1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
70 };
71
72 /*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
116
rdev_get_name(struct regulator_dev * rdev)117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
125 }
126
127 /**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
of_get_regulator(struct device * dev,const char * supply)136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152 }
153
_regulator_can_change_status(struct regulator_dev * rdev)154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163 }
164
165 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199 {
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223 }
224
225 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228 {
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301 }
302
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
regulator_name_show(struct device * dev,struct device_attribute * attr,char * buf)326 static ssize_t regulator_name_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
regulator_print_opmode(char * buf,int mode)334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336 switch (mode) {
337 case REGULATOR_MODE_FAST:
338 return sprintf(buf, "fast\n");
339 case REGULATOR_MODE_NORMAL:
340 return sprintf(buf, "normal\n");
341 case REGULATOR_MODE_IDLE:
342 return sprintf(buf, "idle\n");
343 case REGULATOR_MODE_STANDBY:
344 return sprintf(buf, "standby\n");
345 }
346 return sprintf(buf, "unknown\n");
347 }
348
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)349 static ssize_t regulator_opmode_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351 {
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
regulator_print_state(char * buf,int state)358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360 if (state > 0)
361 return sprintf(buf, "enabled\n");
362 else if (state == 0)
363 return sprintf(buf, "disabled\n");
364 else
365 return sprintf(buf, "unknown\n");
366 }
367
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)368 static ssize_t regulator_state_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372 ssize_t ret;
373
374 mutex_lock(&rdev->mutex);
375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376 mutex_unlock(&rdev->mutex);
377
378 return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)382 static ssize_t regulator_status_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
384 {
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 int status;
387 char *label;
388
389 status = rdev->desc->ops->get_status(rdev);
390 if (status < 0)
391 return status;
392
393 switch (status) {
394 case REGULATOR_STATUS_OFF:
395 label = "off";
396 break;
397 case REGULATOR_STATUS_ON:
398 label = "on";
399 break;
400 case REGULATOR_STATUS_ERROR:
401 label = "error";
402 break;
403 case REGULATOR_STATUS_FAST:
404 label = "fast";
405 break;
406 case REGULATOR_STATUS_NORMAL:
407 label = "normal";
408 break;
409 case REGULATOR_STATUS_IDLE:
410 label = "idle";
411 break;
412 case REGULATOR_STATUS_STANDBY:
413 label = "standby";
414 break;
415 case REGULATOR_STATUS_BYPASS:
416 label = "bypass";
417 break;
418 case REGULATOR_STATUS_UNDEFINED:
419 label = "undefined";
420 break;
421 default:
422 return -ERANGE;
423 }
424
425 return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)429 static ssize_t regulator_min_uA_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434 if (!rdev->constraints)
435 return sprintf(buf, "constraint not defined\n");
436
437 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)441 static ssize_t regulator_max_uA_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443 {
444 struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446 if (!rdev->constraints)
447 return sprintf(buf, "constraint not defined\n");
448
449 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)453 static ssize_t regulator_min_uV_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
460
461 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)465 static ssize_t regulator_max_uV_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
467 {
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
472
473 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)477 static ssize_t regulator_total_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 struct regulator *regulator;
482 int uA = 0;
483
484 mutex_lock(&rdev->mutex);
485 list_for_each_entry(regulator, &rdev->consumer_list, list)
486 uA += regulator->uA_load;
487 mutex_unlock(&rdev->mutex);
488 return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
regulator_num_users_show(struct device * dev,struct device_attribute * attr,char * buf)492 static ssize_t regulator_num_users_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496 return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
regulator_type_show(struct device * dev,struct device_attribute * attr,char * buf)499 static ssize_t regulator_type_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504 switch (rdev->desc->type) {
505 case REGULATOR_VOLTAGE:
506 return sprintf(buf, "voltage\n");
507 case REGULATOR_CURRENT:
508 return sprintf(buf, "current\n");
509 }
510 return sprintf(buf, "unknown\n");
511 }
512
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521 regulator_suspend_mem_uV_show, NULL);
522
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
525 {
526 struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531 regulator_suspend_disk_uV_show, NULL);
532
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541 regulator_suspend_standby_uV_show, NULL);
542
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544 struct device_attribute *attr, char *buf)
545 {
546 struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548 return regulator_print_opmode(buf,
549 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552 regulator_suspend_mem_mode_show, NULL);
553
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559 return regulator_print_opmode(buf,
560 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563 regulator_suspend_disk_mode_show, NULL);
564
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570 return regulator_print_opmode(buf,
571 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574 regulator_suspend_standby_mode_show, NULL);
575
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581 return regulator_print_state(buf,
582 rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585 regulator_suspend_mem_state_show, NULL);
586
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return regulator_print_state(buf,
593 rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596 regulator_suspend_disk_state_show, NULL);
597
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
600 {
601 struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603 return regulator_print_state(buf,
604 rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607 regulator_suspend_standby_state_show, NULL);
608
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)609 static ssize_t regulator_bypass_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613 const char *report;
614 bool bypass;
615 int ret;
616
617 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619 if (ret != 0)
620 report = "unknown";
621 else if (bypass)
622 report = "enabled";
623 else
624 report = "disabled";
625
626 return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629 regulator_bypass_show, NULL);
630
631 /*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635 static struct device_attribute regulator_dev_attrs[] = {
636 __ATTR(name, 0444, regulator_name_show, NULL),
637 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638 __ATTR(type, 0444, regulator_type_show, NULL),
639 __ATTR_NULL,
640 };
641
regulator_dev_release(struct device * dev)642 static void regulator_dev_release(struct device *dev)
643 {
644 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649 .name = "regulator",
650 .dev_release = regulator_dev_release,
651 .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658 struct regulator *sibling;
659 int current_uA = 0, output_uV, input_uV, err;
660 unsigned int mode;
661
662 err = regulator_check_drms(rdev);
663 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 (!rdev->desc->ops->get_voltage &&
665 !rdev->desc->ops->get_voltage_sel) ||
666 !rdev->desc->ops->set_mode)
667 return;
668
669 /* get output voltage */
670 output_uV = _regulator_get_voltage(rdev);
671 if (output_uV <= 0)
672 return;
673
674 /* get input voltage */
675 input_uV = 0;
676 if (rdev->supply)
677 input_uV = regulator_get_voltage(rdev->supply);
678 if (input_uV <= 0)
679 input_uV = rdev->constraints->input_uV;
680 if (input_uV <= 0)
681 return;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 /* now get the optimum mode for our new total regulator load */
688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 output_uV, current_uA);
690
691 /* check the new mode is allowed */
692 err = regulator_mode_constrain(rdev, &mode);
693 if (err == 0)
694 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)697 static int suspend_set_state(struct regulator_dev *rdev,
698 struct regulator_state *rstate)
699 {
700 int ret = 0;
701
702 /* If we have no suspend mode configration don't set anything;
703 * only warn if the driver implements set_suspend_voltage or
704 * set_suspend_mode callback.
705 */
706 if (!rstate->enabled && !rstate->disabled) {
707 if (rdev->desc->ops->set_suspend_voltage ||
708 rdev->desc->ops->set_suspend_mode)
709 rdev_warn(rdev, "No configuration\n");
710 return 0;
711 }
712
713 if (rstate->enabled && rstate->disabled) {
714 rdev_err(rdev, "invalid configuration\n");
715 return -EINVAL;
716 }
717
718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719 ret = rdev->desc->ops->set_suspend_enable(rdev);
720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721 ret = rdev->desc->ops->set_suspend_disable(rdev);
722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723 ret = 0;
724
725 if (ret < 0) {
726 rdev_err(rdev, "failed to enabled/disable\n");
727 return ret;
728 }
729
730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732 if (ret < 0) {
733 rdev_err(rdev, "failed to set voltage\n");
734 return ret;
735 }
736 }
737
738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740 if (ret < 0) {
741 rdev_err(rdev, "failed to set mode\n");
742 return ret;
743 }
744 }
745 return ret;
746 }
747
748 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751 if (!rdev->constraints)
752 return -EINVAL;
753
754 switch (state) {
755 case PM_SUSPEND_STANDBY:
756 return suspend_set_state(rdev,
757 &rdev->constraints->state_standby);
758 case PM_SUSPEND_MEM:
759 return suspend_set_state(rdev,
760 &rdev->constraints->state_mem);
761 case PM_SUSPEND_MAX:
762 return suspend_set_state(rdev,
763 &rdev->constraints->state_disk);
764 default:
765 return -EINVAL;
766 }
767 }
768
print_constraints(struct regulator_dev * rdev)769 static void print_constraints(struct regulator_dev *rdev)
770 {
771 struct regulation_constraints *constraints = rdev->constraints;
772 char buf[80] = "";
773 int count = 0;
774 int ret;
775
776 if (constraints->min_uV && constraints->max_uV) {
777 if (constraints->min_uV == constraints->max_uV)
778 count += sprintf(buf + count, "%d mV ",
779 constraints->min_uV / 1000);
780 else
781 count += sprintf(buf + count, "%d <--> %d mV ",
782 constraints->min_uV / 1000,
783 constraints->max_uV / 1000);
784 }
785
786 if (!constraints->min_uV ||
787 constraints->min_uV != constraints->max_uV) {
788 ret = _regulator_get_voltage(rdev);
789 if (ret > 0)
790 count += sprintf(buf + count, "at %d mV ", ret / 1000);
791 }
792
793 if (constraints->uV_offset)
794 count += sprintf(buf, "%dmV offset ",
795 constraints->uV_offset / 1000);
796
797 if (constraints->min_uA && constraints->max_uA) {
798 if (constraints->min_uA == constraints->max_uA)
799 count += sprintf(buf + count, "%d mA ",
800 constraints->min_uA / 1000);
801 else
802 count += sprintf(buf + count, "%d <--> %d mA ",
803 constraints->min_uA / 1000,
804 constraints->max_uA / 1000);
805 }
806
807 if (!constraints->min_uA ||
808 constraints->min_uA != constraints->max_uA) {
809 ret = _regulator_get_current_limit(rdev);
810 if (ret > 0)
811 count += sprintf(buf + count, "at %d mA ", ret / 1000);
812 }
813
814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815 count += sprintf(buf + count, "fast ");
816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817 count += sprintf(buf + count, "normal ");
818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819 count += sprintf(buf + count, "idle ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821 count += sprintf(buf + count, "standby");
822
823 if (!count)
824 sprintf(buf, "no parameters");
825
826 rdev_info(rdev, "%s\n", buf);
827
828 if ((constraints->min_uV != constraints->max_uV) &&
829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830 rdev_warn(rdev,
831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835 struct regulation_constraints *constraints)
836 {
837 struct regulator_ops *ops = rdev->desc->ops;
838 int ret;
839
840 /* do we need to apply the constraint voltage */
841 if (rdev->constraints->apply_uV &&
842 rdev->constraints->min_uV == rdev->constraints->max_uV) {
843 ret = _regulator_do_set_voltage(rdev,
844 rdev->constraints->min_uV,
845 rdev->constraints->max_uV);
846 if (ret < 0) {
847 rdev_err(rdev, "failed to apply %duV constraint\n",
848 rdev->constraints->min_uV);
849 return ret;
850 }
851 }
852
853 /* constrain machine-level voltage specs to fit
854 * the actual range supported by this regulator.
855 */
856 if (ops->list_voltage && rdev->desc->n_voltages) {
857 int count = rdev->desc->n_voltages;
858 int i;
859 int min_uV = INT_MAX;
860 int max_uV = INT_MIN;
861 int cmin = constraints->min_uV;
862 int cmax = constraints->max_uV;
863
864 /* it's safe to autoconfigure fixed-voltage supplies
865 and the constraints are used by list_voltage. */
866 if (count == 1 && !cmin) {
867 cmin = 1;
868 cmax = INT_MAX;
869 constraints->min_uV = cmin;
870 constraints->max_uV = cmax;
871 }
872
873 /* voltage constraints are optional */
874 if ((cmin == 0) && (cmax == 0))
875 return 0;
876
877 /* else require explicit machine-level constraints */
878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879 rdev_err(rdev, "invalid voltage constraints\n");
880 return -EINVAL;
881 }
882
883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884 for (i = 0; i < count; i++) {
885 int value;
886
887 value = ops->list_voltage(rdev, i);
888 if (value <= 0)
889 continue;
890
891 /* maybe adjust [min_uV..max_uV] */
892 if (value >= cmin && value < min_uV)
893 min_uV = value;
894 if (value <= cmax && value > max_uV)
895 max_uV = value;
896 }
897
898 /* final: [min_uV..max_uV] valid iff constraints valid */
899 if (max_uV < min_uV) {
900 rdev_err(rdev,
901 "unsupportable voltage constraints %u-%uuV\n",
902 min_uV, max_uV);
903 return -EINVAL;
904 }
905
906 /* use regulator's subset of machine constraints */
907 if (constraints->min_uV < min_uV) {
908 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909 constraints->min_uV, min_uV);
910 constraints->min_uV = min_uV;
911 }
912 if (constraints->max_uV > max_uV) {
913 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914 constraints->max_uV, max_uV);
915 constraints->max_uV = max_uV;
916 }
917 }
918
919 return 0;
920 }
921
922 /**
923 * set_machine_constraints - sets regulator constraints
924 * @rdev: regulator source
925 * @constraints: constraints to apply
926 *
927 * Allows platform initialisation code to define and constrain
928 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
929 * Constraints *must* be set by platform code in order for some
930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
931 * set_mode.
932 */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)933 static int set_machine_constraints(struct regulator_dev *rdev,
934 const struct regulation_constraints *constraints)
935 {
936 int ret = 0;
937 struct regulator_ops *ops = rdev->desc->ops;
938
939 if (constraints)
940 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941 GFP_KERNEL);
942 else
943 rdev->constraints = kzalloc(sizeof(*constraints),
944 GFP_KERNEL);
945 if (!rdev->constraints)
946 return -ENOMEM;
947
948 ret = machine_constraints_voltage(rdev, rdev->constraints);
949 if (ret != 0)
950 goto out;
951
952 /* do we need to setup our suspend state */
953 if (rdev->constraints->initial_state) {
954 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955 if (ret < 0) {
956 rdev_err(rdev, "failed to set suspend state\n");
957 goto out;
958 }
959 }
960
961 if (rdev->constraints->initial_mode) {
962 if (!ops->set_mode) {
963 rdev_err(rdev, "no set_mode operation\n");
964 ret = -EINVAL;
965 goto out;
966 }
967
968 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969 if (ret < 0) {
970 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971 goto out;
972 }
973 }
974
975 /* If the constraints say the regulator should be on at this point
976 * and we have control then make sure it is enabled.
977 */
978 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979 ops->enable) {
980 ret = ops->enable(rdev);
981 if (ret < 0) {
982 rdev_err(rdev, "failed to enable\n");
983 goto out;
984 }
985 }
986
987 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989 if (ret < 0) {
990 rdev_err(rdev, "failed to set ramp_delay\n");
991 goto out;
992 }
993 }
994
995 print_constraints(rdev);
996 return 0;
997 out:
998 kfree(rdev->constraints);
999 rdev->constraints = NULL;
1000 return ret;
1001 }
1002
1003 /**
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1007 *
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1011 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1012 static int set_supply(struct regulator_dev *rdev,
1013 struct regulator_dev *supply_rdev)
1014 {
1015 int err;
1016
1017 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020 if (rdev->supply == NULL) {
1021 err = -ENOMEM;
1022 return err;
1023 }
1024 supply_rdev->open_count++;
1025
1026 return 0;
1027 }
1028
1029 /**
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev: regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply: symbolic name for supply
1034 *
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices. Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1039 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1040 static int set_consumer_device_supply(struct regulator_dev *rdev,
1041 const char *consumer_dev_name,
1042 const char *supply)
1043 {
1044 struct regulator_map *node;
1045 int has_dev;
1046
1047 if (supply == NULL)
1048 return -EINVAL;
1049
1050 if (consumer_dev_name != NULL)
1051 has_dev = 1;
1052 else
1053 has_dev = 0;
1054
1055 list_for_each_entry(node, ®ulator_map_list, list) {
1056 if (node->dev_name && consumer_dev_name) {
1057 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058 continue;
1059 } else if (node->dev_name || consumer_dev_name) {
1060 continue;
1061 }
1062
1063 if (strcmp(node->supply, supply) != 0)
1064 continue;
1065
1066 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067 consumer_dev_name,
1068 dev_name(&node->regulator->dev),
1069 node->regulator->desc->name,
1070 supply,
1071 dev_name(&rdev->dev), rdev_get_name(rdev));
1072 return -EBUSY;
1073 }
1074
1075 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076 if (node == NULL)
1077 return -ENOMEM;
1078
1079 node->regulator = rdev;
1080 node->supply = supply;
1081
1082 if (has_dev) {
1083 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084 if (node->dev_name == NULL) {
1085 kfree(node);
1086 return -ENOMEM;
1087 }
1088 }
1089
1090 list_add(&node->list, ®ulator_map_list);
1091 return 0;
1092 }
1093
unset_regulator_supplies(struct regulator_dev * rdev)1094 static void unset_regulator_supplies(struct regulator_dev *rdev)
1095 {
1096 struct regulator_map *node, *n;
1097
1098 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1099 if (rdev == node->regulator) {
1100 list_del(&node->list);
1101 kfree(node->dev_name);
1102 kfree(node);
1103 }
1104 }
1105 }
1106
1107 #define REG_STR_SIZE 64
1108
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1109 static struct regulator *create_regulator(struct regulator_dev *rdev,
1110 struct device *dev,
1111 const char *supply_name)
1112 {
1113 struct regulator *regulator;
1114 char buf[REG_STR_SIZE];
1115 int err, size;
1116
1117 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118 if (regulator == NULL)
1119 return NULL;
1120
1121 mutex_lock(&rdev->mutex);
1122 regulator->rdev = rdev;
1123 list_add(®ulator->list, &rdev->consumer_list);
1124
1125 if (dev) {
1126 regulator->dev = dev;
1127
1128 /* Add a link to the device sysfs entry */
1129 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130 dev->kobj.name, supply_name);
1131 if (size >= REG_STR_SIZE)
1132 goto overflow_err;
1133
1134 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135 if (regulator->supply_name == NULL)
1136 goto overflow_err;
1137
1138 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139 buf);
1140 if (err) {
1141 rdev_warn(rdev, "could not add device link %s err %d\n",
1142 dev->kobj.name, err);
1143 /* non-fatal */
1144 }
1145 } else {
1146 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147 if (regulator->supply_name == NULL)
1148 goto overflow_err;
1149 }
1150
1151 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152 rdev->debugfs);
1153 if (!regulator->debugfs) {
1154 rdev_warn(rdev, "Failed to create debugfs directory\n");
1155 } else {
1156 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157 ®ulator->uA_load);
1158 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159 ®ulator->min_uV);
1160 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161 ®ulator->max_uV);
1162 }
1163
1164 /*
1165 * Check now if the regulator is an always on regulator - if
1166 * it is then we don't need to do nearly so much work for
1167 * enable/disable calls.
1168 */
1169 if (!_regulator_can_change_status(rdev) &&
1170 _regulator_is_enabled(rdev))
1171 regulator->always_on = true;
1172
1173 mutex_unlock(&rdev->mutex);
1174 return regulator;
1175 overflow_err:
1176 list_del(®ulator->list);
1177 kfree(regulator);
1178 mutex_unlock(&rdev->mutex);
1179 return NULL;
1180 }
1181
_regulator_get_enable_time(struct regulator_dev * rdev)1182 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183 {
1184 if (!rdev->desc->ops->enable_time)
1185 return rdev->desc->enable_time;
1186 return rdev->desc->ops->enable_time(rdev);
1187 }
1188
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190 const char *supply,
1191 int *ret)
1192 {
1193 struct regulator_dev *r;
1194 struct device_node *node;
1195 struct regulator_map *map;
1196 const char *devname = NULL;
1197
1198 /* first do a dt based lookup */
1199 if (dev && dev->of_node) {
1200 node = of_get_regulator(dev, supply);
1201 if (node) {
1202 list_for_each_entry(r, ®ulator_list, list)
1203 if (r->dev.parent &&
1204 node == r->dev.of_node)
1205 return r;
1206 } else {
1207 /*
1208 * If we couldn't even get the node then it's
1209 * not just that the device didn't register
1210 * yet, there's no node and we'll never
1211 * succeed.
1212 */
1213 *ret = -ENODEV;
1214 }
1215 }
1216
1217 /* if not found, try doing it non-dt way */
1218 if (dev)
1219 devname = dev_name(dev);
1220
1221 list_for_each_entry(r, ®ulator_list, list)
1222 if (strcmp(rdev_get_name(r), supply) == 0)
1223 return r;
1224
1225 list_for_each_entry(map, ®ulator_map_list, list) {
1226 /* If the mapping has a device set up it must match */
1227 if (map->dev_name &&
1228 (!devname || strcmp(map->dev_name, devname)))
1229 continue;
1230
1231 if (strcmp(map->supply, supply) == 0)
1232 return map->regulator;
1233 }
1234
1235
1236 return NULL;
1237 }
1238
1239 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,int exclusive)1240 static struct regulator *_regulator_get(struct device *dev, const char *id,
1241 int exclusive)
1242 {
1243 struct regulator_dev *rdev;
1244 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245 const char *devname = NULL;
1246 int ret = 0;
1247
1248 if (id == NULL) {
1249 pr_err("get() with no identifier\n");
1250 return regulator;
1251 }
1252
1253 if (dev)
1254 devname = dev_name(dev);
1255
1256 mutex_lock(®ulator_list_mutex);
1257
1258 rdev = regulator_dev_lookup(dev, id, &ret);
1259 if (rdev)
1260 goto found;
1261
1262 /*
1263 * If we have return value from dev_lookup fail, we do not expect to
1264 * succeed, so, quit with appropriate error value
1265 */
1266 if (ret) {
1267 regulator = ERR_PTR(ret);
1268 goto out;
1269 }
1270
1271 if (board_wants_dummy_regulator) {
1272 rdev = dummy_regulator_rdev;
1273 goto found;
1274 }
1275
1276 #ifdef CONFIG_REGULATOR_DUMMY
1277 if (!devname)
1278 devname = "deviceless";
1279
1280 /* If the board didn't flag that it was fully constrained then
1281 * substitute in a dummy regulator so consumers can continue.
1282 */
1283 if (!has_full_constraints) {
1284 pr_warn("%s supply %s not found, using dummy regulator\n",
1285 devname, id);
1286 rdev = dummy_regulator_rdev;
1287 goto found;
1288 }
1289 #endif
1290
1291 mutex_unlock(®ulator_list_mutex);
1292 return regulator;
1293
1294 found:
1295 if (rdev->exclusive) {
1296 regulator = ERR_PTR(-EPERM);
1297 goto out;
1298 }
1299
1300 if (exclusive && rdev->open_count) {
1301 regulator = ERR_PTR(-EBUSY);
1302 goto out;
1303 }
1304
1305 if (!try_module_get(rdev->owner))
1306 goto out;
1307
1308 regulator = create_regulator(rdev, dev, id);
1309 if (regulator == NULL) {
1310 regulator = ERR_PTR(-ENOMEM);
1311 module_put(rdev->owner);
1312 goto out;
1313 }
1314
1315 rdev->open_count++;
1316 if (exclusive) {
1317 rdev->exclusive = 1;
1318
1319 ret = _regulator_is_enabled(rdev);
1320 if (ret > 0)
1321 rdev->use_count = 1;
1322 else
1323 rdev->use_count = 0;
1324 }
1325
1326 out:
1327 mutex_unlock(®ulator_list_mutex);
1328
1329 return regulator;
1330 }
1331
1332 /**
1333 * regulator_get - lookup and obtain a reference to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1336 *
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno.
1339 *
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged. It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1344 */
regulator_get(struct device * dev,const char * id)1345 struct regulator *regulator_get(struct device *dev, const char *id)
1346 {
1347 return _regulator_get(dev, id, 0);
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_get);
1350
devm_regulator_release(struct device * dev,void * res)1351 static void devm_regulator_release(struct device *dev, void *res)
1352 {
1353 regulator_put(*(struct regulator **)res);
1354 }
1355
1356 /**
1357 * devm_regulator_get - Resource managed regulator_get()
1358 * @dev: device for regulator "consumer"
1359 * @id: Supply name or regulator ID.
1360 *
1361 * Managed regulator_get(). Regulators returned from this function are
1362 * automatically regulator_put() on driver detach. See regulator_get() for more
1363 * information.
1364 */
devm_regulator_get(struct device * dev,const char * id)1365 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366 {
1367 struct regulator **ptr, *regulator;
1368
1369 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370 if (!ptr)
1371 return ERR_PTR(-ENOMEM);
1372
1373 regulator = regulator_get(dev, id);
1374 if (!IS_ERR(regulator)) {
1375 *ptr = regulator;
1376 devres_add(dev, ptr);
1377 } else {
1378 devres_free(ptr);
1379 }
1380
1381 return regulator;
1382 }
1383 EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385 /**
1386 * regulator_get_exclusive - obtain exclusive access to a regulator.
1387 * @dev: device for regulator "consumer"
1388 * @id: Supply name or regulator ID.
1389 *
1390 * Returns a struct regulator corresponding to the regulator producer,
1391 * or IS_ERR() condition containing errno. Other consumers will be
1392 * unable to obtain this reference is held and the use count for the
1393 * regulator will be initialised to reflect the current state of the
1394 * regulator.
1395 *
1396 * This is intended for use by consumers which cannot tolerate shared
1397 * use of the regulator such as those which need to force the
1398 * regulator off for correct operation of the hardware they are
1399 * controlling.
1400 *
1401 * Use of supply names configured via regulator_set_device_supply() is
1402 * strongly encouraged. It is recommended that the supply name used
1403 * should match the name used for the supply and/or the relevant
1404 * device pins in the datasheet.
1405 */
regulator_get_exclusive(struct device * dev,const char * id)1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407 {
1408 return _regulator_get(dev, id, 1);
1409 }
1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412 /* Locks held by regulator_put() */
_regulator_put(struct regulator * regulator)1413 static void _regulator_put(struct regulator *regulator)
1414 {
1415 struct regulator_dev *rdev;
1416
1417 if (regulator == NULL || IS_ERR(regulator))
1418 return;
1419
1420 rdev = regulator->rdev;
1421
1422 debugfs_remove_recursive(regulator->debugfs);
1423
1424 /* remove any sysfs entries */
1425 if (regulator->dev)
1426 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427 kfree(regulator->supply_name);
1428 list_del(®ulator->list);
1429 kfree(regulator);
1430
1431 rdev->open_count--;
1432 rdev->exclusive = 0;
1433
1434 module_put(rdev->owner);
1435 }
1436
1437 /**
1438 * regulator_put - "free" the regulator source
1439 * @regulator: regulator source
1440 *
1441 * Note: drivers must ensure that all regulator_enable calls made on this
1442 * regulator source are balanced by regulator_disable calls prior to calling
1443 * this function.
1444 */
regulator_put(struct regulator * regulator)1445 void regulator_put(struct regulator *regulator)
1446 {
1447 mutex_lock(®ulator_list_mutex);
1448 _regulator_put(regulator);
1449 mutex_unlock(®ulator_list_mutex);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_put);
1452
devm_regulator_match(struct device * dev,void * res,void * data)1453 static int devm_regulator_match(struct device *dev, void *res, void *data)
1454 {
1455 struct regulator **r = res;
1456 if (!r || !*r) {
1457 WARN_ON(!r || !*r);
1458 return 0;
1459 }
1460 return *r == data;
1461 }
1462
1463 /**
1464 * devm_regulator_put - Resource managed regulator_put()
1465 * @regulator: regulator to free
1466 *
1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468 * this function will not need to be called and the resource management
1469 * code will ensure that the resource is freed.
1470 */
devm_regulator_put(struct regulator * regulator)1471 void devm_regulator_put(struct regulator *regulator)
1472 {
1473 int rc;
1474
1475 rc = devres_release(regulator->dev, devm_regulator_release,
1476 devm_regulator_match, regulator);
1477 if (rc != 0)
1478 WARN_ON(rc);
1479 }
1480 EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484 const struct regulator_config *config)
1485 {
1486 struct regulator_enable_gpio *pin;
1487 int ret;
1488
1489 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1490 if (pin->gpio == config->ena_gpio) {
1491 rdev_dbg(rdev, "GPIO %d is already used\n",
1492 config->ena_gpio);
1493 goto update_ena_gpio_to_rdev;
1494 }
1495 }
1496
1497 ret = gpio_request_one(config->ena_gpio,
1498 GPIOF_DIR_OUT | config->ena_gpio_flags,
1499 rdev_get_name(rdev));
1500 if (ret)
1501 return ret;
1502
1503 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504 if (pin == NULL) {
1505 gpio_free(config->ena_gpio);
1506 return -ENOMEM;
1507 }
1508
1509 pin->gpio = config->ena_gpio;
1510 pin->ena_gpio_invert = config->ena_gpio_invert;
1511 list_add(&pin->list, ®ulator_ena_gpio_list);
1512
1513 update_ena_gpio_to_rdev:
1514 pin->request_count++;
1515 rdev->ena_pin = pin;
1516 return 0;
1517 }
1518
regulator_ena_gpio_free(struct regulator_dev * rdev)1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520 {
1521 struct regulator_enable_gpio *pin, *n;
1522
1523 if (!rdev->ena_pin)
1524 return;
1525
1526 /* Free the GPIO only in case of no use */
1527 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1528 if (pin->gpio == rdev->ena_pin->gpio) {
1529 if (pin->request_count <= 1) {
1530 pin->request_count = 0;
1531 gpio_free(pin->gpio);
1532 list_del(&pin->list);
1533 kfree(pin);
1534 rdev->ena_pin = NULL;
1535 return;
1536 } else {
1537 pin->request_count--;
1538 }
1539 }
1540 }
1541 }
1542
1543 /**
1544 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1545 * @rdev: regulator_dev structure
1546 * @enable: enable GPIO at initial use?
1547 *
1548 * GPIO is enabled in case of initial use. (enable_count is 0)
1549 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1550 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1551 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1552 {
1553 struct regulator_enable_gpio *pin = rdev->ena_pin;
1554
1555 if (!pin)
1556 return -EINVAL;
1557
1558 if (enable) {
1559 /* Enable GPIO at initial use */
1560 if (pin->enable_count == 0)
1561 gpio_set_value_cansleep(pin->gpio,
1562 !pin->ena_gpio_invert);
1563
1564 pin->enable_count++;
1565 } else {
1566 if (pin->enable_count > 1) {
1567 pin->enable_count--;
1568 return 0;
1569 }
1570
1571 /* Disable GPIO if not used */
1572 if (pin->enable_count <= 1) {
1573 gpio_set_value_cansleep(pin->gpio,
1574 pin->ena_gpio_invert);
1575 pin->enable_count = 0;
1576 }
1577 }
1578
1579 return 0;
1580 }
1581
_regulator_do_enable(struct regulator_dev * rdev)1582 static int _regulator_do_enable(struct regulator_dev *rdev)
1583 {
1584 int ret, delay;
1585
1586 /* Query before enabling in case configuration dependent. */
1587 ret = _regulator_get_enable_time(rdev);
1588 if (ret >= 0) {
1589 delay = ret;
1590 } else {
1591 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1592 delay = 0;
1593 }
1594
1595 trace_regulator_enable(rdev_get_name(rdev));
1596
1597 if (rdev->ena_pin) {
1598 ret = regulator_ena_gpio_ctrl(rdev, true);
1599 if (ret < 0)
1600 return ret;
1601 rdev->ena_gpio_state = 1;
1602 } else if (rdev->desc->ops->enable) {
1603 ret = rdev->desc->ops->enable(rdev);
1604 if (ret < 0)
1605 return ret;
1606 } else {
1607 return -EINVAL;
1608 }
1609
1610 /* Allow the regulator to ramp; it would be useful to extend
1611 * this for bulk operations so that the regulators can ramp
1612 * together. */
1613 trace_regulator_enable_delay(rdev_get_name(rdev));
1614
1615 if (delay >= 1000) {
1616 mdelay(delay / 1000);
1617 udelay(delay % 1000);
1618 } else if (delay) {
1619 udelay(delay);
1620 }
1621
1622 trace_regulator_enable_complete(rdev_get_name(rdev));
1623
1624 return 0;
1625 }
1626
1627 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)1628 static int _regulator_enable(struct regulator_dev *rdev)
1629 {
1630 int ret;
1631
1632 /* check voltage and requested load before enabling */
1633 if (rdev->constraints &&
1634 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1635 drms_uA_update(rdev);
1636
1637 if (rdev->use_count == 0) {
1638 /* The regulator may on if it's not switchable or left on */
1639 ret = _regulator_is_enabled(rdev);
1640 if (ret == -EINVAL || ret == 0) {
1641 if (!_regulator_can_change_status(rdev))
1642 return -EPERM;
1643
1644 ret = _regulator_do_enable(rdev);
1645 if (ret < 0)
1646 return ret;
1647
1648 } else if (ret < 0) {
1649 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1650 return ret;
1651 }
1652 /* Fallthrough on positive return values - already enabled */
1653 }
1654
1655 rdev->use_count++;
1656
1657 return 0;
1658 }
1659
1660 /**
1661 * regulator_enable - enable regulator output
1662 * @regulator: regulator source
1663 *
1664 * Request that the regulator be enabled with the regulator output at
1665 * the predefined voltage or current value. Calls to regulator_enable()
1666 * must be balanced with calls to regulator_disable().
1667 *
1668 * NOTE: the output value can be set by other drivers, boot loader or may be
1669 * hardwired in the regulator.
1670 */
regulator_enable(struct regulator * regulator)1671 int regulator_enable(struct regulator *regulator)
1672 {
1673 struct regulator_dev *rdev = regulator->rdev;
1674 int ret = 0;
1675
1676 if (regulator->always_on)
1677 return 0;
1678
1679 if (rdev->supply) {
1680 ret = regulator_enable(rdev->supply);
1681 if (ret != 0)
1682 return ret;
1683 }
1684
1685 mutex_lock(&rdev->mutex);
1686 ret = _regulator_enable(rdev);
1687 mutex_unlock(&rdev->mutex);
1688
1689 if (ret != 0 && rdev->supply)
1690 regulator_disable(rdev->supply);
1691
1692 return ret;
1693 }
1694 EXPORT_SYMBOL_GPL(regulator_enable);
1695
_regulator_do_disable(struct regulator_dev * rdev)1696 static int _regulator_do_disable(struct regulator_dev *rdev)
1697 {
1698 int ret;
1699
1700 trace_regulator_disable(rdev_get_name(rdev));
1701
1702 if (rdev->ena_pin) {
1703 ret = regulator_ena_gpio_ctrl(rdev, false);
1704 if (ret < 0)
1705 return ret;
1706 rdev->ena_gpio_state = 0;
1707
1708 } else if (rdev->desc->ops->disable) {
1709 ret = rdev->desc->ops->disable(rdev);
1710 if (ret != 0)
1711 return ret;
1712 }
1713
1714 trace_regulator_disable_complete(rdev_get_name(rdev));
1715
1716 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1717 NULL);
1718 return 0;
1719 }
1720
1721 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)1722 static int _regulator_disable(struct regulator_dev *rdev)
1723 {
1724 int ret = 0;
1725
1726 if (WARN(rdev->use_count <= 0,
1727 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1728 return -EIO;
1729
1730 /* are we the last user and permitted to disable ? */
1731 if (rdev->use_count == 1 &&
1732 (rdev->constraints && !rdev->constraints->always_on)) {
1733
1734 /* we are last user */
1735 if (_regulator_can_change_status(rdev)) {
1736 ret = _regulator_do_disable(rdev);
1737 if (ret < 0) {
1738 rdev_err(rdev, "failed to disable\n");
1739 return ret;
1740 }
1741 }
1742
1743 rdev->use_count = 0;
1744 } else if (rdev->use_count > 1) {
1745
1746 if (rdev->constraints &&
1747 (rdev->constraints->valid_ops_mask &
1748 REGULATOR_CHANGE_DRMS))
1749 drms_uA_update(rdev);
1750
1751 rdev->use_count--;
1752 }
1753
1754 return ret;
1755 }
1756
1757 /**
1758 * regulator_disable - disable regulator output
1759 * @regulator: regulator source
1760 *
1761 * Disable the regulator output voltage or current. Calls to
1762 * regulator_enable() must be balanced with calls to
1763 * regulator_disable().
1764 *
1765 * NOTE: this will only disable the regulator output if no other consumer
1766 * devices have it enabled, the regulator device supports disabling and
1767 * machine constraints permit this operation.
1768 */
regulator_disable(struct regulator * regulator)1769 int regulator_disable(struct regulator *regulator)
1770 {
1771 struct regulator_dev *rdev = regulator->rdev;
1772 int ret = 0;
1773
1774 if (regulator->always_on)
1775 return 0;
1776
1777 mutex_lock(&rdev->mutex);
1778 ret = _regulator_disable(rdev);
1779 mutex_unlock(&rdev->mutex);
1780
1781 if (ret == 0 && rdev->supply)
1782 regulator_disable(rdev->supply);
1783
1784 return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_disable);
1787
1788 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)1789 static int _regulator_force_disable(struct regulator_dev *rdev)
1790 {
1791 int ret = 0;
1792
1793 /* force disable */
1794 if (rdev->desc->ops->disable) {
1795 /* ah well, who wants to live forever... */
1796 ret = rdev->desc->ops->disable(rdev);
1797 if (ret < 0) {
1798 rdev_err(rdev, "failed to force disable\n");
1799 return ret;
1800 }
1801 /* notify other consumers that power has been forced off */
1802 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1803 REGULATOR_EVENT_DISABLE, NULL);
1804 }
1805
1806 return ret;
1807 }
1808
1809 /**
1810 * regulator_force_disable - force disable regulator output
1811 * @regulator: regulator source
1812 *
1813 * Forcibly disable the regulator output voltage or current.
1814 * NOTE: this *will* disable the regulator output even if other consumer
1815 * devices have it enabled. This should be used for situations when device
1816 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1817 */
regulator_force_disable(struct regulator * regulator)1818 int regulator_force_disable(struct regulator *regulator)
1819 {
1820 struct regulator_dev *rdev = regulator->rdev;
1821 int ret;
1822
1823 mutex_lock(&rdev->mutex);
1824 regulator->uA_load = 0;
1825 ret = _regulator_force_disable(regulator->rdev);
1826 mutex_unlock(&rdev->mutex);
1827
1828 if (rdev->supply)
1829 while (rdev->open_count--)
1830 regulator_disable(rdev->supply);
1831
1832 return ret;
1833 }
1834 EXPORT_SYMBOL_GPL(regulator_force_disable);
1835
regulator_disable_work(struct work_struct * work)1836 static void regulator_disable_work(struct work_struct *work)
1837 {
1838 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1839 disable_work.work);
1840 int count, i, ret;
1841
1842 mutex_lock(&rdev->mutex);
1843
1844 BUG_ON(!rdev->deferred_disables);
1845
1846 count = rdev->deferred_disables;
1847 rdev->deferred_disables = 0;
1848
1849 for (i = 0; i < count; i++) {
1850 ret = _regulator_disable(rdev);
1851 if (ret != 0)
1852 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1853 }
1854
1855 mutex_unlock(&rdev->mutex);
1856
1857 if (rdev->supply) {
1858 for (i = 0; i < count; i++) {
1859 ret = regulator_disable(rdev->supply);
1860 if (ret != 0) {
1861 rdev_err(rdev,
1862 "Supply disable failed: %d\n", ret);
1863 }
1864 }
1865 }
1866 }
1867
1868 /**
1869 * regulator_disable_deferred - disable regulator output with delay
1870 * @regulator: regulator source
1871 * @ms: miliseconds until the regulator is disabled
1872 *
1873 * Execute regulator_disable() on the regulator after a delay. This
1874 * is intended for use with devices that require some time to quiesce.
1875 *
1876 * NOTE: this will only disable the regulator output if no other consumer
1877 * devices have it enabled, the regulator device supports disabling and
1878 * machine constraints permit this operation.
1879 */
regulator_disable_deferred(struct regulator * regulator,int ms)1880 int regulator_disable_deferred(struct regulator *regulator, int ms)
1881 {
1882 struct regulator_dev *rdev = regulator->rdev;
1883 int ret;
1884
1885 if (regulator->always_on)
1886 return 0;
1887
1888 if (!ms)
1889 return regulator_disable(regulator);
1890
1891 mutex_lock(&rdev->mutex);
1892 rdev->deferred_disables++;
1893 mutex_unlock(&rdev->mutex);
1894
1895 ret = schedule_delayed_work(&rdev->disable_work,
1896 msecs_to_jiffies(ms));
1897 if (ret < 0)
1898 return ret;
1899 else
1900 return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1903
1904 /**
1905 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1906 *
1907 * @rdev: regulator to operate on
1908 *
1909 * Regulators that use regmap for their register I/O can set the
1910 * enable_reg and enable_mask fields in their descriptor and then use
1911 * this as their is_enabled operation, saving some code.
1912 */
regulator_is_enabled_regmap(struct regulator_dev * rdev)1913 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1914 {
1915 unsigned int val;
1916 int ret;
1917
1918 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1919 if (ret != 0)
1920 return ret;
1921
1922 if (rdev->desc->enable_is_inverted)
1923 return (val & rdev->desc->enable_mask) == 0;
1924 else
1925 return (val & rdev->desc->enable_mask) != 0;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1928
1929 /**
1930 * regulator_enable_regmap - standard enable() for regmap users
1931 *
1932 * @rdev: regulator to operate on
1933 *
1934 * Regulators that use regmap for their register I/O can set the
1935 * enable_reg and enable_mask fields in their descriptor and then use
1936 * this as their enable() operation, saving some code.
1937 */
regulator_enable_regmap(struct regulator_dev * rdev)1938 int regulator_enable_regmap(struct regulator_dev *rdev)
1939 {
1940 unsigned int val;
1941
1942 if (rdev->desc->enable_is_inverted)
1943 val = 0;
1944 else
1945 val = rdev->desc->enable_mask;
1946
1947 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1948 rdev->desc->enable_mask, val);
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1951
1952 /**
1953 * regulator_disable_regmap - standard disable() for regmap users
1954 *
1955 * @rdev: regulator to operate on
1956 *
1957 * Regulators that use regmap for their register I/O can set the
1958 * enable_reg and enable_mask fields in their descriptor and then use
1959 * this as their disable() operation, saving some code.
1960 */
regulator_disable_regmap(struct regulator_dev * rdev)1961 int regulator_disable_regmap(struct regulator_dev *rdev)
1962 {
1963 unsigned int val;
1964
1965 if (rdev->desc->enable_is_inverted)
1966 val = rdev->desc->enable_mask;
1967 else
1968 val = 0;
1969
1970 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1971 rdev->desc->enable_mask, val);
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1974
_regulator_is_enabled(struct regulator_dev * rdev)1975 static int _regulator_is_enabled(struct regulator_dev *rdev)
1976 {
1977 /* A GPIO control always takes precedence */
1978 if (rdev->ena_pin)
1979 return rdev->ena_gpio_state;
1980
1981 /* If we don't know then assume that the regulator is always on */
1982 if (!rdev->desc->ops->is_enabled)
1983 return 1;
1984
1985 return rdev->desc->ops->is_enabled(rdev);
1986 }
1987
1988 /**
1989 * regulator_is_enabled - is the regulator output enabled
1990 * @regulator: regulator source
1991 *
1992 * Returns positive if the regulator driver backing the source/client
1993 * has requested that the device be enabled, zero if it hasn't, else a
1994 * negative errno code.
1995 *
1996 * Note that the device backing this regulator handle can have multiple
1997 * users, so it might be enabled even if regulator_enable() was never
1998 * called for this particular source.
1999 */
regulator_is_enabled(struct regulator * regulator)2000 int regulator_is_enabled(struct regulator *regulator)
2001 {
2002 int ret;
2003
2004 if (regulator->always_on)
2005 return 1;
2006
2007 mutex_lock(®ulator->rdev->mutex);
2008 ret = _regulator_is_enabled(regulator->rdev);
2009 mutex_unlock(®ulator->rdev->mutex);
2010
2011 return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2014
2015 /**
2016 * regulator_can_change_voltage - check if regulator can change voltage
2017 * @regulator: regulator source
2018 *
2019 * Returns positive if the regulator driver backing the source/client
2020 * can change its voltage, false otherwise. Usefull for detecting fixed
2021 * or dummy regulators and disabling voltage change logic in the client
2022 * driver.
2023 */
regulator_can_change_voltage(struct regulator * regulator)2024 int regulator_can_change_voltage(struct regulator *regulator)
2025 {
2026 struct regulator_dev *rdev = regulator->rdev;
2027
2028 if (rdev->constraints &&
2029 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2030 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2031 return 1;
2032
2033 if (rdev->desc->continuous_voltage_range &&
2034 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2035 rdev->constraints->min_uV != rdev->constraints->max_uV)
2036 return 1;
2037 }
2038
2039 return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2042
2043 /**
2044 * regulator_count_voltages - count regulator_list_voltage() selectors
2045 * @regulator: regulator source
2046 *
2047 * Returns number of selectors, or negative errno. Selectors are
2048 * numbered starting at zero, and typically correspond to bitfields
2049 * in hardware registers.
2050 */
regulator_count_voltages(struct regulator * regulator)2051 int regulator_count_voltages(struct regulator *regulator)
2052 {
2053 struct regulator_dev *rdev = regulator->rdev;
2054
2055 return rdev->desc->n_voltages ? : -EINVAL;
2056 }
2057 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2058
2059 /**
2060 * regulator_list_voltage_linear - List voltages with simple calculation
2061 *
2062 * @rdev: Regulator device
2063 * @selector: Selector to convert into a voltage
2064 *
2065 * Regulators with a simple linear mapping between voltages and
2066 * selectors can set min_uV and uV_step in the regulator descriptor
2067 * and then use this function as their list_voltage() operation,
2068 */
regulator_list_voltage_linear(struct regulator_dev * rdev,unsigned int selector)2069 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2070 unsigned int selector)
2071 {
2072 if (selector >= rdev->desc->n_voltages)
2073 return -EINVAL;
2074 if (selector < rdev->desc->linear_min_sel)
2075 return 0;
2076
2077 selector -= rdev->desc->linear_min_sel;
2078
2079 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2082
2083 /**
2084 * regulator_list_voltage_table - List voltages with table based mapping
2085 *
2086 * @rdev: Regulator device
2087 * @selector: Selector to convert into a voltage
2088 *
2089 * Regulators with table based mapping between voltages and
2090 * selectors can set volt_table in the regulator descriptor
2091 * and then use this function as their list_voltage() operation.
2092 */
regulator_list_voltage_table(struct regulator_dev * rdev,unsigned int selector)2093 int regulator_list_voltage_table(struct regulator_dev *rdev,
2094 unsigned int selector)
2095 {
2096 if (!rdev->desc->volt_table) {
2097 BUG_ON(!rdev->desc->volt_table);
2098 return -EINVAL;
2099 }
2100
2101 if (selector >= rdev->desc->n_voltages)
2102 return -EINVAL;
2103
2104 return rdev->desc->volt_table[selector];
2105 }
2106 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2107
2108 /**
2109 * regulator_list_voltage - enumerate supported voltages
2110 * @regulator: regulator source
2111 * @selector: identify voltage to list
2112 * Context: can sleep
2113 *
2114 * Returns a voltage that can be passed to @regulator_set_voltage(),
2115 * zero if this selector code can't be used on this system, or a
2116 * negative errno.
2117 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2118 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2119 {
2120 struct regulator_dev *rdev = regulator->rdev;
2121 struct regulator_ops *ops = rdev->desc->ops;
2122 int ret;
2123
2124 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2125 return -EINVAL;
2126
2127 mutex_lock(&rdev->mutex);
2128 ret = ops->list_voltage(rdev, selector);
2129 mutex_unlock(&rdev->mutex);
2130
2131 if (ret > 0) {
2132 if (ret < rdev->constraints->min_uV)
2133 ret = 0;
2134 else if (ret > rdev->constraints->max_uV)
2135 ret = 0;
2136 }
2137
2138 return ret;
2139 }
2140 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2141
2142 /**
2143 * regulator_is_supported_voltage - check if a voltage range can be supported
2144 *
2145 * @regulator: Regulator to check.
2146 * @min_uV: Minimum required voltage in uV.
2147 * @max_uV: Maximum required voltage in uV.
2148 *
2149 * Returns a boolean or a negative error code.
2150 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2151 int regulator_is_supported_voltage(struct regulator *regulator,
2152 int min_uV, int max_uV)
2153 {
2154 struct regulator_dev *rdev = regulator->rdev;
2155 int i, voltages, ret;
2156
2157 /* If we can't change voltage check the current voltage */
2158 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2159 ret = regulator_get_voltage(regulator);
2160 if (ret >= 0)
2161 return (min_uV <= ret && ret <= max_uV);
2162 else
2163 return ret;
2164 }
2165
2166 /* Any voltage within constrains range is fine? */
2167 if (rdev->desc->continuous_voltage_range)
2168 return min_uV >= rdev->constraints->min_uV &&
2169 max_uV <= rdev->constraints->max_uV;
2170
2171 ret = regulator_count_voltages(regulator);
2172 if (ret < 0)
2173 return ret;
2174 voltages = ret;
2175
2176 for (i = 0; i < voltages; i++) {
2177 ret = regulator_list_voltage(regulator, i);
2178
2179 if (ret >= min_uV && ret <= max_uV)
2180 return 1;
2181 }
2182
2183 return 0;
2184 }
2185 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2186
2187 /**
2188 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2189 *
2190 * @rdev: regulator to operate on
2191 *
2192 * Regulators that use regmap for their register I/O can set the
2193 * vsel_reg and vsel_mask fields in their descriptor and then use this
2194 * as their get_voltage_vsel operation, saving some code.
2195 */
regulator_get_voltage_sel_regmap(struct regulator_dev * rdev)2196 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2197 {
2198 unsigned int val;
2199 int ret;
2200
2201 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2202 if (ret != 0)
2203 return ret;
2204
2205 val &= rdev->desc->vsel_mask;
2206 val >>= ffs(rdev->desc->vsel_mask) - 1;
2207
2208 return val;
2209 }
2210 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2211
2212 /**
2213 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2214 *
2215 * @rdev: regulator to operate on
2216 * @sel: Selector to set
2217 *
2218 * Regulators that use regmap for their register I/O can set the
2219 * vsel_reg and vsel_mask fields in their descriptor and then use this
2220 * as their set_voltage_vsel operation, saving some code.
2221 */
regulator_set_voltage_sel_regmap(struct regulator_dev * rdev,unsigned sel)2222 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2223 {
2224 int ret;
2225
2226 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2227
2228 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2229 rdev->desc->vsel_mask, sel);
2230 if (ret)
2231 return ret;
2232
2233 if (rdev->desc->apply_bit)
2234 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2235 rdev->desc->apply_bit,
2236 rdev->desc->apply_bit);
2237 return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2240
2241 /**
2242 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2243 *
2244 * @rdev: Regulator to operate on
2245 * @min_uV: Lower bound for voltage
2246 * @max_uV: Upper bound for voltage
2247 *
2248 * Drivers implementing set_voltage_sel() and list_voltage() can use
2249 * this as their map_voltage() operation. It will find a suitable
2250 * voltage by calling list_voltage() until it gets something in bounds
2251 * for the requested voltages.
2252 */
regulator_map_voltage_iterate(struct regulator_dev * rdev,int min_uV,int max_uV)2253 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2254 int min_uV, int max_uV)
2255 {
2256 int best_val = INT_MAX;
2257 int selector = 0;
2258 int i, ret;
2259
2260 /* Find the smallest voltage that falls within the specified
2261 * range.
2262 */
2263 for (i = 0; i < rdev->desc->n_voltages; i++) {
2264 ret = rdev->desc->ops->list_voltage(rdev, i);
2265 if (ret < 0)
2266 continue;
2267
2268 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2269 best_val = ret;
2270 selector = i;
2271 }
2272 }
2273
2274 if (best_val != INT_MAX)
2275 return selector;
2276 else
2277 return -EINVAL;
2278 }
2279 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2280
2281 /**
2282 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2283 *
2284 * @rdev: Regulator to operate on
2285 * @min_uV: Lower bound for voltage
2286 * @max_uV: Upper bound for voltage
2287 *
2288 * Drivers that have ascendant voltage list can use this as their
2289 * map_voltage() operation.
2290 */
regulator_map_voltage_ascend(struct regulator_dev * rdev,int min_uV,int max_uV)2291 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2292 int min_uV, int max_uV)
2293 {
2294 int i, ret;
2295
2296 for (i = 0; i < rdev->desc->n_voltages; i++) {
2297 ret = rdev->desc->ops->list_voltage(rdev, i);
2298 if (ret < 0)
2299 continue;
2300
2301 if (ret > max_uV)
2302 break;
2303
2304 if (ret >= min_uV && ret <= max_uV)
2305 return i;
2306 }
2307
2308 return -EINVAL;
2309 }
2310 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2311
2312 /**
2313 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2314 *
2315 * @rdev: Regulator to operate on
2316 * @min_uV: Lower bound for voltage
2317 * @max_uV: Upper bound for voltage
2318 *
2319 * Drivers providing min_uV and uV_step in their regulator_desc can
2320 * use this as their map_voltage() operation.
2321 */
regulator_map_voltage_linear(struct regulator_dev * rdev,int min_uV,int max_uV)2322 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2323 int min_uV, int max_uV)
2324 {
2325 int ret, voltage;
2326
2327 /* Allow uV_step to be 0 for fixed voltage */
2328 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2329 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2330 return 0;
2331 else
2332 return -EINVAL;
2333 }
2334
2335 if (!rdev->desc->uV_step) {
2336 BUG_ON(!rdev->desc->uV_step);
2337 return -EINVAL;
2338 }
2339
2340 if (min_uV < rdev->desc->min_uV)
2341 min_uV = rdev->desc->min_uV;
2342
2343 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2344 if (ret < 0)
2345 return ret;
2346
2347 ret += rdev->desc->linear_min_sel;
2348
2349 /* Map back into a voltage to verify we're still in bounds */
2350 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2351 if (voltage < min_uV || voltage > max_uV)
2352 return -EINVAL;
2353
2354 return ret;
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2357
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2358 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2359 int min_uV, int max_uV)
2360 {
2361 int ret;
2362 int delay = 0;
2363 int best_val = 0;
2364 unsigned int selector;
2365 int old_selector = -1;
2366
2367 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2368
2369 min_uV += rdev->constraints->uV_offset;
2370 max_uV += rdev->constraints->uV_offset;
2371
2372 /*
2373 * If we can't obtain the old selector there is not enough
2374 * info to call set_voltage_time_sel().
2375 */
2376 if (_regulator_is_enabled(rdev) &&
2377 rdev->desc->ops->set_voltage_time_sel &&
2378 rdev->desc->ops->get_voltage_sel) {
2379 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2380 if (old_selector < 0)
2381 return old_selector;
2382 }
2383
2384 if (rdev->desc->ops->set_voltage) {
2385 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2386 &selector);
2387
2388 if (ret >= 0) {
2389 if (rdev->desc->ops->list_voltage)
2390 best_val = rdev->desc->ops->list_voltage(rdev,
2391 selector);
2392 else
2393 best_val = _regulator_get_voltage(rdev);
2394 }
2395
2396 } else if (rdev->desc->ops->set_voltage_sel) {
2397 if (rdev->desc->ops->map_voltage) {
2398 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2399 max_uV);
2400 } else {
2401 if (rdev->desc->ops->list_voltage ==
2402 regulator_list_voltage_linear)
2403 ret = regulator_map_voltage_linear(rdev,
2404 min_uV, max_uV);
2405 else
2406 ret = regulator_map_voltage_iterate(rdev,
2407 min_uV, max_uV);
2408 }
2409
2410 if (ret >= 0) {
2411 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2412 if (min_uV <= best_val && max_uV >= best_val) {
2413 selector = ret;
2414 if (old_selector == selector)
2415 ret = 0;
2416 else
2417 ret = rdev->desc->ops->set_voltage_sel(
2418 rdev, ret);
2419 } else {
2420 ret = -EINVAL;
2421 }
2422 }
2423 } else {
2424 ret = -EINVAL;
2425 }
2426
2427 /* Call set_voltage_time_sel if successfully obtained old_selector */
2428 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2429 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2430
2431 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2432 old_selector, selector);
2433 if (delay < 0) {
2434 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2435 delay);
2436 delay = 0;
2437 }
2438
2439 /* Insert any necessary delays */
2440 if (delay >= 1000) {
2441 mdelay(delay / 1000);
2442 udelay(delay % 1000);
2443 } else if (delay) {
2444 udelay(delay);
2445 }
2446 }
2447
2448 if (ret == 0 && best_val >= 0) {
2449 unsigned long data = best_val;
2450
2451 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2452 (void *)data);
2453 }
2454
2455 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2456
2457 return ret;
2458 }
2459
2460 /**
2461 * regulator_set_voltage - set regulator output voltage
2462 * @regulator: regulator source
2463 * @min_uV: Minimum required voltage in uV
2464 * @max_uV: Maximum acceptable voltage in uV
2465 *
2466 * Sets a voltage regulator to the desired output voltage. This can be set
2467 * during any regulator state. IOW, regulator can be disabled or enabled.
2468 *
2469 * If the regulator is enabled then the voltage will change to the new value
2470 * immediately otherwise if the regulator is disabled the regulator will
2471 * output at the new voltage when enabled.
2472 *
2473 * NOTE: If the regulator is shared between several devices then the lowest
2474 * request voltage that meets the system constraints will be used.
2475 * Regulator system constraints must be set for this regulator before
2476 * calling this function otherwise this call will fail.
2477 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2478 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2479 {
2480 struct regulator_dev *rdev = regulator->rdev;
2481 int ret = 0;
2482 int old_min_uV, old_max_uV;
2483
2484 mutex_lock(&rdev->mutex);
2485
2486 /* If we're setting the same range as last time the change
2487 * should be a noop (some cpufreq implementations use the same
2488 * voltage for multiple frequencies, for example).
2489 */
2490 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2491 goto out;
2492
2493 /* sanity check */
2494 if (!rdev->desc->ops->set_voltage &&
2495 !rdev->desc->ops->set_voltage_sel) {
2496 ret = -EINVAL;
2497 goto out;
2498 }
2499
2500 /* constraints check */
2501 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2502 if (ret < 0)
2503 goto out;
2504
2505 /* restore original values in case of error */
2506 old_min_uV = regulator->min_uV;
2507 old_max_uV = regulator->max_uV;
2508 regulator->min_uV = min_uV;
2509 regulator->max_uV = max_uV;
2510
2511 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2512 if (ret < 0)
2513 goto out2;
2514
2515 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2516 if (ret < 0)
2517 goto out2;
2518
2519 out:
2520 mutex_unlock(&rdev->mutex);
2521 return ret;
2522 out2:
2523 regulator->min_uV = old_min_uV;
2524 regulator->max_uV = old_max_uV;
2525 mutex_unlock(&rdev->mutex);
2526 return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2529
2530 /**
2531 * regulator_set_voltage_time - get raise/fall time
2532 * @regulator: regulator source
2533 * @old_uV: starting voltage in microvolts
2534 * @new_uV: target voltage in microvolts
2535 *
2536 * Provided with the starting and ending voltage, this function attempts to
2537 * calculate the time in microseconds required to rise or fall to this new
2538 * voltage.
2539 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2540 int regulator_set_voltage_time(struct regulator *regulator,
2541 int old_uV, int new_uV)
2542 {
2543 struct regulator_dev *rdev = regulator->rdev;
2544 struct regulator_ops *ops = rdev->desc->ops;
2545 int old_sel = -1;
2546 int new_sel = -1;
2547 int voltage;
2548 int i;
2549
2550 /* Currently requires operations to do this */
2551 if (!ops->list_voltage || !ops->set_voltage_time_sel
2552 || !rdev->desc->n_voltages)
2553 return -EINVAL;
2554
2555 for (i = 0; i < rdev->desc->n_voltages; i++) {
2556 /* We only look for exact voltage matches here */
2557 voltage = regulator_list_voltage(regulator, i);
2558 if (voltage < 0)
2559 return -EINVAL;
2560 if (voltage == 0)
2561 continue;
2562 if (voltage == old_uV)
2563 old_sel = i;
2564 if (voltage == new_uV)
2565 new_sel = i;
2566 }
2567
2568 if (old_sel < 0 || new_sel < 0)
2569 return -EINVAL;
2570
2571 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2572 }
2573 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2574
2575 /**
2576 * regulator_set_voltage_time_sel - get raise/fall time
2577 * @rdev: regulator source device
2578 * @old_selector: selector for starting voltage
2579 * @new_selector: selector for target voltage
2580 *
2581 * Provided with the starting and target voltage selectors, this function
2582 * returns time in microseconds required to rise or fall to this new voltage
2583 *
2584 * Drivers providing ramp_delay in regulation_constraints can use this as their
2585 * set_voltage_time_sel() operation.
2586 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)2587 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2588 unsigned int old_selector,
2589 unsigned int new_selector)
2590 {
2591 unsigned int ramp_delay = 0;
2592 int old_volt, new_volt;
2593
2594 if (rdev->constraints->ramp_delay)
2595 ramp_delay = rdev->constraints->ramp_delay;
2596 else if (rdev->desc->ramp_delay)
2597 ramp_delay = rdev->desc->ramp_delay;
2598
2599 if (ramp_delay == 0) {
2600 rdev_warn(rdev, "ramp_delay not set\n");
2601 return 0;
2602 }
2603
2604 /* sanity check */
2605 if (!rdev->desc->ops->list_voltage)
2606 return -EINVAL;
2607
2608 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2609 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2610
2611 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2614
2615 /**
2616 * regulator_sync_voltage - re-apply last regulator output voltage
2617 * @regulator: regulator source
2618 *
2619 * Re-apply the last configured voltage. This is intended to be used
2620 * where some external control source the consumer is cooperating with
2621 * has caused the configured voltage to change.
2622 */
regulator_sync_voltage(struct regulator * regulator)2623 int regulator_sync_voltage(struct regulator *regulator)
2624 {
2625 struct regulator_dev *rdev = regulator->rdev;
2626 int ret, min_uV, max_uV;
2627
2628 mutex_lock(&rdev->mutex);
2629
2630 if (!rdev->desc->ops->set_voltage &&
2631 !rdev->desc->ops->set_voltage_sel) {
2632 ret = -EINVAL;
2633 goto out;
2634 }
2635
2636 /* This is only going to work if we've had a voltage configured. */
2637 if (!regulator->min_uV && !regulator->max_uV) {
2638 ret = -EINVAL;
2639 goto out;
2640 }
2641
2642 min_uV = regulator->min_uV;
2643 max_uV = regulator->max_uV;
2644
2645 /* This should be a paranoia check... */
2646 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2647 if (ret < 0)
2648 goto out;
2649
2650 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2651 if (ret < 0)
2652 goto out;
2653
2654 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2655
2656 out:
2657 mutex_unlock(&rdev->mutex);
2658 return ret;
2659 }
2660 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2661
_regulator_get_voltage(struct regulator_dev * rdev)2662 static int _regulator_get_voltage(struct regulator_dev *rdev)
2663 {
2664 int sel, ret;
2665
2666 if (rdev->desc->ops->get_voltage_sel) {
2667 sel = rdev->desc->ops->get_voltage_sel(rdev);
2668 if (sel < 0)
2669 return sel;
2670 ret = rdev->desc->ops->list_voltage(rdev, sel);
2671 } else if (rdev->desc->ops->get_voltage) {
2672 ret = rdev->desc->ops->get_voltage(rdev);
2673 } else if (rdev->desc->ops->list_voltage) {
2674 ret = rdev->desc->ops->list_voltage(rdev, 0);
2675 } else {
2676 return -EINVAL;
2677 }
2678
2679 if (ret < 0)
2680 return ret;
2681 return ret - rdev->constraints->uV_offset;
2682 }
2683
2684 /**
2685 * regulator_get_voltage - get regulator output voltage
2686 * @regulator: regulator source
2687 *
2688 * This returns the current regulator voltage in uV.
2689 *
2690 * NOTE: If the regulator is disabled it will return the voltage value. This
2691 * function should not be used to determine regulator state.
2692 */
regulator_get_voltage(struct regulator * regulator)2693 int regulator_get_voltage(struct regulator *regulator)
2694 {
2695 int ret;
2696
2697 mutex_lock(®ulator->rdev->mutex);
2698
2699 ret = _regulator_get_voltage(regulator->rdev);
2700
2701 mutex_unlock(®ulator->rdev->mutex);
2702
2703 return ret;
2704 }
2705 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2706
2707 /**
2708 * regulator_set_current_limit - set regulator output current limit
2709 * @regulator: regulator source
2710 * @min_uA: Minimum supported current in uA
2711 * @max_uA: Maximum supported current in uA
2712 *
2713 * Sets current sink to the desired output current. This can be set during
2714 * any regulator state. IOW, regulator can be disabled or enabled.
2715 *
2716 * If the regulator is enabled then the current will change to the new value
2717 * immediately otherwise if the regulator is disabled the regulator will
2718 * output at the new current when enabled.
2719 *
2720 * NOTE: Regulator system constraints must be set for this regulator before
2721 * calling this function otherwise this call will fail.
2722 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)2723 int regulator_set_current_limit(struct regulator *regulator,
2724 int min_uA, int max_uA)
2725 {
2726 struct regulator_dev *rdev = regulator->rdev;
2727 int ret;
2728
2729 mutex_lock(&rdev->mutex);
2730
2731 /* sanity check */
2732 if (!rdev->desc->ops->set_current_limit) {
2733 ret = -EINVAL;
2734 goto out;
2735 }
2736
2737 /* constraints check */
2738 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2739 if (ret < 0)
2740 goto out;
2741
2742 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2743 out:
2744 mutex_unlock(&rdev->mutex);
2745 return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2748
_regulator_get_current_limit(struct regulator_dev * rdev)2749 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2750 {
2751 int ret;
2752
2753 mutex_lock(&rdev->mutex);
2754
2755 /* sanity check */
2756 if (!rdev->desc->ops->get_current_limit) {
2757 ret = -EINVAL;
2758 goto out;
2759 }
2760
2761 ret = rdev->desc->ops->get_current_limit(rdev);
2762 out:
2763 mutex_unlock(&rdev->mutex);
2764 return ret;
2765 }
2766
2767 /**
2768 * regulator_get_current_limit - get regulator output current
2769 * @regulator: regulator source
2770 *
2771 * This returns the current supplied by the specified current sink in uA.
2772 *
2773 * NOTE: If the regulator is disabled it will return the current value. This
2774 * function should not be used to determine regulator state.
2775 */
regulator_get_current_limit(struct regulator * regulator)2776 int regulator_get_current_limit(struct regulator *regulator)
2777 {
2778 return _regulator_get_current_limit(regulator->rdev);
2779 }
2780 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2781
2782 /**
2783 * regulator_set_mode - set regulator operating mode
2784 * @regulator: regulator source
2785 * @mode: operating mode - one of the REGULATOR_MODE constants
2786 *
2787 * Set regulator operating mode to increase regulator efficiency or improve
2788 * regulation performance.
2789 *
2790 * NOTE: Regulator system constraints must be set for this regulator before
2791 * calling this function otherwise this call will fail.
2792 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)2793 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2794 {
2795 struct regulator_dev *rdev = regulator->rdev;
2796 int ret;
2797 int regulator_curr_mode;
2798
2799 mutex_lock(&rdev->mutex);
2800
2801 /* sanity check */
2802 if (!rdev->desc->ops->set_mode) {
2803 ret = -EINVAL;
2804 goto out;
2805 }
2806
2807 /* return if the same mode is requested */
2808 if (rdev->desc->ops->get_mode) {
2809 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2810 if (regulator_curr_mode == mode) {
2811 ret = 0;
2812 goto out;
2813 }
2814 }
2815
2816 /* constraints check */
2817 ret = regulator_mode_constrain(rdev, &mode);
2818 if (ret < 0)
2819 goto out;
2820
2821 ret = rdev->desc->ops->set_mode(rdev, mode);
2822 out:
2823 mutex_unlock(&rdev->mutex);
2824 return ret;
2825 }
2826 EXPORT_SYMBOL_GPL(regulator_set_mode);
2827
_regulator_get_mode(struct regulator_dev * rdev)2828 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2829 {
2830 int ret;
2831
2832 mutex_lock(&rdev->mutex);
2833
2834 /* sanity check */
2835 if (!rdev->desc->ops->get_mode) {
2836 ret = -EINVAL;
2837 goto out;
2838 }
2839
2840 ret = rdev->desc->ops->get_mode(rdev);
2841 out:
2842 mutex_unlock(&rdev->mutex);
2843 return ret;
2844 }
2845
2846 /**
2847 * regulator_get_mode - get regulator operating mode
2848 * @regulator: regulator source
2849 *
2850 * Get the current regulator operating mode.
2851 */
regulator_get_mode(struct regulator * regulator)2852 unsigned int regulator_get_mode(struct regulator *regulator)
2853 {
2854 return _regulator_get_mode(regulator->rdev);
2855 }
2856 EXPORT_SYMBOL_GPL(regulator_get_mode);
2857
2858 /**
2859 * regulator_set_optimum_mode - set regulator optimum operating mode
2860 * @regulator: regulator source
2861 * @uA_load: load current
2862 *
2863 * Notifies the regulator core of a new device load. This is then used by
2864 * DRMS (if enabled by constraints) to set the most efficient regulator
2865 * operating mode for the new regulator loading.
2866 *
2867 * Consumer devices notify their supply regulator of the maximum power
2868 * they will require (can be taken from device datasheet in the power
2869 * consumption tables) when they change operational status and hence power
2870 * state. Examples of operational state changes that can affect power
2871 * consumption are :-
2872 *
2873 * o Device is opened / closed.
2874 * o Device I/O is about to begin or has just finished.
2875 * o Device is idling in between work.
2876 *
2877 * This information is also exported via sysfs to userspace.
2878 *
2879 * DRMS will sum the total requested load on the regulator and change
2880 * to the most efficient operating mode if platform constraints allow.
2881 *
2882 * Returns the new regulator mode or error.
2883 */
regulator_set_optimum_mode(struct regulator * regulator,int uA_load)2884 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2885 {
2886 struct regulator_dev *rdev = regulator->rdev;
2887 struct regulator *consumer;
2888 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2889 unsigned int mode;
2890
2891 if (rdev->supply)
2892 input_uV = regulator_get_voltage(rdev->supply);
2893
2894 mutex_lock(&rdev->mutex);
2895
2896 /*
2897 * first check to see if we can set modes at all, otherwise just
2898 * tell the consumer everything is OK.
2899 */
2900 regulator->uA_load = uA_load;
2901 ret = regulator_check_drms(rdev);
2902 if (ret < 0) {
2903 ret = 0;
2904 goto out;
2905 }
2906
2907 if (!rdev->desc->ops->get_optimum_mode)
2908 goto out;
2909
2910 /*
2911 * we can actually do this so any errors are indicators of
2912 * potential real failure.
2913 */
2914 ret = -EINVAL;
2915
2916 if (!rdev->desc->ops->set_mode)
2917 goto out;
2918
2919 /* get output voltage */
2920 output_uV = _regulator_get_voltage(rdev);
2921 if (output_uV <= 0) {
2922 rdev_err(rdev, "invalid output voltage found\n");
2923 goto out;
2924 }
2925
2926 /* No supply? Use constraint voltage */
2927 if (input_uV <= 0)
2928 input_uV = rdev->constraints->input_uV;
2929 if (input_uV <= 0) {
2930 rdev_err(rdev, "invalid input voltage found\n");
2931 goto out;
2932 }
2933
2934 /* calc total requested load for this regulator */
2935 list_for_each_entry(consumer, &rdev->consumer_list, list)
2936 total_uA_load += consumer->uA_load;
2937
2938 mode = rdev->desc->ops->get_optimum_mode(rdev,
2939 input_uV, output_uV,
2940 total_uA_load);
2941 ret = regulator_mode_constrain(rdev, &mode);
2942 if (ret < 0) {
2943 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2944 total_uA_load, input_uV, output_uV);
2945 goto out;
2946 }
2947
2948 ret = rdev->desc->ops->set_mode(rdev, mode);
2949 if (ret < 0) {
2950 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2951 goto out;
2952 }
2953 ret = mode;
2954 out:
2955 mutex_unlock(&rdev->mutex);
2956 return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2959
2960 /**
2961 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2962 *
2963 * @rdev: device to operate on.
2964 * @enable: state to set.
2965 */
regulator_set_bypass_regmap(struct regulator_dev * rdev,bool enable)2966 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2967 {
2968 unsigned int val;
2969
2970 if (enable)
2971 val = rdev->desc->bypass_mask;
2972 else
2973 val = 0;
2974
2975 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2976 rdev->desc->bypass_mask, val);
2977 }
2978 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2979
2980 /**
2981 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2982 *
2983 * @rdev: device to operate on.
2984 * @enable: current state.
2985 */
regulator_get_bypass_regmap(struct regulator_dev * rdev,bool * enable)2986 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2987 {
2988 unsigned int val;
2989 int ret;
2990
2991 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2992 if (ret != 0)
2993 return ret;
2994
2995 *enable = val & rdev->desc->bypass_mask;
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3000
3001 /**
3002 * regulator_allow_bypass - allow the regulator to go into bypass mode
3003 *
3004 * @regulator: Regulator to configure
3005 * @enable: enable or disable bypass mode
3006 *
3007 * Allow the regulator to go into bypass mode if all other consumers
3008 * for the regulator also enable bypass mode and the machine
3009 * constraints allow this. Bypass mode means that the regulator is
3010 * simply passing the input directly to the output with no regulation.
3011 */
regulator_allow_bypass(struct regulator * regulator,bool enable)3012 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3013 {
3014 struct regulator_dev *rdev = regulator->rdev;
3015 int ret = 0;
3016
3017 if (!rdev->desc->ops->set_bypass)
3018 return 0;
3019
3020 if (rdev->constraints &&
3021 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3022 return 0;
3023
3024 mutex_lock(&rdev->mutex);
3025
3026 if (enable && !regulator->bypass) {
3027 rdev->bypass_count++;
3028
3029 if (rdev->bypass_count == rdev->open_count) {
3030 ret = rdev->desc->ops->set_bypass(rdev, enable);
3031 if (ret != 0)
3032 rdev->bypass_count--;
3033 }
3034
3035 } else if (!enable && regulator->bypass) {
3036 rdev->bypass_count--;
3037
3038 if (rdev->bypass_count != rdev->open_count) {
3039 ret = rdev->desc->ops->set_bypass(rdev, enable);
3040 if (ret != 0)
3041 rdev->bypass_count++;
3042 }
3043 }
3044
3045 if (ret == 0)
3046 regulator->bypass = enable;
3047
3048 mutex_unlock(&rdev->mutex);
3049
3050 return ret;
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3053
3054 /**
3055 * regulator_register_notifier - register regulator event notifier
3056 * @regulator: regulator source
3057 * @nb: notifier block
3058 *
3059 * Register notifier block to receive regulator events.
3060 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3061 int regulator_register_notifier(struct regulator *regulator,
3062 struct notifier_block *nb)
3063 {
3064 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3065 nb);
3066 }
3067 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3068
3069 /**
3070 * regulator_unregister_notifier - unregister regulator event notifier
3071 * @regulator: regulator source
3072 * @nb: notifier block
3073 *
3074 * Unregister regulator event notifier block.
3075 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3076 int regulator_unregister_notifier(struct regulator *regulator,
3077 struct notifier_block *nb)
3078 {
3079 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3080 nb);
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3083
3084 /* notify regulator consumers and downstream regulator consumers.
3085 * Note mutex must be held by caller.
3086 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3087 static void _notifier_call_chain(struct regulator_dev *rdev,
3088 unsigned long event, void *data)
3089 {
3090 /* call rdev chain first */
3091 blocking_notifier_call_chain(&rdev->notifier, event, data);
3092 }
3093
3094 /**
3095 * regulator_bulk_get - get multiple regulator consumers
3096 *
3097 * @dev: Device to supply
3098 * @num_consumers: Number of consumers to register
3099 * @consumers: Configuration of consumers; clients are stored here.
3100 *
3101 * @return 0 on success, an errno on failure.
3102 *
3103 * This helper function allows drivers to get several regulator
3104 * consumers in one operation. If any of the regulators cannot be
3105 * acquired then any regulators that were allocated will be freed
3106 * before returning to the caller.
3107 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3108 int regulator_bulk_get(struct device *dev, int num_consumers,
3109 struct regulator_bulk_data *consumers)
3110 {
3111 int i;
3112 int ret;
3113
3114 for (i = 0; i < num_consumers; i++)
3115 consumers[i].consumer = NULL;
3116
3117 for (i = 0; i < num_consumers; i++) {
3118 consumers[i].consumer = regulator_get(dev,
3119 consumers[i].supply);
3120 if (IS_ERR(consumers[i].consumer)) {
3121 ret = PTR_ERR(consumers[i].consumer);
3122 dev_err(dev, "Failed to get supply '%s': %d\n",
3123 consumers[i].supply, ret);
3124 consumers[i].consumer = NULL;
3125 goto err;
3126 }
3127 }
3128
3129 return 0;
3130
3131 err:
3132 while (--i >= 0)
3133 regulator_put(consumers[i].consumer);
3134
3135 return ret;
3136 }
3137 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3138
3139 /**
3140 * devm_regulator_bulk_get - managed get multiple regulator consumers
3141 *
3142 * @dev: Device to supply
3143 * @num_consumers: Number of consumers to register
3144 * @consumers: Configuration of consumers; clients are stored here.
3145 *
3146 * @return 0 on success, an errno on failure.
3147 *
3148 * This helper function allows drivers to get several regulator
3149 * consumers in one operation with management, the regulators will
3150 * automatically be freed when the device is unbound. If any of the
3151 * regulators cannot be acquired then any regulators that were
3152 * allocated will be freed before returning to the caller.
3153 */
devm_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3154 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3155 struct regulator_bulk_data *consumers)
3156 {
3157 int i;
3158 int ret;
3159
3160 for (i = 0; i < num_consumers; i++)
3161 consumers[i].consumer = NULL;
3162
3163 for (i = 0; i < num_consumers; i++) {
3164 consumers[i].consumer = devm_regulator_get(dev,
3165 consumers[i].supply);
3166 if (IS_ERR(consumers[i].consumer)) {
3167 ret = PTR_ERR(consumers[i].consumer);
3168 dev_err(dev, "Failed to get supply '%s': %d\n",
3169 consumers[i].supply, ret);
3170 consumers[i].consumer = NULL;
3171 goto err;
3172 }
3173 }
3174
3175 return 0;
3176
3177 err:
3178 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3179 devm_regulator_put(consumers[i].consumer);
3180
3181 return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3184
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3185 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3186 {
3187 struct regulator_bulk_data *bulk = data;
3188
3189 bulk->ret = regulator_enable(bulk->consumer);
3190 }
3191
3192 /**
3193 * regulator_bulk_enable - enable multiple regulator consumers
3194 *
3195 * @num_consumers: Number of consumers
3196 * @consumers: Consumer data; clients are stored here.
3197 * @return 0 on success, an errno on failure
3198 *
3199 * This convenience API allows consumers to enable multiple regulator
3200 * clients in a single API call. If any consumers cannot be enabled
3201 * then any others that were enabled will be disabled again prior to
3202 * return.
3203 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3204 int regulator_bulk_enable(int num_consumers,
3205 struct regulator_bulk_data *consumers)
3206 {
3207 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3208 int i;
3209 int ret = 0;
3210
3211 for (i = 0; i < num_consumers; i++) {
3212 if (consumers[i].consumer->always_on)
3213 consumers[i].ret = 0;
3214 else
3215 async_schedule_domain(regulator_bulk_enable_async,
3216 &consumers[i], &async_domain);
3217 }
3218
3219 async_synchronize_full_domain(&async_domain);
3220
3221 /* If any consumer failed we need to unwind any that succeeded */
3222 for (i = 0; i < num_consumers; i++) {
3223 if (consumers[i].ret != 0) {
3224 ret = consumers[i].ret;
3225 goto err;
3226 }
3227 }
3228
3229 return 0;
3230
3231 err:
3232 for (i = 0; i < num_consumers; i++) {
3233 if (consumers[i].ret < 0)
3234 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3235 consumers[i].ret);
3236 else
3237 regulator_disable(consumers[i].consumer);
3238 }
3239
3240 return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3243
3244 /**
3245 * regulator_bulk_disable - disable multiple regulator consumers
3246 *
3247 * @num_consumers: Number of consumers
3248 * @consumers: Consumer data; clients are stored here.
3249 * @return 0 on success, an errno on failure
3250 *
3251 * This convenience API allows consumers to disable multiple regulator
3252 * clients in a single API call. If any consumers cannot be disabled
3253 * then any others that were disabled will be enabled again prior to
3254 * return.
3255 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3256 int regulator_bulk_disable(int num_consumers,
3257 struct regulator_bulk_data *consumers)
3258 {
3259 int i;
3260 int ret, r;
3261
3262 for (i = num_consumers - 1; i >= 0; --i) {
3263 ret = regulator_disable(consumers[i].consumer);
3264 if (ret != 0)
3265 goto err;
3266 }
3267
3268 return 0;
3269
3270 err:
3271 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3272 for (++i; i < num_consumers; ++i) {
3273 r = regulator_enable(consumers[i].consumer);
3274 if (r != 0)
3275 pr_err("Failed to reename %s: %d\n",
3276 consumers[i].supply, r);
3277 }
3278
3279 return ret;
3280 }
3281 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3282
3283 /**
3284 * regulator_bulk_force_disable - force disable multiple regulator consumers
3285 *
3286 * @num_consumers: Number of consumers
3287 * @consumers: Consumer data; clients are stored here.
3288 * @return 0 on success, an errno on failure
3289 *
3290 * This convenience API allows consumers to forcibly disable multiple regulator
3291 * clients in a single API call.
3292 * NOTE: This should be used for situations when device damage will
3293 * likely occur if the regulators are not disabled (e.g. over temp).
3294 * Although regulator_force_disable function call for some consumers can
3295 * return error numbers, the function is called for all consumers.
3296 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3297 int regulator_bulk_force_disable(int num_consumers,
3298 struct regulator_bulk_data *consumers)
3299 {
3300 int i;
3301 int ret;
3302
3303 for (i = 0; i < num_consumers; i++)
3304 consumers[i].ret =
3305 regulator_force_disable(consumers[i].consumer);
3306
3307 for (i = 0; i < num_consumers; i++) {
3308 if (consumers[i].ret != 0) {
3309 ret = consumers[i].ret;
3310 goto out;
3311 }
3312 }
3313
3314 return 0;
3315 out:
3316 return ret;
3317 }
3318 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3319
3320 /**
3321 * regulator_bulk_free - free multiple regulator consumers
3322 *
3323 * @num_consumers: Number of consumers
3324 * @consumers: Consumer data; clients are stored here.
3325 *
3326 * This convenience API allows consumers to free multiple regulator
3327 * clients in a single API call.
3328 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3329 void regulator_bulk_free(int num_consumers,
3330 struct regulator_bulk_data *consumers)
3331 {
3332 int i;
3333
3334 for (i = 0; i < num_consumers; i++) {
3335 regulator_put(consumers[i].consumer);
3336 consumers[i].consumer = NULL;
3337 }
3338 }
3339 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3340
3341 /**
3342 * regulator_notifier_call_chain - call regulator event notifier
3343 * @rdev: regulator source
3344 * @event: notifier block
3345 * @data: callback-specific data.
3346 *
3347 * Called by regulator drivers to notify clients a regulator event has
3348 * occurred. We also notify regulator clients downstream.
3349 * Note lock must be held by caller.
3350 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3351 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3352 unsigned long event, void *data)
3353 {
3354 _notifier_call_chain(rdev, event, data);
3355 return NOTIFY_DONE;
3356
3357 }
3358 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3359
3360 /**
3361 * regulator_mode_to_status - convert a regulator mode into a status
3362 *
3363 * @mode: Mode to convert
3364 *
3365 * Convert a regulator mode into a status.
3366 */
regulator_mode_to_status(unsigned int mode)3367 int regulator_mode_to_status(unsigned int mode)
3368 {
3369 switch (mode) {
3370 case REGULATOR_MODE_FAST:
3371 return REGULATOR_STATUS_FAST;
3372 case REGULATOR_MODE_NORMAL:
3373 return REGULATOR_STATUS_NORMAL;
3374 case REGULATOR_MODE_IDLE:
3375 return REGULATOR_STATUS_IDLE;
3376 case REGULATOR_MODE_STANDBY:
3377 return REGULATOR_STATUS_STANDBY;
3378 default:
3379 return REGULATOR_STATUS_UNDEFINED;
3380 }
3381 }
3382 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3383
3384 /*
3385 * To avoid cluttering sysfs (and memory) with useless state, only
3386 * create attributes that can be meaningfully displayed.
3387 */
add_regulator_attributes(struct regulator_dev * rdev)3388 static int add_regulator_attributes(struct regulator_dev *rdev)
3389 {
3390 struct device *dev = &rdev->dev;
3391 struct regulator_ops *ops = rdev->desc->ops;
3392 int status = 0;
3393
3394 /* some attributes need specific methods to be displayed */
3395 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3396 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3397 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3398 status = device_create_file(dev, &dev_attr_microvolts);
3399 if (status < 0)
3400 return status;
3401 }
3402 if (ops->get_current_limit) {
3403 status = device_create_file(dev, &dev_attr_microamps);
3404 if (status < 0)
3405 return status;
3406 }
3407 if (ops->get_mode) {
3408 status = device_create_file(dev, &dev_attr_opmode);
3409 if (status < 0)
3410 return status;
3411 }
3412 if (rdev->ena_pin || ops->is_enabled) {
3413 status = device_create_file(dev, &dev_attr_state);
3414 if (status < 0)
3415 return status;
3416 }
3417 if (ops->get_status) {
3418 status = device_create_file(dev, &dev_attr_status);
3419 if (status < 0)
3420 return status;
3421 }
3422 if (ops->get_bypass) {
3423 status = device_create_file(dev, &dev_attr_bypass);
3424 if (status < 0)
3425 return status;
3426 }
3427
3428 /* some attributes are type-specific */
3429 if (rdev->desc->type == REGULATOR_CURRENT) {
3430 status = device_create_file(dev, &dev_attr_requested_microamps);
3431 if (status < 0)
3432 return status;
3433 }
3434
3435 /* all the other attributes exist to support constraints;
3436 * don't show them if there are no constraints, or if the
3437 * relevant supporting methods are missing.
3438 */
3439 if (!rdev->constraints)
3440 return status;
3441
3442 /* constraints need specific supporting methods */
3443 if (ops->set_voltage || ops->set_voltage_sel) {
3444 status = device_create_file(dev, &dev_attr_min_microvolts);
3445 if (status < 0)
3446 return status;
3447 status = device_create_file(dev, &dev_attr_max_microvolts);
3448 if (status < 0)
3449 return status;
3450 }
3451 if (ops->set_current_limit) {
3452 status = device_create_file(dev, &dev_attr_min_microamps);
3453 if (status < 0)
3454 return status;
3455 status = device_create_file(dev, &dev_attr_max_microamps);
3456 if (status < 0)
3457 return status;
3458 }
3459
3460 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3461 if (status < 0)
3462 return status;
3463 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3464 if (status < 0)
3465 return status;
3466 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3467 if (status < 0)
3468 return status;
3469
3470 if (ops->set_suspend_voltage) {
3471 status = device_create_file(dev,
3472 &dev_attr_suspend_standby_microvolts);
3473 if (status < 0)
3474 return status;
3475 status = device_create_file(dev,
3476 &dev_attr_suspend_mem_microvolts);
3477 if (status < 0)
3478 return status;
3479 status = device_create_file(dev,
3480 &dev_attr_suspend_disk_microvolts);
3481 if (status < 0)
3482 return status;
3483 }
3484
3485 if (ops->set_suspend_mode) {
3486 status = device_create_file(dev,
3487 &dev_attr_suspend_standby_mode);
3488 if (status < 0)
3489 return status;
3490 status = device_create_file(dev,
3491 &dev_attr_suspend_mem_mode);
3492 if (status < 0)
3493 return status;
3494 status = device_create_file(dev,
3495 &dev_attr_suspend_disk_mode);
3496 if (status < 0)
3497 return status;
3498 }
3499
3500 return status;
3501 }
3502
rdev_init_debugfs(struct regulator_dev * rdev)3503 static void rdev_init_debugfs(struct regulator_dev *rdev)
3504 {
3505 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3506 if (!rdev->debugfs) {
3507 rdev_warn(rdev, "Failed to create debugfs directory\n");
3508 return;
3509 }
3510
3511 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3512 &rdev->use_count);
3513 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3514 &rdev->open_count);
3515 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3516 &rdev->bypass_count);
3517 }
3518
3519 /**
3520 * regulator_register - register regulator
3521 * @regulator_desc: regulator to register
3522 * @config: runtime configuration for regulator
3523 *
3524 * Called by regulator drivers to register a regulator.
3525 * Returns a valid pointer to struct regulator_dev on success
3526 * or an ERR_PTR() on error.
3527 */
3528 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * config)3529 regulator_register(const struct regulator_desc *regulator_desc,
3530 const struct regulator_config *config)
3531 {
3532 const struct regulation_constraints *constraints = NULL;
3533 const struct regulator_init_data *init_data;
3534 static atomic_t regulator_no = ATOMIC_INIT(0);
3535 struct regulator_dev *rdev;
3536 struct device *dev;
3537 int ret, i;
3538 const char *supply = NULL;
3539
3540 if (regulator_desc == NULL || config == NULL)
3541 return ERR_PTR(-EINVAL);
3542
3543 dev = config->dev;
3544 WARN_ON(!dev);
3545
3546 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3547 return ERR_PTR(-EINVAL);
3548
3549 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3550 regulator_desc->type != REGULATOR_CURRENT)
3551 return ERR_PTR(-EINVAL);
3552
3553 /* Only one of each should be implemented */
3554 WARN_ON(regulator_desc->ops->get_voltage &&
3555 regulator_desc->ops->get_voltage_sel);
3556 WARN_ON(regulator_desc->ops->set_voltage &&
3557 regulator_desc->ops->set_voltage_sel);
3558
3559 /* If we're using selectors we must implement list_voltage. */
3560 if (regulator_desc->ops->get_voltage_sel &&
3561 !regulator_desc->ops->list_voltage) {
3562 return ERR_PTR(-EINVAL);
3563 }
3564 if (regulator_desc->ops->set_voltage_sel &&
3565 !regulator_desc->ops->list_voltage) {
3566 return ERR_PTR(-EINVAL);
3567 }
3568
3569 init_data = config->init_data;
3570
3571 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3572 if (rdev == NULL)
3573 return ERR_PTR(-ENOMEM);
3574
3575 mutex_lock(®ulator_list_mutex);
3576
3577 mutex_init(&rdev->mutex);
3578 rdev->reg_data = config->driver_data;
3579 rdev->owner = regulator_desc->owner;
3580 rdev->desc = regulator_desc;
3581 if (config->regmap)
3582 rdev->regmap = config->regmap;
3583 else if (dev_get_regmap(dev, NULL))
3584 rdev->regmap = dev_get_regmap(dev, NULL);
3585 else if (dev->parent)
3586 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3587 INIT_LIST_HEAD(&rdev->consumer_list);
3588 INIT_LIST_HEAD(&rdev->list);
3589 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3590 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3591
3592 /* preform any regulator specific init */
3593 if (init_data && init_data->regulator_init) {
3594 ret = init_data->regulator_init(rdev->reg_data);
3595 if (ret < 0)
3596 goto clean;
3597 }
3598
3599 /* register with sysfs */
3600 rdev->dev.class = ®ulator_class;
3601 rdev->dev.of_node = config->of_node;
3602 rdev->dev.parent = dev;
3603 dev_set_name(&rdev->dev, "regulator.%d",
3604 atomic_inc_return(®ulator_no) - 1);
3605 ret = device_register(&rdev->dev);
3606 if (ret != 0) {
3607 put_device(&rdev->dev);
3608 goto clean;
3609 }
3610
3611 dev_set_drvdata(&rdev->dev, rdev);
3612
3613 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3614 ret = regulator_ena_gpio_request(rdev, config);
3615 if (ret != 0) {
3616 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3617 config->ena_gpio, ret);
3618 goto wash;
3619 }
3620
3621 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3622 rdev->ena_gpio_state = 1;
3623
3624 if (config->ena_gpio_invert)
3625 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3626 }
3627
3628 /* set regulator constraints */
3629 if (init_data)
3630 constraints = &init_data->constraints;
3631
3632 ret = set_machine_constraints(rdev, constraints);
3633 if (ret < 0)
3634 goto scrub;
3635
3636 /* add attributes supported by this regulator */
3637 ret = add_regulator_attributes(rdev);
3638 if (ret < 0)
3639 goto scrub;
3640
3641 if (init_data && init_data->supply_regulator)
3642 supply = init_data->supply_regulator;
3643 else if (regulator_desc->supply_name)
3644 supply = regulator_desc->supply_name;
3645
3646 if (supply) {
3647 struct regulator_dev *r;
3648
3649 r = regulator_dev_lookup(dev, supply, &ret);
3650
3651 if (ret == -ENODEV) {
3652 /*
3653 * No supply was specified for this regulator and
3654 * there will never be one.
3655 */
3656 ret = 0;
3657 goto add_dev;
3658 } else if (!r) {
3659 dev_err(dev, "Failed to find supply %s\n", supply);
3660 ret = -EPROBE_DEFER;
3661 goto scrub;
3662 }
3663
3664 ret = set_supply(rdev, r);
3665 if (ret < 0)
3666 goto scrub;
3667
3668 /* Enable supply if rail is enabled */
3669 if (_regulator_is_enabled(rdev)) {
3670 ret = regulator_enable(rdev->supply);
3671 if (ret < 0)
3672 goto scrub;
3673 }
3674 }
3675
3676 add_dev:
3677 /* add consumers devices */
3678 if (init_data) {
3679 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3680 ret = set_consumer_device_supply(rdev,
3681 init_data->consumer_supplies[i].dev_name,
3682 init_data->consumer_supplies[i].supply);
3683 if (ret < 0) {
3684 dev_err(dev, "Failed to set supply %s\n",
3685 init_data->consumer_supplies[i].supply);
3686 goto unset_supplies;
3687 }
3688 }
3689 }
3690
3691 list_add(&rdev->list, ®ulator_list);
3692
3693 rdev_init_debugfs(rdev);
3694 out:
3695 mutex_unlock(®ulator_list_mutex);
3696 return rdev;
3697
3698 unset_supplies:
3699 unset_regulator_supplies(rdev);
3700
3701 scrub:
3702 if (rdev->supply)
3703 _regulator_put(rdev->supply);
3704 regulator_ena_gpio_free(rdev);
3705 kfree(rdev->constraints);
3706 wash:
3707 device_unregister(&rdev->dev);
3708 /* device core frees rdev */
3709 rdev = ERR_PTR(ret);
3710 goto out;
3711
3712 clean:
3713 kfree(rdev);
3714 rdev = ERR_PTR(ret);
3715 goto out;
3716 }
3717 EXPORT_SYMBOL_GPL(regulator_register);
3718
3719 /**
3720 * regulator_unregister - unregister regulator
3721 * @rdev: regulator to unregister
3722 *
3723 * Called by regulator drivers to unregister a regulator.
3724 */
regulator_unregister(struct regulator_dev * rdev)3725 void regulator_unregister(struct regulator_dev *rdev)
3726 {
3727 if (rdev == NULL)
3728 return;
3729
3730 if (rdev->supply)
3731 regulator_put(rdev->supply);
3732 mutex_lock(®ulator_list_mutex);
3733 debugfs_remove_recursive(rdev->debugfs);
3734 flush_work(&rdev->disable_work.work);
3735 WARN_ON(rdev->open_count);
3736 unset_regulator_supplies(rdev);
3737 list_del(&rdev->list);
3738 kfree(rdev->constraints);
3739 regulator_ena_gpio_free(rdev);
3740 device_unregister(&rdev->dev);
3741 mutex_unlock(®ulator_list_mutex);
3742 }
3743 EXPORT_SYMBOL_GPL(regulator_unregister);
3744
3745 /**
3746 * regulator_suspend_prepare - prepare regulators for system wide suspend
3747 * @state: system suspend state
3748 *
3749 * Configure each regulator with it's suspend operating parameters for state.
3750 * This will usually be called by machine suspend code prior to supending.
3751 */
regulator_suspend_prepare(suspend_state_t state)3752 int regulator_suspend_prepare(suspend_state_t state)
3753 {
3754 struct regulator_dev *rdev;
3755 int ret = 0;
3756
3757 /* ON is handled by regulator active state */
3758 if (state == PM_SUSPEND_ON)
3759 return -EINVAL;
3760
3761 mutex_lock(®ulator_list_mutex);
3762 list_for_each_entry(rdev, ®ulator_list, list) {
3763
3764 mutex_lock(&rdev->mutex);
3765 ret = suspend_prepare(rdev, state);
3766 mutex_unlock(&rdev->mutex);
3767
3768 if (ret < 0) {
3769 rdev_err(rdev, "failed to prepare\n");
3770 goto out;
3771 }
3772 }
3773 out:
3774 mutex_unlock(®ulator_list_mutex);
3775 return ret;
3776 }
3777 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3778
3779 /**
3780 * regulator_suspend_finish - resume regulators from system wide suspend
3781 *
3782 * Turn on regulators that might be turned off by regulator_suspend_prepare
3783 * and that should be turned on according to the regulators properties.
3784 */
regulator_suspend_finish(void)3785 int regulator_suspend_finish(void)
3786 {
3787 struct regulator_dev *rdev;
3788 int ret = 0, error;
3789
3790 mutex_lock(®ulator_list_mutex);
3791 list_for_each_entry(rdev, ®ulator_list, list) {
3792 struct regulator_ops *ops = rdev->desc->ops;
3793
3794 mutex_lock(&rdev->mutex);
3795 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3796 ops->enable) {
3797 error = ops->enable(rdev);
3798 if (error)
3799 ret = error;
3800 } else {
3801 if (!has_full_constraints)
3802 goto unlock;
3803 if (!ops->disable)
3804 goto unlock;
3805 if (!_regulator_is_enabled(rdev))
3806 goto unlock;
3807
3808 error = ops->disable(rdev);
3809 if (error)
3810 ret = error;
3811 }
3812 unlock:
3813 mutex_unlock(&rdev->mutex);
3814 }
3815 mutex_unlock(®ulator_list_mutex);
3816 return ret;
3817 }
3818 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3819
3820 /**
3821 * regulator_has_full_constraints - the system has fully specified constraints
3822 *
3823 * Calling this function will cause the regulator API to disable all
3824 * regulators which have a zero use count and don't have an always_on
3825 * constraint in a late_initcall.
3826 *
3827 * The intention is that this will become the default behaviour in a
3828 * future kernel release so users are encouraged to use this facility
3829 * now.
3830 */
regulator_has_full_constraints(void)3831 void regulator_has_full_constraints(void)
3832 {
3833 has_full_constraints = 1;
3834 }
3835 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3836
3837 /**
3838 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3839 *
3840 * Calling this function will cause the regulator API to provide a
3841 * dummy regulator to consumers if no physical regulator is found,
3842 * allowing most consumers to proceed as though a regulator were
3843 * configured. This allows systems such as those with software
3844 * controllable regulators for the CPU core only to be brought up more
3845 * readily.
3846 */
regulator_use_dummy_regulator(void)3847 void regulator_use_dummy_regulator(void)
3848 {
3849 board_wants_dummy_regulator = true;
3850 }
3851 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3852
3853 /**
3854 * rdev_get_drvdata - get rdev regulator driver data
3855 * @rdev: regulator
3856 *
3857 * Get rdev regulator driver private data. This call can be used in the
3858 * regulator driver context.
3859 */
rdev_get_drvdata(struct regulator_dev * rdev)3860 void *rdev_get_drvdata(struct regulator_dev *rdev)
3861 {
3862 return rdev->reg_data;
3863 }
3864 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3865
3866 /**
3867 * regulator_get_drvdata - get regulator driver data
3868 * @regulator: regulator
3869 *
3870 * Get regulator driver private data. This call can be used in the consumer
3871 * driver context when non API regulator specific functions need to be called.
3872 */
regulator_get_drvdata(struct regulator * regulator)3873 void *regulator_get_drvdata(struct regulator *regulator)
3874 {
3875 return regulator->rdev->reg_data;
3876 }
3877 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3878
3879 /**
3880 * regulator_set_drvdata - set regulator driver data
3881 * @regulator: regulator
3882 * @data: data
3883 */
regulator_set_drvdata(struct regulator * regulator,void * data)3884 void regulator_set_drvdata(struct regulator *regulator, void *data)
3885 {
3886 regulator->rdev->reg_data = data;
3887 }
3888 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3889
3890 /**
3891 * regulator_get_id - get regulator ID
3892 * @rdev: regulator
3893 */
rdev_get_id(struct regulator_dev * rdev)3894 int rdev_get_id(struct regulator_dev *rdev)
3895 {
3896 return rdev->desc->id;
3897 }
3898 EXPORT_SYMBOL_GPL(rdev_get_id);
3899
rdev_get_dev(struct regulator_dev * rdev)3900 struct device *rdev_get_dev(struct regulator_dev *rdev)
3901 {
3902 return &rdev->dev;
3903 }
3904 EXPORT_SYMBOL_GPL(rdev_get_dev);
3905
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)3906 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3907 {
3908 return reg_init_data->driver_data;
3909 }
3910 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3911
3912 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)3913 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3914 size_t count, loff_t *ppos)
3915 {
3916 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3917 ssize_t len, ret = 0;
3918 struct regulator_map *map;
3919
3920 if (!buf)
3921 return -ENOMEM;
3922
3923 list_for_each_entry(map, ®ulator_map_list, list) {
3924 len = snprintf(buf + ret, PAGE_SIZE - ret,
3925 "%s -> %s.%s\n",
3926 rdev_get_name(map->regulator), map->dev_name,
3927 map->supply);
3928 if (len >= 0)
3929 ret += len;
3930 if (ret > PAGE_SIZE) {
3931 ret = PAGE_SIZE;
3932 break;
3933 }
3934 }
3935
3936 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3937
3938 kfree(buf);
3939
3940 return ret;
3941 }
3942 #endif
3943
3944 static const struct file_operations supply_map_fops = {
3945 #ifdef CONFIG_DEBUG_FS
3946 .read = supply_map_read_file,
3947 .llseek = default_llseek,
3948 #endif
3949 };
3950
regulator_init(void)3951 static int __init regulator_init(void)
3952 {
3953 int ret;
3954
3955 ret = class_register(®ulator_class);
3956
3957 debugfs_root = debugfs_create_dir("regulator", NULL);
3958 if (!debugfs_root)
3959 pr_warn("regulator: Failed to create debugfs directory\n");
3960
3961 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3962 &supply_map_fops);
3963
3964 regulator_dummy_init();
3965
3966 return ret;
3967 }
3968
3969 /* init early to allow our consumers to complete system booting */
3970 core_initcall(regulator_init);
3971
regulator_init_complete(void)3972 static int __init regulator_init_complete(void)
3973 {
3974 struct regulator_dev *rdev;
3975 struct regulator_ops *ops;
3976 struct regulation_constraints *c;
3977 int enabled, ret;
3978
3979 /*
3980 * Since DT doesn't provide an idiomatic mechanism for
3981 * enabling full constraints and since it's much more natural
3982 * with DT to provide them just assume that a DT enabled
3983 * system has full constraints.
3984 */
3985 if (of_have_populated_dt())
3986 has_full_constraints = true;
3987
3988 mutex_lock(®ulator_list_mutex);
3989
3990 /* If we have a full configuration then disable any regulators
3991 * which are not in use or always_on. This will become the
3992 * default behaviour in the future.
3993 */
3994 list_for_each_entry(rdev, ®ulator_list, list) {
3995 ops = rdev->desc->ops;
3996 c = rdev->constraints;
3997
3998 if (!ops->disable || (c && c->always_on))
3999 continue;
4000
4001 mutex_lock(&rdev->mutex);
4002
4003 if (rdev->use_count)
4004 goto unlock;
4005
4006 /* If we can't read the status assume it's on. */
4007 if (ops->is_enabled)
4008 enabled = ops->is_enabled(rdev);
4009 else
4010 enabled = 1;
4011
4012 if (!enabled)
4013 goto unlock;
4014
4015 if (has_full_constraints) {
4016 /* We log since this may kill the system if it
4017 * goes wrong. */
4018 rdev_info(rdev, "disabling\n");
4019 ret = ops->disable(rdev);
4020 if (ret != 0) {
4021 rdev_err(rdev, "couldn't disable: %d\n", ret);
4022 }
4023 } else {
4024 /* The intention is that in future we will
4025 * assume that full constraints are provided
4026 * so warn even if we aren't going to do
4027 * anything here.
4028 */
4029 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4030 }
4031
4032 unlock:
4033 mutex_unlock(&rdev->mutex);
4034 }
4035
4036 mutex_unlock(®ulator_list_mutex);
4037
4038 return 0;
4039 }
4040 late_initcall(regulator_init_complete);
4041