• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/aio.h>
22 
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 			  unsigned from, unsigned to);
25 
reiserfs_evict_inode(struct inode * inode)26 void reiserfs_evict_inode(struct inode *inode)
27 {
28 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
29 	int jbegin_count =
30 	    JOURNAL_PER_BALANCE_CNT * 2 +
31 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
32 	struct reiserfs_transaction_handle th;
33 	int depth;
34 	int err;
35 
36 	if (!inode->i_nlink && !is_bad_inode(inode))
37 		dquot_initialize(inode);
38 
39 	truncate_inode_pages(&inode->i_data, 0);
40 	if (inode->i_nlink)
41 		goto no_delete;
42 
43 	depth = reiserfs_write_lock_once(inode->i_sb);
44 
45 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
46 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
47 		reiserfs_delete_xattrs(inode);
48 
49 		if (journal_begin(&th, inode->i_sb, jbegin_count))
50 			goto out;
51 		reiserfs_update_inode_transaction(inode);
52 
53 		reiserfs_discard_prealloc(&th, inode);
54 
55 		err = reiserfs_delete_object(&th, inode);
56 
57 		/* Do quota update inside a transaction for journaled quotas. We must do that
58 		 * after delete_object so that quota updates go into the same transaction as
59 		 * stat data deletion */
60 		if (!err)
61 			dquot_free_inode(inode);
62 
63 		if (journal_end(&th, inode->i_sb, jbegin_count))
64 			goto out;
65 
66 		/* check return value from reiserfs_delete_object after
67 		 * ending the transaction
68 		 */
69 		if (err)
70 		    goto out;
71 
72 		/* all items of file are deleted, so we can remove "save" link */
73 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
74 								 * about an error here */
75 	} else {
76 		/* no object items are in the tree */
77 		;
78 	}
79       out:
80 	reiserfs_write_unlock_once(inode->i_sb, depth);
81 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
82 	dquot_drop(inode);
83 	inode->i_blocks = 0;
84 	return;
85 
86 no_delete:
87 	clear_inode(inode);
88 	dquot_drop(inode);
89 }
90 
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)91 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
92 			  __u32 objectid, loff_t offset, int type, int length)
93 {
94 	key->version = version;
95 
96 	key->on_disk_key.k_dir_id = dirid;
97 	key->on_disk_key.k_objectid = objectid;
98 	set_cpu_key_k_offset(key, offset);
99 	set_cpu_key_k_type(key, type);
100 	key->key_length = length;
101 }
102 
103 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
104    offset and type of key */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)105 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
106 		  int type, int length)
107 {
108 	_make_cpu_key(key, get_inode_item_key_version(inode),
109 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
110 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
111 		      length);
112 }
113 
114 //
115 // when key is 0, do not set version and short key
116 //
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)117 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
118 			      int version,
119 			      loff_t offset, int type, int length,
120 			      int entry_count /*or ih_free_space */ )
121 {
122 	if (key) {
123 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
124 		ih->ih_key.k_objectid =
125 		    cpu_to_le32(key->on_disk_key.k_objectid);
126 	}
127 	put_ih_version(ih, version);
128 	set_le_ih_k_offset(ih, offset);
129 	set_le_ih_k_type(ih, type);
130 	put_ih_item_len(ih, length);
131 	/*    set_ih_free_space (ih, 0); */
132 	// for directory items it is entry count, for directs and stat
133 	// datas - 0xffff, for indirects - 0
134 	put_ih_entry_count(ih, entry_count);
135 }
136 
137 //
138 // FIXME: we might cache recently accessed indirect item
139 
140 // Ugh.  Not too eager for that....
141 //  I cut the code until such time as I see a convincing argument (benchmark).
142 // I don't want a bloated inode struct..., and I don't like code complexity....
143 
144 /* cutting the code is fine, since it really isn't in use yet and is easy
145 ** to add back in.  But, Vladimir has a really good idea here.  Think
146 ** about what happens for reading a file.  For each page,
147 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
148 ** an indirect item.  This indirect item has X number of pointers, where
149 ** X is a big number if we've done the block allocation right.  But,
150 ** we only use one or two of these pointers during each call to readpage,
151 ** needlessly researching again later on.
152 **
153 ** The size of the cache could be dynamic based on the size of the file.
154 **
155 ** I'd also like to see us cache the location the stat data item, since
156 ** we are needlessly researching for that frequently.
157 **
158 ** --chris
159 */
160 
161 /* If this page has a file tail in it, and
162 ** it was read in by get_block_create_0, the page data is valid,
163 ** but tail is still sitting in a direct item, and we can't write to
164 ** it.  So, look through this page, and check all the mapped buffers
165 ** to make sure they have valid block numbers.  Any that don't need
166 ** to be unmapped, so that __block_write_begin will correctly call
167 ** reiserfs_get_block to convert the tail into an unformatted node
168 */
fix_tail_page_for_writing(struct page * page)169 static inline void fix_tail_page_for_writing(struct page *page)
170 {
171 	struct buffer_head *head, *next, *bh;
172 
173 	if (page && page_has_buffers(page)) {
174 		head = page_buffers(page);
175 		bh = head;
176 		do {
177 			next = bh->b_this_page;
178 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
179 				reiserfs_unmap_buffer(bh);
180 			}
181 			bh = next;
182 		} while (bh != head);
183 	}
184 }
185 
186 /* reiserfs_get_block does not need to allocate a block only if it has been
187    done already or non-hole position has been found in the indirect item */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)188 static inline int allocation_needed(int retval, b_blocknr_t allocated,
189 				    struct item_head *ih,
190 				    __le32 * item, int pos_in_item)
191 {
192 	if (allocated)
193 		return 0;
194 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
195 	    get_block_num(item, pos_in_item))
196 		return 0;
197 	return 1;
198 }
199 
indirect_item_found(int retval,struct item_head * ih)200 static inline int indirect_item_found(int retval, struct item_head *ih)
201 {
202 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
203 }
204 
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)205 static inline void set_block_dev_mapped(struct buffer_head *bh,
206 					b_blocknr_t block, struct inode *inode)
207 {
208 	map_bh(bh, inode->i_sb, block);
209 }
210 
211 //
212 // files which were created in the earlier version can not be longer,
213 // than 2 gb
214 //
file_capable(struct inode * inode,sector_t block)215 static int file_capable(struct inode *inode, sector_t block)
216 {
217 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
218 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
219 		return 1;
220 
221 	return 0;
222 }
223 
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)224 static int restart_transaction(struct reiserfs_transaction_handle *th,
225 			       struct inode *inode, struct treepath *path)
226 {
227 	struct super_block *s = th->t_super;
228 	int len = th->t_blocks_allocated;
229 	int err;
230 
231 	BUG_ON(!th->t_trans_id);
232 	BUG_ON(!th->t_refcount);
233 
234 	pathrelse(path);
235 
236 	/* we cannot restart while nested */
237 	if (th->t_refcount > 1) {
238 		return 0;
239 	}
240 	reiserfs_update_sd(th, inode);
241 	err = journal_end(th, s, len);
242 	if (!err) {
243 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
244 		if (!err)
245 			reiserfs_update_inode_transaction(inode);
246 	}
247 	return err;
248 }
249 
250 // it is called by get_block when create == 0. Returns block number
251 // for 'block'-th logical block of file. When it hits direct item it
252 // returns 0 (being called from bmap) or read direct item into piece
253 // of page (bh_result)
254 
255 // Please improve the english/clarity in the comment above, as it is
256 // hard to understand.
257 
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)258 static int _get_block_create_0(struct inode *inode, sector_t block,
259 			       struct buffer_head *bh_result, int args)
260 {
261 	INITIALIZE_PATH(path);
262 	struct cpu_key key;
263 	struct buffer_head *bh;
264 	struct item_head *ih, tmp_ih;
265 	b_blocknr_t blocknr;
266 	char *p = NULL;
267 	int chars;
268 	int ret;
269 	int result;
270 	int done = 0;
271 	unsigned long offset;
272 
273 	// prepare the key to look for the 'block'-th block of file
274 	make_cpu_key(&key, inode,
275 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
276 		     3);
277 
278 	result = search_for_position_by_key(inode->i_sb, &key, &path);
279 	if (result != POSITION_FOUND) {
280 		pathrelse(&path);
281 		if (p)
282 			kunmap(bh_result->b_page);
283 		if (result == IO_ERROR)
284 			return -EIO;
285 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
286 		// That there is some MMAPED data associated with it that is yet to be written to disk.
287 		if ((args & GET_BLOCK_NO_HOLE)
288 		    && !PageUptodate(bh_result->b_page)) {
289 			return -ENOENT;
290 		}
291 		return 0;
292 	}
293 	//
294 	bh = get_last_bh(&path);
295 	ih = get_ih(&path);
296 	if (is_indirect_le_ih(ih)) {
297 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
298 
299 		/* FIXME: here we could cache indirect item or part of it in
300 		   the inode to avoid search_by_key in case of subsequent
301 		   access to file */
302 		blocknr = get_block_num(ind_item, path.pos_in_item);
303 		ret = 0;
304 		if (blocknr) {
305 			map_bh(bh_result, inode->i_sb, blocknr);
306 			if (path.pos_in_item ==
307 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
308 				set_buffer_boundary(bh_result);
309 			}
310 		} else
311 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
312 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
313 		if ((args & GET_BLOCK_NO_HOLE)
314 			    && !PageUptodate(bh_result->b_page)) {
315 			ret = -ENOENT;
316 		}
317 
318 		pathrelse(&path);
319 		if (p)
320 			kunmap(bh_result->b_page);
321 		return ret;
322 	}
323 	// requested data are in direct item(s)
324 	if (!(args & GET_BLOCK_READ_DIRECT)) {
325 		// we are called by bmap. FIXME: we can not map block of file
326 		// when it is stored in direct item(s)
327 		pathrelse(&path);
328 		if (p)
329 			kunmap(bh_result->b_page);
330 		return -ENOENT;
331 	}
332 
333 	/* if we've got a direct item, and the buffer or page was uptodate,
334 	 ** we don't want to pull data off disk again.  skip to the
335 	 ** end, where we map the buffer and return
336 	 */
337 	if (buffer_uptodate(bh_result)) {
338 		goto finished;
339 	} else
340 		/*
341 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
342 		 ** pages without any buffers.  If the page is up to date, we don't want
343 		 ** read old data off disk.  Set the up to date bit on the buffer instead
344 		 ** and jump to the end
345 		 */
346 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
347 		set_buffer_uptodate(bh_result);
348 		goto finished;
349 	}
350 	// read file tail into part of page
351 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
352 	copy_item_head(&tmp_ih, ih);
353 
354 	/* we only want to kmap if we are reading the tail into the page.
355 	 ** this is not the common case, so we don't kmap until we are
356 	 ** sure we need to.  But, this means the item might move if
357 	 ** kmap schedules
358 	 */
359 	if (!p)
360 		p = (char *)kmap(bh_result->b_page);
361 
362 	p += offset;
363 	memset(p, 0, inode->i_sb->s_blocksize);
364 	do {
365 		if (!is_direct_le_ih(ih)) {
366 			BUG();
367 		}
368 		/* make sure we don't read more bytes than actually exist in
369 		 ** the file.  This can happen in odd cases where i_size isn't
370 		 ** correct, and when direct item padding results in a few
371 		 ** extra bytes at the end of the direct item
372 		 */
373 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
374 			break;
375 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
376 			chars =
377 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
378 			    path.pos_in_item;
379 			done = 1;
380 		} else {
381 			chars = ih_item_len(ih) - path.pos_in_item;
382 		}
383 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
384 
385 		if (done)
386 			break;
387 
388 		p += chars;
389 
390 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
391 			// we done, if read direct item is not the last item of
392 			// node FIXME: we could try to check right delimiting key
393 			// to see whether direct item continues in the right
394 			// neighbor or rely on i_size
395 			break;
396 
397 		// update key to look for the next piece
398 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
399 		result = search_for_position_by_key(inode->i_sb, &key, &path);
400 		if (result != POSITION_FOUND)
401 			// i/o error most likely
402 			break;
403 		bh = get_last_bh(&path);
404 		ih = get_ih(&path);
405 	} while (1);
406 
407 	flush_dcache_page(bh_result->b_page);
408 	kunmap(bh_result->b_page);
409 
410       finished:
411 	pathrelse(&path);
412 
413 	if (result == IO_ERROR)
414 		return -EIO;
415 
416 	/* this buffer has valid data, but isn't valid for io.  mapping it to
417 	 * block #0 tells the rest of reiserfs it just has a tail in it
418 	 */
419 	map_bh(bh_result, inode->i_sb, 0);
420 	set_buffer_uptodate(bh_result);
421 	return 0;
422 }
423 
424 // this is called to create file map. So, _get_block_create_0 will not
425 // read direct item
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)426 static int reiserfs_bmap(struct inode *inode, sector_t block,
427 			 struct buffer_head *bh_result, int create)
428 {
429 	if (!file_capable(inode, block))
430 		return -EFBIG;
431 
432 	reiserfs_write_lock(inode->i_sb);
433 	/* do not read the direct item */
434 	_get_block_create_0(inode, block, bh_result, 0);
435 	reiserfs_write_unlock(inode->i_sb);
436 	return 0;
437 }
438 
439 /* special version of get_block that is only used by grab_tail_page right
440 ** now.  It is sent to __block_write_begin, and when you try to get a
441 ** block past the end of the file (or a block from a hole) it returns
442 ** -ENOENT instead of a valid buffer.  __block_write_begin expects to
443 ** be able to do i/o on the buffers returned, unless an error value
444 ** is also returned.
445 **
446 ** So, this allows __block_write_begin to be used for reading a single block
447 ** in a page.  Where it does not produce a valid page for holes, or past the
448 ** end of the file.  This turns out to be exactly what we need for reading
449 ** tails for conversion.
450 **
451 ** The point of the wrapper is forcing a certain value for create, even
452 ** though the VFS layer is calling this function with create==1.  If you
453 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
454 ** don't use this function.
455 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)456 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
457 				       struct buffer_head *bh_result,
458 				       int create)
459 {
460 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
461 }
462 
463 /* This is special helper for reiserfs_get_block in case we are executing
464    direct_IO request. */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)465 static int reiserfs_get_blocks_direct_io(struct inode *inode,
466 					 sector_t iblock,
467 					 struct buffer_head *bh_result,
468 					 int create)
469 {
470 	int ret;
471 
472 	bh_result->b_page = NULL;
473 
474 	/* We set the b_size before reiserfs_get_block call since it is
475 	   referenced in convert_tail_for_hole() that may be called from
476 	   reiserfs_get_block() */
477 	bh_result->b_size = (1 << inode->i_blkbits);
478 
479 	ret = reiserfs_get_block(inode, iblock, bh_result,
480 				 create | GET_BLOCK_NO_DANGLE);
481 	if (ret)
482 		goto out;
483 
484 	/* don't allow direct io onto tail pages */
485 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
486 		/* make sure future calls to the direct io funcs for this offset
487 		 ** in the file fail by unmapping the buffer
488 		 */
489 		clear_buffer_mapped(bh_result);
490 		ret = -EINVAL;
491 	}
492 	/* Possible unpacked tail. Flush the data before pages have
493 	   disappeared */
494 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
495 		int err;
496 
497 		reiserfs_write_lock(inode->i_sb);
498 
499 		err = reiserfs_commit_for_inode(inode);
500 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
501 
502 		reiserfs_write_unlock(inode->i_sb);
503 
504 		if (err < 0)
505 			ret = err;
506 	}
507       out:
508 	return ret;
509 }
510 
511 /*
512 ** helper function for when reiserfs_get_block is called for a hole
513 ** but the file tail is still in a direct item
514 ** bh_result is the buffer head for the hole
515 ** tail_offset is the offset of the start of the tail in the file
516 **
517 ** This calls prepare_write, which will start a new transaction
518 ** you should not be in a transaction, or have any paths held when you
519 ** call this.
520 */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)521 static int convert_tail_for_hole(struct inode *inode,
522 				 struct buffer_head *bh_result,
523 				 loff_t tail_offset)
524 {
525 	unsigned long index;
526 	unsigned long tail_end;
527 	unsigned long tail_start;
528 	struct page *tail_page;
529 	struct page *hole_page = bh_result->b_page;
530 	int retval = 0;
531 
532 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
533 		return -EIO;
534 
535 	/* always try to read until the end of the block */
536 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
537 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
538 
539 	index = tail_offset >> PAGE_CACHE_SHIFT;
540 	/* hole_page can be zero in case of direct_io, we are sure
541 	   that we cannot get here if we write with O_DIRECT into
542 	   tail page */
543 	if (!hole_page || index != hole_page->index) {
544 		tail_page = grab_cache_page(inode->i_mapping, index);
545 		retval = -ENOMEM;
546 		if (!tail_page) {
547 			goto out;
548 		}
549 	} else {
550 		tail_page = hole_page;
551 	}
552 
553 	/* we don't have to make sure the conversion did not happen while
554 	 ** we were locking the page because anyone that could convert
555 	 ** must first take i_mutex.
556 	 **
557 	 ** We must fix the tail page for writing because it might have buffers
558 	 ** that are mapped, but have a block number of 0.  This indicates tail
559 	 ** data that has been read directly into the page, and
560 	 ** __block_write_begin won't trigger a get_block in this case.
561 	 */
562 	fix_tail_page_for_writing(tail_page);
563 	retval = __reiserfs_write_begin(tail_page, tail_start,
564 				      tail_end - tail_start);
565 	if (retval)
566 		goto unlock;
567 
568 	/* tail conversion might change the data in the page */
569 	flush_dcache_page(tail_page);
570 
571 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
572 
573       unlock:
574 	if (tail_page != hole_page) {
575 		unlock_page(tail_page);
576 		page_cache_release(tail_page);
577 	}
578       out:
579 	return retval;
580 }
581 
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)582 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
583 				  sector_t block,
584 				  struct inode *inode,
585 				  b_blocknr_t * allocated_block_nr,
586 				  struct treepath *path, int flags)
587 {
588 	BUG_ON(!th->t_trans_id);
589 
590 #ifdef REISERFS_PREALLOCATE
591 	if (!(flags & GET_BLOCK_NO_IMUX)) {
592 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
593 						  path, block);
594 	}
595 #endif
596 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
597 					 block);
598 }
599 
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)600 int reiserfs_get_block(struct inode *inode, sector_t block,
601 		       struct buffer_head *bh_result, int create)
602 {
603 	int repeat, retval = 0;
604 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
605 	INITIALIZE_PATH(path);
606 	int pos_in_item;
607 	struct cpu_key key;
608 	struct buffer_head *bh, *unbh = NULL;
609 	struct item_head *ih, tmp_ih;
610 	__le32 *item;
611 	int done;
612 	int fs_gen;
613 	int lock_depth;
614 	struct reiserfs_transaction_handle *th = NULL;
615 	/* space reserved in transaction batch:
616 	   . 3 balancings in direct->indirect conversion
617 	   . 1 block involved into reiserfs_update_sd()
618 	   XXX in practically impossible worst case direct2indirect()
619 	   can incur (much) more than 3 balancings.
620 	   quota update for user, group */
621 	int jbegin_count =
622 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
623 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
624 	int version;
625 	int dangle = 1;
626 	loff_t new_offset =
627 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
628 
629 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
630 	version = get_inode_item_key_version(inode);
631 
632 	if (!file_capable(inode, block)) {
633 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
634 		return -EFBIG;
635 	}
636 
637 	/* if !create, we aren't changing the FS, so we don't need to
638 	 ** log anything, so we don't need to start a transaction
639 	 */
640 	if (!(create & GET_BLOCK_CREATE)) {
641 		int ret;
642 		/* find number of block-th logical block of the file */
643 		ret = _get_block_create_0(inode, block, bh_result,
644 					  create | GET_BLOCK_READ_DIRECT);
645 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
646 		return ret;
647 	}
648 	/*
649 	 * if we're already in a transaction, make sure to close
650 	 * any new transactions we start in this func
651 	 */
652 	if ((create & GET_BLOCK_NO_DANGLE) ||
653 	    reiserfs_transaction_running(inode->i_sb))
654 		dangle = 0;
655 
656 	/* If file is of such a size, that it might have a tail and tails are enabled
657 	 ** we should mark it as possibly needing tail packing on close
658 	 */
659 	if ((have_large_tails(inode->i_sb)
660 	     && inode->i_size < i_block_size(inode) * 4)
661 	    || (have_small_tails(inode->i_sb)
662 		&& inode->i_size < i_block_size(inode)))
663 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
664 
665 	/* set the key of the first byte in the 'block'-th block of file */
666 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
667 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
668 	      start_trans:
669 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
670 		if (!th) {
671 			retval = -ENOMEM;
672 			goto failure;
673 		}
674 		reiserfs_update_inode_transaction(inode);
675 	}
676       research:
677 
678 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
679 	if (retval == IO_ERROR) {
680 		retval = -EIO;
681 		goto failure;
682 	}
683 
684 	bh = get_last_bh(&path);
685 	ih = get_ih(&path);
686 	item = get_item(&path);
687 	pos_in_item = path.pos_in_item;
688 
689 	fs_gen = get_generation(inode->i_sb);
690 	copy_item_head(&tmp_ih, ih);
691 
692 	if (allocation_needed
693 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
694 		/* we have to allocate block for the unformatted node */
695 		if (!th) {
696 			pathrelse(&path);
697 			goto start_trans;
698 		}
699 
700 		repeat =
701 		    _allocate_block(th, block, inode, &allocated_block_nr,
702 				    &path, create);
703 
704 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
705 			/* restart the transaction to give the journal a chance to free
706 			 ** some blocks.  releases the path, so we have to go back to
707 			 ** research if we succeed on the second try
708 			 */
709 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
710 			retval = restart_transaction(th, inode, &path);
711 			if (retval)
712 				goto failure;
713 			repeat =
714 			    _allocate_block(th, block, inode,
715 					    &allocated_block_nr, NULL, create);
716 
717 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
718 				goto research;
719 			}
720 			if (repeat == QUOTA_EXCEEDED)
721 				retval = -EDQUOT;
722 			else
723 				retval = -ENOSPC;
724 			goto failure;
725 		}
726 
727 		if (fs_changed(fs_gen, inode->i_sb)
728 		    && item_moved(&tmp_ih, &path)) {
729 			goto research;
730 		}
731 	}
732 
733 	if (indirect_item_found(retval, ih)) {
734 		b_blocknr_t unfm_ptr;
735 		/* 'block'-th block is in the file already (there is
736 		   corresponding cell in some indirect item). But it may be
737 		   zero unformatted node pointer (hole) */
738 		unfm_ptr = get_block_num(item, pos_in_item);
739 		if (unfm_ptr == 0) {
740 			/* use allocated block to plug the hole */
741 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
742 			if (fs_changed(fs_gen, inode->i_sb)
743 			    && item_moved(&tmp_ih, &path)) {
744 				reiserfs_restore_prepared_buffer(inode->i_sb,
745 								 bh);
746 				goto research;
747 			}
748 			set_buffer_new(bh_result);
749 			if (buffer_dirty(bh_result)
750 			    && reiserfs_data_ordered(inode->i_sb))
751 				reiserfs_add_ordered_list(inode, bh_result);
752 			put_block_num(item, pos_in_item, allocated_block_nr);
753 			unfm_ptr = allocated_block_nr;
754 			journal_mark_dirty(th, inode->i_sb, bh);
755 			reiserfs_update_sd(th, inode);
756 		}
757 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
758 		pathrelse(&path);
759 		retval = 0;
760 		if (!dangle && th)
761 			retval = reiserfs_end_persistent_transaction(th);
762 
763 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
764 
765 		/* the item was found, so new blocks were not added to the file
766 		 ** there is no need to make sure the inode is updated with this
767 		 ** transaction
768 		 */
769 		return retval;
770 	}
771 
772 	if (!th) {
773 		pathrelse(&path);
774 		goto start_trans;
775 	}
776 
777 	/* desired position is not found or is in the direct item. We have
778 	   to append file with holes up to 'block'-th block converting
779 	   direct items to indirect one if necessary */
780 	done = 0;
781 	do {
782 		if (is_statdata_le_ih(ih)) {
783 			__le32 unp = 0;
784 			struct cpu_key tmp_key;
785 
786 			/* indirect item has to be inserted */
787 			make_le_item_head(&tmp_ih, &key, version, 1,
788 					  TYPE_INDIRECT, UNFM_P_SIZE,
789 					  0 /* free_space */ );
790 
791 			if (cpu_key_k_offset(&key) == 1) {
792 				/* we are going to add 'block'-th block to the file. Use
793 				   allocated block for that */
794 				unp = cpu_to_le32(allocated_block_nr);
795 				set_block_dev_mapped(bh_result,
796 						     allocated_block_nr, inode);
797 				set_buffer_new(bh_result);
798 				done = 1;
799 			}
800 			tmp_key = key;	// ;)
801 			set_cpu_key_k_offset(&tmp_key, 1);
802 			PATH_LAST_POSITION(&path)++;
803 
804 			retval =
805 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
806 						 inode, (char *)&unp);
807 			if (retval) {
808 				reiserfs_free_block(th, inode,
809 						    allocated_block_nr, 1);
810 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
811 			}
812 			//mark_tail_converted (inode);
813 		} else if (is_direct_le_ih(ih)) {
814 			/* direct item has to be converted */
815 			loff_t tail_offset;
816 
817 			tail_offset =
818 			    ((le_ih_k_offset(ih) -
819 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
820 			if (tail_offset == cpu_key_k_offset(&key)) {
821 				/* direct item we just found fits into block we have
822 				   to map. Convert it into unformatted node: use
823 				   bh_result for the conversion */
824 				set_block_dev_mapped(bh_result,
825 						     allocated_block_nr, inode);
826 				unbh = bh_result;
827 				done = 1;
828 			} else {
829 				/* we have to padd file tail stored in direct item(s)
830 				   up to block size and convert it to unformatted
831 				   node. FIXME: this should also get into page cache */
832 
833 				pathrelse(&path);
834 				/*
835 				 * ugly, but we can only end the transaction if
836 				 * we aren't nested
837 				 */
838 				BUG_ON(!th->t_refcount);
839 				if (th->t_refcount == 1) {
840 					retval =
841 					    reiserfs_end_persistent_transaction
842 					    (th);
843 					th = NULL;
844 					if (retval)
845 						goto failure;
846 				}
847 
848 				retval =
849 				    convert_tail_for_hole(inode, bh_result,
850 							  tail_offset);
851 				if (retval) {
852 					if (retval != -ENOSPC)
853 						reiserfs_error(inode->i_sb,
854 							"clm-6004",
855 							"convert tail failed "
856 							"inode %lu, error %d",
857 							inode->i_ino,
858 							retval);
859 					if (allocated_block_nr) {
860 						/* the bitmap, the super, and the stat data == 3 */
861 						if (!th)
862 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
863 						if (th)
864 							reiserfs_free_block(th,
865 									    inode,
866 									    allocated_block_nr,
867 									    1);
868 					}
869 					goto failure;
870 				}
871 				goto research;
872 			}
873 			retval =
874 			    direct2indirect(th, inode, &path, unbh,
875 					    tail_offset);
876 			if (retval) {
877 				reiserfs_unmap_buffer(unbh);
878 				reiserfs_free_block(th, inode,
879 						    allocated_block_nr, 1);
880 				goto failure;
881 			}
882 			/* it is important the set_buffer_uptodate is done after
883 			 ** the direct2indirect.  The buffer might contain valid
884 			 ** data newer than the data on disk (read by readpage, changed,
885 			 ** and then sent here by writepage).  direct2indirect needs
886 			 ** to know if unbh was already up to date, so it can decide
887 			 ** if the data in unbh needs to be replaced with data from
888 			 ** the disk
889 			 */
890 			set_buffer_uptodate(unbh);
891 
892 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
893 			   buffer will disappear shortly, so it should not be added to
894 			 */
895 			if (unbh->b_page) {
896 				/* we've converted the tail, so we must
897 				 ** flush unbh before the transaction commits
898 				 */
899 				reiserfs_add_tail_list(inode, unbh);
900 
901 				/* mark it dirty now to prevent commit_write from adding
902 				 ** this buffer to the inode's dirty buffer list
903 				 */
904 				/*
905 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
906 				 * It's still atomic, but it sets the page dirty too,
907 				 * which makes it eligible for writeback at any time by the
908 				 * VM (which was also the case with __mark_buffer_dirty())
909 				 */
910 				mark_buffer_dirty(unbh);
911 			}
912 		} else {
913 			/* append indirect item with holes if needed, when appending
914 			   pointer to 'block'-th block use block, which is already
915 			   allocated */
916 			struct cpu_key tmp_key;
917 			unp_t unf_single = 0;	// We use this in case we need to allocate only
918 			// one block which is a fastpath
919 			unp_t *un;
920 			__u64 max_to_insert =
921 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
922 			    UNFM_P_SIZE;
923 			__u64 blocks_needed;
924 
925 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
926 			       "vs-804: invalid position for append");
927 			/* indirect item has to be appended, set up key of that position */
928 			make_cpu_key(&tmp_key, inode,
929 				     le_key_k_offset(version,
930 						     &(ih->ih_key)) +
931 				     op_bytes_number(ih,
932 						     inode->i_sb->s_blocksize),
933 				     //pos_in_item * inode->i_sb->s_blocksize,
934 				     TYPE_INDIRECT, 3);	// key type is unimportant
935 
936 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
937 			       "green-805: invalid offset");
938 			blocks_needed =
939 			    1 +
940 			    ((cpu_key_k_offset(&key) -
941 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
942 			     s_blocksize_bits);
943 
944 			if (blocks_needed == 1) {
945 				un = &unf_single;
946 			} else {
947 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
948 				if (!un) {
949 					un = &unf_single;
950 					blocks_needed = 1;
951 					max_to_insert = 0;
952 				}
953 			}
954 			if (blocks_needed <= max_to_insert) {
955 				/* we are going to add target block to the file. Use allocated
956 				   block for that */
957 				un[blocks_needed - 1] =
958 				    cpu_to_le32(allocated_block_nr);
959 				set_block_dev_mapped(bh_result,
960 						     allocated_block_nr, inode);
961 				set_buffer_new(bh_result);
962 				done = 1;
963 			} else {
964 				/* paste hole to the indirect item */
965 				/* If kmalloc failed, max_to_insert becomes zero and it means we
966 				   only have space for one block */
967 				blocks_needed =
968 				    max_to_insert ? max_to_insert : 1;
969 			}
970 			retval =
971 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
972 						     (char *)un,
973 						     UNFM_P_SIZE *
974 						     blocks_needed);
975 
976 			if (blocks_needed != 1)
977 				kfree(un);
978 
979 			if (retval) {
980 				reiserfs_free_block(th, inode,
981 						    allocated_block_nr, 1);
982 				goto failure;
983 			}
984 			if (!done) {
985 				/* We need to mark new file size in case this function will be
986 				   interrupted/aborted later on. And we may do this only for
987 				   holes. */
988 				inode->i_size +=
989 				    inode->i_sb->s_blocksize * blocks_needed;
990 			}
991 		}
992 
993 		if (done == 1)
994 			break;
995 
996 		/* this loop could log more blocks than we had originally asked
997 		 ** for.  So, we have to allow the transaction to end if it is
998 		 ** too big or too full.  Update the inode so things are
999 		 ** consistent if we crash before the function returns
1000 		 **
1001 		 ** release the path so that anybody waiting on the path before
1002 		 ** ending their transaction will be able to continue.
1003 		 */
1004 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1005 			retval = restart_transaction(th, inode, &path);
1006 			if (retval)
1007 				goto failure;
1008 		}
1009 		/*
1010 		 * inserting indirect pointers for a hole can take a
1011 		 * long time.  reschedule if needed and also release the write
1012 		 * lock for others.
1013 		 */
1014 		if (need_resched()) {
1015 			reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1016 			schedule();
1017 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
1018 		}
1019 
1020 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1021 		if (retval == IO_ERROR) {
1022 			retval = -EIO;
1023 			goto failure;
1024 		}
1025 		if (retval == POSITION_FOUND) {
1026 			reiserfs_warning(inode->i_sb, "vs-825",
1027 					 "%K should not be found", &key);
1028 			retval = -EEXIST;
1029 			if (allocated_block_nr)
1030 				reiserfs_free_block(th, inode,
1031 						    allocated_block_nr, 1);
1032 			pathrelse(&path);
1033 			goto failure;
1034 		}
1035 		bh = get_last_bh(&path);
1036 		ih = get_ih(&path);
1037 		item = get_item(&path);
1038 		pos_in_item = path.pos_in_item;
1039 	} while (1);
1040 
1041 	retval = 0;
1042 
1043       failure:
1044 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1045 		int err;
1046 		if (th->t_trans_id)
1047 			reiserfs_update_sd(th, inode);
1048 		err = reiserfs_end_persistent_transaction(th);
1049 		if (err)
1050 			retval = err;
1051 	}
1052 
1053 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1054 	reiserfs_check_path(&path);
1055 	return retval;
1056 }
1057 
1058 static int
reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1059 reiserfs_readpages(struct file *file, struct address_space *mapping,
1060 		   struct list_head *pages, unsigned nr_pages)
1061 {
1062 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1063 }
1064 
1065 /* Compute real number of used bytes by file
1066  * Following three functions can go away when we'll have enough space in stat item
1067  */
real_space_diff(struct inode * inode,int sd_size)1068 static int real_space_diff(struct inode *inode, int sd_size)
1069 {
1070 	int bytes;
1071 	loff_t blocksize = inode->i_sb->s_blocksize;
1072 
1073 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1074 		return sd_size;
1075 
1076 	/* End of file is also in full block with indirect reference, so round
1077 	 ** up to the next block.
1078 	 **
1079 	 ** there is just no way to know if the tail is actually packed
1080 	 ** on the file, so we have to assume it isn't.  When we pack the
1081 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1082 	 ** node pointer
1083 	 */
1084 	bytes =
1085 	    ((inode->i_size +
1086 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1087 	    sd_size;
1088 	return bytes;
1089 }
1090 
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1091 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1092 					int sd_size)
1093 {
1094 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 		return inode->i_size +
1096 		    (loff_t) (real_space_diff(inode, sd_size));
1097 	}
1098 	return ((loff_t) real_space_diff(inode, sd_size)) +
1099 	    (((loff_t) blocks) << 9);
1100 }
1101 
1102 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1103 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1104 {
1105 	loff_t bytes = inode_get_bytes(inode);
1106 	loff_t real_space = real_space_diff(inode, sd_size);
1107 
1108 	/* keeps fsck and non-quota versions of reiserfs happy */
1109 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1110 		bytes += (loff_t) 511;
1111 	}
1112 
1113 	/* files from before the quota patch might i_blocks such that
1114 	 ** bytes < real_space.  Deal with that here to prevent it from
1115 	 ** going negative.
1116 	 */
1117 	if (bytes < real_space)
1118 		return 0;
1119 	return (bytes - real_space) >> 9;
1120 }
1121 
1122 //
1123 // BAD: new directories have stat data of new type and all other items
1124 // of old type. Version stored in the inode says about body items, so
1125 // in update_stat_data we can not rely on inode, but have to check
1126 // item version directly
1127 //
1128 
1129 // called by read_locked_inode
init_inode(struct inode * inode,struct treepath * path)1130 static void init_inode(struct inode *inode, struct treepath *path)
1131 {
1132 	struct buffer_head *bh;
1133 	struct item_head *ih;
1134 	__u32 rdev;
1135 	//int version = ITEM_VERSION_1;
1136 
1137 	bh = PATH_PLAST_BUFFER(path);
1138 	ih = PATH_PITEM_HEAD(path);
1139 
1140 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1141 
1142 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1143 	REISERFS_I(inode)->i_flags = 0;
1144 	REISERFS_I(inode)->i_prealloc_block = 0;
1145 	REISERFS_I(inode)->i_prealloc_count = 0;
1146 	REISERFS_I(inode)->i_trans_id = 0;
1147 	REISERFS_I(inode)->i_jl = NULL;
1148 	reiserfs_init_xattr_rwsem(inode);
1149 
1150 	if (stat_data_v1(ih)) {
1151 		struct stat_data_v1 *sd =
1152 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1153 		unsigned long blocks;
1154 
1155 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1156 		set_inode_sd_version(inode, STAT_DATA_V1);
1157 		inode->i_mode = sd_v1_mode(sd);
1158 		set_nlink(inode, sd_v1_nlink(sd));
1159 		i_uid_write(inode, sd_v1_uid(sd));
1160 		i_gid_write(inode, sd_v1_gid(sd));
1161 		inode->i_size = sd_v1_size(sd);
1162 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1163 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1164 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1165 		inode->i_atime.tv_nsec = 0;
1166 		inode->i_ctime.tv_nsec = 0;
1167 		inode->i_mtime.tv_nsec = 0;
1168 
1169 		inode->i_blocks = sd_v1_blocks(sd);
1170 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1171 		blocks = (inode->i_size + 511) >> 9;
1172 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1173 		if (inode->i_blocks > blocks) {
1174 			// there was a bug in <=3.5.23 when i_blocks could take negative
1175 			// values. Starting from 3.5.17 this value could even be stored in
1176 			// stat data. For such files we set i_blocks based on file
1177 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1178 			// only updated if file's inode will ever change
1179 			inode->i_blocks = blocks;
1180 		}
1181 
1182 		rdev = sd_v1_rdev(sd);
1183 		REISERFS_I(inode)->i_first_direct_byte =
1184 		    sd_v1_first_direct_byte(sd);
1185 		/* an early bug in the quota code can give us an odd number for the
1186 		 ** block count.  This is incorrect, fix it here.
1187 		 */
1188 		if (inode->i_blocks & 1) {
1189 			inode->i_blocks++;
1190 		}
1191 		inode_set_bytes(inode,
1192 				to_real_used_space(inode, inode->i_blocks,
1193 						   SD_V1_SIZE));
1194 		/* nopack is initially zero for v1 objects. For v2 objects,
1195 		   nopack is initialised from sd_attrs */
1196 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1197 	} else {
1198 		// new stat data found, but object may have old items
1199 		// (directories and symlinks)
1200 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1201 
1202 		inode->i_mode = sd_v2_mode(sd);
1203 		set_nlink(inode, sd_v2_nlink(sd));
1204 		i_uid_write(inode, sd_v2_uid(sd));
1205 		inode->i_size = sd_v2_size(sd);
1206 		i_gid_write(inode, sd_v2_gid(sd));
1207 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1208 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1209 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1210 		inode->i_ctime.tv_nsec = 0;
1211 		inode->i_mtime.tv_nsec = 0;
1212 		inode->i_atime.tv_nsec = 0;
1213 		inode->i_blocks = sd_v2_blocks(sd);
1214 		rdev = sd_v2_rdev(sd);
1215 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1216 			inode->i_generation =
1217 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1218 		else
1219 			inode->i_generation = sd_v2_generation(sd);
1220 
1221 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1222 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1223 		else
1224 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1225 		REISERFS_I(inode)->i_first_direct_byte = 0;
1226 		set_inode_sd_version(inode, STAT_DATA_V2);
1227 		inode_set_bytes(inode,
1228 				to_real_used_space(inode, inode->i_blocks,
1229 						   SD_V2_SIZE));
1230 		/* read persistent inode attributes from sd and initialise
1231 		   generic inode flags from them */
1232 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1233 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1234 	}
1235 
1236 	pathrelse(path);
1237 	if (S_ISREG(inode->i_mode)) {
1238 		inode->i_op = &reiserfs_file_inode_operations;
1239 		inode->i_fop = &reiserfs_file_operations;
1240 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 	} else if (S_ISDIR(inode->i_mode)) {
1242 		inode->i_op = &reiserfs_dir_inode_operations;
1243 		inode->i_fop = &reiserfs_dir_operations;
1244 	} else if (S_ISLNK(inode->i_mode)) {
1245 		inode->i_op = &reiserfs_symlink_inode_operations;
1246 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1247 	} else {
1248 		inode->i_blocks = 0;
1249 		inode->i_op = &reiserfs_special_inode_operations;
1250 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1251 	}
1252 }
1253 
1254 // update new stat data with inode fields
inode2sd(void * sd,struct inode * inode,loff_t size)1255 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1256 {
1257 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1258 	__u16 flags;
1259 
1260 	set_sd_v2_mode(sd_v2, inode->i_mode);
1261 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1262 	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1263 	set_sd_v2_size(sd_v2, size);
1264 	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1265 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1266 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1267 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1268 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1269 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1270 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1271 	else
1272 		set_sd_v2_generation(sd_v2, inode->i_generation);
1273 	flags = REISERFS_I(inode)->i_attrs;
1274 	i_attrs_to_sd_attrs(inode, &flags);
1275 	set_sd_v2_attrs(sd_v2, flags);
1276 }
1277 
1278 // used to copy inode's fields to old stat data
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1279 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1280 {
1281 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1282 
1283 	set_sd_v1_mode(sd_v1, inode->i_mode);
1284 	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1285 	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1286 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1287 	set_sd_v1_size(sd_v1, size);
1288 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1289 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1290 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1291 
1292 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1293 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1294 	else
1295 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1296 
1297 	// Sigh. i_first_direct_byte is back
1298 	set_sd_v1_first_direct_byte(sd_v1,
1299 				    REISERFS_I(inode)->i_first_direct_byte);
1300 }
1301 
1302 /* NOTE, you must prepare the buffer head before sending it here,
1303 ** and then log it after the call
1304 */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1305 static void update_stat_data(struct treepath *path, struct inode *inode,
1306 			     loff_t size)
1307 {
1308 	struct buffer_head *bh;
1309 	struct item_head *ih;
1310 
1311 	bh = PATH_PLAST_BUFFER(path);
1312 	ih = PATH_PITEM_HEAD(path);
1313 
1314 	if (!is_statdata_le_ih(ih))
1315 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1316 			       INODE_PKEY(inode), ih);
1317 
1318 	if (stat_data_v1(ih)) {
1319 		// path points to old stat data
1320 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1321 	} else {
1322 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1323 	}
1324 
1325 	return;
1326 }
1327 
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1328 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1329 			     struct inode *inode, loff_t size)
1330 {
1331 	struct cpu_key key;
1332 	INITIALIZE_PATH(path);
1333 	struct buffer_head *bh;
1334 	int fs_gen;
1335 	struct item_head *ih, tmp_ih;
1336 	int retval;
1337 
1338 	BUG_ON(!th->t_trans_id);
1339 
1340 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1341 
1342 	for (;;) {
1343 		int pos;
1344 		/* look for the object's stat data */
1345 		retval = search_item(inode->i_sb, &key, &path);
1346 		if (retval == IO_ERROR) {
1347 			reiserfs_error(inode->i_sb, "vs-13050",
1348 				       "i/o failure occurred trying to "
1349 				       "update %K stat data", &key);
1350 			return;
1351 		}
1352 		if (retval == ITEM_NOT_FOUND) {
1353 			pos = PATH_LAST_POSITION(&path);
1354 			pathrelse(&path);
1355 			if (inode->i_nlink == 0) {
1356 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1357 				return;
1358 			}
1359 			reiserfs_warning(inode->i_sb, "vs-13060",
1360 					 "stat data of object %k (nlink == %d) "
1361 					 "not found (pos %d)",
1362 					 INODE_PKEY(inode), inode->i_nlink,
1363 					 pos);
1364 			reiserfs_check_path(&path);
1365 			return;
1366 		}
1367 
1368 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1369 		 ** FS might change.  We have to detect that, and loop back to the
1370 		 ** search if the stat data item has moved
1371 		 */
1372 		bh = get_last_bh(&path);
1373 		ih = get_ih(&path);
1374 		copy_item_head(&tmp_ih, ih);
1375 		fs_gen = get_generation(inode->i_sb);
1376 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1377 		if (fs_changed(fs_gen, inode->i_sb)
1378 		    && item_moved(&tmp_ih, &path)) {
1379 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1380 			continue;	/* Stat_data item has been moved after scheduling. */
1381 		}
1382 		break;
1383 	}
1384 	update_stat_data(&path, inode, size);
1385 	journal_mark_dirty(th, th->t_super, bh);
1386 	pathrelse(&path);
1387 	return;
1388 }
1389 
1390 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1391 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1392 ** and clear the key in the private portion of the inode, otherwise a
1393 ** corresponding iput might try to delete whatever object the inode last
1394 ** represented.
1395 */
reiserfs_make_bad_inode(struct inode * inode)1396 static void reiserfs_make_bad_inode(struct inode *inode)
1397 {
1398 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1399 	make_bad_inode(inode);
1400 }
1401 
1402 //
1403 // initially this function was derived from minix or ext2's analog and
1404 // evolved as the prototype did
1405 //
1406 
reiserfs_init_locked_inode(struct inode * inode,void * p)1407 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1408 {
1409 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1410 	inode->i_ino = args->objectid;
1411 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1412 	return 0;
1413 }
1414 
1415 /* looks for stat data in the tree, and fills up the fields of in-core
1416    inode stat data fields */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1417 void reiserfs_read_locked_inode(struct inode *inode,
1418 				struct reiserfs_iget_args *args)
1419 {
1420 	INITIALIZE_PATH(path_to_sd);
1421 	struct cpu_key key;
1422 	unsigned long dirino;
1423 	int retval;
1424 
1425 	dirino = args->dirid;
1426 
1427 	/* set version 1, version 2 could be used too, because stat data
1428 	   key is the same in both versions */
1429 	key.version = KEY_FORMAT_3_5;
1430 	key.on_disk_key.k_dir_id = dirino;
1431 	key.on_disk_key.k_objectid = inode->i_ino;
1432 	key.on_disk_key.k_offset = 0;
1433 	key.on_disk_key.k_type = 0;
1434 
1435 	/* look for the object's stat data */
1436 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1437 	if (retval == IO_ERROR) {
1438 		reiserfs_error(inode->i_sb, "vs-13070",
1439 			       "i/o failure occurred trying to find "
1440 			       "stat data of %K", &key);
1441 		reiserfs_make_bad_inode(inode);
1442 		return;
1443 	}
1444 	if (retval != ITEM_FOUND) {
1445 		/* a stale NFS handle can trigger this without it being an error */
1446 		pathrelse(&path_to_sd);
1447 		reiserfs_make_bad_inode(inode);
1448 		clear_nlink(inode);
1449 		return;
1450 	}
1451 
1452 	init_inode(inode, &path_to_sd);
1453 
1454 	/* It is possible that knfsd is trying to access inode of a file
1455 	   that is being removed from the disk by some other thread. As we
1456 	   update sd on unlink all that is required is to check for nlink
1457 	   here. This bug was first found by Sizif when debugging
1458 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1459 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1460 
1461 	   More logical fix would require changes in fs/inode.c:iput() to
1462 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1463 	   in iget() to return NULL if I_FREEING inode is found in
1464 	   hash-table. */
1465 	/* Currently there is one place where it's ok to meet inode with
1466 	   nlink==0: processing of open-unlinked and half-truncated files
1467 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1468 	if ((inode->i_nlink == 0) &&
1469 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1470 		reiserfs_warning(inode->i_sb, "vs-13075",
1471 				 "dead inode read from disk %K. "
1472 				 "This is likely to be race with knfsd. Ignore",
1473 				 &key);
1474 		reiserfs_make_bad_inode(inode);
1475 	}
1476 
1477 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1478 
1479 	/*
1480 	 * Stat data v1 doesn't support ACLs.
1481 	 */
1482 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1483 		cache_no_acl(inode);
1484 }
1485 
1486 /**
1487  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1488  *
1489  * @inode:    inode from hash table to check
1490  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1491  *
1492  * This function is called by iget5_locked() to distinguish reiserfs inodes
1493  * having the same inode numbers. Such inodes can only exist due to some
1494  * error condition. One of them should be bad. Inodes with identical
1495  * inode numbers (objectids) are distinguished by parent directory ids.
1496  *
1497  */
reiserfs_find_actor(struct inode * inode,void * opaque)1498 int reiserfs_find_actor(struct inode *inode, void *opaque)
1499 {
1500 	struct reiserfs_iget_args *args;
1501 
1502 	args = opaque;
1503 	/* args is already in CPU order */
1504 	return (inode->i_ino == args->objectid) &&
1505 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1506 }
1507 
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1508 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1509 {
1510 	struct inode *inode;
1511 	struct reiserfs_iget_args args;
1512 
1513 	args.objectid = key->on_disk_key.k_objectid;
1514 	args.dirid = key->on_disk_key.k_dir_id;
1515 	reiserfs_write_unlock(s);
1516 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1517 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1518 			     (void *)(&args));
1519 	reiserfs_write_lock(s);
1520 	if (!inode)
1521 		return ERR_PTR(-ENOMEM);
1522 
1523 	if (inode->i_state & I_NEW) {
1524 		reiserfs_read_locked_inode(inode, &args);
1525 		unlock_new_inode(inode);
1526 	}
1527 
1528 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1529 		/* either due to i/o error or a stale NFS handle */
1530 		iput(inode);
1531 		inode = NULL;
1532 	}
1533 	return inode;
1534 }
1535 
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1536 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1537 	u32 objectid, u32 dir_id, u32 generation)
1538 
1539 {
1540 	struct cpu_key key;
1541 	struct inode *inode;
1542 
1543 	key.on_disk_key.k_objectid = objectid;
1544 	key.on_disk_key.k_dir_id = dir_id;
1545 	reiserfs_write_lock(sb);
1546 	inode = reiserfs_iget(sb, &key);
1547 	if (inode && !IS_ERR(inode) && generation != 0 &&
1548 	    generation != inode->i_generation) {
1549 		iput(inode);
1550 		inode = NULL;
1551 	}
1552 	reiserfs_write_unlock(sb);
1553 
1554 	return d_obtain_alias(inode);
1555 }
1556 
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1557 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1558 		int fh_len, int fh_type)
1559 {
1560 	/* fhtype happens to reflect the number of u32s encoded.
1561 	 * due to a bug in earlier code, fhtype might indicate there
1562 	 * are more u32s then actually fitted.
1563 	 * so if fhtype seems to be more than len, reduce fhtype.
1564 	 * Valid types are:
1565 	 *   2 - objectid + dir_id - legacy support
1566 	 *   3 - objectid + dir_id + generation
1567 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1568 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1569 	 *   6 - as above plus generation of directory
1570 	 * 6 does not fit in NFSv2 handles
1571 	 */
1572 	if (fh_type > fh_len) {
1573 		if (fh_type != 6 || fh_len != 5)
1574 			reiserfs_warning(sb, "reiserfs-13077",
1575 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1576 				fh_type, fh_len);
1577 		fh_type = fh_len;
1578 	}
1579 	if (fh_len < 2)
1580 		return NULL;
1581 
1582 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1583 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1584 }
1585 
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1586 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1587 		int fh_len, int fh_type)
1588 {
1589 	if (fh_type > fh_len)
1590 		fh_type = fh_len;
1591 	if (fh_type < 4)
1592 		return NULL;
1593 
1594 	return reiserfs_get_dentry(sb,
1595 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1596 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1597 		(fh_type == 6) ? fid->raw[5] : 0);
1598 }
1599 
reiserfs_encode_fh(struct inode * inode,__u32 * data,int * lenp,struct inode * parent)1600 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1601 		       struct inode *parent)
1602 {
1603 	int maxlen = *lenp;
1604 
1605 	if (parent && (maxlen < 5)) {
1606 		*lenp = 5;
1607 		return FILEID_INVALID;
1608 	} else if (maxlen < 3) {
1609 		*lenp = 3;
1610 		return FILEID_INVALID;
1611 	}
1612 
1613 	data[0] = inode->i_ino;
1614 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 	data[2] = inode->i_generation;
1616 	*lenp = 3;
1617 	if (parent) {
1618 		data[3] = parent->i_ino;
1619 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1620 		*lenp = 5;
1621 		if (maxlen >= 6) {
1622 			data[5] = parent->i_generation;
1623 			*lenp = 6;
1624 		}
1625 	}
1626 	return *lenp;
1627 }
1628 
1629 /* looks for stat data, then copies fields to it, marks the buffer
1630    containing stat data as dirty */
1631 /* reiserfs inodes are never really dirty, since the dirty inode call
1632 ** always logs them.  This call allows the VFS inode marking routines
1633 ** to properly mark inodes for datasync and such, but only actually
1634 ** does something when called for a synchronous update.
1635 */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1636 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 	struct reiserfs_transaction_handle th;
1639 	int jbegin_count = 1;
1640 
1641 	if (inode->i_sb->s_flags & MS_RDONLY)
1642 		return -EROFS;
1643 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1644 	 ** these cases are just when the system needs ram, not when the
1645 	 ** inode needs to reach disk for safety, and they can safely be
1646 	 ** ignored because the altered inode has already been logged.
1647 	 */
1648 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1649 		reiserfs_write_lock(inode->i_sb);
1650 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1651 			reiserfs_update_sd(&th, inode);
1652 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1653 		}
1654 		reiserfs_write_unlock(inode->i_sb);
1655 	}
1656 	return 0;
1657 }
1658 
1659 /* stat data of new object is inserted already, this inserts the item
1660    containing "." and ".." entries */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1661 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1662 				  struct inode *inode,
1663 				  struct item_head *ih, struct treepath *path,
1664 				  struct inode *dir)
1665 {
1666 	struct super_block *sb = th->t_super;
1667 	char empty_dir[EMPTY_DIR_SIZE];
1668 	char *body = empty_dir;
1669 	struct cpu_key key;
1670 	int retval;
1671 
1672 	BUG_ON(!th->t_trans_id);
1673 
1674 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1675 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1676 		      TYPE_DIRENTRY, 3 /*key length */ );
1677 
1678 	/* compose item head for new item. Directories consist of items of
1679 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1680 	   is done by reiserfs_new_inode */
1681 	if (old_format_only(sb)) {
1682 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1683 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1684 
1685 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1686 				       ih->ih_key.k_objectid,
1687 				       INODE_PKEY(dir)->k_dir_id,
1688 				       INODE_PKEY(dir)->k_objectid);
1689 	} else {
1690 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1691 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1692 
1693 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1694 				    ih->ih_key.k_objectid,
1695 				    INODE_PKEY(dir)->k_dir_id,
1696 				    INODE_PKEY(dir)->k_objectid);
1697 	}
1698 
1699 	/* look for place in the tree for new item */
1700 	retval = search_item(sb, &key, path);
1701 	if (retval == IO_ERROR) {
1702 		reiserfs_error(sb, "vs-13080",
1703 			       "i/o failure occurred creating new directory");
1704 		return -EIO;
1705 	}
1706 	if (retval == ITEM_FOUND) {
1707 		pathrelse(path);
1708 		reiserfs_warning(sb, "vs-13070",
1709 				 "object with this key exists (%k)",
1710 				 &(ih->ih_key));
1711 		return -EEXIST;
1712 	}
1713 
1714 	/* insert item, that is empty directory item */
1715 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1716 }
1717 
1718 /* stat data of object has been inserted, this inserts the item
1719    containing the body of symlink */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1720 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1721 				struct item_head *ih,
1722 				struct treepath *path, const char *symname,
1723 				int item_len)
1724 {
1725 	struct super_block *sb = th->t_super;
1726 	struct cpu_key key;
1727 	int retval;
1728 
1729 	BUG_ON(!th->t_trans_id);
1730 
1731 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1732 		      le32_to_cpu(ih->ih_key.k_dir_id),
1733 		      le32_to_cpu(ih->ih_key.k_objectid),
1734 		      1, TYPE_DIRECT, 3 /*key length */ );
1735 
1736 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1737 			  0 /*free_space */ );
1738 
1739 	/* look for place in the tree for new item */
1740 	retval = search_item(sb, &key, path);
1741 	if (retval == IO_ERROR) {
1742 		reiserfs_error(sb, "vs-13080",
1743 			       "i/o failure occurred creating new symlink");
1744 		return -EIO;
1745 	}
1746 	if (retval == ITEM_FOUND) {
1747 		pathrelse(path);
1748 		reiserfs_warning(sb, "vs-13080",
1749 				 "object with this key exists (%k)",
1750 				 &(ih->ih_key));
1751 		return -EEXIST;
1752 	}
1753 
1754 	/* insert item, that is body of symlink */
1755 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1756 }
1757 
1758 /* inserts the stat data into the tree, and then calls
1759    reiserfs_new_directory (to insert ".", ".." item if new object is
1760    directory) or reiserfs_new_symlink (to insert symlink body if new
1761    object is symlink) or nothing (if new object is regular file)
1762 
1763    NOTE! uid and gid must already be set in the inode.  If we return
1764    non-zero due to an error, we have to drop the quota previously allocated
1765    for the fresh inode.  This can only be done outside a transaction, so
1766    if we return non-zero, we also end the transaction.  */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1767 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1768 		       struct inode *dir, umode_t mode, const char *symname,
1769 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1770 		          strlen (symname) for symlinks) */
1771 		       loff_t i_size, struct dentry *dentry,
1772 		       struct inode *inode,
1773 		       struct reiserfs_security_handle *security)
1774 {
1775 	struct super_block *sb;
1776 	struct reiserfs_iget_args args;
1777 	INITIALIZE_PATH(path_to_key);
1778 	struct cpu_key key;
1779 	struct item_head ih;
1780 	struct stat_data sd;
1781 	int retval;
1782 	int err;
1783 
1784 	BUG_ON(!th->t_trans_id);
1785 
1786 	reiserfs_write_unlock(inode->i_sb);
1787 	err = dquot_alloc_inode(inode);
1788 	reiserfs_write_lock(inode->i_sb);
1789 	if (err)
1790 		goto out_end_trans;
1791 	if (!dir->i_nlink) {
1792 		err = -EPERM;
1793 		goto out_bad_inode;
1794 	}
1795 
1796 	sb = dir->i_sb;
1797 
1798 	/* item head of new item */
1799 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1800 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1801 	if (!ih.ih_key.k_objectid) {
1802 		err = -ENOMEM;
1803 		goto out_bad_inode;
1804 	}
1805 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1806 	if (old_format_only(sb))
1807 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1808 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1809 	else
1810 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1811 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1812 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1813 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1814 
1815 	reiserfs_write_unlock(inode->i_sb);
1816 	err = insert_inode_locked4(inode, args.objectid,
1817 			     reiserfs_find_actor, &args);
1818 	reiserfs_write_lock(inode->i_sb);
1819 	if (err) {
1820 		err = -EINVAL;
1821 		goto out_bad_inode;
1822 	}
1823 
1824 	if (old_format_only(sb))
1825 		/* not a perfect generation count, as object ids can be reused, but
1826 		 ** this is as good as reiserfs can do right now.
1827 		 ** note that the private part of inode isn't filled in yet, we have
1828 		 ** to use the directory.
1829 		 */
1830 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1831 	else
1832 #if defined( USE_INODE_GENERATION_COUNTER )
1833 		inode->i_generation =
1834 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1835 #else
1836 		inode->i_generation = ++event;
1837 #endif
1838 
1839 	/* fill stat data */
1840 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1841 
1842 	/* uid and gid must already be set by the caller for quota init */
1843 
1844 	/* symlink cannot be immutable or append only, right? */
1845 	if (S_ISLNK(inode->i_mode))
1846 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1847 
1848 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1849 	inode->i_size = i_size;
1850 	inode->i_blocks = 0;
1851 	inode->i_bytes = 0;
1852 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1853 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1854 
1855 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1856 	REISERFS_I(inode)->i_flags = 0;
1857 	REISERFS_I(inode)->i_prealloc_block = 0;
1858 	REISERFS_I(inode)->i_prealloc_count = 0;
1859 	REISERFS_I(inode)->i_trans_id = 0;
1860 	REISERFS_I(inode)->i_jl = NULL;
1861 	REISERFS_I(inode)->i_attrs =
1862 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1863 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1864 	reiserfs_init_xattr_rwsem(inode);
1865 
1866 	/* key to search for correct place for new stat data */
1867 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1868 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1869 		      TYPE_STAT_DATA, 3 /*key length */ );
1870 
1871 	/* find proper place for inserting of stat data */
1872 	retval = search_item(sb, &key, &path_to_key);
1873 	if (retval == IO_ERROR) {
1874 		err = -EIO;
1875 		goto out_bad_inode;
1876 	}
1877 	if (retval == ITEM_FOUND) {
1878 		pathrelse(&path_to_key);
1879 		err = -EEXIST;
1880 		goto out_bad_inode;
1881 	}
1882 	if (old_format_only(sb)) {
1883 		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1884 			pathrelse(&path_to_key);
1885 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1886 			err = -EINVAL;
1887 			goto out_bad_inode;
1888 		}
1889 		inode2sd_v1(&sd, inode, inode->i_size);
1890 	} else {
1891 		inode2sd(&sd, inode, inode->i_size);
1892 	}
1893 	// store in in-core inode the key of stat data and version all
1894 	// object items will have (directory items will have old offset
1895 	// format, other new objects will consist of new items)
1896 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1897 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1898 	else
1899 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1900 	if (old_format_only(sb))
1901 		set_inode_sd_version(inode, STAT_DATA_V1);
1902 	else
1903 		set_inode_sd_version(inode, STAT_DATA_V2);
1904 
1905 	/* insert the stat data into the tree */
1906 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1907 	if (REISERFS_I(dir)->new_packing_locality)
1908 		th->displace_new_blocks = 1;
1909 #endif
1910 	retval =
1911 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1912 				 (char *)(&sd));
1913 	if (retval) {
1914 		err = retval;
1915 		reiserfs_check_path(&path_to_key);
1916 		goto out_bad_inode;
1917 	}
1918 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1919 	if (!th->displace_new_blocks)
1920 		REISERFS_I(dir)->new_packing_locality = 0;
1921 #endif
1922 	if (S_ISDIR(mode)) {
1923 		/* insert item with "." and ".." */
1924 		retval =
1925 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1926 	}
1927 
1928 	if (S_ISLNK(mode)) {
1929 		/* insert body of symlink */
1930 		if (!old_format_only(sb))
1931 			i_size = ROUND_UP(i_size);
1932 		retval =
1933 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1934 					 i_size);
1935 	}
1936 	if (retval) {
1937 		err = retval;
1938 		reiserfs_check_path(&path_to_key);
1939 		journal_end(th, th->t_super, th->t_blocks_allocated);
1940 		goto out_inserted_sd;
1941 	}
1942 
1943 	if (reiserfs_posixacl(inode->i_sb)) {
1944 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1945 		if (retval) {
1946 			err = retval;
1947 			reiserfs_check_path(&path_to_key);
1948 			journal_end(th, th->t_super, th->t_blocks_allocated);
1949 			goto out_inserted_sd;
1950 		}
1951 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1952 		reiserfs_warning(inode->i_sb, "jdm-13090",
1953 				 "ACLs aren't enabled in the fs, "
1954 				 "but vfs thinks they are!");
1955 	} else if (IS_PRIVATE(dir))
1956 		inode->i_flags |= S_PRIVATE;
1957 
1958 	if (security->name) {
1959 		retval = reiserfs_security_write(th, inode, security);
1960 		if (retval) {
1961 			err = retval;
1962 			reiserfs_check_path(&path_to_key);
1963 			retval = journal_end(th, th->t_super,
1964 					     th->t_blocks_allocated);
1965 			if (retval)
1966 				err = retval;
1967 			goto out_inserted_sd;
1968 		}
1969 	}
1970 
1971 	reiserfs_update_sd(th, inode);
1972 	reiserfs_check_path(&path_to_key);
1973 
1974 	return 0;
1975 
1976 /* it looks like you can easily compress these two goto targets into
1977  * one.  Keeping it like this doesn't actually hurt anything, and they
1978  * are place holders for what the quota code actually needs.
1979  */
1980       out_bad_inode:
1981 	/* Invalidate the object, nothing was inserted yet */
1982 	INODE_PKEY(inode)->k_objectid = 0;
1983 
1984 	/* Quota change must be inside a transaction for journaling */
1985 	dquot_free_inode(inode);
1986 
1987       out_end_trans:
1988 	journal_end(th, th->t_super, th->t_blocks_allocated);
1989 	reiserfs_write_unlock(inode->i_sb);
1990 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1991 	dquot_drop(inode);
1992 	reiserfs_write_lock(inode->i_sb);
1993 	inode->i_flags |= S_NOQUOTA;
1994 	make_bad_inode(inode);
1995 
1996       out_inserted_sd:
1997 	clear_nlink(inode);
1998 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1999 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
2000 	iput(inode);
2001 	return err;
2002 }
2003 
2004 /*
2005 ** finds the tail page in the page cache,
2006 ** reads the last block in.
2007 **
2008 ** On success, page_result is set to a locked, pinned page, and bh_result
2009 ** is set to an up to date buffer for the last block in the file.  returns 0.
2010 **
2011 ** tail conversion is not done, so bh_result might not be valid for writing
2012 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2013 ** trying to write the block.
2014 **
2015 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2016 */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2017 static int grab_tail_page(struct inode *inode,
2018 			  struct page **page_result,
2019 			  struct buffer_head **bh_result)
2020 {
2021 
2022 	/* we want the page with the last byte in the file,
2023 	 ** not the page that will hold the next byte for appending
2024 	 */
2025 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2026 	unsigned long pos = 0;
2027 	unsigned long start = 0;
2028 	unsigned long blocksize = inode->i_sb->s_blocksize;
2029 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2030 	struct buffer_head *bh;
2031 	struct buffer_head *head;
2032 	struct page *page;
2033 	int error;
2034 
2035 	/* we know that we are only called with inode->i_size > 0.
2036 	 ** we also know that a file tail can never be as big as a block
2037 	 ** If i_size % blocksize == 0, our file is currently block aligned
2038 	 ** and it won't need converting or zeroing after a truncate.
2039 	 */
2040 	if ((offset & (blocksize - 1)) == 0) {
2041 		return -ENOENT;
2042 	}
2043 	page = grab_cache_page(inode->i_mapping, index);
2044 	error = -ENOMEM;
2045 	if (!page) {
2046 		goto out;
2047 	}
2048 	/* start within the page of the last block in the file */
2049 	start = (offset / blocksize) * blocksize;
2050 
2051 	error = __block_write_begin(page, start, offset - start,
2052 				    reiserfs_get_block_create_0);
2053 	if (error)
2054 		goto unlock;
2055 
2056 	head = page_buffers(page);
2057 	bh = head;
2058 	do {
2059 		if (pos >= start) {
2060 			break;
2061 		}
2062 		bh = bh->b_this_page;
2063 		pos += blocksize;
2064 	} while (bh != head);
2065 
2066 	if (!buffer_uptodate(bh)) {
2067 		/* note, this should never happen, prepare_write should
2068 		 ** be taking care of this for us.  If the buffer isn't up to date,
2069 		 ** I've screwed up the code to find the buffer, or the code to
2070 		 ** call prepare_write
2071 		 */
2072 		reiserfs_error(inode->i_sb, "clm-6000",
2073 			       "error reading block %lu", bh->b_blocknr);
2074 		error = -EIO;
2075 		goto unlock;
2076 	}
2077 	*bh_result = bh;
2078 	*page_result = page;
2079 
2080       out:
2081 	return error;
2082 
2083       unlock:
2084 	unlock_page(page);
2085 	page_cache_release(page);
2086 	return error;
2087 }
2088 
2089 /*
2090 ** vfs version of truncate file.  Must NOT be called with
2091 ** a transaction already started.
2092 **
2093 ** some code taken from block_truncate_page
2094 */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2095 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2096 {
2097 	struct reiserfs_transaction_handle th;
2098 	/* we want the offset for the first byte after the end of the file */
2099 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2100 	unsigned blocksize = inode->i_sb->s_blocksize;
2101 	unsigned length;
2102 	struct page *page = NULL;
2103 	int error;
2104 	struct buffer_head *bh = NULL;
2105 	int err2;
2106 	int lock_depth;
2107 
2108 	lock_depth = reiserfs_write_lock_once(inode->i_sb);
2109 
2110 	if (inode->i_size > 0) {
2111 		error = grab_tail_page(inode, &page, &bh);
2112 		if (error) {
2113 			// -ENOENT means we truncated past the end of the file,
2114 			// and get_block_create_0 could not find a block to read in,
2115 			// which is ok.
2116 			if (error != -ENOENT)
2117 				reiserfs_error(inode->i_sb, "clm-6001",
2118 					       "grab_tail_page failed %d",
2119 					       error);
2120 			page = NULL;
2121 			bh = NULL;
2122 		}
2123 	}
2124 
2125 	/* so, if page != NULL, we have a buffer head for the offset at
2126 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2127 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2128 	 ** and no zeroing is required on disk.  We zero after the truncate,
2129 	 ** because the truncate might pack the item anyway
2130 	 ** (it will unmap bh if it packs).
2131 	 */
2132 	/* it is enough to reserve space in transaction for 2 balancings:
2133 	   one for "save" link adding and another for the first
2134 	   cut_from_item. 1 is for update_sd */
2135 	error = journal_begin(&th, inode->i_sb,
2136 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2137 	if (error)
2138 		goto out;
2139 	reiserfs_update_inode_transaction(inode);
2140 	if (update_timestamps)
2141 		/* we are doing real truncate: if the system crashes before the last
2142 		   transaction of truncating gets committed - on reboot the file
2143 		   either appears truncated properly or not truncated at all */
2144 		add_save_link(&th, inode, 1);
2145 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2146 	error =
2147 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2148 	if (error)
2149 		goto out;
2150 
2151 	/* check reiserfs_do_truncate after ending the transaction */
2152 	if (err2) {
2153 		error = err2;
2154   		goto out;
2155 	}
2156 
2157 	if (update_timestamps) {
2158 		error = remove_save_link(inode, 1 /* truncate */);
2159 		if (error)
2160 			goto out;
2161 	}
2162 
2163 	if (page) {
2164 		length = offset & (blocksize - 1);
2165 		/* if we are not on a block boundary */
2166 		if (length) {
2167 			length = blocksize - length;
2168 			zero_user(page, offset, length);
2169 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2170 				mark_buffer_dirty(bh);
2171 			}
2172 		}
2173 		unlock_page(page);
2174 		page_cache_release(page);
2175 	}
2176 
2177 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2178 
2179 	return 0;
2180       out:
2181 	if (page) {
2182 		unlock_page(page);
2183 		page_cache_release(page);
2184 	}
2185 
2186 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2187 
2188 	return error;
2189 }
2190 
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2191 static int map_block_for_writepage(struct inode *inode,
2192 				   struct buffer_head *bh_result,
2193 				   unsigned long block)
2194 {
2195 	struct reiserfs_transaction_handle th;
2196 	int fs_gen;
2197 	struct item_head tmp_ih;
2198 	struct item_head *ih;
2199 	struct buffer_head *bh;
2200 	__le32 *item;
2201 	struct cpu_key key;
2202 	INITIALIZE_PATH(path);
2203 	int pos_in_item;
2204 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2205 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2206 	int retval;
2207 	int use_get_block = 0;
2208 	int bytes_copied = 0;
2209 	int copy_size;
2210 	int trans_running = 0;
2211 
2212 	/* catch places below that try to log something without starting a trans */
2213 	th.t_trans_id = 0;
2214 
2215 	if (!buffer_uptodate(bh_result)) {
2216 		return -EIO;
2217 	}
2218 
2219 	kmap(bh_result->b_page);
2220       start_over:
2221 	reiserfs_write_lock(inode->i_sb);
2222 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2223 
2224       research:
2225 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2226 	if (retval != POSITION_FOUND) {
2227 		use_get_block = 1;
2228 		goto out;
2229 	}
2230 
2231 	bh = get_last_bh(&path);
2232 	ih = get_ih(&path);
2233 	item = get_item(&path);
2234 	pos_in_item = path.pos_in_item;
2235 
2236 	/* we've found an unformatted node */
2237 	if (indirect_item_found(retval, ih)) {
2238 		if (bytes_copied > 0) {
2239 			reiserfs_warning(inode->i_sb, "clm-6002",
2240 					 "bytes_copied %d", bytes_copied);
2241 		}
2242 		if (!get_block_num(item, pos_in_item)) {
2243 			/* crap, we are writing to a hole */
2244 			use_get_block = 1;
2245 			goto out;
2246 		}
2247 		set_block_dev_mapped(bh_result,
2248 				     get_block_num(item, pos_in_item), inode);
2249 	} else if (is_direct_le_ih(ih)) {
2250 		char *p;
2251 		p = page_address(bh_result->b_page);
2252 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2253 		copy_size = ih_item_len(ih) - pos_in_item;
2254 
2255 		fs_gen = get_generation(inode->i_sb);
2256 		copy_item_head(&tmp_ih, ih);
2257 
2258 		if (!trans_running) {
2259 			/* vs-3050 is gone, no need to drop the path */
2260 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2261 			if (retval)
2262 				goto out;
2263 			reiserfs_update_inode_transaction(inode);
2264 			trans_running = 1;
2265 			if (fs_changed(fs_gen, inode->i_sb)
2266 			    && item_moved(&tmp_ih, &path)) {
2267 				reiserfs_restore_prepared_buffer(inode->i_sb,
2268 								 bh);
2269 				goto research;
2270 			}
2271 		}
2272 
2273 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2274 
2275 		if (fs_changed(fs_gen, inode->i_sb)
2276 		    && item_moved(&tmp_ih, &path)) {
2277 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2278 			goto research;
2279 		}
2280 
2281 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2282 		       copy_size);
2283 
2284 		journal_mark_dirty(&th, inode->i_sb, bh);
2285 		bytes_copied += copy_size;
2286 		set_block_dev_mapped(bh_result, 0, inode);
2287 
2288 		/* are there still bytes left? */
2289 		if (bytes_copied < bh_result->b_size &&
2290 		    (byte_offset + bytes_copied) < inode->i_size) {
2291 			set_cpu_key_k_offset(&key,
2292 					     cpu_key_k_offset(&key) +
2293 					     copy_size);
2294 			goto research;
2295 		}
2296 	} else {
2297 		reiserfs_warning(inode->i_sb, "clm-6003",
2298 				 "bad item inode %lu", inode->i_ino);
2299 		retval = -EIO;
2300 		goto out;
2301 	}
2302 	retval = 0;
2303 
2304       out:
2305 	pathrelse(&path);
2306 	if (trans_running) {
2307 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2308 		if (err)
2309 			retval = err;
2310 		trans_running = 0;
2311 	}
2312 	reiserfs_write_unlock(inode->i_sb);
2313 
2314 	/* this is where we fill in holes in the file. */
2315 	if (use_get_block) {
2316 		retval = reiserfs_get_block(inode, block, bh_result,
2317 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2318 					    | GET_BLOCK_NO_DANGLE);
2319 		if (!retval) {
2320 			if (!buffer_mapped(bh_result)
2321 			    || bh_result->b_blocknr == 0) {
2322 				/* get_block failed to find a mapped unformatted node. */
2323 				use_get_block = 0;
2324 				goto start_over;
2325 			}
2326 		}
2327 	}
2328 	kunmap(bh_result->b_page);
2329 
2330 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2331 		/* we've copied data from the page into the direct item, so the
2332 		 * buffer in the page is now clean, mark it to reflect that.
2333 		 */
2334 		lock_buffer(bh_result);
2335 		clear_buffer_dirty(bh_result);
2336 		unlock_buffer(bh_result);
2337 	}
2338 	return retval;
2339 }
2340 
2341 /*
2342  * mason@suse.com: updated in 2.5.54 to follow the same general io
2343  * start/recovery path as __block_write_full_page, along with special
2344  * code to handle reiserfs tails.
2345  */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2346 static int reiserfs_write_full_page(struct page *page,
2347 				    struct writeback_control *wbc)
2348 {
2349 	struct inode *inode = page->mapping->host;
2350 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2351 	int error = 0;
2352 	unsigned long block;
2353 	sector_t last_block;
2354 	struct buffer_head *head, *bh;
2355 	int partial = 0;
2356 	int nr = 0;
2357 	int checked = PageChecked(page);
2358 	struct reiserfs_transaction_handle th;
2359 	struct super_block *s = inode->i_sb;
2360 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2361 	th.t_trans_id = 0;
2362 
2363 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2364 	if (checked && (current->flags & PF_MEMALLOC)) {
2365 		redirty_page_for_writepage(wbc, page);
2366 		unlock_page(page);
2367 		return 0;
2368 	}
2369 
2370 	/* The page dirty bit is cleared before writepage is called, which
2371 	 * means we have to tell create_empty_buffers to make dirty buffers
2372 	 * The page really should be up to date at this point, so tossing
2373 	 * in the BH_Uptodate is just a sanity check.
2374 	 */
2375 	if (!page_has_buffers(page)) {
2376 		create_empty_buffers(page, s->s_blocksize,
2377 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2378 	}
2379 	head = page_buffers(page);
2380 
2381 	/* last page in the file, zero out any contents past the
2382 	 ** last byte in the file
2383 	 */
2384 	if (page->index >= end_index) {
2385 		unsigned last_offset;
2386 
2387 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2388 		/* no file contents in this page */
2389 		if (page->index >= end_index + 1 || !last_offset) {
2390 			unlock_page(page);
2391 			return 0;
2392 		}
2393 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2394 	}
2395 	bh = head;
2396 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2397 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2398 	/* first map all the buffers, logging any direct items we find */
2399 	do {
2400 		if (block > last_block) {
2401 			/*
2402 			 * This can happen when the block size is less than
2403 			 * the page size.  The corresponding bytes in the page
2404 			 * were zero filled above
2405 			 */
2406 			clear_buffer_dirty(bh);
2407 			set_buffer_uptodate(bh);
2408 		} else if ((checked || buffer_dirty(bh)) &&
2409 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2410 						       && bh->b_blocknr ==
2411 						       0))) {
2412 			/* not mapped yet, or it points to a direct item, search
2413 			 * the btree for the mapping info, and log any direct
2414 			 * items found
2415 			 */
2416 			if ((error = map_block_for_writepage(inode, bh, block))) {
2417 				goto fail;
2418 			}
2419 		}
2420 		bh = bh->b_this_page;
2421 		block++;
2422 	} while (bh != head);
2423 
2424 	/*
2425 	 * we start the transaction after map_block_for_writepage,
2426 	 * because it can create holes in the file (an unbounded operation).
2427 	 * starting it here, we can make a reliable estimate for how many
2428 	 * blocks we're going to log
2429 	 */
2430 	if (checked) {
2431 		ClearPageChecked(page);
2432 		reiserfs_write_lock(s);
2433 		error = journal_begin(&th, s, bh_per_page + 1);
2434 		if (error) {
2435 			reiserfs_write_unlock(s);
2436 			goto fail;
2437 		}
2438 		reiserfs_update_inode_transaction(inode);
2439 	}
2440 	/* now go through and lock any dirty buffers on the page */
2441 	do {
2442 		get_bh(bh);
2443 		if (!buffer_mapped(bh))
2444 			continue;
2445 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2446 			continue;
2447 
2448 		if (checked) {
2449 			reiserfs_prepare_for_journal(s, bh, 1);
2450 			journal_mark_dirty(&th, s, bh);
2451 			continue;
2452 		}
2453 		/* from this point on, we know the buffer is mapped to a
2454 		 * real block and not a direct item
2455 		 */
2456 		if (wbc->sync_mode != WB_SYNC_NONE) {
2457 			lock_buffer(bh);
2458 		} else {
2459 			if (!trylock_buffer(bh)) {
2460 				redirty_page_for_writepage(wbc, page);
2461 				continue;
2462 			}
2463 		}
2464 		if (test_clear_buffer_dirty(bh)) {
2465 			mark_buffer_async_write(bh);
2466 		} else {
2467 			unlock_buffer(bh);
2468 		}
2469 	} while ((bh = bh->b_this_page) != head);
2470 
2471 	if (checked) {
2472 		error = journal_end(&th, s, bh_per_page + 1);
2473 		reiserfs_write_unlock(s);
2474 		if (error)
2475 			goto fail;
2476 	}
2477 	BUG_ON(PageWriteback(page));
2478 	set_page_writeback(page);
2479 	unlock_page(page);
2480 
2481 	/*
2482 	 * since any buffer might be the only dirty buffer on the page,
2483 	 * the first submit_bh can bring the page out of writeback.
2484 	 * be careful with the buffers.
2485 	 */
2486 	do {
2487 		struct buffer_head *next = bh->b_this_page;
2488 		if (buffer_async_write(bh)) {
2489 			submit_bh(WRITE, bh);
2490 			nr++;
2491 		}
2492 		put_bh(bh);
2493 		bh = next;
2494 	} while (bh != head);
2495 
2496 	error = 0;
2497       done:
2498 	if (nr == 0) {
2499 		/*
2500 		 * if this page only had a direct item, it is very possible for
2501 		 * no io to be required without there being an error.  Or,
2502 		 * someone else could have locked them and sent them down the
2503 		 * pipe without locking the page
2504 		 */
2505 		bh = head;
2506 		do {
2507 			if (!buffer_uptodate(bh)) {
2508 				partial = 1;
2509 				break;
2510 			}
2511 			bh = bh->b_this_page;
2512 		} while (bh != head);
2513 		if (!partial)
2514 			SetPageUptodate(page);
2515 		end_page_writeback(page);
2516 	}
2517 	return error;
2518 
2519       fail:
2520 	/* catches various errors, we need to make sure any valid dirty blocks
2521 	 * get to the media.  The page is currently locked and not marked for
2522 	 * writeback
2523 	 */
2524 	ClearPageUptodate(page);
2525 	bh = head;
2526 	do {
2527 		get_bh(bh);
2528 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2529 			lock_buffer(bh);
2530 			mark_buffer_async_write(bh);
2531 		} else {
2532 			/*
2533 			 * clear any dirty bits that might have come from getting
2534 			 * attached to a dirty page
2535 			 */
2536 			clear_buffer_dirty(bh);
2537 		}
2538 		bh = bh->b_this_page;
2539 	} while (bh != head);
2540 	SetPageError(page);
2541 	BUG_ON(PageWriteback(page));
2542 	set_page_writeback(page);
2543 	unlock_page(page);
2544 	do {
2545 		struct buffer_head *next = bh->b_this_page;
2546 		if (buffer_async_write(bh)) {
2547 			clear_buffer_dirty(bh);
2548 			submit_bh(WRITE, bh);
2549 			nr++;
2550 		}
2551 		put_bh(bh);
2552 		bh = next;
2553 	} while (bh != head);
2554 	goto done;
2555 }
2556 
reiserfs_readpage(struct file * f,struct page * page)2557 static int reiserfs_readpage(struct file *f, struct page *page)
2558 {
2559 	return block_read_full_page(page, reiserfs_get_block);
2560 }
2561 
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2562 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2563 {
2564 	struct inode *inode = page->mapping->host;
2565 	reiserfs_wait_on_write_block(inode->i_sb);
2566 	return reiserfs_write_full_page(page, wbc);
2567 }
2568 
reiserfs_truncate_failed_write(struct inode * inode)2569 static void reiserfs_truncate_failed_write(struct inode *inode)
2570 {
2571 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2572 	reiserfs_truncate_file(inode, 0);
2573 }
2574 
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2575 static int reiserfs_write_begin(struct file *file,
2576 				struct address_space *mapping,
2577 				loff_t pos, unsigned len, unsigned flags,
2578 				struct page **pagep, void **fsdata)
2579 {
2580 	struct inode *inode;
2581 	struct page *page;
2582 	pgoff_t index;
2583 	int ret;
2584 	int old_ref = 0;
2585 
2586  	inode = mapping->host;
2587 	*fsdata = 0;
2588  	if (flags & AOP_FLAG_CONT_EXPAND &&
2589  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2590  		pos ++;
2591 		*fsdata = (void *)(unsigned long)flags;
2592 	}
2593 
2594 	index = pos >> PAGE_CACHE_SHIFT;
2595 	page = grab_cache_page_write_begin(mapping, index, flags);
2596 	if (!page)
2597 		return -ENOMEM;
2598 	*pagep = page;
2599 
2600 	reiserfs_wait_on_write_block(inode->i_sb);
2601 	fix_tail_page_for_writing(page);
2602 	if (reiserfs_transaction_running(inode->i_sb)) {
2603 		struct reiserfs_transaction_handle *th;
2604 		th = (struct reiserfs_transaction_handle *)current->
2605 		    journal_info;
2606 		BUG_ON(!th->t_refcount);
2607 		BUG_ON(!th->t_trans_id);
2608 		old_ref = th->t_refcount;
2609 		th->t_refcount++;
2610 	}
2611 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2612 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2613 		struct reiserfs_transaction_handle *th = current->journal_info;
2614 		/* this gets a little ugly.  If reiserfs_get_block returned an
2615 		 * error and left a transacstion running, we've got to close it,
2616 		 * and we've got to free handle if it was a persistent transaction.
2617 		 *
2618 		 * But, if we had nested into an existing transaction, we need
2619 		 * to just drop the ref count on the handle.
2620 		 *
2621 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2622 		 * and it was a persistent trans.  Otherwise, it was nested above.
2623 		 */
2624 		if (th->t_refcount > old_ref) {
2625 			if (old_ref)
2626 				th->t_refcount--;
2627 			else {
2628 				int err;
2629 				reiserfs_write_lock(inode->i_sb);
2630 				err = reiserfs_end_persistent_transaction(th);
2631 				reiserfs_write_unlock(inode->i_sb);
2632 				if (err)
2633 					ret = err;
2634 			}
2635 		}
2636 	}
2637 	if (ret) {
2638 		unlock_page(page);
2639 		page_cache_release(page);
2640 		/* Truncate allocated blocks */
2641 		reiserfs_truncate_failed_write(inode);
2642 	}
2643 	return ret;
2644 }
2645 
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2646 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2647 {
2648 	struct inode *inode = page->mapping->host;
2649 	int ret;
2650 	int old_ref = 0;
2651 
2652 	reiserfs_write_unlock(inode->i_sb);
2653 	reiserfs_wait_on_write_block(inode->i_sb);
2654 	reiserfs_write_lock(inode->i_sb);
2655 
2656 	fix_tail_page_for_writing(page);
2657 	if (reiserfs_transaction_running(inode->i_sb)) {
2658 		struct reiserfs_transaction_handle *th;
2659 		th = (struct reiserfs_transaction_handle *)current->
2660 		    journal_info;
2661 		BUG_ON(!th->t_refcount);
2662 		BUG_ON(!th->t_trans_id);
2663 		old_ref = th->t_refcount;
2664 		th->t_refcount++;
2665 	}
2666 
2667 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2668 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2669 		struct reiserfs_transaction_handle *th = current->journal_info;
2670 		/* this gets a little ugly.  If reiserfs_get_block returned an
2671 		 * error and left a transacstion running, we've got to close it,
2672 		 * and we've got to free handle if it was a persistent transaction.
2673 		 *
2674 		 * But, if we had nested into an existing transaction, we need
2675 		 * to just drop the ref count on the handle.
2676 		 *
2677 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2678 		 * and it was a persistent trans.  Otherwise, it was nested above.
2679 		 */
2680 		if (th->t_refcount > old_ref) {
2681 			if (old_ref)
2682 				th->t_refcount--;
2683 			else {
2684 				int err;
2685 				reiserfs_write_lock(inode->i_sb);
2686 				err = reiserfs_end_persistent_transaction(th);
2687 				reiserfs_write_unlock(inode->i_sb);
2688 				if (err)
2689 					ret = err;
2690 			}
2691 		}
2692 	}
2693 	return ret;
2694 
2695 }
2696 
reiserfs_aop_bmap(struct address_space * as,sector_t block)2697 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2698 {
2699 	return generic_block_bmap(as, block, reiserfs_bmap);
2700 }
2701 
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2702 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2703 			      loff_t pos, unsigned len, unsigned copied,
2704 			      struct page *page, void *fsdata)
2705 {
2706 	struct inode *inode = page->mapping->host;
2707 	int ret = 0;
2708 	int update_sd = 0;
2709 	struct reiserfs_transaction_handle *th;
2710 	unsigned start;
2711 	int lock_depth = 0;
2712 	bool locked = false;
2713 
2714 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2715 		pos ++;
2716 
2717 	reiserfs_wait_on_write_block(inode->i_sb);
2718 	if (reiserfs_transaction_running(inode->i_sb))
2719 		th = current->journal_info;
2720 	else
2721 		th = NULL;
2722 
2723 	start = pos & (PAGE_CACHE_SIZE - 1);
2724 	if (unlikely(copied < len)) {
2725 		if (!PageUptodate(page))
2726 			copied = 0;
2727 
2728 		page_zero_new_buffers(page, start + copied, start + len);
2729 	}
2730 	flush_dcache_page(page);
2731 
2732 	reiserfs_commit_page(inode, page, start, start + copied);
2733 
2734 	/* generic_commit_write does this for us, but does not update the
2735 	 ** transaction tracking stuff when the size changes.  So, we have
2736 	 ** to do the i_size updates here.
2737 	 */
2738 	if (pos + copied > inode->i_size) {
2739 		struct reiserfs_transaction_handle myth;
2740 		lock_depth = reiserfs_write_lock_once(inode->i_sb);
2741 		locked = true;
2742 		/* If the file have grown beyond the border where it
2743 		   can have a tail, unmark it as needing a tail
2744 		   packing */
2745 		if ((have_large_tails(inode->i_sb)
2746 		     && inode->i_size > i_block_size(inode) * 4)
2747 		    || (have_small_tails(inode->i_sb)
2748 			&& inode->i_size > i_block_size(inode)))
2749 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2750 
2751 		ret = journal_begin(&myth, inode->i_sb, 1);
2752 		if (ret)
2753 			goto journal_error;
2754 
2755 		reiserfs_update_inode_transaction(inode);
2756 		inode->i_size = pos + copied;
2757 		/*
2758 		 * this will just nest into our transaction.  It's important
2759 		 * to use mark_inode_dirty so the inode gets pushed around on the
2760 		 * dirty lists, and so that O_SYNC works as expected
2761 		 */
2762 		mark_inode_dirty(inode);
2763 		reiserfs_update_sd(&myth, inode);
2764 		update_sd = 1;
2765 		ret = journal_end(&myth, inode->i_sb, 1);
2766 		if (ret)
2767 			goto journal_error;
2768 	}
2769 	if (th) {
2770 		if (!locked) {
2771 			lock_depth = reiserfs_write_lock_once(inode->i_sb);
2772 			locked = true;
2773 		}
2774 		if (!update_sd)
2775 			mark_inode_dirty(inode);
2776 		ret = reiserfs_end_persistent_transaction(th);
2777 		if (ret)
2778 			goto out;
2779 	}
2780 
2781       out:
2782 	if (locked)
2783 		reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2784 	unlock_page(page);
2785 	page_cache_release(page);
2786 
2787 	if (pos + len > inode->i_size)
2788 		reiserfs_truncate_failed_write(inode);
2789 
2790 	return ret == 0 ? copied : ret;
2791 
2792       journal_error:
2793 	reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2794 	locked = false;
2795 	if (th) {
2796 		if (!update_sd)
2797 			reiserfs_update_sd(th, inode);
2798 		ret = reiserfs_end_persistent_transaction(th);
2799 	}
2800 	goto out;
2801 }
2802 
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2803 int reiserfs_commit_write(struct file *f, struct page *page,
2804 			  unsigned from, unsigned to)
2805 {
2806 	struct inode *inode = page->mapping->host;
2807 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2808 	int ret = 0;
2809 	int update_sd = 0;
2810 	struct reiserfs_transaction_handle *th = NULL;
2811 
2812 	reiserfs_write_unlock(inode->i_sb);
2813 	reiserfs_wait_on_write_block(inode->i_sb);
2814 	reiserfs_write_lock(inode->i_sb);
2815 
2816 	if (reiserfs_transaction_running(inode->i_sb)) {
2817 		th = current->journal_info;
2818 	}
2819 	reiserfs_commit_page(inode, page, from, to);
2820 
2821 	/* generic_commit_write does this for us, but does not update the
2822 	 ** transaction tracking stuff when the size changes.  So, we have
2823 	 ** to do the i_size updates here.
2824 	 */
2825 	if (pos > inode->i_size) {
2826 		struct reiserfs_transaction_handle myth;
2827 		/* If the file have grown beyond the border where it
2828 		   can have a tail, unmark it as needing a tail
2829 		   packing */
2830 		if ((have_large_tails(inode->i_sb)
2831 		     && inode->i_size > i_block_size(inode) * 4)
2832 		    || (have_small_tails(inode->i_sb)
2833 			&& inode->i_size > i_block_size(inode)))
2834 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2835 
2836 		ret = journal_begin(&myth, inode->i_sb, 1);
2837 		if (ret)
2838 			goto journal_error;
2839 
2840 		reiserfs_update_inode_transaction(inode);
2841 		inode->i_size = pos;
2842 		/*
2843 		 * this will just nest into our transaction.  It's important
2844 		 * to use mark_inode_dirty so the inode gets pushed around on the
2845 		 * dirty lists, and so that O_SYNC works as expected
2846 		 */
2847 		mark_inode_dirty(inode);
2848 		reiserfs_update_sd(&myth, inode);
2849 		update_sd = 1;
2850 		ret = journal_end(&myth, inode->i_sb, 1);
2851 		if (ret)
2852 			goto journal_error;
2853 	}
2854 	if (th) {
2855 		if (!update_sd)
2856 			mark_inode_dirty(inode);
2857 		ret = reiserfs_end_persistent_transaction(th);
2858 		if (ret)
2859 			goto out;
2860 	}
2861 
2862       out:
2863 	return ret;
2864 
2865       journal_error:
2866 	if (th) {
2867 		if (!update_sd)
2868 			reiserfs_update_sd(th, inode);
2869 		ret = reiserfs_end_persistent_transaction(th);
2870 	}
2871 
2872 	return ret;
2873 }
2874 
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)2875 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2876 {
2877 	if (reiserfs_attrs(inode->i_sb)) {
2878 		if (sd_attrs & REISERFS_SYNC_FL)
2879 			inode->i_flags |= S_SYNC;
2880 		else
2881 			inode->i_flags &= ~S_SYNC;
2882 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2883 			inode->i_flags |= S_IMMUTABLE;
2884 		else
2885 			inode->i_flags &= ~S_IMMUTABLE;
2886 		if (sd_attrs & REISERFS_APPEND_FL)
2887 			inode->i_flags |= S_APPEND;
2888 		else
2889 			inode->i_flags &= ~S_APPEND;
2890 		if (sd_attrs & REISERFS_NOATIME_FL)
2891 			inode->i_flags |= S_NOATIME;
2892 		else
2893 			inode->i_flags &= ~S_NOATIME;
2894 		if (sd_attrs & REISERFS_NOTAIL_FL)
2895 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2896 		else
2897 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2898 	}
2899 }
2900 
i_attrs_to_sd_attrs(struct inode * inode,__u16 * sd_attrs)2901 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2902 {
2903 	if (reiserfs_attrs(inode->i_sb)) {
2904 		if (inode->i_flags & S_IMMUTABLE)
2905 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2906 		else
2907 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2908 		if (inode->i_flags & S_SYNC)
2909 			*sd_attrs |= REISERFS_SYNC_FL;
2910 		else
2911 			*sd_attrs &= ~REISERFS_SYNC_FL;
2912 		if (inode->i_flags & S_NOATIME)
2913 			*sd_attrs |= REISERFS_NOATIME_FL;
2914 		else
2915 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2916 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2917 			*sd_attrs |= REISERFS_NOTAIL_FL;
2918 		else
2919 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2920 	}
2921 }
2922 
2923 /* decide if this buffer needs to stay around for data logging or ordered
2924 ** write purposes
2925 */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)2926 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2927 {
2928 	int ret = 1;
2929 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2930 
2931 	lock_buffer(bh);
2932 	spin_lock(&j->j_dirty_buffers_lock);
2933 	if (!buffer_mapped(bh)) {
2934 		goto free_jh;
2935 	}
2936 	/* the page is locked, and the only places that log a data buffer
2937 	 * also lock the page.
2938 	 */
2939 	if (reiserfs_file_data_log(inode)) {
2940 		/*
2941 		 * very conservative, leave the buffer pinned if
2942 		 * anyone might need it.
2943 		 */
2944 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2945 			ret = 0;
2946 		}
2947 	} else  if (buffer_dirty(bh)) {
2948 		struct reiserfs_journal_list *jl;
2949 		struct reiserfs_jh *jh = bh->b_private;
2950 
2951 		/* why is this safe?
2952 		 * reiserfs_setattr updates i_size in the on disk
2953 		 * stat data before allowing vmtruncate to be called.
2954 		 *
2955 		 * If buffer was put onto the ordered list for this
2956 		 * transaction, we know for sure either this transaction
2957 		 * or an older one already has updated i_size on disk,
2958 		 * and this ordered data won't be referenced in the file
2959 		 * if we crash.
2960 		 *
2961 		 * if the buffer was put onto the ordered list for an older
2962 		 * transaction, we need to leave it around
2963 		 */
2964 		if (jh && (jl = jh->jl)
2965 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2966 			ret = 0;
2967 	}
2968       free_jh:
2969 	if (ret && bh->b_private) {
2970 		reiserfs_free_jh(bh);
2971 	}
2972 	spin_unlock(&j->j_dirty_buffers_lock);
2973 	unlock_buffer(bh);
2974 	return ret;
2975 }
2976 
2977 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2978 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
2979 				    unsigned int length)
2980 {
2981 	struct buffer_head *head, *bh, *next;
2982 	struct inode *inode = page->mapping->host;
2983 	unsigned int curr_off = 0;
2984 	int ret = 1;
2985 
2986 	BUG_ON(!PageLocked(page));
2987 
2988 	if (offset == 0)
2989 		ClearPageChecked(page);
2990 
2991 	if (!page_has_buffers(page))
2992 		goto out;
2993 
2994 	head = page_buffers(page);
2995 	bh = head;
2996 	do {
2997 		unsigned int next_off = curr_off + bh->b_size;
2998 		next = bh->b_this_page;
2999 
3000 		/*
3001 		 * is this block fully invalidated?
3002 		 */
3003 		if (offset <= curr_off) {
3004 			if (invalidatepage_can_drop(inode, bh))
3005 				reiserfs_unmap_buffer(bh);
3006 			else
3007 				ret = 0;
3008 		}
3009 		curr_off = next_off;
3010 		bh = next;
3011 	} while (bh != head);
3012 
3013 	/*
3014 	 * We release buffers only if the entire page is being invalidated.
3015 	 * The get_block cached value has been unconditionally invalidated,
3016 	 * so real IO is not possible anymore.
3017 	 */
3018 	if (!offset && ret) {
3019 		ret = try_to_release_page(page, 0);
3020 		/* maybe should BUG_ON(!ret); - neilb */
3021 	}
3022       out:
3023 	return;
3024 }
3025 
reiserfs_set_page_dirty(struct page * page)3026 static int reiserfs_set_page_dirty(struct page *page)
3027 {
3028 	struct inode *inode = page->mapping->host;
3029 	if (reiserfs_file_data_log(inode)) {
3030 		SetPageChecked(page);
3031 		return __set_page_dirty_nobuffers(page);
3032 	}
3033 	return __set_page_dirty_buffers(page);
3034 }
3035 
3036 /*
3037  * Returns 1 if the page's buffers were dropped.  The page is locked.
3038  *
3039  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3040  * in the buffers at page_buffers(page).
3041  *
3042  * even in -o notail mode, we can't be sure an old mount without -o notail
3043  * didn't create files with tails.
3044  */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3045 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3046 {
3047 	struct inode *inode = page->mapping->host;
3048 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3049 	struct buffer_head *head;
3050 	struct buffer_head *bh;
3051 	int ret = 1;
3052 
3053 	WARN_ON(PageChecked(page));
3054 	spin_lock(&j->j_dirty_buffers_lock);
3055 	head = page_buffers(page);
3056 	bh = head;
3057 	do {
3058 		if (bh->b_private) {
3059 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3060 				reiserfs_free_jh(bh);
3061 			} else {
3062 				ret = 0;
3063 				break;
3064 			}
3065 		}
3066 		bh = bh->b_this_page;
3067 	} while (bh != head);
3068 	if (ret)
3069 		ret = try_to_free_buffers(page);
3070 	spin_unlock(&j->j_dirty_buffers_lock);
3071 	return ret;
3072 }
3073 
3074 /* We thank Mingming Cao for helping us understand in great detail what
3075    to do in this section of the code. */
reiserfs_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3076 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3077 				  const struct iovec *iov, loff_t offset,
3078 				  unsigned long nr_segs)
3079 {
3080 	struct file *file = iocb->ki_filp;
3081 	struct inode *inode = file->f_mapping->host;
3082 	ssize_t ret;
3083 
3084 	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3085 				  reiserfs_get_blocks_direct_io);
3086 
3087 	/*
3088 	 * In case of error extending write may have instantiated a few
3089 	 * blocks outside i_size. Trim these off again.
3090 	 */
3091 	if (unlikely((rw & WRITE) && ret < 0)) {
3092 		loff_t isize = i_size_read(inode);
3093 		loff_t end = offset + iov_length(iov, nr_segs);
3094 
3095 		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3096 			truncate_setsize(inode, isize);
3097 			reiserfs_vfs_truncate_file(inode);
3098 		}
3099 	}
3100 
3101 	return ret;
3102 }
3103 
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3104 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3105 {
3106 	struct inode *inode = dentry->d_inode;
3107 	unsigned int ia_valid;
3108 	int depth;
3109 	int error;
3110 
3111 	error = inode_change_ok(inode, attr);
3112 	if (error)
3113 		return error;
3114 
3115 	/* must be turned off for recursive notify_change calls */
3116 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3117 
3118 	if (is_quota_modification(inode, attr))
3119 		dquot_initialize(inode);
3120 	depth = reiserfs_write_lock_once(inode->i_sb);
3121 	if (attr->ia_valid & ATTR_SIZE) {
3122 		/* version 2 items will be caught by the s_maxbytes check
3123 		 ** done for us in vmtruncate
3124 		 */
3125 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3126 		    attr->ia_size > MAX_NON_LFS) {
3127 			error = -EFBIG;
3128 			goto out;
3129 		}
3130 
3131 		inode_dio_wait(inode);
3132 
3133 		/* fill in hole pointers in the expanding truncate case. */
3134 		if (attr->ia_size > inode->i_size) {
3135 			error = generic_cont_expand_simple(inode, attr->ia_size);
3136 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3137 				int err;
3138 				struct reiserfs_transaction_handle th;
3139 				/* we're changing at most 2 bitmaps, inode + super */
3140 				err = journal_begin(&th, inode->i_sb, 4);
3141 				if (!err) {
3142 					reiserfs_discard_prealloc(&th, inode);
3143 					err = journal_end(&th, inode->i_sb, 4);
3144 				}
3145 				if (err)
3146 					error = err;
3147 			}
3148 			if (error)
3149 				goto out;
3150 			/*
3151 			 * file size is changed, ctime and mtime are
3152 			 * to be updated
3153 			 */
3154 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3155 		}
3156 	}
3157 
3158 	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3159 	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3160 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3161 		/* stat data of format v3.5 has 16 bit uid and gid */
3162 		error = -EINVAL;
3163 		goto out;
3164 	}
3165 
3166 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3167 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3168 		struct reiserfs_transaction_handle th;
3169 		int jbegin_count =
3170 		    2 *
3171 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3172 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3173 		    2;
3174 
3175 		error = reiserfs_chown_xattrs(inode, attr);
3176 
3177 		if (error)
3178 			return error;
3179 
3180 		/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3181 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3182 		if (error)
3183 			goto out;
3184 		reiserfs_write_unlock_once(inode->i_sb, depth);
3185 		error = dquot_transfer(inode, attr);
3186 		depth = reiserfs_write_lock_once(inode->i_sb);
3187 		if (error) {
3188 			journal_end(&th, inode->i_sb, jbegin_count);
3189 			goto out;
3190 		}
3191 
3192 		/* Update corresponding info in inode so that everything is in
3193 		 * one transaction */
3194 		if (attr->ia_valid & ATTR_UID)
3195 			inode->i_uid = attr->ia_uid;
3196 		if (attr->ia_valid & ATTR_GID)
3197 			inode->i_gid = attr->ia_gid;
3198 		mark_inode_dirty(inode);
3199 		error = journal_end(&th, inode->i_sb, jbegin_count);
3200 		if (error)
3201 			goto out;
3202 	}
3203 
3204 	/*
3205 	 * Relax the lock here, as it might truncate the
3206 	 * inode pages and wait for inode pages locks.
3207 	 * To release such page lock, the owner needs the
3208 	 * reiserfs lock
3209 	 */
3210 	reiserfs_write_unlock_once(inode->i_sb, depth);
3211 	if ((attr->ia_valid & ATTR_SIZE) &&
3212 	    attr->ia_size != i_size_read(inode)) {
3213 		error = inode_newsize_ok(inode, attr->ia_size);
3214 		if (!error) {
3215 			truncate_setsize(inode, attr->ia_size);
3216 			reiserfs_vfs_truncate_file(inode);
3217 		}
3218 	}
3219 
3220 	if (!error) {
3221 		setattr_copy(inode, attr);
3222 		mark_inode_dirty(inode);
3223 	}
3224 	depth = reiserfs_write_lock_once(inode->i_sb);
3225 
3226 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3227 		if (attr->ia_valid & ATTR_MODE)
3228 			error = reiserfs_acl_chmod(inode);
3229 	}
3230 
3231       out:
3232 	reiserfs_write_unlock_once(inode->i_sb, depth);
3233 
3234 	return error;
3235 }
3236 
3237 const struct address_space_operations reiserfs_address_space_operations = {
3238 	.writepage = reiserfs_writepage,
3239 	.readpage = reiserfs_readpage,
3240 	.readpages = reiserfs_readpages,
3241 	.releasepage = reiserfs_releasepage,
3242 	.invalidatepage = reiserfs_invalidatepage,
3243 	.write_begin = reiserfs_write_begin,
3244 	.write_end = reiserfs_write_end,
3245 	.bmap = reiserfs_aop_bmap,
3246 	.direct_IO = reiserfs_direct_IO,
3247 	.set_page_dirty = reiserfs_set_page_dirty,
3248 };
3249