1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33 * The ring buffer header is special. We must manually up keep it.
34 */
ring_buffer_print_entry_header(struct trace_seq * s)35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37 int ret;
38
39 ret = trace_seq_printf(s, "# compressed entry header\n");
40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
43 ret = trace_seq_printf(s, "\n");
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51 return ret;
52 }
53
54 /*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
122 /*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140 /*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
172 * permanently.
173 */
tracing_off_permanent(void)174 void tracing_off_permanent(void)
175 {
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
191
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
rb_null_event(struct ring_buffer_event * event)205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
rb_event_set_padding(struct ring_buffer_event * event)210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
215 }
216
217 static unsigned
rb_event_data_length(struct ring_buffer_event * event)218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220 unsigned length;
221
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234 static inline unsigned
rb_event_length(struct ring_buffer_event * event)235 rb_event_length(struct ring_buffer_event *event)
236 {
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257 }
258
259 /*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274 }
275
276 /**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
285 */
ring_buffer_event_length(struct ring_buffer_event * event)286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
rb_event_data(struct ring_buffer_event * event)305 rb_event_data(struct ring_buffer_event *event)
306 {
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315 }
316
317 /**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
ring_buffer_event_data(struct ring_buffer_event * event)321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323 return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
338
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
343 };
344
345 /*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
360 };
361
362 /*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
376
rb_init_page(struct buffer_data_page * bpage)377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379 local_set(&bpage->commit, 0);
380 }
381
382 /**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ring_buffer_page_len(void * page)388 size_t ring_buffer_page_len(void *page)
389 {
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
free_buffer_page(struct buffer_page * bpage)398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
402 }
403
404 /*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
test_time_stamp(u64 delta)407 static inline int test_time_stamp(u64 delta)
408 {
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
ring_buffer_print_page_header(struct trace_seq * s)419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
434
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
446
447 return ret;
448 }
449
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454 };
455
456 /*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
490
491 struct rb_irq_work irq_work;
492 };
493
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
500
501 struct lock_class_key *reader_lock_key;
502
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
511
512 struct rb_irq_work irq_work;
513 };
514
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
522 };
523
524 /*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
rb_wake_up_waiters(struct irq_work * work)530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
ring_buffer_wait(struct ring_buffer * buffer,int cpu)546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 cpu_buffer = buffer->buffers[cpu];
561 work = &cpu_buffer->irq_work;
562 }
563
564
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567 /*
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
573 *
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
580 *
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
586 */
587 work->waiters_pending = true;
588
589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 schedule();
592
593 finish_wait(&work->waiters, &wait);
594 }
595
596 /**
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
602 *
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
606 *
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608 * zero otherwise.
609 */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 struct file *filp, poll_table *poll_table)
612 {
613 struct ring_buffer_per_cpu *cpu_buffer;
614 struct rb_irq_work *work;
615
616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 return POLLIN | POLLRDNORM;
619
620 if (cpu == RING_BUFFER_ALL_CPUS)
621 work = &buffer->irq_work;
622 else {
623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 return -EINVAL;
625
626 cpu_buffer = buffer->buffers[cpu];
627 work = &cpu_buffer->irq_work;
628 }
629
630 work->waiters_pending = true;
631 poll_wait(filp, &work->waiters, poll_table);
632
633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 return POLLIN | POLLRDNORM;
636 return 0;
637 }
638
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond) \
641 ({ \
642 int _____ret = unlikely(cond); \
643 if (_____ret) { \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
646 (void *)b; \
647 atomic_inc(&__b->buffer->record_disabled); \
648 } else \
649 atomic_inc(&b->record_disabled); \
650 WARN_ON(1); \
651 } \
652 _____ret; \
653 })
654
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
657
rb_time_stamp(struct ring_buffer * buffer)658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
659 {
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer->clock() << DEBUG_SHIFT;
662 }
663
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665 {
666 u64 time;
667
668 preempt_disable_notrace();
669 time = rb_time_stamp(buffer);
670 preempt_enable_no_resched_notrace();
671
672 return time;
673 }
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 int cpu, u64 *ts)
678 {
679 /* Just stupid testing the normalize function and deltas */
680 *ts >>= DEBUG_SHIFT;
681 }
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
684 /*
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
688 * happen on any CPU.
689 *
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
695 *
696 * Here lies the problem.
697 *
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
704 *
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
707 *
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
711 *
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
714 * that too. Thus:
715 *
716 * head->list->prev->next bit 1 bit 0
717 * ------- -------
718 * Normal page 0 0
719 * Points to head page 0 1
720 * New head page 1 0
721 *
722 * Note we can not trust the prev pointer of the head page, because:
723 *
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
726 * | |<------| | | |
727 * +----+ +-----+ +-----+
728 * ^ ^ |
729 * | +-----+ | |
730 * +----------| R |----------+ |
731 * | |<-----------+
732 * +-----+
733 *
734 * Key: ---X--> HEAD flag set in pointer
735 * T Tail page
736 * R Reader page
737 * N Next page
738 *
739 * (see __rb_reserve_next() to see where this happens)
740 *
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
746 * again.
747 *
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
750 * temporarially.
751 */
752
753 #define RB_PAGE_NORMAL 0UL
754 #define RB_PAGE_HEAD 1UL
755 #define RB_PAGE_UPDATE 2UL
756
757
758 #define RB_FLAG_MASK 3UL
759
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED 4UL
762
763 /*
764 * rb_list_head - remove any bit
765 */
rb_list_head(struct list_head * list)766 static struct list_head *rb_list_head(struct list_head *list)
767 {
768 unsigned long val = (unsigned long)list;
769
770 return (struct list_head *)(val & ~RB_FLAG_MASK);
771 }
772
773 /*
774 * rb_is_head_page - test if the given page is the head page
775 *
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
780 */
781 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 struct buffer_page *page, struct list_head *list)
784 {
785 unsigned long val;
786
787 val = (unsigned long)list->next;
788
789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 return RB_PAGE_MOVED;
791
792 return val & RB_FLAG_MASK;
793 }
794
795 /*
796 * rb_is_reader_page
797 *
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
801 */
rb_is_reader_page(struct buffer_page * page)802 static int rb_is_reader_page(struct buffer_page *page)
803 {
804 struct list_head *list = page->list.prev;
805
806 return rb_list_head(list->next) != &page->list;
807 }
808
809 /*
810 * rb_set_list_to_head - set a list_head to be pointing to head.
811 */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 struct list_head *list)
814 {
815 unsigned long *ptr;
816
817 ptr = (unsigned long *)&list->next;
818 *ptr |= RB_PAGE_HEAD;
819 *ptr &= ~RB_PAGE_UPDATE;
820 }
821
822 /*
823 * rb_head_page_activate - sets up head page
824 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826 {
827 struct buffer_page *head;
828
829 head = cpu_buffer->head_page;
830 if (!head)
831 return;
832
833 /*
834 * Set the previous list pointer to have the HEAD flag.
835 */
836 rb_set_list_to_head(cpu_buffer, head->list.prev);
837 }
838
rb_list_head_clear(struct list_head * list)839 static void rb_list_head_clear(struct list_head *list)
840 {
841 unsigned long *ptr = (unsigned long *)&list->next;
842
843 *ptr &= ~RB_FLAG_MASK;
844 }
845
846 /*
847 * rb_head_page_dactivate - clears head page ptr (for free list)
848 */
849 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851 {
852 struct list_head *hd;
853
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer->pages);
856
857 list_for_each(hd, cpu_buffer->pages)
858 rb_list_head_clear(hd);
859 }
860
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 struct buffer_page *head,
863 struct buffer_page *prev,
864 int old_flag, int new_flag)
865 {
866 struct list_head *list;
867 unsigned long val = (unsigned long)&head->list;
868 unsigned long ret;
869
870 list = &prev->list;
871
872 val &= ~RB_FLAG_MASK;
873
874 ret = cmpxchg((unsigned long *)&list->next,
875 val | old_flag, val | new_flag);
876
877 /* check if the reader took the page */
878 if ((ret & ~RB_FLAG_MASK) != val)
879 return RB_PAGE_MOVED;
880
881 return ret & RB_FLAG_MASK;
882 }
883
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 struct buffer_page *head,
886 struct buffer_page *prev,
887 int old_flag)
888 {
889 return rb_head_page_set(cpu_buffer, head, prev,
890 old_flag, RB_PAGE_UPDATE);
891 }
892
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 struct buffer_page *head,
895 struct buffer_page *prev,
896 int old_flag)
897 {
898 return rb_head_page_set(cpu_buffer, head, prev,
899 old_flag, RB_PAGE_HEAD);
900 }
901
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 struct buffer_page *head,
904 struct buffer_page *prev,
905 int old_flag)
906 {
907 return rb_head_page_set(cpu_buffer, head, prev,
908 old_flag, RB_PAGE_NORMAL);
909 }
910
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 struct buffer_page **bpage)
913 {
914 struct list_head *p = rb_list_head((*bpage)->list.next);
915
916 *bpage = list_entry(p, struct buffer_page, list);
917 }
918
919 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921 {
922 struct buffer_page *head;
923 struct buffer_page *page;
924 struct list_head *list;
925 int i;
926
927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 return NULL;
929
930 /* sanity check */
931 list = cpu_buffer->pages;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 return NULL;
934
935 page = head = cpu_buffer->head_page;
936 /*
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
941 */
942 for (i = 0; i < 3; i++) {
943 do {
944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 cpu_buffer->head_page = page;
946 return page;
947 }
948 rb_inc_page(cpu_buffer, &page);
949 } while (page != head);
950 }
951
952 RB_WARN_ON(cpu_buffer, 1);
953
954 return NULL;
955 }
956
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)957 static int rb_head_page_replace(struct buffer_page *old,
958 struct buffer_page *new)
959 {
960 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 unsigned long val;
962 unsigned long ret;
963
964 val = *ptr & ~RB_FLAG_MASK;
965 val |= RB_PAGE_HEAD;
966
967 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
968
969 return ret == val;
970 }
971
972 /*
973 * rb_tail_page_update - move the tail page forward
974 *
975 * Returns 1 if moved tail page, 0 if someone else did.
976 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 struct buffer_page *tail_page,
979 struct buffer_page *next_page)
980 {
981 struct buffer_page *old_tail;
982 unsigned long old_entries;
983 unsigned long old_write;
984 int ret = 0;
985
986 /*
987 * The tail page now needs to be moved forward.
988 *
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
992 *
993 * We add a counter to the write field to denote this.
994 */
995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998 /*
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1001 */
1002 barrier();
1003
1004 /*
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1007 * pointer.
1008 */
1009 if (tail_page == cpu_buffer->tail_page) {
1010 /* Zero the write counter */
1011 unsigned long val = old_write & ~RB_WRITE_MASK;
1012 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014 /*
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
1018 *
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
1023 */
1024 (void)local_cmpxchg(&next_page->write, old_write, val);
1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1026
1027 /*
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1031 */
1032 local_set(&next_page->page->commit, 0);
1033
1034 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 tail_page, next_page);
1036
1037 if (old_tail == tail_page)
1038 ret = 1;
1039 }
1040
1041 return ret;
1042 }
1043
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 struct buffer_page *bpage)
1046 {
1047 unsigned long val = (unsigned long)bpage;
1048
1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 return 1;
1051
1052 return 0;
1053 }
1054
1055 /**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 struct list_head *list)
1060 {
1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 return 1;
1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 return 1;
1065 return 0;
1066 }
1067
1068 /**
1069 * check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
1072 * As a safety measure we check to make sure the data pages have not
1073 * been corrupted.
1074 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076 {
1077 struct list_head *head = cpu_buffer->pages;
1078 struct buffer_page *bpage, *tmp;
1079
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer->head_page)
1082 rb_set_head_page(cpu_buffer);
1083
1084 rb_head_page_deactivate(cpu_buffer);
1085
1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 return -1;
1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 return -1;
1090
1091 if (rb_check_list(cpu_buffer, head))
1092 return -1;
1093
1094 list_for_each_entry_safe(bpage, tmp, head, list) {
1095 if (RB_WARN_ON(cpu_buffer,
1096 bpage->list.next->prev != &bpage->list))
1097 return -1;
1098 if (RB_WARN_ON(cpu_buffer,
1099 bpage->list.prev->next != &bpage->list))
1100 return -1;
1101 if (rb_check_list(cpu_buffer, &bpage->list))
1102 return -1;
1103 }
1104
1105 rb_head_page_activate(cpu_buffer);
1106
1107 return 0;
1108 }
1109
__rb_allocate_pages(int nr_pages,struct list_head * pages,int cpu)1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1111 {
1112 int i;
1113 struct buffer_page *bpage, *tmp;
1114
1115 for (i = 0; i < nr_pages; i++) {
1116 struct page *page;
1117 /*
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1120 * not destabilized.
1121 */
1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 GFP_KERNEL | __GFP_NORETRY,
1124 cpu_to_node(cpu));
1125 if (!bpage)
1126 goto free_pages;
1127
1128 list_add(&bpage->list, pages);
1129
1130 page = alloc_pages_node(cpu_to_node(cpu),
1131 GFP_KERNEL | __GFP_NORETRY, 0);
1132 if (!page)
1133 goto free_pages;
1134 bpage->page = page_address(page);
1135 rb_init_page(bpage->page);
1136 }
1137
1138 return 0;
1139
1140 free_pages:
1141 list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 list_del_init(&bpage->list);
1143 free_buffer_page(bpage);
1144 }
1145
1146 return -ENOMEM;
1147 }
1148
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned nr_pages)1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 unsigned nr_pages)
1151 {
1152 LIST_HEAD(pages);
1153
1154 WARN_ON(!nr_pages);
1155
1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 return -ENOMEM;
1158
1159 /*
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1162 * other pages.
1163 */
1164 cpu_buffer->pages = pages.next;
1165 list_del(&pages);
1166
1167 cpu_buffer->nr_pages = nr_pages;
1168
1169 rb_check_pages(cpu_buffer);
1170
1171 return 0;
1172 }
1173
1174 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,int nr_pages,int cpu)1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1176 {
1177 struct ring_buffer_per_cpu *cpu_buffer;
1178 struct buffer_page *bpage;
1179 struct page *page;
1180 int ret;
1181
1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 GFP_KERNEL, cpu_to_node(cpu));
1184 if (!cpu_buffer)
1185 return NULL;
1186
1187 cpu_buffer->cpu = cpu;
1188 cpu_buffer->buffer = buffer;
1189 raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 init_completion(&cpu_buffer->update_done);
1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1196
1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 GFP_KERNEL, cpu_to_node(cpu));
1199 if (!bpage)
1200 goto fail_free_buffer;
1201
1202 rb_check_bpage(cpu_buffer, bpage);
1203
1204 cpu_buffer->reader_page = bpage;
1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 if (!page)
1207 goto fail_free_reader;
1208 bpage->page = page_address(page);
1209 rb_init_page(bpage->page);
1210
1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1213
1214 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 if (ret < 0)
1216 goto fail_free_reader;
1217
1218 cpu_buffer->head_page
1219 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1221
1222 rb_head_page_activate(cpu_buffer);
1223
1224 return cpu_buffer;
1225
1226 fail_free_reader:
1227 free_buffer_page(cpu_buffer->reader_page);
1228
1229 fail_free_buffer:
1230 kfree(cpu_buffer);
1231 return NULL;
1232 }
1233
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235 {
1236 struct list_head *head = cpu_buffer->pages;
1237 struct buffer_page *bpage, *tmp;
1238
1239 free_buffer_page(cpu_buffer->reader_page);
1240
1241 rb_head_page_deactivate(cpu_buffer);
1242
1243 if (head) {
1244 list_for_each_entry_safe(bpage, tmp, head, list) {
1245 list_del_init(&bpage->list);
1246 free_buffer_page(bpage);
1247 }
1248 bpage = list_entry(head, struct buffer_page, list);
1249 free_buffer_page(bpage);
1250 }
1251
1252 kfree(cpu_buffer);
1253 }
1254
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 unsigned long action, void *hcpu);
1258 #endif
1259
1260 /**
1261 * ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 struct lock_class_key *key)
1272 {
1273 struct ring_buffer *buffer;
1274 int bsize;
1275 int cpu, nr_pages;
1276
1277 /* keep it in its own cache line */
1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 GFP_KERNEL);
1280 if (!buffer)
1281 return NULL;
1282
1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 goto fail_free_buffer;
1285
1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 buffer->flags = flags;
1288 buffer->clock = trace_clock_local;
1289 buffer->reader_lock_key = key;
1290
1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 init_waitqueue_head(&buffer->irq_work.waiters);
1293
1294 /* need at least two pages */
1295 if (nr_pages < 2)
1296 nr_pages = 2;
1297
1298 /*
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1302 */
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 get_online_cpus();
1305 cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 buffer->cpus = nr_cpu_ids;
1310
1311 bsize = sizeof(void *) * nr_cpu_ids;
1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 GFP_KERNEL);
1314 if (!buffer->buffers)
1315 goto fail_free_cpumask;
1316
1317 for_each_buffer_cpu(buffer, cpu) {
1318 buffer->buffers[cpu] =
1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 if (!buffer->buffers[cpu])
1321 goto fail_free_buffers;
1322 }
1323
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 buffer->cpu_notify.priority = 0;
1327 register_cpu_notifier(&buffer->cpu_notify);
1328 #endif
1329
1330 put_online_cpus();
1331 mutex_init(&buffer->mutex);
1332
1333 return buffer;
1334
1335 fail_free_buffers:
1336 for_each_buffer_cpu(buffer, cpu) {
1337 if (buffer->buffers[cpu])
1338 rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 }
1340 kfree(buffer->buffers);
1341
1342 fail_free_cpumask:
1343 free_cpumask_var(buffer->cpumask);
1344 put_online_cpus();
1345
1346 fail_free_buffer:
1347 kfree(buffer);
1348 return NULL;
1349 }
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1351
1352 /**
1353 * ring_buffer_free - free a ring buffer.
1354 * @buffer: the buffer to free.
1355 */
1356 void
ring_buffer_free(struct ring_buffer * buffer)1357 ring_buffer_free(struct ring_buffer *buffer)
1358 {
1359 int cpu;
1360
1361 get_online_cpus();
1362
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 unregister_cpu_notifier(&buffer->cpu_notify);
1365 #endif
1366
1367 for_each_buffer_cpu(buffer, cpu)
1368 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
1370 put_online_cpus();
1371
1372 kfree(buffer->buffers);
1373 free_cpumask_var(buffer->cpumask);
1374
1375 kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 u64 (*clock)(void))
1381 {
1382 buffer->clock = clock;
1383 }
1384
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
rb_page_entries(struct buffer_page * bpage)1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389 return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391
rb_page_write(struct buffer_page * bpage)1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394 return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396
1397 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned int nr_pages)1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1399 {
1400 struct list_head *tail_page, *to_remove, *next_page;
1401 struct buffer_page *to_remove_page, *tmp_iter_page;
1402 struct buffer_page *last_page, *first_page;
1403 unsigned int nr_removed;
1404 unsigned long head_bit;
1405 int page_entries;
1406
1407 head_bit = 0;
1408
1409 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410 atomic_inc(&cpu_buffer->record_disabled);
1411 /*
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1419 */
1420 tail_page = &cpu_buffer->tail_page->list;
1421
1422 /*
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1425 */
1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 tail_page = rb_list_head(tail_page->next);
1428 to_remove = tail_page;
1429
1430 /* start of pages to remove */
1431 first_page = list_entry(rb_list_head(to_remove->next),
1432 struct buffer_page, list);
1433
1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 to_remove = rb_list_head(to_remove)->next;
1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437 }
1438
1439 next_page = rb_list_head(to_remove)->next;
1440
1441 /*
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1444 * next page
1445 */
1446 tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 head_bit);
1448 next_page = rb_list_head(next_page);
1449 next_page->prev = tail_page;
1450
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer->pages = next_page;
1453
1454 /* update head page */
1455 if (head_bit)
1456 cpu_buffer->head_page = list_entry(next_page,
1457 struct buffer_page, list);
1458
1459 /*
1460 * change read pointer to make sure any read iterators reset
1461 * themselves
1462 */
1463 cpu_buffer->read = 0;
1464
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer->record_disabled);
1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471 /* last buffer page to remove */
1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 list);
1474 tmp_iter_page = first_page;
1475
1476 do {
1477 to_remove_page = tmp_iter_page;
1478 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480 /* update the counters */
1481 page_entries = rb_page_entries(to_remove_page);
1482 if (page_entries) {
1483 /*
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
1487 * Increment overrun to account for the lost events.
1488 */
1489 local_add(page_entries, &cpu_buffer->overrun);
1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 }
1492
1493 /*
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1496 */
1497 free_buffer_page(to_remove_page);
1498 nr_removed--;
1499
1500 } while (to_remove_page != last_page);
1501
1502 RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504 return nr_removed == 0;
1505 }
1506
1507 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510 struct list_head *pages = &cpu_buffer->new_pages;
1511 int retries, success;
1512
1513 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514 /*
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1524 *
1525 * We will try this process 10 times, to make sure that we don't keep
1526 * spinning.
1527 */
1528 retries = 10;
1529 success = 0;
1530 while (retries--) {
1531 struct list_head *head_page, *prev_page, *r;
1532 struct list_head *last_page, *first_page;
1533 struct list_head *head_page_with_bit;
1534
1535 head_page = &rb_set_head_page(cpu_buffer)->list;
1536 if (!head_page)
1537 break;
1538 prev_page = head_page->prev;
1539
1540 first_page = pages->next;
1541 last_page = pages->prev;
1542
1543 head_page_with_bit = (struct list_head *)
1544 ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546 last_page->next = head_page_with_bit;
1547 first_page->prev = prev_page;
1548
1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551 if (r == head_page_with_bit) {
1552 /*
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1556 */
1557 head_page->prev = last_page;
1558 success = 1;
1559 break;
1560 }
1561 }
1562
1563 if (success)
1564 INIT_LIST_HEAD(pages);
1565 /*
1566 * If we weren't successful in adding in new pages, warn and stop
1567 * tracing
1568 */
1569 RB_WARN_ON(cpu_buffer, !success);
1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572 /* free pages if they weren't inserted */
1573 if (!success) {
1574 struct buffer_page *bpage, *tmp;
1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 list) {
1577 list_del_init(&bpage->list);
1578 free_buffer_page(bpage);
1579 }
1580 }
1581 return success;
1582 }
1583
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586 int success;
1587
1588 if (cpu_buffer->nr_pages_to_update > 0)
1589 success = rb_insert_pages(cpu_buffer);
1590 else
1591 success = rb_remove_pages(cpu_buffer,
1592 -cpu_buffer->nr_pages_to_update);
1593
1594 if (success)
1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597
update_pages_handler(struct work_struct * work)1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 struct ring_buffer_per_cpu, update_pages_work);
1602 rb_update_pages(cpu_buffer);
1603 complete(&cpu_buffer->update_done);
1604 }
1605
1606 /**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 *
1611 * Minimum size is 2 * BUF_PAGE_SIZE.
1612 *
1613 * Returns 0 on success and < 0 on failure.
1614 */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1615 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616 int cpu_id)
1617 {
1618 struct ring_buffer_per_cpu *cpu_buffer;
1619 unsigned nr_pages;
1620 int cpu, err = 0;
1621
1622 /*
1623 * Always succeed at resizing a non-existent buffer:
1624 */
1625 if (!buffer)
1626 return size;
1627
1628 /* Make sure the requested buffer exists */
1629 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631 return size;
1632
1633 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634
1635 /* we need a minimum of two pages */
1636 if (nr_pages < 2)
1637 nr_pages = 2;
1638
1639 size = nr_pages * BUF_PAGE_SIZE;
1640
1641 /*
1642 * Don't succeed if resizing is disabled, as a reader might be
1643 * manipulating the ring buffer and is expecting a sane state while
1644 * this is true.
1645 */
1646 if (atomic_read(&buffer->resize_disabled))
1647 return -EBUSY;
1648
1649 /* prevent another thread from changing buffer sizes */
1650 mutex_lock(&buffer->mutex);
1651
1652 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1653 /* calculate the pages to update */
1654 for_each_buffer_cpu(buffer, cpu) {
1655 cpu_buffer = buffer->buffers[cpu];
1656
1657 cpu_buffer->nr_pages_to_update = nr_pages -
1658 cpu_buffer->nr_pages;
1659 /*
1660 * nothing more to do for removing pages or no update
1661 */
1662 if (cpu_buffer->nr_pages_to_update <= 0)
1663 continue;
1664 /*
1665 * to add pages, make sure all new pages can be
1666 * allocated without receiving ENOMEM
1667 */
1668 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1669 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1670 &cpu_buffer->new_pages, cpu)) {
1671 /* not enough memory for new pages */
1672 err = -ENOMEM;
1673 goto out_err;
1674 }
1675 }
1676
1677 get_online_cpus();
1678 /*
1679 * Fire off all the required work handlers
1680 * We can't schedule on offline CPUs, but it's not necessary
1681 * since we can change their buffer sizes without any race.
1682 */
1683 for_each_buffer_cpu(buffer, cpu) {
1684 cpu_buffer = buffer->buffers[cpu];
1685 if (!cpu_buffer->nr_pages_to_update)
1686 continue;
1687
1688 /* The update must run on the CPU that is being updated. */
1689 preempt_disable();
1690 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1691 rb_update_pages(cpu_buffer);
1692 cpu_buffer->nr_pages_to_update = 0;
1693 } else {
1694 /*
1695 * Can not disable preemption for schedule_work_on()
1696 * on PREEMPT_RT.
1697 */
1698 preempt_enable();
1699 schedule_work_on(cpu,
1700 &cpu_buffer->update_pages_work);
1701 preempt_disable();
1702 }
1703 preempt_enable();
1704 }
1705
1706 /* wait for all the updates to complete */
1707 for_each_buffer_cpu(buffer, cpu) {
1708 cpu_buffer = buffer->buffers[cpu];
1709 if (!cpu_buffer->nr_pages_to_update)
1710 continue;
1711
1712 if (cpu_online(cpu))
1713 wait_for_completion(&cpu_buffer->update_done);
1714 cpu_buffer->nr_pages_to_update = 0;
1715 }
1716
1717 put_online_cpus();
1718 } else {
1719 /* Make sure this CPU has been intitialized */
1720 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 goto out;
1722
1723 cpu_buffer = buffer->buffers[cpu_id];
1724
1725 if (nr_pages == cpu_buffer->nr_pages)
1726 goto out;
1727
1728 cpu_buffer->nr_pages_to_update = nr_pages -
1729 cpu_buffer->nr_pages;
1730
1731 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 if (cpu_buffer->nr_pages_to_update > 0 &&
1733 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1734 &cpu_buffer->new_pages, cpu_id)) {
1735 err = -ENOMEM;
1736 goto out_err;
1737 }
1738
1739 get_online_cpus();
1740
1741 preempt_disable();
1742 /* The update must run on the CPU that is being updated. */
1743 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1744 rb_update_pages(cpu_buffer);
1745 else {
1746 /*
1747 * Can not disable preemption for schedule_work_on()
1748 * on PREEMPT_RT.
1749 */
1750 preempt_enable();
1751 schedule_work_on(cpu_id,
1752 &cpu_buffer->update_pages_work);
1753 wait_for_completion(&cpu_buffer->update_done);
1754 preempt_disable();
1755 }
1756 preempt_enable();
1757
1758 cpu_buffer->nr_pages_to_update = 0;
1759 put_online_cpus();
1760 }
1761
1762 out:
1763 /*
1764 * The ring buffer resize can happen with the ring buffer
1765 * enabled, so that the update disturbs the tracing as little
1766 * as possible. But if the buffer is disabled, we do not need
1767 * to worry about that, and we can take the time to verify
1768 * that the buffer is not corrupt.
1769 */
1770 if (atomic_read(&buffer->record_disabled)) {
1771 atomic_inc(&buffer->record_disabled);
1772 /*
1773 * Even though the buffer was disabled, we must make sure
1774 * that it is truly disabled before calling rb_check_pages.
1775 * There could have been a race between checking
1776 * record_disable and incrementing it.
1777 */
1778 synchronize_sched();
1779 for_each_buffer_cpu(buffer, cpu) {
1780 cpu_buffer = buffer->buffers[cpu];
1781 rb_check_pages(cpu_buffer);
1782 }
1783 atomic_dec(&buffer->record_disabled);
1784 }
1785
1786 mutex_unlock(&buffer->mutex);
1787 return size;
1788
1789 out_err:
1790 for_each_buffer_cpu(buffer, cpu) {
1791 struct buffer_page *bpage, *tmp;
1792
1793 cpu_buffer = buffer->buffers[cpu];
1794 cpu_buffer->nr_pages_to_update = 0;
1795
1796 if (list_empty(&cpu_buffer->new_pages))
1797 continue;
1798
1799 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1800 list) {
1801 list_del_init(&bpage->list);
1802 free_buffer_page(bpage);
1803 }
1804 }
1805 mutex_unlock(&buffer->mutex);
1806 return err;
1807 }
1808 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1809
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1810 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1811 {
1812 mutex_lock(&buffer->mutex);
1813 if (val)
1814 buffer->flags |= RB_FL_OVERWRITE;
1815 else
1816 buffer->flags &= ~RB_FL_OVERWRITE;
1817 mutex_unlock(&buffer->mutex);
1818 }
1819 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1820
1821 static inline void *
__rb_data_page_index(struct buffer_data_page * bpage,unsigned index)1822 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1823 {
1824 return bpage->data + index;
1825 }
1826
__rb_page_index(struct buffer_page * bpage,unsigned index)1827 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1828 {
1829 return bpage->page->data + index;
1830 }
1831
1832 static inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1833 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1834 {
1835 return __rb_page_index(cpu_buffer->reader_page,
1836 cpu_buffer->reader_page->read);
1837 }
1838
1839 static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1840 rb_iter_head_event(struct ring_buffer_iter *iter)
1841 {
1842 return __rb_page_index(iter->head_page, iter->head);
1843 }
1844
rb_page_commit(struct buffer_page * bpage)1845 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1846 {
1847 return local_read(&bpage->page->commit);
1848 }
1849
1850 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1851 static inline unsigned rb_page_size(struct buffer_page *bpage)
1852 {
1853 return rb_page_commit(bpage);
1854 }
1855
1856 static inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1857 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1858 {
1859 return rb_page_commit(cpu_buffer->commit_page);
1860 }
1861
1862 static inline unsigned
rb_event_index(struct ring_buffer_event * event)1863 rb_event_index(struct ring_buffer_event *event)
1864 {
1865 unsigned long addr = (unsigned long)event;
1866
1867 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1868 }
1869
1870 static inline int
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)1871 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1872 struct ring_buffer_event *event)
1873 {
1874 unsigned long addr = (unsigned long)event;
1875 unsigned long index;
1876
1877 index = rb_event_index(event);
1878 addr &= PAGE_MASK;
1879
1880 return cpu_buffer->commit_page->page == (void *)addr &&
1881 rb_commit_index(cpu_buffer) == index;
1882 }
1883
1884 static void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)1885 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1886 {
1887 unsigned long max_count;
1888
1889 /*
1890 * We only race with interrupts and NMIs on this CPU.
1891 * If we own the commit event, then we can commit
1892 * all others that interrupted us, since the interruptions
1893 * are in stack format (they finish before they come
1894 * back to us). This allows us to do a simple loop to
1895 * assign the commit to the tail.
1896 */
1897 again:
1898 max_count = cpu_buffer->nr_pages * 100;
1899
1900 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1901 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1902 return;
1903 if (RB_WARN_ON(cpu_buffer,
1904 rb_is_reader_page(cpu_buffer->tail_page)))
1905 return;
1906 local_set(&cpu_buffer->commit_page->page->commit,
1907 rb_page_write(cpu_buffer->commit_page));
1908 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1909 cpu_buffer->write_stamp =
1910 cpu_buffer->commit_page->page->time_stamp;
1911 /* add barrier to keep gcc from optimizing too much */
1912 barrier();
1913 }
1914 while (rb_commit_index(cpu_buffer) !=
1915 rb_page_write(cpu_buffer->commit_page)) {
1916
1917 local_set(&cpu_buffer->commit_page->page->commit,
1918 rb_page_write(cpu_buffer->commit_page));
1919 RB_WARN_ON(cpu_buffer,
1920 local_read(&cpu_buffer->commit_page->page->commit) &
1921 ~RB_WRITE_MASK);
1922 barrier();
1923 }
1924
1925 /* again, keep gcc from optimizing */
1926 barrier();
1927
1928 /*
1929 * If an interrupt came in just after the first while loop
1930 * and pushed the tail page forward, we will be left with
1931 * a dangling commit that will never go forward.
1932 */
1933 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1934 goto again;
1935 }
1936
rb_reset_reader_page(struct ring_buffer_per_cpu * cpu_buffer)1937 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1938 {
1939 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1940 cpu_buffer->reader_page->read = 0;
1941 }
1942
rb_inc_iter(struct ring_buffer_iter * iter)1943 static void rb_inc_iter(struct ring_buffer_iter *iter)
1944 {
1945 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1946
1947 /*
1948 * The iterator could be on the reader page (it starts there).
1949 * But the head could have moved, since the reader was
1950 * found. Check for this case and assign the iterator
1951 * to the head page instead of next.
1952 */
1953 if (iter->head_page == cpu_buffer->reader_page)
1954 iter->head_page = rb_set_head_page(cpu_buffer);
1955 else
1956 rb_inc_page(cpu_buffer, &iter->head_page);
1957
1958 iter->read_stamp = iter->head_page->page->time_stamp;
1959 iter->head = 0;
1960 }
1961
1962 /* Slow path, do not inline */
1963 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta)1964 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1965 {
1966 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1967
1968 /* Not the first event on the page? */
1969 if (rb_event_index(event)) {
1970 event->time_delta = delta & TS_MASK;
1971 event->array[0] = delta >> TS_SHIFT;
1972 } else {
1973 /* nope, just zero it */
1974 event->time_delta = 0;
1975 event->array[0] = 0;
1976 }
1977
1978 return skip_time_extend(event);
1979 }
1980
1981 /**
1982 * rb_update_event - update event type and data
1983 * @event: the even to update
1984 * @type: the type of event
1985 * @length: the size of the event field in the ring buffer
1986 *
1987 * Update the type and data fields of the event. The length
1988 * is the actual size that is written to the ring buffer,
1989 * and with this, we can determine what to place into the
1990 * data field.
1991 */
1992 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,unsigned length,int add_timestamp,u64 delta)1993 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1994 struct ring_buffer_event *event, unsigned length,
1995 int add_timestamp, u64 delta)
1996 {
1997 /* Only a commit updates the timestamp */
1998 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1999 delta = 0;
2000
2001 /*
2002 * If we need to add a timestamp, then we
2003 * add it to the start of the resevered space.
2004 */
2005 if (unlikely(add_timestamp)) {
2006 event = rb_add_time_stamp(event, delta);
2007 length -= RB_LEN_TIME_EXTEND;
2008 delta = 0;
2009 }
2010
2011 event->time_delta = delta;
2012 length -= RB_EVNT_HDR_SIZE;
2013 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2014 event->type_len = 0;
2015 event->array[0] = length;
2016 } else
2017 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2018 }
2019
2020 /*
2021 * rb_handle_head_page - writer hit the head page
2022 *
2023 * Returns: +1 to retry page
2024 * 0 to continue
2025 * -1 on error
2026 */
2027 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2028 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2029 struct buffer_page *tail_page,
2030 struct buffer_page *next_page)
2031 {
2032 struct buffer_page *new_head;
2033 int entries;
2034 int type;
2035 int ret;
2036
2037 entries = rb_page_entries(next_page);
2038
2039 /*
2040 * The hard part is here. We need to move the head
2041 * forward, and protect against both readers on
2042 * other CPUs and writers coming in via interrupts.
2043 */
2044 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2045 RB_PAGE_HEAD);
2046
2047 /*
2048 * type can be one of four:
2049 * NORMAL - an interrupt already moved it for us
2050 * HEAD - we are the first to get here.
2051 * UPDATE - we are the interrupt interrupting
2052 * a current move.
2053 * MOVED - a reader on another CPU moved the next
2054 * pointer to its reader page. Give up
2055 * and try again.
2056 */
2057
2058 switch (type) {
2059 case RB_PAGE_HEAD:
2060 /*
2061 * We changed the head to UPDATE, thus
2062 * it is our responsibility to update
2063 * the counters.
2064 */
2065 local_add(entries, &cpu_buffer->overrun);
2066 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2067
2068 /*
2069 * The entries will be zeroed out when we move the
2070 * tail page.
2071 */
2072
2073 /* still more to do */
2074 break;
2075
2076 case RB_PAGE_UPDATE:
2077 /*
2078 * This is an interrupt that interrupt the
2079 * previous update. Still more to do.
2080 */
2081 break;
2082 case RB_PAGE_NORMAL:
2083 /*
2084 * An interrupt came in before the update
2085 * and processed this for us.
2086 * Nothing left to do.
2087 */
2088 return 1;
2089 case RB_PAGE_MOVED:
2090 /*
2091 * The reader is on another CPU and just did
2092 * a swap with our next_page.
2093 * Try again.
2094 */
2095 return 1;
2096 default:
2097 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2098 return -1;
2099 }
2100
2101 /*
2102 * Now that we are here, the old head pointer is
2103 * set to UPDATE. This will keep the reader from
2104 * swapping the head page with the reader page.
2105 * The reader (on another CPU) will spin till
2106 * we are finished.
2107 *
2108 * We just need to protect against interrupts
2109 * doing the job. We will set the next pointer
2110 * to HEAD. After that, we set the old pointer
2111 * to NORMAL, but only if it was HEAD before.
2112 * otherwise we are an interrupt, and only
2113 * want the outer most commit to reset it.
2114 */
2115 new_head = next_page;
2116 rb_inc_page(cpu_buffer, &new_head);
2117
2118 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2119 RB_PAGE_NORMAL);
2120
2121 /*
2122 * Valid returns are:
2123 * HEAD - an interrupt came in and already set it.
2124 * NORMAL - One of two things:
2125 * 1) We really set it.
2126 * 2) A bunch of interrupts came in and moved
2127 * the page forward again.
2128 */
2129 switch (ret) {
2130 case RB_PAGE_HEAD:
2131 case RB_PAGE_NORMAL:
2132 /* OK */
2133 break;
2134 default:
2135 RB_WARN_ON(cpu_buffer, 1);
2136 return -1;
2137 }
2138
2139 /*
2140 * It is possible that an interrupt came in,
2141 * set the head up, then more interrupts came in
2142 * and moved it again. When we get back here,
2143 * the page would have been set to NORMAL but we
2144 * just set it back to HEAD.
2145 *
2146 * How do you detect this? Well, if that happened
2147 * the tail page would have moved.
2148 */
2149 if (ret == RB_PAGE_NORMAL) {
2150 /*
2151 * If the tail had moved passed next, then we need
2152 * to reset the pointer.
2153 */
2154 if (cpu_buffer->tail_page != tail_page &&
2155 cpu_buffer->tail_page != next_page)
2156 rb_head_page_set_normal(cpu_buffer, new_head,
2157 next_page,
2158 RB_PAGE_HEAD);
2159 }
2160
2161 /*
2162 * If this was the outer most commit (the one that
2163 * changed the original pointer from HEAD to UPDATE),
2164 * then it is up to us to reset it to NORMAL.
2165 */
2166 if (type == RB_PAGE_HEAD) {
2167 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2168 tail_page,
2169 RB_PAGE_UPDATE);
2170 if (RB_WARN_ON(cpu_buffer,
2171 ret != RB_PAGE_UPDATE))
2172 return -1;
2173 }
2174
2175 return 0;
2176 }
2177
rb_calculate_event_length(unsigned length)2178 static unsigned rb_calculate_event_length(unsigned length)
2179 {
2180 struct ring_buffer_event event; /* Used only for sizeof array */
2181
2182 /* zero length can cause confusions */
2183 if (!length)
2184 length = 1;
2185
2186 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2187 length += sizeof(event.array[0]);
2188
2189 length += RB_EVNT_HDR_SIZE;
2190 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2191
2192 return length;
2193 }
2194
2195 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,unsigned long tail,unsigned long length)2196 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2197 struct buffer_page *tail_page,
2198 unsigned long tail, unsigned long length)
2199 {
2200 struct ring_buffer_event *event;
2201
2202 /*
2203 * Only the event that crossed the page boundary
2204 * must fill the old tail_page with padding.
2205 */
2206 if (tail >= BUF_PAGE_SIZE) {
2207 /*
2208 * If the page was filled, then we still need
2209 * to update the real_end. Reset it to zero
2210 * and the reader will ignore it.
2211 */
2212 if (tail == BUF_PAGE_SIZE)
2213 tail_page->real_end = 0;
2214
2215 local_sub(length, &tail_page->write);
2216 return;
2217 }
2218
2219 event = __rb_page_index(tail_page, tail);
2220 kmemcheck_annotate_bitfield(event, bitfield);
2221
2222 /* account for padding bytes */
2223 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2224
2225 /*
2226 * Save the original length to the meta data.
2227 * This will be used by the reader to add lost event
2228 * counter.
2229 */
2230 tail_page->real_end = tail;
2231
2232 /*
2233 * If this event is bigger than the minimum size, then
2234 * we need to be careful that we don't subtract the
2235 * write counter enough to allow another writer to slip
2236 * in on this page.
2237 * We put in a discarded commit instead, to make sure
2238 * that this space is not used again.
2239 *
2240 * If we are less than the minimum size, we don't need to
2241 * worry about it.
2242 */
2243 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2244 /* No room for any events */
2245
2246 /* Mark the rest of the page with padding */
2247 rb_event_set_padding(event);
2248
2249 /* Set the write back to the previous setting */
2250 local_sub(length, &tail_page->write);
2251 return;
2252 }
2253
2254 /* Put in a discarded event */
2255 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2256 event->type_len = RINGBUF_TYPE_PADDING;
2257 /* time delta must be non zero */
2258 event->time_delta = 1;
2259
2260 /* Set write to end of buffer */
2261 length = (tail + length) - BUF_PAGE_SIZE;
2262 local_sub(length, &tail_page->write);
2263 }
2264
2265 /*
2266 * This is the slow path, force gcc not to inline it.
2267 */
2268 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,unsigned long tail,struct buffer_page * tail_page,u64 ts)2269 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2270 unsigned long length, unsigned long tail,
2271 struct buffer_page *tail_page, u64 ts)
2272 {
2273 struct buffer_page *commit_page = cpu_buffer->commit_page;
2274 struct ring_buffer *buffer = cpu_buffer->buffer;
2275 struct buffer_page *next_page;
2276 int ret;
2277
2278 next_page = tail_page;
2279
2280 rb_inc_page(cpu_buffer, &next_page);
2281
2282 /*
2283 * If for some reason, we had an interrupt storm that made
2284 * it all the way around the buffer, bail, and warn
2285 * about it.
2286 */
2287 if (unlikely(next_page == commit_page)) {
2288 local_inc(&cpu_buffer->commit_overrun);
2289 goto out_reset;
2290 }
2291
2292 /*
2293 * This is where the fun begins!
2294 *
2295 * We are fighting against races between a reader that
2296 * could be on another CPU trying to swap its reader
2297 * page with the buffer head.
2298 *
2299 * We are also fighting against interrupts coming in and
2300 * moving the head or tail on us as well.
2301 *
2302 * If the next page is the head page then we have filled
2303 * the buffer, unless the commit page is still on the
2304 * reader page.
2305 */
2306 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2307
2308 /*
2309 * If the commit is not on the reader page, then
2310 * move the header page.
2311 */
2312 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2313 /*
2314 * If we are not in overwrite mode,
2315 * this is easy, just stop here.
2316 */
2317 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2318 local_inc(&cpu_buffer->dropped_events);
2319 goto out_reset;
2320 }
2321
2322 ret = rb_handle_head_page(cpu_buffer,
2323 tail_page,
2324 next_page);
2325 if (ret < 0)
2326 goto out_reset;
2327 if (ret)
2328 goto out_again;
2329 } else {
2330 /*
2331 * We need to be careful here too. The
2332 * commit page could still be on the reader
2333 * page. We could have a small buffer, and
2334 * have filled up the buffer with events
2335 * from interrupts and such, and wrapped.
2336 *
2337 * Note, if the tail page is also the on the
2338 * reader_page, we let it move out.
2339 */
2340 if (unlikely((cpu_buffer->commit_page !=
2341 cpu_buffer->tail_page) &&
2342 (cpu_buffer->commit_page ==
2343 cpu_buffer->reader_page))) {
2344 local_inc(&cpu_buffer->commit_overrun);
2345 goto out_reset;
2346 }
2347 }
2348 }
2349
2350 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2351 if (ret) {
2352 /*
2353 * Nested commits always have zero deltas, so
2354 * just reread the time stamp
2355 */
2356 ts = rb_time_stamp(buffer);
2357 next_page->page->time_stamp = ts;
2358 }
2359
2360 out_again:
2361
2362 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2363
2364 /* fail and let the caller try again */
2365 return ERR_PTR(-EAGAIN);
2366
2367 out_reset:
2368 /* reset write */
2369 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2370
2371 return NULL;
2372 }
2373
2374 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,unsigned long length,u64 ts,u64 delta,int add_timestamp)2375 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2376 unsigned long length, u64 ts,
2377 u64 delta, int add_timestamp)
2378 {
2379 struct buffer_page *tail_page;
2380 struct ring_buffer_event *event;
2381 unsigned long tail, write;
2382
2383 /*
2384 * If the time delta since the last event is too big to
2385 * hold in the time field of the event, then we append a
2386 * TIME EXTEND event ahead of the data event.
2387 */
2388 if (unlikely(add_timestamp))
2389 length += RB_LEN_TIME_EXTEND;
2390
2391 tail_page = cpu_buffer->tail_page;
2392 write = local_add_return(length, &tail_page->write);
2393
2394 /* set write to only the index of the write */
2395 write &= RB_WRITE_MASK;
2396 tail = write - length;
2397
2398 /* See if we shot pass the end of this buffer page */
2399 if (unlikely(write > BUF_PAGE_SIZE))
2400 return rb_move_tail(cpu_buffer, length, tail,
2401 tail_page, ts);
2402
2403 /* We reserved something on the buffer */
2404
2405 event = __rb_page_index(tail_page, tail);
2406 kmemcheck_annotate_bitfield(event, bitfield);
2407 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2408
2409 local_inc(&tail_page->entries);
2410
2411 /*
2412 * If this is the first commit on the page, then update
2413 * its timestamp.
2414 */
2415 if (!tail)
2416 tail_page->page->time_stamp = ts;
2417
2418 /* account for these added bytes */
2419 local_add(length, &cpu_buffer->entries_bytes);
2420
2421 return event;
2422 }
2423
2424 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2425 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2426 struct ring_buffer_event *event)
2427 {
2428 unsigned long new_index, old_index;
2429 struct buffer_page *bpage;
2430 unsigned long index;
2431 unsigned long addr;
2432
2433 new_index = rb_event_index(event);
2434 old_index = new_index + rb_event_ts_length(event);
2435 addr = (unsigned long)event;
2436 addr &= PAGE_MASK;
2437
2438 bpage = cpu_buffer->tail_page;
2439
2440 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2441 unsigned long write_mask =
2442 local_read(&bpage->write) & ~RB_WRITE_MASK;
2443 unsigned long event_length = rb_event_length(event);
2444 /*
2445 * This is on the tail page. It is possible that
2446 * a write could come in and move the tail page
2447 * and write to the next page. That is fine
2448 * because we just shorten what is on this page.
2449 */
2450 old_index += write_mask;
2451 new_index += write_mask;
2452 index = local_cmpxchg(&bpage->write, old_index, new_index);
2453 if (index == old_index) {
2454 /* update counters */
2455 local_sub(event_length, &cpu_buffer->entries_bytes);
2456 return 1;
2457 }
2458 }
2459
2460 /* could not discard */
2461 return 0;
2462 }
2463
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2464 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2465 {
2466 local_inc(&cpu_buffer->committing);
2467 local_inc(&cpu_buffer->commits);
2468 }
2469
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2470 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2471 {
2472 unsigned long commits;
2473
2474 if (RB_WARN_ON(cpu_buffer,
2475 !local_read(&cpu_buffer->committing)))
2476 return;
2477
2478 again:
2479 commits = local_read(&cpu_buffer->commits);
2480 /* synchronize with interrupts */
2481 barrier();
2482 if (local_read(&cpu_buffer->committing) == 1)
2483 rb_set_commit_to_write(cpu_buffer);
2484
2485 local_dec(&cpu_buffer->committing);
2486
2487 /* synchronize with interrupts */
2488 barrier();
2489
2490 /*
2491 * Need to account for interrupts coming in between the
2492 * updating of the commit page and the clearing of the
2493 * committing counter.
2494 */
2495 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2496 !local_read(&cpu_buffer->committing)) {
2497 local_inc(&cpu_buffer->committing);
2498 goto again;
2499 }
2500 }
2501
2502 static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2503 rb_reserve_next_event(struct ring_buffer *buffer,
2504 struct ring_buffer_per_cpu *cpu_buffer,
2505 unsigned long length)
2506 {
2507 struct ring_buffer_event *event;
2508 u64 ts, delta;
2509 int nr_loops = 0;
2510 int add_timestamp;
2511 u64 diff;
2512
2513 rb_start_commit(cpu_buffer);
2514
2515 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2516 /*
2517 * Due to the ability to swap a cpu buffer from a buffer
2518 * it is possible it was swapped before we committed.
2519 * (committing stops a swap). We check for it here and
2520 * if it happened, we have to fail the write.
2521 */
2522 barrier();
2523 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2524 local_dec(&cpu_buffer->committing);
2525 local_dec(&cpu_buffer->commits);
2526 return NULL;
2527 }
2528 #endif
2529
2530 length = rb_calculate_event_length(length);
2531 again:
2532 add_timestamp = 0;
2533 delta = 0;
2534
2535 /*
2536 * We allow for interrupts to reenter here and do a trace.
2537 * If one does, it will cause this original code to loop
2538 * back here. Even with heavy interrupts happening, this
2539 * should only happen a few times in a row. If this happens
2540 * 1000 times in a row, there must be either an interrupt
2541 * storm or we have something buggy.
2542 * Bail!
2543 */
2544 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2545 goto out_fail;
2546
2547 ts = rb_time_stamp(cpu_buffer->buffer);
2548 diff = ts - cpu_buffer->write_stamp;
2549
2550 /* make sure this diff is calculated here */
2551 barrier();
2552
2553 /* Did the write stamp get updated already? */
2554 if (likely(ts >= cpu_buffer->write_stamp)) {
2555 delta = diff;
2556 if (unlikely(test_time_stamp(delta))) {
2557 int local_clock_stable = 1;
2558 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2559 local_clock_stable = sched_clock_stable;
2560 #endif
2561 WARN_ONCE(delta > (1ULL << 59),
2562 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2563 (unsigned long long)delta,
2564 (unsigned long long)ts,
2565 (unsigned long long)cpu_buffer->write_stamp,
2566 local_clock_stable ? "" :
2567 "If you just came from a suspend/resume,\n"
2568 "please switch to the trace global clock:\n"
2569 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2570 add_timestamp = 1;
2571 }
2572 }
2573
2574 event = __rb_reserve_next(cpu_buffer, length, ts,
2575 delta, add_timestamp);
2576 if (unlikely(PTR_ERR(event) == -EAGAIN))
2577 goto again;
2578
2579 if (!event)
2580 goto out_fail;
2581
2582 return event;
2583
2584 out_fail:
2585 rb_end_commit(cpu_buffer);
2586 return NULL;
2587 }
2588
2589 #ifdef CONFIG_TRACING
2590
2591 /*
2592 * The lock and unlock are done within a preempt disable section.
2593 * The current_context per_cpu variable can only be modified
2594 * by the current task between lock and unlock. But it can
2595 * be modified more than once via an interrupt. To pass this
2596 * information from the lock to the unlock without having to
2597 * access the 'in_interrupt()' functions again (which do show
2598 * a bit of overhead in something as critical as function tracing,
2599 * we use a bitmask trick.
2600 *
2601 * bit 0 = NMI context
2602 * bit 1 = IRQ context
2603 * bit 2 = SoftIRQ context
2604 * bit 3 = normal context.
2605 *
2606 * This works because this is the order of contexts that can
2607 * preempt other contexts. A SoftIRQ never preempts an IRQ
2608 * context.
2609 *
2610 * When the context is determined, the corresponding bit is
2611 * checked and set (if it was set, then a recursion of that context
2612 * happened).
2613 *
2614 * On unlock, we need to clear this bit. To do so, just subtract
2615 * 1 from the current_context and AND it to itself.
2616 *
2617 * (binary)
2618 * 101 - 1 = 100
2619 * 101 & 100 = 100 (clearing bit zero)
2620 *
2621 * 1010 - 1 = 1001
2622 * 1010 & 1001 = 1000 (clearing bit 1)
2623 *
2624 * The least significant bit can be cleared this way, and it
2625 * just so happens that it is the same bit corresponding to
2626 * the current context.
2627 */
2628 static DEFINE_PER_CPU(unsigned int, current_context);
2629
trace_recursive_lock(void)2630 static __always_inline int trace_recursive_lock(void)
2631 {
2632 unsigned int val = this_cpu_read(current_context);
2633 int bit;
2634
2635 if (in_interrupt()) {
2636 if (in_nmi())
2637 bit = 0;
2638 else if (in_irq())
2639 bit = 1;
2640 else
2641 bit = 2;
2642 } else
2643 bit = 3;
2644
2645 if (unlikely(val & (1 << bit)))
2646 return 1;
2647
2648 val |= (1 << bit);
2649 this_cpu_write(current_context, val);
2650
2651 return 0;
2652 }
2653
trace_recursive_unlock(void)2654 static __always_inline void trace_recursive_unlock(void)
2655 {
2656 unsigned int val = this_cpu_read(current_context);
2657
2658 val--;
2659 val &= this_cpu_read(current_context);
2660 this_cpu_write(current_context, val);
2661 }
2662
2663 #else
2664
2665 #define trace_recursive_lock() (0)
2666 #define trace_recursive_unlock() do { } while (0)
2667
2668 #endif
2669
2670 /**
2671 * ring_buffer_lock_reserve - reserve a part of the buffer
2672 * @buffer: the ring buffer to reserve from
2673 * @length: the length of the data to reserve (excluding event header)
2674 *
2675 * Returns a reseverd event on the ring buffer to copy directly to.
2676 * The user of this interface will need to get the body to write into
2677 * and can use the ring_buffer_event_data() interface.
2678 *
2679 * The length is the length of the data needed, not the event length
2680 * which also includes the event header.
2681 *
2682 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2683 * If NULL is returned, then nothing has been allocated or locked.
2684 */
2685 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)2686 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2687 {
2688 struct ring_buffer_per_cpu *cpu_buffer;
2689 struct ring_buffer_event *event;
2690 int cpu;
2691
2692 if (ring_buffer_flags != RB_BUFFERS_ON)
2693 return NULL;
2694
2695 /* If we are tracing schedule, we don't want to recurse */
2696 preempt_disable_notrace();
2697
2698 if (atomic_read(&buffer->record_disabled))
2699 goto out_nocheck;
2700
2701 if (trace_recursive_lock())
2702 goto out_nocheck;
2703
2704 cpu = raw_smp_processor_id();
2705
2706 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2707 goto out;
2708
2709 cpu_buffer = buffer->buffers[cpu];
2710
2711 if (atomic_read(&cpu_buffer->record_disabled))
2712 goto out;
2713
2714 if (length > BUF_MAX_DATA_SIZE)
2715 goto out;
2716
2717 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2718 if (!event)
2719 goto out;
2720
2721 return event;
2722
2723 out:
2724 trace_recursive_unlock();
2725
2726 out_nocheck:
2727 preempt_enable_notrace();
2728 return NULL;
2729 }
2730 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2731
2732 static void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2733 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2734 struct ring_buffer_event *event)
2735 {
2736 u64 delta;
2737
2738 /*
2739 * The event first in the commit queue updates the
2740 * time stamp.
2741 */
2742 if (rb_event_is_commit(cpu_buffer, event)) {
2743 /*
2744 * A commit event that is first on a page
2745 * updates the write timestamp with the page stamp
2746 */
2747 if (!rb_event_index(event))
2748 cpu_buffer->write_stamp =
2749 cpu_buffer->commit_page->page->time_stamp;
2750 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2751 delta = event->array[0];
2752 delta <<= TS_SHIFT;
2753 delta += event->time_delta;
2754 cpu_buffer->write_stamp += delta;
2755 } else
2756 cpu_buffer->write_stamp += event->time_delta;
2757 }
2758 }
2759
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2760 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761 struct ring_buffer_event *event)
2762 {
2763 local_inc(&cpu_buffer->entries);
2764 rb_update_write_stamp(cpu_buffer, event);
2765 rb_end_commit(cpu_buffer);
2766 }
2767
2768 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2769 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2770 {
2771 if (buffer->irq_work.waiters_pending) {
2772 buffer->irq_work.waiters_pending = false;
2773 /* irq_work_queue() supplies it's own memory barriers */
2774 irq_work_queue(&buffer->irq_work.work);
2775 }
2776
2777 if (cpu_buffer->irq_work.waiters_pending) {
2778 cpu_buffer->irq_work.waiters_pending = false;
2779 /* irq_work_queue() supplies it's own memory barriers */
2780 irq_work_queue(&cpu_buffer->irq_work.work);
2781 }
2782 }
2783
2784 /**
2785 * ring_buffer_unlock_commit - commit a reserved
2786 * @buffer: The buffer to commit to
2787 * @event: The event pointer to commit.
2788 *
2789 * This commits the data to the ring buffer, and releases any locks held.
2790 *
2791 * Must be paired with ring_buffer_lock_reserve.
2792 */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2793 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2794 struct ring_buffer_event *event)
2795 {
2796 struct ring_buffer_per_cpu *cpu_buffer;
2797 int cpu = raw_smp_processor_id();
2798
2799 cpu_buffer = buffer->buffers[cpu];
2800
2801 rb_commit(cpu_buffer, event);
2802
2803 rb_wakeups(buffer, cpu_buffer);
2804
2805 trace_recursive_unlock();
2806
2807 preempt_enable_notrace();
2808
2809 return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2812
rb_event_discard(struct ring_buffer_event * event)2813 static inline void rb_event_discard(struct ring_buffer_event *event)
2814 {
2815 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2816 event = skip_time_extend(event);
2817
2818 /* array[0] holds the actual length for the discarded event */
2819 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2820 event->type_len = RINGBUF_TYPE_PADDING;
2821 /* time delta must be non zero */
2822 if (!event->time_delta)
2823 event->time_delta = 1;
2824 }
2825
2826 /*
2827 * Decrement the entries to the page that an event is on.
2828 * The event does not even need to exist, only the pointer
2829 * to the page it is on. This may only be called before the commit
2830 * takes place.
2831 */
2832 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2833 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2834 struct ring_buffer_event *event)
2835 {
2836 unsigned long addr = (unsigned long)event;
2837 struct buffer_page *bpage = cpu_buffer->commit_page;
2838 struct buffer_page *start;
2839
2840 addr &= PAGE_MASK;
2841
2842 /* Do the likely case first */
2843 if (likely(bpage->page == (void *)addr)) {
2844 local_dec(&bpage->entries);
2845 return;
2846 }
2847
2848 /*
2849 * Because the commit page may be on the reader page we
2850 * start with the next page and check the end loop there.
2851 */
2852 rb_inc_page(cpu_buffer, &bpage);
2853 start = bpage;
2854 do {
2855 if (bpage->page == (void *)addr) {
2856 local_dec(&bpage->entries);
2857 return;
2858 }
2859 rb_inc_page(cpu_buffer, &bpage);
2860 } while (bpage != start);
2861
2862 /* commit not part of this buffer?? */
2863 RB_WARN_ON(cpu_buffer, 1);
2864 }
2865
2866 /**
2867 * ring_buffer_commit_discard - discard an event that has not been committed
2868 * @buffer: the ring buffer
2869 * @event: non committed event to discard
2870 *
2871 * Sometimes an event that is in the ring buffer needs to be ignored.
2872 * This function lets the user discard an event in the ring buffer
2873 * and then that event will not be read later.
2874 *
2875 * This function only works if it is called before the the item has been
2876 * committed. It will try to free the event from the ring buffer
2877 * if another event has not been added behind it.
2878 *
2879 * If another event has been added behind it, it will set the event
2880 * up as discarded, and perform the commit.
2881 *
2882 * If this function is called, do not call ring_buffer_unlock_commit on
2883 * the event.
2884 */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2885 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2886 struct ring_buffer_event *event)
2887 {
2888 struct ring_buffer_per_cpu *cpu_buffer;
2889 int cpu;
2890
2891 /* The event is discarded regardless */
2892 rb_event_discard(event);
2893
2894 cpu = smp_processor_id();
2895 cpu_buffer = buffer->buffers[cpu];
2896
2897 /*
2898 * This must only be called if the event has not been
2899 * committed yet. Thus we can assume that preemption
2900 * is still disabled.
2901 */
2902 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2903
2904 rb_decrement_entry(cpu_buffer, event);
2905 if (rb_try_to_discard(cpu_buffer, event))
2906 goto out;
2907
2908 /*
2909 * The commit is still visible by the reader, so we
2910 * must still update the timestamp.
2911 */
2912 rb_update_write_stamp(cpu_buffer, event);
2913 out:
2914 rb_end_commit(cpu_buffer);
2915
2916 trace_recursive_unlock();
2917
2918 preempt_enable_notrace();
2919
2920 }
2921 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2922
2923 /**
2924 * ring_buffer_write - write data to the buffer without reserving
2925 * @buffer: The ring buffer to write to.
2926 * @length: The length of the data being written (excluding the event header)
2927 * @data: The data to write to the buffer.
2928 *
2929 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2930 * one function. If you already have the data to write to the buffer, it
2931 * may be easier to simply call this function.
2932 *
2933 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2934 * and not the length of the event which would hold the header.
2935 */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)2936 int ring_buffer_write(struct ring_buffer *buffer,
2937 unsigned long length,
2938 void *data)
2939 {
2940 struct ring_buffer_per_cpu *cpu_buffer;
2941 struct ring_buffer_event *event;
2942 void *body;
2943 int ret = -EBUSY;
2944 int cpu;
2945
2946 if (ring_buffer_flags != RB_BUFFERS_ON)
2947 return -EBUSY;
2948
2949 preempt_disable_notrace();
2950
2951 if (atomic_read(&buffer->record_disabled))
2952 goto out;
2953
2954 cpu = raw_smp_processor_id();
2955
2956 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2957 goto out;
2958
2959 cpu_buffer = buffer->buffers[cpu];
2960
2961 if (atomic_read(&cpu_buffer->record_disabled))
2962 goto out;
2963
2964 if (length > BUF_MAX_DATA_SIZE)
2965 goto out;
2966
2967 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2968 if (!event)
2969 goto out;
2970
2971 body = rb_event_data(event);
2972
2973 memcpy(body, data, length);
2974
2975 rb_commit(cpu_buffer, event);
2976
2977 rb_wakeups(buffer, cpu_buffer);
2978
2979 ret = 0;
2980 out:
2981 preempt_enable_notrace();
2982
2983 return ret;
2984 }
2985 EXPORT_SYMBOL_GPL(ring_buffer_write);
2986
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)2987 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2988 {
2989 struct buffer_page *reader = cpu_buffer->reader_page;
2990 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2991 struct buffer_page *commit = cpu_buffer->commit_page;
2992
2993 /* In case of error, head will be NULL */
2994 if (unlikely(!head))
2995 return 1;
2996
2997 return reader->read == rb_page_commit(reader) &&
2998 (commit == reader ||
2999 (commit == head &&
3000 head->read == rb_page_commit(commit)));
3001 }
3002
3003 /**
3004 * ring_buffer_record_disable - stop all writes into the buffer
3005 * @buffer: The ring buffer to stop writes to.
3006 *
3007 * This prevents all writes to the buffer. Any attempt to write
3008 * to the buffer after this will fail and return NULL.
3009 *
3010 * The caller should call synchronize_sched() after this.
3011 */
ring_buffer_record_disable(struct ring_buffer * buffer)3012 void ring_buffer_record_disable(struct ring_buffer *buffer)
3013 {
3014 atomic_inc(&buffer->record_disabled);
3015 }
3016 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3017
3018 /**
3019 * ring_buffer_record_enable - enable writes to the buffer
3020 * @buffer: The ring buffer to enable writes
3021 *
3022 * Note, multiple disables will need the same number of enables
3023 * to truly enable the writing (much like preempt_disable).
3024 */
ring_buffer_record_enable(struct ring_buffer * buffer)3025 void ring_buffer_record_enable(struct ring_buffer *buffer)
3026 {
3027 atomic_dec(&buffer->record_disabled);
3028 }
3029 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3030
3031 /**
3032 * ring_buffer_record_off - stop all writes into the buffer
3033 * @buffer: The ring buffer to stop writes to.
3034 *
3035 * This prevents all writes to the buffer. Any attempt to write
3036 * to the buffer after this will fail and return NULL.
3037 *
3038 * This is different than ring_buffer_record_disable() as
3039 * it works like an on/off switch, where as the disable() version
3040 * must be paired with a enable().
3041 */
ring_buffer_record_off(struct ring_buffer * buffer)3042 void ring_buffer_record_off(struct ring_buffer *buffer)
3043 {
3044 unsigned int rd;
3045 unsigned int new_rd;
3046
3047 do {
3048 rd = atomic_read(&buffer->record_disabled);
3049 new_rd = rd | RB_BUFFER_OFF;
3050 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3053
3054 /**
3055 * ring_buffer_record_on - restart writes into the buffer
3056 * @buffer: The ring buffer to start writes to.
3057 *
3058 * This enables all writes to the buffer that was disabled by
3059 * ring_buffer_record_off().
3060 *
3061 * This is different than ring_buffer_record_enable() as
3062 * it works like an on/off switch, where as the enable() version
3063 * must be paired with a disable().
3064 */
ring_buffer_record_on(struct ring_buffer * buffer)3065 void ring_buffer_record_on(struct ring_buffer *buffer)
3066 {
3067 unsigned int rd;
3068 unsigned int new_rd;
3069
3070 do {
3071 rd = atomic_read(&buffer->record_disabled);
3072 new_rd = rd & ~RB_BUFFER_OFF;
3073 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3074 }
3075 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3076
3077 /**
3078 * ring_buffer_record_is_on - return true if the ring buffer can write
3079 * @buffer: The ring buffer to see if write is enabled
3080 *
3081 * Returns true if the ring buffer is in a state that it accepts writes.
3082 */
ring_buffer_record_is_on(struct ring_buffer * buffer)3083 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3084 {
3085 return !atomic_read(&buffer->record_disabled);
3086 }
3087
3088 /**
3089 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3090 * @buffer: The ring buffer to stop writes to.
3091 * @cpu: The CPU buffer to stop
3092 *
3093 * This prevents all writes to the buffer. Any attempt to write
3094 * to the buffer after this will fail and return NULL.
3095 *
3096 * The caller should call synchronize_sched() after this.
3097 */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3098 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3099 {
3100 struct ring_buffer_per_cpu *cpu_buffer;
3101
3102 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3103 return;
3104
3105 cpu_buffer = buffer->buffers[cpu];
3106 atomic_inc(&cpu_buffer->record_disabled);
3107 }
3108 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3109
3110 /**
3111 * ring_buffer_record_enable_cpu - enable writes to the buffer
3112 * @buffer: The ring buffer to enable writes
3113 * @cpu: The CPU to enable.
3114 *
3115 * Note, multiple disables will need the same number of enables
3116 * to truly enable the writing (much like preempt_disable).
3117 */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3118 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3119 {
3120 struct ring_buffer_per_cpu *cpu_buffer;
3121
3122 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3123 return;
3124
3125 cpu_buffer = buffer->buffers[cpu];
3126 atomic_dec(&cpu_buffer->record_disabled);
3127 }
3128 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3129
3130 /*
3131 * The total entries in the ring buffer is the running counter
3132 * of entries entered into the ring buffer, minus the sum of
3133 * the entries read from the ring buffer and the number of
3134 * entries that were overwritten.
3135 */
3136 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3137 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3138 {
3139 return local_read(&cpu_buffer->entries) -
3140 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3141 }
3142
3143 /**
3144 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3145 * @buffer: The ring buffer
3146 * @cpu: The per CPU buffer to read from.
3147 */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3148 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3149 {
3150 unsigned long flags;
3151 struct ring_buffer_per_cpu *cpu_buffer;
3152 struct buffer_page *bpage;
3153 u64 ret = 0;
3154
3155 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3156 return 0;
3157
3158 cpu_buffer = buffer->buffers[cpu];
3159 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3160 /*
3161 * if the tail is on reader_page, oldest time stamp is on the reader
3162 * page
3163 */
3164 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3165 bpage = cpu_buffer->reader_page;
3166 else
3167 bpage = rb_set_head_page(cpu_buffer);
3168 if (bpage)
3169 ret = bpage->page->time_stamp;
3170 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3171
3172 return ret;
3173 }
3174 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3175
3176 /**
3177 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3178 * @buffer: The ring buffer
3179 * @cpu: The per CPU buffer to read from.
3180 */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3181 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3182 {
3183 struct ring_buffer_per_cpu *cpu_buffer;
3184 unsigned long ret;
3185
3186 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3187 return 0;
3188
3189 cpu_buffer = buffer->buffers[cpu];
3190 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3191
3192 return ret;
3193 }
3194 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3195
3196 /**
3197 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3198 * @buffer: The ring buffer
3199 * @cpu: The per CPU buffer to get the entries from.
3200 */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3201 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3202 {
3203 struct ring_buffer_per_cpu *cpu_buffer;
3204
3205 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3206 return 0;
3207
3208 cpu_buffer = buffer->buffers[cpu];
3209
3210 return rb_num_of_entries(cpu_buffer);
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3213
3214 /**
3215 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3216 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3217 * @buffer: The ring buffer
3218 * @cpu: The per CPU buffer to get the number of overruns from
3219 */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3220 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3221 {
3222 struct ring_buffer_per_cpu *cpu_buffer;
3223 unsigned long ret;
3224
3225 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3226 return 0;
3227
3228 cpu_buffer = buffer->buffers[cpu];
3229 ret = local_read(&cpu_buffer->overrun);
3230
3231 return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3234
3235 /**
3236 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3237 * commits failing due to the buffer wrapping around while there are uncommitted
3238 * events, such as during an interrupt storm.
3239 * @buffer: The ring buffer
3240 * @cpu: The per CPU buffer to get the number of overruns from
3241 */
3242 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3243 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3244 {
3245 struct ring_buffer_per_cpu *cpu_buffer;
3246 unsigned long ret;
3247
3248 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3249 return 0;
3250
3251 cpu_buffer = buffer->buffers[cpu];
3252 ret = local_read(&cpu_buffer->commit_overrun);
3253
3254 return ret;
3255 }
3256 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3257
3258 /**
3259 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3260 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3261 * @buffer: The ring buffer
3262 * @cpu: The per CPU buffer to get the number of overruns from
3263 */
3264 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3265 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3266 {
3267 struct ring_buffer_per_cpu *cpu_buffer;
3268 unsigned long ret;
3269
3270 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3271 return 0;
3272
3273 cpu_buffer = buffer->buffers[cpu];
3274 ret = local_read(&cpu_buffer->dropped_events);
3275
3276 return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3279
3280 /**
3281 * ring_buffer_read_events_cpu - get the number of events successfully read
3282 * @buffer: The ring buffer
3283 * @cpu: The per CPU buffer to get the number of events read
3284 */
3285 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3286 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3287 {
3288 struct ring_buffer_per_cpu *cpu_buffer;
3289
3290 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3291 return 0;
3292
3293 cpu_buffer = buffer->buffers[cpu];
3294 return cpu_buffer->read;
3295 }
3296 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3297
3298 /**
3299 * ring_buffer_entries - get the number of entries in a buffer
3300 * @buffer: The ring buffer
3301 *
3302 * Returns the total number of entries in the ring buffer
3303 * (all CPU entries)
3304 */
ring_buffer_entries(struct ring_buffer * buffer)3305 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3306 {
3307 struct ring_buffer_per_cpu *cpu_buffer;
3308 unsigned long entries = 0;
3309 int cpu;
3310
3311 /* if you care about this being correct, lock the buffer */
3312 for_each_buffer_cpu(buffer, cpu) {
3313 cpu_buffer = buffer->buffers[cpu];
3314 entries += rb_num_of_entries(cpu_buffer);
3315 }
3316
3317 return entries;
3318 }
3319 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3320
3321 /**
3322 * ring_buffer_overruns - get the number of overruns in buffer
3323 * @buffer: The ring buffer
3324 *
3325 * Returns the total number of overruns in the ring buffer
3326 * (all CPU entries)
3327 */
ring_buffer_overruns(struct ring_buffer * buffer)3328 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3329 {
3330 struct ring_buffer_per_cpu *cpu_buffer;
3331 unsigned long overruns = 0;
3332 int cpu;
3333
3334 /* if you care about this being correct, lock the buffer */
3335 for_each_buffer_cpu(buffer, cpu) {
3336 cpu_buffer = buffer->buffers[cpu];
3337 overruns += local_read(&cpu_buffer->overrun);
3338 }
3339
3340 return overruns;
3341 }
3342 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3343
rb_iter_reset(struct ring_buffer_iter * iter)3344 static void rb_iter_reset(struct ring_buffer_iter *iter)
3345 {
3346 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3347
3348 /* Iterator usage is expected to have record disabled */
3349 if (list_empty(&cpu_buffer->reader_page->list)) {
3350 iter->head_page = rb_set_head_page(cpu_buffer);
3351 if (unlikely(!iter->head_page))
3352 return;
3353 iter->head = iter->head_page->read;
3354 } else {
3355 iter->head_page = cpu_buffer->reader_page;
3356 iter->head = cpu_buffer->reader_page->read;
3357 }
3358 if (iter->head)
3359 iter->read_stamp = cpu_buffer->read_stamp;
3360 else
3361 iter->read_stamp = iter->head_page->page->time_stamp;
3362 iter->cache_reader_page = cpu_buffer->reader_page;
3363 iter->cache_read = cpu_buffer->read;
3364 }
3365
3366 /**
3367 * ring_buffer_iter_reset - reset an iterator
3368 * @iter: The iterator to reset
3369 *
3370 * Resets the iterator, so that it will start from the beginning
3371 * again.
3372 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3373 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3374 {
3375 struct ring_buffer_per_cpu *cpu_buffer;
3376 unsigned long flags;
3377
3378 if (!iter)
3379 return;
3380
3381 cpu_buffer = iter->cpu_buffer;
3382
3383 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3384 rb_iter_reset(iter);
3385 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3386 }
3387 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3388
3389 /**
3390 * ring_buffer_iter_empty - check if an iterator has no more to read
3391 * @iter: The iterator to check
3392 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3393 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3394 {
3395 struct ring_buffer_per_cpu *cpu_buffer;
3396
3397 cpu_buffer = iter->cpu_buffer;
3398
3399 return iter->head_page == cpu_buffer->commit_page &&
3400 iter->head == rb_commit_index(cpu_buffer);
3401 }
3402 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3403
3404 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3405 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3406 struct ring_buffer_event *event)
3407 {
3408 u64 delta;
3409
3410 switch (event->type_len) {
3411 case RINGBUF_TYPE_PADDING:
3412 return;
3413
3414 case RINGBUF_TYPE_TIME_EXTEND:
3415 delta = event->array[0];
3416 delta <<= TS_SHIFT;
3417 delta += event->time_delta;
3418 cpu_buffer->read_stamp += delta;
3419 return;
3420
3421 case RINGBUF_TYPE_TIME_STAMP:
3422 /* FIXME: not implemented */
3423 return;
3424
3425 case RINGBUF_TYPE_DATA:
3426 cpu_buffer->read_stamp += event->time_delta;
3427 return;
3428
3429 default:
3430 BUG();
3431 }
3432 return;
3433 }
3434
3435 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3436 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3437 struct ring_buffer_event *event)
3438 {
3439 u64 delta;
3440
3441 switch (event->type_len) {
3442 case RINGBUF_TYPE_PADDING:
3443 return;
3444
3445 case RINGBUF_TYPE_TIME_EXTEND:
3446 delta = event->array[0];
3447 delta <<= TS_SHIFT;
3448 delta += event->time_delta;
3449 iter->read_stamp += delta;
3450 return;
3451
3452 case RINGBUF_TYPE_TIME_STAMP:
3453 /* FIXME: not implemented */
3454 return;
3455
3456 case RINGBUF_TYPE_DATA:
3457 iter->read_stamp += event->time_delta;
3458 return;
3459
3460 default:
3461 BUG();
3462 }
3463 return;
3464 }
3465
3466 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3467 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3468 {
3469 struct buffer_page *reader = NULL;
3470 unsigned long overwrite;
3471 unsigned long flags;
3472 int nr_loops = 0;
3473 int ret;
3474
3475 local_irq_save(flags);
3476 arch_spin_lock(&cpu_buffer->lock);
3477
3478 again:
3479 /*
3480 * This should normally only loop twice. But because the
3481 * start of the reader inserts an empty page, it causes
3482 * a case where we will loop three times. There should be no
3483 * reason to loop four times (that I know of).
3484 */
3485 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3486 reader = NULL;
3487 goto out;
3488 }
3489
3490 reader = cpu_buffer->reader_page;
3491
3492 /* If there's more to read, return this page */
3493 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3494 goto out;
3495
3496 /* Never should we have an index greater than the size */
3497 if (RB_WARN_ON(cpu_buffer,
3498 cpu_buffer->reader_page->read > rb_page_size(reader)))
3499 goto out;
3500
3501 /* check if we caught up to the tail */
3502 reader = NULL;
3503 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3504 goto out;
3505
3506 /* Don't bother swapping if the ring buffer is empty */
3507 if (rb_num_of_entries(cpu_buffer) == 0)
3508 goto out;
3509
3510 /*
3511 * Reset the reader page to size zero.
3512 */
3513 local_set(&cpu_buffer->reader_page->write, 0);
3514 local_set(&cpu_buffer->reader_page->entries, 0);
3515 local_set(&cpu_buffer->reader_page->page->commit, 0);
3516 cpu_buffer->reader_page->real_end = 0;
3517
3518 spin:
3519 /*
3520 * Splice the empty reader page into the list around the head.
3521 */
3522 reader = rb_set_head_page(cpu_buffer);
3523 if (!reader)
3524 goto out;
3525 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3526 cpu_buffer->reader_page->list.prev = reader->list.prev;
3527
3528 /*
3529 * cpu_buffer->pages just needs to point to the buffer, it
3530 * has no specific buffer page to point to. Lets move it out
3531 * of our way so we don't accidentally swap it.
3532 */
3533 cpu_buffer->pages = reader->list.prev;
3534
3535 /* The reader page will be pointing to the new head */
3536 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3537
3538 /*
3539 * We want to make sure we read the overruns after we set up our
3540 * pointers to the next object. The writer side does a
3541 * cmpxchg to cross pages which acts as the mb on the writer
3542 * side. Note, the reader will constantly fail the swap
3543 * while the writer is updating the pointers, so this
3544 * guarantees that the overwrite recorded here is the one we
3545 * want to compare with the last_overrun.
3546 */
3547 smp_mb();
3548 overwrite = local_read(&(cpu_buffer->overrun));
3549
3550 /*
3551 * Here's the tricky part.
3552 *
3553 * We need to move the pointer past the header page.
3554 * But we can only do that if a writer is not currently
3555 * moving it. The page before the header page has the
3556 * flag bit '1' set if it is pointing to the page we want.
3557 * but if the writer is in the process of moving it
3558 * than it will be '2' or already moved '0'.
3559 */
3560
3561 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3562
3563 /*
3564 * If we did not convert it, then we must try again.
3565 */
3566 if (!ret)
3567 goto spin;
3568
3569 /*
3570 * Yeah! We succeeded in replacing the page.
3571 *
3572 * Now make the new head point back to the reader page.
3573 */
3574 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3575 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3576
3577 /* Finally update the reader page to the new head */
3578 cpu_buffer->reader_page = reader;
3579 rb_reset_reader_page(cpu_buffer);
3580
3581 if (overwrite != cpu_buffer->last_overrun) {
3582 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3583 cpu_buffer->last_overrun = overwrite;
3584 }
3585
3586 goto again;
3587
3588 out:
3589 arch_spin_unlock(&cpu_buffer->lock);
3590 local_irq_restore(flags);
3591
3592 return reader;
3593 }
3594
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3595 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3596 {
3597 struct ring_buffer_event *event;
3598 struct buffer_page *reader;
3599 unsigned length;
3600
3601 reader = rb_get_reader_page(cpu_buffer);
3602
3603 /* This function should not be called when buffer is empty */
3604 if (RB_WARN_ON(cpu_buffer, !reader))
3605 return;
3606
3607 event = rb_reader_event(cpu_buffer);
3608
3609 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3610 cpu_buffer->read++;
3611
3612 rb_update_read_stamp(cpu_buffer, event);
3613
3614 length = rb_event_length(event);
3615 cpu_buffer->reader_page->read += length;
3616 }
3617
rb_advance_iter(struct ring_buffer_iter * iter)3618 static void rb_advance_iter(struct ring_buffer_iter *iter)
3619 {
3620 struct ring_buffer_per_cpu *cpu_buffer;
3621 struct ring_buffer_event *event;
3622 unsigned length;
3623
3624 cpu_buffer = iter->cpu_buffer;
3625
3626 /*
3627 * Check if we are at the end of the buffer.
3628 */
3629 if (iter->head >= rb_page_size(iter->head_page)) {
3630 /* discarded commits can make the page empty */
3631 if (iter->head_page == cpu_buffer->commit_page)
3632 return;
3633 rb_inc_iter(iter);
3634 return;
3635 }
3636
3637 event = rb_iter_head_event(iter);
3638
3639 length = rb_event_length(event);
3640
3641 /*
3642 * This should not be called to advance the header if we are
3643 * at the tail of the buffer.
3644 */
3645 if (RB_WARN_ON(cpu_buffer,
3646 (iter->head_page == cpu_buffer->commit_page) &&
3647 (iter->head + length > rb_commit_index(cpu_buffer))))
3648 return;
3649
3650 rb_update_iter_read_stamp(iter, event);
3651
3652 iter->head += length;
3653
3654 /* check for end of page padding */
3655 if ((iter->head >= rb_page_size(iter->head_page)) &&
3656 (iter->head_page != cpu_buffer->commit_page))
3657 rb_inc_iter(iter);
3658 }
3659
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)3660 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3661 {
3662 return cpu_buffer->lost_events;
3663 }
3664
3665 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)3666 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3667 unsigned long *lost_events)
3668 {
3669 struct ring_buffer_event *event;
3670 struct buffer_page *reader;
3671 int nr_loops = 0;
3672
3673 again:
3674 /*
3675 * We repeat when a time extend is encountered.
3676 * Since the time extend is always attached to a data event,
3677 * we should never loop more than once.
3678 * (We never hit the following condition more than twice).
3679 */
3680 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3681 return NULL;
3682
3683 reader = rb_get_reader_page(cpu_buffer);
3684 if (!reader)
3685 return NULL;
3686
3687 event = rb_reader_event(cpu_buffer);
3688
3689 switch (event->type_len) {
3690 case RINGBUF_TYPE_PADDING:
3691 if (rb_null_event(event))
3692 RB_WARN_ON(cpu_buffer, 1);
3693 /*
3694 * Because the writer could be discarding every
3695 * event it creates (which would probably be bad)
3696 * if we were to go back to "again" then we may never
3697 * catch up, and will trigger the warn on, or lock
3698 * the box. Return the padding, and we will release
3699 * the current locks, and try again.
3700 */
3701 return event;
3702
3703 case RINGBUF_TYPE_TIME_EXTEND:
3704 /* Internal data, OK to advance */
3705 rb_advance_reader(cpu_buffer);
3706 goto again;
3707
3708 case RINGBUF_TYPE_TIME_STAMP:
3709 /* FIXME: not implemented */
3710 rb_advance_reader(cpu_buffer);
3711 goto again;
3712
3713 case RINGBUF_TYPE_DATA:
3714 if (ts) {
3715 *ts = cpu_buffer->read_stamp + event->time_delta;
3716 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3717 cpu_buffer->cpu, ts);
3718 }
3719 if (lost_events)
3720 *lost_events = rb_lost_events(cpu_buffer);
3721 return event;
3722
3723 default:
3724 BUG();
3725 }
3726
3727 return NULL;
3728 }
3729 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3730
3731 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3732 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3733 {
3734 struct ring_buffer *buffer;
3735 struct ring_buffer_per_cpu *cpu_buffer;
3736 struct ring_buffer_event *event;
3737 int nr_loops = 0;
3738
3739 cpu_buffer = iter->cpu_buffer;
3740 buffer = cpu_buffer->buffer;
3741
3742 /*
3743 * Check if someone performed a consuming read to
3744 * the buffer. A consuming read invalidates the iterator
3745 * and we need to reset the iterator in this case.
3746 */
3747 if (unlikely(iter->cache_read != cpu_buffer->read ||
3748 iter->cache_reader_page != cpu_buffer->reader_page))
3749 rb_iter_reset(iter);
3750
3751 again:
3752 if (ring_buffer_iter_empty(iter))
3753 return NULL;
3754
3755 /*
3756 * We repeat when a time extend is encountered.
3757 * Since the time extend is always attached to a data event,
3758 * we should never loop more than once.
3759 * (We never hit the following condition more than twice).
3760 */
3761 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3762 return NULL;
3763
3764 if (rb_per_cpu_empty(cpu_buffer))
3765 return NULL;
3766
3767 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3768 rb_inc_iter(iter);
3769 goto again;
3770 }
3771
3772 event = rb_iter_head_event(iter);
3773
3774 switch (event->type_len) {
3775 case RINGBUF_TYPE_PADDING:
3776 if (rb_null_event(event)) {
3777 rb_inc_iter(iter);
3778 goto again;
3779 }
3780 rb_advance_iter(iter);
3781 return event;
3782
3783 case RINGBUF_TYPE_TIME_EXTEND:
3784 /* Internal data, OK to advance */
3785 rb_advance_iter(iter);
3786 goto again;
3787
3788 case RINGBUF_TYPE_TIME_STAMP:
3789 /* FIXME: not implemented */
3790 rb_advance_iter(iter);
3791 goto again;
3792
3793 case RINGBUF_TYPE_DATA:
3794 if (ts) {
3795 *ts = iter->read_stamp + event->time_delta;
3796 ring_buffer_normalize_time_stamp(buffer,
3797 cpu_buffer->cpu, ts);
3798 }
3799 return event;
3800
3801 default:
3802 BUG();
3803 }
3804
3805 return NULL;
3806 }
3807 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3808
rb_ok_to_lock(void)3809 static inline int rb_ok_to_lock(void)
3810 {
3811 /*
3812 * If an NMI die dumps out the content of the ring buffer
3813 * do not grab locks. We also permanently disable the ring
3814 * buffer too. A one time deal is all you get from reading
3815 * the ring buffer from an NMI.
3816 */
3817 if (likely(!in_nmi()))
3818 return 1;
3819
3820 tracing_off_permanent();
3821 return 0;
3822 }
3823
3824 /**
3825 * ring_buffer_peek - peek at the next event to be read
3826 * @buffer: The ring buffer to read
3827 * @cpu: The cpu to peak at
3828 * @ts: The timestamp counter of this event.
3829 * @lost_events: a variable to store if events were lost (may be NULL)
3830 *
3831 * This will return the event that will be read next, but does
3832 * not consume the data.
3833 */
3834 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3835 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3836 unsigned long *lost_events)
3837 {
3838 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3839 struct ring_buffer_event *event;
3840 unsigned long flags;
3841 int dolock;
3842
3843 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3844 return NULL;
3845
3846 dolock = rb_ok_to_lock();
3847 again:
3848 local_irq_save(flags);
3849 if (dolock)
3850 raw_spin_lock(&cpu_buffer->reader_lock);
3851 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3852 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3853 rb_advance_reader(cpu_buffer);
3854 if (dolock)
3855 raw_spin_unlock(&cpu_buffer->reader_lock);
3856 local_irq_restore(flags);
3857
3858 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3859 goto again;
3860
3861 return event;
3862 }
3863
3864 /**
3865 * ring_buffer_iter_peek - peek at the next event to be read
3866 * @iter: The ring buffer iterator
3867 * @ts: The timestamp counter of this event.
3868 *
3869 * This will return the event that will be read next, but does
3870 * not increment the iterator.
3871 */
3872 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)3873 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3874 {
3875 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3876 struct ring_buffer_event *event;
3877 unsigned long flags;
3878
3879 again:
3880 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3881 event = rb_iter_peek(iter, ts);
3882 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3883
3884 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3885 goto again;
3886
3887 return event;
3888 }
3889
3890 /**
3891 * ring_buffer_consume - return an event and consume it
3892 * @buffer: The ring buffer to get the next event from
3893 * @cpu: the cpu to read the buffer from
3894 * @ts: a variable to store the timestamp (may be NULL)
3895 * @lost_events: a variable to store if events were lost (may be NULL)
3896 *
3897 * Returns the next event in the ring buffer, and that event is consumed.
3898 * Meaning, that sequential reads will keep returning a different event,
3899 * and eventually empty the ring buffer if the producer is slower.
3900 */
3901 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)3902 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3903 unsigned long *lost_events)
3904 {
3905 struct ring_buffer_per_cpu *cpu_buffer;
3906 struct ring_buffer_event *event = NULL;
3907 unsigned long flags;
3908 int dolock;
3909
3910 dolock = rb_ok_to_lock();
3911
3912 again:
3913 /* might be called in atomic */
3914 preempt_disable();
3915
3916 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3917 goto out;
3918
3919 cpu_buffer = buffer->buffers[cpu];
3920 local_irq_save(flags);
3921 if (dolock)
3922 raw_spin_lock(&cpu_buffer->reader_lock);
3923
3924 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3925 if (event) {
3926 cpu_buffer->lost_events = 0;
3927 rb_advance_reader(cpu_buffer);
3928 }
3929
3930 if (dolock)
3931 raw_spin_unlock(&cpu_buffer->reader_lock);
3932 local_irq_restore(flags);
3933
3934 out:
3935 preempt_enable();
3936
3937 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3938 goto again;
3939
3940 return event;
3941 }
3942 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3943
3944 /**
3945 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3946 * @buffer: The ring buffer to read from
3947 * @cpu: The cpu buffer to iterate over
3948 *
3949 * This performs the initial preparations necessary to iterate
3950 * through the buffer. Memory is allocated, buffer recording
3951 * is disabled, and the iterator pointer is returned to the caller.
3952 *
3953 * Disabling buffer recordng prevents the reading from being
3954 * corrupted. This is not a consuming read, so a producer is not
3955 * expected.
3956 *
3957 * After a sequence of ring_buffer_read_prepare calls, the user is
3958 * expected to make at least one call to ring_buffer_prepare_sync.
3959 * Afterwards, ring_buffer_read_start is invoked to get things going
3960 * for real.
3961 *
3962 * This overall must be paired with ring_buffer_finish.
3963 */
3964 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu)3965 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3966 {
3967 struct ring_buffer_per_cpu *cpu_buffer;
3968 struct ring_buffer_iter *iter;
3969
3970 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3971 return NULL;
3972
3973 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3974 if (!iter)
3975 return NULL;
3976
3977 cpu_buffer = buffer->buffers[cpu];
3978
3979 iter->cpu_buffer = cpu_buffer;
3980
3981 atomic_inc(&buffer->resize_disabled);
3982 atomic_inc(&cpu_buffer->record_disabled);
3983
3984 return iter;
3985 }
3986 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3987
3988 /**
3989 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3990 *
3991 * All previously invoked ring_buffer_read_prepare calls to prepare
3992 * iterators will be synchronized. Afterwards, read_buffer_read_start
3993 * calls on those iterators are allowed.
3994 */
3995 void
ring_buffer_read_prepare_sync(void)3996 ring_buffer_read_prepare_sync(void)
3997 {
3998 synchronize_sched();
3999 }
4000 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4001
4002 /**
4003 * ring_buffer_read_start - start a non consuming read of the buffer
4004 * @iter: The iterator returned by ring_buffer_read_prepare
4005 *
4006 * This finalizes the startup of an iteration through the buffer.
4007 * The iterator comes from a call to ring_buffer_read_prepare and
4008 * an intervening ring_buffer_read_prepare_sync must have been
4009 * performed.
4010 *
4011 * Must be paired with ring_buffer_finish.
4012 */
4013 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4014 ring_buffer_read_start(struct ring_buffer_iter *iter)
4015 {
4016 struct ring_buffer_per_cpu *cpu_buffer;
4017 unsigned long flags;
4018
4019 if (!iter)
4020 return;
4021
4022 cpu_buffer = iter->cpu_buffer;
4023
4024 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4025 arch_spin_lock(&cpu_buffer->lock);
4026 rb_iter_reset(iter);
4027 arch_spin_unlock(&cpu_buffer->lock);
4028 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4031
4032 /**
4033 * ring_buffer_finish - finish reading the iterator of the buffer
4034 * @iter: The iterator retrieved by ring_buffer_start
4035 *
4036 * This re-enables the recording to the buffer, and frees the
4037 * iterator.
4038 */
4039 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4040 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4041 {
4042 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4043 unsigned long flags;
4044
4045 /*
4046 * Ring buffer is disabled from recording, here's a good place
4047 * to check the integrity of the ring buffer.
4048 * Must prevent readers from trying to read, as the check
4049 * clears the HEAD page and readers require it.
4050 */
4051 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4052 rb_check_pages(cpu_buffer);
4053 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4054
4055 atomic_dec(&cpu_buffer->record_disabled);
4056 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4057 kfree(iter);
4058 }
4059 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4060
4061 /**
4062 * ring_buffer_read - read the next item in the ring buffer by the iterator
4063 * @iter: The ring buffer iterator
4064 * @ts: The time stamp of the event read.
4065 *
4066 * This reads the next event in the ring buffer and increments the iterator.
4067 */
4068 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4069 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4070 {
4071 struct ring_buffer_event *event;
4072 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4073 unsigned long flags;
4074
4075 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4076 again:
4077 event = rb_iter_peek(iter, ts);
4078 if (!event)
4079 goto out;
4080
4081 if (event->type_len == RINGBUF_TYPE_PADDING)
4082 goto again;
4083
4084 rb_advance_iter(iter);
4085 out:
4086 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087
4088 return event;
4089 }
4090 EXPORT_SYMBOL_GPL(ring_buffer_read);
4091
4092 /**
4093 * ring_buffer_size - return the size of the ring buffer (in bytes)
4094 * @buffer: The ring buffer.
4095 */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4096 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4097 {
4098 /*
4099 * Earlier, this method returned
4100 * BUF_PAGE_SIZE * buffer->nr_pages
4101 * Since the nr_pages field is now removed, we have converted this to
4102 * return the per cpu buffer value.
4103 */
4104 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4105 return 0;
4106
4107 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4108 }
4109 EXPORT_SYMBOL_GPL(ring_buffer_size);
4110
4111 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4112 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4113 {
4114 rb_head_page_deactivate(cpu_buffer);
4115
4116 cpu_buffer->head_page
4117 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4118 local_set(&cpu_buffer->head_page->write, 0);
4119 local_set(&cpu_buffer->head_page->entries, 0);
4120 local_set(&cpu_buffer->head_page->page->commit, 0);
4121
4122 cpu_buffer->head_page->read = 0;
4123
4124 cpu_buffer->tail_page = cpu_buffer->head_page;
4125 cpu_buffer->commit_page = cpu_buffer->head_page;
4126
4127 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4128 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4129 local_set(&cpu_buffer->reader_page->write, 0);
4130 local_set(&cpu_buffer->reader_page->entries, 0);
4131 local_set(&cpu_buffer->reader_page->page->commit, 0);
4132 cpu_buffer->reader_page->read = 0;
4133
4134 local_set(&cpu_buffer->entries_bytes, 0);
4135 local_set(&cpu_buffer->overrun, 0);
4136 local_set(&cpu_buffer->commit_overrun, 0);
4137 local_set(&cpu_buffer->dropped_events, 0);
4138 local_set(&cpu_buffer->entries, 0);
4139 local_set(&cpu_buffer->committing, 0);
4140 local_set(&cpu_buffer->commits, 0);
4141 cpu_buffer->read = 0;
4142 cpu_buffer->read_bytes = 0;
4143
4144 cpu_buffer->write_stamp = 0;
4145 cpu_buffer->read_stamp = 0;
4146
4147 cpu_buffer->lost_events = 0;
4148 cpu_buffer->last_overrun = 0;
4149
4150 rb_head_page_activate(cpu_buffer);
4151 }
4152
4153 /**
4154 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4155 * @buffer: The ring buffer to reset a per cpu buffer of
4156 * @cpu: The CPU buffer to be reset
4157 */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4158 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4159 {
4160 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4161 unsigned long flags;
4162
4163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 return;
4165
4166 atomic_inc(&buffer->resize_disabled);
4167 atomic_inc(&cpu_buffer->record_disabled);
4168
4169 /* Make sure all commits have finished */
4170 synchronize_sched();
4171
4172 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4173
4174 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4175 goto out;
4176
4177 arch_spin_lock(&cpu_buffer->lock);
4178
4179 rb_reset_cpu(cpu_buffer);
4180
4181 arch_spin_unlock(&cpu_buffer->lock);
4182
4183 out:
4184 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4185
4186 atomic_dec(&cpu_buffer->record_disabled);
4187 atomic_dec(&buffer->resize_disabled);
4188 }
4189 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4190
4191 /**
4192 * ring_buffer_reset - reset a ring buffer
4193 * @buffer: The ring buffer to reset all cpu buffers
4194 */
ring_buffer_reset(struct ring_buffer * buffer)4195 void ring_buffer_reset(struct ring_buffer *buffer)
4196 {
4197 int cpu;
4198
4199 for_each_buffer_cpu(buffer, cpu)
4200 ring_buffer_reset_cpu(buffer, cpu);
4201 }
4202 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4203
4204 /**
4205 * rind_buffer_empty - is the ring buffer empty?
4206 * @buffer: The ring buffer to test
4207 */
ring_buffer_empty(struct ring_buffer * buffer)4208 int ring_buffer_empty(struct ring_buffer *buffer)
4209 {
4210 struct ring_buffer_per_cpu *cpu_buffer;
4211 unsigned long flags;
4212 int dolock;
4213 int cpu;
4214 int ret;
4215
4216 dolock = rb_ok_to_lock();
4217
4218 /* yes this is racy, but if you don't like the race, lock the buffer */
4219 for_each_buffer_cpu(buffer, cpu) {
4220 cpu_buffer = buffer->buffers[cpu];
4221 local_irq_save(flags);
4222 if (dolock)
4223 raw_spin_lock(&cpu_buffer->reader_lock);
4224 ret = rb_per_cpu_empty(cpu_buffer);
4225 if (dolock)
4226 raw_spin_unlock(&cpu_buffer->reader_lock);
4227 local_irq_restore(flags);
4228
4229 if (!ret)
4230 return 0;
4231 }
4232
4233 return 1;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4236
4237 /**
4238 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4239 * @buffer: The ring buffer
4240 * @cpu: The CPU buffer to test
4241 */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4242 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4243 {
4244 struct ring_buffer_per_cpu *cpu_buffer;
4245 unsigned long flags;
4246 int dolock;
4247 int ret;
4248
4249 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4250 return 1;
4251
4252 dolock = rb_ok_to_lock();
4253
4254 cpu_buffer = buffer->buffers[cpu];
4255 local_irq_save(flags);
4256 if (dolock)
4257 raw_spin_lock(&cpu_buffer->reader_lock);
4258 ret = rb_per_cpu_empty(cpu_buffer);
4259 if (dolock)
4260 raw_spin_unlock(&cpu_buffer->reader_lock);
4261 local_irq_restore(flags);
4262
4263 return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4266
4267 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4268 /**
4269 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4270 * @buffer_a: One buffer to swap with
4271 * @buffer_b: The other buffer to swap with
4272 *
4273 * This function is useful for tracers that want to take a "snapshot"
4274 * of a CPU buffer and has another back up buffer lying around.
4275 * it is expected that the tracer handles the cpu buffer not being
4276 * used at the moment.
4277 */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4278 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4279 struct ring_buffer *buffer_b, int cpu)
4280 {
4281 struct ring_buffer_per_cpu *cpu_buffer_a;
4282 struct ring_buffer_per_cpu *cpu_buffer_b;
4283 int ret = -EINVAL;
4284
4285 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4286 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4287 goto out;
4288
4289 cpu_buffer_a = buffer_a->buffers[cpu];
4290 cpu_buffer_b = buffer_b->buffers[cpu];
4291
4292 /* At least make sure the two buffers are somewhat the same */
4293 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4294 goto out;
4295
4296 ret = -EAGAIN;
4297
4298 if (ring_buffer_flags != RB_BUFFERS_ON)
4299 goto out;
4300
4301 if (atomic_read(&buffer_a->record_disabled))
4302 goto out;
4303
4304 if (atomic_read(&buffer_b->record_disabled))
4305 goto out;
4306
4307 if (atomic_read(&cpu_buffer_a->record_disabled))
4308 goto out;
4309
4310 if (atomic_read(&cpu_buffer_b->record_disabled))
4311 goto out;
4312
4313 /*
4314 * We can't do a synchronize_sched here because this
4315 * function can be called in atomic context.
4316 * Normally this will be called from the same CPU as cpu.
4317 * If not it's up to the caller to protect this.
4318 */
4319 atomic_inc(&cpu_buffer_a->record_disabled);
4320 atomic_inc(&cpu_buffer_b->record_disabled);
4321
4322 ret = -EBUSY;
4323 if (local_read(&cpu_buffer_a->committing))
4324 goto out_dec;
4325 if (local_read(&cpu_buffer_b->committing))
4326 goto out_dec;
4327
4328 buffer_a->buffers[cpu] = cpu_buffer_b;
4329 buffer_b->buffers[cpu] = cpu_buffer_a;
4330
4331 cpu_buffer_b->buffer = buffer_a;
4332 cpu_buffer_a->buffer = buffer_b;
4333
4334 ret = 0;
4335
4336 out_dec:
4337 atomic_dec(&cpu_buffer_a->record_disabled);
4338 atomic_dec(&cpu_buffer_b->record_disabled);
4339 out:
4340 return ret;
4341 }
4342 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4343 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4344
4345 /**
4346 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4347 * @buffer: the buffer to allocate for.
4348 *
4349 * This function is used in conjunction with ring_buffer_read_page.
4350 * When reading a full page from the ring buffer, these functions
4351 * can be used to speed up the process. The calling function should
4352 * allocate a few pages first with this function. Then when it
4353 * needs to get pages from the ring buffer, it passes the result
4354 * of this function into ring_buffer_read_page, which will swap
4355 * the page that was allocated, with the read page of the buffer.
4356 *
4357 * Returns:
4358 * The page allocated, or NULL on error.
4359 */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4360 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4361 {
4362 struct buffer_data_page *bpage;
4363 struct page *page;
4364
4365 page = alloc_pages_node(cpu_to_node(cpu),
4366 GFP_KERNEL | __GFP_NORETRY, 0);
4367 if (!page)
4368 return NULL;
4369
4370 bpage = page_address(page);
4371
4372 rb_init_page(bpage);
4373
4374 return bpage;
4375 }
4376 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4377
4378 /**
4379 * ring_buffer_free_read_page - free an allocated read page
4380 * @buffer: the buffer the page was allocate for
4381 * @data: the page to free
4382 *
4383 * Free a page allocated from ring_buffer_alloc_read_page.
4384 */
ring_buffer_free_read_page(struct ring_buffer * buffer,void * data)4385 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4386 {
4387 free_page((unsigned long)data);
4388 }
4389 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4390
4391 /**
4392 * ring_buffer_read_page - extract a page from the ring buffer
4393 * @buffer: buffer to extract from
4394 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4395 * @len: amount to extract
4396 * @cpu: the cpu of the buffer to extract
4397 * @full: should the extraction only happen when the page is full.
4398 *
4399 * This function will pull out a page from the ring buffer and consume it.
4400 * @data_page must be the address of the variable that was returned
4401 * from ring_buffer_alloc_read_page. This is because the page might be used
4402 * to swap with a page in the ring buffer.
4403 *
4404 * for example:
4405 * rpage = ring_buffer_alloc_read_page(buffer);
4406 * if (!rpage)
4407 * return error;
4408 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4409 * if (ret >= 0)
4410 * process_page(rpage, ret);
4411 *
4412 * When @full is set, the function will not return true unless
4413 * the writer is off the reader page.
4414 *
4415 * Note: it is up to the calling functions to handle sleeps and wakeups.
4416 * The ring buffer can be used anywhere in the kernel and can not
4417 * blindly call wake_up. The layer that uses the ring buffer must be
4418 * responsible for that.
4419 *
4420 * Returns:
4421 * >=0 if data has been transferred, returns the offset of consumed data.
4422 * <0 if no data has been transferred.
4423 */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4424 int ring_buffer_read_page(struct ring_buffer *buffer,
4425 void **data_page, size_t len, int cpu, int full)
4426 {
4427 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4428 struct ring_buffer_event *event;
4429 struct buffer_data_page *bpage;
4430 struct buffer_page *reader;
4431 unsigned long missed_events;
4432 unsigned long flags;
4433 unsigned int commit;
4434 unsigned int read;
4435 u64 save_timestamp;
4436 int ret = -1;
4437
4438 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4439 goto out;
4440
4441 /*
4442 * If len is not big enough to hold the page header, then
4443 * we can not copy anything.
4444 */
4445 if (len <= BUF_PAGE_HDR_SIZE)
4446 goto out;
4447
4448 len -= BUF_PAGE_HDR_SIZE;
4449
4450 if (!data_page)
4451 goto out;
4452
4453 bpage = *data_page;
4454 if (!bpage)
4455 goto out;
4456
4457 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4458
4459 reader = rb_get_reader_page(cpu_buffer);
4460 if (!reader)
4461 goto out_unlock;
4462
4463 event = rb_reader_event(cpu_buffer);
4464
4465 read = reader->read;
4466 commit = rb_page_commit(reader);
4467
4468 /* Check if any events were dropped */
4469 missed_events = cpu_buffer->lost_events;
4470
4471 /*
4472 * If this page has been partially read or
4473 * if len is not big enough to read the rest of the page or
4474 * a writer is still on the page, then
4475 * we must copy the data from the page to the buffer.
4476 * Otherwise, we can simply swap the page with the one passed in.
4477 */
4478 if (read || (len < (commit - read)) ||
4479 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4480 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4481 unsigned int rpos = read;
4482 unsigned int pos = 0;
4483 unsigned int size;
4484
4485 if (full)
4486 goto out_unlock;
4487
4488 if (len > (commit - read))
4489 len = (commit - read);
4490
4491 /* Always keep the time extend and data together */
4492 size = rb_event_ts_length(event);
4493
4494 if (len < size)
4495 goto out_unlock;
4496
4497 /* save the current timestamp, since the user will need it */
4498 save_timestamp = cpu_buffer->read_stamp;
4499
4500 /* Need to copy one event at a time */
4501 do {
4502 /* We need the size of one event, because
4503 * rb_advance_reader only advances by one event,
4504 * whereas rb_event_ts_length may include the size of
4505 * one or two events.
4506 * We have already ensured there's enough space if this
4507 * is a time extend. */
4508 size = rb_event_length(event);
4509 memcpy(bpage->data + pos, rpage->data + rpos, size);
4510
4511 len -= size;
4512
4513 rb_advance_reader(cpu_buffer);
4514 rpos = reader->read;
4515 pos += size;
4516
4517 if (rpos >= commit)
4518 break;
4519
4520 event = rb_reader_event(cpu_buffer);
4521 /* Always keep the time extend and data together */
4522 size = rb_event_ts_length(event);
4523 } while (len >= size);
4524
4525 /* update bpage */
4526 local_set(&bpage->commit, pos);
4527 bpage->time_stamp = save_timestamp;
4528
4529 /* we copied everything to the beginning */
4530 read = 0;
4531 } else {
4532 /* update the entry counter */
4533 cpu_buffer->read += rb_page_entries(reader);
4534 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4535
4536 /* swap the pages */
4537 rb_init_page(bpage);
4538 bpage = reader->page;
4539 reader->page = *data_page;
4540 local_set(&reader->write, 0);
4541 local_set(&reader->entries, 0);
4542 reader->read = 0;
4543 *data_page = bpage;
4544
4545 /*
4546 * Use the real_end for the data size,
4547 * This gives us a chance to store the lost events
4548 * on the page.
4549 */
4550 if (reader->real_end)
4551 local_set(&bpage->commit, reader->real_end);
4552 }
4553 ret = read;
4554
4555 cpu_buffer->lost_events = 0;
4556
4557 commit = local_read(&bpage->commit);
4558 /*
4559 * Set a flag in the commit field if we lost events
4560 */
4561 if (missed_events) {
4562 /* If there is room at the end of the page to save the
4563 * missed events, then record it there.
4564 */
4565 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4566 memcpy(&bpage->data[commit], &missed_events,
4567 sizeof(missed_events));
4568 local_add(RB_MISSED_STORED, &bpage->commit);
4569 commit += sizeof(missed_events);
4570 }
4571 local_add(RB_MISSED_EVENTS, &bpage->commit);
4572 }
4573
4574 /*
4575 * This page may be off to user land. Zero it out here.
4576 */
4577 if (commit < BUF_PAGE_SIZE)
4578 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4579
4580 out_unlock:
4581 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4582
4583 out:
4584 return ret;
4585 }
4586 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4587
4588 #ifdef CONFIG_HOTPLUG_CPU
rb_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)4589 static int rb_cpu_notify(struct notifier_block *self,
4590 unsigned long action, void *hcpu)
4591 {
4592 struct ring_buffer *buffer =
4593 container_of(self, struct ring_buffer, cpu_notify);
4594 long cpu = (long)hcpu;
4595 int cpu_i, nr_pages_same;
4596 unsigned int nr_pages;
4597
4598 switch (action) {
4599 case CPU_UP_PREPARE:
4600 case CPU_UP_PREPARE_FROZEN:
4601 if (cpumask_test_cpu(cpu, buffer->cpumask))
4602 return NOTIFY_OK;
4603
4604 nr_pages = 0;
4605 nr_pages_same = 1;
4606 /* check if all cpu sizes are same */
4607 for_each_buffer_cpu(buffer, cpu_i) {
4608 /* fill in the size from first enabled cpu */
4609 if (nr_pages == 0)
4610 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4611 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4612 nr_pages_same = 0;
4613 break;
4614 }
4615 }
4616 /* allocate minimum pages, user can later expand it */
4617 if (!nr_pages_same)
4618 nr_pages = 2;
4619 buffer->buffers[cpu] =
4620 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4621 if (!buffer->buffers[cpu]) {
4622 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4623 cpu);
4624 return NOTIFY_OK;
4625 }
4626 smp_wmb();
4627 cpumask_set_cpu(cpu, buffer->cpumask);
4628 break;
4629 case CPU_DOWN_PREPARE:
4630 case CPU_DOWN_PREPARE_FROZEN:
4631 /*
4632 * Do nothing.
4633 * If we were to free the buffer, then the user would
4634 * lose any trace that was in the buffer.
4635 */
4636 break;
4637 default:
4638 break;
4639 }
4640 return NOTIFY_OK;
4641 }
4642 #endif
4643
4644 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4645 /*
4646 * This is a basic integrity check of the ring buffer.
4647 * Late in the boot cycle this test will run when configured in.
4648 * It will kick off a thread per CPU that will go into a loop
4649 * writing to the per cpu ring buffer various sizes of data.
4650 * Some of the data will be large items, some small.
4651 *
4652 * Another thread is created that goes into a spin, sending out
4653 * IPIs to the other CPUs to also write into the ring buffer.
4654 * this is to test the nesting ability of the buffer.
4655 *
4656 * Basic stats are recorded and reported. If something in the
4657 * ring buffer should happen that's not expected, a big warning
4658 * is displayed and all ring buffers are disabled.
4659 */
4660 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4661
4662 struct rb_test_data {
4663 struct ring_buffer *buffer;
4664 unsigned long events;
4665 unsigned long bytes_written;
4666 unsigned long bytes_alloc;
4667 unsigned long bytes_dropped;
4668 unsigned long events_nested;
4669 unsigned long bytes_written_nested;
4670 unsigned long bytes_alloc_nested;
4671 unsigned long bytes_dropped_nested;
4672 int min_size_nested;
4673 int max_size_nested;
4674 int max_size;
4675 int min_size;
4676 int cpu;
4677 int cnt;
4678 };
4679
4680 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4681
4682 /* 1 meg per cpu */
4683 #define RB_TEST_BUFFER_SIZE 1048576
4684
4685 static char rb_string[] __initdata =
4686 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4687 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4688 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4689
4690 static bool rb_test_started __initdata;
4691
4692 struct rb_item {
4693 int size;
4694 char str[];
4695 };
4696
rb_write_something(struct rb_test_data * data,bool nested)4697 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4698 {
4699 struct ring_buffer_event *event;
4700 struct rb_item *item;
4701 bool started;
4702 int event_len;
4703 int size;
4704 int len;
4705 int cnt;
4706
4707 /* Have nested writes different that what is written */
4708 cnt = data->cnt + (nested ? 27 : 0);
4709
4710 /* Multiply cnt by ~e, to make some unique increment */
4711 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4712
4713 len = size + sizeof(struct rb_item);
4714
4715 started = rb_test_started;
4716 /* read rb_test_started before checking buffer enabled */
4717 smp_rmb();
4718
4719 event = ring_buffer_lock_reserve(data->buffer, len);
4720 if (!event) {
4721 /* Ignore dropped events before test starts. */
4722 if (started) {
4723 if (nested)
4724 data->bytes_dropped += len;
4725 else
4726 data->bytes_dropped_nested += len;
4727 }
4728 return len;
4729 }
4730
4731 event_len = ring_buffer_event_length(event);
4732
4733 if (RB_WARN_ON(data->buffer, event_len < len))
4734 goto out;
4735
4736 item = ring_buffer_event_data(event);
4737 item->size = size;
4738 memcpy(item->str, rb_string, size);
4739
4740 if (nested) {
4741 data->bytes_alloc_nested += event_len;
4742 data->bytes_written_nested += len;
4743 data->events_nested++;
4744 if (!data->min_size_nested || len < data->min_size_nested)
4745 data->min_size_nested = len;
4746 if (len > data->max_size_nested)
4747 data->max_size_nested = len;
4748 } else {
4749 data->bytes_alloc += event_len;
4750 data->bytes_written += len;
4751 data->events++;
4752 if (!data->min_size || len < data->min_size)
4753 data->max_size = len;
4754 if (len > data->max_size)
4755 data->max_size = len;
4756 }
4757
4758 out:
4759 ring_buffer_unlock_commit(data->buffer, event);
4760
4761 return 0;
4762 }
4763
rb_test(void * arg)4764 static __init int rb_test(void *arg)
4765 {
4766 struct rb_test_data *data = arg;
4767
4768 while (!kthread_should_stop()) {
4769 rb_write_something(data, false);
4770 data->cnt++;
4771
4772 set_current_state(TASK_INTERRUPTIBLE);
4773 /* Now sleep between a min of 100-300us and a max of 1ms */
4774 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4775 }
4776
4777 return 0;
4778 }
4779
rb_ipi(void * ignore)4780 static __init void rb_ipi(void *ignore)
4781 {
4782 struct rb_test_data *data;
4783 int cpu = smp_processor_id();
4784
4785 data = &rb_data[cpu];
4786 rb_write_something(data, true);
4787 }
4788
rb_hammer_test(void * arg)4789 static __init int rb_hammer_test(void *arg)
4790 {
4791 while (!kthread_should_stop()) {
4792
4793 /* Send an IPI to all cpus to write data! */
4794 smp_call_function(rb_ipi, NULL, 1);
4795 /* No sleep, but for non preempt, let others run */
4796 schedule();
4797 }
4798
4799 return 0;
4800 }
4801
test_ringbuffer(void)4802 static __init int test_ringbuffer(void)
4803 {
4804 struct task_struct *rb_hammer;
4805 struct ring_buffer *buffer;
4806 int cpu;
4807 int ret = 0;
4808
4809 pr_info("Running ring buffer tests...\n");
4810
4811 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4812 if (WARN_ON(!buffer))
4813 return 0;
4814
4815 /* Disable buffer so that threads can't write to it yet */
4816 ring_buffer_record_off(buffer);
4817
4818 for_each_online_cpu(cpu) {
4819 rb_data[cpu].buffer = buffer;
4820 rb_data[cpu].cpu = cpu;
4821 rb_data[cpu].cnt = cpu;
4822 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4823 "rbtester/%d", cpu);
4824 if (WARN_ON(!rb_threads[cpu])) {
4825 pr_cont("FAILED\n");
4826 ret = -1;
4827 goto out_free;
4828 }
4829
4830 kthread_bind(rb_threads[cpu], cpu);
4831 wake_up_process(rb_threads[cpu]);
4832 }
4833
4834 /* Now create the rb hammer! */
4835 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4836 if (WARN_ON(!rb_hammer)) {
4837 pr_cont("FAILED\n");
4838 ret = -1;
4839 goto out_free;
4840 }
4841
4842 ring_buffer_record_on(buffer);
4843 /*
4844 * Show buffer is enabled before setting rb_test_started.
4845 * Yes there's a small race window where events could be
4846 * dropped and the thread wont catch it. But when a ring
4847 * buffer gets enabled, there will always be some kind of
4848 * delay before other CPUs see it. Thus, we don't care about
4849 * those dropped events. We care about events dropped after
4850 * the threads see that the buffer is active.
4851 */
4852 smp_wmb();
4853 rb_test_started = true;
4854
4855 set_current_state(TASK_INTERRUPTIBLE);
4856 /* Just run for 10 seconds */;
4857 schedule_timeout(10 * HZ);
4858
4859 kthread_stop(rb_hammer);
4860
4861 out_free:
4862 for_each_online_cpu(cpu) {
4863 if (!rb_threads[cpu])
4864 break;
4865 kthread_stop(rb_threads[cpu]);
4866 }
4867 if (ret) {
4868 ring_buffer_free(buffer);
4869 return ret;
4870 }
4871
4872 /* Report! */
4873 pr_info("finished\n");
4874 for_each_online_cpu(cpu) {
4875 struct ring_buffer_event *event;
4876 struct rb_test_data *data = &rb_data[cpu];
4877 struct rb_item *item;
4878 unsigned long total_events;
4879 unsigned long total_dropped;
4880 unsigned long total_written;
4881 unsigned long total_alloc;
4882 unsigned long total_read = 0;
4883 unsigned long total_size = 0;
4884 unsigned long total_len = 0;
4885 unsigned long total_lost = 0;
4886 unsigned long lost;
4887 int big_event_size;
4888 int small_event_size;
4889
4890 ret = -1;
4891
4892 total_events = data->events + data->events_nested;
4893 total_written = data->bytes_written + data->bytes_written_nested;
4894 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4895 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4896
4897 big_event_size = data->max_size + data->max_size_nested;
4898 small_event_size = data->min_size + data->min_size_nested;
4899
4900 pr_info("CPU %d:\n", cpu);
4901 pr_info(" events: %ld\n", total_events);
4902 pr_info(" dropped bytes: %ld\n", total_dropped);
4903 pr_info(" alloced bytes: %ld\n", total_alloc);
4904 pr_info(" written bytes: %ld\n", total_written);
4905 pr_info(" biggest event: %d\n", big_event_size);
4906 pr_info(" smallest event: %d\n", small_event_size);
4907
4908 if (RB_WARN_ON(buffer, total_dropped))
4909 break;
4910
4911 ret = 0;
4912
4913 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4914 total_lost += lost;
4915 item = ring_buffer_event_data(event);
4916 total_len += ring_buffer_event_length(event);
4917 total_size += item->size + sizeof(struct rb_item);
4918 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4919 pr_info("FAILED!\n");
4920 pr_info("buffer had: %.*s\n", item->size, item->str);
4921 pr_info("expected: %.*s\n", item->size, rb_string);
4922 RB_WARN_ON(buffer, 1);
4923 ret = -1;
4924 break;
4925 }
4926 total_read++;
4927 }
4928 if (ret)
4929 break;
4930
4931 ret = -1;
4932
4933 pr_info(" read events: %ld\n", total_read);
4934 pr_info(" lost events: %ld\n", total_lost);
4935 pr_info(" total events: %ld\n", total_lost + total_read);
4936 pr_info(" recorded len bytes: %ld\n", total_len);
4937 pr_info(" recorded size bytes: %ld\n", total_size);
4938 if (total_lost)
4939 pr_info(" With dropped events, record len and size may not match\n"
4940 " alloced and written from above\n");
4941 if (!total_lost) {
4942 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4943 total_size != total_written))
4944 break;
4945 }
4946 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4947 break;
4948
4949 ret = 0;
4950 }
4951 if (!ret)
4952 pr_info("Ring buffer PASSED!\n");
4953
4954 ring_buffer_free(buffer);
4955 return 0;
4956 }
4957
4958 late_initcall(test_ringbuffer);
4959 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
4960