake_up(&map->async_waitq);
1691 }
1692 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
1693 
regmap_async_is_done(struct regmap * map)1694 static int regmap_async_is_done(struct regmap *map)
1695 {
1696 	unsigned long flags;
1697 	int ret;
1698 
1699 	spin_lock_irqsave(&map->async_lock, flags);
1700 	ret = list_empty(&map->async_list);
1701 	spin_unlock_irqrestore(&map->async_lock, flags);
1702 
1703 	return ret;
1704 }
1705 
1706 /**
1707  * regmap_async_complete: Ensure all asynchronous I/O has completed.
1708  *
1709  * @map: Map to operate on.
1710  *
1711  * Blocks until any pending asynchronous I/O has completed.  Returns
1712  * an error code for any failed I/O operations.
1713  */
regmap_async_complete(struct regmap * map)1714 int regmap_async_complete(struct regmap *map)
1715 {
1716 	unsigned long flags;
1717 	int ret;
1718 
1719 	/* Nothing to do with no async support */
1720 	if (!map->bus->async_write)
1721 		return 0;
1722 
1723 	trace_regmap_async_complete_start(map->dev);
1724 
1725 	wait_event(map->async_waitq, regmap_async_is_done(map));
1726 
1727 	spin_lock_irqsave(&map->async_lock, flags);
1728 	ret = map->async_ret;
1729 	map->async_ret = 0;
1730 	spin_unlock_irqrestore(&map->async_lock, flags);
1731 
1732 	trace_regmap_async_complete_done(map->dev);
1733 
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(regmap_async_complete);
1737 
1738 /**
1739  * regmap_register_patch: Register and apply register updates to be applied
1740  *                        on device initialistion
1741  *
1742  * @map: Register map to apply updates to.
1743  * @regs: Values to update.
1744  * @num_regs: Number of entries in regs.
1745  *
1746  * Register a set of register updates to be applied to the device
1747  * whenever the device registers are synchronised with the cache and
1748  * apply them immediately.  Typically this is used to apply
1749  * corrections to be applied to the device defaults on startup, such
1750  * as the updates some vendors provide to undocumented registers.
1751  */
regmap_register_patch(struct regmap * map,const struct reg_default * regs,int num_regs)1752 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
1753 			  int num_regs)
1754 {
1755 	int i, ret;
1756 	bool bypass;
1757 
1758 	/* If needed the implementation can be extended to support this */
1759 	if (map->patch)
1760 		return -EBUSY;
1761 
1762 	map->lock(map->lock_arg);
1763 
1764 	bypass = map->cache_bypass;
1765 
1766 	map->cache_bypass = true;
1767 
1768 	/* Write out first; it's useful to apply even if we fail later. */
1769 	for (i = 0; i < num_regs; i++) {
1770 		ret = _regmap_write(map, regs[i].reg, regs[i].def);
1771 		if (ret != 0) {
1772 			dev_err(map->dev, "Failed to write %x = %x: %d\n",
1773 				regs[i].reg, regs[i].def, ret);
1774 			goto out;
1775 		}
1776 	}
1777 
1778 	map->patch = kcalloc(num_regs, sizeof(struct reg_default), GFP_KERNEL);
1779 	if (map->patch != NULL) {
1780 		memcpy(map->patch, regs,
1781 		       num_regs * sizeof(struct reg_default));
1782 		map->patch_regs = num_regs;
1783 	} else {
1784 		ret = -ENOMEM;
1785 	}
1786 
1787 out:
1788 	map->cache_bypass = bypass;
1789 
1790 	map->unlock(map->lock_arg);
1791 
1792 	return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(regmap_register_patch);
1795 
1796 /*
1797  * regmap_get_val_bytes(): Report the size of a register value
1798  *
1799  * Report the size of a register value, mainly intended to for use by
1800  * generic infrastructure built on top of regmap.
1801  */
regmap_get_val_bytes(struct regmap * map)1802 int regmap_get_val_bytes(struct regmap *map)
1803 {
1804 	if (map->format.format_write)
1805 		return -EINVAL;
1806 
1807 	return map->format.val_bytes;
1808 }
1809 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
1810 
regmap_initcall(void)1811 static int __init regmap_initcall(void)
1812 {
1813 	regmap_debugfs_initcall();
1814 
1815 	return 0;
1816 }
1817 postcore_initcall(regmap_initcall);
1818