1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/aio.h>
22
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25
reiserfs_evict_inode(struct inode * inode)26 void reiserfs_evict_inode(struct inode *inode)
27 {
28 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 int jbegin_count =
30 JOURNAL_PER_BALANCE_CNT * 2 +
31 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 struct reiserfs_transaction_handle th;
33 int depth;
34 int err;
35
36 if (!inode->i_nlink && !is_bad_inode(inode))
37 dquot_initialize(inode);
38
39 truncate_inode_pages(&inode->i_data, 0);
40 if (inode->i_nlink)
41 goto no_delete;
42
43 depth = reiserfs_write_lock_once(inode->i_sb);
44
45 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
46 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
47 reiserfs_delete_xattrs(inode);
48
49 if (journal_begin(&th, inode->i_sb, jbegin_count))
50 goto out;
51 reiserfs_update_inode_transaction(inode);
52
53 reiserfs_discard_prealloc(&th, inode);
54
55 err = reiserfs_delete_object(&th, inode);
56
57 /* Do quota update inside a transaction for journaled quotas. We must do that
58 * after delete_object so that quota updates go into the same transaction as
59 * stat data deletion */
60 if (!err)
61 dquot_free_inode(inode);
62
63 if (journal_end(&th, inode->i_sb, jbegin_count))
64 goto out;
65
66 /* check return value from reiserfs_delete_object after
67 * ending the transaction
68 */
69 if (err)
70 goto out;
71
72 /* all items of file are deleted, so we can remove "save" link */
73 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
74 * about an error here */
75 } else {
76 /* no object items are in the tree */
77 ;
78 }
79 out:
80 reiserfs_write_unlock_once(inode->i_sb, depth);
81 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
82 dquot_drop(inode);
83 inode->i_blocks = 0;
84 return;
85
86 no_delete:
87 clear_inode(inode);
88 dquot_drop(inode);
89 }
90
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)91 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
92 __u32 objectid, loff_t offset, int type, int length)
93 {
94 key->version = version;
95
96 key->on_disk_key.k_dir_id = dirid;
97 key->on_disk_key.k_objectid = objectid;
98 set_cpu_key_k_offset(key, offset);
99 set_cpu_key_k_type(key, type);
100 key->key_length = length;
101 }
102
103 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
104 offset and type of key */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)105 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
106 int type, int length)
107 {
108 _make_cpu_key(key, get_inode_item_key_version(inode),
109 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
110 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
111 length);
112 }
113
114 //
115 // when key is 0, do not set version and short key
116 //
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)117 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
118 int version,
119 loff_t offset, int type, int length,
120 int entry_count /*or ih_free_space */ )
121 {
122 if (key) {
123 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
124 ih->ih_key.k_objectid =
125 cpu_to_le32(key->on_disk_key.k_objectid);
126 }
127 put_ih_version(ih, version);
128 set_le_ih_k_offset(ih, offset);
129 set_le_ih_k_type(ih, type);
130 put_ih_item_len(ih, length);
131 /* set_ih_free_space (ih, 0); */
132 // for directory items it is entry count, for directs and stat
133 // datas - 0xffff, for indirects - 0
134 put_ih_entry_count(ih, entry_count);
135 }
136
137 //
138 // FIXME: we might cache recently accessed indirect item
139
140 // Ugh. Not too eager for that....
141 // I cut the code until such time as I see a convincing argument (benchmark).
142 // I don't want a bloated inode struct..., and I don't like code complexity....
143
144 /* cutting the code is fine, since it really isn't in use yet and is easy
145 ** to add back in. But, Vladimir has a really good idea here. Think
146 ** about what happens for reading a file. For each page,
147 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
148 ** an indirect item. This indirect item has X number of pointers, where
149 ** X is a big number if we've done the block allocation right. But,
150 ** we only use one or two of these pointers during each call to readpage,
151 ** needlessly researching again later on.
152 **
153 ** The size of the cache could be dynamic based on the size of the file.
154 **
155 ** I'd also like to see us cache the location the stat data item, since
156 ** we are needlessly researching for that frequently.
157 **
158 ** --chris
159 */
160
161 /* If this page has a file tail in it, and
162 ** it was read in by get_block_create_0, the page data is valid,
163 ** but tail is still sitting in a direct item, and we can't write to
164 ** it. So, look through this page, and check all the mapped buffers
165 ** to make sure they have valid block numbers. Any that don't need
166 ** to be unmapped, so that __block_write_begin will correctly call
167 ** reiserfs_get_block to convert the tail into an unformatted node
168 */
fix_tail_page_for_writing(struct page * page)169 static inline void fix_tail_page_for_writing(struct page *page)
170 {
171 struct buffer_head *head, *next, *bh;
172
173 if (page && page_has_buffers(page)) {
174 head = page_buffers(page);
175 bh = head;
176 do {
177 next = bh->b_this_page;
178 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
179 reiserfs_unmap_buffer(bh);
180 }
181 bh = next;
182 } while (bh != head);
183 }
184 }
185
186 /* reiserfs_get_block does not need to allocate a block only if it has been
187 done already or non-hole position has been found in the indirect item */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)188 static inline int allocation_needed(int retval, b_blocknr_t allocated,
189 struct item_head *ih,
190 __le32 * item, int pos_in_item)
191 {
192 if (allocated)
193 return 0;
194 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
195 get_block_num(item, pos_in_item))
196 return 0;
197 return 1;
198 }
199
indirect_item_found(int retval,struct item_head * ih)200 static inline int indirect_item_found(int retval, struct item_head *ih)
201 {
202 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
203 }
204
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)205 static inline void set_block_dev_mapped(struct buffer_head *bh,
206 b_blocknr_t block, struct inode *inode)
207 {
208 map_bh(bh, inode->i_sb, block);
209 }
210
211 //
212 // files which were created in the earlier version can not be longer,
213 // than 2 gb
214 //
file_capable(struct inode * inode,sector_t block)215 static int file_capable(struct inode *inode, sector_t block)
216 {
217 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
218 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
219 return 1;
220
221 return 0;
222 }
223
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)224 static int restart_transaction(struct reiserfs_transaction_handle *th,
225 struct inode *inode, struct treepath *path)
226 {
227 struct super_block *s = th->t_super;
228 int len = th->t_blocks_allocated;
229 int err;
230
231 BUG_ON(!th->t_trans_id);
232 BUG_ON(!th->t_refcount);
233
234 pathrelse(path);
235
236 /* we cannot restart while nested */
237 if (th->t_refcount > 1) {
238 return 0;
239 }
240 reiserfs_update_sd(th, inode);
241 err = journal_end(th, s, len);
242 if (!err) {
243 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
244 if (!err)
245 reiserfs_update_inode_transaction(inode);
246 }
247 return err;
248 }
249
250 // it is called by get_block when create == 0. Returns block number
251 // for 'block'-th logical block of file. When it hits direct item it
252 // returns 0 (being called from bmap) or read direct item into piece
253 // of page (bh_result)
254
255 // Please improve the english/clarity in the comment above, as it is
256 // hard to understand.
257
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)258 static int _get_block_create_0(struct inode *inode, sector_t block,
259 struct buffer_head *bh_result, int args)
260 {
261 INITIALIZE_PATH(path);
262 struct cpu_key key;
263 struct buffer_head *bh;
264 struct item_head *ih, tmp_ih;
265 b_blocknr_t blocknr;
266 char *p = NULL;
267 int chars;
268 int ret;
269 int result;
270 int done = 0;
271 unsigned long offset;
272
273 // prepare the key to look for the 'block'-th block of file
274 make_cpu_key(&key, inode,
275 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
276 3);
277
278 result = search_for_position_by_key(inode->i_sb, &key, &path);
279 if (result != POSITION_FOUND) {
280 pathrelse(&path);
281 if (p)
282 kunmap(bh_result->b_page);
283 if (result == IO_ERROR)
284 return -EIO;
285 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
286 // That there is some MMAPED data associated with it that is yet to be written to disk.
287 if ((args & GET_BLOCK_NO_HOLE)
288 && !PageUptodate(bh_result->b_page)) {
289 return -ENOENT;
290 }
291 return 0;
292 }
293 //
294 bh = get_last_bh(&path);
295 ih = get_ih(&path);
296 if (is_indirect_le_ih(ih)) {
297 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
298
299 /* FIXME: here we could cache indirect item or part of it in
300 the inode to avoid search_by_key in case of subsequent
301 access to file */
302 blocknr = get_block_num(ind_item, path.pos_in_item);
303 ret = 0;
304 if (blocknr) {
305 map_bh(bh_result, inode->i_sb, blocknr);
306 if (path.pos_in_item ==
307 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
308 set_buffer_boundary(bh_result);
309 }
310 } else
311 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
312 // That there is some MMAPED data associated with it that is yet to be written to disk.
313 if ((args & GET_BLOCK_NO_HOLE)
314 && !PageUptodate(bh_result->b_page)) {
315 ret = -ENOENT;
316 }
317
318 pathrelse(&path);
319 if (p)
320 kunmap(bh_result->b_page);
321 return ret;
322 }
323 // requested data are in direct item(s)
324 if (!(args & GET_BLOCK_READ_DIRECT)) {
325 // we are called by bmap. FIXME: we can not map block of file
326 // when it is stored in direct item(s)
327 pathrelse(&path);
328 if (p)
329 kunmap(bh_result->b_page);
330 return -ENOENT;
331 }
332
333 /* if we've got a direct item, and the buffer or page was uptodate,
334 ** we don't want to pull data off disk again. skip to the
335 ** end, where we map the buffer and return
336 */
337 if (buffer_uptodate(bh_result)) {
338 goto finished;
339 } else
340 /*
341 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
342 ** pages without any buffers. If the page is up to date, we don't want
343 ** read old data off disk. Set the up to date bit on the buffer instead
344 ** and jump to the end
345 */
346 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
347 set_buffer_uptodate(bh_result);
348 goto finished;
349 }
350 // read file tail into part of page
351 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
352 copy_item_head(&tmp_ih, ih);
353
354 /* we only want to kmap if we are reading the tail into the page.
355 ** this is not the common case, so we don't kmap until we are
356 ** sure we need to. But, this means the item might move if
357 ** kmap schedules
358 */
359 if (!p)
360 p = (char *)kmap(bh_result->b_page);
361
362 p += offset;
363 memset(p, 0, inode->i_sb->s_blocksize);
364 do {
365 if (!is_direct_le_ih(ih)) {
366 BUG();
367 }
368 /* make sure we don't read more bytes than actually exist in
369 ** the file. This can happen in odd cases where i_size isn't
370 ** correct, and when direct item padding results in a few
371 ** extra bytes at the end of the direct item
372 */
373 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
374 break;
375 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
376 chars =
377 inode->i_size - (le_ih_k_offset(ih) - 1) -
378 path.pos_in_item;
379 done = 1;
380 } else {
381 chars = ih_item_len(ih) - path.pos_in_item;
382 }
383 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
384
385 if (done)
386 break;
387
388 p += chars;
389
390 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
391 // we done, if read direct item is not the last item of
392 // node FIXME: we could try to check right delimiting key
393 // to see whether direct item continues in the right
394 // neighbor or rely on i_size
395 break;
396
397 // update key to look for the next piece
398 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
399 result = search_for_position_by_key(inode->i_sb, &key, &path);
400 if (result != POSITION_FOUND)
401 // i/o error most likely
402 break;
403 bh = get_last_bh(&path);
404 ih = get_ih(&path);
405 } while (1);
406
407 flush_dcache_page(bh_result->b_page);
408 kunmap(bh_result->b_page);
409
410 finished:
411 pathrelse(&path);
412
413 if (result == IO_ERROR)
414 return -EIO;
415
416 /* this buffer has valid data, but isn't valid for io. mapping it to
417 * block #0 tells the rest of reiserfs it just has a tail in it
418 */
419 map_bh(bh_result, inode->i_sb, 0);
420 set_buffer_uptodate(bh_result);
421 return 0;
422 }
423
424 // this is called to create file map. So, _get_block_create_0 will not
425 // read direct item
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)426 static int reiserfs_bmap(struct inode *inode, sector_t block,
427 struct buffer_head *bh_result, int create)
428 {
429 if (!file_capable(inode, block))
430 return -EFBIG;
431
432 reiserfs_write_lock(inode->i_sb);
433 /* do not read the direct item */
434 _get_block_create_0(inode, block, bh_result, 0);
435 reiserfs_write_unlock(inode->i_sb);
436 return 0;
437 }
438
439 /* special version of get_block that is only used by grab_tail_page right
440 ** now. It is sent to __block_write_begin, and when you try to get a
441 ** block past the end of the file (or a block from a hole) it returns
442 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
443 ** be able to do i/o on the buffers returned, unless an error value
444 ** is also returned.
445 **
446 ** So, this allows __block_write_begin to be used for reading a single block
447 ** in a page. Where it does not produce a valid page for holes, or past the
448 ** end of the file. This turns out to be exactly what we need for reading
449 ** tails for conversion.
450 **
451 ** The point of the wrapper is forcing a certain value for create, even
452 ** though the VFS layer is calling this function with create==1. If you
453 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
454 ** don't use this function.
455 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)456 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
457 struct buffer_head *bh_result,
458 int create)
459 {
460 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
461 }
462
463 /* This is special helper for reiserfs_get_block in case we are executing
464 direct_IO request. */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)465 static int reiserfs_get_blocks_direct_io(struct inode *inode,
466 sector_t iblock,
467 struct buffer_head *bh_result,
468 int create)
469 {
470 int ret;
471
472 bh_result->b_page = NULL;
473
474 /* We set the b_size before reiserfs_get_block call since it is
475 referenced in convert_tail_for_hole() that may be called from
476 reiserfs_get_block() */
477 bh_result->b_size = (1 << inode->i_blkbits);
478
479 ret = reiserfs_get_block(inode, iblock, bh_result,
480 create | GET_BLOCK_NO_DANGLE);
481 if (ret)
482 goto out;
483
484 /* don't allow direct io onto tail pages */
485 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
486 /* make sure future calls to the direct io funcs for this offset
487 ** in the file fail by unmapping the buffer
488 */
489 clear_buffer_mapped(bh_result);
490 ret = -EINVAL;
491 }
492 /* Possible unpacked tail. Flush the data before pages have
493 disappeared */
494 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
495 int err;
496
497 reiserfs_write_lock(inode->i_sb);
498
499 err = reiserfs_commit_for_inode(inode);
500 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
501
502 reiserfs_write_unlock(inode->i_sb);
503
504 if (err < 0)
505 ret = err;
506 }
507 out:
508 return ret;
509 }
510
511 /*
512 ** helper function for when reiserfs_get_block is called for a hole
513 ** but the file tail is still in a direct item
514 ** bh_result is the buffer head for the hole
515 ** tail_offset is the offset of the start of the tail in the file
516 **
517 ** This calls prepare_write, which will start a new transaction
518 ** you should not be in a transaction, or have any paths held when you
519 ** call this.
520 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)521 static int convert_tail_for_hole(struct inode *inode,
522 struct buffer_head *bh_result,
523 loff_t tail_offset)
524 {
525 unsigned long index;
526 unsigned long tail_end;
527 unsigned long tail_start;
528 struct page *tail_page;
529 struct page *hole_page = bh_result->b_page;
530 int retval = 0;
531
532 if ((tail_offset & (bh_result->b_size - 1)) != 1)
533 return -EIO;
534
535 /* always try to read until the end of the block */
536 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
537 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
538
539 index = tail_offset >> PAGE_CACHE_SHIFT;
540 /* hole_page can be zero in case of direct_io, we are sure
541 that we cannot get here if we write with O_DIRECT into
542 tail page */
543 if (!hole_page || index != hole_page->index) {
544 tail_page = grab_cache_page(inode->i_mapping, index);
545 retval = -ENOMEM;
546 if (!tail_page) {
547 goto out;
548 }
549 } else {
550 tail_page = hole_page;
551 }
552
553 /* we don't have to make sure the conversion did not happen while
554 ** we were locking the page because anyone that could convert
555 ** must first take i_mutex.
556 **
557 ** We must fix the tail page for writing because it might have buffers
558 ** that are mapped, but have a block number of 0. This indicates tail
559 ** data that has been read directly into the page, and
560 ** __block_write_begin won't trigger a get_block in this case.
561 */
562 fix_tail_page_for_writing(tail_page);
563 retval = __reiserfs_write_begin(tail_page, tail_start,
564 tail_end - tail_start);
565 if (retval)
566 goto unlock;
567
568 /* tail conversion might change the data in the page */
569 flush_dcache_page(tail_page);
570
571 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
572
573 unlock:
574 if (tail_page != hole_page) {
575 unlock_page(tail_page);
576 page_cache_release(tail_page);
577 }
578 out:
579 return retval;
580 }
581
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)582 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
583 sector_t block,
584 struct inode *inode,
585 b_blocknr_t * allocated_block_nr,
586 struct treepath *path, int flags)
587 {
588 BUG_ON(!th->t_trans_id);
589
590 #ifdef REISERFS_PREALLOCATE
591 if (!(flags & GET_BLOCK_NO_IMUX)) {
592 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
593 path, block);
594 }
595 #endif
596 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
597 block);
598 }
599
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)600 int reiserfs_get_block(struct inode *inode, sector_t block,
601 struct buffer_head *bh_result, int create)
602 {
603 int repeat, retval = 0;
604 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
605 INITIALIZE_PATH(path);
606 int pos_in_item;
607 struct cpu_key key;
608 struct buffer_head *bh, *unbh = NULL;
609 struct item_head *ih, tmp_ih;
610 __le32 *item;
611 int done;
612 int fs_gen;
613 int lock_depth;
614 struct reiserfs_transaction_handle *th = NULL;
615 /* space reserved in transaction batch:
616 . 3 balancings in direct->indirect conversion
617 . 1 block involved into reiserfs_update_sd()
618 XXX in practically impossible worst case direct2indirect()
619 can incur (much) more than 3 balancings.
620 quota update for user, group */
621 int jbegin_count =
622 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
623 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
624 int version;
625 int dangle = 1;
626 loff_t new_offset =
627 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
628
629 lock_depth = reiserfs_write_lock_once(inode->i_sb);
630 version = get_inode_item_key_version(inode);
631
632 if (!file_capable(inode, block)) {
633 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
634 return -EFBIG;
635 }
636
637 /* if !create, we aren't changing the FS, so we don't need to
638 ** log anything, so we don't need to start a transaction
639 */
640 if (!(create & GET_BLOCK_CREATE)) {
641 int ret;
642 /* find number of block-th logical block of the file */
643 ret = _get_block_create_0(inode, block, bh_result,
644 create | GET_BLOCK_READ_DIRECT);
645 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
646 return ret;
647 }
648 /*
649 * if we're already in a transaction, make sure to close
650 * any new transactions we start in this func
651 */
652 if ((create & GET_BLOCK_NO_DANGLE) ||
653 reiserfs_transaction_running(inode->i_sb))
654 dangle = 0;
655
656 /* If file is of such a size, that it might have a tail and tails are enabled
657 ** we should mark it as possibly needing tail packing on close
658 */
659 if ((have_large_tails(inode->i_sb)
660 && inode->i_size < i_block_size(inode) * 4)
661 || (have_small_tails(inode->i_sb)
662 && inode->i_size < i_block_size(inode)))
663 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
664
665 /* set the key of the first byte in the 'block'-th block of file */
666 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
667 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
668 start_trans:
669 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
670 if (!th) {
671 retval = -ENOMEM;
672 goto failure;
673 }
674 reiserfs_update_inode_transaction(inode);
675 }
676 research:
677
678 retval = search_for_position_by_key(inode->i_sb, &key, &path);
679 if (retval == IO_ERROR) {
680 retval = -EIO;
681 goto failure;
682 }
683
684 bh = get_last_bh(&path);
685 ih = get_ih(&path);
686 item = get_item(&path);
687 pos_in_item = path.pos_in_item;
688
689 fs_gen = get_generation(inode->i_sb);
690 copy_item_head(&tmp_ih, ih);
691
692 if (allocation_needed
693 (retval, allocated_block_nr, ih, item, pos_in_item)) {
694 /* we have to allocate block for the unformatted node */
695 if (!th) {
696 pathrelse(&path);
697 goto start_trans;
698 }
699
700 repeat =
701 _allocate_block(th, block, inode, &allocated_block_nr,
702 &path, create);
703
704 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
705 /* restart the transaction to give the journal a chance to free
706 ** some blocks. releases the path, so we have to go back to
707 ** research if we succeed on the second try
708 */
709 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
710 retval = restart_transaction(th, inode, &path);
711 if (retval)
712 goto failure;
713 repeat =
714 _allocate_block(th, block, inode,
715 &allocated_block_nr, NULL, create);
716
717 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
718 goto research;
719 }
720 if (repeat == QUOTA_EXCEEDED)
721 retval = -EDQUOT;
722 else
723 retval = -ENOSPC;
724 goto failure;
725 }
726
727 if (fs_changed(fs_gen, inode->i_sb)
728 && item_moved(&tmp_ih, &path)) {
729 goto research;
730 }
731 }
732
733 if (indirect_item_found(retval, ih)) {
734 b_blocknr_t unfm_ptr;
735 /* 'block'-th block is in the file already (there is
736 corresponding cell in some indirect item). But it may be
737 zero unformatted node pointer (hole) */
738 unfm_ptr = get_block_num(item, pos_in_item);
739 if (unfm_ptr == 0) {
740 /* use allocated block to plug the hole */
741 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
742 if (fs_changed(fs_gen, inode->i_sb)
743 && item_moved(&tmp_ih, &path)) {
744 reiserfs_restore_prepared_buffer(inode->i_sb,
745 bh);
746 goto research;
747 }
748 set_buffer_new(bh_result);
749 if (buffer_dirty(bh_result)
750 && reiserfs_data_ordered(inode->i_sb))
751 reiserfs_add_ordered_list(inode, bh_result);
752 put_block_num(item, pos_in_item, allocated_block_nr);
753 unfm_ptr = allocated_block_nr;
754 journal_mark_dirty(th, inode->i_sb, bh);
755 reiserfs_update_sd(th, inode);
756 }
757 set_block_dev_mapped(bh_result, unfm_ptr, inode);
758 pathrelse(&path);
759 retval = 0;
760 if (!dangle && th)
761 retval = reiserfs_end_persistent_transaction(th);
762
763 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
764
765 /* the item was found, so new blocks were not added to the file
766 ** there is no need to make sure the inode is updated with this
767 ** transaction
768 */
769 return retval;
770 }
771
772 if (!th) {
773 pathrelse(&path);
774 goto start_trans;
775 }
776
777 /* desired position is not found or is in the direct item. We have
778 to append file with holes up to 'block'-th block converting
779 direct items to indirect one if necessary */
780 done = 0;
781 do {
782 if (is_statdata_le_ih(ih)) {
783 __le32 unp = 0;
784 struct cpu_key tmp_key;
785
786 /* indirect item has to be inserted */
787 make_le_item_head(&tmp_ih, &key, version, 1,
788 TYPE_INDIRECT, UNFM_P_SIZE,
789 0 /* free_space */ );
790
791 if (cpu_key_k_offset(&key) == 1) {
792 /* we are going to add 'block'-th block to the file. Use
793 allocated block for that */
794 unp = cpu_to_le32(allocated_block_nr);
795 set_block_dev_mapped(bh_result,
796 allocated_block_nr, inode);
797 set_buffer_new(bh_result);
798 done = 1;
799 }
800 tmp_key = key; // ;)
801 set_cpu_key_k_offset(&tmp_key, 1);
802 PATH_LAST_POSITION(&path)++;
803
804 retval =
805 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
806 inode, (char *)&unp);
807 if (retval) {
808 reiserfs_free_block(th, inode,
809 allocated_block_nr, 1);
810 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
811 }
812 //mark_tail_converted (inode);
813 } else if (is_direct_le_ih(ih)) {
814 /* direct item has to be converted */
815 loff_t tail_offset;
816
817 tail_offset =
818 ((le_ih_k_offset(ih) -
819 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
820 if (tail_offset == cpu_key_k_offset(&key)) {
821 /* direct item we just found fits into block we have
822 to map. Convert it into unformatted node: use
823 bh_result for the conversion */
824 set_block_dev_mapped(bh_result,
825 allocated_block_nr, inode);
826 unbh = bh_result;
827 done = 1;
828 } else {
829 /* we have to padd file tail stored in direct item(s)
830 up to block size and convert it to unformatted
831 node. FIXME: this should also get into page cache */
832
833 pathrelse(&path);
834 /*
835 * ugly, but we can only end the transaction if
836 * we aren't nested
837 */
838 BUG_ON(!th->t_refcount);
839 if (th->t_refcount == 1) {
840 retval =
841 reiserfs_end_persistent_transaction
842 (th);
843 th = NULL;
844 if (retval)
845 goto failure;
846 }
847
848 retval =
849 convert_tail_for_hole(inode, bh_result,
850 tail_offset);
851 if (retval) {
852 if (retval != -ENOSPC)
853 reiserfs_error(inode->i_sb,
854 "clm-6004",
855 "convert tail failed "
856 "inode %lu, error %d",
857 inode->i_ino,
858 retval);
859 if (allocated_block_nr) {
860 /* the bitmap, the super, and the stat data == 3 */
861 if (!th)
862 th = reiserfs_persistent_transaction(inode->i_sb, 3);
863 if (th)
864 reiserfs_free_block(th,
865 inode,
866 allocated_block_nr,
867 1);
868 }
869 goto failure;
870 }
871 goto research;
872 }
873 retval =
874 direct2indirect(th, inode, &path, unbh,
875 tail_offset);
876 if (retval) {
877 reiserfs_unmap_buffer(unbh);
878 reiserfs_free_block(th, inode,
879 allocated_block_nr, 1);
880 goto failure;
881 }
882 /* it is important the set_buffer_uptodate is done after
883 ** the direct2indirect. The buffer might contain valid
884 ** data newer than the data on disk (read by readpage, changed,
885 ** and then sent here by writepage). direct2indirect needs
886 ** to know if unbh was already up to date, so it can decide
887 ** if the data in unbh needs to be replaced with data from
888 ** the disk
889 */
890 set_buffer_uptodate(unbh);
891
892 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
893 buffer will disappear shortly, so it should not be added to
894 */
895 if (unbh->b_page) {
896 /* we've converted the tail, so we must
897 ** flush unbh before the transaction commits
898 */
899 reiserfs_add_tail_list(inode, unbh);
900
901 /* mark it dirty now to prevent commit_write from adding
902 ** this buffer to the inode's dirty buffer list
903 */
904 /*
905 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
906 * It's still atomic, but it sets the page dirty too,
907 * which makes it eligible for writeback at any time by the
908 * VM (which was also the case with __mark_buffer_dirty())
909 */
910 mark_buffer_dirty(unbh);
911 }
912 } else {
913 /* append indirect item with holes if needed, when appending
914 pointer to 'block'-th block use block, which is already
915 allocated */
916 struct cpu_key tmp_key;
917 unp_t unf_single = 0; // We use this in case we need to allocate only
918 // one block which is a fastpath
919 unp_t *un;
920 __u64 max_to_insert =
921 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
922 UNFM_P_SIZE;
923 __u64 blocks_needed;
924
925 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
926 "vs-804: invalid position for append");
927 /* indirect item has to be appended, set up key of that position */
928 make_cpu_key(&tmp_key, inode,
929 le_key_k_offset(version,
930 &(ih->ih_key)) +
931 op_bytes_number(ih,
932 inode->i_sb->s_blocksize),
933 //pos_in_item * inode->i_sb->s_blocksize,
934 TYPE_INDIRECT, 3); // key type is unimportant
935
936 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
937 "green-805: invalid offset");
938 blocks_needed =
939 1 +
940 ((cpu_key_k_offset(&key) -
941 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
942 s_blocksize_bits);
943
944 if (blocks_needed == 1) {
945 un = &unf_single;
946 } else {
947 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
948 if (!un) {
949 un = &unf_single;
950 blocks_needed = 1;
951 max_to_insert = 0;
952 }
953 }
954 if (blocks_needed <= max_to_insert) {
955 /* we are going to add target block to the file. Use allocated
956 block for that */
957 un[blocks_needed - 1] =
958 cpu_to_le32(allocated_block_nr);
959 set_block_dev_mapped(bh_result,
960 allocated_block_nr, inode);
961 set_buffer_new(bh_result);
962 done = 1;
963 } else {
964 /* paste hole to the indirect item */
965 /* If kmalloc failed, max_to_insert becomes zero and it means we
966 only have space for one block */
967 blocks_needed =
968 max_to_insert ? max_to_insert : 1;
969 }
970 retval =
971 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
972 (char *)un,
973 UNFM_P_SIZE *
974 blocks_needed);
975
976 if (blocks_needed != 1)
977 kfree(un);
978
979 if (retval) {
980 reiserfs_free_block(th, inode,
981 allocated_block_nr, 1);
982 goto failure;
983 }
984 if (!done) {
985 /* We need to mark new file size in case this function will be
986 interrupted/aborted later on. And we may do this only for
987 holes. */
988 inode->i_size +=
989 inode->i_sb->s_blocksize * blocks_needed;
990 }
991 }
992
993 if (done == 1)
994 break;
995
996 /* this loop could log more blocks than we had originally asked
997 ** for. So, we have to allow the transaction to end if it is
998 ** too big or too full. Update the inode so things are
999 ** consistent if we crash before the function returns
1000 **
1001 ** release the path so that anybody waiting on the path before
1002 ** ending their transaction will be able to continue.
1003 */
1004 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1005 retval = restart_transaction(th, inode, &path);
1006 if (retval)
1007 goto failure;
1008 }
1009 /*
1010 * inserting indirect pointers for a hole can take a
1011 * long time. reschedule if needed and also release the write
1012 * lock for others.
1013 */
1014 if (need_resched()) {
1015 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1016 schedule();
1017 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1018 }
1019
1020 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1021 if (retval == IO_ERROR) {
1022 retval = -EIO;
1023 goto failure;
1024 }
1025 if (retval == POSITION_FOUND) {
1026 reiserfs_warning(inode->i_sb, "vs-825",
1027 "%K should not be found", &key);
1028 retval = -EEXIST;
1029 if (allocated_block_nr)
1030 reiserfs_free_block(th, inode,
1031 allocated_block_nr, 1);
1032 pathrelse(&path);
1033 goto failure;
1034 }
1035 bh = get_last_bh(&path);
1036 ih = get_ih(&path);
1037 item = get_item(&path);
1038 pos_in_item = path.pos_in_item;
1039 } while (1);
1040
1041 retval = 0;
1042
1043 failure:
1044 if (th && (!dangle || (retval && !th->t_trans_id))) {
1045 int err;
1046 if (th->t_trans_id)
1047 reiserfs_update_sd(th, inode);
1048 err = reiserfs_end_persistent_transaction(th);
1049 if (err)
1050 retval = err;
1051 }
1052
1053 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1054 reiserfs_check_path(&path);
1055 return retval;
1056 }
1057
1058 static int
reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1059 reiserfs_readpages(struct file *file, struct address_space *mapping,
1060 struct list_head *pages, unsigned nr_pages)
1061 {
1062 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1063 }
1064
1065 /* Compute real number of used bytes by file
1066 * Following three functions can go away when we'll have enough space in stat item
1067 */
real_space_diff(struct inode * inode,int sd_size)1068 static int real_space_diff(struct inode *inode, int sd_size)
1069 {
1070 int bytes;
1071 loff_t blocksize = inode->i_sb->s_blocksize;
1072
1073 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1074 return sd_size;
1075
1076 /* End of file is also in full block with indirect reference, so round
1077 ** up to the next block.
1078 **
1079 ** there is just no way to know if the tail is actually packed
1080 ** on the file, so we have to assume it isn't. When we pack the
1081 ** tail, we add 4 bytes to pretend there really is an unformatted
1082 ** node pointer
1083 */
1084 bytes =
1085 ((inode->i_size +
1086 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1087 sd_size;
1088 return bytes;
1089 }
1090
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1091 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1092 int sd_size)
1093 {
1094 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 return inode->i_size +
1096 (loff_t) (real_space_diff(inode, sd_size));
1097 }
1098 return ((loff_t) real_space_diff(inode, sd_size)) +
1099 (((loff_t) blocks) << 9);
1100 }
1101
1102 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1103 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1104 {
1105 loff_t bytes = inode_get_bytes(inode);
1106 loff_t real_space = real_space_diff(inode, sd_size);
1107
1108 /* keeps fsck and non-quota versions of reiserfs happy */
1109 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1110 bytes += (loff_t) 511;
1111 }
1112
1113 /* files from before the quota patch might i_blocks such that
1114 ** bytes < real_space. Deal with that here to prevent it from
1115 ** going negative.
1116 */
1117 if (bytes < real_space)
1118 return 0;
1119 return (bytes - real_space) >> 9;
1120 }
1121
1122 //
1123 // BAD: new directories have stat data of new type and all other items
1124 // of old type. Version stored in the inode says about body items, so
1125 // in update_stat_data we can not rely on inode, but have to check
1126 // item version directly
1127 //
1128
1129 // called by read_locked_inode
init_inode(struct inode * inode,struct treepath * path)1130 static void init_inode(struct inode *inode, struct treepath *path)
1131 {
1132 struct buffer_head *bh;
1133 struct item_head *ih;
1134 __u32 rdev;
1135 //int version = ITEM_VERSION_1;
1136
1137 bh = PATH_PLAST_BUFFER(path);
1138 ih = PATH_PITEM_HEAD(path);
1139
1140 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1141
1142 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1143 REISERFS_I(inode)->i_flags = 0;
1144 REISERFS_I(inode)->i_prealloc_block = 0;
1145 REISERFS_I(inode)->i_prealloc_count = 0;
1146 REISERFS_I(inode)->i_trans_id = 0;
1147 REISERFS_I(inode)->i_jl = NULL;
1148 reiserfs_init_xattr_rwsem(inode);
1149
1150 if (stat_data_v1(ih)) {
1151 struct stat_data_v1 *sd =
1152 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1153 unsigned long blocks;
1154
1155 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1156 set_inode_sd_version(inode, STAT_DATA_V1);
1157 inode->i_mode = sd_v1_mode(sd);
1158 set_nlink(inode, sd_v1_nlink(sd));
1159 i_uid_write(inode, sd_v1_uid(sd));
1160 i_gid_write(inode, sd_v1_gid(sd));
1161 inode->i_size = sd_v1_size(sd);
1162 inode->i_atime.tv_sec = sd_v1_atime(sd);
1163 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1164 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1165 inode->i_atime.tv_nsec = 0;
1166 inode->i_ctime.tv_nsec = 0;
1167 inode->i_mtime.tv_nsec = 0;
1168
1169 inode->i_blocks = sd_v1_blocks(sd);
1170 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1171 blocks = (inode->i_size + 511) >> 9;
1172 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1173 if (inode->i_blocks > blocks) {
1174 // there was a bug in <=3.5.23 when i_blocks could take negative
1175 // values. Starting from 3.5.17 this value could even be stored in
1176 // stat data. For such files we set i_blocks based on file
1177 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1178 // only updated if file's inode will ever change
1179 inode->i_blocks = blocks;
1180 }
1181
1182 rdev = sd_v1_rdev(sd);
1183 REISERFS_I(inode)->i_first_direct_byte =
1184 sd_v1_first_direct_byte(sd);
1185 /* an early bug in the quota code can give us an odd number for the
1186 ** block count. This is incorrect, fix it here.
1187 */
1188 if (inode->i_blocks & 1) {
1189 inode->i_blocks++;
1190 }
1191 inode_set_bytes(inode,
1192 to_real_used_space(inode, inode->i_blocks,
1193 SD_V1_SIZE));
1194 /* nopack is initially zero for v1 objects. For v2 objects,
1195 nopack is initialised from sd_attrs */
1196 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1197 } else {
1198 // new stat data found, but object may have old items
1199 // (directories and symlinks)
1200 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1201
1202 inode->i_mode = sd_v2_mode(sd);
1203 set_nlink(inode, sd_v2_nlink(sd));
1204 i_uid_write(inode, sd_v2_uid(sd));
1205 inode->i_size = sd_v2_size(sd);
1206 i_gid_write(inode, sd_v2_gid(sd));
1207 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1208 inode->i_atime.tv_sec = sd_v2_atime(sd);
1209 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1210 inode->i_ctime.tv_nsec = 0;
1211 inode->i_mtime.tv_nsec = 0;
1212 inode->i_atime.tv_nsec = 0;
1213 inode->i_blocks = sd_v2_blocks(sd);
1214 rdev = sd_v2_rdev(sd);
1215 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1216 inode->i_generation =
1217 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1218 else
1219 inode->i_generation = sd_v2_generation(sd);
1220
1221 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1222 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1223 else
1224 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1225 REISERFS_I(inode)->i_first_direct_byte = 0;
1226 set_inode_sd_version(inode, STAT_DATA_V2);
1227 inode_set_bytes(inode,
1228 to_real_used_space(inode, inode->i_blocks,
1229 SD_V2_SIZE));
1230 /* read persistent inode attributes from sd and initialise
1231 generic inode flags from them */
1232 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1233 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1234 }
1235
1236 pathrelse(path);
1237 if (S_ISREG(inode->i_mode)) {
1238 inode->i_op = &reiserfs_file_inode_operations;
1239 inode->i_fop = &reiserfs_file_operations;
1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 } else if (S_ISDIR(inode->i_mode)) {
1242 inode->i_op = &reiserfs_dir_inode_operations;
1243 inode->i_fop = &reiserfs_dir_operations;
1244 } else if (S_ISLNK(inode->i_mode)) {
1245 inode->i_op = &reiserfs_symlink_inode_operations;
1246 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1247 } else {
1248 inode->i_blocks = 0;
1249 inode->i_op = &reiserfs_special_inode_operations;
1250 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1251 }
1252 }
1253
1254 // update new stat data with inode fields
inode2sd(void * sd,struct inode * inode,loff_t size)1255 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1256 {
1257 struct stat_data *sd_v2 = (struct stat_data *)sd;
1258 __u16 flags;
1259
1260 set_sd_v2_mode(sd_v2, inode->i_mode);
1261 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1262 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1263 set_sd_v2_size(sd_v2, size);
1264 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1265 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1266 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1267 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1268 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1269 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1270 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1271 else
1272 set_sd_v2_generation(sd_v2, inode->i_generation);
1273 flags = REISERFS_I(inode)->i_attrs;
1274 i_attrs_to_sd_attrs(inode, &flags);
1275 set_sd_v2_attrs(sd_v2, flags);
1276 }
1277
1278 // used to copy inode's fields to old stat data
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1279 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1280 {
1281 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1282
1283 set_sd_v1_mode(sd_v1, inode->i_mode);
1284 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1285 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1286 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1287 set_sd_v1_size(sd_v1, size);
1288 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1289 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1290 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1291
1292 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1293 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1294 else
1295 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1296
1297 // Sigh. i_first_direct_byte is back
1298 set_sd_v1_first_direct_byte(sd_v1,
1299 REISERFS_I(inode)->i_first_direct_byte);
1300 }
1301
1302 /* NOTE, you must prepare the buffer head before sending it here,
1303 ** and then log it after the call
1304 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1305 static void update_stat_data(struct treepath *path, struct inode *inode,
1306 loff_t size)
1307 {
1308 struct buffer_head *bh;
1309 struct item_head *ih;
1310
1311 bh = PATH_PLAST_BUFFER(path);
1312 ih = PATH_PITEM_HEAD(path);
1313
1314 if (!is_statdata_le_ih(ih))
1315 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1316 INODE_PKEY(inode), ih);
1317
1318 if (stat_data_v1(ih)) {
1319 // path points to old stat data
1320 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1321 } else {
1322 inode2sd(B_I_PITEM(bh, ih), inode, size);
1323 }
1324
1325 return;
1326 }
1327
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1328 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1329 struct inode *inode, loff_t size)
1330 {
1331 struct cpu_key key;
1332 INITIALIZE_PATH(path);
1333 struct buffer_head *bh;
1334 int fs_gen;
1335 struct item_head *ih, tmp_ih;
1336 int retval;
1337
1338 BUG_ON(!th->t_trans_id);
1339
1340 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1341
1342 for (;;) {
1343 int pos;
1344 /* look for the object's stat data */
1345 retval = search_item(inode->i_sb, &key, &path);
1346 if (retval == IO_ERROR) {
1347 reiserfs_error(inode->i_sb, "vs-13050",
1348 "i/o failure occurred trying to "
1349 "update %K stat data", &key);
1350 return;
1351 }
1352 if (retval == ITEM_NOT_FOUND) {
1353 pos = PATH_LAST_POSITION(&path);
1354 pathrelse(&path);
1355 if (inode->i_nlink == 0) {
1356 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1357 return;
1358 }
1359 reiserfs_warning(inode->i_sb, "vs-13060",
1360 "stat data of object %k (nlink == %d) "
1361 "not found (pos %d)",
1362 INODE_PKEY(inode), inode->i_nlink,
1363 pos);
1364 reiserfs_check_path(&path);
1365 return;
1366 }
1367
1368 /* sigh, prepare_for_journal might schedule. When it schedules the
1369 ** FS might change. We have to detect that, and loop back to the
1370 ** search if the stat data item has moved
1371 */
1372 bh = get_last_bh(&path);
1373 ih = get_ih(&path);
1374 copy_item_head(&tmp_ih, ih);
1375 fs_gen = get_generation(inode->i_sb);
1376 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1377 if (fs_changed(fs_gen, inode->i_sb)
1378 && item_moved(&tmp_ih, &path)) {
1379 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1380 continue; /* Stat_data item has been moved after scheduling. */
1381 }
1382 break;
1383 }
1384 update_stat_data(&path, inode, size);
1385 journal_mark_dirty(th, th->t_super, bh);
1386 pathrelse(&path);
1387 return;
1388 }
1389
1390 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1391 ** does a make_bad_inode when things go wrong. But, we need to make sure
1392 ** and clear the key in the private portion of the inode, otherwise a
1393 ** corresponding iput might try to delete whatever object the inode last
1394 ** represented.
1395 */
reiserfs_make_bad_inode(struct inode * inode)1396 static void reiserfs_make_bad_inode(struct inode *inode)
1397 {
1398 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1399 make_bad_inode(inode);
1400 }
1401
1402 //
1403 // initially this function was derived from minix or ext2's analog and
1404 // evolved as the prototype did
1405 //
1406
reiserfs_init_locked_inode(struct inode * inode,void * p)1407 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1408 {
1409 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1410 inode->i_ino = args->objectid;
1411 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1412 return 0;
1413 }
1414
1415 /* looks for stat data in the tree, and fills up the fields of in-core
1416 inode stat data fields */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1417 void reiserfs_read_locked_inode(struct inode *inode,
1418 struct reiserfs_iget_args *args)
1419 {
1420 INITIALIZE_PATH(path_to_sd);
1421 struct cpu_key key;
1422 unsigned long dirino;
1423 int retval;
1424
1425 dirino = args->dirid;
1426
1427 /* set version 1, version 2 could be used too, because stat data
1428 key is the same in both versions */
1429 key.version = KEY_FORMAT_3_5;
1430 key.on_disk_key.k_dir_id = dirino;
1431 key.on_disk_key.k_objectid = inode->i_ino;
1432 key.on_disk_key.k_offset = 0;
1433 key.on_disk_key.k_type = 0;
1434
1435 /* look for the object's stat data */
1436 retval = search_item(inode->i_sb, &key, &path_to_sd);
1437 if (retval == IO_ERROR) {
1438 reiserfs_error(inode->i_sb, "vs-13070",
1439 "i/o failure occurred trying to find "
1440 "stat data of %K", &key);
1441 reiserfs_make_bad_inode(inode);
1442 return;
1443 }
1444 if (retval != ITEM_FOUND) {
1445 /* a stale NFS handle can trigger this without it being an error */
1446 pathrelse(&path_to_sd);
1447 reiserfs_make_bad_inode(inode);
1448 clear_nlink(inode);
1449 return;
1450 }
1451
1452 init_inode(inode, &path_to_sd);
1453
1454 /* It is possible that knfsd is trying to access inode of a file
1455 that is being removed from the disk by some other thread. As we
1456 update sd on unlink all that is required is to check for nlink
1457 here. This bug was first found by Sizif when debugging
1458 SquidNG/Butterfly, forgotten, and found again after Philippe
1459 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1460
1461 More logical fix would require changes in fs/inode.c:iput() to
1462 remove inode from hash-table _after_ fs cleaned disk stuff up and
1463 in iget() to return NULL if I_FREEING inode is found in
1464 hash-table. */
1465 /* Currently there is one place where it's ok to meet inode with
1466 nlink==0: processing of open-unlinked and half-truncated files
1467 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1468 if ((inode->i_nlink == 0) &&
1469 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1470 reiserfs_warning(inode->i_sb, "vs-13075",
1471 "dead inode read from disk %K. "
1472 "This is likely to be race with knfsd. Ignore",
1473 &key);
1474 reiserfs_make_bad_inode(inode);
1475 }
1476
1477 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1478
1479 /*
1480 * Stat data v1 doesn't support ACLs.
1481 */
1482 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1483 cache_no_acl(inode);
1484 }
1485
1486 /**
1487 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1488 *
1489 * @inode: inode from hash table to check
1490 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1491 *
1492 * This function is called by iget5_locked() to distinguish reiserfs inodes
1493 * having the same inode numbers. Such inodes can only exist due to some
1494 * error condition. One of them should be bad. Inodes with identical
1495 * inode numbers (objectids) are distinguished by parent directory ids.
1496 *
1497 */
reiserfs_find_actor(struct inode * inode,void * opaque)1498 int reiserfs_find_actor(struct inode *inode, void *opaque)
1499 {
1500 struct reiserfs_iget_args *args;
1501
1502 args = opaque;
1503 /* args is already in CPU order */
1504 return (inode->i_ino == args->objectid) &&
1505 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1506 }
1507
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1508 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1509 {
1510 struct inode *inode;
1511 struct reiserfs_iget_args args;
1512
1513 args.objectid = key->on_disk_key.k_objectid;
1514 args.dirid = key->on_disk_key.k_dir_id;
1515 reiserfs_write_unlock(s);
1516 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1517 reiserfs_find_actor, reiserfs_init_locked_inode,
1518 (void *)(&args));
1519 reiserfs_write_lock(s);
1520 if (!inode)
1521 return ERR_PTR(-ENOMEM);
1522
1523 if (inode->i_state & I_NEW) {
1524 reiserfs_read_locked_inode(inode, &args);
1525 unlock_new_inode(inode);
1526 }
1527
1528 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1529 /* either due to i/o error or a stale NFS handle */
1530 iput(inode);
1531 inode = NULL;
1532 }
1533 return inode;
1534 }
1535
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1536 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1537 u32 objectid, u32 dir_id, u32 generation)
1538
1539 {
1540 struct cpu_key key;
1541 struct inode *inode;
1542
1543 key.on_disk_key.k_objectid = objectid;
1544 key.on_disk_key.k_dir_id = dir_id;
1545 reiserfs_write_lock(sb);
1546 inode = reiserfs_iget(sb, &key);
1547 if (inode && !IS_ERR(inode) && generation != 0 &&
1548 generation != inode->i_generation) {
1549 iput(inode);
1550 inode = NULL;
1551 }
1552 reiserfs_write_unlock(sb);
1553
1554 return d_obtain_alias(inode);
1555 }
1556
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1557 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1558 int fh_len, int fh_type)
1559 {
1560 /* fhtype happens to reflect the number of u32s encoded.
1561 * due to a bug in earlier code, fhtype might indicate there
1562 * are more u32s then actually fitted.
1563 * so if fhtype seems to be more than len, reduce fhtype.
1564 * Valid types are:
1565 * 2 - objectid + dir_id - legacy support
1566 * 3 - objectid + dir_id + generation
1567 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1568 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1569 * 6 - as above plus generation of directory
1570 * 6 does not fit in NFSv2 handles
1571 */
1572 if (fh_type > fh_len) {
1573 if (fh_type != 6 || fh_len != 5)
1574 reiserfs_warning(sb, "reiserfs-13077",
1575 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1576 fh_type, fh_len);
1577 fh_type = fh_len;
1578 }
1579 if (fh_len < 2)
1580 return NULL;
1581
1582 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1583 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1584 }
1585
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1586 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1587 int fh_len, int fh_type)
1588 {
1589 if (fh_type > fh_len)
1590 fh_type = fh_len;
1591 if (fh_type < 4)
1592 return NULL;
1593
1594 return reiserfs_get_dentry(sb,
1595 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1596 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1597 (fh_type == 6) ? fid->raw[5] : 0);
1598 }
1599
reiserfs_encode_fh(struct inode * inode,__u32 * data,int * lenp,struct inode * parent)1600 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1601 struct inode *parent)
1602 {
1603 int maxlen = *lenp;
1604
1605 if (parent && (maxlen < 5)) {
1606 *lenp = 5;
1607 return FILEID_INVALID;
1608 } else if (maxlen < 3) {
1609 *lenp = 3;
1610 return FILEID_INVALID;
1611 }
1612
1613 data[0] = inode->i_ino;
1614 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 data[2] = inode->i_generation;
1616 *lenp = 3;
1617 if (parent) {
1618 data[3] = parent->i_ino;
1619 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1620 *lenp = 5;
1621 if (maxlen >= 6) {
1622 data[5] = parent->i_generation;
1623 *lenp = 6;
1624 }
1625 }
1626 return *lenp;
1627 }
1628
1629 /* looks for stat data, then copies fields to it, marks the buffer
1630 containing stat data as dirty */
1631 /* reiserfs inodes are never really dirty, since the dirty inode call
1632 ** always logs them. This call allows the VFS inode marking routines
1633 ** to properly mark inodes for datasync and such, but only actually
1634 ** does something when called for a synchronous update.
1635 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1636 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 struct reiserfs_transaction_handle th;
1639 int jbegin_count = 1;
1640
1641 if (inode->i_sb->s_flags & MS_RDONLY)
1642 return -EROFS;
1643 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1644 ** these cases are just when the system needs ram, not when the
1645 ** inode needs to reach disk for safety, and they can safely be
1646 ** ignored because the altered inode has already been logged.
1647 */
1648 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1649 reiserfs_write_lock(inode->i_sb);
1650 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1651 reiserfs_update_sd(&th, inode);
1652 journal_end_sync(&th, inode->i_sb, jbegin_count);
1653 }
1654 reiserfs_write_unlock(inode->i_sb);
1655 }
1656 return 0;
1657 }
1658
1659 /* stat data of new object is inserted already, this inserts the item
1660 containing "." and ".." entries */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1661 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1662 struct inode *inode,
1663 struct item_head *ih, struct treepath *path,
1664 struct inode *dir)
1665 {
1666 struct super_block *sb = th->t_super;
1667 char empty_dir[EMPTY_DIR_SIZE];
1668 char *body = empty_dir;
1669 struct cpu_key key;
1670 int retval;
1671
1672 BUG_ON(!th->t_trans_id);
1673
1674 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1675 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1676 TYPE_DIRENTRY, 3 /*key length */ );
1677
1678 /* compose item head for new item. Directories consist of items of
1679 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1680 is done by reiserfs_new_inode */
1681 if (old_format_only(sb)) {
1682 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1683 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1684
1685 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1686 ih->ih_key.k_objectid,
1687 INODE_PKEY(dir)->k_dir_id,
1688 INODE_PKEY(dir)->k_objectid);
1689 } else {
1690 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1691 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1692
1693 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1694 ih->ih_key.k_objectid,
1695 INODE_PKEY(dir)->k_dir_id,
1696 INODE_PKEY(dir)->k_objectid);
1697 }
1698
1699 /* look for place in the tree for new item */
1700 retval = search_item(sb, &key, path);
1701 if (retval == IO_ERROR) {
1702 reiserfs_error(sb, "vs-13080",
1703 "i/o failure occurred creating new directory");
1704 return -EIO;
1705 }
1706 if (retval == ITEM_FOUND) {
1707 pathrelse(path);
1708 reiserfs_warning(sb, "vs-13070",
1709 "object with this key exists (%k)",
1710 &(ih->ih_key));
1711 return -EEXIST;
1712 }
1713
1714 /* insert item, that is empty directory item */
1715 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1716 }
1717
1718 /* stat data of object has been inserted, this inserts the item
1719 containing the body of symlink */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1720 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1721 struct item_head *ih,
1722 struct treepath *path, const char *symname,
1723 int item_len)
1724 {
1725 struct super_block *sb = th->t_super;
1726 struct cpu_key key;
1727 int retval;
1728
1729 BUG_ON(!th->t_trans_id);
1730
1731 _make_cpu_key(&key, KEY_FORMAT_3_5,
1732 le32_to_cpu(ih->ih_key.k_dir_id),
1733 le32_to_cpu(ih->ih_key.k_objectid),
1734 1, TYPE_DIRECT, 3 /*key length */ );
1735
1736 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1737 0 /*free_space */ );
1738
1739 /* look for place in the tree for new item */
1740 retval = search_item(sb, &key, path);
1741 if (retval == IO_ERROR) {
1742 reiserfs_error(sb, "vs-13080",
1743 "i/o failure occurred creating new symlink");
1744 return -EIO;
1745 }
1746 if (retval == ITEM_FOUND) {
1747 pathrelse(path);
1748 reiserfs_warning(sb, "vs-13080",
1749 "object with this key exists (%k)",
1750 &(ih->ih_key));
1751 return -EEXIST;
1752 }
1753
1754 /* insert item, that is body of symlink */
1755 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1756 }
1757
1758 /* inserts the stat data into the tree, and then calls
1759 reiserfs_new_directory (to insert ".", ".." item if new object is
1760 directory) or reiserfs_new_symlink (to insert symlink body if new
1761 object is symlink) or nothing (if new object is regular file)
1762
1763 NOTE! uid and gid must already be set in the inode. If we return
1764 non-zero due to an error, we have to drop the quota previously allocated
1765 for the fresh inode. This can only be done outside a transaction, so
1766 if we return non-zero, we also end the transaction. */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1767 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1768 struct inode *dir, umode_t mode, const char *symname,
1769 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1770 strlen (symname) for symlinks) */
1771 loff_t i_size, struct dentry *dentry,
1772 struct inode *inode,
1773 struct reiserfs_security_handle *security)
1774 {
1775 struct super_block *sb;
1776 struct reiserfs_iget_args args;
1777 INITIALIZE_PATH(path_to_key);
1778 struct cpu_key key;
1779 struct item_head ih;
1780 struct stat_data sd;
1781 int retval;
1782 int err;
1783
1784 BUG_ON(!th->t_trans_id);
1785
1786 reiserfs_write_unlock(inode->i_sb);
1787 err = dquot_alloc_inode(inode);
1788 reiserfs_write_lock(inode->i_sb);
1789 if (err)
1790 goto out_end_trans;
1791 if (!dir->i_nlink) {
1792 err = -EPERM;
1793 goto out_bad_inode;
1794 }
1795
1796 sb = dir->i_sb;
1797
1798 /* item head of new item */
1799 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1800 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1801 if (!ih.ih_key.k_objectid) {
1802 err = -ENOMEM;
1803 goto out_bad_inode;
1804 }
1805 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1806 if (old_format_only(sb))
1807 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1808 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1809 else
1810 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1811 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1812 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1813 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1814
1815 reiserfs_write_unlock(inode->i_sb);
1816 err = insert_inode_locked4(inode, args.objectid,
1817 reiserfs_find_actor, &args);
1818 reiserfs_write_lock(inode->i_sb);
1819 if (err) {
1820 err = -EINVAL;
1821 goto out_bad_inode;
1822 }
1823
1824 if (old_format_only(sb))
1825 /* not a perfect generation count, as object ids can be reused, but
1826 ** this is as good as reiserfs can do right now.
1827 ** note that the private part of inode isn't filled in yet, we have
1828 ** to use the directory.
1829 */
1830 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1831 else
1832 #if defined( USE_INODE_GENERATION_COUNTER )
1833 inode->i_generation =
1834 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1835 #else
1836 inode->i_generation = ++event;
1837 #endif
1838
1839 /* fill stat data */
1840 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1841
1842 /* uid and gid must already be set by the caller for quota init */
1843
1844 /* symlink cannot be immutable or append only, right? */
1845 if (S_ISLNK(inode->i_mode))
1846 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1847
1848 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1849 inode->i_size = i_size;
1850 inode->i_blocks = 0;
1851 inode->i_bytes = 0;
1852 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1853 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1854
1855 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1856 REISERFS_I(inode)->i_flags = 0;
1857 REISERFS_I(inode)->i_prealloc_block = 0;
1858 REISERFS_I(inode)->i_prealloc_count = 0;
1859 REISERFS_I(inode)->i_trans_id = 0;
1860 REISERFS_I(inode)->i_jl = NULL;
1861 REISERFS_I(inode)->i_attrs =
1862 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1863 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1864 reiserfs_init_xattr_rwsem(inode);
1865
1866 /* key to search for correct place for new stat data */
1867 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1868 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1869 TYPE_STAT_DATA, 3 /*key length */ );
1870
1871 /* find proper place for inserting of stat data */
1872 retval = search_item(sb, &key, &path_to_key);
1873 if (retval == IO_ERROR) {
1874 err = -EIO;
1875 goto out_bad_inode;
1876 }
1877 if (retval == ITEM_FOUND) {
1878 pathrelse(&path_to_key);
1879 err = -EEXIST;
1880 goto out_bad_inode;
1881 }
1882 if (old_format_only(sb)) {
1883 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1884 pathrelse(&path_to_key);
1885 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1886 err = -EINVAL;
1887 goto out_bad_inode;
1888 }
1889 inode2sd_v1(&sd, inode, inode->i_size);
1890 } else {
1891 inode2sd(&sd, inode, inode->i_size);
1892 }
1893 // store in in-core inode the key of stat data and version all
1894 // object items will have (directory items will have old offset
1895 // format, other new objects will consist of new items)
1896 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1897 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1898 else
1899 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1900 if (old_format_only(sb))
1901 set_inode_sd_version(inode, STAT_DATA_V1);
1902 else
1903 set_inode_sd_version(inode, STAT_DATA_V2);
1904
1905 /* insert the stat data into the tree */
1906 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1907 if (REISERFS_I(dir)->new_packing_locality)
1908 th->displace_new_blocks = 1;
1909 #endif
1910 retval =
1911 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1912 (char *)(&sd));
1913 if (retval) {
1914 err = retval;
1915 reiserfs_check_path(&path_to_key);
1916 goto out_bad_inode;
1917 }
1918 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1919 if (!th->displace_new_blocks)
1920 REISERFS_I(dir)->new_packing_locality = 0;
1921 #endif
1922 if (S_ISDIR(mode)) {
1923 /* insert item with "." and ".." */
1924 retval =
1925 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1926 }
1927
1928 if (S_ISLNK(mode)) {
1929 /* insert body of symlink */
1930 if (!old_format_only(sb))
1931 i_size = ROUND_UP(i_size);
1932 retval =
1933 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1934 i_size);
1935 }
1936 if (retval) {
1937 err = retval;
1938 reiserfs_check_path(&path_to_key);
1939 journal_end(th, th->t_super, th->t_blocks_allocated);
1940 goto out_inserted_sd;
1941 }
1942
1943 if (reiserfs_posixacl(inode->i_sb)) {
1944 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1945 if (retval) {
1946 err = retval;
1947 reiserfs_check_path(&path_to_key);
1948 journal_end(th, th->t_super, th->t_blocks_allocated);
1949 goto out_inserted_sd;
1950 }
1951 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952 reiserfs_warning(inode->i_sb, "jdm-13090",
1953 "ACLs aren't enabled in the fs, "
1954 "but vfs thinks they are!");
1955 } else if (IS_PRIVATE(dir))
1956 inode->i_flags |= S_PRIVATE;
1957
1958 if (security->name) {
1959 retval = reiserfs_security_write(th, inode, security);
1960 if (retval) {
1961 err = retval;
1962 reiserfs_check_path(&path_to_key);
1963 retval = journal_end(th, th->t_super,
1964 th->t_blocks_allocated);
1965 if (retval)
1966 err = retval;
1967 goto out_inserted_sd;
1968 }
1969 }
1970
1971 reiserfs_update_sd(th, inode);
1972 reiserfs_check_path(&path_to_key);
1973
1974 return 0;
1975
1976 /* it looks like you can easily compress these two goto targets into
1977 * one. Keeping it like this doesn't actually hurt anything, and they
1978 * are place holders for what the quota code actually needs.
1979 */
1980 out_bad_inode:
1981 /* Invalidate the object, nothing was inserted yet */
1982 INODE_PKEY(inode)->k_objectid = 0;
1983
1984 /* Quota change must be inside a transaction for journaling */
1985 dquot_free_inode(inode);
1986
1987 out_end_trans:
1988 journal_end(th, th->t_super, th->t_blocks_allocated);
1989 reiserfs_write_unlock(inode->i_sb);
1990 /* Drop can be outside and it needs more credits so it's better to have it outside */
1991 dquot_drop(inode);
1992 reiserfs_write_lock(inode->i_sb);
1993 inode->i_flags |= S_NOQUOTA;
1994 make_bad_inode(inode);
1995
1996 out_inserted_sd:
1997 clear_nlink(inode);
1998 th->t_trans_id = 0; /* so the caller can't use this handle later */
1999 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2000 iput(inode);
2001 return err;
2002 }
2003
2004 /*
2005 ** finds the tail page in the page cache,
2006 ** reads the last block in.
2007 **
2008 ** On success, page_result is set to a locked, pinned page, and bh_result
2009 ** is set to an up to date buffer for the last block in the file. returns 0.
2010 **
2011 ** tail conversion is not done, so bh_result might not be valid for writing
2012 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2013 ** trying to write the block.
2014 **
2015 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2016 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2017 static int grab_tail_page(struct inode *inode,
2018 struct page **page_result,
2019 struct buffer_head **bh_result)
2020 {
2021
2022 /* we want the page with the last byte in the file,
2023 ** not the page that will hold the next byte for appending
2024 */
2025 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2026 unsigned long pos = 0;
2027 unsigned long start = 0;
2028 unsigned long blocksize = inode->i_sb->s_blocksize;
2029 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2030 struct buffer_head *bh;
2031 struct buffer_head *head;
2032 struct page *page;
2033 int error;
2034
2035 /* we know that we are only called with inode->i_size > 0.
2036 ** we also know that a file tail can never be as big as a block
2037 ** If i_size % blocksize == 0, our file is currently block aligned
2038 ** and it won't need converting or zeroing after a truncate.
2039 */
2040 if ((offset & (blocksize - 1)) == 0) {
2041 return -ENOENT;
2042 }
2043 page = grab_cache_page(inode->i_mapping, index);
2044 error = -ENOMEM;
2045 if (!page) {
2046 goto out;
2047 }
2048 /* start within the page of the last block in the file */
2049 start = (offset / blocksize) * blocksize;
2050
2051 error = __block_write_begin(page, start, offset - start,
2052 reiserfs_get_block_create_0);
2053 if (error)
2054 goto unlock;
2055
2056 head = page_buffers(page);
2057 bh = head;
2058 do {
2059 if (pos >= start) {
2060 break;
2061 }
2062 bh = bh->b_this_page;
2063 pos += blocksize;
2064 } while (bh != head);
2065
2066 if (!buffer_uptodate(bh)) {
2067 /* note, this should never happen, prepare_write should
2068 ** be taking care of this for us. If the buffer isn't up to date,
2069 ** I've screwed up the code to find the buffer, or the code to
2070 ** call prepare_write
2071 */
2072 reiserfs_error(inode->i_sb, "clm-6000",
2073 "error reading block %lu", bh->b_blocknr);
2074 error = -EIO;
2075 goto unlock;
2076 }
2077 *bh_result = bh;
2078 *page_result = page;
2079
2080 out:
2081 return error;
2082
2083 unlock:
2084 unlock_page(page);
2085 page_cache_release(page);
2086 return error;
2087 }
2088
2089 /*
2090 ** vfs version of truncate file. Must NOT be called with
2091 ** a transaction already started.
2092 **
2093 ** some code taken from block_truncate_page
2094 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2095 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2096 {
2097 struct reiserfs_transaction_handle th;
2098 /* we want the offset for the first byte after the end of the file */
2099 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2100 unsigned blocksize = inode->i_sb->s_blocksize;
2101 unsigned length;
2102 struct page *page = NULL;
2103 int error;
2104 struct buffer_head *bh = NULL;
2105 int err2;
2106 int lock_depth;
2107
2108 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2109
2110 if (inode->i_size > 0) {
2111 error = grab_tail_page(inode, &page, &bh);
2112 if (error) {
2113 // -ENOENT means we truncated past the end of the file,
2114 // and get_block_create_0 could not find a block to read in,
2115 // which is ok.
2116 if (error != -ENOENT)
2117 reiserfs_error(inode->i_sb, "clm-6001",
2118 "grab_tail_page failed %d",
2119 error);
2120 page = NULL;
2121 bh = NULL;
2122 }
2123 }
2124
2125 /* so, if page != NULL, we have a buffer head for the offset at
2126 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2127 ** then we have an unformatted node. Otherwise, we have a direct item,
2128 ** and no zeroing is required on disk. We zero after the truncate,
2129 ** because the truncate might pack the item anyway
2130 ** (it will unmap bh if it packs).
2131 */
2132 /* it is enough to reserve space in transaction for 2 balancings:
2133 one for "save" link adding and another for the first
2134 cut_from_item. 1 is for update_sd */
2135 error = journal_begin(&th, inode->i_sb,
2136 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2137 if (error)
2138 goto out;
2139 reiserfs_update_inode_transaction(inode);
2140 if (update_timestamps)
2141 /* we are doing real truncate: if the system crashes before the last
2142 transaction of truncating gets committed - on reboot the file
2143 either appears truncated properly or not truncated at all */
2144 add_save_link(&th, inode, 1);
2145 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2146 error =
2147 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2148 if (error)
2149 goto out;
2150
2151 /* check reiserfs_do_truncate after ending the transaction */
2152 if (err2) {
2153 error = err2;
2154 goto out;
2155 }
2156
2157 if (update_timestamps) {
2158 error = remove_save_link(inode, 1 /* truncate */);
2159 if (error)
2160 goto out;
2161 }
2162
2163 if (page) {
2164 length = offset & (blocksize - 1);
2165 /* if we are not on a block boundary */
2166 if (length) {
2167 length = blocksize - length;
2168 zero_user(page, offset, length);
2169 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2170 mark_buffer_dirty(bh);
2171 }
2172 }
2173 unlock_page(page);
2174 page_cache_release(page);
2175 }
2176
2177 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2178
2179 return 0;
2180 out:
2181 if (page) {
2182 unlock_page(page);
2183 page_cache_release(page);
2184 }
2185
2186 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2187
2188 return error;
2189 }
2190
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2191 static int map_block_for_writepage(struct inode *inode,
2192 struct buffer_head *bh_result,
2193 unsigned long block)
2194 {
2195 struct reiserfs_transaction_handle th;
2196 int fs_gen;
2197 struct item_head tmp_ih;
2198 struct item_head *ih;
2199 struct buffer_head *bh;
2200 __le32 *item;
2201 struct cpu_key key;
2202 INITIALIZE_PATH(path);
2203 int pos_in_item;
2204 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2205 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2206 int retval;
2207 int use_get_block = 0;
2208 int bytes_copied = 0;
2209 int copy_size;
2210 int trans_running = 0;
2211
2212 /* catch places below that try to log something without starting a trans */
2213 th.t_trans_id = 0;
2214
2215 if (!buffer_uptodate(bh_result)) {
2216 return -EIO;
2217 }
2218
2219 kmap(bh_result->b_page);
2220 start_over:
2221 reiserfs_write_lock(inode->i_sb);
2222 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2223
2224 research:
2225 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2226 if (retval != POSITION_FOUND) {
2227 use_get_block = 1;
2228 goto out;
2229 }
2230
2231 bh = get_last_bh(&path);
2232 ih = get_ih(&path);
2233 item = get_item(&path);
2234 pos_in_item = path.pos_in_item;
2235
2236 /* we've found an unformatted node */
2237 if (indirect_item_found(retval, ih)) {
2238 if (bytes_copied > 0) {
2239 reiserfs_warning(inode->i_sb, "clm-6002",
2240 "bytes_copied %d", bytes_copied);
2241 }
2242 if (!get_block_num(item, pos_in_item)) {
2243 /* crap, we are writing to a hole */
2244 use_get_block = 1;
2245 goto out;
2246 }
2247 set_block_dev_mapped(bh_result,
2248 get_block_num(item, pos_in_item), inode);
2249 } else if (is_direct_le_ih(ih)) {
2250 char *p;
2251 p = page_address(bh_result->b_page);
2252 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2253 copy_size = ih_item_len(ih) - pos_in_item;
2254
2255 fs_gen = get_generation(inode->i_sb);
2256 copy_item_head(&tmp_ih, ih);
2257
2258 if (!trans_running) {
2259 /* vs-3050 is gone, no need to drop the path */
2260 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2261 if (retval)
2262 goto out;
2263 reiserfs_update_inode_transaction(inode);
2264 trans_running = 1;
2265 if (fs_changed(fs_gen, inode->i_sb)
2266 && item_moved(&tmp_ih, &path)) {
2267 reiserfs_restore_prepared_buffer(inode->i_sb,
2268 bh);
2269 goto research;
2270 }
2271 }
2272
2273 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2274
2275 if (fs_changed(fs_gen, inode->i_sb)
2276 && item_moved(&tmp_ih, &path)) {
2277 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2278 goto research;
2279 }
2280
2281 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2282 copy_size);
2283
2284 journal_mark_dirty(&th, inode->i_sb, bh);
2285 bytes_copied += copy_size;
2286 set_block_dev_mapped(bh_result, 0, inode);
2287
2288 /* are there still bytes left? */
2289 if (bytes_copied < bh_result->b_size &&
2290 (byte_offset + bytes_copied) < inode->i_size) {
2291 set_cpu_key_k_offset(&key,
2292 cpu_key_k_offset(&key) +
2293 copy_size);
2294 goto research;
2295 }
2296 } else {
2297 reiserfs_warning(inode->i_sb, "clm-6003",
2298 "bad item inode %lu", inode->i_ino);
2299 retval = -EIO;
2300 goto out;
2301 }
2302 retval = 0;
2303
2304 out:
2305 pathrelse(&path);
2306 if (trans_running) {
2307 int err = journal_end(&th, inode->i_sb, jbegin_count);
2308 if (err)
2309 retval = err;
2310 trans_running = 0;
2311 }
2312 reiserfs_write_unlock(inode->i_sb);
2313
2314 /* this is where we fill in holes in the file. */
2315 if (use_get_block) {
2316 retval = reiserfs_get_block(inode, block, bh_result,
2317 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2318 | GET_BLOCK_NO_DANGLE);
2319 if (!retval) {
2320 if (!buffer_mapped(bh_result)
2321 || bh_result->b_blocknr == 0) {
2322 /* get_block failed to find a mapped unformatted node. */
2323 use_get_block = 0;
2324 goto start_over;
2325 }
2326 }
2327 }
2328 kunmap(bh_result->b_page);
2329
2330 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2331 /* we've copied data from the page into the direct item, so the
2332 * buffer in the page is now clean, mark it to reflect that.
2333 */
2334 lock_buffer(bh_result);
2335 clear_buffer_dirty(bh_result);
2336 unlock_buffer(bh_result);
2337 }
2338 return retval;
2339 }
2340
2341 /*
2342 * mason@suse.com: updated in 2.5.54 to follow the same general io
2343 * start/recovery path as __block_write_full_page, along with special
2344 * code to handle reiserfs tails.
2345 */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2346 static int reiserfs_write_full_page(struct page *page,
2347 struct writeback_control *wbc)
2348 {
2349 struct inode *inode = page->mapping->host;
2350 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2351 int error = 0;
2352 unsigned long block;
2353 sector_t last_block;
2354 struct buffer_head *head, *bh;
2355 int partial = 0;
2356 int nr = 0;
2357 int checked = PageChecked(page);
2358 struct reiserfs_transaction_handle th;
2359 struct super_block *s = inode->i_sb;
2360 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2361 th.t_trans_id = 0;
2362
2363 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2364 if (checked && (current->flags & PF_MEMALLOC)) {
2365 redirty_page_for_writepage(wbc, page);
2366 unlock_page(page);
2367 return 0;
2368 }
2369
2370 /* The page dirty bit is cleared before writepage is called, which
2371 * means we have to tell create_empty_buffers to make dirty buffers
2372 * The page really should be up to date at this point, so tossing
2373 * in the BH_Uptodate is just a sanity check.
2374 */
2375 if (!page_has_buffers(page)) {
2376 create_empty_buffers(page, s->s_blocksize,
2377 (1 << BH_Dirty) | (1 << BH_Uptodate));
2378 }
2379 head = page_buffers(page);
2380
2381 /* last page in the file, zero out any contents past the
2382 ** last byte in the file
2383 */
2384 if (page->index >= end_index) {
2385 unsigned last_offset;
2386
2387 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2388 /* no file contents in this page */
2389 if (page->index >= end_index + 1 || !last_offset) {
2390 unlock_page(page);
2391 return 0;
2392 }
2393 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2394 }
2395 bh = head;
2396 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2397 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2398 /* first map all the buffers, logging any direct items we find */
2399 do {
2400 if (block > last_block) {
2401 /*
2402 * This can happen when the block size is less than
2403 * the page size. The corresponding bytes in the page
2404 * were zero filled above
2405 */
2406 clear_buffer_dirty(bh);
2407 set_buffer_uptodate(bh);
2408 } else if ((checked || buffer_dirty(bh)) &&
2409 (!buffer_mapped(bh) || (buffer_mapped(bh)
2410 && bh->b_blocknr ==
2411 0))) {
2412 /* not mapped yet, or it points to a direct item, search
2413 * the btree for the mapping info, and log any direct
2414 * items found
2415 */
2416 if ((error = map_block_for_writepage(inode, bh, block))) {
2417 goto fail;
2418 }
2419 }
2420 bh = bh->b_this_page;
2421 block++;
2422 } while (bh != head);
2423
2424 /*
2425 * we start the transaction after map_block_for_writepage,
2426 * because it can create holes in the file (an unbounded operation).
2427 * starting it here, we can make a reliable estimate for how many
2428 * blocks we're going to log
2429 */
2430 if (checked) {
2431 ClearPageChecked(page);
2432 reiserfs_write_lock(s);
2433 error = journal_begin(&th, s, bh_per_page + 1);
2434 if (error) {
2435 reiserfs_write_unlock(s);
2436 goto fail;
2437 }
2438 reiserfs_update_inode_transaction(inode);
2439 }
2440 /* now go through and lock any dirty buffers on the page */
2441 do {
2442 get_bh(bh);
2443 if (!buffer_mapped(bh))
2444 continue;
2445 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2446 continue;
2447
2448 if (checked) {
2449 reiserfs_prepare_for_journal(s, bh, 1);
2450 journal_mark_dirty(&th, s, bh);
2451 continue;
2452 }
2453 /* from this point on, we know the buffer is mapped to a
2454 * real block and not a direct item
2455 */
2456 if (wbc->sync_mode != WB_SYNC_NONE) {
2457 lock_buffer(bh);
2458 } else {
2459 if (!trylock_buffer(bh)) {
2460 redirty_page_for_writepage(wbc, page);
2461 continue;
2462 }
2463 }
2464 if (test_clear_buffer_dirty(bh)) {
2465 mark_buffer_async_write(bh);
2466 } else {
2467 unlock_buffer(bh);
2468 }
2469 } while ((bh = bh->b_this_page) != head);
2470
2471 if (checked) {
2472 error = journal_end(&th, s, bh_per_page + 1);
2473 reiserfs_write_unlock(s);
2474 if (error)
2475 goto fail;
2476 }
2477 BUG_ON(PageWriteback(page));
2478 set_page_writeback(page);
2479 unlock_page(page);
2480
2481 /*
2482 * since any buffer might be the only dirty buffer on the page,
2483 * the first submit_bh can bring the page out of writeback.
2484 * be careful with the buffers.
2485 */
2486 do {
2487 struct buffer_head *next = bh->b_this_page;
2488 if (buffer_async_write(bh)) {
2489 submit_bh(WRITE, bh);
2490 nr++;
2491 }
2492 put_bh(bh);
2493 bh = next;
2494 } while (bh != head);
2495
2496 error = 0;
2497 done:
2498 if (nr == 0) {
2499 /*
2500 * if this page only had a direct item, it is very possible for
2501 * no io to be required without there being an error. Or,
2502 * someone else could have locked them and sent them down the
2503 * pipe without locking the page
2504 */
2505 bh = head;
2506 do {
2507 if (!buffer_uptodate(bh)) {
2508 partial = 1;
2509 break;
2510 }
2511 bh = bh->b_this_page;
2512 } while (bh != head);
2513 if (!partial)
2514 SetPageUptodate(page);
2515 end_page_writeback(page);
2516 }
2517 return error;
2518
2519 fail:
2520 /* catches various errors, we need to make sure any valid dirty blocks
2521 * get to the media. The page is currently locked and not marked for
2522 * writeback
2523 */
2524 ClearPageUptodate(page);
2525 bh = head;
2526 do {
2527 get_bh(bh);
2528 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2529 lock_buffer(bh);
2530 mark_buffer_async_write(bh);
2531 } else {
2532 /*
2533 * clear any dirty bits that might have come from getting
2534 * attached to a dirty page
2535 */
2536 clear_buffer_dirty(bh);
2537 }
2538 bh = bh->b_this_page;
2539 } while (bh != head);
2540 SetPageError(page);
2541 BUG_ON(PageWriteback(page));
2542 set_page_writeback(page);
2543 unlock_page(page);
2544 do {
2545 struct buffer_head *next = bh->b_this_page;
2546 if (buffer_async_write(bh)) {
2547 clear_buffer_dirty(bh);
2548 submit_bh(WRITE, bh);
2549 nr++;
2550 }
2551 put_bh(bh);
2552 bh = next;
2553 } while (bh != head);
2554 goto done;
2555 }
2556
reiserfs_readpage(struct file * f,struct page * page)2557 static int reiserfs_readpage(struct file *f, struct page *page)
2558 {
2559 return block_read_full_page(page, reiserfs_get_block);
2560 }
2561
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2562 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2563 {
2564 struct inode *inode = page->mapping->host;
2565 reiserfs_wait_on_write_block(inode->i_sb);
2566 return reiserfs_write_full_page(page, wbc);
2567 }
2568
reiserfs_truncate_failed_write(struct inode * inode)2569 static void reiserfs_truncate_failed_write(struct inode *inode)
2570 {
2571 truncate_inode_pages(inode->i_mapping, inode->i_size);
2572 reiserfs_truncate_file(inode, 0);
2573 }
2574
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2575 static int reiserfs_write_begin(struct file *file,
2576 struct address_space *mapping,
2577 loff_t pos, unsigned len, unsigned flags,
2578 struct page **pagep, void **fsdata)
2579 {
2580 struct inode *inode;
2581 struct page *page;
2582 pgoff_t index;
2583 int ret;
2584 int old_ref = 0;
2585
2586 inode = mapping->host;
2587 *fsdata = 0;
2588 if (flags & AOP_FLAG_CONT_EXPAND &&
2589 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2590 pos ++;
2591 *fsdata = (void *)(unsigned long)flags;
2592 }
2593
2594 index = pos >> PAGE_CACHE_SHIFT;
2595 page = grab_cache_page_write_begin(mapping, index, flags);
2596 if (!page)
2597 return -ENOMEM;
2598 *pagep = page;
2599
2600 reiserfs_wait_on_write_block(inode->i_sb);
2601 fix_tail_page_for_writing(page);
2602 if (reiserfs_transaction_running(inode->i_sb)) {
2603 struct reiserfs_transaction_handle *th;
2604 th = (struct reiserfs_transaction_handle *)current->
2605 journal_info;
2606 BUG_ON(!th->t_refcount);
2607 BUG_ON(!th->t_trans_id);
2608 old_ref = th->t_refcount;
2609 th->t_refcount++;
2610 }
2611 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2612 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2613 struct reiserfs_transaction_handle *th = current->journal_info;
2614 /* this gets a little ugly. If reiserfs_get_block returned an
2615 * error and left a transacstion running, we've got to close it,
2616 * and we've got to free handle if it was a persistent transaction.
2617 *
2618 * But, if we had nested into an existing transaction, we need
2619 * to just drop the ref count on the handle.
2620 *
2621 * If old_ref == 0, the transaction is from reiserfs_get_block,
2622 * and it was a persistent trans. Otherwise, it was nested above.
2623 */
2624 if (th->t_refcount > old_ref) {
2625 if (old_ref)
2626 th->t_refcount--;
2627 else {
2628 int err;
2629 reiserfs_write_lock(inode->i_sb);
2630 err = reiserfs_end_persistent_transaction(th);
2631 reiserfs_write_unlock(inode->i_sb);
2632 if (err)
2633 ret = err;
2634 }
2635 }
2636 }
2637 if (ret) {
2638 unlock_page(page);
2639 page_cache_release(page);
2640 /* Truncate allocated blocks */
2641 reiserfs_truncate_failed_write(inode);
2642 }
2643 return ret;
2644 }
2645
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2646 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2647 {
2648 struct inode *inode = page->mapping->host;
2649 int ret;
2650 int old_ref = 0;
2651
2652 reiserfs_write_unlock(inode->i_sb);
2653 reiserfs_wait_on_write_block(inode->i_sb);
2654 reiserfs_write_lock(inode->i_sb);
2655
2656 fix_tail_page_for_writing(page);
2657 if (reiserfs_transaction_running(inode->i_sb)) {
2658 struct reiserfs_transaction_handle *th;
2659 th = (struct reiserfs_transaction_handle *)current->
2660 journal_info;
2661 BUG_ON(!th->t_refcount);
2662 BUG_ON(!th->t_trans_id);
2663 old_ref = th->t_refcount;
2664 th->t_refcount++;
2665 }
2666
2667 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2668 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2669 struct reiserfs_transaction_handle *th = current->journal_info;
2670 /* this gets a little ugly. If reiserfs_get_block returned an
2671 * error and left a transacstion running, we've got to close it,
2672 * and we've got to free handle if it was a persistent transaction.
2673 *
2674 * But, if we had nested into an existing transaction, we need
2675 * to just drop the ref count on the handle.
2676 *
2677 * If old_ref == 0, the transaction is from reiserfs_get_block,
2678 * and it was a persistent trans. Otherwise, it was nested above.
2679 */
2680 if (th->t_refcount > old_ref) {
2681 if (old_ref)
2682 th->t_refcount--;
2683 else {
2684 int err;
2685 reiserfs_write_lock(inode->i_sb);
2686 err = reiserfs_end_persistent_transaction(th);
2687 reiserfs_write_unlock(inode->i_sb);
2688 if (err)
2689 ret = err;
2690 }
2691 }
2692 }
2693 return ret;
2694
2695 }
2696
reiserfs_aop_bmap(struct address_space * as,sector_t block)2697 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2698 {
2699 return generic_block_bmap(as, block, reiserfs_bmap);
2700 }
2701
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2702 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2703 loff_t pos, unsigned len, unsigned copied,
2704 struct page *page, void *fsdata)
2705 {
2706 struct inode *inode = page->mapping->host;
2707 int ret = 0;
2708 int update_sd = 0;
2709 struct reiserfs_transaction_handle *th;
2710 unsigned start;
2711 int lock_depth = 0;
2712 bool locked = false;
2713
2714 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2715 pos ++;
2716
2717 reiserfs_wait_on_write_block(inode->i_sb);
2718 if (reiserfs_transaction_running(inode->i_sb))
2719 th = current->journal_info;
2720 else
2721 th = NULL;
2722
2723 start = pos & (PAGE_CACHE_SIZE - 1);
2724 if (unlikely(copied < len)) {
2725 if (!PageUptodate(page))
2726 copied = 0;
2727
2728 page_zero_new_buffers(page, start + copied, start + len);
2729 }
2730 flush_dcache_page(page);
2731
2732 reiserfs_commit_page(inode, page, start, start + copied);
2733
2734 /* generic_commit_write does this for us, but does not update the
2735 ** transaction tracking stuff when the size changes. So, we have
2736 ** to do the i_size updates here.
2737 */
2738 if (pos + copied > inode->i_size) {
2739 struct reiserfs_transaction_handle myth;
2740 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2741 locked = true;
2742 /* If the file have grown beyond the border where it
2743 can have a tail, unmark it as needing a tail
2744 packing */
2745 if ((have_large_tails(inode->i_sb)
2746 && inode->i_size > i_block_size(inode) * 4)
2747 || (have_small_tails(inode->i_sb)
2748 && inode->i_size > i_block_size(inode)))
2749 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2750
2751 ret = journal_begin(&myth, inode->i_sb, 1);
2752 if (ret)
2753 goto journal_error;
2754
2755 reiserfs_update_inode_transaction(inode);
2756 inode->i_size = pos + copied;
2757 /*
2758 * this will just nest into our transaction. It's important
2759 * to use mark_inode_dirty so the inode gets pushed around on the
2760 * dirty lists, and so that O_SYNC works as expected
2761 */
2762 mark_inode_dirty(inode);
2763 reiserfs_update_sd(&myth, inode);
2764 update_sd = 1;
2765 ret = journal_end(&myth, inode->i_sb, 1);
2766 if (ret)
2767 goto journal_error;
2768 }
2769 if (th) {
2770 if (!locked) {
2771 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2772 locked = true;
2773 }
2774 if (!update_sd)
2775 mark_inode_dirty(inode);
2776 ret = reiserfs_end_persistent_transaction(th);
2777 if (ret)
2778 goto out;
2779 }
2780
2781 out:
2782 if (locked)
2783 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2784 unlock_page(page);
2785 page_cache_release(page);
2786
2787 if (pos + len > inode->i_size)
2788 reiserfs_truncate_failed_write(inode);
2789
2790 return ret == 0 ? copied : ret;
2791
2792 journal_error:
2793 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2794 locked = false;
2795 if (th) {
2796 if (!update_sd)
2797 reiserfs_update_sd(th, inode);
2798 ret = reiserfs_end_persistent_transaction(th);
2799 }
2800 goto out;
2801 }
2802
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2803 int reiserfs_commit_write(struct file *f, struct page *page,
2804 unsigned from, unsigned to)
2805 {
2806 struct inode *inode = page->mapping->host;
2807 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2808 int ret = 0;
2809 int update_sd = 0;
2810 struct reiserfs_transaction_handle *th = NULL;
2811
2812 reiserfs_write_unlock(inode->i_sb);
2813 reiserfs_wait_on_write_block(inode->i_sb);
2814 reiserfs_write_lock(inode->i_sb);
2815
2816 if (reiserfs_transaction_running(inode->i_sb)) {
2817 th = current->journal_info;
2818 }
2819 reiserfs_commit_page(inode, page, from, to);
2820
2821 /* generic_commit_write does this for us, but does not update the
2822 ** transaction tracking stuff when the size changes. So, we have
2823 ** to do the i_size updates here.
2824 */
2825 if (pos > inode->i_size) {
2826 struct reiserfs_transaction_handle myth;
2827 /* If the file have grown beyond the border where it
2828 can have a tail, unmark it as needing a tail
2829 packing */
2830 if ((have_large_tails(inode->i_sb)
2831 && inode->i_size > i_block_size(inode) * 4)
2832 || (have_small_tails(inode->i_sb)
2833 && inode->i_size > i_block_size(inode)))
2834 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2835
2836 ret = journal_begin(&myth, inode->i_sb, 1);
2837 if (ret)
2838 goto journal_error;
2839
2840 reiserfs_update_inode_transaction(inode);
2841 inode->i_size = pos;
2842 /*
2843 * this will just nest into our transaction. It's important
2844 * to use mark_inode_dirty so the inode gets pushed around on the
2845 * dirty lists, and so that O_SYNC works as expected
2846 */
2847 mark_inode_dirty(inode);
2848 reiserfs_update_sd(&myth, inode);
2849 update_sd = 1;
2850 ret = journal_end(&myth, inode->i_sb, 1);
2851 if (ret)
2852 goto journal_error;
2853 }
2854 if (th) {
2855 if (!update_sd)
2856 mark_inode_dirty(inode);
2857 ret = reiserfs_end_persistent_transaction(th);
2858 if (ret)
2859 goto out;
2860 }
2861
2862 out:
2863 return ret;
2864
2865 journal_error:
2866 if (th) {
2867 if (!update_sd)
2868 reiserfs_update_sd(th, inode);
2869 ret = reiserfs_end_persistent_transaction(th);
2870 }
2871
2872 return ret;
2873 }
2874
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)2875 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2876 {
2877 if (reiserfs_attrs(inode->i_sb)) {
2878 if (sd_attrs & REISERFS_SYNC_FL)
2879 inode->i_flags |= S_SYNC;
2880 else
2881 inode->i_flags &= ~S_SYNC;
2882 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2883 inode->i_flags |= S_IMMUTABLE;
2884 else
2885 inode->i_flags &= ~S_IMMUTABLE;
2886 if (sd_attrs & REISERFS_APPEND_FL)
2887 inode->i_flags |= S_APPEND;
2888 else
2889 inode->i_flags &= ~S_APPEND;
2890 if (sd_attrs & REISERFS_NOATIME_FL)
2891 inode->i_flags |= S_NOATIME;
2892 else
2893 inode->i_flags &= ~S_NOATIME;
2894 if (sd_attrs & REISERFS_NOTAIL_FL)
2895 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2896 else
2897 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2898 }
2899 }
2900
i_attrs_to_sd_attrs(struct inode * inode,__u16 * sd_attrs)2901 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2902 {
2903 if (reiserfs_attrs(inode->i_sb)) {
2904 if (inode->i_flags & S_IMMUTABLE)
2905 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2906 else
2907 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2908 if (inode->i_flags & S_SYNC)
2909 *sd_attrs |= REISERFS_SYNC_FL;
2910 else
2911 *sd_attrs &= ~REISERFS_SYNC_FL;
2912 if (inode->i_flags & S_NOATIME)
2913 *sd_attrs |= REISERFS_NOATIME_FL;
2914 else
2915 *sd_attrs &= ~REISERFS_NOATIME_FL;
2916 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2917 *sd_attrs |= REISERFS_NOTAIL_FL;
2918 else
2919 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2920 }
2921 }
2922
2923 /* decide if this buffer needs to stay around for data logging or ordered
2924 ** write purposes
2925 */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)2926 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2927 {
2928 int ret = 1;
2929 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2930
2931 lock_buffer(bh);
2932 spin_lock(&j->j_dirty_buffers_lock);
2933 if (!buffer_mapped(bh)) {
2934 goto free_jh;
2935 }
2936 /* the page is locked, and the only places that log a data buffer
2937 * also lock the page.
2938 */
2939 if (reiserfs_file_data_log(inode)) {
2940 /*
2941 * very conservative, leave the buffer pinned if
2942 * anyone might need it.
2943 */
2944 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2945 ret = 0;
2946 }
2947 } else if (buffer_dirty(bh)) {
2948 struct reiserfs_journal_list *jl;
2949 struct reiserfs_jh *jh = bh->b_private;
2950
2951 /* why is this safe?
2952 * reiserfs_setattr updates i_size in the on disk
2953 * stat data before allowing vmtruncate to be called.
2954 *
2955 * If buffer was put onto the ordered list for this
2956 * transaction, we know for sure either this transaction
2957 * or an older one already has updated i_size on disk,
2958 * and this ordered data won't be referenced in the file
2959 * if we crash.
2960 *
2961 * if the buffer was put onto the ordered list for an older
2962 * transaction, we need to leave it around
2963 */
2964 if (jh && (jl = jh->jl)
2965 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2966 ret = 0;
2967 }
2968 free_jh:
2969 if (ret && bh->b_private) {
2970 reiserfs_free_jh(bh);
2971 }
2972 spin_unlock(&j->j_dirty_buffers_lock);
2973 unlock_buffer(bh);
2974 return ret;
2975 }
2976
2977 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2978 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
2979 unsigned int length)
2980 {
2981 struct buffer_head *head, *bh, *next;
2982 struct inode *inode = page->mapping->host;
2983 unsigned int curr_off = 0;
2984 int ret = 1;
2985
2986 BUG_ON(!PageLocked(page));
2987
2988 if (offset == 0)
2989 ClearPageChecked(page);
2990
2991 if (!page_has_buffers(page))
2992 goto out;
2993
2994 head = page_buffers(page);
2995 bh = head;
2996 do {
2997 unsigned int next_off = curr_off + bh->b_size;
2998 next = bh->b_this_page;
2999
3000 /*
3001 * is this block fully invalidated?
3002 */
3003 if (offset <= curr_off) {
3004 if (invalidatepage_can_drop(inode, bh))
3005 reiserfs_unmap_buffer(bh);
3006 else
3007 ret = 0;
3008 }
3009 curr_off = next_off;
3010 bh = next;
3011 } while (bh != head);
3012
3013 /*
3014 * We release buffers only if the entire page is being invalidated.
3015 * The get_block cached value has been unconditionally invalidated,
3016 * so real IO is not possible anymore.
3017 */
3018 if (!offset && ret) {
3019 ret = try_to_release_page(page, 0);
3020 /* maybe should BUG_ON(!ret); - neilb */
3021 }
3022 out:
3023 return;
3024 }
3025
reiserfs_set_page_dirty(struct page * page)3026 static int reiserfs_set_page_dirty(struct page *page)
3027 {
3028 struct inode *inode = page->mapping->host;
3029 if (reiserfs_file_data_log(inode)) {
3030 SetPageChecked(page);
3031 return __set_page_dirty_nobuffers(page);
3032 }
3033 return __set_page_dirty_buffers(page);
3034 }
3035
3036 /*
3037 * Returns 1 if the page's buffers were dropped. The page is locked.
3038 *
3039 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3040 * in the buffers at page_buffers(page).
3041 *
3042 * even in -o notail mode, we can't be sure an old mount without -o notail
3043 * didn't create files with tails.
3044 */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3045 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3046 {
3047 struct inode *inode = page->mapping->host;
3048 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3049 struct buffer_head *head;
3050 struct buffer_head *bh;
3051 int ret = 1;
3052
3053 WARN_ON(PageChecked(page));
3054 spin_lock(&j->j_dirty_buffers_lock);
3055 head = page_buffers(page);
3056 bh = head;
3057 do {
3058 if (bh->b_private) {
3059 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3060 reiserfs_free_jh(bh);
3061 } else {
3062 ret = 0;
3063 break;
3064 }
3065 }
3066 bh = bh->b_this_page;
3067 } while (bh != head);
3068 if (ret)
3069 ret = try_to_free_buffers(page);
3070 spin_unlock(&j->j_dirty_buffers_lock);
3071 return ret;
3072 }
3073
3074 /* We thank Mingming Cao for helping us understand in great detail what
3075 to do in this section of the code. */
reiserfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3076 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3077 const struct iovec *iov, loff_t offset,
3078 unsigned long nr_segs)
3079 {
3080 struct file *file = iocb->ki_filp;
3081 struct inode *inode = file->f_mapping->host;
3082 ssize_t ret;
3083
3084 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3085 reiserfs_get_blocks_direct_io);
3086
3087 /*
3088 * In case of error extending write may have instantiated a few
3089 * blocks outside i_size. Trim these off again.
3090 */
3091 if (unlikely((rw & WRITE) && ret < 0)) {
3092 loff_t isize = i_size_read(inode);
3093 loff_t end = offset + iov_length(iov, nr_segs);
3094
3095 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3096 truncate_setsize(inode, isize);
3097 reiserfs_vfs_truncate_file(inode);
3098 }
3099 }
3100
3101 return ret;
3102 }
3103
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3104 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3105 {
3106 struct inode *inode = dentry->d_inode;
3107 unsigned int ia_valid;
3108 int depth;
3109 int error;
3110
3111 error = inode_change_ok(inode, attr);
3112 if (error)
3113 return error;
3114
3115 /* must be turned off for recursive notify_change calls */
3116 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3117
3118 if (is_quota_modification(inode, attr))
3119 dquot_initialize(inode);
3120 depth = reiserfs_write_lock_once(inode->i_sb);
3121 if (attr->ia_valid & ATTR_SIZE) {
3122 /* version 2 items will be caught by the s_maxbytes check
3123 ** done for us in vmtruncate
3124 */
3125 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3126 attr->ia_size > MAX_NON_LFS) {
3127 error = -EFBIG;
3128 goto out;
3129 }
3130
3131 inode_dio_wait(inode);
3132
3133 /* fill in hole pointers in the expanding truncate case. */
3134 if (attr->ia_size > inode->i_size) {
3135 error = generic_cont_expand_simple(inode, attr->ia_size);
3136 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3137 int err;
3138 struct reiserfs_transaction_handle th;
3139 /* we're changing at most 2 bitmaps, inode + super */
3140 err = journal_begin(&th, inode->i_sb, 4);
3141 if (!err) {
3142 reiserfs_discard_prealloc(&th, inode);
3143 err = journal_end(&th, inode->i_sb, 4);
3144 }
3145 if (err)
3146 error = err;
3147 }
3148 if (error)
3149 goto out;
3150 /*
3151 * file size is changed, ctime and mtime are
3152 * to be updated
3153 */
3154 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3155 }
3156 }
3157
3158 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3159 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3160 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3161 /* stat data of format v3.5 has 16 bit uid and gid */
3162 error = -EINVAL;
3163 goto out;
3164 }
3165
3166 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3167 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3168 struct reiserfs_transaction_handle th;
3169 int jbegin_count =
3170 2 *
3171 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3172 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3173 2;
3174
3175 error = reiserfs_chown_xattrs(inode, attr);
3176
3177 if (error)
3178 return error;
3179
3180 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3181 error = journal_begin(&th, inode->i_sb, jbegin_count);
3182 if (error)
3183 goto out;
3184 reiserfs_write_unlock_once(inode->i_sb, depth);
3185 error = dquot_transfer(inode, attr);
3186 depth = reiserfs_write_lock_once(inode->i_sb);
3187 if (error) {
3188 journal_end(&th, inode->i_sb, jbegin_count);
3189 goto out;
3190 }
3191
3192 /* Update corresponding info in inode so that everything is in
3193 * one transaction */
3194 if (attr->ia_valid & ATTR_UID)
3195 inode->i_uid = attr->ia_uid;
3196 if (attr->ia_valid & ATTR_GID)
3197 inode->i_gid = attr->ia_gid;
3198 mark_inode_dirty(inode);
3199 error = journal_end(&th, inode->i_sb, jbegin_count);
3200 if (error)
3201 goto out;
3202 }
3203
3204 /*
3205 * Relax the lock here, as it might truncate the
3206 * inode pages and wait for inode pages locks.
3207 * To release such page lock, the owner needs the
3208 * reiserfs lock
3209 */
3210 reiserfs_write_unlock_once(inode->i_sb, depth);
3211 if ((attr->ia_valid & ATTR_SIZE) &&
3212 attr->ia_size != i_size_read(inode)) {
3213 error = inode_newsize_ok(inode, attr->ia_size);
3214 if (!error) {
3215 truncate_setsize(inode, attr->ia_size);
3216 reiserfs_vfs_truncate_file(inode);
3217 }
3218 }
3219
3220 if (!error) {
3221 setattr_copy(inode, attr);
3222 mark_inode_dirty(inode);
3223 }
3224 depth = reiserfs_write_lock_once(inode->i_sb);
3225
3226 if (!error && reiserfs_posixacl(inode->i_sb)) {
3227 if (attr->ia_valid & ATTR_MODE)
3228 error = reiserfs_acl_chmod(inode);
3229 }
3230
3231 out:
3232 reiserfs_write_unlock_once(inode->i_sb, depth);
3233
3234 return error;
3235 }
3236
3237 const struct address_space_operations reiserfs_address_space_operations = {
3238 .writepage = reiserfs_writepage,
3239 .readpage = reiserfs_readpage,
3240 .readpages = reiserfs_readpages,
3241 .releasepage = reiserfs_releasepage,
3242 .invalidatepage = reiserfs_invalidatepage,
3243 .write_begin = reiserfs_write_begin,
3244 .write_end = reiserfs_write_end,
3245 .bmap = reiserfs_aop_bmap,
3246 .direct_IO = reiserfs_direct_IO,
3247 .set_page_dirty = reiserfs_set_page_dirty,
3248 };
3249