• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>	/* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27 
28 #include <asm/local.h>
29 
30 static void update_pages_handler(struct work_struct *work);
31 
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
ring_buffer_print_entry_header(struct trace_seq * s)35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 	int ret;
38 
39 	ret = trace_seq_printf(s, "# compressed entry header\n");
40 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
41 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
42 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
43 	ret = trace_seq_printf(s, "\n");
44 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45 			       RINGBUF_TYPE_PADDING);
46 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 			       RINGBUF_TYPE_TIME_EXTEND);
48 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50 
51 	return ret;
52 }
53 
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121 
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139 
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150 
151 enum {
152 	RB_BUFFERS_ON_BIT	= 0,
153 	RB_BUFFERS_DISABLED_BIT	= 1,
154 };
155 
156 enum {
157 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
158 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160 
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162 
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF		(1 << 20)
165 
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167 
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
tracing_off_permanent(void)174 void tracing_off_permanent(void)
175 {
176 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178 
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT		4U
181 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
183 
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT	0
186 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT	1
189 # define RB_ARCH_ALIGNMENT		8U
190 #endif
191 
192 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
193 
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196 
197 enum {
198 	RB_LEN_TIME_EXTEND = 8,
199 	RB_LEN_TIME_STAMP = 16,
200 };
201 
202 #define skip_time_extend(event) \
203 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204 
rb_null_event(struct ring_buffer_event * event)205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209 
rb_event_set_padding(struct ring_buffer_event * event)210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 	/* padding has a NULL time_delta */
213 	event->type_len = RINGBUF_TYPE_PADDING;
214 	event->time_delta = 0;
215 }
216 
217 static unsigned
rb_event_data_length(struct ring_buffer_event * event)218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 	unsigned length;
221 
222 	if (event->type_len)
223 		length = event->type_len * RB_ALIGNMENT;
224 	else
225 		length = event->array[0];
226 	return length + RB_EVNT_HDR_SIZE;
227 }
228 
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
rb_event_length(struct ring_buffer_event * event)235 rb_event_length(struct ring_buffer_event *event)
236 {
237 	switch (event->type_len) {
238 	case RINGBUF_TYPE_PADDING:
239 		if (rb_null_event(event))
240 			/* undefined */
241 			return -1;
242 		return  event->array[0] + RB_EVNT_HDR_SIZE;
243 
244 	case RINGBUF_TYPE_TIME_EXTEND:
245 		return RB_LEN_TIME_EXTEND;
246 
247 	case RINGBUF_TYPE_TIME_STAMP:
248 		return RB_LEN_TIME_STAMP;
249 
250 	case RINGBUF_TYPE_DATA:
251 		return rb_event_data_length(event);
252 	default:
253 		BUG();
254 	}
255 	/* not hit */
256 	return 0;
257 }
258 
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 	unsigned len = 0;
267 
268 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 		/* time extends include the data event after it */
270 		len = RB_LEN_TIME_EXTEND;
271 		event = skip_time_extend(event);
272 	}
273 	return len + rb_event_length(event);
274 }
275 
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
ring_buffer_event_length(struct ring_buffer_event * event)286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 	unsigned length;
289 
290 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 		event = skip_time_extend(event);
292 
293 	length = rb_event_length(event);
294 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 		return length;
296 	length -= RB_EVNT_HDR_SIZE;
297 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299 	return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302 
303 /* inline for ring buffer fast paths */
304 static void *
rb_event_data(struct ring_buffer_event * event)305 rb_event_data(struct ring_buffer_event *event)
306 {
307 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 		event = skip_time_extend(event);
309 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 	/* If length is in len field, then array[0] has the data */
311 	if (event->type_len)
312 		return (void *)&event->array[0];
313 	/* Otherwise length is in array[0] and array[1] has the data */
314 	return (void *)&event->array[1];
315 }
316 
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
ring_buffer_event_data(struct ring_buffer_event * event)321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 	return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326 
327 #define for_each_buffer_cpu(buffer, cpu)		\
328 	for_each_cpu(cpu, buffer->cpumask)
329 
330 #define TS_SHIFT	27
331 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST	(~TS_MASK)
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 struct buffer_data_page {
340 	u64		 time_stamp;	/* page time stamp */
341 	local_t		 commit;	/* write committed index */
342 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
343 };
344 
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354 	struct list_head list;		/* list of buffer pages */
355 	local_t		 write;		/* index for next write */
356 	unsigned	 read;		/* index for next read */
357 	local_t		 entries;	/* entries on this page */
358 	unsigned long	 real_end;	/* real end of data */
359 	struct buffer_data_page *page;	/* Actual data page */
360 };
361 
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK		0xfffff
375 #define RB_WRITE_INTCNT		(1 << 20)
376 
rb_init_page(struct buffer_data_page * bpage)377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 	local_set(&bpage->commit, 0);
380 }
381 
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
ring_buffer_page_len(void * page)388 size_t ring_buffer_page_len(void *page)
389 {
390 	return local_read(&((struct buffer_data_page *)page)->commit)
391 		+ BUF_PAGE_HDR_SIZE;
392 }
393 
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
free_buffer_page(struct buffer_page * bpage)398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 	free_page((unsigned long)bpage->page);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
test_time_stamp(u64 delta)407 static inline int test_time_stamp(u64 delta)
408 {
409 	if (delta & TS_DELTA_TEST)
410 		return 1;
411 	return 0;
412 }
413 
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415 
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418 
ring_buffer_print_page_header(struct trace_seq * s)419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 	struct buffer_data_page field;
422 	int ret;
423 
424 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
426 			       (unsigned int)sizeof(field.time_stamp),
427 			       (unsigned int)is_signed_type(u64));
428 
429 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       (unsigned int)sizeof(field.commit),
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), commit),
438 			       1,
439 			       (unsigned int)is_signed_type(long));
440 
441 	ret = trace_seq_printf(s, "\tfield: char data;\t"
442 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 			       (unsigned int)offsetof(typeof(field), data),
444 			       (unsigned int)BUF_PAGE_SIZE,
445 			       (unsigned int)is_signed_type(char));
446 
447 	return ret;
448 }
449 
450 struct rb_irq_work {
451 	struct irq_work			work;
452 	wait_queue_head_t		waiters;
453 	bool				waiters_pending;
454 };
455 
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460 	int				cpu;
461 	atomic_t			record_disabled;
462 	struct ring_buffer		*buffer;
463 	raw_spinlock_t			reader_lock;	/* serialize readers */
464 	arch_spinlock_t			lock;
465 	struct lock_class_key		lock_key;
466 	unsigned int			nr_pages;
467 	struct list_head		*pages;
468 	struct buffer_page		*head_page;	/* read from head */
469 	struct buffer_page		*tail_page;	/* write to tail */
470 	struct buffer_page		*commit_page;	/* committed pages */
471 	struct buffer_page		*reader_page;
472 	unsigned long			lost_events;
473 	unsigned long			last_overrun;
474 	local_t				entries_bytes;
475 	local_t				entries;
476 	local_t				overrun;
477 	local_t				commit_overrun;
478 	local_t				dropped_events;
479 	local_t				committing;
480 	local_t				commits;
481 	unsigned long			read;
482 	unsigned long			read_bytes;
483 	u64				write_stamp;
484 	u64				read_stamp;
485 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
486 	int				nr_pages_to_update;
487 	struct list_head		new_pages; /* new pages to add */
488 	struct work_struct		update_pages_work;
489 	struct completion		update_done;
490 
491 	struct rb_irq_work		irq_work;
492 };
493 
494 struct ring_buffer {
495 	unsigned			flags;
496 	int				cpus;
497 	atomic_t			record_disabled;
498 	atomic_t			resize_disabled;
499 	cpumask_var_t			cpumask;
500 
501 	struct lock_class_key		*reader_lock_key;
502 
503 	struct mutex			mutex;
504 
505 	struct ring_buffer_per_cpu	**buffers;
506 
507 #ifdef CONFIG_HOTPLUG_CPU
508 	struct notifier_block		cpu_notify;
509 #endif
510 	u64				(*clock)(void);
511 
512 	struct rb_irq_work		irq_work;
513 };
514 
515 struct ring_buffer_iter {
516 	struct ring_buffer_per_cpu	*cpu_buffer;
517 	unsigned long			head;
518 	struct buffer_page		*head_page;
519 	struct buffer_page		*cache_reader_page;
520 	unsigned long			cache_read;
521 	u64				read_stamp;
522 };
523 
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
rb_wake_up_waiters(struct irq_work * work)530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533 
534 	wake_up_all(&rbwork->waiters);
535 }
536 
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
ring_buffer_wait(struct ring_buffer * buffer,int cpu)546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 	struct ring_buffer_per_cpu *cpu_buffer;
549 	DEFINE_WAIT(wait);
550 	struct rb_irq_work *work;
551 
552 	/*
553 	 * Depending on what the caller is waiting for, either any
554 	 * data in any cpu buffer, or a specific buffer, put the
555 	 * caller on the appropriate wait queue.
556 	 */
557 	if (cpu == RING_BUFFER_ALL_CPUS)
558 		work = &buffer->irq_work;
559 	else {
560 		cpu_buffer = buffer->buffers[cpu];
561 		work = &cpu_buffer->irq_work;
562 	}
563 
564 
565 	prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566 
567 	/*
568 	 * The events can happen in critical sections where
569 	 * checking a work queue can cause deadlocks.
570 	 * After adding a task to the queue, this flag is set
571 	 * only to notify events to try to wake up the queue
572 	 * using irq_work.
573 	 *
574 	 * We don't clear it even if the buffer is no longer
575 	 * empty. The flag only causes the next event to run
576 	 * irq_work to do the work queue wake up. The worse
577 	 * that can happen if we race with !trace_empty() is that
578 	 * an event will cause an irq_work to try to wake up
579 	 * an empty queue.
580 	 *
581 	 * There's no reason to protect this flag either, as
582 	 * the work queue and irq_work logic will do the necessary
583 	 * synchronization for the wake ups. The only thing
584 	 * that is necessary is that the wake up happens after
585 	 * a task has been queued. It's OK for spurious wake ups.
586 	 */
587 	work->waiters_pending = true;
588 
589 	if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 	    (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 		schedule();
592 
593 	finish_wait(&work->waiters, &wait);
594 }
595 
596 /**
597  * ring_buffer_poll_wait - poll on buffer input
598  * @buffer: buffer to wait on
599  * @cpu: the cpu buffer to wait on
600  * @filp: the file descriptor
601  * @poll_table: The poll descriptor
602  *
603  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604  * as data is added to any of the @buffer's cpu buffers. Otherwise
605  * it will wait for data to be added to a specific cpu buffer.
606  *
607  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608  * zero otherwise.
609  */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 			  struct file *filp, poll_table *poll_table)
612 {
613 	struct ring_buffer_per_cpu *cpu_buffer;
614 	struct rb_irq_work *work;
615 
616 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 		return POLLIN | POLLRDNORM;
619 
620 	if (cpu == RING_BUFFER_ALL_CPUS)
621 		work = &buffer->irq_work;
622 	else {
623 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 			return -EINVAL;
625 
626 		cpu_buffer = buffer->buffers[cpu];
627 		work = &cpu_buffer->irq_work;
628 	}
629 
630 	work->waiters_pending = true;
631 	poll_wait(filp, &work->waiters, poll_table);
632 
633 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 		return POLLIN | POLLRDNORM;
636 	return 0;
637 }
638 
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond)						\
641 	({								\
642 		int _____ret = unlikely(cond);				\
643 		if (_____ret) {						\
644 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 				struct ring_buffer_per_cpu *__b =	\
646 					(void *)b;			\
647 				atomic_inc(&__b->buffer->record_disabled); \
648 			} else						\
649 				atomic_inc(&b->record_disabled);	\
650 			WARN_ON(1);					\
651 		}							\
652 		_____ret;						\
653 	})
654 
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657 
rb_time_stamp(struct ring_buffer * buffer)658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660 	/* shift to debug/test normalization and TIME_EXTENTS */
661 	return buffer->clock() << DEBUG_SHIFT;
662 }
663 
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666 	u64 time;
667 
668 	preempt_disable_notrace();
669 	time = rb_time_stamp(buffer);
670 	preempt_enable_no_resched_notrace();
671 
672 	return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675 
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 				      int cpu, u64 *ts)
678 {
679 	/* Just stupid testing the normalize function and deltas */
680 	*ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683 
684 /*
685  * Making the ring buffer lockless makes things tricky.
686  * Although writes only happen on the CPU that they are on,
687  * and they only need to worry about interrupts. Reads can
688  * happen on any CPU.
689  *
690  * The reader page is always off the ring buffer, but when the
691  * reader finishes with a page, it needs to swap its page with
692  * a new one from the buffer. The reader needs to take from
693  * the head (writes go to the tail). But if a writer is in overwrite
694  * mode and wraps, it must push the head page forward.
695  *
696  * Here lies the problem.
697  *
698  * The reader must be careful to replace only the head page, and
699  * not another one. As described at the top of the file in the
700  * ASCII art, the reader sets its old page to point to the next
701  * page after head. It then sets the page after head to point to
702  * the old reader page. But if the writer moves the head page
703  * during this operation, the reader could end up with the tail.
704  *
705  * We use cmpxchg to help prevent this race. We also do something
706  * special with the page before head. We set the LSB to 1.
707  *
708  * When the writer must push the page forward, it will clear the
709  * bit that points to the head page, move the head, and then set
710  * the bit that points to the new head page.
711  *
712  * We also don't want an interrupt coming in and moving the head
713  * page on another writer. Thus we use the second LSB to catch
714  * that too. Thus:
715  *
716  * head->list->prev->next        bit 1          bit 0
717  *                              -------        -------
718  * Normal page                     0              0
719  * Points to head page             0              1
720  * New head page                   1              0
721  *
722  * Note we can not trust the prev pointer of the head page, because:
723  *
724  * +----+       +-----+        +-----+
725  * |    |------>|  T  |---X--->|  N  |
726  * |    |<------|     |        |     |
727  * +----+       +-----+        +-----+
728  *   ^                           ^ |
729  *   |          +-----+          | |
730  *   +----------|  R  |----------+ |
731  *              |     |<-----------+
732  *              +-----+
733  *
734  * Key:  ---X-->  HEAD flag set in pointer
735  *         T      Tail page
736  *         R      Reader page
737  *         N      Next page
738  *
739  * (see __rb_reserve_next() to see where this happens)
740  *
741  *  What the above shows is that the reader just swapped out
742  *  the reader page with a page in the buffer, but before it
743  *  could make the new header point back to the new page added
744  *  it was preempted by a writer. The writer moved forward onto
745  *  the new page added by the reader and is about to move forward
746  *  again.
747  *
748  *  You can see, it is legitimate for the previous pointer of
749  *  the head (or any page) not to point back to itself. But only
750  *  temporarially.
751  */
752 
753 #define RB_PAGE_NORMAL		0UL
754 #define RB_PAGE_HEAD		1UL
755 #define RB_PAGE_UPDATE		2UL
756 
757 
758 #define RB_FLAG_MASK		3UL
759 
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED		4UL
762 
763 /*
764  * rb_list_head - remove any bit
765  */
rb_list_head(struct list_head * list)766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768 	unsigned long val = (unsigned long)list;
769 
770 	return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772 
773 /*
774  * rb_is_head_page - test if the given page is the head page
775  *
776  * Because the reader may move the head_page pointer, we can
777  * not trust what the head page is (it may be pointing to
778  * the reader page). But if the next page is a header page,
779  * its flags will be non zero.
780  */
781 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 		struct buffer_page *page, struct list_head *list)
784 {
785 	unsigned long val;
786 
787 	val = (unsigned long)list->next;
788 
789 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 		return RB_PAGE_MOVED;
791 
792 	return val & RB_FLAG_MASK;
793 }
794 
795 /*
796  * rb_is_reader_page
797  *
798  * The unique thing about the reader page, is that, if the
799  * writer is ever on it, the previous pointer never points
800  * back to the reader page.
801  */
rb_is_reader_page(struct buffer_page * page)802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804 	struct list_head *list = page->list.prev;
805 
806 	return rb_list_head(list->next) != &page->list;
807 }
808 
809 /*
810  * rb_set_list_to_head - set a list_head to be pointing to head.
811  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 				struct list_head *list)
814 {
815 	unsigned long *ptr;
816 
817 	ptr = (unsigned long *)&list->next;
818 	*ptr |= RB_PAGE_HEAD;
819 	*ptr &= ~RB_PAGE_UPDATE;
820 }
821 
822 /*
823  * rb_head_page_activate - sets up head page
824  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827 	struct buffer_page *head;
828 
829 	head = cpu_buffer->head_page;
830 	if (!head)
831 		return;
832 
833 	/*
834 	 * Set the previous list pointer to have the HEAD flag.
835 	 */
836 	rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838 
rb_list_head_clear(struct list_head * list)839 static void rb_list_head_clear(struct list_head *list)
840 {
841 	unsigned long *ptr = (unsigned long *)&list->next;
842 
843 	*ptr &= ~RB_FLAG_MASK;
844 }
845 
846 /*
847  * rb_head_page_dactivate - clears head page ptr (for free list)
848  */
849 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852 	struct list_head *hd;
853 
854 	/* Go through the whole list and clear any pointers found. */
855 	rb_list_head_clear(cpu_buffer->pages);
856 
857 	list_for_each(hd, cpu_buffer->pages)
858 		rb_list_head_clear(hd);
859 }
860 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 			    struct buffer_page *head,
863 			    struct buffer_page *prev,
864 			    int old_flag, int new_flag)
865 {
866 	struct list_head *list;
867 	unsigned long val = (unsigned long)&head->list;
868 	unsigned long ret;
869 
870 	list = &prev->list;
871 
872 	val &= ~RB_FLAG_MASK;
873 
874 	ret = cmpxchg((unsigned long *)&list->next,
875 		      val | old_flag, val | new_flag);
876 
877 	/* check if the reader took the page */
878 	if ((ret & ~RB_FLAG_MASK) != val)
879 		return RB_PAGE_MOVED;
880 
881 	return ret & RB_FLAG_MASK;
882 }
883 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 				   struct buffer_page *head,
886 				   struct buffer_page *prev,
887 				   int old_flag)
888 {
889 	return rb_head_page_set(cpu_buffer, head, prev,
890 				old_flag, RB_PAGE_UPDATE);
891 }
892 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 				 struct buffer_page *head,
895 				 struct buffer_page *prev,
896 				 int old_flag)
897 {
898 	return rb_head_page_set(cpu_buffer, head, prev,
899 				old_flag, RB_PAGE_HEAD);
900 }
901 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 				   struct buffer_page *head,
904 				   struct buffer_page *prev,
905 				   int old_flag)
906 {
907 	return rb_head_page_set(cpu_buffer, head, prev,
908 				old_flag, RB_PAGE_NORMAL);
909 }
910 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 			       struct buffer_page **bpage)
913 {
914 	struct list_head *p = rb_list_head((*bpage)->list.next);
915 
916 	*bpage = list_entry(p, struct buffer_page, list);
917 }
918 
919 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 	struct buffer_page *head;
923 	struct buffer_page *page;
924 	struct list_head *list;
925 	int i;
926 
927 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 		return NULL;
929 
930 	/* sanity check */
931 	list = cpu_buffer->pages;
932 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 		return NULL;
934 
935 	page = head = cpu_buffer->head_page;
936 	/*
937 	 * It is possible that the writer moves the header behind
938 	 * where we started, and we miss in one loop.
939 	 * A second loop should grab the header, but we'll do
940 	 * three loops just because I'm paranoid.
941 	 */
942 	for (i = 0; i < 3; i++) {
943 		do {
944 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 				cpu_buffer->head_page = page;
946 				return page;
947 			}
948 			rb_inc_page(cpu_buffer, &page);
949 		} while (page != head);
950 	}
951 
952 	RB_WARN_ON(cpu_buffer, 1);
953 
954 	return NULL;
955 }
956 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)957 static int rb_head_page_replace(struct buffer_page *old,
958 				struct buffer_page *new)
959 {
960 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 	unsigned long val;
962 	unsigned long ret;
963 
964 	val = *ptr & ~RB_FLAG_MASK;
965 	val |= RB_PAGE_HEAD;
966 
967 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968 
969 	return ret == val;
970 }
971 
972 /*
973  * rb_tail_page_update - move the tail page forward
974  *
975  * Returns 1 if moved tail page, 0 if someone else did.
976  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 			       struct buffer_page *tail_page,
979 			       struct buffer_page *next_page)
980 {
981 	struct buffer_page *old_tail;
982 	unsigned long old_entries;
983 	unsigned long old_write;
984 	int ret = 0;
985 
986 	/*
987 	 * The tail page now needs to be moved forward.
988 	 *
989 	 * We need to reset the tail page, but without messing
990 	 * with possible erasing of data brought in by interrupts
991 	 * that have moved the tail page and are currently on it.
992 	 *
993 	 * We add a counter to the write field to denote this.
994 	 */
995 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997 
998 	/*
999 	 * Just make sure we have seen our old_write and synchronize
1000 	 * with any interrupts that come in.
1001 	 */
1002 	barrier();
1003 
1004 	/*
1005 	 * If the tail page is still the same as what we think
1006 	 * it is, then it is up to us to update the tail
1007 	 * pointer.
1008 	 */
1009 	if (tail_page == cpu_buffer->tail_page) {
1010 		/* Zero the write counter */
1011 		unsigned long val = old_write & ~RB_WRITE_MASK;
1012 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013 
1014 		/*
1015 		 * This will only succeed if an interrupt did
1016 		 * not come in and change it. In which case, we
1017 		 * do not want to modify it.
1018 		 *
1019 		 * We add (void) to let the compiler know that we do not care
1020 		 * about the return value of these functions. We use the
1021 		 * cmpxchg to only update if an interrupt did not already
1022 		 * do it for us. If the cmpxchg fails, we don't care.
1023 		 */
1024 		(void)local_cmpxchg(&next_page->write, old_write, val);
1025 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026 
1027 		/*
1028 		 * No need to worry about races with clearing out the commit.
1029 		 * it only can increment when a commit takes place. But that
1030 		 * only happens in the outer most nested commit.
1031 		 */
1032 		local_set(&next_page->page->commit, 0);
1033 
1034 		old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 				   tail_page, next_page);
1036 
1037 		if (old_tail == tail_page)
1038 			ret = 1;
1039 	}
1040 
1041 	return ret;
1042 }
1043 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 			  struct buffer_page *bpage)
1046 {
1047 	unsigned long val = (unsigned long)bpage;
1048 
1049 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 		return 1;
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  * rb_check_list - make sure a pointer to a list has the last bits zero
1057  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 			 struct list_head *list)
1060 {
1061 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 		return 1;
1063 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 		return 1;
1065 	return 0;
1066 }
1067 
1068 /**
1069  * check_pages - integrity check of buffer pages
1070  * @cpu_buffer: CPU buffer with pages to test
1071  *
1072  * As a safety measure we check to make sure the data pages have not
1073  * been corrupted.
1074  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 	struct list_head *head = cpu_buffer->pages;
1078 	struct buffer_page *bpage, *tmp;
1079 
1080 	/* Reset the head page if it exists */
1081 	if (cpu_buffer->head_page)
1082 		rb_set_head_page(cpu_buffer);
1083 
1084 	rb_head_page_deactivate(cpu_buffer);
1085 
1086 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 		return -1;
1088 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 		return -1;
1090 
1091 	if (rb_check_list(cpu_buffer, head))
1092 		return -1;
1093 
1094 	list_for_each_entry_safe(bpage, tmp, head, list) {
1095 		if (RB_WARN_ON(cpu_buffer,
1096 			       bpage->list.next->prev != &bpage->list))
1097 			return -1;
1098 		if (RB_WARN_ON(cpu_buffer,
1099 			       bpage->list.prev->next != &bpage->list))
1100 			return -1;
1101 		if (rb_check_list(cpu_buffer, &bpage->list))
1102 			return -1;
1103 	}
1104 
1105 	rb_head_page_activate(cpu_buffer);
1106 
1107 	return 0;
1108 }
1109 
__rb_allocate_pages(int nr_pages,struct list_head * pages,int cpu)1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112 	int i;
1113 	struct buffer_page *bpage, *tmp;
1114 
1115 	for (i = 0; i < nr_pages; i++) {
1116 		struct page *page;
1117 		/*
1118 		 * __GFP_NORETRY flag makes sure that the allocation fails
1119 		 * gracefully without invoking oom-killer and the system is
1120 		 * not destabilized.
1121 		 */
1122 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 				    GFP_KERNEL | __GFP_NORETRY,
1124 				    cpu_to_node(cpu));
1125 		if (!bpage)
1126 			goto free_pages;
1127 
1128 		list_add(&bpage->list, pages);
1129 
1130 		page = alloc_pages_node(cpu_to_node(cpu),
1131 					GFP_KERNEL | __GFP_NORETRY, 0);
1132 		if (!page)
1133 			goto free_pages;
1134 		bpage->page = page_address(page);
1135 		rb_init_page(bpage->page);
1136 	}
1137 
1138 	return 0;
1139 
1140 free_pages:
1141 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 		list_del_init(&bpage->list);
1143 		free_buffer_page(bpage);
1144 	}
1145 
1146 	return -ENOMEM;
1147 }
1148 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned nr_pages)1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 			     unsigned nr_pages)
1151 {
1152 	LIST_HEAD(pages);
1153 
1154 	WARN_ON(!nr_pages);
1155 
1156 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 		return -ENOMEM;
1158 
1159 	/*
1160 	 * The ring buffer page list is a circular list that does not
1161 	 * start and end with a list head. All page list items point to
1162 	 * other pages.
1163 	 */
1164 	cpu_buffer->pages = pages.next;
1165 	list_del(&pages);
1166 
1167 	cpu_buffer->nr_pages = nr_pages;
1168 
1169 	rb_check_pages(cpu_buffer);
1170 
1171 	return 0;
1172 }
1173 
1174 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,int nr_pages,int cpu)1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177 	struct ring_buffer_per_cpu *cpu_buffer;
1178 	struct buffer_page *bpage;
1179 	struct page *page;
1180 	int ret;
1181 
1182 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 				  GFP_KERNEL, cpu_to_node(cpu));
1184 	if (!cpu_buffer)
1185 		return NULL;
1186 
1187 	cpu_buffer->cpu = cpu;
1188 	cpu_buffer->buffer = buffer;
1189 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 	init_completion(&cpu_buffer->update_done);
1194 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196 
1197 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 			    GFP_KERNEL, cpu_to_node(cpu));
1199 	if (!bpage)
1200 		goto fail_free_buffer;
1201 
1202 	rb_check_bpage(cpu_buffer, bpage);
1203 
1204 	cpu_buffer->reader_page = bpage;
1205 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 	if (!page)
1207 		goto fail_free_reader;
1208 	bpage->page = page_address(page);
1209 	rb_init_page(bpage->page);
1210 
1211 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213 
1214 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 	if (ret < 0)
1216 		goto fail_free_reader;
1217 
1218 	cpu_buffer->head_page
1219 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221 
1222 	rb_head_page_activate(cpu_buffer);
1223 
1224 	return cpu_buffer;
1225 
1226  fail_free_reader:
1227 	free_buffer_page(cpu_buffer->reader_page);
1228 
1229  fail_free_buffer:
1230 	kfree(cpu_buffer);
1231 	return NULL;
1232 }
1233 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236 	struct list_head *head = cpu_buffer->pages;
1237 	struct buffer_page *bpage, *tmp;
1238 
1239 	free_buffer_page(cpu_buffer->reader_page);
1240 
1241 	rb_head_page_deactivate(cpu_buffer);
1242 
1243 	if (head) {
1244 		list_for_each_entry_safe(bpage, tmp, head, list) {
1245 			list_del_init(&bpage->list);
1246 			free_buffer_page(bpage);
1247 		}
1248 		bpage = list_entry(head, struct buffer_page, list);
1249 		free_buffer_page(bpage);
1250 	}
1251 
1252 	kfree(cpu_buffer);
1253 }
1254 
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 			 unsigned long action, void *hcpu);
1258 #endif
1259 
1260 /**
1261  * ring_buffer_alloc - allocate a new ring_buffer
1262  * @size: the size in bytes per cpu that is needed.
1263  * @flags: attributes to set for the ring buffer.
1264  *
1265  * Currently the only flag that is available is the RB_FL_OVERWRITE
1266  * flag. This flag means that the buffer will overwrite old data
1267  * when the buffer wraps. If this flag is not set, the buffer will
1268  * drop data when the tail hits the head.
1269  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 					struct lock_class_key *key)
1272 {
1273 	struct ring_buffer *buffer;
1274 	int bsize;
1275 	int cpu, nr_pages;
1276 
1277 	/* keep it in its own cache line */
1278 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 			 GFP_KERNEL);
1280 	if (!buffer)
1281 		return NULL;
1282 
1283 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 		goto fail_free_buffer;
1285 
1286 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 	buffer->flags = flags;
1288 	buffer->clock = trace_clock_local;
1289 	buffer->reader_lock_key = key;
1290 
1291 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 	init_waitqueue_head(&buffer->irq_work.waiters);
1293 
1294 	/* need at least two pages */
1295 	if (nr_pages < 2)
1296 		nr_pages = 2;
1297 
1298 	/*
1299 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 	 * in early initcall, it will not be notified of secondary cpus.
1301 	 * In that off case, we need to allocate for all possible cpus.
1302 	 */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 	get_online_cpus();
1305 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 	buffer->cpus = nr_cpu_ids;
1310 
1311 	bsize = sizeof(void *) * nr_cpu_ids;
1312 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 				  GFP_KERNEL);
1314 	if (!buffer->buffers)
1315 		goto fail_free_cpumask;
1316 
1317 	for_each_buffer_cpu(buffer, cpu) {
1318 		buffer->buffers[cpu] =
1319 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 		if (!buffer->buffers[cpu])
1321 			goto fail_free_buffers;
1322 	}
1323 
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 	buffer->cpu_notify.priority = 0;
1327 	register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329 
1330 	put_online_cpus();
1331 	mutex_init(&buffer->mutex);
1332 
1333 	return buffer;
1334 
1335  fail_free_buffers:
1336 	for_each_buffer_cpu(buffer, cpu) {
1337 		if (buffer->buffers[cpu])
1338 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 	}
1340 	kfree(buffer->buffers);
1341 
1342  fail_free_cpumask:
1343 	free_cpumask_var(buffer->cpumask);
1344 	put_online_cpus();
1345 
1346  fail_free_buffer:
1347 	kfree(buffer);
1348 	return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351 
1352 /**
1353  * ring_buffer_free - free a ring buffer.
1354  * @buffer: the buffer to free.
1355  */
1356 void
ring_buffer_free(struct ring_buffer * buffer)1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359 	int cpu;
1360 
1361 	get_online_cpus();
1362 
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 	unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366 
1367 	for_each_buffer_cpu(buffer, cpu)
1368 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1369 
1370 	put_online_cpus();
1371 
1372 	kfree(buffer->buffers);
1373 	free_cpumask_var(buffer->cpumask);
1374 
1375 	kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378 
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 			   u64 (*clock)(void))
1381 {
1382 	buffer->clock = clock;
1383 }
1384 
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386 
rb_page_entries(struct buffer_page * bpage)1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391 
rb_page_write(struct buffer_page * bpage)1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 	return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396 
1397 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned int nr_pages)1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400 	struct list_head *tail_page, *to_remove, *next_page;
1401 	struct buffer_page *to_remove_page, *tmp_iter_page;
1402 	struct buffer_page *last_page, *first_page;
1403 	unsigned int nr_removed;
1404 	unsigned long head_bit;
1405 	int page_entries;
1406 
1407 	head_bit = 0;
1408 
1409 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 	atomic_inc(&cpu_buffer->record_disabled);
1411 	/*
1412 	 * We don't race with the readers since we have acquired the reader
1413 	 * lock. We also don't race with writers after disabling recording.
1414 	 * This makes it easy to figure out the first and the last page to be
1415 	 * removed from the list. We unlink all the pages in between including
1416 	 * the first and last pages. This is done in a busy loop so that we
1417 	 * lose the least number of traces.
1418 	 * The pages are freed after we restart recording and unlock readers.
1419 	 */
1420 	tail_page = &cpu_buffer->tail_page->list;
1421 
1422 	/*
1423 	 * tail page might be on reader page, we remove the next page
1424 	 * from the ring buffer
1425 	 */
1426 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 		tail_page = rb_list_head(tail_page->next);
1428 	to_remove = tail_page;
1429 
1430 	/* start of pages to remove */
1431 	first_page = list_entry(rb_list_head(to_remove->next),
1432 				struct buffer_page, list);
1433 
1434 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 		to_remove = rb_list_head(to_remove)->next;
1436 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 	}
1438 
1439 	next_page = rb_list_head(to_remove)->next;
1440 
1441 	/*
1442 	 * Now we remove all pages between tail_page and next_page.
1443 	 * Make sure that we have head_bit value preserved for the
1444 	 * next page
1445 	 */
1446 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 						head_bit);
1448 	next_page = rb_list_head(next_page);
1449 	next_page->prev = tail_page;
1450 
1451 	/* make sure pages points to a valid page in the ring buffer */
1452 	cpu_buffer->pages = next_page;
1453 
1454 	/* update head page */
1455 	if (head_bit)
1456 		cpu_buffer->head_page = list_entry(next_page,
1457 						struct buffer_page, list);
1458 
1459 	/*
1460 	 * change read pointer to make sure any read iterators reset
1461 	 * themselves
1462 	 */
1463 	cpu_buffer->read = 0;
1464 
1465 	/* pages are removed, resume tracing and then free the pages */
1466 	atomic_dec(&cpu_buffer->record_disabled);
1467 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468 
1469 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470 
1471 	/* last buffer page to remove */
1472 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 				list);
1474 	tmp_iter_page = first_page;
1475 
1476 	do {
1477 		to_remove_page = tmp_iter_page;
1478 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1479 
1480 		/* update the counters */
1481 		page_entries = rb_page_entries(to_remove_page);
1482 		if (page_entries) {
1483 			/*
1484 			 * If something was added to this page, it was full
1485 			 * since it is not the tail page. So we deduct the
1486 			 * bytes consumed in ring buffer from here.
1487 			 * Increment overrun to account for the lost events.
1488 			 */
1489 			local_add(page_entries, &cpu_buffer->overrun);
1490 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 		}
1492 
1493 		/*
1494 		 * We have already removed references to this list item, just
1495 		 * free up the buffer_page and its page
1496 		 */
1497 		free_buffer_page(to_remove_page);
1498 		nr_removed--;
1499 
1500 	} while (to_remove_page != last_page);
1501 
1502 	RB_WARN_ON(cpu_buffer, nr_removed);
1503 
1504 	return nr_removed == 0;
1505 }
1506 
1507 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 	struct list_head *pages = &cpu_buffer->new_pages;
1511 	int retries, success;
1512 
1513 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 	/*
1515 	 * We are holding the reader lock, so the reader page won't be swapped
1516 	 * in the ring buffer. Now we are racing with the writer trying to
1517 	 * move head page and the tail page.
1518 	 * We are going to adapt the reader page update process where:
1519 	 * 1. We first splice the start and end of list of new pages between
1520 	 *    the head page and its previous page.
1521 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 	 *    start of new pages list.
1523 	 * 3. Finally, we update the head->prev to the end of new list.
1524 	 *
1525 	 * We will try this process 10 times, to make sure that we don't keep
1526 	 * spinning.
1527 	 */
1528 	retries = 10;
1529 	success = 0;
1530 	while (retries--) {
1531 		struct list_head *head_page, *prev_page, *r;
1532 		struct list_head *last_page, *first_page;
1533 		struct list_head *head_page_with_bit;
1534 
1535 		head_page = &rb_set_head_page(cpu_buffer)->list;
1536 		if (!head_page)
1537 			break;
1538 		prev_page = head_page->prev;
1539 
1540 		first_page = pages->next;
1541 		last_page  = pages->prev;
1542 
1543 		head_page_with_bit = (struct list_head *)
1544 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1545 
1546 		last_page->next = head_page_with_bit;
1547 		first_page->prev = prev_page;
1548 
1549 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550 
1551 		if (r == head_page_with_bit) {
1552 			/*
1553 			 * yay, we replaced the page pointer to our new list,
1554 			 * now, we just have to update to head page's prev
1555 			 * pointer to point to end of list
1556 			 */
1557 			head_page->prev = last_page;
1558 			success = 1;
1559 			break;
1560 		}
1561 	}
1562 
1563 	if (success)
1564 		INIT_LIST_HEAD(pages);
1565 	/*
1566 	 * If we weren't successful in adding in new pages, warn and stop
1567 	 * tracing
1568 	 */
1569 	RB_WARN_ON(cpu_buffer, !success);
1570 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571 
1572 	/* free pages if they weren't inserted */
1573 	if (!success) {
1574 		struct buffer_page *bpage, *tmp;
1575 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 					 list) {
1577 			list_del_init(&bpage->list);
1578 			free_buffer_page(bpage);
1579 		}
1580 	}
1581 	return success;
1582 }
1583 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 	int success;
1587 
1588 	if (cpu_buffer->nr_pages_to_update > 0)
1589 		success = rb_insert_pages(cpu_buffer);
1590 	else
1591 		success = rb_remove_pages(cpu_buffer,
1592 					-cpu_buffer->nr_pages_to_update);
1593 
1594 	if (success)
1595 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597 
update_pages_handler(struct work_struct * work)1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 			struct ring_buffer_per_cpu, update_pages_work);
1602 	rb_update_pages(cpu_buffer);
1603 	complete(&cpu_buffer->update_done);
1604 }
1605 
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  *
1611  * Minimum size is 2 * BUF_PAGE_SIZE.
1612  *
1613  * Returns 0 on success and < 0 on failure.
1614  */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616 			int cpu_id)
1617 {
1618 	struct ring_buffer_per_cpu *cpu_buffer;
1619 	unsigned nr_pages;
1620 	int cpu, err = 0;
1621 
1622 	/*
1623 	 * Always succeed at resizing a non-existent buffer:
1624 	 */
1625 	if (!buffer)
1626 		return size;
1627 
1628 	/* Make sure the requested buffer exists */
1629 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631 		return size;
1632 
1633 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634 
1635 	/* we need a minimum of two pages */
1636 	if (nr_pages < 2)
1637 		nr_pages = 2;
1638 
1639 	size = nr_pages * BUF_PAGE_SIZE;
1640 
1641 	/*
1642 	 * Don't succeed if resizing is disabled, as a reader might be
1643 	 * manipulating the ring buffer and is expecting a sane state while
1644 	 * this is true.
1645 	 */
1646 	if (atomic_read(&buffer->resize_disabled))
1647 		return -EBUSY;
1648 
1649 	/* prevent another thread from changing buffer sizes */
1650 	mutex_lock(&buffer->mutex);
1651 
1652 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1653 		/* calculate the pages to update */
1654 		for_each_buffer_cpu(buffer, cpu) {
1655 			cpu_buffer = buffer->buffers[cpu];
1656 
1657 			cpu_buffer->nr_pages_to_update = nr_pages -
1658 							cpu_buffer->nr_pages;
1659 			/*
1660 			 * nothing more to do for removing pages or no update
1661 			 */
1662 			if (cpu_buffer->nr_pages_to_update <= 0)
1663 				continue;
1664 			/*
1665 			 * to add pages, make sure all new pages can be
1666 			 * allocated without receiving ENOMEM
1667 			 */
1668 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1669 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1670 						&cpu_buffer->new_pages, cpu)) {
1671 				/* not enough memory for new pages */
1672 				err = -ENOMEM;
1673 				goto out_err;
1674 			}
1675 		}
1676 
1677 		get_online_cpus();
1678 		/*
1679 		 * Fire off all the required work handlers
1680 		 * We can't schedule on offline CPUs, but it's not necessary
1681 		 * since we can change their buffer sizes without any race.
1682 		 */
1683 		for_each_buffer_cpu(buffer, cpu) {
1684 			cpu_buffer = buffer->buffers[cpu];
1685 			if (!cpu_buffer->nr_pages_to_update)
1686 				continue;
1687 
1688 			/* The update must run on the CPU that is being updated. */
1689 			preempt_disable();
1690 			if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1691 				rb_update_pages(cpu_buffer);
1692 				cpu_buffer->nr_pages_to_update = 0;
1693 			} else {
1694 				/*
1695 				 * Can not disable preemption for schedule_work_on()
1696 				 * on PREEMPT_RT.
1697 				 */
1698 				preempt_enable();
1699 				schedule_work_on(cpu,
1700 						&cpu_buffer->update_pages_work);
1701 				preempt_disable();
1702 			}
1703 			preempt_enable();
1704 		}
1705 
1706 		/* wait for all the updates to complete */
1707 		for_each_buffer_cpu(buffer, cpu) {
1708 			cpu_buffer = buffer->buffers[cpu];
1709 			if (!cpu_buffer->nr_pages_to_update)
1710 				continue;
1711 
1712 			if (cpu_online(cpu))
1713 				wait_for_completion(&cpu_buffer->update_done);
1714 			cpu_buffer->nr_pages_to_update = 0;
1715 		}
1716 
1717 		put_online_cpus();
1718 	} else {
1719 		/* Make sure this CPU has been intitialized */
1720 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 			goto out;
1722 
1723 		cpu_buffer = buffer->buffers[cpu_id];
1724 
1725 		if (nr_pages == cpu_buffer->nr_pages)
1726 			goto out;
1727 
1728 		cpu_buffer->nr_pages_to_update = nr_pages -
1729 						cpu_buffer->nr_pages;
1730 
1731 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 		if (cpu_buffer->nr_pages_to_update > 0 &&
1733 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1734 					    &cpu_buffer->new_pages, cpu_id)) {
1735 			err = -ENOMEM;
1736 			goto out_err;
1737 		}
1738 
1739 		get_online_cpus();
1740 
1741 		preempt_disable();
1742 		/* The update must run on the CPU that is being updated. */
1743 		if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1744 			rb_update_pages(cpu_buffer);
1745 		else {
1746 			/*
1747 			 * Can not disable preemption for schedule_work_on()
1748 			 * on PREEMPT_RT.
1749 			 */
1750 			preempt_enable();
1751 			schedule_work_on(cpu_id,
1752 					 &cpu_buffer->update_pages_work);
1753 			wait_for_completion(&cpu_buffer->update_done);
1754 			preempt_disable();
1755 		}
1756 		preempt_enable();
1757 
1758 		cpu_buffer->nr_pages_to_update = 0;
1759 		put_online_cpus();
1760 	}
1761 
1762  out:
1763 	/*
1764 	 * The ring buffer resize can happen with the ring buffer
1765 	 * enabled, so that the update disturbs the tracing as little
1766 	 * as possible. But if the buffer is disabled, we do not need
1767 	 * to worry about that, and we can take the time to verify
1768 	 * that the buffer is not corrupt.
1769 	 */
1770 	if (atomic_read(&buffer->record_disabled)) {
1771 		atomic_inc(&buffer->record_disabled);
1772 		/*
1773 		 * Even though the buffer was disabled, we must make sure
1774 		 * that it is truly disabled before calling rb_check_pages.
1775 		 * There could have been a race between checking
1776 		 * record_disable and incrementing it.
1777 		 */
1778 		synchronize_sched();
1779 		for_each_buffer_cpu(buffer, cpu) {
1780 			cpu_buffer = buffer->buffers[cpu];
1781 			rb_check_pages(cpu_buffer);
1782 		}
1783 		atomic_dec(&buffer->record_disabled);
1784 	}
1785 
1786 	mutex_unlock(&buffer->mutex);
1787 	return size;
1788 
1789  out_err:
1790 	for_each_buffer_cpu(buffer, cpu) {
1791 		struct buffer_page *bpage, *tmp;
1792 
1793 		cpu_buffer = buffer->buffers[cpu];
1794 		cpu_buffer->nr_pages_to_update = 0;
1795 
1796 		if (list_empty(&cpu_buffer->new_pages))
1797 			continue;
1798 
1799 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1800 					list) {
1801 			list_del_init(&bpage->list);
1802 			free_buffer_page(bpage);
1803 		}
1804 	}
1805 	mutex_unlock(&buffer->mutex);
1806 	return err;
1807 }
1808 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1809 
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1810 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1811 {
1812 	mutex_lock(&buffer->mutex);
1813 	if (val)
1814 		buffer->flags |= RB_FL_OVERWRITE;
1815 	else
1816 		buffer->flags &= ~RB_FL_OVERWRITE;
1817 	mutex_unlock(&buffer->mutex);
1818 }
1819 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1820 
1821 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1822 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1823 {
1824 	return bpage->data + index;
1825 }
1826 
__rb_page_index(struct buffer_page * bpage,unsigned index)1827 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1828 {
1829 	return bpage->page->data + index;
1830 }
1831 
1832 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1833 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1834 {
1835 	return __rb_page_index(cpu_buffer->reader_page,
1836 			       cpu_buffer->reader_page->read);
1837 }
1838 
1839 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1840 rb_iter_head_event(struct ring_buffer_iter *iter)
1841 {
1842 	return __rb_page_index(iter->head_page, iter->head);
1843 }
1844 
rb_page_commit(struct buffer_page * bpage)1845 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1846 {
1847 	return local_read(&bpage->page->commit);
1848 }
1849 
1850 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1851 static inline unsigned rb_page_size(struct buffer_page *bpage)
1852 {
1853 	return rb_page_commit(bpage);
1854 }
1855 
1856 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1857 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859 	return rb_page_commit(cpu_buffer->commit_page);
1860 }
1861 
1862 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1863 rb_event_index(struct ring_buffer_event *event)
1864 {
1865 	unsigned long addr = (unsigned long)event;
1866 
1867 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1868 }
1869 
1870 static inline int
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)1871 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1872 		   struct ring_buffer_event *event)
1873 {
1874 	unsigned long addr = (unsigned long)event;
1875 	unsigned long index;
1876 
1877 	index = rb_event_index(event);
1878 	addr &= PAGE_MASK;
1879 
1880 	return cpu_buffer->commit_page->page == (void *)addr &&
1881 		rb_commit_index(cpu_buffer) == index;
1882 }
1883 
1884 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)1885 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1886 {
1887 	unsigned long max_count;
1888 
1889 	/*
1890 	 * We only race with interrupts and NMIs on this CPU.
1891 	 * If we own the commit event, then we can commit
1892 	 * all others that interrupted us, since the interruptions
1893 	 * are in stack format (they finish before they come
1894 	 * back to us). This allows us to do a simple loop to
1895 	 * assign the commit to the tail.
1896 	 */
1897  again:
1898 	max_count = cpu_buffer->nr_pages * 100;
1899 
1900 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1901 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1902 			return;
1903 		if (RB_WARN_ON(cpu_buffer,
1904 			       rb_is_reader_page(cpu_buffer->tail_page)))
1905 			return;
1906 		local_set(&cpu_buffer->commit_page->page->commit,
1907 			  rb_page_write(cpu_buffer->commit_page));
1908 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1909 		cpu_buffer->write_stamp =
1910 			cpu_buffer->commit_page->page->time_stamp;
1911 		/* add barrier to keep gcc from optimizing too much */
1912 		barrier();
1913 	}
1914 	while (rb_commit_index(cpu_buffer) !=
1915 	       rb_page_write(cpu_buffer->commit_page)) {
1916 
1917 		local_set(&cpu_buffer->commit_page->page->commit,
1918 			  rb_page_write(cpu_buffer->commit_page));
1919 		RB_WARN_ON(cpu_buffer,
1920 			   local_read(&cpu_buffer->commit_page->page->commit) &
1921 			   ~RB_WRITE_MASK);
1922 		barrier();
1923 	}
1924 
1925 	/* again, keep gcc from optimizing */
1926 	barrier();
1927 
1928 	/*
1929 	 * If an interrupt came in just after the first while loop
1930 	 * and pushed the tail page forward, we will be left with
1931 	 * a dangling commit that will never go forward.
1932 	 */
1933 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1934 		goto again;
1935 }
1936 
rb_reset_reader_page(struct ring_buffer_per_cpu * cpu_buffer)1937 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1938 {
1939 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1940 	cpu_buffer->reader_page->read = 0;
1941 }
1942 
rb_inc_iter(struct ring_buffer_iter * iter)1943 static void rb_inc_iter(struct ring_buffer_iter *iter)
1944 {
1945 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1946 
1947 	/*
1948 	 * The iterator could be on the reader page (it starts there).
1949 	 * But the head could have moved, since the reader was
1950 	 * found. Check for this case and assign the iterator
1951 	 * to the head page instead of next.
1952 	 */
1953 	if (iter->head_page == cpu_buffer->reader_page)
1954 		iter->head_page = rb_set_head_page(cpu_buffer);
1955 	else
1956 		rb_inc_page(cpu_buffer, &iter->head_page);
1957 
1958 	iter->read_stamp = iter->head_page->page->time_stamp;
1959 	iter->head = 0;
1960 }
1961 
1962 /* Slow path, do not inline */
1963 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)1964 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1965 {
1966 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1967 
1968 	/* Not the first event on the page? */
1969 	if (rb_event_index(event)) {
1970 		event->time_delta = delta & TS_MASK;
1971 		event->array[0] = delta >> TS_SHIFT;
1972 	} else {
1973 		/* nope, just zero it */
1974 		event->time_delta = 0;
1975 		event->array[0] = 0;
1976 	}
1977 
1978 	return skip_time_extend(event);
1979 }
1980 
1981 /**
1982  * rb_update_event - update event type and data
1983  * @event: the even to update
1984  * @type: the type of event
1985  * @length: the size of the event field in the ring buffer
1986  *
1987  * Update the type and data fields of the event. The length
1988  * is the actual size that is written to the ring buffer,
1989  * and with this, we can determine what to place into the
1990  * data field.
1991  */
1992 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,unsigned length,int add_timestamp,u64 delta)1993 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1994 		struct ring_buffer_event *event, unsigned length,
1995 		int add_timestamp, u64 delta)
1996 {
1997 	/* Only a commit updates the timestamp */
1998 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1999 		delta = 0;
2000 
2001 	/*
2002 	 * If we need to add a timestamp, then we
2003 	 * add it to the start of the resevered space.
2004 	 */
2005 	if (unlikely(add_timestamp)) {
2006 		event = rb_add_time_stamp(event, delta);
2007 		length -= RB_LEN_TIME_EXTEND;
2008 		delta = 0;
2009 	}
2010 
2011 	event->time_delta = delta;
2012 	length -= RB_EVNT_HDR_SIZE;
2013 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2014 		event->type_len = 0;
2015 		event->array[0] = length;
2016 	} else
2017 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2018 }
2019 
2020 /*
2021  * rb_handle_head_page - writer hit the head page
2022  *
2023  * Returns: +1 to retry page
2024  *           0 to continue
2025  *          -1 on error
2026  */
2027 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2028 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2029 		    struct buffer_page *tail_page,
2030 		    struct buffer_page *next_page)
2031 {
2032 	struct buffer_page *new_head;
2033 	int entries;
2034 	int type;
2035 	int ret;
2036 
2037 	entries = rb_page_entries(next_page);
2038 
2039 	/*
2040 	 * The hard part is here. We need to move the head
2041 	 * forward, and protect against both readers on
2042 	 * other CPUs and writers coming in via interrupts.
2043 	 */
2044 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2045 				       RB_PAGE_HEAD);
2046 
2047 	/*
2048 	 * type can be one of four:
2049 	 *  NORMAL - an interrupt already moved it for us
2050 	 *  HEAD   - we are the first to get here.
2051 	 *  UPDATE - we are the interrupt interrupting
2052 	 *           a current move.
2053 	 *  MOVED  - a reader on another CPU moved the next
2054 	 *           pointer to its reader page. Give up
2055 	 *           and try again.
2056 	 */
2057 
2058 	switch (type) {
2059 	case RB_PAGE_HEAD:
2060 		/*
2061 		 * We changed the head to UPDATE, thus
2062 		 * it is our responsibility to update
2063 		 * the counters.
2064 		 */
2065 		local_add(entries, &cpu_buffer->overrun);
2066 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2067 
2068 		/*
2069 		 * The entries will be zeroed out when we move the
2070 		 * tail page.
2071 		 */
2072 
2073 		/* still more to do */
2074 		break;
2075 
2076 	case RB_PAGE_UPDATE:
2077 		/*
2078 		 * This is an interrupt that interrupt the
2079 		 * previous update. Still more to do.
2080 		 */
2081 		break;
2082 	case RB_PAGE_NORMAL:
2083 		/*
2084 		 * An interrupt came in before the update
2085 		 * and processed this for us.
2086 		 * Nothing left to do.
2087 		 */
2088 		return 1;
2089 	case RB_PAGE_MOVED:
2090 		/*
2091 		 * The reader is on another CPU and just did
2092 		 * a swap with our next_page.
2093 		 * Try again.
2094 		 */
2095 		return 1;
2096 	default:
2097 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2098 		return -1;
2099 	}
2100 
2101 	/*
2102 	 * Now that we are here, the old head pointer is
2103 	 * set to UPDATE. This will keep the reader from
2104 	 * swapping the head page with the reader page.
2105 	 * The reader (on another CPU) will spin till
2106 	 * we are finished.
2107 	 *
2108 	 * We just need to protect against interrupts
2109 	 * doing the job. We will set the next pointer
2110 	 * to HEAD. After that, we set the old pointer
2111 	 * to NORMAL, but only if it was HEAD before.
2112 	 * otherwise we are an interrupt, and only
2113 	 * want the outer most commit to reset it.
2114 	 */
2115 	new_head = next_page;
2116 	rb_inc_page(cpu_buffer, &new_head);
2117 
2118 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2119 				    RB_PAGE_NORMAL);
2120 
2121 	/*
2122 	 * Valid returns are:
2123 	 *  HEAD   - an interrupt came in and already set it.
2124 	 *  NORMAL - One of two things:
2125 	 *            1) We really set it.
2126 	 *            2) A bunch of interrupts came in and moved
2127 	 *               the page forward again.
2128 	 */
2129 	switch (ret) {
2130 	case RB_PAGE_HEAD:
2131 	case RB_PAGE_NORMAL:
2132 		/* OK */
2133 		break;
2134 	default:
2135 		RB_WARN_ON(cpu_buffer, 1);
2136 		return -1;
2137 	}
2138 
2139 	/*
2140 	 * It is possible that an interrupt came in,
2141 	 * set the head up, then more interrupts came in
2142 	 * and moved it again. When we get back here,
2143 	 * the page would have been set to NORMAL but we
2144 	 * just set it back to HEAD.
2145 	 *
2146 	 * How do you detect this? Well, if that happened
2147 	 * the tail page would have moved.
2148 	 */
2149 	if (ret == RB_PAGE_NORMAL) {
2150 		/*
2151 		 * If the tail had moved passed next, then we need
2152 		 * to reset the pointer.
2153 		 */
2154 		if (cpu_buffer->tail_page != tail_page &&
2155 		    cpu_buffer->tail_page != next_page)
2156 			rb_head_page_set_normal(cpu_buffer, new_head,
2157 						next_page,
2158 						RB_PAGE_HEAD);
2159 	}
2160 
2161 	/*
2162 	 * If this was the outer most commit (the one that
2163 	 * changed the original pointer from HEAD to UPDATE),
2164 	 * then it is up to us to reset it to NORMAL.
2165 	 */
2166 	if (type == RB_PAGE_HEAD) {
2167 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2168 					      tail_page,
2169 					      RB_PAGE_UPDATE);
2170 		if (RB_WARN_ON(cpu_buffer,
2171 			       ret != RB_PAGE_UPDATE))
2172 			return -1;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
rb_calculate_event_length(unsigned length)2178 static unsigned rb_calculate_event_length(unsigned length)
2179 {
2180 	struct ring_buffer_event event; /* Used only for sizeof array */
2181 
2182 	/* zero length can cause confusions */
2183 	if (!length)
2184 		length = 1;
2185 
2186 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2187 		length += sizeof(event.array[0]);
2188 
2189 	length += RB_EVNT_HDR_SIZE;
2190 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2191 
2192 	return length;
2193 }
2194 
2195 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,unsigned long tail,unsigned long length)2196 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2197 	      struct buffer_page *tail_page,
2198 	      unsigned long tail, unsigned long length)
2199 {
2200 	struct ring_buffer_event *event;
2201 
2202 	/*
2203 	 * Only the event that crossed the page boundary
2204 	 * must fill the old tail_page with padding.
2205 	 */
2206 	if (tail >= BUF_PAGE_SIZE) {
2207 		/*
2208 		 * If the page was filled, then we still need
2209 		 * to update the real_end. Reset it to zero
2210 		 * and the reader will ignore it.
2211 		 */
2212 		if (tail == BUF_PAGE_SIZE)
2213 			tail_page->real_end = 0;
2214 
2215 		local_sub(length, &tail_page->write);
2216 		return;
2217 	}
2218 
2219 	event = __rb_page_index(tail_page, tail);
2220 	kmemcheck_annotate_bitfield(event, bitfield);
2221 
2222 	/* account for padding bytes */
2223 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2224 
2225 	/*
2226 	 * Save the original length to the meta data.
2227 	 * This will be used by the reader to add lost event
2228 	 * counter.
2229 	 */
2230 	tail_page->real_end = tail;
2231 
2232 	/*
2233 	 * If this event is bigger than the minimum size, then
2234 	 * we need to be careful that we don't subtract the
2235 	 * write counter enough to allow another writer to slip
2236 	 * in on this page.
2237 	 * We put in a discarded commit instead, to make sure
2238 	 * that this space is not used again.
2239 	 *
2240 	 * If we are less than the minimum size, we don't need to
2241 	 * worry about it.
2242 	 */
2243 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2244 		/* No room for any events */
2245 
2246 		/* Mark the rest of the page with padding */
2247 		rb_event_set_padding(event);
2248 
2249 		/* Set the write back to the previous setting */
2250 		local_sub(length, &tail_page->write);
2251 		return;
2252 	}
2253 
2254 	/* Put in a discarded event */
2255 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2256 	event->type_len = RINGBUF_TYPE_PADDING;
2257 	/* time delta must be non zero */
2258 	event->time_delta = 1;
2259 
2260 	/* Set write to end of buffer */
2261 	length = (tail + length) - BUF_PAGE_SIZE;
2262 	local_sub(length, &tail_page->write);
2263 }
2264 
2265 /*
2266  * This is the slow path, force gcc not to inline it.
2267  */
2268 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,unsigned long tail,struct buffer_page * tail_page,u64 ts)2269 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2270 	     unsigned long length, unsigned long tail,
2271 	     struct buffer_page *tail_page, u64 ts)
2272 {
2273 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2274 	struct ring_buffer *buffer = cpu_buffer->buffer;
2275 	struct buffer_page *next_page;
2276 	int ret;
2277 
2278 	next_page = tail_page;
2279 
2280 	rb_inc_page(cpu_buffer, &next_page);
2281 
2282 	/*
2283 	 * If for some reason, we had an interrupt storm that made
2284 	 * it all the way around the buffer, bail, and warn
2285 	 * about it.
2286 	 */
2287 	if (unlikely(next_page == commit_page)) {
2288 		local_inc(&cpu_buffer->commit_overrun);
2289 		goto out_reset;
2290 	}
2291 
2292 	/*
2293 	 * This is where the fun begins!
2294 	 *
2295 	 * We are fighting against races between a reader that
2296 	 * could be on another CPU trying to swap its reader
2297 	 * page with the buffer head.
2298 	 *
2299 	 * We are also fighting against interrupts coming in and
2300 	 * moving the head or tail on us as well.
2301 	 *
2302 	 * If the next page is the head page then we have filled
2303 	 * the buffer, unless the commit page is still on the
2304 	 * reader page.
2305 	 */
2306 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2307 
2308 		/*
2309 		 * If the commit is not on the reader page, then
2310 		 * move the header page.
2311 		 */
2312 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2313 			/*
2314 			 * If we are not in overwrite mode,
2315 			 * this is easy, just stop here.
2316 			 */
2317 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2318 				local_inc(&cpu_buffer->dropped_events);
2319 				goto out_reset;
2320 			}
2321 
2322 			ret = rb_handle_head_page(cpu_buffer,
2323 						  tail_page,
2324 						  next_page);
2325 			if (ret < 0)
2326 				goto out_reset;
2327 			if (ret)
2328 				goto out_again;
2329 		} else {
2330 			/*
2331 			 * We need to be careful here too. The
2332 			 * commit page could still be on the reader
2333 			 * page. We could have a small buffer, and
2334 			 * have filled up the buffer with events
2335 			 * from interrupts and such, and wrapped.
2336 			 *
2337 			 * Note, if the tail page is also the on the
2338 			 * reader_page, we let it move out.
2339 			 */
2340 			if (unlikely((cpu_buffer->commit_page !=
2341 				      cpu_buffer->tail_page) &&
2342 				     (cpu_buffer->commit_page ==
2343 				      cpu_buffer->reader_page))) {
2344 				local_inc(&cpu_buffer->commit_overrun);
2345 				goto out_reset;
2346 			}
2347 		}
2348 	}
2349 
2350 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2351 	if (ret) {
2352 		/*
2353 		 * Nested commits always have zero deltas, so
2354 		 * just reread the time stamp
2355 		 */
2356 		ts = rb_time_stamp(buffer);
2357 		next_page->page->time_stamp = ts;
2358 	}
2359 
2360  out_again:
2361 
2362 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2363 
2364 	/* fail and let the caller try again */
2365 	return ERR_PTR(-EAGAIN);
2366 
2367  out_reset:
2368 	/* reset write */
2369 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2370 
2371 	return NULL;
2372 }
2373 
2374 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,u64 ts,u64 delta,int add_timestamp)2375 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2376 		  unsigned long length, u64 ts,
2377 		  u64 delta, int add_timestamp)
2378 {
2379 	struct buffer_page *tail_page;
2380 	struct ring_buffer_event *event;
2381 	unsigned long tail, write;
2382 
2383 	/*
2384 	 * If the time delta since the last event is too big to
2385 	 * hold in the time field of the event, then we append a
2386 	 * TIME EXTEND event ahead of the data event.
2387 	 */
2388 	if (unlikely(add_timestamp))
2389 		length += RB_LEN_TIME_EXTEND;
2390 
2391 	tail_page = cpu_buffer->tail_page;
2392 	write = local_add_return(length, &tail_page->write);
2393 
2394 	/* set write to only the index of the write */
2395 	write &= RB_WRITE_MASK;
2396 	tail = write - length;
2397 
2398 	/* See if we shot pass the end of this buffer page */
2399 	if (unlikely(write > BUF_PAGE_SIZE))
2400 		return rb_move_tail(cpu_buffer, length, tail,
2401 				    tail_page, ts);
2402 
2403 	/* We reserved something on the buffer */
2404 
2405 	event = __rb_page_index(tail_page, tail);
2406 	kmemcheck_annotate_bitfield(event, bitfield);
2407 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2408 
2409 	local_inc(&tail_page->entries);
2410 
2411 	/*
2412 	 * If this is the first commit on the page, then update
2413 	 * its timestamp.
2414 	 */
2415 	if (!tail)
2416 		tail_page->page->time_stamp = ts;
2417 
2418 	/* account for these added bytes */
2419 	local_add(length, &cpu_buffer->entries_bytes);
2420 
2421 	return event;
2422 }
2423 
2424 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2425 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2426 		  struct ring_buffer_event *event)
2427 {
2428 	unsigned long new_index, old_index;
2429 	struct buffer_page *bpage;
2430 	unsigned long index;
2431 	unsigned long addr;
2432 
2433 	new_index = rb_event_index(event);
2434 	old_index = new_index + rb_event_ts_length(event);
2435 	addr = (unsigned long)event;
2436 	addr &= PAGE_MASK;
2437 
2438 	bpage = cpu_buffer->tail_page;
2439 
2440 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2441 		unsigned long write_mask =
2442 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2443 		unsigned long event_length = rb_event_length(event);
2444 		/*
2445 		 * This is on the tail page. It is possible that
2446 		 * a write could come in and move the tail page
2447 		 * and write to the next page. That is fine
2448 		 * because we just shorten what is on this page.
2449 		 */
2450 		old_index += write_mask;
2451 		new_index += write_mask;
2452 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2453 		if (index == old_index) {
2454 			/* update counters */
2455 			local_sub(event_length, &cpu_buffer->entries_bytes);
2456 			return 1;
2457 		}
2458 	}
2459 
2460 	/* could not discard */
2461 	return 0;
2462 }
2463 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2464 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2465 {
2466 	local_inc(&cpu_buffer->committing);
2467 	local_inc(&cpu_buffer->commits);
2468 }
2469 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2470 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2471 {
2472 	unsigned long commits;
2473 
2474 	if (RB_WARN_ON(cpu_buffer,
2475 		       !local_read(&cpu_buffer->committing)))
2476 		return;
2477 
2478  again:
2479 	commits = local_read(&cpu_buffer->commits);
2480 	/* synchronize with interrupts */
2481 	barrier();
2482 	if (local_read(&cpu_buffer->committing) == 1)
2483 		rb_set_commit_to_write(cpu_buffer);
2484 
2485 	local_dec(&cpu_buffer->committing);
2486 
2487 	/* synchronize with interrupts */
2488 	barrier();
2489 
2490 	/*
2491 	 * Need to account for interrupts coming in between the
2492 	 * updating of the commit page and the clearing of the
2493 	 * committing counter.
2494 	 */
2495 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2496 	    !local_read(&cpu_buffer->committing)) {
2497 		local_inc(&cpu_buffer->committing);
2498 		goto again;
2499 	}
2500 }
2501 
2502 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2503 rb_reserve_next_event(struct ring_buffer *buffer,
2504 		      struct ring_buffer_per_cpu *cpu_buffer,
2505 		      unsigned long length)
2506 {
2507 	struct ring_buffer_event *event;
2508 	u64 ts, delta;
2509 	int nr_loops = 0;
2510 	int add_timestamp;
2511 	u64 diff;
2512 
2513 	rb_start_commit(cpu_buffer);
2514 
2515 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2516 	/*
2517 	 * Due to the ability to swap a cpu buffer from a buffer
2518 	 * it is possible it was swapped before we committed.
2519 	 * (committing stops a swap). We check for it here and
2520 	 * if it happened, we have to fail the write.
2521 	 */
2522 	barrier();
2523 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2524 		local_dec(&cpu_buffer->committing);
2525 		local_dec(&cpu_buffer->commits);
2526 		return NULL;
2527 	}
2528 #endif
2529 
2530 	length = rb_calculate_event_length(length);
2531  again:
2532 	add_timestamp = 0;
2533 	delta = 0;
2534 
2535 	/*
2536 	 * We allow for interrupts to reenter here and do a trace.
2537 	 * If one does, it will cause this original code to loop
2538 	 * back here. Even with heavy interrupts happening, this
2539 	 * should only happen a few times in a row. If this happens
2540 	 * 1000 times in a row, there must be either an interrupt
2541 	 * storm or we have something buggy.
2542 	 * Bail!
2543 	 */
2544 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2545 		goto out_fail;
2546 
2547 	ts = rb_time_stamp(cpu_buffer->buffer);
2548 	diff = ts - cpu_buffer->write_stamp;
2549 
2550 	/* make sure this diff is calculated here */
2551 	barrier();
2552 
2553 	/* Did the write stamp get updated already? */
2554 	if (likely(ts >= cpu_buffer->write_stamp)) {
2555 		delta = diff;
2556 		if (unlikely(test_time_stamp(delta))) {
2557 			int local_clock_stable = 1;
2558 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2559 			local_clock_stable = sched_clock_stable;
2560 #endif
2561 			WARN_ONCE(delta > (1ULL << 59),
2562 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2563 				  (unsigned long long)delta,
2564 				  (unsigned long long)ts,
2565 				  (unsigned long long)cpu_buffer->write_stamp,
2566 				  local_clock_stable ? "" :
2567 				  "If you just came from a suspend/resume,\n"
2568 				  "please switch to the trace global clock:\n"
2569 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2570 			add_timestamp = 1;
2571 		}
2572 	}
2573 
2574 	event = __rb_reserve_next(cpu_buffer, length, ts,
2575 				  delta, add_timestamp);
2576 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2577 		goto again;
2578 
2579 	if (!event)
2580 		goto out_fail;
2581 
2582 	return event;
2583 
2584  out_fail:
2585 	rb_end_commit(cpu_buffer);
2586 	return NULL;
2587 }
2588 
2589 #ifdef CONFIG_TRACING
2590 
2591 /*
2592  * The lock and unlock are done within a preempt disable section.
2593  * The current_context per_cpu variable can only be modified
2594  * by the current task between lock and unlock. But it can
2595  * be modified more than once via an interrupt. To pass this
2596  * information from the lock to the unlock without having to
2597  * access the 'in_interrupt()' functions again (which do show
2598  * a bit of overhead in something as critical as function tracing,
2599  * we use a bitmask trick.
2600  *
2601  *  bit 0 =  NMI context
2602  *  bit 1 =  IRQ context
2603  *  bit 2 =  SoftIRQ context
2604  *  bit 3 =  normal context.
2605  *
2606  * This works because this is the order of contexts that can
2607  * preempt other contexts. A SoftIRQ never preempts an IRQ
2608  * context.
2609  *
2610  * When the context is determined, the corresponding bit is
2611  * checked and set (if it was set, then a recursion of that context
2612  * happened).
2613  *
2614  * On unlock, we need to clear this bit. To do so, just subtract
2615  * 1 from the current_context and AND it to itself.
2616  *
2617  * (binary)
2618  *  101 - 1 = 100
2619  *  101 & 100 = 100 (clearing bit zero)
2620  *
2621  *  1010 - 1 = 1001
2622  *  1010 & 1001 = 1000 (clearing bit 1)
2623  *
2624  * The least significant bit can be cleared this way, and it
2625  * just so happens that it is the same bit corresponding to
2626  * the current context.
2627  */
2628 static DEFINE_PER_CPU(unsigned int, current_context);
2629 
trace_recursive_lock(void)2630 static __always_inline int trace_recursive_lock(void)
2631 {
2632 	unsigned int val = this_cpu_read(current_context);
2633 	int bit;
2634 
2635 	if (in_interrupt()) {
2636 		if (in_nmi())
2637 			bit = 0;
2638 		else if (in_irq())
2639 			bit = 1;
2640 		else
2641 			bit = 2;
2642 	} else
2643 		bit = 3;
2644 
2645 	if (unlikely(val & (1 << bit)))
2646 		return 1;
2647 
2648 	val |= (1 << bit);
2649 	this_cpu_write(current_context, val);
2650 
2651 	return 0;
2652 }
2653 
trace_recursive_unlock(void)2654 static __always_inline void trace_recursive_unlock(void)
2655 {
2656 	unsigned int val = this_cpu_read(current_context);
2657 
2658 	val--;
2659 	val &= this_cpu_read(current_context);
2660 	this_cpu_write(current_context, val);
2661 }
2662 
2663 #else
2664 
2665 #define trace_recursive_lock()		(0)
2666 #define trace_recursive_unlock()	do { } while (0)
2667 
2668 #endif
2669 
2670 /**
2671  * ring_buffer_lock_reserve - reserve a part of the buffer
2672  * @buffer: the ring buffer to reserve from
2673  * @length: the length of the data to reserve (excluding event header)
2674  *
2675  * Returns a reseverd event on the ring buffer to copy directly to.
2676  * The user of this interface will need to get the body to write into
2677  * and can use the ring_buffer_event_data() interface.
2678  *
2679  * The length is the length of the data needed, not the event length
2680  * which also includes the event header.
2681  *
2682  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2683  * If NULL is returned, then nothing has been allocated or locked.
2684  */
2685 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2686 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2687 {
2688 	struct ring_buffer_per_cpu *cpu_buffer;
2689 	struct ring_buffer_event *event;
2690 	int cpu;
2691 
2692 	if (ring_buffer_flags != RB_BUFFERS_ON)
2693 		return NULL;
2694 
2695 	/* If we are tracing schedule, we don't want to recurse */
2696 	preempt_disable_notrace();
2697 
2698 	if (atomic_read(&buffer->record_disabled))
2699 		goto out_nocheck;
2700 
2701 	if (trace_recursive_lock())
2702 		goto out_nocheck;
2703 
2704 	cpu = raw_smp_processor_id();
2705 
2706 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2707 		goto out;
2708 
2709 	cpu_buffer = buffer->buffers[cpu];
2710 
2711 	if (atomic_read(&cpu_buffer->record_disabled))
2712 		goto out;
2713 
2714 	if (length > BUF_MAX_DATA_SIZE)
2715 		goto out;
2716 
2717 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2718 	if (!event)
2719 		goto out;
2720 
2721 	return event;
2722 
2723  out:
2724 	trace_recursive_unlock();
2725 
2726  out_nocheck:
2727 	preempt_enable_notrace();
2728 	return NULL;
2729 }
2730 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2731 
2732 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2733 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2734 		      struct ring_buffer_event *event)
2735 {
2736 	u64 delta;
2737 
2738 	/*
2739 	 * The event first in the commit queue updates the
2740 	 * time stamp.
2741 	 */
2742 	if (rb_event_is_commit(cpu_buffer, event)) {
2743 		/*
2744 		 * A commit event that is first on a page
2745 		 * updates the write timestamp with the page stamp
2746 		 */
2747 		if (!rb_event_index(event))
2748 			cpu_buffer->write_stamp =
2749 				cpu_buffer->commit_page->page->time_stamp;
2750 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2751 			delta = event->array[0];
2752 			delta <<= TS_SHIFT;
2753 			delta += event->time_delta;
2754 			cpu_buffer->write_stamp += delta;
2755 		} else
2756 			cpu_buffer->write_stamp += event->time_delta;
2757 	}
2758 }
2759 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2760 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761 		      struct ring_buffer_event *event)
2762 {
2763 	local_inc(&cpu_buffer->entries);
2764 	rb_update_write_stamp(cpu_buffer, event);
2765 	rb_end_commit(cpu_buffer);
2766 }
2767 
2768 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2769 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2770 {
2771 	if (buffer->irq_work.waiters_pending) {
2772 		buffer->irq_work.waiters_pending = false;
2773 		/* irq_work_queue() supplies it's own memory barriers */
2774 		irq_work_queue(&buffer->irq_work.work);
2775 	}
2776 
2777 	if (cpu_buffer->irq_work.waiters_pending) {
2778 		cpu_buffer->irq_work.waiters_pending = false;
2779 		/* irq_work_queue() supplies it's own memory barriers */
2780 		irq_work_queue(&cpu_buffer->irq_work.work);
2781 	}
2782 }
2783 
2784 /**
2785  * ring_buffer_unlock_commit - commit a reserved
2786  * @buffer: The buffer to commit to
2787  * @event: The event pointer to commit.
2788  *
2789  * This commits the data to the ring buffer, and releases any locks held.
2790  *
2791  * Must be paired with ring_buffer_lock_reserve.
2792  */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2793 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2794 			      struct ring_buffer_event *event)
2795 {
2796 	struct ring_buffer_per_cpu *cpu_buffer;
2797 	int cpu = raw_smp_processor_id();
2798 
2799 	cpu_buffer = buffer->buffers[cpu];
2800 
2801 	rb_commit(cpu_buffer, event);
2802 
2803 	rb_wakeups(buffer, cpu_buffer);
2804 
2805 	trace_recursive_unlock();
2806 
2807 	preempt_enable_notrace();
2808 
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2812 
rb_event_discard(struct ring_buffer_event * event)2813 static inline void rb_event_discard(struct ring_buffer_event *event)
2814 {
2815 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2816 		event = skip_time_extend(event);
2817 
2818 	/* array[0] holds the actual length for the discarded event */
2819 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2820 	event->type_len = RINGBUF_TYPE_PADDING;
2821 	/* time delta must be non zero */
2822 	if (!event->time_delta)
2823 		event->time_delta = 1;
2824 }
2825 
2826 /*
2827  * Decrement the entries to the page that an event is on.
2828  * The event does not even need to exist, only the pointer
2829  * to the page it is on. This may only be called before the commit
2830  * takes place.
2831  */
2832 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2833 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2834 		   struct ring_buffer_event *event)
2835 {
2836 	unsigned long addr = (unsigned long)event;
2837 	struct buffer_page *bpage = cpu_buffer->commit_page;
2838 	struct buffer_page *start;
2839 
2840 	addr &= PAGE_MASK;
2841 
2842 	/* Do the likely case first */
2843 	if (likely(bpage->page == (void *)addr)) {
2844 		local_dec(&bpage->entries);
2845 		return;
2846 	}
2847 
2848 	/*
2849 	 * Because the commit page may be on the reader page we
2850 	 * start with the next page and check the end loop there.
2851 	 */
2852 	rb_inc_page(cpu_buffer, &bpage);
2853 	start = bpage;
2854 	do {
2855 		if (bpage->page == (void *)addr) {
2856 			local_dec(&bpage->entries);
2857 			return;
2858 		}
2859 		rb_inc_page(cpu_buffer, &bpage);
2860 	} while (bpage != start);
2861 
2862 	/* commit not part of this buffer?? */
2863 	RB_WARN_ON(cpu_buffer, 1);
2864 }
2865 
2866 /**
2867  * ring_buffer_commit_discard - discard an event that has not been committed
2868  * @buffer: the ring buffer
2869  * @event: non committed event to discard
2870  *
2871  * Sometimes an event that is in the ring buffer needs to be ignored.
2872  * This function lets the user discard an event in the ring buffer
2873  * and then that event will not be read later.
2874  *
2875  * This function only works if it is called before the the item has been
2876  * committed. It will try to free the event from the ring buffer
2877  * if another event has not been added behind it.
2878  *
2879  * If another event has been added behind it, it will set the event
2880  * up as discarded, and perform the commit.
2881  *
2882  * If this function is called, do not call ring_buffer_unlock_commit on
2883  * the event.
2884  */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2885 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2886 				struct ring_buffer_event *event)
2887 {
2888 	struct ring_buffer_per_cpu *cpu_buffer;
2889 	int cpu;
2890 
2891 	/* The event is discarded regardless */
2892 	rb_event_discard(event);
2893 
2894 	cpu = smp_processor_id();
2895 	cpu_buffer = buffer->buffers[cpu];
2896 
2897 	/*
2898 	 * This must only be called if the event has not been
2899 	 * committed yet. Thus we can assume that preemption
2900 	 * is still disabled.
2901 	 */
2902 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2903 
2904 	rb_decrement_entry(cpu_buffer, event);
2905 	if (rb_try_to_discard(cpu_buffer, event))
2906 		goto out;
2907 
2908 	/*
2909 	 * The commit is still visible by the reader, so we
2910 	 * must still update the timestamp.
2911 	 */
2912 	rb_update_write_stamp(cpu_buffer, event);
2913  out:
2914 	rb_end_commit(cpu_buffer);
2915 
2916 	trace_recursive_unlock();
2917 
2918 	preempt_enable_notrace();
2919 
2920 }
2921 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2922 
2923 /**
2924  * ring_buffer_write - write data to the buffer without reserving
2925  * @buffer: The ring buffer to write to.
2926  * @length: The length of the data being written (excluding the event header)
2927  * @data: The data to write to the buffer.
2928  *
2929  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2930  * one function. If you already have the data to write to the buffer, it
2931  * may be easier to simply call this function.
2932  *
2933  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2934  * and not the length of the event which would hold the header.
2935  */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2936 int ring_buffer_write(struct ring_buffer *buffer,
2937 		      unsigned long length,
2938 		      void *data)
2939 {
2940 	struct ring_buffer_per_cpu *cpu_buffer;
2941 	struct ring_buffer_event *event;
2942 	void *body;
2943 	int ret = -EBUSY;
2944 	int cpu;
2945 
2946 	if (ring_buffer_flags != RB_BUFFERS_ON)
2947 		return -EBUSY;
2948 
2949 	preempt_disable_notrace();
2950 
2951 	if (atomic_read(&buffer->record_disabled))
2952 		goto out;
2953 
2954 	cpu = raw_smp_processor_id();
2955 
2956 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2957 		goto out;
2958 
2959 	cpu_buffer = buffer->buffers[cpu];
2960 
2961 	if (atomic_read(&cpu_buffer->record_disabled))
2962 		goto out;
2963 
2964 	if (length > BUF_MAX_DATA_SIZE)
2965 		goto out;
2966 
2967 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2968 	if (!event)
2969 		goto out;
2970 
2971 	body = rb_event_data(event);
2972 
2973 	memcpy(body, data, length);
2974 
2975 	rb_commit(cpu_buffer, event);
2976 
2977 	rb_wakeups(buffer, cpu_buffer);
2978 
2979 	ret = 0;
2980  out:
2981 	preempt_enable_notrace();
2982 
2983 	return ret;
2984 }
2985 EXPORT_SYMBOL_GPL(ring_buffer_write);
2986 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)2987 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2988 {
2989 	struct buffer_page *reader = cpu_buffer->reader_page;
2990 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2991 	struct buffer_page *commit = cpu_buffer->commit_page;
2992 
2993 	/* In case of error, head will be NULL */
2994 	if (unlikely(!head))
2995 		return 1;
2996 
2997 	return reader->read == rb_page_commit(reader) &&
2998 		(commit == reader ||
2999 		 (commit == head &&
3000 		  head->read == rb_page_commit(commit)));
3001 }
3002 
3003 /**
3004  * ring_buffer_record_disable - stop all writes into the buffer
3005  * @buffer: The ring buffer to stop writes to.
3006  *
3007  * This prevents all writes to the buffer. Any attempt to write
3008  * to the buffer after this will fail and return NULL.
3009  *
3010  * The caller should call synchronize_sched() after this.
3011  */
ring_buffer_record_disable(struct ring_buffer * buffer)3012 void ring_buffer_record_disable(struct ring_buffer *buffer)
3013 {
3014 	atomic_inc(&buffer->record_disabled);
3015 }
3016 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3017 
3018 /**
3019  * ring_buffer_record_enable - enable writes to the buffer
3020  * @buffer: The ring buffer to enable writes
3021  *
3022  * Note, multiple disables will need the same number of enables
3023  * to truly enable the writing (much like preempt_disable).
3024  */
ring_buffer_record_enable(struct ring_buffer * buffer)3025 void ring_buffer_record_enable(struct ring_buffer *buffer)
3026 {
3027 	atomic_dec(&buffer->record_disabled);
3028 }
3029 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3030 
3031 /**
3032  * ring_buffer_record_off - stop all writes into the buffer
3033  * @buffer: The ring buffer to stop writes to.
3034  *
3035  * This prevents all writes to the buffer. Any attempt to write
3036  * to the buffer after this will fail and return NULL.
3037  *
3038  * This is different than ring_buffer_record_disable() as
3039  * it works like an on/off switch, where as the disable() version
3040  * must be paired with a enable().
3041  */
ring_buffer_record_off(struct ring_buffer * buffer)3042 void ring_buffer_record_off(struct ring_buffer *buffer)
3043 {
3044 	unsigned int rd;
3045 	unsigned int new_rd;
3046 
3047 	do {
3048 		rd = atomic_read(&buffer->record_disabled);
3049 		new_rd = rd | RB_BUFFER_OFF;
3050 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3053 
3054 /**
3055  * ring_buffer_record_on - restart writes into the buffer
3056  * @buffer: The ring buffer to start writes to.
3057  *
3058  * This enables all writes to the buffer that was disabled by
3059  * ring_buffer_record_off().
3060  *
3061  * This is different than ring_buffer_record_enable() as
3062  * it works like an on/off switch, where as the enable() version
3063  * must be paired with a disable().
3064  */
ring_buffer_record_on(struct ring_buffer * buffer)3065 void ring_buffer_record_on(struct ring_buffer *buffer)
3066 {
3067 	unsigned int rd;
3068 	unsigned int new_rd;
3069 
3070 	do {
3071 		rd = atomic_read(&buffer->record_disabled);
3072 		new_rd = rd & ~RB_BUFFER_OFF;
3073 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3074 }
3075 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3076 
3077 /**
3078  * ring_buffer_record_is_on - return true if the ring buffer can write
3079  * @buffer: The ring buffer to see if write is enabled
3080  *
3081  * Returns true if the ring buffer is in a state that it accepts writes.
3082  */
ring_buffer_record_is_on(struct ring_buffer * buffer)3083 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3084 {
3085 	return !atomic_read(&buffer->record_disabled);
3086 }
3087 
3088 /**
3089  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3090  * @buffer: The ring buffer to stop writes to.
3091  * @cpu: The CPU buffer to stop
3092  *
3093  * This prevents all writes to the buffer. Any attempt to write
3094  * to the buffer after this will fail and return NULL.
3095  *
3096  * The caller should call synchronize_sched() after this.
3097  */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3098 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3099 {
3100 	struct ring_buffer_per_cpu *cpu_buffer;
3101 
3102 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3103 		return;
3104 
3105 	cpu_buffer = buffer->buffers[cpu];
3106 	atomic_inc(&cpu_buffer->record_disabled);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3109 
3110 /**
3111  * ring_buffer_record_enable_cpu - enable writes to the buffer
3112  * @buffer: The ring buffer to enable writes
3113  * @cpu: The CPU to enable.
3114  *
3115  * Note, multiple disables will need the same number of enables
3116  * to truly enable the writing (much like preempt_disable).
3117  */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3118 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3119 {
3120 	struct ring_buffer_per_cpu *cpu_buffer;
3121 
3122 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3123 		return;
3124 
3125 	cpu_buffer = buffer->buffers[cpu];
3126 	atomic_dec(&cpu_buffer->record_disabled);
3127 }
3128 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3129 
3130 /*
3131  * The total entries in the ring buffer is the running counter
3132  * of entries entered into the ring buffer, minus the sum of
3133  * the entries read from the ring buffer and the number of
3134  * entries that were overwritten.
3135  */
3136 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3137 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3138 {
3139 	return local_read(&cpu_buffer->entries) -
3140 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3141 }
3142 
3143 /**
3144  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3145  * @buffer: The ring buffer
3146  * @cpu: The per CPU buffer to read from.
3147  */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3148 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3149 {
3150 	unsigned long flags;
3151 	struct ring_buffer_per_cpu *cpu_buffer;
3152 	struct buffer_page *bpage;
3153 	u64 ret = 0;
3154 
3155 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156 		return 0;
3157 
3158 	cpu_buffer = buffer->buffers[cpu];
3159 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3160 	/*
3161 	 * if the tail is on reader_page, oldest time stamp is on the reader
3162 	 * page
3163 	 */
3164 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3165 		bpage = cpu_buffer->reader_page;
3166 	else
3167 		bpage = rb_set_head_page(cpu_buffer);
3168 	if (bpage)
3169 		ret = bpage->page->time_stamp;
3170 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3171 
3172 	return ret;
3173 }
3174 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3175 
3176 /**
3177  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3178  * @buffer: The ring buffer
3179  * @cpu: The per CPU buffer to read from.
3180  */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3181 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3182 {
3183 	struct ring_buffer_per_cpu *cpu_buffer;
3184 	unsigned long ret;
3185 
3186 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3187 		return 0;
3188 
3189 	cpu_buffer = buffer->buffers[cpu];
3190 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3191 
3192 	return ret;
3193 }
3194 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3195 
3196 /**
3197  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3198  * @buffer: The ring buffer
3199  * @cpu: The per CPU buffer to get the entries from.
3200  */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3201 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3202 {
3203 	struct ring_buffer_per_cpu *cpu_buffer;
3204 
3205 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3206 		return 0;
3207 
3208 	cpu_buffer = buffer->buffers[cpu];
3209 
3210 	return rb_num_of_entries(cpu_buffer);
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3213 
3214 /**
3215  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3216  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3217  * @buffer: The ring buffer
3218  * @cpu: The per CPU buffer to get the number of overruns from
3219  */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3220 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3221 {
3222 	struct ring_buffer_per_cpu *cpu_buffer;
3223 	unsigned long ret;
3224 
3225 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3226 		return 0;
3227 
3228 	cpu_buffer = buffer->buffers[cpu];
3229 	ret = local_read(&cpu_buffer->overrun);
3230 
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3234 
3235 /**
3236  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3237  * commits failing due to the buffer wrapping around while there are uncommitted
3238  * events, such as during an interrupt storm.
3239  * @buffer: The ring buffer
3240  * @cpu: The per CPU buffer to get the number of overruns from
3241  */
3242 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3243 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3244 {
3245 	struct ring_buffer_per_cpu *cpu_buffer;
3246 	unsigned long ret;
3247 
3248 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3249 		return 0;
3250 
3251 	cpu_buffer = buffer->buffers[cpu];
3252 	ret = local_read(&cpu_buffer->commit_overrun);
3253 
3254 	return ret;
3255 }
3256 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3257 
3258 /**
3259  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3260  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3261  * @buffer: The ring buffer
3262  * @cpu: The per CPU buffer to get the number of overruns from
3263  */
3264 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3265 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3266 {
3267 	struct ring_buffer_per_cpu *cpu_buffer;
3268 	unsigned long ret;
3269 
3270 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3271 		return 0;
3272 
3273 	cpu_buffer = buffer->buffers[cpu];
3274 	ret = local_read(&cpu_buffer->dropped_events);
3275 
3276 	return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3279 
3280 /**
3281  * ring_buffer_read_events_cpu - get the number of events successfully read
3282  * @buffer: The ring buffer
3283  * @cpu: The per CPU buffer to get the number of events read
3284  */
3285 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3286 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3287 {
3288 	struct ring_buffer_per_cpu *cpu_buffer;
3289 
3290 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3291 		return 0;
3292 
3293 	cpu_buffer = buffer->buffers[cpu];
3294 	return cpu_buffer->read;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3297 
3298 /**
3299  * ring_buffer_entries - get the number of entries in a buffer
3300  * @buffer: The ring buffer
3301  *
3302  * Returns the total number of entries in the ring buffer
3303  * (all CPU entries)
3304  */
ring_buffer_entries(struct ring_buffer * buffer)3305 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3306 {
3307 	struct ring_buffer_per_cpu *cpu_buffer;
3308 	unsigned long entries = 0;
3309 	int cpu;
3310 
3311 	/* if you care about this being correct, lock the buffer */
3312 	for_each_buffer_cpu(buffer, cpu) {
3313 		cpu_buffer = buffer->buffers[cpu];
3314 		entries += rb_num_of_entries(cpu_buffer);
3315 	}
3316 
3317 	return entries;
3318 }
3319 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3320 
3321 /**
3322  * ring_buffer_overruns - get the number of overruns in buffer
3323  * @buffer: The ring buffer
3324  *
3325  * Returns the total number of overruns in the ring buffer
3326  * (all CPU entries)
3327  */
ring_buffer_overruns(struct ring_buffer * buffer)3328 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3329 {
3330 	struct ring_buffer_per_cpu *cpu_buffer;
3331 	unsigned long overruns = 0;
3332 	int cpu;
3333 
3334 	/* if you care about this being correct, lock the buffer */
3335 	for_each_buffer_cpu(buffer, cpu) {
3336 		cpu_buffer = buffer->buffers[cpu];
3337 		overruns += local_read(&cpu_buffer->overrun);
3338 	}
3339 
3340 	return overruns;
3341 }
3342 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3343 
rb_iter_reset(struct ring_buffer_iter * iter)3344 static void rb_iter_reset(struct ring_buffer_iter *iter)
3345 {
3346 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3347 
3348 	/* Iterator usage is expected to have record disabled */
3349 	if (list_empty(&cpu_buffer->reader_page->list)) {
3350 		iter->head_page = rb_set_head_page(cpu_buffer);
3351 		if (unlikely(!iter->head_page))
3352 			return;
3353 		iter->head = iter->head_page->read;
3354 	} else {
3355 		iter->head_page = cpu_buffer->reader_page;
3356 		iter->head = cpu_buffer->reader_page->read;
3357 	}
3358 	if (iter->head)
3359 		iter->read_stamp = cpu_buffer->read_stamp;
3360 	else
3361 		iter->read_stamp = iter->head_page->page->time_stamp;
3362 	iter->cache_reader_page = cpu_buffer->reader_page;
3363 	iter->cache_read = cpu_buffer->read;
3364 }
3365 
3366 /**
3367  * ring_buffer_iter_reset - reset an iterator
3368  * @iter: The iterator to reset
3369  *
3370  * Resets the iterator, so that it will start from the beginning
3371  * again.
3372  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3373 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3374 {
3375 	struct ring_buffer_per_cpu *cpu_buffer;
3376 	unsigned long flags;
3377 
3378 	if (!iter)
3379 		return;
3380 
3381 	cpu_buffer = iter->cpu_buffer;
3382 
3383 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3384 	rb_iter_reset(iter);
3385 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3386 }
3387 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3388 
3389 /**
3390  * ring_buffer_iter_empty - check if an iterator has no more to read
3391  * @iter: The iterator to check
3392  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3393 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3394 {
3395 	struct ring_buffer_per_cpu *cpu_buffer;
3396 
3397 	cpu_buffer = iter->cpu_buffer;
3398 
3399 	return iter->head_page == cpu_buffer->commit_page &&
3400 		iter->head == rb_commit_index(cpu_buffer);
3401 }
3402 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3403 
3404 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3405 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3406 		     struct ring_buffer_event *event)
3407 {
3408 	u64 delta;
3409 
3410 	switch (event->type_len) {
3411 	case RINGBUF_TYPE_PADDING:
3412 		return;
3413 
3414 	case RINGBUF_TYPE_TIME_EXTEND:
3415 		delta = event->array[0];
3416 		delta <<= TS_SHIFT;
3417 		delta += event->time_delta;
3418 		cpu_buffer->read_stamp += delta;
3419 		return;
3420 
3421 	case RINGBUF_TYPE_TIME_STAMP:
3422 		/* FIXME: not implemented */
3423 		return;
3424 
3425 	case RINGBUF_TYPE_DATA:
3426 		cpu_buffer->read_stamp += event->time_delta;
3427 		return;
3428 
3429 	default:
3430 		BUG();
3431 	}
3432 	return;
3433 }
3434 
3435 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3436 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3437 			  struct ring_buffer_event *event)
3438 {
3439 	u64 delta;
3440 
3441 	switch (event->type_len) {
3442 	case RINGBUF_TYPE_PADDING:
3443 		return;
3444 
3445 	case RINGBUF_TYPE_TIME_EXTEND:
3446 		delta = event->array[0];
3447 		delta <<= TS_SHIFT;
3448 		delta += event->time_delta;
3449 		iter->read_stamp += delta;
3450 		return;
3451 
3452 	case RINGBUF_TYPE_TIME_STAMP:
3453 		/* FIXME: not implemented */
3454 		return;
3455 
3456 	case RINGBUF_TYPE_DATA:
3457 		iter->read_stamp += event->time_delta;
3458 		return;
3459 
3460 	default:
3461 		BUG();
3462 	}
3463 	return;
3464 }
3465 
3466 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3467 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3468 {
3469 	struct buffer_page *reader = NULL;
3470 	unsigned long overwrite;
3471 	unsigned long flags;
3472 	int nr_loops = 0;
3473 	int ret;
3474 
3475 	local_irq_save(flags);
3476 	arch_spin_lock(&cpu_buffer->lock);
3477 
3478  again:
3479 	/*
3480 	 * This should normally only loop twice. But because the
3481 	 * start of the reader inserts an empty page, it causes
3482 	 * a case where we will loop three times. There should be no
3483 	 * reason to loop four times (that I know of).
3484 	 */
3485 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3486 		reader = NULL;
3487 		goto out;
3488 	}
3489 
3490 	reader = cpu_buffer->reader_page;
3491 
3492 	/* If there's more to read, return this page */
3493 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3494 		goto out;
3495 
3496 	/* Never should we have an index greater than the size */
3497 	if (RB_WARN_ON(cpu_buffer,
3498 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3499 		goto out;
3500 
3501 	/* check if we caught up to the tail */
3502 	reader = NULL;
3503 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3504 		goto out;
3505 
3506 	/* Don't bother swapping if the ring buffer is empty */
3507 	if (rb_num_of_entries(cpu_buffer) == 0)
3508 		goto out;
3509 
3510 	/*
3511 	 * Reset the reader page to size zero.
3512 	 */
3513 	local_set(&cpu_buffer->reader_page->write, 0);
3514 	local_set(&cpu_buffer->reader_page->entries, 0);
3515 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3516 	cpu_buffer->reader_page->real_end = 0;
3517 
3518  spin:
3519 	/*
3520 	 * Splice the empty reader page into the list around the head.
3521 	 */
3522 	reader = rb_set_head_page(cpu_buffer);
3523 	if (!reader)
3524 		goto out;
3525 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3526 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3527 
3528 	/*
3529 	 * cpu_buffer->pages just needs to point to the buffer, it
3530 	 *  has no specific buffer page to point to. Lets move it out
3531 	 *  of our way so we don't accidentally swap it.
3532 	 */
3533 	cpu_buffer->pages = reader->list.prev;
3534 
3535 	/* The reader page will be pointing to the new head */
3536 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3537 
3538 	/*
3539 	 * We want to make sure we read the overruns after we set up our
3540 	 * pointers to the next object. The writer side does a
3541 	 * cmpxchg to cross pages which acts as the mb on the writer
3542 	 * side. Note, the reader will constantly fail the swap
3543 	 * while the writer is updating the pointers, so this
3544 	 * guarantees that the overwrite recorded here is the one we
3545 	 * want to compare with the last_overrun.
3546 	 */
3547 	smp_mb();
3548 	overwrite = local_read(&(cpu_buffer->overrun));
3549 
3550 	/*
3551 	 * Here's the tricky part.
3552 	 *
3553 	 * We need to move the pointer past the header page.
3554 	 * But we can only do that if a writer is not currently
3555 	 * moving it. The page before the header page has the
3556 	 * flag bit '1' set if it is pointing to the page we want.
3557 	 * but if the writer is in the process of moving it
3558 	 * than it will be '2' or already moved '0'.
3559 	 */
3560 
3561 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3562 
3563 	/*
3564 	 * If we did not convert it, then we must try again.
3565 	 */
3566 	if (!ret)
3567 		goto spin;
3568 
3569 	/*
3570 	 * Yeah! We succeeded in replacing the page.
3571 	 *
3572 	 * Now make the new head point back to the reader page.
3573 	 */
3574 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3575 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3576 
3577 	/* Finally update the reader page to the new head */
3578 	cpu_buffer->reader_page = reader;
3579 	rb_reset_reader_page(cpu_buffer);
3580 
3581 	if (overwrite != cpu_buffer->last_overrun) {
3582 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3583 		cpu_buffer->last_overrun = overwrite;
3584 	}
3585 
3586 	goto again;
3587 
3588  out:
3589 	arch_spin_unlock(&cpu_buffer->lock);
3590 	local_irq_restore(flags);
3591 
3592 	return reader;
3593 }
3594 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3595 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3596 {
3597 	struct ring_buffer_event *event;
3598 	struct buffer_page *reader;
3599 	unsigned length;
3600 
3601 	reader = rb_get_reader_page(cpu_buffer);
3602 
3603 	/* This function should not be called when buffer is empty */
3604 	if (RB_WARN_ON(cpu_buffer, !reader))
3605 		return;
3606 
3607 	event = rb_reader_event(cpu_buffer);
3608 
3609 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3610 		cpu_buffer->read++;
3611 
3612 	rb_update_read_stamp(cpu_buffer, event);
3613 
3614 	length = rb_event_length(event);
3615 	cpu_buffer->reader_page->read += length;
3616 }
3617 
rb_advance_iter(struct ring_buffer_iter * iter)3618 static void rb_advance_iter(struct ring_buffer_iter *iter)
3619 {
3620 	struct ring_buffer_per_cpu *cpu_buffer;
3621 	struct ring_buffer_event *event;
3622 	unsigned length;
3623 
3624 	cpu_buffer = iter->cpu_buffer;
3625 
3626 	/*
3627 	 * Check if we are at the end of the buffer.
3628 	 */
3629 	if (iter->head >= rb_page_size(iter->head_page)) {
3630 		/* discarded commits can make the page empty */
3631 		if (iter->head_page == cpu_buffer->commit_page)
3632 			return;
3633 		rb_inc_iter(iter);
3634 		return;
3635 	}
3636 
3637 	event = rb_iter_head_event(iter);
3638 
3639 	length = rb_event_length(event);
3640 
3641 	/*
3642 	 * This should not be called to advance the header if we are
3643 	 * at the tail of the buffer.
3644 	 */
3645 	if (RB_WARN_ON(cpu_buffer,
3646 		       (iter->head_page == cpu_buffer->commit_page) &&
3647 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3648 		return;
3649 
3650 	rb_update_iter_read_stamp(iter, event);
3651 
3652 	iter->head += length;
3653 
3654 	/* check for end of page padding */
3655 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3656 	    (iter->head_page != cpu_buffer->commit_page))
3657 		rb_inc_iter(iter);
3658 }
3659 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3660 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3661 {
3662 	return cpu_buffer->lost_events;
3663 }
3664 
3665 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3666 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3667 	       unsigned long *lost_events)
3668 {
3669 	struct ring_buffer_event *event;
3670 	struct buffer_page *reader;
3671 	int nr_loops = 0;
3672 
3673  again:
3674 	/*
3675 	 * We repeat when a time extend is encountered.
3676 	 * Since the time extend is always attached to a data event,
3677 	 * we should never loop more than once.
3678 	 * (We never hit the following condition more than twice).
3679 	 */
3680 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3681 		return NULL;
3682 
3683 	reader = rb_get_reader_page(cpu_buffer);
3684 	if (!reader)
3685 		return NULL;
3686 
3687 	event = rb_reader_event(cpu_buffer);
3688 
3689 	switch (event->type_len) {
3690 	case RINGBUF_TYPE_PADDING:
3691 		if (rb_null_event(event))
3692 			RB_WARN_ON(cpu_buffer, 1);
3693 		/*
3694 		 * Because the writer could be discarding every
3695 		 * event it creates (which would probably be bad)
3696 		 * if we were to go back to "again" then we may never
3697 		 * catch up, and will trigger the warn on, or lock
3698 		 * the box. Return the padding, and we will release
3699 		 * the current locks, and try again.
3700 		 */
3701 		return event;
3702 
3703 	case RINGBUF_TYPE_TIME_EXTEND:
3704 		/* Internal data, OK to advance */
3705 		rb_advance_reader(cpu_buffer);
3706 		goto again;
3707 
3708 	case RINGBUF_TYPE_TIME_STAMP:
3709 		/* FIXME: not implemented */
3710 		rb_advance_reader(cpu_buffer);
3711 		goto again;
3712 
3713 	case RINGBUF_TYPE_DATA:
3714 		if (ts) {
3715 			*ts = cpu_buffer->read_stamp + event->time_delta;
3716 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3717 							 cpu_buffer->cpu, ts);
3718 		}
3719 		if (lost_events)
3720 			*lost_events = rb_lost_events(cpu_buffer);
3721 		return event;
3722 
3723 	default:
3724 		BUG();
3725 	}
3726 
3727 	return NULL;
3728 }
3729 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3730 
3731 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3732 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3733 {
3734 	struct ring_buffer *buffer;
3735 	struct ring_buffer_per_cpu *cpu_buffer;
3736 	struct ring_buffer_event *event;
3737 	int nr_loops = 0;
3738 
3739 	cpu_buffer = iter->cpu_buffer;
3740 	buffer = cpu_buffer->buffer;
3741 
3742 	/*
3743 	 * Check if someone performed a consuming read to
3744 	 * the buffer. A consuming read invalidates the iterator
3745 	 * and we need to reset the iterator in this case.
3746 	 */
3747 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3748 		     iter->cache_reader_page != cpu_buffer->reader_page))
3749 		rb_iter_reset(iter);
3750 
3751  again:
3752 	if (ring_buffer_iter_empty(iter))
3753 		return NULL;
3754 
3755 	/*
3756 	 * We repeat when a time extend is encountered.
3757 	 * Since the time extend is always attached to a data event,
3758 	 * we should never loop more than once.
3759 	 * (We never hit the following condition more than twice).
3760 	 */
3761 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3762 		return NULL;
3763 
3764 	if (rb_per_cpu_empty(cpu_buffer))
3765 		return NULL;
3766 
3767 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3768 		rb_inc_iter(iter);
3769 		goto again;
3770 	}
3771 
3772 	event = rb_iter_head_event(iter);
3773 
3774 	switch (event->type_len) {
3775 	case RINGBUF_TYPE_PADDING:
3776 		if (rb_null_event(event)) {
3777 			rb_inc_iter(iter);
3778 			goto again;
3779 		}
3780 		rb_advance_iter(iter);
3781 		return event;
3782 
3783 	case RINGBUF_TYPE_TIME_EXTEND:
3784 		/* Internal data, OK to advance */
3785 		rb_advance_iter(iter);
3786 		goto again;
3787 
3788 	case RINGBUF_TYPE_TIME_STAMP:
3789 		/* FIXME: not implemented */
3790 		rb_advance_iter(iter);
3791 		goto again;
3792 
3793 	case RINGBUF_TYPE_DATA:
3794 		if (ts) {
3795 			*ts = iter->read_stamp + event->time_delta;
3796 			ring_buffer_normalize_time_stamp(buffer,
3797 							 cpu_buffer->cpu, ts);
3798 		}
3799 		return event;
3800 
3801 	default:
3802 		BUG();
3803 	}
3804 
3805 	return NULL;
3806 }
3807 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3808 
rb_ok_to_lock(void)3809 static inline int rb_ok_to_lock(void)
3810 {
3811 	/*
3812 	 * If an NMI die dumps out the content of the ring buffer
3813 	 * do not grab locks. We also permanently disable the ring
3814 	 * buffer too. A one time deal is all you get from reading
3815 	 * the ring buffer from an NMI.
3816 	 */
3817 	if (likely(!in_nmi()))
3818 		return 1;
3819 
3820 	tracing_off_permanent();
3821 	return 0;
3822 }
3823 
3824 /**
3825  * ring_buffer_peek - peek at the next event to be read
3826  * @buffer: The ring buffer to read
3827  * @cpu: The cpu to peak at
3828  * @ts: The timestamp counter of this event.
3829  * @lost_events: a variable to store if events were lost (may be NULL)
3830  *
3831  * This will return the event that will be read next, but does
3832  * not consume the data.
3833  */
3834 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3835 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3836 		 unsigned long *lost_events)
3837 {
3838 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3839 	struct ring_buffer_event *event;
3840 	unsigned long flags;
3841 	int dolock;
3842 
3843 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3844 		return NULL;
3845 
3846 	dolock = rb_ok_to_lock();
3847  again:
3848 	local_irq_save(flags);
3849 	if (dolock)
3850 		raw_spin_lock(&cpu_buffer->reader_lock);
3851 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3852 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3853 		rb_advance_reader(cpu_buffer);
3854 	if (dolock)
3855 		raw_spin_unlock(&cpu_buffer->reader_lock);
3856 	local_irq_restore(flags);
3857 
3858 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3859 		goto again;
3860 
3861 	return event;
3862 }
3863 
3864 /**
3865  * ring_buffer_iter_peek - peek at the next event to be read
3866  * @iter: The ring buffer iterator
3867  * @ts: The timestamp counter of this event.
3868  *
3869  * This will return the event that will be read next, but does
3870  * not increment the iterator.
3871  */
3872 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3873 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3874 {
3875 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3876 	struct ring_buffer_event *event;
3877 	unsigned long flags;
3878 
3879  again:
3880 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3881 	event = rb_iter_peek(iter, ts);
3882 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3883 
3884 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3885 		goto again;
3886 
3887 	return event;
3888 }
3889 
3890 /**
3891  * ring_buffer_consume - return an event and consume it
3892  * @buffer: The ring buffer to get the next event from
3893  * @cpu: the cpu to read the buffer from
3894  * @ts: a variable to store the timestamp (may be NULL)
3895  * @lost_events: a variable to store if events were lost (may be NULL)
3896  *
3897  * Returns the next event in the ring buffer, and that event is consumed.
3898  * Meaning, that sequential reads will keep returning a different event,
3899  * and eventually empty the ring buffer if the producer is slower.
3900  */
3901 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3902 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3903 		    unsigned long *lost_events)
3904 {
3905 	struct ring_buffer_per_cpu *cpu_buffer;
3906 	struct ring_buffer_event *event = NULL;
3907 	unsigned long flags;
3908 	int dolock;
3909 
3910 	dolock = rb_ok_to_lock();
3911 
3912  again:
3913 	/* might be called in atomic */
3914 	preempt_disable();
3915 
3916 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3917 		goto out;
3918 
3919 	cpu_buffer = buffer->buffers[cpu];
3920 	local_irq_save(flags);
3921 	if (dolock)
3922 		raw_spin_lock(&cpu_buffer->reader_lock);
3923 
3924 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3925 	if (event) {
3926 		cpu_buffer->lost_events = 0;
3927 		rb_advance_reader(cpu_buffer);
3928 	}
3929 
3930 	if (dolock)
3931 		raw_spin_unlock(&cpu_buffer->reader_lock);
3932 	local_irq_restore(flags);
3933 
3934  out:
3935 	preempt_enable();
3936 
3937 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3938 		goto again;
3939 
3940 	return event;
3941 }
3942 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3943 
3944 /**
3945  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3946  * @buffer: The ring buffer to read from
3947  * @cpu: The cpu buffer to iterate over
3948  *
3949  * This performs the initial preparations necessary to iterate
3950  * through the buffer.  Memory is allocated, buffer recording
3951  * is disabled, and the iterator pointer is returned to the caller.
3952  *
3953  * Disabling buffer recordng prevents the reading from being
3954  * corrupted. This is not a consuming read, so a producer is not
3955  * expected.
3956  *
3957  * After a sequence of ring_buffer_read_prepare calls, the user is
3958  * expected to make at least one call to ring_buffer_prepare_sync.
3959  * Afterwards, ring_buffer_read_start is invoked to get things going
3960  * for real.
3961  *
3962  * This overall must be paired with ring_buffer_finish.
3963  */
3964 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)3965 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3966 {
3967 	struct ring_buffer_per_cpu *cpu_buffer;
3968 	struct ring_buffer_iter *iter;
3969 
3970 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3971 		return NULL;
3972 
3973 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3974 	if (!iter)
3975 		return NULL;
3976 
3977 	cpu_buffer = buffer->buffers[cpu];
3978 
3979 	iter->cpu_buffer = cpu_buffer;
3980 
3981 	atomic_inc(&buffer->resize_disabled);
3982 	atomic_inc(&cpu_buffer->record_disabled);
3983 
3984 	return iter;
3985 }
3986 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3987 
3988 /**
3989  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3990  *
3991  * All previously invoked ring_buffer_read_prepare calls to prepare
3992  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3993  * calls on those iterators are allowed.
3994  */
3995 void
ring_buffer_read_prepare_sync(void)3996 ring_buffer_read_prepare_sync(void)
3997 {
3998 	synchronize_sched();
3999 }
4000 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4001 
4002 /**
4003  * ring_buffer_read_start - start a non consuming read of the buffer
4004  * @iter: The iterator returned by ring_buffer_read_prepare
4005  *
4006  * This finalizes the startup of an iteration through the buffer.
4007  * The iterator comes from a call to ring_buffer_read_prepare and
4008  * an intervening ring_buffer_read_prepare_sync must have been
4009  * performed.
4010  *
4011  * Must be paired with ring_buffer_finish.
4012  */
4013 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4014 ring_buffer_read_start(struct ring_buffer_iter *iter)
4015 {
4016 	struct ring_buffer_per_cpu *cpu_buffer;
4017 	unsigned long flags;
4018 
4019 	if (!iter)
4020 		return;
4021 
4022 	cpu_buffer = iter->cpu_buffer;
4023 
4024 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4025 	arch_spin_lock(&cpu_buffer->lock);
4026 	rb_iter_reset(iter);
4027 	arch_spin_unlock(&cpu_buffer->lock);
4028 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4031 
4032 /**
4033  * ring_buffer_finish - finish reading the iterator of the buffer
4034  * @iter: The iterator retrieved by ring_buffer_start
4035  *
4036  * This re-enables the recording to the buffer, and frees the
4037  * iterator.
4038  */
4039 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4040 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4041 {
4042 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4043 	unsigned long flags;
4044 
4045 	/*
4046 	 * Ring buffer is disabled from recording, here's a good place
4047 	 * to check the integrity of the ring buffer.
4048 	 * Must prevent readers from trying to read, as the check
4049 	 * clears the HEAD page and readers require it.
4050 	 */
4051 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4052 	rb_check_pages(cpu_buffer);
4053 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4054 
4055 	atomic_dec(&cpu_buffer->record_disabled);
4056 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4057 	kfree(iter);
4058 }
4059 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4060 
4061 /**
4062  * ring_buffer_read - read the next item in the ring buffer by the iterator
4063  * @iter: The ring buffer iterator
4064  * @ts: The time stamp of the event read.
4065  *
4066  * This reads the next event in the ring buffer and increments the iterator.
4067  */
4068 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4069 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4070 {
4071 	struct ring_buffer_event *event;
4072 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4073 	unsigned long flags;
4074 
4075 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4076  again:
4077 	event = rb_iter_peek(iter, ts);
4078 	if (!event)
4079 		goto out;
4080 
4081 	if (event->type_len == RINGBUF_TYPE_PADDING)
4082 		goto again;
4083 
4084 	rb_advance_iter(iter);
4085  out:
4086 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087 
4088 	return event;
4089 }
4090 EXPORT_SYMBOL_GPL(ring_buffer_read);
4091 
4092 /**
4093  * ring_buffer_size - return the size of the ring buffer (in bytes)
4094  * @buffer: The ring buffer.
4095  */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4096 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4097 {
4098 	/*
4099 	 * Earlier, this method returned
4100 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4101 	 * Since the nr_pages field is now removed, we have converted this to
4102 	 * return the per cpu buffer value.
4103 	 */
4104 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4105 		return 0;
4106 
4107 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4108 }
4109 EXPORT_SYMBOL_GPL(ring_buffer_size);
4110 
4111 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4112 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4113 {
4114 	rb_head_page_deactivate(cpu_buffer);
4115 
4116 	cpu_buffer->head_page
4117 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4118 	local_set(&cpu_buffer->head_page->write, 0);
4119 	local_set(&cpu_buffer->head_page->entries, 0);
4120 	local_set(&cpu_buffer->head_page->page->commit, 0);
4121 
4122 	cpu_buffer->head_page->read = 0;
4123 
4124 	cpu_buffer->tail_page = cpu_buffer->head_page;
4125 	cpu_buffer->commit_page = cpu_buffer->head_page;
4126 
4127 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4128 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4129 	local_set(&cpu_buffer->reader_page->write, 0);
4130 	local_set(&cpu_buffer->reader_page->entries, 0);
4131 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4132 	cpu_buffer->reader_page->read = 0;
4133 
4134 	local_set(&cpu_buffer->entries_bytes, 0);
4135 	local_set(&cpu_buffer->overrun, 0);
4136 	local_set(&cpu_buffer->commit_overrun, 0);
4137 	local_set(&cpu_buffer->dropped_events, 0);
4138 	local_set(&cpu_buffer->entries, 0);
4139 	local_set(&cpu_buffer->committing, 0);
4140 	local_set(&cpu_buffer->commits, 0);
4141 	cpu_buffer->read = 0;
4142 	cpu_buffer->read_bytes = 0;
4143 
4144 	cpu_buffer->write_stamp = 0;
4145 	cpu_buffer->read_stamp = 0;
4146 
4147 	cpu_buffer->lost_events = 0;
4148 	cpu_buffer->last_overrun = 0;
4149 
4150 	rb_head_page_activate(cpu_buffer);
4151 }
4152 
4153 /**
4154  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4155  * @buffer: The ring buffer to reset a per cpu buffer of
4156  * @cpu: The CPU buffer to be reset
4157  */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4158 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4159 {
4160 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4161 	unsigned long flags;
4162 
4163 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 		return;
4165 
4166 	atomic_inc(&buffer->resize_disabled);
4167 	atomic_inc(&cpu_buffer->record_disabled);
4168 
4169 	/* Make sure all commits have finished */
4170 	synchronize_sched();
4171 
4172 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4173 
4174 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4175 		goto out;
4176 
4177 	arch_spin_lock(&cpu_buffer->lock);
4178 
4179 	rb_reset_cpu(cpu_buffer);
4180 
4181 	arch_spin_unlock(&cpu_buffer->lock);
4182 
4183  out:
4184 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4185 
4186 	atomic_dec(&cpu_buffer->record_disabled);
4187 	atomic_dec(&buffer->resize_disabled);
4188 }
4189 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4190 
4191 /**
4192  * ring_buffer_reset - reset a ring buffer
4193  * @buffer: The ring buffer to reset all cpu buffers
4194  */
ring_buffer_reset(struct ring_buffer * buffer)4195 void ring_buffer_reset(struct ring_buffer *buffer)
4196 {
4197 	int cpu;
4198 
4199 	for_each_buffer_cpu(buffer, cpu)
4200 		ring_buffer_reset_cpu(buffer, cpu);
4201 }
4202 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4203 
4204 /**
4205  * rind_buffer_empty - is the ring buffer empty?
4206  * @buffer: The ring buffer to test
4207  */
ring_buffer_empty(struct ring_buffer * buffer)4208 int ring_buffer_empty(struct ring_buffer *buffer)
4209 {
4210 	struct ring_buffer_per_cpu *cpu_buffer;
4211 	unsigned long flags;
4212 	int dolock;
4213 	int cpu;
4214 	int ret;
4215 
4216 	dolock = rb_ok_to_lock();
4217 
4218 	/* yes this is racy, but if you don't like the race, lock the buffer */
4219 	for_each_buffer_cpu(buffer, cpu) {
4220 		cpu_buffer = buffer->buffers[cpu];
4221 		local_irq_save(flags);
4222 		if (dolock)
4223 			raw_spin_lock(&cpu_buffer->reader_lock);
4224 		ret = rb_per_cpu_empty(cpu_buffer);
4225 		if (dolock)
4226 			raw_spin_unlock(&cpu_buffer->reader_lock);
4227 		local_irq_restore(flags);
4228 
4229 		if (!ret)
4230 			return 0;
4231 	}
4232 
4233 	return 1;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4236 
4237 /**
4238  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4239  * @buffer: The ring buffer
4240  * @cpu: The CPU buffer to test
4241  */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4242 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4243 {
4244 	struct ring_buffer_per_cpu *cpu_buffer;
4245 	unsigned long flags;
4246 	int dolock;
4247 	int ret;
4248 
4249 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4250 		return 1;
4251 
4252 	dolock = rb_ok_to_lock();
4253 
4254 	cpu_buffer = buffer->buffers[cpu];
4255 	local_irq_save(flags);
4256 	if (dolock)
4257 		raw_spin_lock(&cpu_buffer->reader_lock);
4258 	ret = rb_per_cpu_empty(cpu_buffer);
4259 	if (dolock)
4260 		raw_spin_unlock(&cpu_buffer->reader_lock);
4261 	local_irq_restore(flags);
4262 
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4266 
4267 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4268 /**
4269  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4270  * @buffer_a: One buffer to swap with
4271  * @buffer_b: The other buffer to swap with
4272  *
4273  * This function is useful for tracers that want to take a "snapshot"
4274  * of a CPU buffer and has another back up buffer lying around.
4275  * it is expected that the tracer handles the cpu buffer not being
4276  * used at the moment.
4277  */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4278 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4279 			 struct ring_buffer *buffer_b, int cpu)
4280 {
4281 	struct ring_buffer_per_cpu *cpu_buffer_a;
4282 	struct ring_buffer_per_cpu *cpu_buffer_b;
4283 	int ret = -EINVAL;
4284 
4285 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4286 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4287 		goto out;
4288 
4289 	cpu_buffer_a = buffer_a->buffers[cpu];
4290 	cpu_buffer_b = buffer_b->buffers[cpu];
4291 
4292 	/* At least make sure the two buffers are somewhat the same */
4293 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4294 		goto out;
4295 
4296 	ret = -EAGAIN;
4297 
4298 	if (ring_buffer_flags != RB_BUFFERS_ON)
4299 		goto out;
4300 
4301 	if (atomic_read(&buffer_a->record_disabled))
4302 		goto out;
4303 
4304 	if (atomic_read(&buffer_b->record_disabled))
4305 		goto out;
4306 
4307 	if (atomic_read(&cpu_buffer_a->record_disabled))
4308 		goto out;
4309 
4310 	if (atomic_read(&cpu_buffer_b->record_disabled))
4311 		goto out;
4312 
4313 	/*
4314 	 * We can't do a synchronize_sched here because this
4315 	 * function can be called in atomic context.
4316 	 * Normally this will be called from the same CPU as cpu.
4317 	 * If not it's up to the caller to protect this.
4318 	 */
4319 	atomic_inc(&cpu_buffer_a->record_disabled);
4320 	atomic_inc(&cpu_buffer_b->record_disabled);
4321 
4322 	ret = -EBUSY;
4323 	if (local_read(&cpu_buffer_a->committing))
4324 		goto out_dec;
4325 	if (local_read(&cpu_buffer_b->committing))
4326 		goto out_dec;
4327 
4328 	buffer_a->buffers[cpu] = cpu_buffer_b;
4329 	buffer_b->buffers[cpu] = cpu_buffer_a;
4330 
4331 	cpu_buffer_b->buffer = buffer_a;
4332 	cpu_buffer_a->buffer = buffer_b;
4333 
4334 	ret = 0;
4335 
4336 out_dec:
4337 	atomic_dec(&cpu_buffer_a->record_disabled);
4338 	atomic_dec(&cpu_buffer_b->record_disabled);
4339 out:
4340 	return ret;
4341 }
4342 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4343 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4344 
4345 /**
4346  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4347  * @buffer: the buffer to allocate for.
4348  *
4349  * This function is used in conjunction with ring_buffer_read_page.
4350  * When reading a full page from the ring buffer, these functions
4351  * can be used to speed up the process. The calling function should
4352  * allocate a few pages first with this function. Then when it
4353  * needs to get pages from the ring buffer, it passes the result
4354  * of this function into ring_buffer_read_page, which will swap
4355  * the page that was allocated, with the read page of the buffer.
4356  *
4357  * Returns:
4358  *  The page allocated, or NULL on error.
4359  */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4360 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4361 {
4362 	struct buffer_data_page *bpage;
4363 	struct page *page;
4364 
4365 	page = alloc_pages_node(cpu_to_node(cpu),
4366 				GFP_KERNEL | __GFP_NORETRY, 0);
4367 	if (!page)
4368 		return NULL;
4369 
4370 	bpage = page_address(page);
4371 
4372 	rb_init_page(bpage);
4373 
4374 	return bpage;
4375 }
4376 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4377 
4378 /**
4379  * ring_buffer_free_read_page - free an allocated read page
4380  * @buffer: the buffer the page was allocate for
4381  * @data: the page to free
4382  *
4383  * Free a page allocated from ring_buffer_alloc_read_page.
4384  */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)4385 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4386 {
4387 	free_page((unsigned long)data);
4388 }
4389 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4390 
4391 /**
4392  * ring_buffer_read_page - extract a page from the ring buffer
4393  * @buffer: buffer to extract from
4394  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4395  * @len: amount to extract
4396  * @cpu: the cpu of the buffer to extract
4397  * @full: should the extraction only happen when the page is full.
4398  *
4399  * This function will pull out a page from the ring buffer and consume it.
4400  * @data_page must be the address of the variable that was returned
4401  * from ring_buffer_alloc_read_page. This is because the page might be used
4402  * to swap with a page in the ring buffer.
4403  *
4404  * for example:
4405  *	rpage = ring_buffer_alloc_read_page(buffer);
4406  *	if (!rpage)
4407  *		return error;
4408  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4409  *	if (ret >= 0)
4410  *		process_page(rpage, ret);
4411  *
4412  * When @full is set, the function will not return true unless
4413  * the writer is off the reader page.
4414  *
4415  * Note: it is up to the calling functions to handle sleeps and wakeups.
4416  *  The ring buffer can be used anywhere in the kernel and can not
4417  *  blindly call wake_up. The layer that uses the ring buffer must be
4418  *  responsible for that.
4419  *
4420  * Returns:
4421  *  >=0 if data has been transferred, returns the offset of consumed data.
4422  *  <0 if no data has been transferred.
4423  */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4424 int ring_buffer_read_page(struct ring_buffer *buffer,
4425 			  void **data_page, size_t len, int cpu, int full)
4426 {
4427 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4428 	struct ring_buffer_event *event;
4429 	struct buffer_data_page *bpage;
4430 	struct buffer_page *reader;
4431 	unsigned long missed_events;
4432 	unsigned long flags;
4433 	unsigned int commit;
4434 	unsigned int read;
4435 	u64 save_timestamp;
4436 	int ret = -1;
4437 
4438 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4439 		goto out;
4440 
4441 	/*
4442 	 * If len is not big enough to hold the page header, then
4443 	 * we can not copy anything.
4444 	 */
4445 	if (len <= BUF_PAGE_HDR_SIZE)
4446 		goto out;
4447 
4448 	len -= BUF_PAGE_HDR_SIZE;
4449 
4450 	if (!data_page)
4451 		goto out;
4452 
4453 	bpage = *data_page;
4454 	if (!bpage)
4455 		goto out;
4456 
4457 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4458 
4459 	reader = rb_get_reader_page(cpu_buffer);
4460 	if (!reader)
4461 		goto out_unlock;
4462 
4463 	event = rb_reader_event(cpu_buffer);
4464 
4465 	read = reader->read;
4466 	commit = rb_page_commit(reader);
4467 
4468 	/* Check if any events were dropped */
4469 	missed_events = cpu_buffer->lost_events;
4470 
4471 	/*
4472 	 * If this page has been partially read or
4473 	 * if len is not big enough to read the rest of the page or
4474 	 * a writer is still on the page, then
4475 	 * we must copy the data from the page to the buffer.
4476 	 * Otherwise, we can simply swap the page with the one passed in.
4477 	 */
4478 	if (read || (len < (commit - read)) ||
4479 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4480 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4481 		unsigned int rpos = read;
4482 		unsigned int pos = 0;
4483 		unsigned int size;
4484 
4485 		if (full)
4486 			goto out_unlock;
4487 
4488 		if (len > (commit - read))
4489 			len = (commit - read);
4490 
4491 		/* Always keep the time extend and data together */
4492 		size = rb_event_ts_length(event);
4493 
4494 		if (len < size)
4495 			goto out_unlock;
4496 
4497 		/* save the current timestamp, since the user will need it */
4498 		save_timestamp = cpu_buffer->read_stamp;
4499 
4500 		/* Need to copy one event at a time */
4501 		do {
4502 			/* We need the size of one event, because
4503 			 * rb_advance_reader only advances by one event,
4504 			 * whereas rb_event_ts_length may include the size of
4505 			 * one or two events.
4506 			 * We have already ensured there's enough space if this
4507 			 * is a time extend. */
4508 			size = rb_event_length(event);
4509 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4510 
4511 			len -= size;
4512 
4513 			rb_advance_reader(cpu_buffer);
4514 			rpos = reader->read;
4515 			pos += size;
4516 
4517 			if (rpos >= commit)
4518 				break;
4519 
4520 			event = rb_reader_event(cpu_buffer);
4521 			/* Always keep the time extend and data together */
4522 			size = rb_event_ts_length(event);
4523 		} while (len >= size);
4524 
4525 		/* update bpage */
4526 		local_set(&bpage->commit, pos);
4527 		bpage->time_stamp = save_timestamp;
4528 
4529 		/* we copied everything to the beginning */
4530 		read = 0;
4531 	} else {
4532 		/* update the entry counter */
4533 		cpu_buffer->read += rb_page_entries(reader);
4534 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4535 
4536 		/* swap the pages */
4537 		rb_init_page(bpage);
4538 		bpage = reader->page;
4539 		reader->page = *data_page;
4540 		local_set(&reader->write, 0);
4541 		local_set(&reader->entries, 0);
4542 		reader->read = 0;
4543 		*data_page = bpage;
4544 
4545 		/*
4546 		 * Use the real_end for the data size,
4547 		 * This gives us a chance to store the lost events
4548 		 * on the page.
4549 		 */
4550 		if (reader->real_end)
4551 			local_set(&bpage->commit, reader->real_end);
4552 	}
4553 	ret = read;
4554 
4555 	cpu_buffer->lost_events = 0;
4556 
4557 	commit = local_read(&bpage->commit);
4558 	/*
4559 	 * Set a flag in the commit field if we lost events
4560 	 */
4561 	if (missed_events) {
4562 		/* If there is room at the end of the page to save the
4563 		 * missed events, then record it there.
4564 		 */
4565 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4566 			memcpy(&bpage->data[commit], &missed_events,
4567 			       sizeof(missed_events));
4568 			local_add(RB_MISSED_STORED, &bpage->commit);
4569 			commit += sizeof(missed_events);
4570 		}
4571 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4572 	}
4573 
4574 	/*
4575 	 * This page may be off to user land. Zero it out here.
4576 	 */
4577 	if (commit < BUF_PAGE_SIZE)
4578 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4579 
4580  out_unlock:
4581 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4582 
4583  out:
4584 	return ret;
4585 }
4586 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4587 
4588 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4589 static int rb_cpu_notify(struct notifier_block *self,
4590 			 unsigned long action, void *hcpu)
4591 {
4592 	struct ring_buffer *buffer =
4593 		container_of(self, struct ring_buffer, cpu_notify);
4594 	long cpu = (long)hcpu;
4595 	int cpu_i, nr_pages_same;
4596 	unsigned int nr_pages;
4597 
4598 	switch (action) {
4599 	case CPU_UP_PREPARE:
4600 	case CPU_UP_PREPARE_FROZEN:
4601 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4602 			return NOTIFY_OK;
4603 
4604 		nr_pages = 0;
4605 		nr_pages_same = 1;
4606 		/* check if all cpu sizes are same */
4607 		for_each_buffer_cpu(buffer, cpu_i) {
4608 			/* fill in the size from first enabled cpu */
4609 			if (nr_pages == 0)
4610 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4611 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4612 				nr_pages_same = 0;
4613 				break;
4614 			}
4615 		}
4616 		/* allocate minimum pages, user can later expand it */
4617 		if (!nr_pages_same)
4618 			nr_pages = 2;
4619 		buffer->buffers[cpu] =
4620 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4621 		if (!buffer->buffers[cpu]) {
4622 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4623 			     cpu);
4624 			return NOTIFY_OK;
4625 		}
4626 		smp_wmb();
4627 		cpumask_set_cpu(cpu, buffer->cpumask);
4628 		break;
4629 	case CPU_DOWN_PREPARE:
4630 	case CPU_DOWN_PREPARE_FROZEN:
4631 		/*
4632 		 * Do nothing.
4633 		 *  If we were to free the buffer, then the user would
4634 		 *  lose any trace that was in the buffer.
4635 		 */
4636 		break;
4637 	default:
4638 		break;
4639 	}
4640 	return NOTIFY_OK;
4641 }
4642 #endif
4643 
4644 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4645 /*
4646  * This is a basic integrity check of the ring buffer.
4647  * Late in the boot cycle this test will run when configured in.
4648  * It will kick off a thread per CPU that will go into a loop
4649  * writing to the per cpu ring buffer various sizes of data.
4650  * Some of the data will be large items, some small.
4651  *
4652  * Another thread is created that goes into a spin, sending out
4653  * IPIs to the other CPUs to also write into the ring buffer.
4654  * this is to test the nesting ability of the buffer.
4655  *
4656  * Basic stats are recorded and reported. If something in the
4657  * ring buffer should happen that's not expected, a big warning
4658  * is displayed and all ring buffers are disabled.
4659  */
4660 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4661 
4662 struct rb_test_data {
4663 	struct ring_buffer	*buffer;
4664 	unsigned long		events;
4665 	unsigned long		bytes_written;
4666 	unsigned long		bytes_alloc;
4667 	unsigned long		bytes_dropped;
4668 	unsigned long		events_nested;
4669 	unsigned long		bytes_written_nested;
4670 	unsigned long		bytes_alloc_nested;
4671 	unsigned long		bytes_dropped_nested;
4672 	int			min_size_nested;
4673 	int			max_size_nested;
4674 	int			max_size;
4675 	int			min_size;
4676 	int			cpu;
4677 	int			cnt;
4678 };
4679 
4680 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4681 
4682 /* 1 meg per cpu */
4683 #define RB_TEST_BUFFER_SIZE	1048576
4684 
4685 static char rb_string[] __initdata =
4686 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4687 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4688 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4689 
4690 static bool rb_test_started __initdata;
4691 
4692 struct rb_item {
4693 	int size;
4694 	char str[];
4695 };
4696 
rb_write_something(struct rb_test_data * data,bool nested)4697 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4698 {
4699 	struct ring_buffer_event *event;
4700 	struct rb_item *item;
4701 	bool started;
4702 	int event_len;
4703 	int size;
4704 	int len;
4705 	int cnt;
4706 
4707 	/* Have nested writes different that what is written */
4708 	cnt = data->cnt + (nested ? 27 : 0);
4709 
4710 	/* Multiply cnt by ~e, to make some unique increment */
4711 	size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4712 
4713 	len = size + sizeof(struct rb_item);
4714 
4715 	started = rb_test_started;
4716 	/* read rb_test_started before checking buffer enabled */
4717 	smp_rmb();
4718 
4719 	event = ring_buffer_lock_reserve(data->buffer, len);
4720 	if (!event) {
4721 		/* Ignore dropped events before test starts. */
4722 		if (started) {
4723 			if (nested)
4724 				data->bytes_dropped += len;
4725 			else
4726 				data->bytes_dropped_nested += len;
4727 		}
4728 		return len;
4729 	}
4730 
4731 	event_len = ring_buffer_event_length(event);
4732 
4733 	if (RB_WARN_ON(data->buffer, event_len < len))
4734 		goto out;
4735 
4736 	item = ring_buffer_event_data(event);
4737 	item->size = size;
4738 	memcpy(item->str, rb_string, size);
4739 
4740 	if (nested) {
4741 		data->bytes_alloc_nested += event_len;
4742 		data->bytes_written_nested += len;
4743 		data->events_nested++;
4744 		if (!data->min_size_nested || len < data->min_size_nested)
4745 			data->min_size_nested = len;
4746 		if (len > data->max_size_nested)
4747 			data->max_size_nested = len;
4748 	} else {
4749 		data->bytes_alloc += event_len;
4750 		data->bytes_written += len;
4751 		data->events++;
4752 		if (!data->min_size || len < data->min_size)
4753 			data->max_size = len;
4754 		if (len > data->max_size)
4755 			data->max_size = len;
4756 	}
4757 
4758  out:
4759 	ring_buffer_unlock_commit(data->buffer, event);
4760 
4761 	return 0;
4762 }
4763 
rb_test(void * arg)4764 static __init int rb_test(void *arg)
4765 {
4766 	struct rb_test_data *data = arg;
4767 
4768 	while (!kthread_should_stop()) {
4769 		rb_write_something(data, false);
4770 		data->cnt++;
4771 
4772 		set_current_state(TASK_INTERRUPTIBLE);
4773 		/* Now sleep between a min of 100-300us and a max of 1ms */
4774 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4775 	}
4776 
4777 	return 0;
4778 }
4779 
rb_ipi(void * ignore)4780 static __init void rb_ipi(void *ignore)
4781 {
4782 	struct rb_test_data *data;
4783 	int cpu = smp_processor_id();
4784 
4785 	data = &rb_data[cpu];
4786 	rb_write_something(data, true);
4787 }
4788 
rb_hammer_test(void * arg)4789 static __init int rb_hammer_test(void *arg)
4790 {
4791 	while (!kthread_should_stop()) {
4792 
4793 		/* Send an IPI to all cpus to write data! */
4794 		smp_call_function(rb_ipi, NULL, 1);
4795 		/* No sleep, but for non preempt, let others run */
4796 		schedule();
4797 	}
4798 
4799 	return 0;
4800 }
4801 
test_ringbuffer(void)4802 static __init int test_ringbuffer(void)
4803 {
4804 	struct task_struct *rb_hammer;
4805 	struct ring_buffer *buffer;
4806 	int cpu;
4807 	int ret = 0;
4808 
4809 	pr_info("Running ring buffer tests...\n");
4810 
4811 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4812 	if (WARN_ON(!buffer))
4813 		return 0;
4814 
4815 	/* Disable buffer so that threads can't write to it yet */
4816 	ring_buffer_record_off(buffer);
4817 
4818 	for_each_online_cpu(cpu) {
4819 		rb_data[cpu].buffer = buffer;
4820 		rb_data[cpu].cpu = cpu;
4821 		rb_data[cpu].cnt = cpu;
4822 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4823 						 "rbtester/%d", cpu);
4824 		if (WARN_ON(!rb_threads[cpu])) {
4825 			pr_cont("FAILED\n");
4826 			ret = -1;
4827 			goto out_free;
4828 		}
4829 
4830 		kthread_bind(rb_threads[cpu], cpu);
4831  		wake_up_process(rb_threads[cpu]);
4832 	}
4833 
4834 	/* Now create the rb hammer! */
4835 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4836 	if (WARN_ON(!rb_hammer)) {
4837 		pr_cont("FAILED\n");
4838 		ret = -1;
4839 		goto out_free;
4840 	}
4841 
4842 	ring_buffer_record_on(buffer);
4843 	/*
4844 	 * Show buffer is enabled before setting rb_test_started.
4845 	 * Yes there's a small race window where events could be
4846 	 * dropped and the thread wont catch it. But when a ring
4847 	 * buffer gets enabled, there will always be some kind of
4848 	 * delay before other CPUs see it. Thus, we don't care about
4849 	 * those dropped events. We care about events dropped after
4850 	 * the threads see that the buffer is active.
4851 	 */
4852 	smp_wmb();
4853 	rb_test_started = true;
4854 
4855 	set_current_state(TASK_INTERRUPTIBLE);
4856 	/* Just run for 10 seconds */;
4857 	schedule_timeout(10 * HZ);
4858 
4859 	kthread_stop(rb_hammer);
4860 
4861  out_free:
4862 	for_each_online_cpu(cpu) {
4863 		if (!rb_threads[cpu])
4864 			break;
4865 		kthread_stop(rb_threads[cpu]);
4866 	}
4867 	if (ret) {
4868 		ring_buffer_free(buffer);
4869 		return ret;
4870 	}
4871 
4872 	/* Report! */
4873 	pr_info("finished\n");
4874 	for_each_online_cpu(cpu) {
4875 		struct ring_buffer_event *event;
4876 		struct rb_test_data *data = &rb_data[cpu];
4877 		struct rb_item *item;
4878 		unsigned long total_events;
4879 		unsigned long total_dropped;
4880 		unsigned long total_written;
4881 		unsigned long total_alloc;
4882 		unsigned long total_read = 0;
4883 		unsigned long total_size = 0;
4884 		unsigned long total_len = 0;
4885 		unsigned long total_lost = 0;
4886 		unsigned long lost;
4887 		int big_event_size;
4888 		int small_event_size;
4889 
4890 		ret = -1;
4891 
4892 		total_events = data->events + data->events_nested;
4893 		total_written = data->bytes_written + data->bytes_written_nested;
4894 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4895 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4896 
4897 		big_event_size = data->max_size + data->max_size_nested;
4898 		small_event_size = data->min_size + data->min_size_nested;
4899 
4900 		pr_info("CPU %d:\n", cpu);
4901 		pr_info("              events:    %ld\n", total_events);
4902 		pr_info("       dropped bytes:    %ld\n", total_dropped);
4903 		pr_info("       alloced bytes:    %ld\n", total_alloc);
4904 		pr_info("       written bytes:    %ld\n", total_written);
4905 		pr_info("       biggest event:    %d\n", big_event_size);
4906 		pr_info("      smallest event:    %d\n", small_event_size);
4907 
4908 		if (RB_WARN_ON(buffer, total_dropped))
4909 			break;
4910 
4911 		ret = 0;
4912 
4913 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4914 			total_lost += lost;
4915 			item = ring_buffer_event_data(event);
4916 			total_len += ring_buffer_event_length(event);
4917 			total_size += item->size + sizeof(struct rb_item);
4918 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4919 				pr_info("FAILED!\n");
4920 				pr_info("buffer had: %.*s\n", item->size, item->str);
4921 				pr_info("expected:   %.*s\n", item->size, rb_string);
4922 				RB_WARN_ON(buffer, 1);
4923 				ret = -1;
4924 				break;
4925 			}
4926 			total_read++;
4927 		}
4928 		if (ret)
4929 			break;
4930 
4931 		ret = -1;
4932 
4933 		pr_info("         read events:   %ld\n", total_read);
4934 		pr_info("         lost events:   %ld\n", total_lost);
4935 		pr_info("        total events:   %ld\n", total_lost + total_read);
4936 		pr_info("  recorded len bytes:   %ld\n", total_len);
4937 		pr_info(" recorded size bytes:   %ld\n", total_size);
4938 		if (total_lost)
4939 			pr_info(" With dropped events, record len and size may not match\n"
4940 				" alloced and written from above\n");
4941 		if (!total_lost) {
4942 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
4943 				       total_size != total_written))
4944 				break;
4945 		}
4946 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4947 			break;
4948 
4949 		ret = 0;
4950 	}
4951 	if (!ret)
4952 		pr_info("Ring buffer PASSED!\n");
4953 
4954 	ring_buffer_free(buffer);
4955 	return 0;
4956 }
4957 
4958 late_initcall(test_ringbuffer);
4959 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4960