• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84 
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91 
start_bandwidth_timer(struct hrtimer * period_timer,ktime_t period)92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 	unsigned long delta;
95 	ktime_t soft, hard, now;
96 
97 	for (;;) {
98 		if (hrtimer_active(period_timer))
99 			break;
100 
101 		now = hrtimer_cb_get_time(period_timer);
102 		hrtimer_forward(period_timer, now, period);
103 
104 		soft = hrtimer_get_softexpires(period_timer);
105 		hard = hrtimer_get_expires(period_timer);
106 		delta = ktime_to_ns(ktime_sub(hard, soft));
107 		__hrtimer_start_range_ns(period_timer, soft, delta,
108 					 HRTIMER_MODE_ABS_PINNED, 0);
109 	}
110 }
111 
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114 
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116 
update_rq_clock(struct rq * rq)117 void update_rq_clock(struct rq *rq)
118 {
119 	s64 delta;
120 
121 	if (rq->skip_clock_update > 0)
122 		return;
123 
124 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 	rq->clock += delta;
126 	update_rq_clock_task(rq, delta);
127 }
128 
129 /*
130  * Debugging: various feature bits
131  */
132 
133 #define SCHED_FEAT(name, enabled)	\
134 	(1UL << __SCHED_FEAT_##name) * enabled |
135 
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 	0;
139 
140 #undef SCHED_FEAT
141 
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled)	\
144 	#name ,
145 
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149 
150 #undef SCHED_FEAT
151 
sched_feat_show(struct seq_file * m,void * v)152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 	int i;
155 
156 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 		if (!(sysctl_sched_features & (1UL << i)))
158 			seq_puts(m, "NO_");
159 		seq_printf(m, "%s ", sched_feat_names[i]);
160 	}
161 	seq_puts(m, "\n");
162 
163 	return 0;
164 }
165 
166 #ifdef HAVE_JUMP_LABEL
167 
168 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170 
171 #define SCHED_FEAT(name, enabled)	\
172 	jump_label_key__##enabled ,
173 
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177 
178 #undef SCHED_FEAT
179 
sched_feat_disable(int i)180 static void sched_feat_disable(int i)
181 {
182 	if (static_key_enabled(&sched_feat_keys[i]))
183 		static_key_slow_dec(&sched_feat_keys[i]);
184 }
185 
sched_feat_enable(int i)186 static void sched_feat_enable(int i)
187 {
188 	if (!static_key_enabled(&sched_feat_keys[i]))
189 		static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
sched_feat_disable(int i)192 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195 
sched_feat_set(char * cmp)196 static int sched_feat_set(char *cmp)
197 {
198 	int i;
199 	int neg = 0;
200 
201 	if (strncmp(cmp, "NO_", 3) == 0) {
202 		neg = 1;
203 		cmp += 3;
204 	}
205 
206 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 			if (neg) {
209 				sysctl_sched_features &= ~(1UL << i);
210 				sched_feat_disable(i);
211 			} else {
212 				sysctl_sched_features |= (1UL << i);
213 				sched_feat_enable(i);
214 			}
215 			break;
216 		}
217 	}
218 
219 	return i;
220 }
221 
222 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 		size_t cnt, loff_t *ppos)
225 {
226 	char buf[64];
227 	char *cmp;
228 	int i;
229 
230 	if (cnt > 63)
231 		cnt = 63;
232 
233 	if (copy_from_user(&buf, ubuf, cnt))
234 		return -EFAULT;
235 
236 	buf[cnt] = 0;
237 	cmp = strstrip(buf);
238 
239 	i = sched_feat_set(cmp);
240 	if (i == __SCHED_FEAT_NR)
241 		return -EINVAL;
242 
243 	*ppos += cnt;
244 
245 	return cnt;
246 }
247 
sched_feat_open(struct inode * inode,struct file * filp)248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 	return single_open(filp, sched_feat_show, NULL);
251 }
252 
253 static const struct file_operations sched_feat_fops = {
254 	.open		= sched_feat_open,
255 	.write		= sched_feat_write,
256 	.read		= seq_read,
257 	.llseek		= seq_lseek,
258 	.release	= single_release,
259 };
260 
sched_init_debug(void)261 static __init int sched_init_debug(void)
262 {
263 	debugfs_create_file("sched_features", 0644, NULL, NULL,
264 			&sched_feat_fops);
265 
266 	return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270 
271 /*
272  * Number of tasks to iterate in a single balance run.
273  * Limited because this is done with IRQs disabled.
274  */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276 
277 /*
278  * period over which we average the RT time consumption, measured
279  * in ms.
280  *
281  * default: 1s
282  */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284 
285 /*
286  * period over which we measure -rt task cpu usage in us.
287  * default: 1s
288  */
289 unsigned int sysctl_sched_rt_period = 1000000;
290 
291 __read_mostly int scheduler_running;
292 
293 /*
294  * part of the period that we allow rt tasks to run in us.
295  * default: 0.95s
296  */
297 int sysctl_sched_rt_runtime = 950000;
298 
299 
300 
301 /*
302  * __task_rq_lock - lock the rq @p resides on.
303  */
__task_rq_lock(struct task_struct * p)304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 	__acquires(rq->lock)
306 {
307 	struct rq *rq;
308 
309 	lockdep_assert_held(&p->pi_lock);
310 
311 	for (;;) {
312 		rq = task_rq(p);
313 		raw_spin_lock(&rq->lock);
314 		if (likely(rq == task_rq(p)))
315 			return rq;
316 		raw_spin_unlock(&rq->lock);
317 	}
318 }
319 
320 /*
321  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322  */
task_rq_lock(struct task_struct * p,unsigned long * flags)323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 	__acquires(p->pi_lock)
325 	__acquires(rq->lock)
326 {
327 	struct rq *rq;
328 
329 	for (;;) {
330 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 		rq = task_rq(p);
332 		raw_spin_lock(&rq->lock);
333 		if (likely(rq == task_rq(p)))
334 			return rq;
335 		raw_spin_unlock(&rq->lock);
336 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 	}
338 }
339 
__task_rq_unlock(struct rq * rq)340 static void __task_rq_unlock(struct rq *rq)
341 	__releases(rq->lock)
342 {
343 	raw_spin_unlock(&rq->lock);
344 }
345 
346 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,unsigned long * flags)347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 	__releases(rq->lock)
349 	__releases(p->pi_lock)
350 {
351 	raw_spin_unlock(&rq->lock);
352 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354 
355 /*
356  * this_rq_lock - lock this runqueue and disable interrupts.
357  */
this_rq_lock(void)358 static struct rq *this_rq_lock(void)
359 	__acquires(rq->lock)
360 {
361 	struct rq *rq;
362 
363 	local_irq_disable();
364 	rq = this_rq();
365 	raw_spin_lock(&rq->lock);
366 
367 	return rq;
368 }
369 
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372  * Use HR-timers to deliver accurate preemption points.
373  *
374  * Its all a bit involved since we cannot program an hrt while holding the
375  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376  * reschedule event.
377  *
378  * When we get rescheduled we reprogram the hrtick_timer outside of the
379  * rq->lock.
380  */
381 
hrtick_clear(struct rq * rq)382 static void hrtick_clear(struct rq *rq)
383 {
384 	if (hrtimer_active(&rq->hrtick_timer))
385 		hrtimer_cancel(&rq->hrtick_timer);
386 }
387 
388 /*
389  * High-resolution timer tick.
390  * Runs from hardirq context with interrupts disabled.
391  */
hrtick(struct hrtimer * timer)392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395 
396 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 
398 	raw_spin_lock(&rq->lock);
399 	update_rq_clock(rq);
400 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 	raw_spin_unlock(&rq->lock);
402 
403 	return HRTIMER_NORESTART;
404 }
405 
406 #ifdef CONFIG_SMP
407 /*
408  * called from hardirq (IPI) context
409  */
__hrtick_start(void * arg)410 static void __hrtick_start(void *arg)
411 {
412 	struct rq *rq = arg;
413 
414 	raw_spin_lock(&rq->lock);
415 	hrtimer_restart(&rq->hrtick_timer);
416 	rq->hrtick_csd_pending = 0;
417 	raw_spin_unlock(&rq->lock);
418 }
419 
420 /*
421  * Called to set the hrtick timer state.
422  *
423  * called with rq->lock held and irqs disabled
424  */
hrtick_start(struct rq * rq,u64 delay)425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 	struct hrtimer *timer = &rq->hrtick_timer;
428 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429 
430 	hrtimer_set_expires(timer, time);
431 
432 	if (rq == this_rq()) {
433 		hrtimer_restart(timer);
434 	} else if (!rq->hrtick_csd_pending) {
435 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 		rq->hrtick_csd_pending = 1;
437 	}
438 }
439 
440 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 	int cpu = (int)(long)hcpu;
444 
445 	switch (action) {
446 	case CPU_UP_CANCELED:
447 	case CPU_UP_CANCELED_FROZEN:
448 	case CPU_DOWN_PREPARE:
449 	case CPU_DOWN_PREPARE_FROZEN:
450 	case CPU_DEAD:
451 	case CPU_DEAD_FROZEN:
452 		hrtick_clear(cpu_rq(cpu));
453 		return NOTIFY_OK;
454 	}
455 
456 	return NOTIFY_DONE;
457 }
458 
init_hrtick(void)459 static __init void init_hrtick(void)
460 {
461 	hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465  * Called to set the hrtick timer state.
466  *
467  * called with rq->lock held and irqs disabled
468  */
hrtick_start(struct rq * rq,u64 delay)469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 			HRTIMER_MODE_REL_PINNED, 0);
473 }
474 
init_hrtick(void)475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479 
init_rq_hrtick(struct rq * rq)480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 	rq->hrtick_csd_pending = 0;
484 
485 	rq->hrtick_csd.flags = 0;
486 	rq->hrtick_csd.func = __hrtick_start;
487 	rq->hrtick_csd.info = rq;
488 #endif
489 
490 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 	rq->hrtick_timer.function = hrtick;
492 }
493 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497 
init_rq_hrtick(struct rq * rq)498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501 
init_hrtick(void)502 static inline void init_hrtick(void)
503 {
504 }
505 #endif	/* CONFIG_SCHED_HRTICK */
506 
507 /*
508  * resched_task - mark a task 'to be rescheduled now'.
509  *
510  * On UP this means the setting of the need_resched flag, on SMP it
511  * might also involve a cross-CPU call to trigger the scheduler on
512  * the target CPU.
513  */
514 #ifdef CONFIG_SMP
resched_task(struct task_struct * p)515 void resched_task(struct task_struct *p)
516 {
517 	int cpu;
518 
519 	assert_raw_spin_locked(&task_rq(p)->lock);
520 
521 	if (test_tsk_need_resched(p))
522 		return;
523 
524 	set_tsk_need_resched(p);
525 
526 	cpu = task_cpu(p);
527 	if (cpu == smp_processor_id())
528 		return;
529 
530 	/* NEED_RESCHED must be visible before we test polling */
531 	smp_mb();
532 	if (!tsk_is_polling(p))
533 		smp_send_reschedule(cpu);
534 }
535 
resched_cpu(int cpu)536 void resched_cpu(int cpu)
537 {
538 	struct rq *rq = cpu_rq(cpu);
539 	unsigned long flags;
540 
541 	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542 		return;
543 	resched_task(cpu_curr(cpu));
544 	raw_spin_unlock_irqrestore(&rq->lock, flags);
545 }
546 
547 #ifdef CONFIG_NO_HZ_COMMON
548 /*
549  * In the semi idle case, use the nearest busy cpu for migrating timers
550  * from an idle cpu.  This is good for power-savings.
551  *
552  * We don't do similar optimization for completely idle system, as
553  * selecting an idle cpu will add more delays to the timers than intended
554  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555  */
get_nohz_timer_target(void)556 int get_nohz_timer_target(void)
557 {
558 	int cpu = smp_processor_id();
559 	int i;
560 	struct sched_domain *sd;
561 
562 	rcu_read_lock();
563 	for_each_domain(cpu, sd) {
564 		for_each_cpu(i, sched_domain_span(sd)) {
565 			if (!idle_cpu(i)) {
566 				cpu = i;
567 				goto unlock;
568 			}
569 		}
570 	}
571 unlock:
572 	rcu_read_unlock();
573 	return cpu;
574 }
575 /*
576  * When add_timer_on() enqueues a timer into the timer wheel of an
577  * idle CPU then this timer might expire before the next timer event
578  * which is scheduled to wake up that CPU. In case of a completely
579  * idle system the next event might even be infinite time into the
580  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581  * leaves the inner idle loop so the newly added timer is taken into
582  * account when the CPU goes back to idle and evaluates the timer
583  * wheel for the next timer event.
584  */
wake_up_idle_cpu(int cpu)585 static void wake_up_idle_cpu(int cpu)
586 {
587 	struct rq *rq = cpu_rq(cpu);
588 
589 	if (cpu == smp_processor_id())
590 		return;
591 
592 	/*
593 	 * This is safe, as this function is called with the timer
594 	 * wheel base lock of (cpu) held. When the CPU is on the way
595 	 * to idle and has not yet set rq->curr to idle then it will
596 	 * be serialized on the timer wheel base lock and take the new
597 	 * timer into account automatically.
598 	 */
599 	if (rq->curr != rq->idle)
600 		return;
601 
602 	/*
603 	 * We can set TIF_RESCHED on the idle task of the other CPU
604 	 * lockless. The worst case is that the other CPU runs the
605 	 * idle task through an additional NOOP schedule()
606 	 */
607 	set_tsk_need_resched(rq->idle);
608 
609 	/* NEED_RESCHED must be visible before we test polling */
610 	smp_mb();
611 	if (!tsk_is_polling(rq->idle))
612 		smp_send_reschedule(cpu);
613 }
614 
wake_up_full_nohz_cpu(int cpu)615 static bool wake_up_full_nohz_cpu(int cpu)
616 {
617 	if (tick_nohz_full_cpu(cpu)) {
618 		if (cpu != smp_processor_id() ||
619 		    tick_nohz_tick_stopped())
620 			smp_send_reschedule(cpu);
621 		return true;
622 	}
623 
624 	return false;
625 }
626 
wake_up_nohz_cpu(int cpu)627 void wake_up_nohz_cpu(int cpu)
628 {
629 	if (!wake_up_full_nohz_cpu(cpu))
630 		wake_up_idle_cpu(cpu);
631 }
632 
got_nohz_idle_kick(void)633 static inline bool got_nohz_idle_kick(void)
634 {
635 	int cpu = smp_processor_id();
636 
637 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 		return false;
639 
640 	if (idle_cpu(cpu) && !need_resched())
641 		return true;
642 
643 	/*
644 	 * We can't run Idle Load Balance on this CPU for this time so we
645 	 * cancel it and clear NOHZ_BALANCE_KICK
646 	 */
647 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 	return false;
649 }
650 
651 #else /* CONFIG_NO_HZ_COMMON */
652 
got_nohz_idle_kick(void)653 static inline bool got_nohz_idle_kick(void)
654 {
655 	return false;
656 }
657 
658 #endif /* CONFIG_NO_HZ_COMMON */
659 
660 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(void)661 bool sched_can_stop_tick(void)
662 {
663        struct rq *rq;
664 
665        rq = this_rq();
666 
667        /* Make sure rq->nr_running update is visible after the IPI */
668        smp_rmb();
669 
670        /* More than one running task need preemption */
671        if (rq->nr_running > 1)
672                return false;
673 
674        return true;
675 }
676 #endif /* CONFIG_NO_HZ_FULL */
677 
sched_avg_update(struct rq * rq)678 void sched_avg_update(struct rq *rq)
679 {
680 	s64 period = sched_avg_period();
681 
682 	while ((s64)(rq->clock - rq->age_stamp) > period) {
683 		/*
684 		 * Inline assembly required to prevent the compiler
685 		 * optimising this loop into a divmod call.
686 		 * See __iter_div_u64_rem() for another example of this.
687 		 */
688 		asm("" : "+rm" (rq->age_stamp));
689 		rq->age_stamp += period;
690 		rq->rt_avg /= 2;
691 	}
692 }
693 
694 #else /* !CONFIG_SMP */
resched_task(struct task_struct * p)695 void resched_task(struct task_struct *p)
696 {
697 	assert_raw_spin_locked(&task_rq(p)->lock);
698 	set_tsk_need_resched(p);
699 }
700 #endif /* CONFIG_SMP */
701 
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705  * Iterate task_group tree rooted at *from, calling @down when first entering a
706  * node and @up when leaving it for the final time.
707  *
708  * Caller must hold rcu_lock or sufficient equivalent.
709  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)710 int walk_tg_tree_from(struct task_group *from,
711 			     tg_visitor down, tg_visitor up, void *data)
712 {
713 	struct task_group *parent, *child;
714 	int ret;
715 
716 	parent = from;
717 
718 down:
719 	ret = (*down)(parent, data);
720 	if (ret)
721 		goto out;
722 	list_for_each_entry_rcu(child, &parent->children, siblings) {
723 		parent = child;
724 		goto down;
725 
726 up:
727 		continue;
728 	}
729 	ret = (*up)(parent, data);
730 	if (ret || parent == from)
731 		goto out;
732 
733 	child = parent;
734 	parent = parent->parent;
735 	if (parent)
736 		goto up;
737 out:
738 	return ret;
739 }
740 
tg_nop(struct task_group * tg,void * data)741 int tg_nop(struct task_group *tg, void *data)
742 {
743 	return 0;
744 }
745 #endif
746 
set_load_weight(struct task_struct * p)747 static void set_load_weight(struct task_struct *p)
748 {
749 	int prio = p->static_prio - MAX_RT_PRIO;
750 	struct load_weight *load = &p->se.load;
751 
752 	/*
753 	 * SCHED_IDLE tasks get minimal weight:
754 	 */
755 	if (p->policy == SCHED_IDLE) {
756 		load->weight = scale_load(WEIGHT_IDLEPRIO);
757 		load->inv_weight = WMULT_IDLEPRIO;
758 		return;
759 	}
760 
761 	load->weight = scale_load(prio_to_weight[prio]);
762 	load->inv_weight = prio_to_wmult[prio];
763 }
764 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 	update_rq_clock(rq);
768 	sched_info_queued(p);
769 	p->sched_class->enqueue_task(rq, p, flags);
770 }
771 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 	update_rq_clock(rq);
775 	sched_info_dequeued(p);
776 	p->sched_class->dequeue_task(rq, p, flags);
777 }
778 
activate_task(struct rq * rq,struct task_struct * p,int flags)779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 	if (task_contributes_to_load(p))
782 		rq->nr_uninterruptible--;
783 
784 	enqueue_task(rq, p, flags);
785 }
786 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 	if (task_contributes_to_load(p))
790 		rq->nr_uninterruptible++;
791 
792 	dequeue_task(rq, p, flags);
793 }
794 
update_rq_clock_task(struct rq * rq,s64 delta)795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798  * In theory, the compile should just see 0 here, and optimize out the call
799  * to sched_rt_avg_update. But I don't trust it...
800  */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 	s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 
807 	/*
808 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 	 * this case when a previous update_rq_clock() happened inside a
810 	 * {soft,}irq region.
811 	 *
812 	 * When this happens, we stop ->clock_task and only update the
813 	 * prev_irq_time stamp to account for the part that fit, so that a next
814 	 * update will consume the rest. This ensures ->clock_task is
815 	 * monotonic.
816 	 *
817 	 * It does however cause some slight miss-attribution of {soft,}irq
818 	 * time, a more accurate solution would be to update the irq_time using
819 	 * the current rq->clock timestamp, except that would require using
820 	 * atomic ops.
821 	 */
822 	if (irq_delta > delta)
823 		irq_delta = delta;
824 
825 	rq->prev_irq_time += irq_delta;
826 	delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 	if (static_key_false((&paravirt_steal_rq_enabled))) {
830 		u64 st;
831 
832 		steal = paravirt_steal_clock(cpu_of(rq));
833 		steal -= rq->prev_steal_time_rq;
834 
835 		if (unlikely(steal > delta))
836 			steal = delta;
837 
838 		st = steal_ticks(steal);
839 		steal = st * TICK_NSEC;
840 
841 		rq->prev_steal_time_rq += steal;
842 
843 		delta -= steal;
844 	}
845 #endif
846 
847 	rq->clock_task += delta;
848 
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 		sched_rt_avg_update(rq, irq_delta + steal);
852 #endif
853 }
854 
sched_set_stop_task(int cpu,struct task_struct * stop)855 void sched_set_stop_task(int cpu, struct task_struct *stop)
856 {
857 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
859 
860 	if (stop) {
861 		/*
862 		 * Make it appear like a SCHED_FIFO task, its something
863 		 * userspace knows about and won't get confused about.
864 		 *
865 		 * Also, it will make PI more or less work without too
866 		 * much confusion -- but then, stop work should not
867 		 * rely on PI working anyway.
868 		 */
869 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870 
871 		stop->sched_class = &stop_sched_class;
872 	}
873 
874 	cpu_rq(cpu)->stop = stop;
875 
876 	if (old_stop) {
877 		/*
878 		 * Reset it back to a normal scheduling class so that
879 		 * it can die in pieces.
880 		 */
881 		old_stop->sched_class = &rt_sched_class;
882 	}
883 }
884 
885 /*
886  * __normal_prio - return the priority that is based on the static prio
887  */
__normal_prio(struct task_struct * p)888 static inline int __normal_prio(struct task_struct *p)
889 {
890 	return p->static_prio;
891 }
892 
893 /*
894  * Calculate the expected normal priority: i.e. priority
895  * without taking RT-inheritance into account. Might be
896  * boosted by interactivity modifiers. Changes upon fork,
897  * setprio syscalls, and whenever the interactivity
898  * estimator recalculates.
899  */
normal_prio(struct task_struct * p)900 static inline int normal_prio(struct task_struct *p)
901 {
902 	int prio;
903 
904 	if (task_has_rt_policy(p))
905 		prio = MAX_RT_PRIO-1 - p->rt_priority;
906 	else
907 		prio = __normal_prio(p);
908 	return prio;
909 }
910 
911 /*
912  * Calculate the current priority, i.e. the priority
913  * taken into account by the scheduler. This value might
914  * be boosted by RT tasks, or might be boosted by
915  * interactivity modifiers. Will be RT if the task got
916  * RT-boosted. If not then it returns p->normal_prio.
917  */
effective_prio(struct task_struct * p)918 static int effective_prio(struct task_struct *p)
919 {
920 	p->normal_prio = normal_prio(p);
921 	/*
922 	 * If we are RT tasks or we were boosted to RT priority,
923 	 * keep the priority unchanged. Otherwise, update priority
924 	 * to the normal priority:
925 	 */
926 	if (!rt_prio(p->prio))
927 		return p->normal_prio;
928 	return p->prio;
929 }
930 
931 /**
932  * task_curr - is this task currently executing on a CPU?
933  * @p: the task in question.
934  */
task_curr(const struct task_struct * p)935 inline int task_curr(const struct task_struct *p)
936 {
937 	return cpu_curr(task_cpu(p)) == p;
938 }
939 
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 				       const struct sched_class *prev_class,
942 				       int oldprio)
943 {
944 	if (prev_class != p->sched_class) {
945 		if (prev_class->switched_from)
946 			prev_class->switched_from(rq, p);
947 		p->sched_class->switched_to(rq, p);
948 	} else if (oldprio != p->prio)
949 		p->sched_class->prio_changed(rq, p, oldprio);
950 }
951 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 	const struct sched_class *class;
955 
956 	if (p->sched_class == rq->curr->sched_class) {
957 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 	} else {
959 		for_each_class(class) {
960 			if (class == rq->curr->sched_class)
961 				break;
962 			if (class == p->sched_class) {
963 				resched_task(rq->curr);
964 				break;
965 			}
966 		}
967 	}
968 
969 	/*
970 	 * A queue event has occurred, and we're going to schedule.  In
971 	 * this case, we can save a useless back to back clock update.
972 	 */
973 	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 		rq->skip_clock_update = 1;
975 }
976 
977 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978 
register_task_migration_notifier(struct notifier_block * n)979 void register_task_migration_notifier(struct notifier_block *n)
980 {
981 	atomic_notifier_chain_register(&task_migration_notifier, n);
982 }
983 
984 #ifdef CONFIG_SMP
set_task_cpu(struct task_struct * p,unsigned int new_cpu)985 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986 {
987 #ifdef CONFIG_SCHED_DEBUG
988 	/*
989 	 * We should never call set_task_cpu() on a blocked task,
990 	 * ttwu() will sort out the placement.
991 	 */
992 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994 
995 #ifdef CONFIG_LOCKDEP
996 	/*
997 	 * The caller should hold either p->pi_lock or rq->lock, when changing
998 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 	 *
1000 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1001 	 * see task_group().
1002 	 *
1003 	 * Furthermore, all task_rq users should acquire both locks, see
1004 	 * task_rq_lock().
1005 	 */
1006 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 				      lockdep_is_held(&task_rq(p)->lock)));
1008 #endif
1009 #endif
1010 
1011 	trace_sched_migrate_task(p, new_cpu);
1012 
1013 	if (task_cpu(p) != new_cpu) {
1014 		struct task_migration_notifier tmn;
1015 
1016 		if (p->sched_class->migrate_task_rq)
1017 			p->sched_class->migrate_task_rq(p, new_cpu);
1018 		p->se.nr_migrations++;
1019 		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020 
1021 		tmn.task = p;
1022 		tmn.from_cpu = task_cpu(p);
1023 		tmn.to_cpu = new_cpu;
1024 
1025 		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026 	}
1027 
1028 	__set_task_cpu(p, new_cpu);
1029 }
1030 
1031 struct migration_arg {
1032 	struct task_struct *task;
1033 	int dest_cpu;
1034 };
1035 
1036 static int migration_cpu_stop(void *data);
1037 
1038 /*
1039  * wait_task_inactive - wait for a thread to unschedule.
1040  *
1041  * If @match_state is nonzero, it's the @p->state value just checked and
1042  * not expected to change.  If it changes, i.e. @p might have woken up,
1043  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1044  * we return a positive number (its total switch count).  If a second call
1045  * a short while later returns the same number, the caller can be sure that
1046  * @p has remained unscheduled the whole time.
1047  *
1048  * The caller must ensure that the task *will* unschedule sometime soon,
1049  * else this function might spin for a *long* time. This function can't
1050  * be called with interrupts off, or it may introduce deadlock with
1051  * smp_call_function() if an IPI is sent by the same process we are
1052  * waiting to become inactive.
1053  */
wait_task_inactive(struct task_struct * p,long match_state)1054 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055 {
1056 	unsigned long flags;
1057 	int running, on_rq;
1058 	unsigned long ncsw;
1059 	struct rq *rq;
1060 
1061 	for (;;) {
1062 		/*
1063 		 * We do the initial early heuristics without holding
1064 		 * any task-queue locks at all. We'll only try to get
1065 		 * the runqueue lock when things look like they will
1066 		 * work out!
1067 		 */
1068 		rq = task_rq(p);
1069 
1070 		/*
1071 		 * If the task is actively running on another CPU
1072 		 * still, just relax and busy-wait without holding
1073 		 * any locks.
1074 		 *
1075 		 * NOTE! Since we don't hold any locks, it's not
1076 		 * even sure that "rq" stays as the right runqueue!
1077 		 * But we don't care, since "task_running()" will
1078 		 * return false if the runqueue has changed and p
1079 		 * is actually now running somewhere else!
1080 		 */
1081 		while (task_running(rq, p)) {
1082 			if (match_state && unlikely(p->state != match_state))
1083 				return 0;
1084 			cpu_relax();
1085 		}
1086 
1087 		/*
1088 		 * Ok, time to look more closely! We need the rq
1089 		 * lock now, to be *sure*. If we're wrong, we'll
1090 		 * just go back and repeat.
1091 		 */
1092 		rq = task_rq_lock(p, &flags);
1093 		trace_sched_wait_task(p);
1094 		running = task_running(rq, p);
1095 		on_rq = p->on_rq;
1096 		ncsw = 0;
1097 		if (!match_state || p->state == match_state)
1098 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099 		task_rq_unlock(rq, p, &flags);
1100 
1101 		/*
1102 		 * If it changed from the expected state, bail out now.
1103 		 */
1104 		if (unlikely(!ncsw))
1105 			break;
1106 
1107 		/*
1108 		 * Was it really running after all now that we
1109 		 * checked with the proper locks actually held?
1110 		 *
1111 		 * Oops. Go back and try again..
1112 		 */
1113 		if (unlikely(running)) {
1114 			cpu_relax();
1115 			continue;
1116 		}
1117 
1118 		/*
1119 		 * It's not enough that it's not actively running,
1120 		 * it must be off the runqueue _entirely_, and not
1121 		 * preempted!
1122 		 *
1123 		 * So if it was still runnable (but just not actively
1124 		 * running right now), it's preempted, and we should
1125 		 * yield - it could be a while.
1126 		 */
1127 		if (unlikely(on_rq)) {
1128 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129 
1130 			set_current_state(TASK_UNINTERRUPTIBLE);
1131 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132 			continue;
1133 		}
1134 
1135 		/*
1136 		 * Ahh, all good. It wasn't running, and it wasn't
1137 		 * runnable, which means that it will never become
1138 		 * running in the future either. We're all done!
1139 		 */
1140 		break;
1141 	}
1142 
1143 	return ncsw;
1144 }
1145 
1146 /***
1147  * kick_process - kick a running thread to enter/exit the kernel
1148  * @p: the to-be-kicked thread
1149  *
1150  * Cause a process which is running on another CPU to enter
1151  * kernel-mode, without any delay. (to get signals handled.)
1152  *
1153  * NOTE: this function doesn't have to take the runqueue lock,
1154  * because all it wants to ensure is that the remote task enters
1155  * the kernel. If the IPI races and the task has been migrated
1156  * to another CPU then no harm is done and the purpose has been
1157  * achieved as well.
1158  */
kick_process(struct task_struct * p)1159 void kick_process(struct task_struct *p)
1160 {
1161 	int cpu;
1162 
1163 	preempt_disable();
1164 	cpu = task_cpu(p);
1165 	if ((cpu != smp_processor_id()) && task_curr(p))
1166 		smp_send_reschedule(cpu);
1167 	preempt_enable();
1168 }
1169 EXPORT_SYMBOL_GPL(kick_process);
1170 #endif /* CONFIG_SMP */
1171 
1172 #ifdef CONFIG_SMP
1173 /*
1174  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175  */
select_fallback_rq(int cpu,struct task_struct * p)1176 static int select_fallback_rq(int cpu, struct task_struct *p)
1177 {
1178 	int nid = cpu_to_node(cpu);
1179 	const struct cpumask *nodemask = NULL;
1180 	enum { cpuset, possible, fail } state = cpuset;
1181 	int dest_cpu;
1182 
1183 	/*
1184 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 	 * will return -1. There is no cpu on the node, and we should
1186 	 * select the cpu on the other node.
1187 	 */
1188 	if (nid != -1) {
1189 		nodemask = cpumask_of_node(nid);
1190 
1191 		/* Look for allowed, online CPU in same node. */
1192 		for_each_cpu(dest_cpu, nodemask) {
1193 			if (!cpu_online(dest_cpu))
1194 				continue;
1195 			if (!cpu_active(dest_cpu))
1196 				continue;
1197 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 				return dest_cpu;
1199 		}
1200 	}
1201 
1202 	for (;;) {
1203 		/* Any allowed, online CPU? */
1204 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205 			if (!cpu_online(dest_cpu))
1206 				continue;
1207 			if (!cpu_active(dest_cpu))
1208 				continue;
1209 			goto out;
1210 		}
1211 
1212 		switch (state) {
1213 		case cpuset:
1214 			/* No more Mr. Nice Guy. */
1215 			cpuset_cpus_allowed_fallback(p);
1216 			state = possible;
1217 			break;
1218 
1219 		case possible:
1220 			do_set_cpus_allowed(p, cpu_possible_mask);
1221 			state = fail;
1222 			break;
1223 
1224 		case fail:
1225 			BUG();
1226 			break;
1227 		}
1228 	}
1229 
1230 out:
1231 	if (state != cpuset) {
1232 		/*
1233 		 * Don't tell them about moving exiting tasks or
1234 		 * kernel threads (both mm NULL), since they never
1235 		 * leave kernel.
1236 		 */
1237 		if (p->mm && printk_ratelimit()) {
1238 			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 					task_pid_nr(p), p->comm, cpu);
1240 		}
1241 	}
1242 
1243 	return dest_cpu;
1244 }
1245 
1246 /*
1247  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248  */
1249 static inline
select_task_rq(struct task_struct * p,int sd_flags,int wake_flags)1250 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251 {
1252 	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253 
1254 	/*
1255 	 * In order not to call set_task_cpu() on a blocking task we need
1256 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 	 * cpu.
1258 	 *
1259 	 * Since this is common to all placement strategies, this lives here.
1260 	 *
1261 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 	 *   not worry about this generic constraint ]
1263 	 */
1264 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265 		     !cpu_online(cpu)))
1266 		cpu = select_fallback_rq(task_cpu(p), p);
1267 
1268 	return cpu;
1269 }
1270 
update_avg(u64 * avg,u64 sample)1271 static void update_avg(u64 *avg, u64 sample)
1272 {
1273 	s64 diff = sample - *avg;
1274 	*avg += diff >> 3;
1275 }
1276 #endif
1277 
1278 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1279 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280 {
1281 #ifdef CONFIG_SCHEDSTATS
1282 	struct rq *rq = this_rq();
1283 
1284 #ifdef CONFIG_SMP
1285 	int this_cpu = smp_processor_id();
1286 
1287 	if (cpu == this_cpu) {
1288 		schedstat_inc(rq, ttwu_local);
1289 		schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 	} else {
1291 		struct sched_domain *sd;
1292 
1293 		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294 		rcu_read_lock();
1295 		for_each_domain(this_cpu, sd) {
1296 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 				schedstat_inc(sd, ttwu_wake_remote);
1298 				break;
1299 			}
1300 		}
1301 		rcu_read_unlock();
1302 	}
1303 
1304 	if (wake_flags & WF_MIGRATED)
1305 		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306 
1307 #endif /* CONFIG_SMP */
1308 
1309 	schedstat_inc(rq, ttwu_count);
1310 	schedstat_inc(p, se.statistics.nr_wakeups);
1311 
1312 	if (wake_flags & WF_SYNC)
1313 		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314 
1315 #endif /* CONFIG_SCHEDSTATS */
1316 }
1317 
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1318 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319 {
1320 	activate_task(rq, p, en_flags);
1321 	p->on_rq = 1;
1322 
1323 	/* if a worker is waking up, notify workqueue */
1324 	if (p->flags & PF_WQ_WORKER)
1325 		wq_worker_waking_up(p, cpu_of(rq));
1326 }
1327 
1328 /*
1329  * Mark the task runnable and perform wakeup-preemption.
1330  */
1331 static void
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)1332 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333 {
1334 	check_preempt_curr(rq, p, wake_flags);
1335 	trace_sched_wakeup(p, true);
1336 
1337 	p->state = TASK_RUNNING;
1338 #ifdef CONFIG_SMP
1339 	if (p->sched_class->task_woken)
1340 		p->sched_class->task_woken(rq, p);
1341 
1342 	if (rq->idle_stamp) {
1343 		u64 delta = rq->clock - rq->idle_stamp;
1344 		u64 max = 2*sysctl_sched_migration_cost;
1345 
1346 		if (delta > max)
1347 			rq->avg_idle = max;
1348 		else
1349 			update_avg(&rq->avg_idle, delta);
1350 		rq->idle_stamp = 0;
1351 	}
1352 #endif
1353 }
1354 
1355 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags)1356 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357 {
1358 #ifdef CONFIG_SMP
1359 	if (p->sched_contributes_to_load)
1360 		rq->nr_uninterruptible--;
1361 #endif
1362 
1363 	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 	ttwu_do_wakeup(rq, p, wake_flags);
1365 }
1366 
1367 /*
1368  * Called in case the task @p isn't fully descheduled from its runqueue,
1369  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370  * since all we need to do is flip p->state to TASK_RUNNING, since
1371  * the task is still ->on_rq.
1372  */
ttwu_remote(struct task_struct * p,int wake_flags)1373 static int ttwu_remote(struct task_struct *p, int wake_flags)
1374 {
1375 	struct rq *rq;
1376 	int ret = 0;
1377 
1378 	rq = __task_rq_lock(p);
1379 	if (p->on_rq) {
1380 		ttwu_do_wakeup(rq, p, wake_flags);
1381 		ret = 1;
1382 	}
1383 	__task_rq_unlock(rq);
1384 
1385 	return ret;
1386 }
1387 
1388 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1389 static void sched_ttwu_pending(void)
1390 {
1391 	struct rq *rq = this_rq();
1392 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1393 	struct task_struct *p;
1394 
1395 	raw_spin_lock(&rq->lock);
1396 
1397 	while (llist) {
1398 		p = llist_entry(llist, struct task_struct, wake_entry);
1399 		llist = llist_next(llist);
1400 		ttwu_do_activate(rq, p, 0);
1401 	}
1402 
1403 	raw_spin_unlock(&rq->lock);
1404 }
1405 
scheduler_ipi(void)1406 void scheduler_ipi(void)
1407 {
1408 	if (llist_empty(&this_rq()->wake_list)
1409 			&& !tick_nohz_full_cpu(smp_processor_id())
1410 			&& !got_nohz_idle_kick())
1411 		return;
1412 
1413 	/*
1414 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1415 	 * traditionally all their work was done from the interrupt return
1416 	 * path. Now that we actually do some work, we need to make sure
1417 	 * we do call them.
1418 	 *
1419 	 * Some archs already do call them, luckily irq_enter/exit nest
1420 	 * properly.
1421 	 *
1422 	 * Arguably we should visit all archs and update all handlers,
1423 	 * however a fair share of IPIs are still resched only so this would
1424 	 * somewhat pessimize the simple resched case.
1425 	 */
1426 	irq_enter();
1427 	tick_nohz_full_check();
1428 	sched_ttwu_pending();
1429 
1430 	/*
1431 	 * Check if someone kicked us for doing the nohz idle load balance.
1432 	 */
1433 	if (unlikely(got_nohz_idle_kick())) {
1434 		this_rq()->idle_balance = 1;
1435 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1436 	}
1437 	irq_exit();
1438 }
1439 
ttwu_queue_remote(struct task_struct * p,int cpu)1440 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1441 {
1442 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1443 		smp_send_reschedule(cpu);
1444 }
1445 
cpus_share_cache(int this_cpu,int that_cpu)1446 bool cpus_share_cache(int this_cpu, int that_cpu)
1447 {
1448 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1449 }
1450 #endif /* CONFIG_SMP */
1451 
ttwu_queue(struct task_struct * p,int cpu)1452 static void ttwu_queue(struct task_struct *p, int cpu)
1453 {
1454 	struct rq *rq = cpu_rq(cpu);
1455 
1456 #if defined(CONFIG_SMP)
1457 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1458 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1459 		ttwu_queue_remote(p, cpu);
1460 		return;
1461 	}
1462 #endif
1463 
1464 	raw_spin_lock(&rq->lock);
1465 	ttwu_do_activate(rq, p, 0);
1466 	raw_spin_unlock(&rq->lock);
1467 }
1468 
1469 /**
1470  * try_to_wake_up - wake up a thread
1471  * @p: the thread to be awakened
1472  * @state: the mask of task states that can be woken
1473  * @wake_flags: wake modifier flags (WF_*)
1474  *
1475  * Put it on the run-queue if it's not already there. The "current"
1476  * thread is always on the run-queue (except when the actual
1477  * re-schedule is in progress), and as such you're allowed to do
1478  * the simpler "current->state = TASK_RUNNING" to mark yourself
1479  * runnable without the overhead of this.
1480  *
1481  * Returns %true if @p was woken up, %false if it was already running
1482  * or @state didn't match @p's state.
1483  */
1484 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)1485 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1486 {
1487 	unsigned long flags;
1488 	int cpu, success = 0;
1489 
1490 	smp_wmb();
1491 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1492 	if (!(p->state & state))
1493 		goto out;
1494 
1495 	success = 1; /* we're going to change ->state */
1496 	cpu = task_cpu(p);
1497 
1498 	if (p->on_rq && ttwu_remote(p, wake_flags))
1499 		goto stat;
1500 
1501 #ifdef CONFIG_SMP
1502 	/*
1503 	 * If the owning (remote) cpu is still in the middle of schedule() with
1504 	 * this task as prev, wait until its done referencing the task.
1505 	 */
1506 	while (p->on_cpu)
1507 		cpu_relax();
1508 	/*
1509 	 * Pairs with the smp_wmb() in finish_lock_switch().
1510 	 */
1511 	smp_rmb();
1512 
1513 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1514 	p->state = TASK_WAKING;
1515 
1516 	if (p->sched_class->task_waking)
1517 		p->sched_class->task_waking(p);
1518 
1519 	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1520 	if (task_cpu(p) != cpu) {
1521 		wake_flags |= WF_MIGRATED;
1522 		set_task_cpu(p, cpu);
1523 	}
1524 #endif /* CONFIG_SMP */
1525 
1526 	ttwu_queue(p, cpu);
1527 stat:
1528 	ttwu_stat(p, cpu, wake_flags);
1529 out:
1530 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1531 
1532 	return success;
1533 }
1534 
1535 /**
1536  * try_to_wake_up_local - try to wake up a local task with rq lock held
1537  * @p: the thread to be awakened
1538  *
1539  * Put @p on the run-queue if it's not already there. The caller must
1540  * ensure that this_rq() is locked, @p is bound to this_rq() and not
1541  * the current task.
1542  */
try_to_wake_up_local(struct task_struct * p)1543 static void try_to_wake_up_local(struct task_struct *p)
1544 {
1545 	struct rq *rq = task_rq(p);
1546 
1547 	if (WARN_ON_ONCE(rq != this_rq()) ||
1548 	    WARN_ON_ONCE(p == current))
1549 		return;
1550 
1551 	lockdep_assert_held(&rq->lock);
1552 
1553 	if (!raw_spin_trylock(&p->pi_lock)) {
1554 		raw_spin_unlock(&rq->lock);
1555 		raw_spin_lock(&p->pi_lock);
1556 		raw_spin_lock(&rq->lock);
1557 	}
1558 
1559 	if (!(p->state & TASK_NORMAL))
1560 		goto out;
1561 
1562 	if (!p->on_rq)
1563 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1564 
1565 	ttwu_do_wakeup(rq, p, 0);
1566 	ttwu_stat(p, smp_processor_id(), 0);
1567 out:
1568 	raw_spin_unlock(&p->pi_lock);
1569 }
1570 
1571 /**
1572  * wake_up_process - Wake up a specific process
1573  * @p: The process to be woken up.
1574  *
1575  * Attempt to wake up the nominated process and move it to the set of runnable
1576  * processes.  Returns 1 if the process was woken up, 0 if it was already
1577  * running.
1578  *
1579  * It may be assumed that this function implies a write memory barrier before
1580  * changing the task state if and only if any tasks are woken up.
1581  */
wake_up_process(struct task_struct * p)1582 int wake_up_process(struct task_struct *p)
1583 {
1584 	WARN_ON(task_is_stopped_or_traced(p));
1585 	return try_to_wake_up(p, TASK_NORMAL, 0);
1586 }
1587 EXPORT_SYMBOL(wake_up_process);
1588 
wake_up_state(struct task_struct * p,unsigned int state)1589 int wake_up_state(struct task_struct *p, unsigned int state)
1590 {
1591 	return try_to_wake_up(p, state, 0);
1592 }
1593 
1594 /*
1595  * Perform scheduler related setup for a newly forked process p.
1596  * p is forked by current.
1597  *
1598  * __sched_fork() is basic setup used by init_idle() too:
1599  */
__sched_fork(struct task_struct * p)1600 static void __sched_fork(struct task_struct *p)
1601 {
1602 	p->on_rq			= 0;
1603 
1604 	p->se.on_rq			= 0;
1605 	p->se.exec_start		= 0;
1606 	p->se.sum_exec_runtime		= 0;
1607 	p->se.prev_sum_exec_runtime	= 0;
1608 	p->se.nr_migrations		= 0;
1609 	p->se.vruntime			= 0;
1610 	INIT_LIST_HEAD(&p->se.group_node);
1611 
1612 /*
1613  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1614  * removed when useful for applications beyond shares distribution (e.g.
1615  * load-balance).
1616  */
1617 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1618 	p->se.avg.runnable_avg_period = 0;
1619 	p->se.avg.runnable_avg_sum = 0;
1620 #endif
1621 #ifdef CONFIG_SCHEDSTATS
1622 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1623 #endif
1624 
1625 	INIT_LIST_HEAD(&p->rt.run_list);
1626 
1627 #ifdef CONFIG_PREEMPT_NOTIFIERS
1628 	INIT_HLIST_HEAD(&p->preempt_notifiers);
1629 #endif
1630 
1631 #ifdef CONFIG_NUMA_BALANCING
1632 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1633 		p->mm->numa_next_scan = jiffies;
1634 		p->mm->numa_next_reset = jiffies;
1635 		p->mm->numa_scan_seq = 0;
1636 	}
1637 
1638 	p->node_stamp = 0ULL;
1639 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1640 	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1641 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1642 	p->numa_work.next = &p->numa_work;
1643 #endif /* CONFIG_NUMA_BALANCING */
1644 }
1645 
1646 #ifdef CONFIG_NUMA_BALANCING
1647 #ifdef CONFIG_SCHED_DEBUG
set_numabalancing_state(bool enabled)1648 void set_numabalancing_state(bool enabled)
1649 {
1650 	if (enabled)
1651 		sched_feat_set("NUMA");
1652 	else
1653 		sched_feat_set("NO_NUMA");
1654 }
1655 #else
1656 __read_mostly bool numabalancing_enabled;
1657 
set_numabalancing_state(bool enabled)1658 void set_numabalancing_state(bool enabled)
1659 {
1660 	numabalancing_enabled = enabled;
1661 }
1662 #endif /* CONFIG_SCHED_DEBUG */
1663 #endif /* CONFIG_NUMA_BALANCING */
1664 
1665 /*
1666  * fork()/clone()-time setup:
1667  */
sched_fork(struct task_struct * p)1668 void sched_fork(struct task_struct *p)
1669 {
1670 	unsigned long flags;
1671 	int cpu = get_cpu();
1672 
1673 	__sched_fork(p);
1674 	/*
1675 	 * We mark the process as running here. This guarantees that
1676 	 * nobody will actually run it, and a signal or other external
1677 	 * event cannot wake it up and insert it on the runqueue either.
1678 	 */
1679 	p->state = TASK_RUNNING;
1680 
1681 	/*
1682 	 * Make sure we do not leak PI boosting priority to the child.
1683 	 */
1684 	p->prio = current->normal_prio;
1685 
1686 	/*
1687 	 * Revert to default priority/policy on fork if requested.
1688 	 */
1689 	if (unlikely(p->sched_reset_on_fork)) {
1690 		if (task_has_rt_policy(p)) {
1691 			p->policy = SCHED_NORMAL;
1692 			p->static_prio = NICE_TO_PRIO(0);
1693 			p->rt_priority = 0;
1694 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1695 			p->static_prio = NICE_TO_PRIO(0);
1696 
1697 		p->prio = p->normal_prio = __normal_prio(p);
1698 		set_load_weight(p);
1699 
1700 		/*
1701 		 * We don't need the reset flag anymore after the fork. It has
1702 		 * fulfilled its duty:
1703 		 */
1704 		p->sched_reset_on_fork = 0;
1705 	}
1706 
1707 	if (!rt_prio(p->prio))
1708 		p->sched_class = &fair_sched_class;
1709 
1710 	if (p->sched_class->task_fork)
1711 		p->sched_class->task_fork(p);
1712 
1713 	/*
1714 	 * The child is not yet in the pid-hash so no cgroup attach races,
1715 	 * and the cgroup is pinned to this child due to cgroup_fork()
1716 	 * is ran before sched_fork().
1717 	 *
1718 	 * Silence PROVE_RCU.
1719 	 */
1720 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1721 	set_task_cpu(p, cpu);
1722 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1723 
1724 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1725 	if (likely(sched_info_on()))
1726 		memset(&p->sched_info, 0, sizeof(p->sched_info));
1727 #endif
1728 #if defined(CONFIG_SMP)
1729 	p->on_cpu = 0;
1730 #endif
1731 #ifdef CONFIG_PREEMPT_COUNT
1732 	/* Want to start with kernel preemption disabled. */
1733 	task_thread_info(p)->preempt_count = 1;
1734 #endif
1735 #ifdef CONFIG_SMP
1736 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1737 #endif
1738 
1739 	put_cpu();
1740 }
1741 
1742 /*
1743  * wake_up_new_task - wake up a newly created task for the first time.
1744  *
1745  * This function will do some initial scheduler statistics housekeeping
1746  * that must be done for every newly created context, then puts the task
1747  * on the runqueue and wakes it.
1748  */
wake_up_new_task(struct task_struct * p)1749 void wake_up_new_task(struct task_struct *p)
1750 {
1751 	unsigned long flags;
1752 	struct rq *rq;
1753 
1754 	raw_spin_lock_irqsave(&p->pi_lock, flags);
1755 #ifdef CONFIG_SMP
1756 	/*
1757 	 * Fork balancing, do it here and not earlier because:
1758 	 *  - cpus_allowed can change in the fork path
1759 	 *  - any previously selected cpu might disappear through hotplug
1760 	 */
1761 	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1762 #endif
1763 
1764 	rq = __task_rq_lock(p);
1765 	activate_task(rq, p, 0);
1766 	p->on_rq = 1;
1767 	trace_sched_wakeup_new(p, true);
1768 	check_preempt_curr(rq, p, WF_FORK);
1769 #ifdef CONFIG_SMP
1770 	if (p->sched_class->task_woken)
1771 		p->sched_class->task_woken(rq, p);
1772 #endif
1773 	task_rq_unlock(rq, p, &flags);
1774 }
1775 
1776 #ifdef CONFIG_PREEMPT_NOTIFIERS
1777 
1778 /**
1779  * preempt_notifier_register - tell me when current is being preempted & rescheduled
1780  * @notifier: notifier struct to register
1781  */
preempt_notifier_register(struct preempt_notifier * notifier)1782 void preempt_notifier_register(struct preempt_notifier *notifier)
1783 {
1784 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1785 }
1786 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1787 
1788 /**
1789  * preempt_notifier_unregister - no longer interested in preemption notifications
1790  * @notifier: notifier struct to unregister
1791  *
1792  * This is safe to call from within a preemption notifier.
1793  */
preempt_notifier_unregister(struct preempt_notifier * notifier)1794 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1795 {
1796 	hlist_del(&notifier->link);
1797 }
1798 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1799 
fire_sched_in_preempt_notifiers(struct task_struct * curr)1800 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1801 {
1802 	struct preempt_notifier *notifier;
1803 
1804 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1805 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1806 }
1807 
1808 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)1809 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1810 				 struct task_struct *next)
1811 {
1812 	struct preempt_notifier *notifier;
1813 
1814 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1815 		notifier->ops->sched_out(notifier, next);
1816 }
1817 
1818 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1819 
fire_sched_in_preempt_notifiers(struct task_struct * curr)1820 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1821 {
1822 }
1823 
1824 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)1825 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1826 				 struct task_struct *next)
1827 {
1828 }
1829 
1830 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1831 
1832 /**
1833  * prepare_task_switch - prepare to switch tasks
1834  * @rq: the runqueue preparing to switch
1835  * @prev: the current task that is being switched out
1836  * @next: the task we are going to switch to.
1837  *
1838  * This is called with the rq lock held and interrupts off. It must
1839  * be paired with a subsequent finish_task_switch after the context
1840  * switch.
1841  *
1842  * prepare_task_switch sets up locking and calls architecture specific
1843  * hooks.
1844  */
1845 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)1846 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1847 		    struct task_struct *next)
1848 {
1849 	trace_sched_switch(prev, next);
1850 	sched_info_switch(prev, next);
1851 	perf_event_task_sched_out(prev, next);
1852 	fire_sched_out_preempt_notifiers(prev, next);
1853 	prepare_lock_switch(rq, next);
1854 	prepare_arch_switch(next);
1855 }
1856 
1857 /**
1858  * finish_task_switch - clean up after a task-switch
1859  * @rq: runqueue associated with task-switch
1860  * @prev: the thread we just switched away from.
1861  *
1862  * finish_task_switch must be called after the context switch, paired
1863  * with a prepare_task_switch call before the context switch.
1864  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865  * and do any other architecture-specific cleanup actions.
1866  *
1867  * Note that we may have delayed dropping an mm in context_switch(). If
1868  * so, we finish that here outside of the runqueue lock. (Doing it
1869  * with the lock held can cause deadlocks; see schedule() for
1870  * details.)
1871  */
finish_task_switch(struct rq * rq,struct task_struct * prev)1872 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1873 	__releases(rq->lock)
1874 {
1875 	struct mm_struct *mm = rq->prev_mm;
1876 	long prev_state;
1877 
1878 	rq->prev_mm = NULL;
1879 
1880 	/*
1881 	 * A task struct has one reference for the use as "current".
1882 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1883 	 * schedule one last time. The schedule call will never return, and
1884 	 * the scheduled task must drop that reference.
1885 	 * The test for TASK_DEAD must occur while the runqueue locks are
1886 	 * still held, otherwise prev could be scheduled on another cpu, die
1887 	 * there before we look at prev->state, and then the reference would
1888 	 * be dropped twice.
1889 	 *		Manfred Spraul <manfred@colorfullife.com>
1890 	 */
1891 	prev_state = prev->state;
1892 	vtime_task_switch(prev);
1893 	finish_arch_switch(prev);
1894 	perf_event_task_sched_in(prev, current);
1895 	finish_lock_switch(rq, prev);
1896 	finish_arch_post_lock_switch();
1897 
1898 	fire_sched_in_preempt_notifiers(current);
1899 	if (mm)
1900 		mmdrop(mm);
1901 	if (unlikely(prev_state == TASK_DEAD)) {
1902 		/*
1903 		 * Remove function-return probe instances associated with this
1904 		 * task and put them back on the free list.
1905 		 */
1906 		kprobe_flush_task(prev);
1907 		put_task_struct(prev);
1908 	}
1909 
1910 	tick_nohz_task_switch(current);
1911 }
1912 
1913 #ifdef CONFIG_SMP
1914 
1915 /* assumes rq->lock is held */
pre_schedule(struct rq * rq,struct task_struct * prev)1916 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1917 {
1918 	if (prev->sched_class->pre_schedule)
1919 		prev->sched_class->pre_schedule(rq, prev);
1920 }
1921 
1922 /* rq->lock is NOT held, but preemption is disabled */
post_schedule(struct rq * rq)1923 static inline void post_schedule(struct rq *rq)
1924 {
1925 	if (rq->post_schedule) {
1926 		unsigned long flags;
1927 
1928 		raw_spin_lock_irqsave(&rq->lock, flags);
1929 		if (rq->curr->sched_class->post_schedule)
1930 			rq->curr->sched_class->post_schedule(rq);
1931 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1932 
1933 		rq->post_schedule = 0;
1934 	}
1935 }
1936 
1937 #else
1938 
pre_schedule(struct rq * rq,struct task_struct * p)1939 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1940 {
1941 }
1942 
post_schedule(struct rq * rq)1943 static inline void post_schedule(struct rq *rq)
1944 {
1945 }
1946 
1947 #endif
1948 
1949 /**
1950  * schedule_tail - first thing a freshly forked thread must call.
1951  * @prev: the thread we just switched away from.
1952  */
schedule_tail(struct task_struct * prev)1953 asmlinkage void schedule_tail(struct task_struct *prev)
1954 	__releases(rq->lock)
1955 {
1956 	struct rq *rq = this_rq();
1957 
1958 	finish_task_switch(rq, prev);
1959 
1960 	/*
1961 	 * FIXME: do we need to worry about rq being invalidated by the
1962 	 * task_switch?
1963 	 */
1964 	post_schedule(rq);
1965 
1966 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1967 	/* In this case, finish_task_switch does not reenable preemption */
1968 	preempt_enable();
1969 #endif
1970 	if (current->set_child_tid)
1971 		put_user(task_pid_vnr(current), current->set_child_tid);
1972 }
1973 
1974 /*
1975  * context_switch - switch to the new MM and the new
1976  * thread's register state.
1977  */
1978 static inline void
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)1979 context_switch(struct rq *rq, struct task_struct *prev,
1980 	       struct task_struct *next)
1981 {
1982 	struct mm_struct *mm, *oldmm;
1983 
1984 	prepare_task_switch(rq, prev, next);
1985 
1986 	mm = next->mm;
1987 	oldmm = prev->active_mm;
1988 	/*
1989 	 * For paravirt, this is coupled with an exit in switch_to to
1990 	 * combine the page table reload and the switch backend into
1991 	 * one hypercall.
1992 	 */
1993 	arch_start_context_switch(prev);
1994 
1995 	if (!mm) {
1996 		next->active_mm = oldmm;
1997 		atomic_inc(&oldmm->mm_count);
1998 		enter_lazy_tlb(oldmm, next);
1999 	} else
2000 		switch_mm(oldmm, mm, next);
2001 
2002 	if (!prev->mm) {
2003 		prev->active_mm = NULL;
2004 		rq->prev_mm = oldmm;
2005 	}
2006 	/*
2007 	 * Since the runqueue lock will be released by the next
2008 	 * task (which is an invalid locking op but in the case
2009 	 * of the scheduler it's an obvious special-case), so we
2010 	 * do an early lockdep release here:
2011 	 */
2012 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2013 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2014 #endif
2015 
2016 	context_tracking_task_switch(prev, next);
2017 	/* Here we just switch the register state and the stack. */
2018 	switch_to(prev, next, prev);
2019 
2020 	barrier();
2021 	/*
2022 	 * this_rq must be evaluated again because prev may have moved
2023 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2024 	 * frame will be invalid.
2025 	 */
2026 	finish_task_switch(this_rq(), prev);
2027 }
2028 
2029 /*
2030  * nr_running and nr_context_switches:
2031  *
2032  * externally visible scheduler statistics: current number of runnable
2033  * threads, total number of context switches performed since bootup.
2034  */
nr_running(void)2035 unsigned long nr_running(void)
2036 {
2037 	unsigned long i, sum = 0;
2038 
2039 	for_each_online_cpu(i)
2040 		sum += cpu_rq(i)->nr_running;
2041 
2042 	return sum;
2043 }
2044 
nr_context_switches(void)2045 unsigned long long nr_context_switches(void)
2046 {
2047 	int i;
2048 	unsigned long long sum = 0;
2049 
2050 	for_each_possible_cpu(i)
2051 		sum += cpu_rq(i)->nr_switches;
2052 
2053 	return sum;
2054 }
2055 
nr_iowait(void)2056 unsigned long nr_iowait(void)
2057 {
2058 	unsigned long i, sum = 0;
2059 
2060 	for_each_possible_cpu(i)
2061 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2062 
2063 	return sum;
2064 }
2065 
nr_iowait_cpu(int cpu)2066 unsigned long nr_iowait_cpu(int cpu)
2067 {
2068 	struct rq *this = cpu_rq(cpu);
2069 	return atomic_read(&this->nr_iowait);
2070 }
2071 
this_cpu_load(void)2072 unsigned long this_cpu_load(void)
2073 {
2074 	struct rq *this = this_rq();
2075 	return this->cpu_load[0];
2076 }
2077 
2078 
2079 /*
2080  * Global load-average calculations
2081  *
2082  * We take a distributed and async approach to calculating the global load-avg
2083  * in order to minimize overhead.
2084  *
2085  * The global load average is an exponentially decaying average of nr_running +
2086  * nr_uninterruptible.
2087  *
2088  * Once every LOAD_FREQ:
2089  *
2090  *   nr_active = 0;
2091  *   for_each_possible_cpu(cpu)
2092  *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2093  *
2094  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2095  *
2096  * Due to a number of reasons the above turns in the mess below:
2097  *
2098  *  - for_each_possible_cpu() is prohibitively expensive on machines with
2099  *    serious number of cpus, therefore we need to take a distributed approach
2100  *    to calculating nr_active.
2101  *
2102  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2103  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2104  *
2105  *    So assuming nr_active := 0 when we start out -- true per definition, we
2106  *    can simply take per-cpu deltas and fold those into a global accumulate
2107  *    to obtain the same result. See calc_load_fold_active().
2108  *
2109  *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2110  *    across the machine, we assume 10 ticks is sufficient time for every
2111  *    cpu to have completed this task.
2112  *
2113  *    This places an upper-bound on the IRQ-off latency of the machine. Then
2114  *    again, being late doesn't loose the delta, just wrecks the sample.
2115  *
2116  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2117  *    this would add another cross-cpu cacheline miss and atomic operation
2118  *    to the wakeup path. Instead we increment on whatever cpu the task ran
2119  *    when it went into uninterruptible state and decrement on whatever cpu
2120  *    did the wakeup. This means that only the sum of nr_uninterruptible over
2121  *    all cpus yields the correct result.
2122  *
2123  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2124  */
2125 
2126 /* Variables and functions for calc_load */
2127 static atomic_long_t calc_load_tasks;
2128 static unsigned long calc_load_update;
2129 unsigned long avenrun[3];
2130 EXPORT_SYMBOL(avenrun); /* should be removed */
2131 
2132 /**
2133  * get_avenrun - get the load average array
2134  * @loads:	pointer to dest load array
2135  * @offset:	offset to add
2136  * @shift:	shift count to shift the result left
2137  *
2138  * These values are estimates at best, so no need for locking.
2139  */
get_avenrun(unsigned long * loads,unsigned long offset,int shift)2140 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2141 {
2142 	loads[0] = (avenrun[0] + offset) << shift;
2143 	loads[1] = (avenrun[1] + offset) << shift;
2144 	loads[2] = (avenrun[2] + offset) << shift;
2145 }
2146 
calc_load_fold_active(struct rq * this_rq)2147 static long calc_load_fold_active(struct rq *this_rq)
2148 {
2149 	long nr_active, delta = 0;
2150 
2151 	nr_active = this_rq->nr_running;
2152 	nr_active += (long) this_rq->nr_uninterruptible;
2153 
2154 	if (nr_active != this_rq->calc_load_active) {
2155 		delta = nr_active - this_rq->calc_load_active;
2156 		this_rq->calc_load_active = nr_active;
2157 	}
2158 
2159 	return delta;
2160 }
2161 
2162 /*
2163  * a1 = a0 * e + a * (1 - e)
2164  */
2165 static unsigned long
calc_load(unsigned long load,unsigned long exp,unsigned long active)2166 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2167 {
2168 	load *= exp;
2169 	load += active * (FIXED_1 - exp);
2170 	load += 1UL << (FSHIFT - 1);
2171 	return load >> FSHIFT;
2172 }
2173 
2174 #ifdef CONFIG_NO_HZ_COMMON
2175 /*
2176  * Handle NO_HZ for the global load-average.
2177  *
2178  * Since the above described distributed algorithm to compute the global
2179  * load-average relies on per-cpu sampling from the tick, it is affected by
2180  * NO_HZ.
2181  *
2182  * The basic idea is to fold the nr_active delta into a global idle-delta upon
2183  * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2184  * when we read the global state.
2185  *
2186  * Obviously reality has to ruin such a delightfully simple scheme:
2187  *
2188  *  - When we go NO_HZ idle during the window, we can negate our sample
2189  *    contribution, causing under-accounting.
2190  *
2191  *    We avoid this by keeping two idle-delta counters and flipping them
2192  *    when the window starts, thus separating old and new NO_HZ load.
2193  *
2194  *    The only trick is the slight shift in index flip for read vs write.
2195  *
2196  *        0s            5s            10s           15s
2197  *          +10           +10           +10           +10
2198  *        |-|-----------|-|-----------|-|-----------|-|
2199  *    r:0 0 1           1 0           0 1           1 0
2200  *    w:0 1 1           0 0           1 1           0 0
2201  *
2202  *    This ensures we'll fold the old idle contribution in this window while
2203  *    accumlating the new one.
2204  *
2205  *  - When we wake up from NO_HZ idle during the window, we push up our
2206  *    contribution, since we effectively move our sample point to a known
2207  *    busy state.
2208  *
2209  *    This is solved by pushing the window forward, and thus skipping the
2210  *    sample, for this cpu (effectively using the idle-delta for this cpu which
2211  *    was in effect at the time the window opened). This also solves the issue
2212  *    of having to deal with a cpu having been in NOHZ idle for multiple
2213  *    LOAD_FREQ intervals.
2214  *
2215  * When making the ILB scale, we should try to pull this in as well.
2216  */
2217 static atomic_long_t calc_load_idle[2];
2218 static int calc_load_idx;
2219 
calc_load_write_idx(void)2220 static inline int calc_load_write_idx(void)
2221 {
2222 	int idx = calc_load_idx;
2223 
2224 	/*
2225 	 * See calc_global_nohz(), if we observe the new index, we also
2226 	 * need to observe the new update time.
2227 	 */
2228 	smp_rmb();
2229 
2230 	/*
2231 	 * If the folding window started, make sure we start writing in the
2232 	 * next idle-delta.
2233 	 */
2234 	if (!time_before(jiffies, calc_load_update))
2235 		idx++;
2236 
2237 	return idx & 1;
2238 }
2239 
calc_load_read_idx(void)2240 static inline int calc_load_read_idx(void)
2241 {
2242 	return calc_load_idx & 1;
2243 }
2244 
calc_load_enter_idle(void)2245 void calc_load_enter_idle(void)
2246 {
2247 	struct rq *this_rq = this_rq();
2248 	long delta;
2249 
2250 	/*
2251 	 * We're going into NOHZ mode, if there's any pending delta, fold it
2252 	 * into the pending idle delta.
2253 	 */
2254 	delta = calc_load_fold_active(this_rq);
2255 	if (delta) {
2256 		int idx = calc_load_write_idx();
2257 		atomic_long_add(delta, &calc_load_idle[idx]);
2258 	}
2259 }
2260 
calc_load_exit_idle(void)2261 void calc_load_exit_idle(void)
2262 {
2263 	struct rq *this_rq = this_rq();
2264 
2265 	/*
2266 	 * If we're still before the sample window, we're done.
2267 	 */
2268 	if (time_before(jiffies, this_rq->calc_load_update))
2269 		return;
2270 
2271 	/*
2272 	 * We woke inside or after the sample window, this means we're already
2273 	 * accounted through the nohz accounting, so skip the entire deal and
2274 	 * sync up for the next window.
2275 	 */
2276 	this_rq->calc_load_update = calc_load_update;
2277 	if (time_before(jiffies, this_rq->calc_load_update + 10))
2278 		this_rq->calc_load_update += LOAD_FREQ;
2279 }
2280 
calc_load_fold_idle(void)2281 static long calc_load_fold_idle(void)
2282 {
2283 	int idx = calc_load_read_idx();
2284 	long delta = 0;
2285 
2286 	if (atomic_long_read(&calc_load_idle[idx]))
2287 		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2288 
2289 	return delta;
2290 }
2291 
2292 /**
2293  * fixed_power_int - compute: x^n, in O(log n) time
2294  *
2295  * @x:         base of the power
2296  * @frac_bits: fractional bits of @x
2297  * @n:         power to raise @x to.
2298  *
2299  * By exploiting the relation between the definition of the natural power
2300  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2301  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2302  * (where: n_i \elem {0, 1}, the binary vector representing n),
2303  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2304  * of course trivially computable in O(log_2 n), the length of our binary
2305  * vector.
2306  */
2307 static unsigned long
fixed_power_int(unsigned long x,unsigned int frac_bits,unsigned int n)2308 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2309 {
2310 	unsigned long result = 1UL << frac_bits;
2311 
2312 	if (n) for (;;) {
2313 		if (n & 1) {
2314 			result *= x;
2315 			result += 1UL << (frac_bits - 1);
2316 			result >>= frac_bits;
2317 		}
2318 		n >>= 1;
2319 		if (!n)
2320 			break;
2321 		x *= x;
2322 		x += 1UL << (frac_bits - 1);
2323 		x >>= frac_bits;
2324 	}
2325 
2326 	return result;
2327 }
2328 
2329 /*
2330  * a1 = a0 * e + a * (1 - e)
2331  *
2332  * a2 = a1 * e + a * (1 - e)
2333  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2334  *    = a0 * e^2 + a * (1 - e) * (1 + e)
2335  *
2336  * a3 = a2 * e + a * (1 - e)
2337  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2338  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2339  *
2340  *  ...
2341  *
2342  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2343  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2344  *    = a0 * e^n + a * (1 - e^n)
2345  *
2346  * [1] application of the geometric series:
2347  *
2348  *              n         1 - x^(n+1)
2349  *     S_n := \Sum x^i = -------------
2350  *             i=0          1 - x
2351  */
2352 static unsigned long
calc_load_n(unsigned long load,unsigned long exp,unsigned long active,unsigned int n)2353 calc_load_n(unsigned long load, unsigned long exp,
2354 	    unsigned long active, unsigned int n)
2355 {
2356 
2357 	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2358 }
2359 
2360 /*
2361  * NO_HZ can leave us missing all per-cpu ticks calling
2362  * calc_load_account_active(), but since an idle CPU folds its delta into
2363  * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2364  * in the pending idle delta if our idle period crossed a load cycle boundary.
2365  *
2366  * Once we've updated the global active value, we need to apply the exponential
2367  * weights adjusted to the number of cycles missed.
2368  */
calc_global_nohz(void)2369 static void calc_global_nohz(void)
2370 {
2371 	long delta, active, n;
2372 
2373 	if (!time_before(jiffies, calc_load_update + 10)) {
2374 		/*
2375 		 * Catch-up, fold however many we are behind still
2376 		 */
2377 		delta = jiffies - calc_load_update - 10;
2378 		n = 1 + (delta / LOAD_FREQ);
2379 
2380 		active = atomic_long_read(&calc_load_tasks);
2381 		active = active > 0 ? active * FIXED_1 : 0;
2382 
2383 		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2384 		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2385 		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2386 
2387 		calc_load_update += n * LOAD_FREQ;
2388 	}
2389 
2390 	/*
2391 	 * Flip the idle index...
2392 	 *
2393 	 * Make sure we first write the new time then flip the index, so that
2394 	 * calc_load_write_idx() will see the new time when it reads the new
2395 	 * index, this avoids a double flip messing things up.
2396 	 */
2397 	smp_wmb();
2398 	calc_load_idx++;
2399 }
2400 #else /* !CONFIG_NO_HZ_COMMON */
2401 
calc_load_fold_idle(void)2402 static inline long calc_load_fold_idle(void) { return 0; }
calc_global_nohz(void)2403 static inline void calc_global_nohz(void) { }
2404 
2405 #endif /* CONFIG_NO_HZ_COMMON */
2406 
2407 /*
2408  * calc_load - update the avenrun load estimates 10 ticks after the
2409  * CPUs have updated calc_load_tasks.
2410  */
calc_global_load(unsigned long ticks)2411 void calc_global_load(unsigned long ticks)
2412 {
2413 	long active, delta;
2414 
2415 	if (time_before(jiffies, calc_load_update + 10))
2416 		return;
2417 
2418 	/*
2419 	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2420 	 */
2421 	delta = calc_load_fold_idle();
2422 	if (delta)
2423 		atomic_long_add(delta, &calc_load_tasks);
2424 
2425 	active = atomic_long_read(&calc_load_tasks);
2426 	active = active > 0 ? active * FIXED_1 : 0;
2427 
2428 	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2429 	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2430 	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2431 
2432 	calc_load_update += LOAD_FREQ;
2433 
2434 	/*
2435 	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2436 	 */
2437 	calc_global_nohz();
2438 }
2439 
2440 /*
2441  * Called from update_cpu_load() to periodically update this CPU's
2442  * active count.
2443  */
calc_load_account_active(struct rq * this_rq)2444 static void calc_load_account_active(struct rq *this_rq)
2445 {
2446 	long delta;
2447 
2448 	if (time_before(jiffies, this_rq->calc_load_update))
2449 		return;
2450 
2451 	delta  = calc_load_fold_active(this_rq);
2452 	if (delta)
2453 		atomic_long_add(delta, &calc_load_tasks);
2454 
2455 	this_rq->calc_load_update += LOAD_FREQ;
2456 }
2457 
2458 /*
2459  * End of global load-average stuff
2460  */
2461 
2462 /*
2463  * The exact cpuload at various idx values, calculated at every tick would be
2464  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2465  *
2466  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2467  * on nth tick when cpu may be busy, then we have:
2468  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2469  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2470  *
2471  * decay_load_missed() below does efficient calculation of
2472  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2473  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2474  *
2475  * The calculation is approximated on a 128 point scale.
2476  * degrade_zero_ticks is the number of ticks after which load at any
2477  * particular idx is approximated to be zero.
2478  * degrade_factor is a precomputed table, a row for each load idx.
2479  * Each column corresponds to degradation factor for a power of two ticks,
2480  * based on 128 point scale.
2481  * Example:
2482  * row 2, col 3 (=12) says that the degradation at load idx 2 after
2483  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2484  *
2485  * With this power of 2 load factors, we can degrade the load n times
2486  * by looking at 1 bits in n and doing as many mult/shift instead of
2487  * n mult/shifts needed by the exact degradation.
2488  */
2489 #define DEGRADE_SHIFT		7
2490 static const unsigned char
2491 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2492 static const unsigned char
2493 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2494 					{0, 0, 0, 0, 0, 0, 0, 0},
2495 					{64, 32, 8, 0, 0, 0, 0, 0},
2496 					{96, 72, 40, 12, 1, 0, 0},
2497 					{112, 98, 75, 43, 15, 1, 0},
2498 					{120, 112, 98, 76, 45, 16, 2} };
2499 
2500 /*
2501  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2502  * would be when CPU is idle and so we just decay the old load without
2503  * adding any new load.
2504  */
2505 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)2506 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2507 {
2508 	int j = 0;
2509 
2510 	if (!missed_updates)
2511 		return load;
2512 
2513 	if (missed_updates >= degrade_zero_ticks[idx])
2514 		return 0;
2515 
2516 	if (idx == 1)
2517 		return load >> missed_updates;
2518 
2519 	while (missed_updates) {
2520 		if (missed_updates % 2)
2521 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2522 
2523 		missed_updates >>= 1;
2524 		j++;
2525 	}
2526 	return load;
2527 }
2528 
2529 /*
2530  * Update rq->cpu_load[] statistics. This function is usually called every
2531  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2532  * every tick. We fix it up based on jiffies.
2533  */
__update_cpu_load(struct rq * this_rq,unsigned long this_load,unsigned long pending_updates)2534 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2535 			      unsigned long pending_updates)
2536 {
2537 	int i, scale;
2538 
2539 	this_rq->nr_load_updates++;
2540 
2541 	/* Update our load: */
2542 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2543 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2544 		unsigned long old_load, new_load;
2545 
2546 		/* scale is effectively 1 << i now, and >> i divides by scale */
2547 
2548 		old_load = this_rq->cpu_load[i];
2549 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2550 		new_load = this_load;
2551 		/*
2552 		 * Round up the averaging division if load is increasing. This
2553 		 * prevents us from getting stuck on 9 if the load is 10, for
2554 		 * example.
2555 		 */
2556 		if (new_load > old_load)
2557 			new_load += scale - 1;
2558 
2559 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2560 	}
2561 
2562 	sched_avg_update(this_rq);
2563 }
2564 
2565 #ifdef CONFIG_NO_HZ_COMMON
2566 /*
2567  * There is no sane way to deal with nohz on smp when using jiffies because the
2568  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2569  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2570  *
2571  * Therefore we cannot use the delta approach from the regular tick since that
2572  * would seriously skew the load calculation. However we'll make do for those
2573  * updates happening while idle (nohz_idle_balance) or coming out of idle
2574  * (tick_nohz_idle_exit).
2575  *
2576  * This means we might still be one tick off for nohz periods.
2577  */
2578 
2579 /*
2580  * Called from nohz_idle_balance() to update the load ratings before doing the
2581  * idle balance.
2582  */
update_idle_cpu_load(struct rq * this_rq)2583 void update_idle_cpu_load(struct rq *this_rq)
2584 {
2585 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2586 	unsigned long load = this_rq->load.weight;
2587 	unsigned long pending_updates;
2588 
2589 	/*
2590 	 * bail if there's load or we're actually up-to-date.
2591 	 */
2592 	if (load || curr_jiffies == this_rq->last_load_update_tick)
2593 		return;
2594 
2595 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2596 	this_rq->last_load_update_tick = curr_jiffies;
2597 
2598 	__update_cpu_load(this_rq, load, pending_updates);
2599 }
2600 
2601 /*
2602  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2603  */
update_cpu_load_nohz(void)2604 void update_cpu_load_nohz(void)
2605 {
2606 	struct rq *this_rq = this_rq();
2607 	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2608 	unsigned long pending_updates;
2609 
2610 	if (curr_jiffies == this_rq->last_load_update_tick)
2611 		return;
2612 
2613 	raw_spin_lock(&this_rq->lock);
2614 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2615 	if (pending_updates) {
2616 		this_rq->last_load_update_tick = curr_jiffies;
2617 		/*
2618 		 * We were idle, this means load 0, the current load might be
2619 		 * !0 due to remote wakeups and the sort.
2620 		 */
2621 		__update_cpu_load(this_rq, 0, pending_updates);
2622 	}
2623 	raw_spin_unlock(&this_rq->lock);
2624 }
2625 #endif /* CONFIG_NO_HZ_COMMON */
2626 
2627 /*
2628  * Called from scheduler_tick()
2629  */
update_cpu_load_active(struct rq * this_rq)2630 static void update_cpu_load_active(struct rq *this_rq)
2631 {
2632 	/*
2633 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2634 	 */
2635 	this_rq->last_load_update_tick = jiffies;
2636 	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2637 
2638 	calc_load_account_active(this_rq);
2639 }
2640 
2641 #ifdef CONFIG_SMP
2642 
2643 /*
2644  * sched_exec - execve() is a valuable balancing opportunity, because at
2645  * this point the task has the smallest effective memory and cache footprint.
2646  */
sched_exec(void)2647 void sched_exec(void)
2648 {
2649 	struct task_struct *p = current;
2650 	unsigned long flags;
2651 	int dest_cpu;
2652 
2653 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2654 	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2655 	if (dest_cpu == smp_processor_id())
2656 		goto unlock;
2657 
2658 	if (likely(cpu_active(dest_cpu))) {
2659 		struct migration_arg arg = { p, dest_cpu };
2660 
2661 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2662 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2663 		return;
2664 	}
2665 unlock:
2666 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2667 }
2668 
2669 #endif
2670 
2671 DEFINE_PER_CPU(struct kernel_stat, kstat);
2672 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2673 
2674 EXPORT_PER_CPU_SYMBOL(kstat);
2675 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2676 
2677 /*
2678  * Return any ns on the sched_clock that have not yet been accounted in
2679  * @p in case that task is currently running.
2680  *
2681  * Called with task_rq_lock() held on @rq.
2682  */
do_task_delta_exec(struct task_struct * p,struct rq * rq)2683 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2684 {
2685 	u64 ns = 0;
2686 
2687 	if (task_current(rq, p)) {
2688 		update_rq_clock(rq);
2689 		ns = rq->clock_task - p->se.exec_start;
2690 		if ((s64)ns < 0)
2691 			ns = 0;
2692 	}
2693 
2694 	return ns;
2695 }
2696 
task_delta_exec(struct task_struct * p)2697 unsigned long long task_delta_exec(struct task_struct *p)
2698 {
2699 	unsigned long flags;
2700 	struct rq *rq;
2701 	u64 ns = 0;
2702 
2703 	rq = task_rq_lock(p, &flags);
2704 	ns = do_task_delta_exec(p, rq);
2705 	task_rq_unlock(rq, p, &flags);
2706 
2707 	return ns;
2708 }
2709 
2710 /*
2711  * Return accounted runtime for the task.
2712  * In case the task is currently running, return the runtime plus current's
2713  * pending runtime that have not been accounted yet.
2714  */
task_sched_runtime(struct task_struct * p)2715 unsigned long long task_sched_runtime(struct task_struct *p)
2716 {
2717 	unsigned long flags;
2718 	struct rq *rq;
2719 	u64 ns = 0;
2720 
2721 	rq = task_rq_lock(p, &flags);
2722 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2723 	task_rq_unlock(rq, p, &flags);
2724 
2725 	return ns;
2726 }
2727 
2728 /*
2729  * This function gets called by the timer code, with HZ frequency.
2730  * We call it with interrupts disabled.
2731  */
scheduler_tick(void)2732 void scheduler_tick(void)
2733 {
2734 	int cpu = smp_processor_id();
2735 	struct rq *rq = cpu_rq(cpu);
2736 	struct task_struct *curr = rq->curr;
2737 
2738 	sched_clock_tick();
2739 
2740 	raw_spin_lock(&rq->lock);
2741 	update_rq_clock(rq);
2742 	update_cpu_load_active(rq);
2743 	curr->sched_class->task_tick(rq, curr, 0);
2744 	raw_spin_unlock(&rq->lock);
2745 
2746 	perf_event_task_tick();
2747 
2748 #ifdef CONFIG_SMP
2749 	rq->idle_balance = idle_cpu(cpu);
2750 	trigger_load_balance(rq, cpu);
2751 #endif
2752 	rq_last_tick_reset(rq);
2753 }
2754 
2755 #ifdef CONFIG_NO_HZ_FULL
2756 /**
2757  * scheduler_tick_max_deferment
2758  *
2759  * Keep at least one tick per second when a single
2760  * active task is running because the scheduler doesn't
2761  * yet completely support full dynticks environment.
2762  *
2763  * This makes sure that uptime, CFS vruntime, load
2764  * balancing, etc... continue to move forward, even
2765  * with a very low granularity.
2766  */
scheduler_tick_max_deferment(void)2767 u64 scheduler_tick_max_deferment(void)
2768 {
2769 	struct rq *rq = this_rq();
2770 	unsigned long next, now = ACCESS_ONCE(jiffies);
2771 
2772 	next = rq->last_sched_tick + HZ;
2773 
2774 	if (time_before_eq(next, now))
2775 		return 0;
2776 
2777 	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2778 }
2779 #endif
2780 
get_parent_ip(unsigned long addr)2781 notrace unsigned long get_parent_ip(unsigned long addr)
2782 {
2783 	if (in_lock_functions(addr)) {
2784 		addr = CALLER_ADDR2;
2785 		if (in_lock_functions(addr))
2786 			addr = CALLER_ADDR3;
2787 	}
2788 	return addr;
2789 }
2790 
2791 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2792 				defined(CONFIG_PREEMPT_TRACER))
2793 
add_preempt_count(int val)2794 void __kprobes add_preempt_count(int val)
2795 {
2796 #ifdef CONFIG_DEBUG_PREEMPT
2797 	/*
2798 	 * Underflow?
2799 	 */
2800 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2801 		return;
2802 #endif
2803 	preempt_count() += val;
2804 #ifdef CONFIG_DEBUG_PREEMPT
2805 	/*
2806 	 * Spinlock count overflowing soon?
2807 	 */
2808 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2809 				PREEMPT_MASK - 10);
2810 #endif
2811 	if (preempt_count() == val)
2812 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2813 }
2814 EXPORT_SYMBOL(add_preempt_count);
2815 
sub_preempt_count(int val)2816 void __kprobes sub_preempt_count(int val)
2817 {
2818 #ifdef CONFIG_DEBUG_PREEMPT
2819 	/*
2820 	 * Underflow?
2821 	 */
2822 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2823 		return;
2824 	/*
2825 	 * Is the spinlock portion underflowing?
2826 	 */
2827 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2828 			!(preempt_count() & PREEMPT_MASK)))
2829 		return;
2830 #endif
2831 
2832 	if (preempt_count() == val)
2833 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2834 	preempt_count() -= val;
2835 }
2836 EXPORT_SYMBOL(sub_preempt_count);
2837 
2838 #endif
2839 
2840 /*
2841  * Print scheduling while atomic bug:
2842  */
__schedule_bug(struct task_struct * prev)2843 static noinline void __schedule_bug(struct task_struct *prev)
2844 {
2845 	if (oops_in_progress)
2846 		return;
2847 
2848 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2849 		prev->comm, prev->pid, preempt_count());
2850 
2851 	debug_show_held_locks(prev);
2852 	print_modules();
2853 	if (irqs_disabled())
2854 		print_irqtrace_events(prev);
2855 	dump_stack();
2856 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2857 }
2858 
2859 /*
2860  * Various schedule()-time debugging checks and statistics:
2861  */
schedule_debug(struct task_struct * prev)2862 static inline void schedule_debug(struct task_struct *prev)
2863 {
2864 	/*
2865 	 * Test if we are atomic. Since do_exit() needs to call into
2866 	 * schedule() atomically, we ignore that path for now.
2867 	 * Otherwise, whine if we are scheduling when we should not be.
2868 	 */
2869 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2870 		__schedule_bug(prev);
2871 	rcu_sleep_check();
2872 
2873 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2874 
2875 	schedstat_inc(this_rq(), sched_count);
2876 }
2877 
put_prev_task(struct rq * rq,struct task_struct * prev)2878 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2879 {
2880 	if (prev->on_rq || rq->skip_clock_update < 0)
2881 		update_rq_clock(rq);
2882 	prev->sched_class->put_prev_task(rq, prev);
2883 }
2884 
2885 /*
2886  * Pick up the highest-prio task:
2887  */
2888 static inline struct task_struct *
pick_next_task(struct rq * rq)2889 pick_next_task(struct rq *rq)
2890 {
2891 	const struct sched_class *class;
2892 	struct task_struct *p;
2893 
2894 	/*
2895 	 * Optimization: we know that if all tasks are in
2896 	 * the fair class we can call that function directly:
2897 	 */
2898 	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2899 		p = fair_sched_class.pick_next_task(rq);
2900 		if (likely(p))
2901 			return p;
2902 	}
2903 
2904 	for_each_class(class) {
2905 		p = class->pick_next_task(rq);
2906 		if (p)
2907 			return p;
2908 	}
2909 
2910 	BUG(); /* the idle class will always have a runnable task */
2911 }
2912 
2913 /*
2914  * __schedule() is the main scheduler function.
2915  *
2916  * The main means of driving the scheduler and thus entering this function are:
2917  *
2918  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2919  *
2920  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2921  *      paths. For example, see arch/x86/entry_64.S.
2922  *
2923  *      To drive preemption between tasks, the scheduler sets the flag in timer
2924  *      interrupt handler scheduler_tick().
2925  *
2926  *   3. Wakeups don't really cause entry into schedule(). They add a
2927  *      task to the run-queue and that's it.
2928  *
2929  *      Now, if the new task added to the run-queue preempts the current
2930  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2931  *      called on the nearest possible occasion:
2932  *
2933  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2934  *
2935  *         - in syscall or exception context, at the next outmost
2936  *           preempt_enable(). (this might be as soon as the wake_up()'s
2937  *           spin_unlock()!)
2938  *
2939  *         - in IRQ context, return from interrupt-handler to
2940  *           preemptible context
2941  *
2942  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2943  *         then at the next:
2944  *
2945  *          - cond_resched() call
2946  *          - explicit schedule() call
2947  *          - return from syscall or exception to user-space
2948  *          - return from interrupt-handler to user-space
2949  */
__schedule(void)2950 static void __sched __schedule(void)
2951 {
2952 	struct task_struct *prev, *next;
2953 	unsigned long *switch_count;
2954 	struct rq *rq;
2955 	int cpu;
2956 
2957 need_resched:
2958 	preempt_disable();
2959 	cpu = smp_processor_id();
2960 	rq = cpu_rq(cpu);
2961 	rcu_note_context_switch(cpu);
2962 	prev = rq->curr;
2963 
2964 	schedule_debug(prev);
2965 
2966 	if (sched_feat(HRTICK))
2967 		hrtick_clear(rq);
2968 
2969 	raw_spin_lock_irq(&rq->lock);
2970 
2971 	switch_count = &prev->nivcsw;
2972 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2973 		if (unlikely(signal_pending_state(prev->state, prev))) {
2974 			prev->state = TASK_RUNNING;
2975 		} else {
2976 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2977 			prev->on_rq = 0;
2978 
2979 			/*
2980 			 * If a worker went to sleep, notify and ask workqueue
2981 			 * whether it wants to wake up a task to maintain
2982 			 * concurrency.
2983 			 */
2984 			if (prev->flags & PF_WQ_WORKER) {
2985 				struct task_struct *to_wakeup;
2986 
2987 				to_wakeup = wq_worker_sleeping(prev, cpu);
2988 				if (to_wakeup)
2989 					try_to_wake_up_local(to_wakeup);
2990 			}
2991 		}
2992 		switch_count = &prev->nvcsw;
2993 	}
2994 
2995 	pre_schedule(rq, prev);
2996 
2997 	if (unlikely(!rq->nr_running))
2998 		idle_balance(cpu, rq);
2999 
3000 	put_prev_task(rq, prev);
3001 	next = pick_next_task(rq);
3002 	clear_tsk_need_resched(prev);
3003 	rq->skip_clock_update = 0;
3004 
3005 	if (likely(prev != next)) {
3006 		rq->nr_switches++;
3007 		rq->curr = next;
3008 		++*switch_count;
3009 
3010 		context_switch(rq, prev, next); /* unlocks the rq */
3011 		/*
3012 		 * The context switch have flipped the stack from under us
3013 		 * and restored the local variables which were saved when
3014 		 * this task called schedule() in the past. prev == current
3015 		 * is still correct, but it can be moved to another cpu/rq.
3016 		 */
3017 		cpu = smp_processor_id();
3018 		rq = cpu_rq(cpu);
3019 	} else
3020 		raw_spin_unlock_irq(&rq->lock);
3021 
3022 	post_schedule(rq);
3023 
3024 	sched_preempt_enable_no_resched();
3025 	if (need_resched())
3026 		goto need_resched;
3027 }
3028 
sched_submit_work(struct task_struct * tsk)3029 static inline void sched_submit_work(struct task_struct *tsk)
3030 {
3031 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3032 		return;
3033 	/*
3034 	 * If we are going to sleep and we have plugged IO queued,
3035 	 * make sure to submit it to avoid deadlocks.
3036 	 */
3037 	if (blk_needs_flush_plug(tsk))
3038 		blk_schedule_flush_plug(tsk);
3039 }
3040 
schedule(void)3041 asmlinkage void __sched schedule(void)
3042 {
3043 	struct task_struct *tsk = current;
3044 
3045 	sched_submit_work(tsk);
3046 	__schedule();
3047 }
3048 EXPORT_SYMBOL(schedule);
3049 
3050 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3051 asmlinkage void __sched schedule_user(void)
3052 {
3053 	/*
3054 	 * If we come here after a random call to set_need_resched(),
3055 	 * or we have been woken up remotely but the IPI has not yet arrived,
3056 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3057 	 * we find a better solution.
3058 	 */
3059 	user_exit();
3060 	schedule();
3061 	user_enter();
3062 }
3063 #endif
3064 
3065 /**
3066  * schedule_preempt_disabled - called with preemption disabled
3067  *
3068  * Returns with preemption disabled. Note: preempt_count must be 1
3069  */
schedule_preempt_disabled(void)3070 void __sched schedule_preempt_disabled(void)
3071 {
3072 	sched_preempt_enable_no_resched();
3073 	schedule();
3074 	preempt_disable();
3075 }
3076 
3077 #ifdef CONFIG_PREEMPT
3078 /*
3079  * this is the entry point to schedule() from in-kernel preemption
3080  * off of preempt_enable. Kernel preemptions off return from interrupt
3081  * occur there and call schedule directly.
3082  */
preempt_schedule(void)3083 asmlinkage void __sched notrace preempt_schedule(void)
3084 {
3085 	struct thread_info *ti = current_thread_info();
3086 
3087 	/*
3088 	 * If there is a non-zero preempt_count or interrupts are disabled,
3089 	 * we do not want to preempt the current task. Just return..
3090 	 */
3091 	if (likely(ti->preempt_count || irqs_disabled()))
3092 		return;
3093 
3094 	do {
3095 		add_preempt_count_notrace(PREEMPT_ACTIVE);
3096 		__schedule();
3097 		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3098 
3099 		/*
3100 		 * Check again in case we missed a preemption opportunity
3101 		 * between schedule and now.
3102 		 */
3103 		barrier();
3104 	} while (need_resched());
3105 }
3106 EXPORT_SYMBOL(preempt_schedule);
3107 
3108 /*
3109  * this is the entry point to schedule() from kernel preemption
3110  * off of irq context.
3111  * Note, that this is called and return with irqs disabled. This will
3112  * protect us against recursive calling from irq.
3113  */
preempt_schedule_irq(void)3114 asmlinkage void __sched preempt_schedule_irq(void)
3115 {
3116 	struct thread_info *ti = current_thread_info();
3117 	enum ctx_state prev_state;
3118 
3119 	/* Catch callers which need to be fixed */
3120 	BUG_ON(ti->preempt_count || !irqs_disabled());
3121 
3122 	prev_state = exception_enter();
3123 
3124 	do {
3125 		add_preempt_count(PREEMPT_ACTIVE);
3126 		local_irq_enable();
3127 		__schedule();
3128 		local_irq_disable();
3129 		sub_preempt_count(PREEMPT_ACTIVE);
3130 
3131 		/*
3132 		 * Check again in case we missed a preemption opportunity
3133 		 * between schedule and now.
3134 		 */
3135 		barrier();
3136 	} while (need_resched());
3137 
3138 	exception_exit(prev_state);
3139 }
3140 
3141 #endif /* CONFIG_PREEMPT */
3142 
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)3143 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3144 			  void *key)
3145 {
3146 	return try_to_wake_up(curr->private, mode, wake_flags);
3147 }
3148 EXPORT_SYMBOL(default_wake_function);
3149 
3150 /*
3151  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3152  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3153  * number) then we wake all the non-exclusive tasks and one exclusive task.
3154  *
3155  * There are circumstances in which we can try to wake a task which has already
3156  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3157  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3158  */
__wake_up_common(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,int wake_flags,void * key)3159 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3160 			int nr_exclusive, int wake_flags, void *key)
3161 {
3162 	wait_queue_t *curr, *next;
3163 
3164 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3165 		unsigned flags = curr->flags;
3166 
3167 		if (curr->func(curr, mode, wake_flags, key) &&
3168 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3169 			break;
3170 	}
3171 }
3172 
3173 /**
3174  * __wake_up - wake up threads blocked on a waitqueue.
3175  * @q: the waitqueue
3176  * @mode: which threads
3177  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178  * @key: is directly passed to the wakeup function
3179  *
3180  * It may be assumed that this function implies a write memory barrier before
3181  * changing the task state if and only if any tasks are woken up.
3182  */
__wake_up(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,void * key)3183 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3184 			int nr_exclusive, void *key)
3185 {
3186 	unsigned long flags;
3187 
3188 	spin_lock_irqsave(&q->lock, flags);
3189 	__wake_up_common(q, mode, nr_exclusive, 0, key);
3190 	spin_unlock_irqrestore(&q->lock, flags);
3191 }
3192 EXPORT_SYMBOL(__wake_up);
3193 
3194 /*
3195  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3196  */
__wake_up_locked(wait_queue_head_t * q,unsigned int mode,int nr)3197 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3198 {
3199 	__wake_up_common(q, mode, nr, 0, NULL);
3200 }
3201 EXPORT_SYMBOL_GPL(__wake_up_locked);
3202 
__wake_up_locked_key(wait_queue_head_t * q,unsigned int mode,void * key)3203 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3204 {
3205 	__wake_up_common(q, mode, 1, 0, key);
3206 }
3207 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3208 
3209 /**
3210  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3211  * @q: the waitqueue
3212  * @mode: which threads
3213  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3214  * @key: opaque value to be passed to wakeup targets
3215  *
3216  * The sync wakeup differs that the waker knows that it will schedule
3217  * away soon, so while the target thread will be woken up, it will not
3218  * be migrated to another CPU - ie. the two threads are 'synchronized'
3219  * with each other. This can prevent needless bouncing between CPUs.
3220  *
3221  * On UP it can prevent extra preemption.
3222  *
3223  * It may be assumed that this function implies a write memory barrier before
3224  * changing the task state if and only if any tasks are woken up.
3225  */
__wake_up_sync_key(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,void * key)3226 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3227 			int nr_exclusive, void *key)
3228 {
3229 	unsigned long flags;
3230 	int wake_flags = WF_SYNC;
3231 
3232 	if (unlikely(!q))
3233 		return;
3234 
3235 	if (unlikely(!nr_exclusive))
3236 		wake_flags = 0;
3237 
3238 	spin_lock_irqsave(&q->lock, flags);
3239 	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3240 	spin_unlock_irqrestore(&q->lock, flags);
3241 }
3242 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3243 
3244 /*
3245  * __wake_up_sync - see __wake_up_sync_key()
3246  */
__wake_up_sync(wait_queue_head_t * q,unsigned int mode,int nr_exclusive)3247 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3248 {
3249 	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3250 }
3251 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3252 
3253 /**
3254  * complete: - signals a single thread waiting on this completion
3255  * @x:  holds the state of this particular completion
3256  *
3257  * This will wake up a single thread waiting on this completion. Threads will be
3258  * awakened in the same order in which they were queued.
3259  *
3260  * See also complete_all(), wait_for_completion() and related routines.
3261  *
3262  * It may be assumed that this function implies a write memory barrier before
3263  * changing the task state if and only if any tasks are woken up.
3264  */
complete(struct completion * x)3265 void complete(struct completion *x)
3266 {
3267 	unsigned long flags;
3268 
3269 	spin_lock_irqsave(&x->wait.lock, flags);
3270 	x->done++;
3271 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3272 	spin_unlock_irqrestore(&x->wait.lock, flags);
3273 }
3274 EXPORT_SYMBOL(complete);
3275 
3276 /**
3277  * complete_all: - signals all threads waiting on this completion
3278  * @x:  holds the state of this particular completion
3279  *
3280  * This will wake up all threads waiting on this particular completion event.
3281  *
3282  * It may be assumed that this function implies a write memory barrier before
3283  * changing the task state if and only if any tasks are woken up.
3284  */
complete_all(struct completion * x)3285 void complete_all(struct completion *x)
3286 {
3287 	unsigned long flags;
3288 
3289 	spin_lock_irqsave(&x->wait.lock, flags);
3290 	x->done += UINT_MAX/2;
3291 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3292 	spin_unlock_irqrestore(&x->wait.lock, flags);
3293 }
3294 EXPORT_SYMBOL(complete_all);
3295 
3296 static inline long __sched
do_wait_for_common(struct completion * x,long (* action)(long),long timeout,int state)3297 do_wait_for_common(struct completion *x,
3298 		   long (*action)(long), long timeout, int state)
3299 {
3300 	if (!x->done) {
3301 		DECLARE_WAITQUEUE(wait, current);
3302 
3303 		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3304 		do {
3305 			if (signal_pending_state(state, current)) {
3306 				timeout = -ERESTARTSYS;
3307 				break;
3308 			}
3309 			__set_current_state(state);
3310 			spin_unlock_irq(&x->wait.lock);
3311 			timeout = action(timeout);
3312 			spin_lock_irq(&x->wait.lock);
3313 		} while (!x->done && timeout);
3314 		__remove_wait_queue(&x->wait, &wait);
3315 		if (!x->done)
3316 			return timeout;
3317 	}
3318 	x->done--;
3319 	return timeout ?: 1;
3320 }
3321 
3322 static inline long __sched
__wait_for_common(struct completion * x,long (* action)(long),long timeout,int state)3323 __wait_for_common(struct completion *x,
3324 		  long (*action)(long), long timeout, int state)
3325 {
3326 	might_sleep();
3327 
3328 	spin_lock_irq(&x->wait.lock);
3329 	timeout = do_wait_for_common(x, action, timeout, state);
3330 	spin_unlock_irq(&x->wait.lock);
3331 	return timeout;
3332 }
3333 
3334 static long __sched
wait_for_common(struct completion * x,long timeout,int state)3335 wait_for_common(struct completion *x, long timeout, int state)
3336 {
3337 	return __wait_for_common(x, schedule_timeout, timeout, state);
3338 }
3339 
3340 static long __sched
wait_for_common_io(struct completion * x,long timeout,int state)3341 wait_for_common_io(struct completion *x, long timeout, int state)
3342 {
3343 	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3344 }
3345 
3346 /**
3347  * wait_for_completion: - waits for completion of a task
3348  * @x:  holds the state of this particular completion
3349  *
3350  * This waits to be signaled for completion of a specific task. It is NOT
3351  * interruptible and there is no timeout.
3352  *
3353  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3354  * and interrupt capability. Also see complete().
3355  */
wait_for_completion(struct completion * x)3356 void __sched wait_for_completion(struct completion *x)
3357 {
3358 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3359 }
3360 EXPORT_SYMBOL(wait_for_completion);
3361 
3362 /**
3363  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3364  * @x:  holds the state of this particular completion
3365  * @timeout:  timeout value in jiffies
3366  *
3367  * This waits for either a completion of a specific task to be signaled or for a
3368  * specified timeout to expire. The timeout is in jiffies. It is not
3369  * interruptible.
3370  *
3371  * The return value is 0 if timed out, and positive (at least 1, or number of
3372  * jiffies left till timeout) if completed.
3373  */
3374 unsigned long __sched
wait_for_completion_timeout(struct completion * x,unsigned long timeout)3375 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3376 {
3377 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3378 }
3379 EXPORT_SYMBOL(wait_for_completion_timeout);
3380 
3381 /**
3382  * wait_for_completion_io: - waits for completion of a task
3383  * @x:  holds the state of this particular completion
3384  *
3385  * This waits to be signaled for completion of a specific task. It is NOT
3386  * interruptible and there is no timeout. The caller is accounted as waiting
3387  * for IO.
3388  */
wait_for_completion_io(struct completion * x)3389 void __sched wait_for_completion_io(struct completion *x)
3390 {
3391 	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3392 }
3393 EXPORT_SYMBOL(wait_for_completion_io);
3394 
3395 /**
3396  * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3397  * @x:  holds the state of this particular completion
3398  * @timeout:  timeout value in jiffies
3399  *
3400  * This waits for either a completion of a specific task to be signaled or for a
3401  * specified timeout to expire. The timeout is in jiffies. It is not
3402  * interruptible. The caller is accounted as waiting for IO.
3403  *
3404  * The return value is 0 if timed out, and positive (at least 1, or number of
3405  * jiffies left till timeout) if completed.
3406  */
3407 unsigned long __sched
wait_for_completion_io_timeout(struct completion * x,unsigned long timeout)3408 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3409 {
3410 	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3411 }
3412 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3413 
3414 /**
3415  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3416  * @x:  holds the state of this particular completion
3417  *
3418  * This waits for completion of a specific task to be signaled. It is
3419  * interruptible.
3420  *
3421  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3422  */
wait_for_completion_interruptible(struct completion * x)3423 int __sched wait_for_completion_interruptible(struct completion *x)
3424 {
3425 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3426 	if (t == -ERESTARTSYS)
3427 		return t;
3428 	return 0;
3429 }
3430 EXPORT_SYMBOL(wait_for_completion_interruptible);
3431 
3432 /**
3433  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3434  * @x:  holds the state of this particular completion
3435  * @timeout:  timeout value in jiffies
3436  *
3437  * This waits for either a completion of a specific task to be signaled or for a
3438  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3439  *
3440  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3441  * positive (at least 1, or number of jiffies left till timeout) if completed.
3442  */
3443 long __sched
wait_for_completion_interruptible_timeout(struct completion * x,unsigned long timeout)3444 wait_for_completion_interruptible_timeout(struct completion *x,
3445 					  unsigned long timeout)
3446 {
3447 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3448 }
3449 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3450 
3451 /**
3452  * wait_for_completion_killable: - waits for completion of a task (killable)
3453  * @x:  holds the state of this particular completion
3454  *
3455  * This waits to be signaled for completion of a specific task. It can be
3456  * interrupted by a kill signal.
3457  *
3458  * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3459  */
wait_for_completion_killable(struct completion * x)3460 int __sched wait_for_completion_killable(struct completion *x)
3461 {
3462 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3463 	if (t == -ERESTARTSYS)
3464 		return t;
3465 	return 0;
3466 }
3467 EXPORT_SYMBOL(wait_for_completion_killable);
3468 
3469 /**
3470  * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3471  * @x:  holds the state of this particular completion
3472  * @timeout:  timeout value in jiffies
3473  *
3474  * This waits for either a completion of a specific task to be
3475  * signaled or for a specified timeout to expire. It can be
3476  * interrupted by a kill signal. The timeout is in jiffies.
3477  *
3478  * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3479  * positive (at least 1, or number of jiffies left till timeout) if completed.
3480  */
3481 long __sched
wait_for_completion_killable_timeout(struct completion * x,unsigned long timeout)3482 wait_for_completion_killable_timeout(struct completion *x,
3483 				     unsigned long timeout)
3484 {
3485 	return wait_for_common(x, timeout, TASK_KILLABLE);
3486 }
3487 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3488 
3489 /**
3490  *	try_wait_for_completion - try to decrement a completion without blocking
3491  *	@x:	completion structure
3492  *
3493  *	Returns: 0 if a decrement cannot be done without blocking
3494  *		 1 if a decrement succeeded.
3495  *
3496  *	If a completion is being used as a counting completion,
3497  *	attempt to decrement the counter without blocking. This
3498  *	enables us to avoid waiting if the resource the completion
3499  *	is protecting is not available.
3500  */
try_wait_for_completion(struct completion * x)3501 bool try_wait_for_completion(struct completion *x)
3502 {
3503 	unsigned long flags;
3504 	int ret = 1;
3505 
3506 	spin_lock_irqsave(&x->wait.lock, flags);
3507 	if (!x->done)
3508 		ret = 0;
3509 	else
3510 		x->done--;
3511 	spin_unlock_irqrestore(&x->wait.lock, flags);
3512 	return ret;
3513 }
3514 EXPORT_SYMBOL(try_wait_for_completion);
3515 
3516 /**
3517  *	completion_done - Test to see if a completion has any waiters
3518  *	@x:	completion structure
3519  *
3520  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3521  *		 1 if there are no waiters.
3522  *
3523  */
completion_done(struct completion * x)3524 bool completion_done(struct completion *x)
3525 {
3526 	unsigned long flags;
3527 	int ret = 1;
3528 
3529 	spin_lock_irqsave(&x->wait.lock, flags);
3530 	if (!x->done)
3531 		ret = 0;
3532 	spin_unlock_irqrestore(&x->wait.lock, flags);
3533 	return ret;
3534 }
3535 EXPORT_SYMBOL(completion_done);
3536 
3537 static long __sched
sleep_on_common(wait_queue_head_t * q,int state,long timeout)3538 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3539 {
3540 	unsigned long flags;
3541 	wait_queue_t wait;
3542 
3543 	init_waitqueue_entry(&wait, current);
3544 
3545 	__set_current_state(state);
3546 
3547 	spin_lock_irqsave(&q->lock, flags);
3548 	__add_wait_queue(q, &wait);
3549 	spin_unlock(&q->lock);
3550 	timeout = schedule_timeout(timeout);
3551 	spin_lock_irq(&q->lock);
3552 	__remove_wait_queue(q, &wait);
3553 	spin_unlock_irqrestore(&q->lock, flags);
3554 
3555 	return timeout;
3556 }
3557 
interruptible_sleep_on(wait_queue_head_t * q)3558 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3559 {
3560 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3561 }
3562 EXPORT_SYMBOL(interruptible_sleep_on);
3563 
3564 long __sched
interruptible_sleep_on_timeout(wait_queue_head_t * q,long timeout)3565 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3566 {
3567 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3568 }
3569 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3570 
sleep_on(wait_queue_head_t * q)3571 void __sched sleep_on(wait_queue_head_t *q)
3572 {
3573 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3574 }
3575 EXPORT_SYMBOL(sleep_on);
3576 
sleep_on_timeout(wait_queue_head_t * q,long timeout)3577 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3578 {
3579 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3580 }
3581 EXPORT_SYMBOL(sleep_on_timeout);
3582 
3583 #ifdef CONFIG_RT_MUTEXES
3584 
3585 /*
3586  * rt_mutex_setprio - set the current priority of a task
3587  * @p: task
3588  * @prio: prio value (kernel-internal form)
3589  *
3590  * This function changes the 'effective' priority of a task. It does
3591  * not touch ->normal_prio like __setscheduler().
3592  *
3593  * Used by the rt_mutex code to implement priority inheritance logic.
3594  */
rt_mutex_setprio(struct task_struct * p,int prio)3595 void rt_mutex_setprio(struct task_struct *p, int prio)
3596 {
3597 	int oldprio, on_rq, running;
3598 	struct rq *rq;
3599 	const struct sched_class *prev_class;
3600 
3601 	BUG_ON(prio < 0 || prio > MAX_PRIO);
3602 
3603 	rq = __task_rq_lock(p);
3604 
3605 	/*
3606 	 * Idle task boosting is a nono in general. There is one
3607 	 * exception, when PREEMPT_RT and NOHZ is active:
3608 	 *
3609 	 * The idle task calls get_next_timer_interrupt() and holds
3610 	 * the timer wheel base->lock on the CPU and another CPU wants
3611 	 * to access the timer (probably to cancel it). We can safely
3612 	 * ignore the boosting request, as the idle CPU runs this code
3613 	 * with interrupts disabled and will complete the lock
3614 	 * protected section without being interrupted. So there is no
3615 	 * real need to boost.
3616 	 */
3617 	if (unlikely(p == rq->idle)) {
3618 		WARN_ON(p != rq->curr);
3619 		WARN_ON(p->pi_blocked_on);
3620 		goto out_unlock;
3621 	}
3622 
3623 	trace_sched_pi_setprio(p, prio);
3624 	oldprio = p->prio;
3625 	prev_class = p->sched_class;
3626 	on_rq = p->on_rq;
3627 	running = task_current(rq, p);
3628 	if (on_rq)
3629 		dequeue_task(rq, p, 0);
3630 	if (running)
3631 		p->sched_class->put_prev_task(rq, p);
3632 
3633 	if (rt_prio(prio))
3634 		p->sched_class = &rt_sched_class;
3635 	else
3636 		p->sched_class = &fair_sched_class;
3637 
3638 	p->prio = prio;
3639 
3640 	if (running)
3641 		p->sched_class->set_curr_task(rq);
3642 	if (on_rq)
3643 		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3644 
3645 	check_class_changed(rq, p, prev_class, oldprio);
3646 out_unlock:
3647 	__task_rq_unlock(rq);
3648 }
3649 #endif
set_user_nice(struct task_struct * p,long nice)3650 void set_user_nice(struct task_struct *p, long nice)
3651 {
3652 	int old_prio, delta, on_rq;
3653 	unsigned long flags;
3654 	struct rq *rq;
3655 
3656 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3657 		return;
3658 	/*
3659 	 * We have to be careful, if called from sys_setpriority(),
3660 	 * the task might be in the middle of scheduling on another CPU.
3661 	 */
3662 	rq = task_rq_lock(p, &flags);
3663 	/*
3664 	 * The RT priorities are set via sched_setscheduler(), but we still
3665 	 * allow the 'normal' nice value to be set - but as expected
3666 	 * it wont have any effect on scheduling until the task is
3667 	 * SCHED_FIFO/SCHED_RR:
3668 	 */
3669 	if (task_has_rt_policy(p)) {
3670 		p->static_prio = NICE_TO_PRIO(nice);
3671 		goto out_unlock;
3672 	}
3673 	on_rq = p->on_rq;
3674 	if (on_rq)
3675 		dequeue_task(rq, p, 0);
3676 
3677 	p->static_prio = NICE_TO_PRIO(nice);
3678 	set_load_weight(p);
3679 	old_prio = p->prio;
3680 	p->prio = effective_prio(p);
3681 	delta = p->prio - old_prio;
3682 
3683 	if (on_rq) {
3684 		enqueue_task(rq, p, 0);
3685 		/*
3686 		 * If the task increased its priority or is running and
3687 		 * lowered its priority, then reschedule its CPU:
3688 		 */
3689 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3690 			resched_task(rq->curr);
3691 	}
3692 out_unlock:
3693 	task_rq_unlock(rq, p, &flags);
3694 }
3695 EXPORT_SYMBOL(set_user_nice);
3696 
3697 /*
3698  * can_nice - check if a task can reduce its nice value
3699  * @p: task
3700  * @nice: nice value
3701  */
can_nice(const struct task_struct * p,const int nice)3702 int can_nice(const struct task_struct *p, const int nice)
3703 {
3704 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3705 	int nice_rlim = 20 - nice;
3706 
3707 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3708 		capable(CAP_SYS_NICE));
3709 }
3710 
3711 #ifdef __ARCH_WANT_SYS_NICE
3712 
3713 /*
3714  * sys_nice - change the priority of the current process.
3715  * @increment: priority increment
3716  *
3717  * sys_setpriority is a more generic, but much slower function that
3718  * does similar things.
3719  */
SYSCALL_DEFINE1(nice,int,increment)3720 SYSCALL_DEFINE1(nice, int, increment)
3721 {
3722 	long nice, retval;
3723 
3724 	/*
3725 	 * Setpriority might change our priority at the same moment.
3726 	 * We don't have to worry. Conceptually one call occurs first
3727 	 * and we have a single winner.
3728 	 */
3729 	if (increment < -40)
3730 		increment = -40;
3731 	if (increment > 40)
3732 		increment = 40;
3733 
3734 	nice = TASK_NICE(current) + increment;
3735 	if (nice < -20)
3736 		nice = -20;
3737 	if (nice > 19)
3738 		nice = 19;
3739 
3740 	if (increment < 0 && !can_nice(current, nice))
3741 		return -EPERM;
3742 
3743 	retval = security_task_setnice(current, nice);
3744 	if (retval)
3745 		return retval;
3746 
3747 	set_user_nice(current, nice);
3748 	return 0;
3749 }
3750 
3751 #endif
3752 
3753 /**
3754  * task_prio - return the priority value of a given task.
3755  * @p: the task in question.
3756  *
3757  * This is the priority value as seen by users in /proc.
3758  * RT tasks are offset by -200. Normal tasks are centered
3759  * around 0, value goes from -16 to +15.
3760  */
task_prio(const struct task_struct * p)3761 int task_prio(const struct task_struct *p)
3762 {
3763 	return p->prio - MAX_RT_PRIO;
3764 }
3765 
3766 /**
3767  * task_nice - return the nice value of a given task.
3768  * @p: the task in question.
3769  */
task_nice(const struct task_struct * p)3770 int task_nice(const struct task_struct *p)
3771 {
3772 	return TASK_NICE(p);
3773 }
3774 EXPORT_SYMBOL(task_nice);
3775 
3776 /**
3777  * idle_cpu - is a given cpu idle currently?
3778  * @cpu: the processor in question.
3779  */
idle_cpu(int cpu)3780 int idle_cpu(int cpu)
3781 {
3782 	struct rq *rq = cpu_rq(cpu);
3783 
3784 	if (rq->curr != rq->idle)
3785 		return 0;
3786 
3787 	if (rq->nr_running)
3788 		return 0;
3789 
3790 #ifdef CONFIG_SMP
3791 	if (!llist_empty(&rq->wake_list))
3792 		return 0;
3793 #endif
3794 
3795 	return 1;
3796 }
3797 
3798 /**
3799  * idle_task - return the idle task for a given cpu.
3800  * @cpu: the processor in question.
3801  */
idle_task(int cpu)3802 struct task_struct *idle_task(int cpu)
3803 {
3804 	return cpu_rq(cpu)->idle;
3805 }
3806 
3807 /**
3808  * find_process_by_pid - find a process with a matching PID value.
3809  * @pid: the pid in question.
3810  */
find_process_by_pid(pid_t pid)3811 static struct task_struct *find_process_by_pid(pid_t pid)
3812 {
3813 	return pid ? find_task_by_vpid(pid) : current;
3814 }
3815 
3816 /* Actually do priority change: must hold rq lock. */
3817 static void
__setscheduler(struct rq * rq,struct task_struct * p,int policy,int prio)3818 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3819 {
3820 	p->policy = policy;
3821 	p->rt_priority = prio;
3822 	p->normal_prio = normal_prio(p);
3823 	/* we are holding p->pi_lock already */
3824 	p->prio = rt_mutex_getprio(p);
3825 	if (rt_prio(p->prio))
3826 		p->sched_class = &rt_sched_class;
3827 	else
3828 		p->sched_class = &fair_sched_class;
3829 	set_load_weight(p);
3830 }
3831 
3832 /*
3833  * check the target process has a UID that matches the current process's
3834  */
check_same_owner(struct task_struct * p)3835 static bool check_same_owner(struct task_struct *p)
3836 {
3837 	const struct cred *cred = current_cred(), *pcred;
3838 	bool match;
3839 
3840 	rcu_read_lock();
3841 	pcred = __task_cred(p);
3842 	match = (uid_eq(cred->euid, pcred->euid) ||
3843 		 uid_eq(cred->euid, pcred->uid));
3844 	rcu_read_unlock();
3845 	return match;
3846 }
3847 
__sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool user)3848 static int __sched_setscheduler(struct task_struct *p, int policy,
3849 				const struct sched_param *param, bool user)
3850 {
3851 	int retval, oldprio, oldpolicy = -1, on_rq, running;
3852 	unsigned long flags;
3853 	const struct sched_class *prev_class;
3854 	struct rq *rq;
3855 	int reset_on_fork;
3856 
3857 	/* may grab non-irq protected spin_locks */
3858 	BUG_ON(in_interrupt());
3859 recheck:
3860 	/* double check policy once rq lock held */
3861 	if (policy < 0) {
3862 		reset_on_fork = p->sched_reset_on_fork;
3863 		policy = oldpolicy = p->policy;
3864 	} else {
3865 		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3866 		policy &= ~SCHED_RESET_ON_FORK;
3867 
3868 		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3869 				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3870 				policy != SCHED_IDLE)
3871 			return -EINVAL;
3872 	}
3873 
3874 	/*
3875 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3876 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3877 	 * SCHED_BATCH and SCHED_IDLE is 0.
3878 	 */
3879 	if (param->sched_priority < 0 ||
3880 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3881 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3882 		return -EINVAL;
3883 	if (rt_policy(policy) != (param->sched_priority != 0))
3884 		return -EINVAL;
3885 
3886 	/*
3887 	 * Allow unprivileged RT tasks to decrease priority:
3888 	 */
3889 	if (user && !capable(CAP_SYS_NICE)) {
3890 		if (rt_policy(policy)) {
3891 			unsigned long rlim_rtprio =
3892 					task_rlimit(p, RLIMIT_RTPRIO);
3893 
3894 			/* can't set/change the rt policy */
3895 			if (policy != p->policy && !rlim_rtprio)
3896 				return -EPERM;
3897 
3898 			/* can't increase priority */
3899 			if (param->sched_priority > p->rt_priority &&
3900 			    param->sched_priority > rlim_rtprio)
3901 				return -EPERM;
3902 		}
3903 
3904 		/*
3905 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3906 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3907 		 */
3908 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3909 			if (!can_nice(p, TASK_NICE(p)))
3910 				return -EPERM;
3911 		}
3912 
3913 		/* can't change other user's priorities */
3914 		if (!check_same_owner(p))
3915 			return -EPERM;
3916 
3917 		/* Normal users shall not reset the sched_reset_on_fork flag */
3918 		if (p->sched_reset_on_fork && !reset_on_fork)
3919 			return -EPERM;
3920 	}
3921 
3922 	if (user) {
3923 		retval = security_task_setscheduler(p);
3924 		if (retval)
3925 			return retval;
3926 	}
3927 
3928 	/*
3929 	 * make sure no PI-waiters arrive (or leave) while we are
3930 	 * changing the priority of the task:
3931 	 *
3932 	 * To be able to change p->policy safely, the appropriate
3933 	 * runqueue lock must be held.
3934 	 */
3935 	rq = task_rq_lock(p, &flags);
3936 
3937 	/*
3938 	 * Changing the policy of the stop threads its a very bad idea
3939 	 */
3940 	if (p == rq->stop) {
3941 		task_rq_unlock(rq, p, &flags);
3942 		return -EINVAL;
3943 	}
3944 
3945 	/*
3946 	 * If not changing anything there's no need to proceed further:
3947 	 */
3948 	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3949 			param->sched_priority == p->rt_priority))) {
3950 		task_rq_unlock(rq, p, &flags);
3951 		return 0;
3952 	}
3953 
3954 #ifdef CONFIG_RT_GROUP_SCHED
3955 	if (user) {
3956 		/*
3957 		 * Do not allow realtime tasks into groups that have no runtime
3958 		 * assigned.
3959 		 */
3960 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3961 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3962 				!task_group_is_autogroup(task_group(p))) {
3963 			task_rq_unlock(rq, p, &flags);
3964 			return -EPERM;
3965 		}
3966 	}
3967 #endif
3968 
3969 	/* recheck policy now with rq lock held */
3970 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3971 		policy = oldpolicy = -1;
3972 		task_rq_unlock(rq, p, &flags);
3973 		goto recheck;
3974 	}
3975 	on_rq = p->on_rq;
3976 	running = task_current(rq, p);
3977 	if (on_rq)
3978 		dequeue_task(rq, p, 0);
3979 	if (running)
3980 		p->sched_class->put_prev_task(rq, p);
3981 
3982 	p->sched_reset_on_fork = reset_on_fork;
3983 
3984 	oldprio = p->prio;
3985 	prev_class = p->sched_class;
3986 	__setscheduler(rq, p, policy, param->sched_priority);
3987 
3988 	if (running)
3989 		p->sched_class->set_curr_task(rq);
3990 	if (on_rq)
3991 		enqueue_task(rq, p, 0);
3992 
3993 	check_class_changed(rq, p, prev_class, oldprio);
3994 	task_rq_unlock(rq, p, &flags);
3995 
3996 	rt_mutex_adjust_pi(p);
3997 
3998 	return 0;
3999 }
4000 
4001 /**
4002  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4003  * @p: the task in question.
4004  * @policy: new policy.
4005  * @param: structure containing the new RT priority.
4006  *
4007  * NOTE that the task may be already dead.
4008  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4009 int sched_setscheduler(struct task_struct *p, int policy,
4010 		       const struct sched_param *param)
4011 {
4012 	return __sched_setscheduler(p, policy, param, true);
4013 }
4014 EXPORT_SYMBOL_GPL(sched_setscheduler);
4015 
4016 /**
4017  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4018  * @p: the task in question.
4019  * @policy: new policy.
4020  * @param: structure containing the new RT priority.
4021  *
4022  * Just like sched_setscheduler, only don't bother checking if the
4023  * current context has permission.  For example, this is needed in
4024  * stop_machine(): we create temporary high priority worker threads,
4025  * but our caller might not have that capability.
4026  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4027 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4028 			       const struct sched_param *param)
4029 {
4030 	return __sched_setscheduler(p, policy, param, false);
4031 }
4032 
4033 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4034 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4035 {
4036 	struct sched_param lparam;
4037 	struct task_struct *p;
4038 	int retval;
4039 
4040 	if (!param || pid < 0)
4041 		return -EINVAL;
4042 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4043 		return -EFAULT;
4044 
4045 	rcu_read_lock();
4046 	retval = -ESRCH;
4047 	p = find_process_by_pid(pid);
4048 	if (p != NULL)
4049 		retval = sched_setscheduler(p, policy, &lparam);
4050 	rcu_read_unlock();
4051 
4052 	return retval;
4053 }
4054 
4055 /**
4056  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4057  * @pid: the pid in question.
4058  * @policy: new policy.
4059  * @param: structure containing the new RT priority.
4060  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4061 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4062 		struct sched_param __user *, param)
4063 {
4064 	/* negative values for policy are not valid */
4065 	if (policy < 0)
4066 		return -EINVAL;
4067 
4068 	return do_sched_setscheduler(pid, policy, param);
4069 }
4070 
4071 /**
4072  * sys_sched_setparam - set/change the RT priority of a thread
4073  * @pid: the pid in question.
4074  * @param: structure containing the new RT priority.
4075  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4076 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4077 {
4078 	return do_sched_setscheduler(pid, -1, param);
4079 }
4080 
4081 /**
4082  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4083  * @pid: the pid in question.
4084  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4085 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4086 {
4087 	struct task_struct *p;
4088 	int retval;
4089 
4090 	if (pid < 0)
4091 		return -EINVAL;
4092 
4093 	retval = -ESRCH;
4094 	rcu_read_lock();
4095 	p = find_process_by_pid(pid);
4096 	if (p) {
4097 		retval = security_task_getscheduler(p);
4098 		if (!retval)
4099 			retval = p->policy
4100 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4101 	}
4102 	rcu_read_unlock();
4103 	return retval;
4104 }
4105 
4106 /**
4107  * sys_sched_getparam - get the RT priority of a thread
4108  * @pid: the pid in question.
4109  * @param: structure containing the RT priority.
4110  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4111 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4112 {
4113 	struct sched_param lp;
4114 	struct task_struct *p;
4115 	int retval;
4116 
4117 	if (!param || pid < 0)
4118 		return -EINVAL;
4119 
4120 	rcu_read_lock();
4121 	p = find_process_by_pid(pid);
4122 	retval = -ESRCH;
4123 	if (!p)
4124 		goto out_unlock;
4125 
4126 	retval = security_task_getscheduler(p);
4127 	if (retval)
4128 		goto out_unlock;
4129 
4130 	lp.sched_priority = p->rt_priority;
4131 	rcu_read_unlock();
4132 
4133 	/*
4134 	 * This one might sleep, we cannot do it with a spinlock held ...
4135 	 */
4136 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4137 
4138 	return retval;
4139 
4140 out_unlock:
4141 	rcu_read_unlock();
4142 	return retval;
4143 }
4144 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4145 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4146 {
4147 	cpumask_var_t cpus_allowed, new_mask;
4148 	struct task_struct *p;
4149 	int retval;
4150 
4151 	get_online_cpus();
4152 	rcu_read_lock();
4153 
4154 	p = find_process_by_pid(pid);
4155 	if (!p) {
4156 		rcu_read_unlock();
4157 		put_online_cpus();
4158 		return -ESRCH;
4159 	}
4160 
4161 	/* Prevent p going away */
4162 	get_task_struct(p);
4163 	rcu_read_unlock();
4164 
4165 	if (p->flags & PF_NO_SETAFFINITY) {
4166 		retval = -EINVAL;
4167 		goto out_put_task;
4168 	}
4169 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4170 		retval = -ENOMEM;
4171 		goto out_put_task;
4172 	}
4173 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4174 		retval = -ENOMEM;
4175 		goto out_free_cpus_allowed;
4176 	}
4177 	retval = -EPERM;
4178 	if (!check_same_owner(p)) {
4179 		rcu_read_lock();
4180 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4181 			rcu_read_unlock();
4182 			goto out_unlock;
4183 		}
4184 		rcu_read_unlock();
4185 	}
4186 
4187 	retval = security_task_setscheduler(p);
4188 	if (retval)
4189 		goto out_unlock;
4190 
4191 	cpuset_cpus_allowed(p, cpus_allowed);
4192 	cpumask_and(new_mask, in_mask, cpus_allowed);
4193 again:
4194 	retval = set_cpus_allowed_ptr(p, new_mask);
4195 
4196 	if (!retval) {
4197 		cpuset_cpus_allowed(p, cpus_allowed);
4198 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4199 			/*
4200 			 * We must have raced with a concurrent cpuset
4201 			 * update. Just reset the cpus_allowed to the
4202 			 * cpuset's cpus_allowed
4203 			 */
4204 			cpumask_copy(new_mask, cpus_allowed);
4205 			goto again;
4206 		}
4207 	}
4208 out_unlock:
4209 	free_cpumask_var(new_mask);
4210 out_free_cpus_allowed:
4211 	free_cpumask_var(cpus_allowed);
4212 out_put_task:
4213 	put_task_struct(p);
4214 	put_online_cpus();
4215 	return retval;
4216 }
4217 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4218 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4219 			     struct cpumask *new_mask)
4220 {
4221 	if (len < cpumask_size())
4222 		cpumask_clear(new_mask);
4223 	else if (len > cpumask_size())
4224 		len = cpumask_size();
4225 
4226 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4227 }
4228 
4229 /**
4230  * sys_sched_setaffinity - set the cpu affinity of a process
4231  * @pid: pid of the process
4232  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4233  * @user_mask_ptr: user-space pointer to the new cpu mask
4234  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4235 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4236 		unsigned long __user *, user_mask_ptr)
4237 {
4238 	cpumask_var_t new_mask;
4239 	int retval;
4240 
4241 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4242 		return -ENOMEM;
4243 
4244 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4245 	if (retval == 0)
4246 		retval = sched_setaffinity(pid, new_mask);
4247 	free_cpumask_var(new_mask);
4248 	return retval;
4249 }
4250 
sched_getaffinity(pid_t pid,struct cpumask * mask)4251 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4252 {
4253 	struct task_struct *p;
4254 	unsigned long flags;
4255 	int retval;
4256 
4257 	get_online_cpus();
4258 	rcu_read_lock();
4259 
4260 	retval = -ESRCH;
4261 	p = find_process_by_pid(pid);
4262 	if (!p)
4263 		goto out_unlock;
4264 
4265 	retval = security_task_getscheduler(p);
4266 	if (retval)
4267 		goto out_unlock;
4268 
4269 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4270 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4271 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4272 
4273 out_unlock:
4274 	rcu_read_unlock();
4275 	put_online_cpus();
4276 
4277 	return retval;
4278 }
4279 
4280 /**
4281  * sys_sched_getaffinity - get the cpu affinity of a process
4282  * @pid: pid of the process
4283  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4284  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4285  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4286 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4287 		unsigned long __user *, user_mask_ptr)
4288 {
4289 	int ret;
4290 	cpumask_var_t mask;
4291 
4292 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4293 		return -EINVAL;
4294 	if (len & (sizeof(unsigned long)-1))
4295 		return -EINVAL;
4296 
4297 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4298 		return -ENOMEM;
4299 
4300 	ret = sched_getaffinity(pid, mask);
4301 	if (ret == 0) {
4302 		size_t retlen = min_t(size_t, len, cpumask_size());
4303 
4304 		if (copy_to_user(user_mask_ptr, mask, retlen))
4305 			ret = -EFAULT;
4306 		else
4307 			ret = retlen;
4308 	}
4309 	free_cpumask_var(mask);
4310 
4311 	return ret;
4312 }
4313 
4314 /**
4315  * sys_sched_yield - yield the current processor to other threads.
4316  *
4317  * This function yields the current CPU to other tasks. If there are no
4318  * other threads running on this CPU then this function will return.
4319  */
SYSCALL_DEFINE0(sched_yield)4320 SYSCALL_DEFINE0(sched_yield)
4321 {
4322 	struct rq *rq = this_rq_lock();
4323 
4324 	schedstat_inc(rq, yld_count);
4325 	current->sched_class->yield_task(rq);
4326 
4327 	/*
4328 	 * Since we are going to call schedule() anyway, there's
4329 	 * no need to preempt or enable interrupts:
4330 	 */
4331 	__release(rq->lock);
4332 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4333 	do_raw_spin_unlock(&rq->lock);
4334 	sched_preempt_enable_no_resched();
4335 
4336 	schedule();
4337 
4338 	return 0;
4339 }
4340 
should_resched(void)4341 static inline int should_resched(void)
4342 {
4343 	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4344 }
4345 
__cond_resched(void)4346 static void __cond_resched(void)
4347 {
4348 	add_preempt_count(PREEMPT_ACTIVE);
4349 	__schedule();
4350 	sub_preempt_count(PREEMPT_ACTIVE);
4351 }
4352 
_cond_resched(void)4353 int __sched _cond_resched(void)
4354 {
4355 	if (should_resched()) {
4356 		__cond_resched();
4357 		return 1;
4358 	}
4359 	return 0;
4360 }
4361 EXPORT_SYMBOL(_cond_resched);
4362 
4363 /*
4364  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4365  * call schedule, and on return reacquire the lock.
4366  *
4367  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4368  * operations here to prevent schedule() from being called twice (once via
4369  * spin_unlock(), once by hand).
4370  */
__cond_resched_lock(spinlock_t * lock)4371 int __cond_resched_lock(spinlock_t *lock)
4372 {
4373 	int resched = should_resched();
4374 	int ret = 0;
4375 
4376 	lockdep_assert_held(lock);
4377 
4378 	if (spin_needbreak(lock) || resched) {
4379 		spin_unlock(lock);
4380 		if (resched)
4381 			__cond_resched();
4382 		else
4383 			cpu_relax();
4384 		ret = 1;
4385 		spin_lock(lock);
4386 	}
4387 	return ret;
4388 }
4389 EXPORT_SYMBOL(__cond_resched_lock);
4390 
__cond_resched_softirq(void)4391 int __sched __cond_resched_softirq(void)
4392 {
4393 	BUG_ON(!in_softirq());
4394 
4395 	if (should_resched()) {
4396 		local_bh_enable();
4397 		__cond_resched();
4398 		local_bh_disable();
4399 		return 1;
4400 	}
4401 	return 0;
4402 }
4403 EXPORT_SYMBOL(__cond_resched_softirq);
4404 
4405 /**
4406  * yield - yield the current processor to other threads.
4407  *
4408  * Do not ever use this function, there's a 99% chance you're doing it wrong.
4409  *
4410  * The scheduler is at all times free to pick the calling task as the most
4411  * eligible task to run, if removing the yield() call from your code breaks
4412  * it, its already broken.
4413  *
4414  * Typical broken usage is:
4415  *
4416  * while (!event)
4417  * 	yield();
4418  *
4419  * where one assumes that yield() will let 'the other' process run that will
4420  * make event true. If the current task is a SCHED_FIFO task that will never
4421  * happen. Never use yield() as a progress guarantee!!
4422  *
4423  * If you want to use yield() to wait for something, use wait_event().
4424  * If you want to use yield() to be 'nice' for others, use cond_resched().
4425  * If you still want to use yield(), do not!
4426  */
yield(void)4427 void __sched yield(void)
4428 {
4429 	set_current_state(TASK_RUNNING);
4430 	sys_sched_yield();
4431 }
4432 EXPORT_SYMBOL(yield);
4433 
4434 /**
4435  * yield_to - yield the current processor to another thread in
4436  * your thread group, or accelerate that thread toward the
4437  * processor it's on.
4438  * @p: target task
4439  * @preempt: whether task preemption is allowed or not
4440  *
4441  * It's the caller's job to ensure that the target task struct
4442  * can't go away on us before we can do any checks.
4443  *
4444  * Returns:
4445  *	true (>0) if we indeed boosted the target task.
4446  *	false (0) if we failed to boost the target.
4447  *	-ESRCH if there's no task to yield to.
4448  */
yield_to(struct task_struct * p,bool preempt)4449 bool __sched yield_to(struct task_struct *p, bool preempt)
4450 {
4451 	struct task_struct *curr = current;
4452 	struct rq *rq, *p_rq;
4453 	unsigned long flags;
4454 	int yielded = 0;
4455 
4456 	local_irq_save(flags);
4457 	rq = this_rq();
4458 
4459 again:
4460 	p_rq = task_rq(p);
4461 	/*
4462 	 * If we're the only runnable task on the rq and target rq also
4463 	 * has only one task, there's absolutely no point in yielding.
4464 	 */
4465 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4466 		yielded = -ESRCH;
4467 		goto out_irq;
4468 	}
4469 
4470 	double_rq_lock(rq, p_rq);
4471 	while (task_rq(p) != p_rq) {
4472 		double_rq_unlock(rq, p_rq);
4473 		goto again;
4474 	}
4475 
4476 	if (!curr->sched_class->yield_to_task)
4477 		goto out_unlock;
4478 
4479 	if (curr->sched_class != p->sched_class)
4480 		goto out_unlock;
4481 
4482 	if (task_running(p_rq, p) || p->state)
4483 		goto out_unlock;
4484 
4485 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4486 	if (yielded) {
4487 		schedstat_inc(rq, yld_count);
4488 		/*
4489 		 * Make p's CPU reschedule; pick_next_entity takes care of
4490 		 * fairness.
4491 		 */
4492 		if (preempt && rq != p_rq)
4493 			resched_task(p_rq->curr);
4494 	}
4495 
4496 out_unlock:
4497 	double_rq_unlock(rq, p_rq);
4498 out_irq:
4499 	local_irq_restore(flags);
4500 
4501 	if (yielded > 0)
4502 		schedule();
4503 
4504 	return yielded;
4505 }
4506 EXPORT_SYMBOL_GPL(yield_to);
4507 
4508 /*
4509  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4510  * that process accounting knows that this is a task in IO wait state.
4511  */
io_schedule(void)4512 void __sched io_schedule(void)
4513 {
4514 	struct rq *rq = raw_rq();
4515 
4516 	delayacct_blkio_start();
4517 	atomic_inc(&rq->nr_iowait);
4518 	blk_flush_plug(current);
4519 	current->in_iowait = 1;
4520 	schedule();
4521 	current->in_iowait = 0;
4522 	atomic_dec(&rq->nr_iowait);
4523 	delayacct_blkio_end();
4524 }
4525 EXPORT_SYMBOL(io_schedule);
4526 
io_schedule_timeout(long timeout)4527 long __sched io_schedule_timeout(long timeout)
4528 {
4529 	struct rq *rq = raw_rq();
4530 	long ret;
4531 
4532 	delayacct_blkio_start();
4533 	atomic_inc(&rq->nr_iowait);
4534 	blk_flush_plug(current);
4535 	current->in_iowait = 1;
4536 	ret = schedule_timeout(timeout);
4537 	current->in_iowait = 0;
4538 	atomic_dec(&rq->nr_iowait);
4539 	delayacct_blkio_end();
4540 	return ret;
4541 }
4542 
4543 /**
4544  * sys_sched_get_priority_max - return maximum RT priority.
4545  * @policy: scheduling class.
4546  *
4547  * this syscall returns the maximum rt_priority that can be used
4548  * by a given scheduling class.
4549  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)4550 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4551 {
4552 	int ret = -EINVAL;
4553 
4554 	switch (policy) {
4555 	case SCHED_FIFO:
4556 	case SCHED_RR:
4557 		ret = MAX_USER_RT_PRIO-1;
4558 		break;
4559 	case SCHED_NORMAL:
4560 	case SCHED_BATCH:
4561 	case SCHED_IDLE:
4562 		ret = 0;
4563 		break;
4564 	}
4565 	return ret;
4566 }
4567 
4568 /**
4569  * sys_sched_get_priority_min - return minimum RT priority.
4570  * @policy: scheduling class.
4571  *
4572  * this syscall returns the minimum rt_priority that can be used
4573  * by a given scheduling class.
4574  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)4575 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4576 {
4577 	int ret = -EINVAL;
4578 
4579 	switch (policy) {
4580 	case SCHED_FIFO:
4581 	case SCHED_RR:
4582 		ret = 1;
4583 		break;
4584 	case SCHED_NORMAL:
4585 	case SCHED_BATCH:
4586 	case SCHED_IDLE:
4587 		ret = 0;
4588 	}
4589 	return ret;
4590 }
4591 
4592 /**
4593  * sys_sched_rr_get_interval - return the default timeslice of a process.
4594  * @pid: pid of the process.
4595  * @interval: userspace pointer to the timeslice value.
4596  *
4597  * this syscall writes the default timeslice value of a given process
4598  * into the user-space timespec buffer. A value of '0' means infinity.
4599  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)4600 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4601 		struct timespec __user *, interval)
4602 {
4603 	struct task_struct *p;
4604 	unsigned int time_slice;
4605 	unsigned long flags;
4606 	struct rq *rq;
4607 	int retval;
4608 	struct timespec t;
4609 
4610 	if (pid < 0)
4611 		return -EINVAL;
4612 
4613 	retval = -ESRCH;
4614 	rcu_read_lock();
4615 	p = find_process_by_pid(pid);
4616 	if (!p)
4617 		goto out_unlock;
4618 
4619 	retval = security_task_getscheduler(p);
4620 	if (retval)
4621 		goto out_unlock;
4622 
4623 	rq = task_rq_lock(p, &flags);
4624 	time_slice = p->sched_class->get_rr_interval(rq, p);
4625 	task_rq_unlock(rq, p, &flags);
4626 
4627 	rcu_read_unlock();
4628 	jiffies_to_timespec(time_slice, &t);
4629 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4630 	return retval;
4631 
4632 out_unlock:
4633 	rcu_read_unlock();
4634 	return retval;
4635 }
4636 
4637 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4638 
sched_show_task(struct task_struct * p)4639 void sched_show_task(struct task_struct *p)
4640 {
4641 	unsigned long free = 0;
4642 	int ppid;
4643 	unsigned state;
4644 
4645 	state = p->state ? __ffs(p->state) + 1 : 0;
4646 	printk(KERN_INFO "%-15.15s %c", p->comm,
4647 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4648 #if BITS_PER_LONG == 32
4649 	if (state == TASK_RUNNING)
4650 		printk(KERN_CONT " running  ");
4651 	else
4652 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4653 #else
4654 	if (state == TASK_RUNNING)
4655 		printk(KERN_CONT "  running task    ");
4656 	else
4657 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4658 #endif
4659 #ifdef CONFIG_DEBUG_STACK_USAGE
4660 	free = stack_not_used(p);
4661 #endif
4662 	rcu_read_lock();
4663 	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4664 	rcu_read_unlock();
4665 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4666 		task_pid_nr(p), ppid,
4667 		(unsigned long)task_thread_info(p)->flags);
4668 
4669 	print_worker_info(KERN_INFO, p);
4670 	show_stack(p, NULL);
4671 }
4672 
show_state_filter(unsigned long state_filter)4673 void show_state_filter(unsigned long state_filter)
4674 {
4675 	struct task_struct *g, *p;
4676 
4677 #if BITS_PER_LONG == 32
4678 	printk(KERN_INFO
4679 		"  task                PC stack   pid father\n");
4680 #else
4681 	printk(KERN_INFO
4682 		"  task                        PC stack   pid father\n");
4683 #endif
4684 	rcu_read_lock();
4685 	do_each_thread(g, p) {
4686 		/*
4687 		 * reset the NMI-timeout, listing all files on a slow
4688 		 * console might take a lot of time:
4689 		 */
4690 		touch_nmi_watchdog();
4691 		if (!state_filter || (p->state & state_filter))
4692 			sched_show_task(p);
4693 	} while_each_thread(g, p);
4694 
4695 	touch_all_softlockup_watchdogs();
4696 
4697 #ifdef CONFIG_SCHED_DEBUG
4698 	sysrq_sched_debug_show();
4699 #endif
4700 	rcu_read_unlock();
4701 	/*
4702 	 * Only show locks if all tasks are dumped:
4703 	 */
4704 	if (!state_filter)
4705 		debug_show_all_locks();
4706 }
4707 
init_idle_bootup_task(struct task_struct * idle)4708 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4709 {
4710 	idle->sched_class = &idle_sched_class;
4711 }
4712 
4713 /**
4714  * init_idle - set up an idle thread for a given CPU
4715  * @idle: task in question
4716  * @cpu: cpu the idle task belongs to
4717  *
4718  * NOTE: this function does not set the idle thread's NEED_RESCHED
4719  * flag, to make booting more robust.
4720  */
init_idle(struct task_struct * idle,int cpu)4721 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4722 {
4723 	struct rq *rq = cpu_rq(cpu);
4724 	unsigned long flags;
4725 
4726 	raw_spin_lock_irqsave(&rq->lock, flags);
4727 
4728 	__sched_fork(idle);
4729 	idle->state = TASK_RUNNING;
4730 	idle->se.exec_start = sched_clock();
4731 
4732 	do_set_cpus_allowed(idle, cpumask_of(cpu));
4733 	/*
4734 	 * We're having a chicken and egg problem, even though we are
4735 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4736 	 * lockdep check in task_group() will fail.
4737 	 *
4738 	 * Similar case to sched_fork(). / Alternatively we could
4739 	 * use task_rq_lock() here and obtain the other rq->lock.
4740 	 *
4741 	 * Silence PROVE_RCU
4742 	 */
4743 	rcu_read_lock();
4744 	__set_task_cpu(idle, cpu);
4745 	rcu_read_unlock();
4746 
4747 	rq->curr = rq->idle = idle;
4748 #if defined(CONFIG_SMP)
4749 	idle->on_cpu = 1;
4750 #endif
4751 	raw_spin_unlock_irqrestore(&rq->lock, flags);
4752 
4753 	/* Set the preempt count _outside_ the spinlocks! */
4754 	task_thread_info(idle)->preempt_count = 0;
4755 
4756 	/*
4757 	 * The idle tasks have their own, simple scheduling class:
4758 	 */
4759 	idle->sched_class = &idle_sched_class;
4760 	ftrace_graph_init_idle_task(idle, cpu);
4761 	vtime_init_idle(idle, cpu);
4762 #if defined(CONFIG_SMP)
4763 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4764 #endif
4765 }
4766 
4767 #ifdef CONFIG_SMP
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)4768 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4769 {
4770 	if (p->sched_class && p->sched_class->set_cpus_allowed)
4771 		p->sched_class->set_cpus_allowed(p, new_mask);
4772 
4773 	cpumask_copy(&p->cpus_allowed, new_mask);
4774 	p->nr_cpus_allowed = cpumask_weight(new_mask);
4775 }
4776 
4777 /*
4778  * This is how migration works:
4779  *
4780  * 1) we invoke migration_cpu_stop() on the target CPU using
4781  *    stop_one_cpu().
4782  * 2) stopper starts to run (implicitly forcing the migrated thread
4783  *    off the CPU)
4784  * 3) it checks whether the migrated task is still in the wrong runqueue.
4785  * 4) if it's in the wrong runqueue then the migration thread removes
4786  *    it and puts it into the right queue.
4787  * 5) stopper completes and stop_one_cpu() returns and the migration
4788  *    is done.
4789  */
4790 
4791 /*
4792  * Change a given task's CPU affinity. Migrate the thread to a
4793  * proper CPU and schedule it away if the CPU it's executing on
4794  * is removed from the allowed bitmask.
4795  *
4796  * NOTE: the caller must have a valid reference to the task, the
4797  * task must not exit() & deallocate itself prematurely. The
4798  * call is not atomic; no spinlocks may be held.
4799  */
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)4800 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4801 {
4802 	unsigned long flags;
4803 	struct rq *rq;
4804 	unsigned int dest_cpu;
4805 	int ret = 0;
4806 
4807 	rq = task_rq_lock(p, &flags);
4808 
4809 	if (cpumask_equal(&p->cpus_allowed, new_mask))
4810 		goto out;
4811 
4812 	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4813 		ret = -EINVAL;
4814 		goto out;
4815 	}
4816 
4817 	do_set_cpus_allowed(p, new_mask);
4818 
4819 	/* Can the task run on the task's current CPU? If so, we're done */
4820 	if (cpumask_test_cpu(task_cpu(p), new_mask))
4821 		goto out;
4822 
4823 	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4824 	if (p->on_rq) {
4825 		struct migration_arg arg = { p, dest_cpu };
4826 		/* Need help from migration thread: drop lock and wait. */
4827 		task_rq_unlock(rq, p, &flags);
4828 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4829 		tlb_migrate_finish(p->mm);
4830 		return 0;
4831 	}
4832 out:
4833 	task_rq_unlock(rq, p, &flags);
4834 
4835 	return ret;
4836 }
4837 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4838 
4839 /*
4840  * Move (not current) task off this cpu, onto dest cpu. We're doing
4841  * this because either it can't run here any more (set_cpus_allowed()
4842  * away from this CPU, or CPU going down), or because we're
4843  * attempting to rebalance this task on exec (sched_exec).
4844  *
4845  * So we race with normal scheduler movements, but that's OK, as long
4846  * as the task is no longer on this CPU.
4847  *
4848  * Returns non-zero if task was successfully migrated.
4849  */
__migrate_task(struct task_struct * p,int src_cpu,int dest_cpu)4850 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4851 {
4852 	struct rq *rq_dest, *rq_src;
4853 	int ret = 0;
4854 
4855 	if (unlikely(!cpu_active(dest_cpu)))
4856 		return ret;
4857 
4858 	rq_src = cpu_rq(src_cpu);
4859 	rq_dest = cpu_rq(dest_cpu);
4860 
4861 	raw_spin_lock(&p->pi_lock);
4862 	double_rq_lock(rq_src, rq_dest);
4863 	/* Already moved. */
4864 	if (task_cpu(p) != src_cpu)
4865 		goto done;
4866 	/* Affinity changed (again). */
4867 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4868 		goto fail;
4869 
4870 	/*
4871 	 * If we're not on a rq, the next wake-up will ensure we're
4872 	 * placed properly.
4873 	 */
4874 	if (p->on_rq) {
4875 		dequeue_task(rq_src, p, 0);
4876 		set_task_cpu(p, dest_cpu);
4877 		enqueue_task(rq_dest, p, 0);
4878 		check_preempt_curr(rq_dest, p, 0);
4879 	}
4880 done:
4881 	ret = 1;
4882 fail:
4883 	double_rq_unlock(rq_src, rq_dest);
4884 	raw_spin_unlock(&p->pi_lock);
4885 	return ret;
4886 }
4887 
4888 /*
4889  * migration_cpu_stop - this will be executed by a highprio stopper thread
4890  * and performs thread migration by bumping thread off CPU then
4891  * 'pushing' onto another runqueue.
4892  */
migration_cpu_stop(void * data)4893 static int migration_cpu_stop(void *data)
4894 {
4895 	struct migration_arg *arg = data;
4896 
4897 	/*
4898 	 * The original target cpu might have gone down and we might
4899 	 * be on another cpu but it doesn't matter.
4900 	 */
4901 	local_irq_disable();
4902 	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4903 	local_irq_enable();
4904 	return 0;
4905 }
4906 
4907 #ifdef CONFIG_HOTPLUG_CPU
4908 
4909 /*
4910  * Ensures that the idle task is using init_mm right before its cpu goes
4911  * offline.
4912  */
idle_task_exit(void)4913 void idle_task_exit(void)
4914 {
4915 	struct mm_struct *mm = current->active_mm;
4916 
4917 	BUG_ON(cpu_online(smp_processor_id()));
4918 
4919 	if (mm != &init_mm)
4920 		switch_mm(mm, &init_mm, current);
4921 	mmdrop(mm);
4922 }
4923 
4924 /*
4925  * Since this CPU is going 'away' for a while, fold any nr_active delta
4926  * we might have. Assumes we're called after migrate_tasks() so that the
4927  * nr_active count is stable.
4928  *
4929  * Also see the comment "Global load-average calculations".
4930  */
calc_load_migrate(struct rq * rq)4931 static void calc_load_migrate(struct rq *rq)
4932 {
4933 	long delta = calc_load_fold_active(rq);
4934 	if (delta)
4935 		atomic_long_add(delta, &calc_load_tasks);
4936 }
4937 
4938 /*
4939  * Migrate all tasks from the rq, sleeping tasks will be migrated by
4940  * try_to_wake_up()->select_task_rq().
4941  *
4942  * Called with rq->lock held even though we'er in stop_machine() and
4943  * there's no concurrency possible, we hold the required locks anyway
4944  * because of lock validation efforts.
4945  */
migrate_tasks(unsigned int dead_cpu)4946 static void migrate_tasks(unsigned int dead_cpu)
4947 {
4948 	struct rq *rq = cpu_rq(dead_cpu);
4949 	struct task_struct *next, *stop = rq->stop;
4950 	int dest_cpu;
4951 
4952 	/*
4953 	 * Fudge the rq selection such that the below task selection loop
4954 	 * doesn't get stuck on the currently eligible stop task.
4955 	 *
4956 	 * We're currently inside stop_machine() and the rq is either stuck
4957 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4958 	 * either way we should never end up calling schedule() until we're
4959 	 * done here.
4960 	 */
4961 	rq->stop = NULL;
4962 
4963 	for ( ; ; ) {
4964 		/*
4965 		 * There's this thread running, bail when that's the only
4966 		 * remaining thread.
4967 		 */
4968 		if (rq->nr_running == 1)
4969 			break;
4970 
4971 		next = pick_next_task(rq);
4972 		BUG_ON(!next);
4973 		next->sched_class->put_prev_task(rq, next);
4974 
4975 		/* Find suitable destination for @next, with force if needed. */
4976 		dest_cpu = select_fallback_rq(dead_cpu, next);
4977 		raw_spin_unlock(&rq->lock);
4978 
4979 		__migrate_task(next, dead_cpu, dest_cpu);
4980 
4981 		raw_spin_lock(&rq->lock);
4982 	}
4983 
4984 	rq->stop = stop;
4985 }
4986 
4987 #endif /* CONFIG_HOTPLUG_CPU */
4988 
4989 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4990 
4991 static struct ctl_table sd_ctl_dir[] = {
4992 	{
4993 		.procname	= "sched_domain",
4994 		.mode		= 0555,
4995 	},
4996 	{}
4997 };
4998 
4999 static struct ctl_table sd_ctl_root[] = {
5000 	{
5001 		.procname	= "kernel",
5002 		.mode		= 0555,
5003 		.child		= sd_ctl_dir,
5004 	},
5005 	{}
5006 };
5007 
sd_alloc_ctl_entry(int n)5008 static struct ctl_table *sd_alloc_ctl_entry(int n)
5009 {
5010 	struct ctl_table *entry =
5011 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5012 
5013 	return entry;
5014 }
5015 
sd_free_ctl_entry(struct ctl_table ** tablep)5016 static void sd_free_ctl_entry(struct ctl_table **tablep)
5017 {
5018 	struct ctl_table *entry;
5019 
5020 	/*
5021 	 * In the intermediate directories, both the child directory and
5022 	 * procname are dynamically allocated and could fail but the mode
5023 	 * will always be set. In the lowest directory the names are
5024 	 * static strings and all have proc handlers.
5025 	 */
5026 	for (entry = *tablep; entry->mode; entry++) {
5027 		if (entry->child)
5028 			sd_free_ctl_entry(&entry->child);
5029 		if (entry->proc_handler == NULL)
5030 			kfree(entry->procname);
5031 	}
5032 
5033 	kfree(*tablep);
5034 	*tablep = NULL;
5035 }
5036 
5037 static int min_load_idx = 0;
5038 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5039 
5040 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler,bool load_idx)5041 set_table_entry(struct ctl_table *entry,
5042 		const char *procname, void *data, int maxlen,
5043 		umode_t mode, proc_handler *proc_handler,
5044 		bool load_idx)
5045 {
5046 	entry->procname = procname;
5047 	entry->data = data;
5048 	entry->maxlen = maxlen;
5049 	entry->mode = mode;
5050 	entry->proc_handler = proc_handler;
5051 
5052 	if (load_idx) {
5053 		entry->extra1 = &min_load_idx;
5054 		entry->extra2 = &max_load_idx;
5055 	}
5056 }
5057 
5058 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)5059 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5060 {
5061 	struct ctl_table *table = sd_alloc_ctl_entry(13);
5062 
5063 	if (table == NULL)
5064 		return NULL;
5065 
5066 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5067 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5068 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5069 		sizeof(long), 0644, proc_doulongvec_minmax, false);
5070 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5071 		sizeof(int), 0644, proc_dointvec_minmax, true);
5072 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5073 		sizeof(int), 0644, proc_dointvec_minmax, true);
5074 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5075 		sizeof(int), 0644, proc_dointvec_minmax, true);
5076 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5077 		sizeof(int), 0644, proc_dointvec_minmax, true);
5078 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5079 		sizeof(int), 0644, proc_dointvec_minmax, true);
5080 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5081 		sizeof(int), 0644, proc_dointvec_minmax, false);
5082 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5083 		sizeof(int), 0644, proc_dointvec_minmax, false);
5084 	set_table_entry(&table[9], "cache_nice_tries",
5085 		&sd->cache_nice_tries,
5086 		sizeof(int), 0644, proc_dointvec_minmax, false);
5087 	set_table_entry(&table[10], "flags", &sd->flags,
5088 		sizeof(int), 0644, proc_dointvec_minmax, false);
5089 	set_table_entry(&table[11], "name", sd->name,
5090 		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5091 	/* &table[12] is terminator */
5092 
5093 	return table;
5094 }
5095 
sd_alloc_ctl_cpu_table(int cpu)5096 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5097 {
5098 	struct ctl_table *entry, *table;
5099 	struct sched_domain *sd;
5100 	int domain_num = 0, i;
5101 	char buf[32];
5102 
5103 	for_each_domain(cpu, sd)
5104 		domain_num++;
5105 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5106 	if (table == NULL)
5107 		return NULL;
5108 
5109 	i = 0;
5110 	for_each_domain(cpu, sd) {
5111 		snprintf(buf, 32, "domain%d", i);
5112 		entry->procname = kstrdup(buf, GFP_KERNEL);
5113 		entry->mode = 0555;
5114 		entry->child = sd_alloc_ctl_domain_table(sd);
5115 		entry++;
5116 		i++;
5117 	}
5118 	return table;
5119 }
5120 
5121 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)5122 static void register_sched_domain_sysctl(void)
5123 {
5124 	int i, cpu_num = num_possible_cpus();
5125 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5126 	char buf[32];
5127 
5128 	WARN_ON(sd_ctl_dir[0].child);
5129 	sd_ctl_dir[0].child = entry;
5130 
5131 	if (entry == NULL)
5132 		return;
5133 
5134 	for_each_possible_cpu(i) {
5135 		snprintf(buf, 32, "cpu%d", i);
5136 		entry->procname = kstrdup(buf, GFP_KERNEL);
5137 		entry->mode = 0555;
5138 		entry->child = sd_alloc_ctl_cpu_table(i);
5139 		entry++;
5140 	}
5141 
5142 	WARN_ON(sd_sysctl_header);
5143 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5144 }
5145 
5146 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)5147 static void unregister_sched_domain_sysctl(void)
5148 {
5149 	if (sd_sysctl_header)
5150 		unregister_sysctl_table(sd_sysctl_header);
5151 	sd_sysctl_header = NULL;
5152 	if (sd_ctl_dir[0].child)
5153 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5154 }
5155 #else
register_sched_domain_sysctl(void)5156 static void register_sched_domain_sysctl(void)
5157 {
5158 }
unregister_sched_domain_sysctl(void)5159 static void unregister_sched_domain_sysctl(void)
5160 {
5161 }
5162 #endif
5163 
set_rq_online(struct rq * rq)5164 static void set_rq_online(struct rq *rq)
5165 {
5166 	if (!rq->online) {
5167 		const struct sched_class *class;
5168 
5169 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5170 		rq->online = 1;
5171 
5172 		for_each_class(class) {
5173 			if (class->rq_online)
5174 				class->rq_online(rq);
5175 		}
5176 	}
5177 }
5178 
set_rq_offline(struct rq * rq)5179 static void set_rq_offline(struct rq *rq)
5180 {
5181 	if (rq->online) {
5182 		const struct sched_class *class;
5183 
5184 		for_each_class(class) {
5185 			if (class->rq_offline)
5186 				class->rq_offline(rq);
5187 		}
5188 
5189 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5190 		rq->online = 0;
5191 	}
5192 }
5193 
5194 /*
5195  * migration_call - callback that gets triggered when a CPU is added.
5196  * Here we can start up the necessary migration thread for the new CPU.
5197  */
5198 static int __cpuinit
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)5199 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5200 {
5201 	int cpu = (long)hcpu;
5202 	unsigned long flags;
5203 	struct rq *rq = cpu_rq(cpu);
5204 
5205 	switch (action & ~CPU_TASKS_FROZEN) {
5206 
5207 	case CPU_UP_PREPARE:
5208 		rq->calc_load_update = calc_load_update;
5209 		break;
5210 
5211 	case CPU_ONLINE:
5212 		/* Update our root-domain */
5213 		raw_spin_lock_irqsave(&rq->lock, flags);
5214 		if (rq->rd) {
5215 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5216 
5217 			set_rq_online(rq);
5218 		}
5219 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5220 		break;
5221 
5222 #ifdef CONFIG_HOTPLUG_CPU
5223 	case CPU_DYING:
5224 		sched_ttwu_pending();
5225 		/* Update our root-domain */
5226 		raw_spin_lock_irqsave(&rq->lock, flags);
5227 		if (rq->rd) {
5228 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5229 			set_rq_offline(rq);
5230 		}
5231 		migrate_tasks(cpu);
5232 		BUG_ON(rq->nr_running != 1); /* the migration thread */
5233 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5234 		break;
5235 
5236 	case CPU_DEAD:
5237 		calc_load_migrate(rq);
5238 		break;
5239 #endif
5240 	}
5241 
5242 	update_max_interval();
5243 
5244 	return NOTIFY_OK;
5245 }
5246 
5247 /*
5248  * Register at high priority so that task migration (migrate_all_tasks)
5249  * happens before everything else.  This has to be lower priority than
5250  * the notifier in the perf_event subsystem, though.
5251  */
5252 static struct notifier_block __cpuinitdata migration_notifier = {
5253 	.notifier_call = migration_call,
5254 	.priority = CPU_PRI_MIGRATION,
5255 };
5256 
sched_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)5257 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5258 				      unsigned long action, void *hcpu)
5259 {
5260 	switch (action & ~CPU_TASKS_FROZEN) {
5261 	case CPU_STARTING:
5262 	case CPU_DOWN_FAILED:
5263 		set_cpu_active((long)hcpu, true);
5264 		return NOTIFY_OK;
5265 	default:
5266 		return NOTIFY_DONE;
5267 	}
5268 }
5269 
sched_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)5270 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5271 					unsigned long action, void *hcpu)
5272 {
5273 	switch (action & ~CPU_TASKS_FROZEN) {
5274 	case CPU_DOWN_PREPARE:
5275 		set_cpu_active((long)hcpu, false);
5276 		return NOTIFY_OK;
5277 	default:
5278 		return NOTIFY_DONE;
5279 	}
5280 }
5281 
migration_init(void)5282 static int __init migration_init(void)
5283 {
5284 	void *cpu = (void *)(long)smp_processor_id();
5285 	int err;
5286 
5287 	/* Initialize migration for the boot CPU */
5288 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5289 	BUG_ON(err == NOTIFY_BAD);
5290 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5291 	register_cpu_notifier(&migration_notifier);
5292 
5293 	/* Register cpu active notifiers */
5294 	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5295 	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5296 
5297 	return 0;
5298 }
5299 early_initcall(migration_init);
5300 #endif
5301 
5302 #ifdef CONFIG_SMP
5303 
5304 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5305 
5306 #ifdef CONFIG_SCHED_DEBUG
5307 
5308 static __read_mostly int sched_debug_enabled;
5309 
sched_debug_setup(char * str)5310 static int __init sched_debug_setup(char *str)
5311 {
5312 	sched_debug_enabled = 1;
5313 
5314 	return 0;
5315 }
5316 early_param("sched_debug", sched_debug_setup);
5317 
sched_debug(void)5318 static inline bool sched_debug(void)
5319 {
5320 	return sched_debug_enabled;
5321 }
5322 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5323 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5324 				  struct cpumask *groupmask)
5325 {
5326 	struct sched_group *group = sd->groups;
5327 	char str[256];
5328 
5329 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5330 	cpumask_clear(groupmask);
5331 
5332 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5333 
5334 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5335 		printk("does not load-balance\n");
5336 		if (sd->parent)
5337 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5338 					" has parent");
5339 		return -1;
5340 	}
5341 
5342 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5343 
5344 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5345 		printk(KERN_ERR "ERROR: domain->span does not contain "
5346 				"CPU%d\n", cpu);
5347 	}
5348 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5349 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5350 				" CPU%d\n", cpu);
5351 	}
5352 
5353 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5354 	do {
5355 		if (!group) {
5356 			printk("\n");
5357 			printk(KERN_ERR "ERROR: group is NULL\n");
5358 			break;
5359 		}
5360 
5361 		/*
5362 		 * Even though we initialize ->power to something semi-sane,
5363 		 * we leave power_orig unset. This allows us to detect if
5364 		 * domain iteration is still funny without causing /0 traps.
5365 		 */
5366 		if (!group->sgp->power_orig) {
5367 			printk(KERN_CONT "\n");
5368 			printk(KERN_ERR "ERROR: domain->cpu_power not "
5369 					"set\n");
5370 			break;
5371 		}
5372 
5373 		if (!cpumask_weight(sched_group_cpus(group))) {
5374 			printk(KERN_CONT "\n");
5375 			printk(KERN_ERR "ERROR: empty group\n");
5376 			break;
5377 		}
5378 
5379 		if (!(sd->flags & SD_OVERLAP) &&
5380 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5381 			printk(KERN_CONT "\n");
5382 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5383 			break;
5384 		}
5385 
5386 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5387 
5388 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5389 
5390 		printk(KERN_CONT " %s", str);
5391 		if (group->sgp->power != SCHED_POWER_SCALE) {
5392 			printk(KERN_CONT " (cpu_power = %d)",
5393 				group->sgp->power);
5394 		}
5395 
5396 		group = group->next;
5397 	} while (group != sd->groups);
5398 	printk(KERN_CONT "\n");
5399 
5400 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5401 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5402 
5403 	if (sd->parent &&
5404 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5405 		printk(KERN_ERR "ERROR: parent span is not a superset "
5406 			"of domain->span\n");
5407 	return 0;
5408 }
5409 
sched_domain_debug(struct sched_domain * sd,int cpu)5410 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5411 {
5412 	int level = 0;
5413 
5414 	if (!sched_debug_enabled)
5415 		return;
5416 
5417 	if (!sd) {
5418 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5419 		return;
5420 	}
5421 
5422 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5423 
5424 	for (;;) {
5425 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5426 			break;
5427 		level++;
5428 		sd = sd->parent;
5429 		if (!sd)
5430 			break;
5431 	}
5432 }
5433 #else /* !CONFIG_SCHED_DEBUG */
5434 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)5435 static inline bool sched_debug(void)
5436 {
5437 	return false;
5438 }
5439 #endif /* CONFIG_SCHED_DEBUG */
5440 
sd_degenerate(struct sched_domain * sd)5441 static int sd_degenerate(struct sched_domain *sd)
5442 {
5443 	if (cpumask_weight(sched_domain_span(sd)) == 1)
5444 		return 1;
5445 
5446 	/* Following flags need at least 2 groups */
5447 	if (sd->flags & (SD_LOAD_BALANCE |
5448 			 SD_BALANCE_NEWIDLE |
5449 			 SD_BALANCE_FORK |
5450 			 SD_BALANCE_EXEC |
5451 			 SD_SHARE_CPUPOWER |
5452 			 SD_SHARE_PKG_RESOURCES)) {
5453 		if (sd->groups != sd->groups->next)
5454 			return 0;
5455 	}
5456 
5457 	/* Following flags don't use groups */
5458 	if (sd->flags & (SD_WAKE_AFFINE))
5459 		return 0;
5460 
5461 	return 1;
5462 }
5463 
5464 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)5465 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5466 {
5467 	unsigned long cflags = sd->flags, pflags = parent->flags;
5468 
5469 	if (sd_degenerate(parent))
5470 		return 1;
5471 
5472 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5473 		return 0;
5474 
5475 	/* Flags needing groups don't count if only 1 group in parent */
5476 	if (parent->groups == parent->groups->next) {
5477 		pflags &= ~(SD_LOAD_BALANCE |
5478 				SD_BALANCE_NEWIDLE |
5479 				SD_BALANCE_FORK |
5480 				SD_BALANCE_EXEC |
5481 				SD_SHARE_CPUPOWER |
5482 				SD_SHARE_PKG_RESOURCES);
5483 		if (nr_node_ids == 1)
5484 			pflags &= ~SD_SERIALIZE;
5485 	}
5486 	if (~cflags & pflags)
5487 		return 0;
5488 
5489 	return 1;
5490 }
5491 
free_rootdomain(struct rcu_head * rcu)5492 static void free_rootdomain(struct rcu_head *rcu)
5493 {
5494 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5495 
5496 	cpupri_cleanup(&rd->cpupri);
5497 	free_cpumask_var(rd->rto_mask);
5498 	free_cpumask_var(rd->online);
5499 	free_cpumask_var(rd->span);
5500 	kfree(rd);
5501 }
5502 
rq_attach_root(struct rq * rq,struct root_domain * rd)5503 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5504 {
5505 	struct root_domain *old_rd = NULL;
5506 	unsigned long flags;
5507 
5508 	raw_spin_lock_irqsave(&rq->lock, flags);
5509 
5510 	if (rq->rd) {
5511 		old_rd = rq->rd;
5512 
5513 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5514 			set_rq_offline(rq);
5515 
5516 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5517 
5518 		/*
5519 		 * If we dont want to free the old_rt yet then
5520 		 * set old_rd to NULL to skip the freeing later
5521 		 * in this function:
5522 		 */
5523 		if (!atomic_dec_and_test(&old_rd->refcount))
5524 			old_rd = NULL;
5525 	}
5526 
5527 	atomic_inc(&rd->refcount);
5528 	rq->rd = rd;
5529 
5530 	cpumask_set_cpu(rq->cpu, rd->span);
5531 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5532 		set_rq_online(rq);
5533 
5534 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5535 
5536 	if (old_rd)
5537 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5538 }
5539 
init_rootdomain(struct root_domain * rd)5540 static int init_rootdomain(struct root_domain *rd)
5541 {
5542 	memset(rd, 0, sizeof(*rd));
5543 
5544 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5545 		goto out;
5546 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5547 		goto free_span;
5548 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5549 		goto free_online;
5550 
5551 	if (cpupri_init(&rd->cpupri) != 0)
5552 		goto free_rto_mask;
5553 	return 0;
5554 
5555 free_rto_mask:
5556 	free_cpumask_var(rd->rto_mask);
5557 free_online:
5558 	free_cpumask_var(rd->online);
5559 free_span:
5560 	free_cpumask_var(rd->span);
5561 out:
5562 	return -ENOMEM;
5563 }
5564 
5565 /*
5566  * By default the system creates a single root-domain with all cpus as
5567  * members (mimicking the global state we have today).
5568  */
5569 struct root_domain def_root_domain;
5570 
init_defrootdomain(void)5571 static void init_defrootdomain(void)
5572 {
5573 	init_rootdomain(&def_root_domain);
5574 
5575 	atomic_set(&def_root_domain.refcount, 1);
5576 }
5577 
alloc_rootdomain(void)5578 static struct root_domain *alloc_rootdomain(void)
5579 {
5580 	struct root_domain *rd;
5581 
5582 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5583 	if (!rd)
5584 		return NULL;
5585 
5586 	if (init_rootdomain(rd) != 0) {
5587 		kfree(rd);
5588 		return NULL;
5589 	}
5590 
5591 	return rd;
5592 }
5593 
free_sched_groups(struct sched_group * sg,int free_sgp)5594 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5595 {
5596 	struct sched_group *tmp, *first;
5597 
5598 	if (!sg)
5599 		return;
5600 
5601 	first = sg;
5602 	do {
5603 		tmp = sg->next;
5604 
5605 		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5606 			kfree(sg->sgp);
5607 
5608 		kfree(sg);
5609 		sg = tmp;
5610 	} while (sg != first);
5611 }
5612 
free_sched_domain(struct rcu_head * rcu)5613 static void free_sched_domain(struct rcu_head *rcu)
5614 {
5615 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5616 
5617 	/*
5618 	 * If its an overlapping domain it has private groups, iterate and
5619 	 * nuke them all.
5620 	 */
5621 	if (sd->flags & SD_OVERLAP) {
5622 		free_sched_groups(sd->groups, 1);
5623 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5624 		kfree(sd->groups->sgp);
5625 		kfree(sd->groups);
5626 	}
5627 	kfree(sd);
5628 }
5629 
destroy_sched_domain(struct sched_domain * sd,int cpu)5630 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5631 {
5632 	call_rcu(&sd->rcu, free_sched_domain);
5633 }
5634 
destroy_sched_domains(struct sched_domain * sd,int cpu)5635 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5636 {
5637 	for (; sd; sd = sd->parent)
5638 		destroy_sched_domain(sd, cpu);
5639 }
5640 
5641 /*
5642  * Keep a special pointer to the highest sched_domain that has
5643  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5644  * allows us to avoid some pointer chasing select_idle_sibling().
5645  *
5646  * Also keep a unique ID per domain (we use the first cpu number in
5647  * the cpumask of the domain), this allows us to quickly tell if
5648  * two cpus are in the same cache domain, see cpus_share_cache().
5649  */
5650 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5651 DEFINE_PER_CPU(int, sd_llc_id);
5652 
update_top_cache_domain(int cpu)5653 static void update_top_cache_domain(int cpu)
5654 {
5655 	struct sched_domain *sd;
5656 	int id = cpu;
5657 
5658 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5659 	if (sd)
5660 		id = cpumask_first(sched_domain_span(sd));
5661 
5662 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5663 	per_cpu(sd_llc_id, cpu) = id;
5664 }
5665 
5666 /*
5667  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5668  * hold the hotplug lock.
5669  */
5670 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)5671 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5672 {
5673 	struct rq *rq = cpu_rq(cpu);
5674 	struct sched_domain *tmp;
5675 
5676 	/* Remove the sched domains which do not contribute to scheduling. */
5677 	for (tmp = sd; tmp; ) {
5678 		struct sched_domain *parent = tmp->parent;
5679 		if (!parent)
5680 			break;
5681 
5682 		if (sd_parent_degenerate(tmp, parent)) {
5683 			tmp->parent = parent->parent;
5684 			if (parent->parent)
5685 				parent->parent->child = tmp;
5686 			destroy_sched_domain(parent, cpu);
5687 		} else
5688 			tmp = tmp->parent;
5689 	}
5690 
5691 	if (sd && sd_degenerate(sd)) {
5692 		tmp = sd;
5693 		sd = sd->parent;
5694 		destroy_sched_domain(tmp, cpu);
5695 		if (sd)
5696 			sd->child = NULL;
5697 	}
5698 
5699 	sched_domain_debug(sd, cpu);
5700 
5701 	rq_attach_root(rq, rd);
5702 	tmp = rq->sd;
5703 	rcu_assign_pointer(rq->sd, sd);
5704 	destroy_sched_domains(tmp, cpu);
5705 
5706 	update_top_cache_domain(cpu);
5707 }
5708 
5709 /* cpus with isolated domains */
5710 static cpumask_var_t cpu_isolated_map;
5711 
5712 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)5713 static int __init isolated_cpu_setup(char *str)
5714 {
5715 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5716 	cpulist_parse(str, cpu_isolated_map);
5717 	return 1;
5718 }
5719 
5720 __setup("isolcpus=", isolated_cpu_setup);
5721 
cpu_cpu_mask(int cpu)5722 static const struct cpumask *cpu_cpu_mask(int cpu)
5723 {
5724 	return cpumask_of_node(cpu_to_node(cpu));
5725 }
5726 
5727 struct sd_data {
5728 	struct sched_domain **__percpu sd;
5729 	struct sched_group **__percpu sg;
5730 	struct sched_group_power **__percpu sgp;
5731 };
5732 
5733 struct s_data {
5734 	struct sched_domain ** __percpu sd;
5735 	struct root_domain	*rd;
5736 };
5737 
5738 enum s_alloc {
5739 	sa_rootdomain,
5740 	sa_sd,
5741 	sa_sd_storage,
5742 	sa_none,
5743 };
5744 
5745 struct sched_domain_topology_level;
5746 
5747 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5748 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5749 
5750 #define SDTL_OVERLAP	0x01
5751 
5752 struct sched_domain_topology_level {
5753 	sched_domain_init_f init;
5754 	sched_domain_mask_f mask;
5755 	int		    flags;
5756 	int		    numa_level;
5757 	struct sd_data      data;
5758 };
5759 
5760 /*
5761  * Build an iteration mask that can exclude certain CPUs from the upwards
5762  * domain traversal.
5763  *
5764  * Asymmetric node setups can result in situations where the domain tree is of
5765  * unequal depth, make sure to skip domains that already cover the entire
5766  * range.
5767  *
5768  * In that case build_sched_domains() will have terminated the iteration early
5769  * and our sibling sd spans will be empty. Domains should always include the
5770  * cpu they're built on, so check that.
5771  *
5772  */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)5773 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5774 {
5775 	const struct cpumask *span = sched_domain_span(sd);
5776 	struct sd_data *sdd = sd->private;
5777 	struct sched_domain *sibling;
5778 	int i;
5779 
5780 	for_each_cpu(i, span) {
5781 		sibling = *per_cpu_ptr(sdd->sd, i);
5782 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5783 			continue;
5784 
5785 		cpumask_set_cpu(i, sched_group_mask(sg));
5786 	}
5787 }
5788 
5789 /*
5790  * Return the canonical balance cpu for this group, this is the first cpu
5791  * of this group that's also in the iteration mask.
5792  */
group_balance_cpu(struct sched_group * sg)5793 int group_balance_cpu(struct sched_group *sg)
5794 {
5795 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5796 }
5797 
5798 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)5799 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5800 {
5801 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5802 	const struct cpumask *span = sched_domain_span(sd);
5803 	struct cpumask *covered = sched_domains_tmpmask;
5804 	struct sd_data *sdd = sd->private;
5805 	struct sched_domain *child;
5806 	int i;
5807 
5808 	cpumask_clear(covered);
5809 
5810 	for_each_cpu(i, span) {
5811 		struct cpumask *sg_span;
5812 
5813 		if (cpumask_test_cpu(i, covered))
5814 			continue;
5815 
5816 		child = *per_cpu_ptr(sdd->sd, i);
5817 
5818 		/* See the comment near build_group_mask(). */
5819 		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5820 			continue;
5821 
5822 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5823 				GFP_KERNEL, cpu_to_node(cpu));
5824 
5825 		if (!sg)
5826 			goto fail;
5827 
5828 		sg_span = sched_group_cpus(sg);
5829 		if (child->child) {
5830 			child = child->child;
5831 			cpumask_copy(sg_span, sched_domain_span(child));
5832 		} else
5833 			cpumask_set_cpu(i, sg_span);
5834 
5835 		cpumask_or(covered, covered, sg_span);
5836 
5837 		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5838 		if (atomic_inc_return(&sg->sgp->ref) == 1)
5839 			build_group_mask(sd, sg);
5840 
5841 		/*
5842 		 * Initialize sgp->power such that even if we mess up the
5843 		 * domains and no possible iteration will get us here, we won't
5844 		 * die on a /0 trap.
5845 		 */
5846 		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5847 
5848 		/*
5849 		 * Make sure the first group of this domain contains the
5850 		 * canonical balance cpu. Otherwise the sched_domain iteration
5851 		 * breaks. See update_sg_lb_stats().
5852 		 */
5853 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5854 		    group_balance_cpu(sg) == cpu)
5855 			groups = sg;
5856 
5857 		if (!first)
5858 			first = sg;
5859 		if (last)
5860 			last->next = sg;
5861 		last = sg;
5862 		last->next = first;
5863 	}
5864 	sd->groups = groups;
5865 
5866 	return 0;
5867 
5868 fail:
5869 	free_sched_groups(first, 0);
5870 
5871 	return -ENOMEM;
5872 }
5873 
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)5874 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5875 {
5876 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5877 	struct sched_domain *child = sd->child;
5878 
5879 	if (child)
5880 		cpu = cpumask_first(sched_domain_span(child));
5881 
5882 	if (sg) {
5883 		*sg = *per_cpu_ptr(sdd->sg, cpu);
5884 		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5885 		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5886 	}
5887 
5888 	return cpu;
5889 }
5890 
5891 /*
5892  * build_sched_groups will build a circular linked list of the groups
5893  * covered by the given span, and will set each group's ->cpumask correctly,
5894  * and ->cpu_power to 0.
5895  *
5896  * Assumes the sched_domain tree is fully constructed
5897  */
5898 static int
build_sched_groups(struct sched_domain * sd,int cpu)5899 build_sched_groups(struct sched_domain *sd, int cpu)
5900 {
5901 	struct sched_group *first = NULL, *last = NULL;
5902 	struct sd_data *sdd = sd->private;
5903 	const struct cpumask *span = sched_domain_span(sd);
5904 	struct cpumask *covered;
5905 	int i;
5906 
5907 	get_group(cpu, sdd, &sd->groups);
5908 	atomic_inc(&sd->groups->ref);
5909 
5910 	if (cpu != cpumask_first(sched_domain_span(sd)))
5911 		return 0;
5912 
5913 	lockdep_assert_held(&sched_domains_mutex);
5914 	covered = sched_domains_tmpmask;
5915 
5916 	cpumask_clear(covered);
5917 
5918 	for_each_cpu(i, span) {
5919 		struct sched_group *sg;
5920 		int group = get_group(i, sdd, &sg);
5921 		int j;
5922 
5923 		if (cpumask_test_cpu(i, covered))
5924 			continue;
5925 
5926 		cpumask_clear(sched_group_cpus(sg));
5927 		sg->sgp->power = 0;
5928 		cpumask_setall(sched_group_mask(sg));
5929 
5930 		for_each_cpu(j, span) {
5931 			if (get_group(j, sdd, NULL) != group)
5932 				continue;
5933 
5934 			cpumask_set_cpu(j, covered);
5935 			cpumask_set_cpu(j, sched_group_cpus(sg));
5936 		}
5937 
5938 		if (!first)
5939 			first = sg;
5940 		if (last)
5941 			last->next = sg;
5942 		last = sg;
5943 	}
5944 	last->next = first;
5945 
5946 	return 0;
5947 }
5948 
5949 /*
5950  * Initialize sched groups cpu_power.
5951  *
5952  * cpu_power indicates the capacity of sched group, which is used while
5953  * distributing the load between different sched groups in a sched domain.
5954  * Typically cpu_power for all the groups in a sched domain will be same unless
5955  * there are asymmetries in the topology. If there are asymmetries, group
5956  * having more cpu_power will pickup more load compared to the group having
5957  * less cpu_power.
5958  */
init_sched_groups_power(int cpu,struct sched_domain * sd)5959 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5960 {
5961 	struct sched_group *sg = sd->groups;
5962 
5963 	WARN_ON(!sd || !sg);
5964 
5965 	do {
5966 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5967 		sg = sg->next;
5968 	} while (sg != sd->groups);
5969 
5970 	if (cpu != group_balance_cpu(sg))
5971 		return;
5972 
5973 	update_group_power(sd, cpu);
5974 	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5975 }
5976 
arch_sd_sibling_asym_packing(void)5977 int __weak arch_sd_sibling_asym_packing(void)
5978 {
5979        return 0*SD_ASYM_PACKING;
5980 }
5981 
5982 /*
5983  * Initializers for schedule domains
5984  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5985  */
5986 
5987 #ifdef CONFIG_SCHED_DEBUG
5988 # define SD_INIT_NAME(sd, type)		sd->name = #type
5989 #else
5990 # define SD_INIT_NAME(sd, type)		do { } while (0)
5991 #endif
5992 
5993 #define SD_INIT_FUNC(type)						\
5994 static noinline struct sched_domain *					\
5995 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5996 {									\
5997 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5998 	*sd = SD_##type##_INIT;						\
5999 	SD_INIT_NAME(sd, type);						\
6000 	sd->private = &tl->data;					\
6001 	return sd;							\
6002 }
6003 
6004 SD_INIT_FUNC(CPU)
6005 #ifdef CONFIG_SCHED_SMT
6006  SD_INIT_FUNC(SIBLING)
6007 #endif
6008 #ifdef CONFIG_SCHED_MC
6009  SD_INIT_FUNC(MC)
6010 #endif
6011 #ifdef CONFIG_SCHED_BOOK
6012  SD_INIT_FUNC(BOOK)
6013 #endif
6014 
6015 static int default_relax_domain_level = -1;
6016 int sched_domain_level_max;
6017 
setup_relax_domain_level(char * str)6018 static int __init setup_relax_domain_level(char *str)
6019 {
6020 	if (kstrtoint(str, 0, &default_relax_domain_level))
6021 		pr_warn("Unable to set relax_domain_level\n");
6022 
6023 	return 1;
6024 }
6025 __setup("relax_domain_level=", setup_relax_domain_level);
6026 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6027 static void set_domain_attribute(struct sched_domain *sd,
6028 				 struct sched_domain_attr *attr)
6029 {
6030 	int request;
6031 
6032 	if (!attr || attr->relax_domain_level < 0) {
6033 		if (default_relax_domain_level < 0)
6034 			return;
6035 		else
6036 			request = default_relax_domain_level;
6037 	} else
6038 		request = attr->relax_domain_level;
6039 	if (request < sd->level) {
6040 		/* turn off idle balance on this domain */
6041 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6042 	} else {
6043 		/* turn on idle balance on this domain */
6044 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6045 	}
6046 }
6047 
6048 static void __sdt_free(const struct cpumask *cpu_map);
6049 static int __sdt_alloc(const struct cpumask *cpu_map);
6050 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6051 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6052 				 const struct cpumask *cpu_map)
6053 {
6054 	switch (what) {
6055 	case sa_rootdomain:
6056 		if (!atomic_read(&d->rd->refcount))
6057 			free_rootdomain(&d->rd->rcu); /* fall through */
6058 	case sa_sd:
6059 		free_percpu(d->sd); /* fall through */
6060 	case sa_sd_storage:
6061 		__sdt_free(cpu_map); /* fall through */
6062 	case sa_none:
6063 		break;
6064 	}
6065 }
6066 
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6067 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6068 						   const struct cpumask *cpu_map)
6069 {
6070 	memset(d, 0, sizeof(*d));
6071 
6072 	if (__sdt_alloc(cpu_map))
6073 		return sa_sd_storage;
6074 	d->sd = alloc_percpu(struct sched_domain *);
6075 	if (!d->sd)
6076 		return sa_sd_storage;
6077 	d->rd = alloc_rootdomain();
6078 	if (!d->rd)
6079 		return sa_sd;
6080 	return sa_rootdomain;
6081 }
6082 
6083 /*
6084  * NULL the sd_data elements we've used to build the sched_domain and
6085  * sched_group structure so that the subsequent __free_domain_allocs()
6086  * will not free the data we're using.
6087  */
claim_allocations(int cpu,struct sched_domain * sd)6088 static void claim_allocations(int cpu, struct sched_domain *sd)
6089 {
6090 	struct sd_data *sdd = sd->private;
6091 
6092 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6093 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6094 
6095 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6096 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6097 
6098 	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6099 		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6100 }
6101 
6102 #ifdef CONFIG_SCHED_SMT
cpu_smt_mask(int cpu)6103 static const struct cpumask *cpu_smt_mask(int cpu)
6104 {
6105 	return topology_thread_cpumask(cpu);
6106 }
6107 #endif
6108 
6109 /*
6110  * Topology list, bottom-up.
6111  */
6112 static struct sched_domain_topology_level default_topology[] = {
6113 #ifdef CONFIG_SCHED_SMT
6114 	{ sd_init_SIBLING, cpu_smt_mask, },
6115 #endif
6116 #ifdef CONFIG_SCHED_MC
6117 	{ sd_init_MC, cpu_coregroup_mask, },
6118 #endif
6119 #ifdef CONFIG_SCHED_BOOK
6120 	{ sd_init_BOOK, cpu_book_mask, },
6121 #endif
6122 	{ sd_init_CPU, cpu_cpu_mask, },
6123 	{ NULL, },
6124 };
6125 
6126 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6127 
6128 #ifdef CONFIG_NUMA
6129 
6130 static int sched_domains_numa_levels;
6131 static int *sched_domains_numa_distance;
6132 static struct cpumask ***sched_domains_numa_masks;
6133 static int sched_domains_curr_level;
6134 
sd_local_flags(int level)6135 static inline int sd_local_flags(int level)
6136 {
6137 	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6138 		return 0;
6139 
6140 	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6141 }
6142 
6143 static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level * tl,int cpu)6144 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6145 {
6146 	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6147 	int level = tl->numa_level;
6148 	int sd_weight = cpumask_weight(
6149 			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6150 
6151 	*sd = (struct sched_domain){
6152 		.min_interval		= sd_weight,
6153 		.max_interval		= 2*sd_weight,
6154 		.busy_factor		= 32,
6155 		.imbalance_pct		= 125,
6156 		.cache_nice_tries	= 2,
6157 		.busy_idx		= 3,
6158 		.idle_idx		= 2,
6159 		.newidle_idx		= 0,
6160 		.wake_idx		= 0,
6161 		.forkexec_idx		= 0,
6162 
6163 		.flags			= 1*SD_LOAD_BALANCE
6164 					| 1*SD_BALANCE_NEWIDLE
6165 					| 0*SD_BALANCE_EXEC
6166 					| 0*SD_BALANCE_FORK
6167 					| 0*SD_BALANCE_WAKE
6168 					| 0*SD_WAKE_AFFINE
6169 					| 0*SD_SHARE_CPUPOWER
6170 					| 0*SD_SHARE_PKG_RESOURCES
6171 					| 1*SD_SERIALIZE
6172 					| 0*SD_PREFER_SIBLING
6173 					| sd_local_flags(level)
6174 					,
6175 		.last_balance		= jiffies,
6176 		.balance_interval	= sd_weight,
6177 	};
6178 	SD_INIT_NAME(sd, NUMA);
6179 	sd->private = &tl->data;
6180 
6181 	/*
6182 	 * Ugly hack to pass state to sd_numa_mask()...
6183 	 */
6184 	sched_domains_curr_level = tl->numa_level;
6185 
6186 	return sd;
6187 }
6188 
sd_numa_mask(int cpu)6189 static const struct cpumask *sd_numa_mask(int cpu)
6190 {
6191 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6192 }
6193 
sched_numa_warn(const char * str)6194 static void sched_numa_warn(const char *str)
6195 {
6196 	static int done = false;
6197 	int i,j;
6198 
6199 	if (done)
6200 		return;
6201 
6202 	done = true;
6203 
6204 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6205 
6206 	for (i = 0; i < nr_node_ids; i++) {
6207 		printk(KERN_WARNING "  ");
6208 		for (j = 0; j < nr_node_ids; j++)
6209 			printk(KERN_CONT "%02d ", node_distance(i,j));
6210 		printk(KERN_CONT "\n");
6211 	}
6212 	printk(KERN_WARNING "\n");
6213 }
6214 
find_numa_distance(int distance)6215 static bool find_numa_distance(int distance)
6216 {
6217 	int i;
6218 
6219 	if (distance == node_distance(0, 0))
6220 		return true;
6221 
6222 	for (i = 0; i < sched_domains_numa_levels; i++) {
6223 		if (sched_domains_numa_distance[i] == distance)
6224 			return true;
6225 	}
6226 
6227 	return false;
6228 }
6229 
sched_init_numa(void)6230 static void sched_init_numa(void)
6231 {
6232 	int next_distance, curr_distance = node_distance(0, 0);
6233 	struct sched_domain_topology_level *tl;
6234 	int level = 0;
6235 	int i, j, k;
6236 
6237 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6238 	if (!sched_domains_numa_distance)
6239 		return;
6240 
6241 	/*
6242 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6243 	 * unique distances in the node_distance() table.
6244 	 *
6245 	 * Assumes node_distance(0,j) includes all distances in
6246 	 * node_distance(i,j) in order to avoid cubic time.
6247 	 */
6248 	next_distance = curr_distance;
6249 	for (i = 0; i < nr_node_ids; i++) {
6250 		for (j = 0; j < nr_node_ids; j++) {
6251 			for (k = 0; k < nr_node_ids; k++) {
6252 				int distance = node_distance(i, k);
6253 
6254 				if (distance > curr_distance &&
6255 				    (distance < next_distance ||
6256 				     next_distance == curr_distance))
6257 					next_distance = distance;
6258 
6259 				/*
6260 				 * While not a strong assumption it would be nice to know
6261 				 * about cases where if node A is connected to B, B is not
6262 				 * equally connected to A.
6263 				 */
6264 				if (sched_debug() && node_distance(k, i) != distance)
6265 					sched_numa_warn("Node-distance not symmetric");
6266 
6267 				if (sched_debug() && i && !find_numa_distance(distance))
6268 					sched_numa_warn("Node-0 not representative");
6269 			}
6270 			if (next_distance != curr_distance) {
6271 				sched_domains_numa_distance[level++] = next_distance;
6272 				sched_domains_numa_levels = level;
6273 				curr_distance = next_distance;
6274 			} else break;
6275 		}
6276 
6277 		/*
6278 		 * In case of sched_debug() we verify the above assumption.
6279 		 */
6280 		if (!sched_debug())
6281 			break;
6282 	}
6283 	/*
6284 	 * 'level' contains the number of unique distances, excluding the
6285 	 * identity distance node_distance(i,i).
6286 	 *
6287 	 * The sched_domains_numa_distance[] array includes the actual distance
6288 	 * numbers.
6289 	 */
6290 
6291 	/*
6292 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6293 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6294 	 * the array will contain less then 'level' members. This could be
6295 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6296 	 * in other functions.
6297 	 *
6298 	 * We reset it to 'level' at the end of this function.
6299 	 */
6300 	sched_domains_numa_levels = 0;
6301 
6302 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6303 	if (!sched_domains_numa_masks)
6304 		return;
6305 
6306 	/*
6307 	 * Now for each level, construct a mask per node which contains all
6308 	 * cpus of nodes that are that many hops away from us.
6309 	 */
6310 	for (i = 0; i < level; i++) {
6311 		sched_domains_numa_masks[i] =
6312 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6313 		if (!sched_domains_numa_masks[i])
6314 			return;
6315 
6316 		for (j = 0; j < nr_node_ids; j++) {
6317 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6318 			if (!mask)
6319 				return;
6320 
6321 			sched_domains_numa_masks[i][j] = mask;
6322 
6323 			for (k = 0; k < nr_node_ids; k++) {
6324 				if (node_distance(j, k) > sched_domains_numa_distance[i])
6325 					continue;
6326 
6327 				cpumask_or(mask, mask, cpumask_of_node(k));
6328 			}
6329 		}
6330 	}
6331 
6332 	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6333 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6334 	if (!tl)
6335 		return;
6336 
6337 	/*
6338 	 * Copy the default topology bits..
6339 	 */
6340 	for (i = 0; default_topology[i].init; i++)
6341 		tl[i] = default_topology[i];
6342 
6343 	/*
6344 	 * .. and append 'j' levels of NUMA goodness.
6345 	 */
6346 	for (j = 0; j < level; i++, j++) {
6347 		tl[i] = (struct sched_domain_topology_level){
6348 			.init = sd_numa_init,
6349 			.mask = sd_numa_mask,
6350 			.flags = SDTL_OVERLAP,
6351 			.numa_level = j,
6352 		};
6353 	}
6354 
6355 	sched_domain_topology = tl;
6356 
6357 	sched_domains_numa_levels = level;
6358 }
6359 
sched_domains_numa_masks_set(int cpu)6360 static void sched_domains_numa_masks_set(int cpu)
6361 {
6362 	int i, j;
6363 	int node = cpu_to_node(cpu);
6364 
6365 	for (i = 0; i < sched_domains_numa_levels; i++) {
6366 		for (j = 0; j < nr_node_ids; j++) {
6367 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6368 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6369 		}
6370 	}
6371 }
6372 
sched_domains_numa_masks_clear(int cpu)6373 static void sched_domains_numa_masks_clear(int cpu)
6374 {
6375 	int i, j;
6376 	for (i = 0; i < sched_domains_numa_levels; i++) {
6377 		for (j = 0; j < nr_node_ids; j++)
6378 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6379 	}
6380 }
6381 
6382 /*
6383  * Update sched_domains_numa_masks[level][node] array when new cpus
6384  * are onlined.
6385  */
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)6386 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6387 					   unsigned long action,
6388 					   void *hcpu)
6389 {
6390 	int cpu = (long)hcpu;
6391 
6392 	switch (action & ~CPU_TASKS_FROZEN) {
6393 	case CPU_ONLINE:
6394 		sched_domains_numa_masks_set(cpu);
6395 		break;
6396 
6397 	case CPU_DEAD:
6398 		sched_domains_numa_masks_clear(cpu);
6399 		break;
6400 
6401 	default:
6402 		return NOTIFY_DONE;
6403 	}
6404 
6405 	return NOTIFY_OK;
6406 }
6407 #else
sched_init_numa(void)6408 static inline void sched_init_numa(void)
6409 {
6410 }
6411 
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)6412 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6413 					   unsigned long action,
6414 					   void *hcpu)
6415 {
6416 	return 0;
6417 }
6418 #endif /* CONFIG_NUMA */
6419 
__sdt_alloc(const struct cpumask * cpu_map)6420 static int __sdt_alloc(const struct cpumask *cpu_map)
6421 {
6422 	struct sched_domain_topology_level *tl;
6423 	int j;
6424 
6425 	for (tl = sched_domain_topology; tl->init; tl++) {
6426 		struct sd_data *sdd = &tl->data;
6427 
6428 		sdd->sd = alloc_percpu(struct sched_domain *);
6429 		if (!sdd->sd)
6430 			return -ENOMEM;
6431 
6432 		sdd->sg = alloc_percpu(struct sched_group *);
6433 		if (!sdd->sg)
6434 			return -ENOMEM;
6435 
6436 		sdd->sgp = alloc_percpu(struct sched_group_power *);
6437 		if (!sdd->sgp)
6438 			return -ENOMEM;
6439 
6440 		for_each_cpu(j, cpu_map) {
6441 			struct sched_domain *sd;
6442 			struct sched_group *sg;
6443 			struct sched_group_power *sgp;
6444 
6445 		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6446 					GFP_KERNEL, cpu_to_node(j));
6447 			if (!sd)
6448 				return -ENOMEM;
6449 
6450 			*per_cpu_ptr(sdd->sd, j) = sd;
6451 
6452 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6453 					GFP_KERNEL, cpu_to_node(j));
6454 			if (!sg)
6455 				return -ENOMEM;
6456 
6457 			sg->next = sg;
6458 
6459 			*per_cpu_ptr(sdd->sg, j) = sg;
6460 
6461 			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6462 					GFP_KERNEL, cpu_to_node(j));
6463 			if (!sgp)
6464 				return -ENOMEM;
6465 
6466 			*per_cpu_ptr(sdd->sgp, j) = sgp;
6467 		}
6468 	}
6469 
6470 	return 0;
6471 }
6472 
__sdt_free(const struct cpumask * cpu_map)6473 static void __sdt_free(const struct cpumask *cpu_map)
6474 {
6475 	struct sched_domain_topology_level *tl;
6476 	int j;
6477 
6478 	for (tl = sched_domain_topology; tl->init; tl++) {
6479 		struct sd_data *sdd = &tl->data;
6480 
6481 		for_each_cpu(j, cpu_map) {
6482 			struct sched_domain *sd;
6483 
6484 			if (sdd->sd) {
6485 				sd = *per_cpu_ptr(sdd->sd, j);
6486 				if (sd && (sd->flags & SD_OVERLAP))
6487 					free_sched_groups(sd->groups, 0);
6488 				kfree(*per_cpu_ptr(sdd->sd, j));
6489 			}
6490 
6491 			if (sdd->sg)
6492 				kfree(*per_cpu_ptr(sdd->sg, j));
6493 			if (sdd->sgp)
6494 				kfree(*per_cpu_ptr(sdd->sgp, j));
6495 		}
6496 		free_percpu(sdd->sd);
6497 		sdd->sd = NULL;
6498 		free_percpu(sdd->sg);
6499 		sdd->sg = NULL;
6500 		free_percpu(sdd->sgp);
6501 		sdd->sgp = NULL;
6502 	}
6503 }
6504 
build_sched_domain(struct sched_domain_topology_level * tl,struct s_data * d,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)6505 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6506 		struct s_data *d, const struct cpumask *cpu_map,
6507 		struct sched_domain_attr *attr, struct sched_domain *child,
6508 		int cpu)
6509 {
6510 	struct sched_domain *sd = tl->init(tl, cpu);
6511 	if (!sd)
6512 		return child;
6513 
6514 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6515 	if (child) {
6516 		sd->level = child->level + 1;
6517 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6518 		child->parent = sd;
6519 	}
6520 	sd->child = child;
6521 	set_domain_attribute(sd, attr);
6522 
6523 	return sd;
6524 }
6525 
6526 /*
6527  * Build sched domains for a given set of cpus and attach the sched domains
6528  * to the individual cpus
6529  */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)6530 static int build_sched_domains(const struct cpumask *cpu_map,
6531 			       struct sched_domain_attr *attr)
6532 {
6533 	enum s_alloc alloc_state = sa_none;
6534 	struct sched_domain *sd;
6535 	struct s_data d;
6536 	int i, ret = -ENOMEM;
6537 
6538 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6539 	if (alloc_state != sa_rootdomain)
6540 		goto error;
6541 
6542 	/* Set up domains for cpus specified by the cpu_map. */
6543 	for_each_cpu(i, cpu_map) {
6544 		struct sched_domain_topology_level *tl;
6545 
6546 		sd = NULL;
6547 		for (tl = sched_domain_topology; tl->init; tl++) {
6548 			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6549 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6550 				sd->flags |= SD_OVERLAP;
6551 			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6552 				break;
6553 		}
6554 
6555 		while (sd->child)
6556 			sd = sd->child;
6557 
6558 		*per_cpu_ptr(d.sd, i) = sd;
6559 	}
6560 
6561 	/* Build the groups for the domains */
6562 	for_each_cpu(i, cpu_map) {
6563 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6564 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6565 			if (sd->flags & SD_OVERLAP) {
6566 				if (build_overlap_sched_groups(sd, i))
6567 					goto error;
6568 			} else {
6569 				if (build_sched_groups(sd, i))
6570 					goto error;
6571 			}
6572 		}
6573 	}
6574 
6575 	/* Calculate CPU power for physical packages and nodes */
6576 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6577 		if (!cpumask_test_cpu(i, cpu_map))
6578 			continue;
6579 
6580 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6581 			claim_allocations(i, sd);
6582 			init_sched_groups_power(i, sd);
6583 		}
6584 	}
6585 
6586 	/* Attach the domains */
6587 	rcu_read_lock();
6588 	for_each_cpu(i, cpu_map) {
6589 		sd = *per_cpu_ptr(d.sd, i);
6590 		cpu_attach_domain(sd, d.rd, i);
6591 	}
6592 	rcu_read_unlock();
6593 
6594 	ret = 0;
6595 error:
6596 	__free_domain_allocs(&d, alloc_state, cpu_map);
6597 	return ret;
6598 }
6599 
6600 static cpumask_var_t *doms_cur;	/* current sched domains */
6601 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6602 static struct sched_domain_attr *dattr_cur;
6603 				/* attribues of custom domains in 'doms_cur' */
6604 
6605 /*
6606  * Special case: If a kmalloc of a doms_cur partition (array of
6607  * cpumask) fails, then fallback to a single sched domain,
6608  * as determined by the single cpumask fallback_doms.
6609  */
6610 static cpumask_var_t fallback_doms;
6611 
6612 /*
6613  * arch_update_cpu_topology lets virtualized architectures update the
6614  * cpu core maps. It is supposed to return 1 if the topology changed
6615  * or 0 if it stayed the same.
6616  */
arch_update_cpu_topology(void)6617 int __attribute__((weak)) arch_update_cpu_topology(void)
6618 {
6619 	return 0;
6620 }
6621 
alloc_sched_domains(unsigned int ndoms)6622 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6623 {
6624 	int i;
6625 	cpumask_var_t *doms;
6626 
6627 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6628 	if (!doms)
6629 		return NULL;
6630 	for (i = 0; i < ndoms; i++) {
6631 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6632 			free_sched_domains(doms, i);
6633 			return NULL;
6634 		}
6635 	}
6636 	return doms;
6637 }
6638 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)6639 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6640 {
6641 	unsigned int i;
6642 	for (i = 0; i < ndoms; i++)
6643 		free_cpumask_var(doms[i]);
6644 	kfree(doms);
6645 }
6646 
6647 /*
6648  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6649  * For now this just excludes isolated cpus, but could be used to
6650  * exclude other special cases in the future.
6651  */
init_sched_domains(const struct cpumask * cpu_map)6652 static int init_sched_domains(const struct cpumask *cpu_map)
6653 {
6654 	int err;
6655 
6656 	arch_update_cpu_topology();
6657 	ndoms_cur = 1;
6658 	doms_cur = alloc_sched_domains(ndoms_cur);
6659 	if (!doms_cur)
6660 		doms_cur = &fallback_doms;
6661 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6662 	err = build_sched_domains(doms_cur[0], NULL);
6663 	register_sched_domain_sysctl();
6664 
6665 	return err;
6666 }
6667 
6668 /*
6669  * Detach sched domains from a group of cpus specified in cpu_map
6670  * These cpus will now be attached to the NULL domain
6671  */
detach_destroy_domains(const struct cpumask * cpu_map)6672 static void detach_destroy_domains(const struct cpumask *cpu_map)
6673 {
6674 	int i;
6675 
6676 	rcu_read_lock();
6677 	for_each_cpu(i, cpu_map)
6678 		cpu_attach_domain(NULL, &def_root_domain, i);
6679 	rcu_read_unlock();
6680 }
6681 
6682 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)6683 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6684 			struct sched_domain_attr *new, int idx_new)
6685 {
6686 	struct sched_domain_attr tmp;
6687 
6688 	/* fast path */
6689 	if (!new && !cur)
6690 		return 1;
6691 
6692 	tmp = SD_ATTR_INIT;
6693 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6694 			new ? (new + idx_new) : &tmp,
6695 			sizeof(struct sched_domain_attr));
6696 }
6697 
6698 /*
6699  * Partition sched domains as specified by the 'ndoms_new'
6700  * cpumasks in the array doms_new[] of cpumasks. This compares
6701  * doms_new[] to the current sched domain partitioning, doms_cur[].
6702  * It destroys each deleted domain and builds each new domain.
6703  *
6704  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6705  * The masks don't intersect (don't overlap.) We should setup one
6706  * sched domain for each mask. CPUs not in any of the cpumasks will
6707  * not be load balanced. If the same cpumask appears both in the
6708  * current 'doms_cur' domains and in the new 'doms_new', we can leave
6709  * it as it is.
6710  *
6711  * The passed in 'doms_new' should be allocated using
6712  * alloc_sched_domains.  This routine takes ownership of it and will
6713  * free_sched_domains it when done with it. If the caller failed the
6714  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6715  * and partition_sched_domains() will fallback to the single partition
6716  * 'fallback_doms', it also forces the domains to be rebuilt.
6717  *
6718  * If doms_new == NULL it will be replaced with cpu_online_mask.
6719  * ndoms_new == 0 is a special case for destroying existing domains,
6720  * and it will not create the default domain.
6721  *
6722  * Call with hotplug lock held
6723  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)6724 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6725 			     struct sched_domain_attr *dattr_new)
6726 {
6727 	int i, j, n;
6728 	int new_topology;
6729 
6730 	mutex_lock(&sched_domains_mutex);
6731 
6732 	/* always unregister in case we don't destroy any domains */
6733 	unregister_sched_domain_sysctl();
6734 
6735 	/* Let architecture update cpu core mappings. */
6736 	new_topology = arch_update_cpu_topology();
6737 
6738 	n = doms_new ? ndoms_new : 0;
6739 
6740 	/* Destroy deleted domains */
6741 	for (i = 0; i < ndoms_cur; i++) {
6742 		for (j = 0; j < n && !new_topology; j++) {
6743 			if (cpumask_equal(doms_cur[i], doms_new[j])
6744 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6745 				goto match1;
6746 		}
6747 		/* no match - a current sched domain not in new doms_new[] */
6748 		detach_destroy_domains(doms_cur[i]);
6749 match1:
6750 		;
6751 	}
6752 
6753 	if (doms_new == NULL) {
6754 		ndoms_cur = 0;
6755 		doms_new = &fallback_doms;
6756 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6757 		WARN_ON_ONCE(dattr_new);
6758 	}
6759 
6760 	/* Build new domains */
6761 	for (i = 0; i < ndoms_new; i++) {
6762 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6763 			if (cpumask_equal(doms_new[i], doms_cur[j])
6764 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6765 				goto match2;
6766 		}
6767 		/* no match - add a new doms_new */
6768 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6769 match2:
6770 		;
6771 	}
6772 
6773 	/* Remember the new sched domains */
6774 	if (doms_cur != &fallback_doms)
6775 		free_sched_domains(doms_cur, ndoms_cur);
6776 	kfree(dattr_cur);	/* kfree(NULL) is safe */
6777 	doms_cur = doms_new;
6778 	dattr_cur = dattr_new;
6779 	ndoms_cur = ndoms_new;
6780 
6781 	register_sched_domain_sysctl();
6782 
6783 	mutex_unlock(&sched_domains_mutex);
6784 }
6785 
6786 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6787 
6788 /*
6789  * Update cpusets according to cpu_active mask.  If cpusets are
6790  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6791  * around partition_sched_domains().
6792  *
6793  * If we come here as part of a suspend/resume, don't touch cpusets because we
6794  * want to restore it back to its original state upon resume anyway.
6795  */
cpuset_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)6796 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6797 			     void *hcpu)
6798 {
6799 	switch (action) {
6800 	case CPU_ONLINE_FROZEN:
6801 	case CPU_DOWN_FAILED_FROZEN:
6802 
6803 		/*
6804 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6805 		 * resume sequence. As long as this is not the last online
6806 		 * operation in the resume sequence, just build a single sched
6807 		 * domain, ignoring cpusets.
6808 		 */
6809 		num_cpus_frozen--;
6810 		if (likely(num_cpus_frozen)) {
6811 			partition_sched_domains(1, NULL, NULL);
6812 			break;
6813 		}
6814 
6815 		/*
6816 		 * This is the last CPU online operation. So fall through and
6817 		 * restore the original sched domains by considering the
6818 		 * cpuset configurations.
6819 		 */
6820 
6821 	case CPU_ONLINE:
6822 	case CPU_DOWN_FAILED:
6823 		cpuset_update_active_cpus(true);
6824 		break;
6825 	default:
6826 		return NOTIFY_DONE;
6827 	}
6828 	return NOTIFY_OK;
6829 }
6830 
cpuset_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)6831 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6832 			       void *hcpu)
6833 {
6834 	switch (action) {
6835 	case CPU_DOWN_PREPARE:
6836 		cpuset_update_active_cpus(false);
6837 		break;
6838 	case CPU_DOWN_PREPARE_FROZEN:
6839 		num_cpus_frozen++;
6840 		partition_sched_domains(1, NULL, NULL);
6841 		break;
6842 	default:
6843 		return NOTIFY_DONE;
6844 	}
6845 	return NOTIFY_OK;
6846 }
6847 
sched_init_smp(void)6848 void __init sched_init_smp(void)
6849 {
6850 	cpumask_var_t non_isolated_cpus;
6851 
6852 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6853 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6854 
6855 	sched_init_numa();
6856 
6857 	get_online_cpus();
6858 	mutex_lock(&sched_domains_mutex);
6859 	init_sched_domains(cpu_active_mask);
6860 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6861 	if (cpumask_empty(non_isolated_cpus))
6862 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6863 	mutex_unlock(&sched_domains_mutex);
6864 	put_online_cpus();
6865 
6866 	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6867 	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6868 	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6869 
6870 	/* RT runtime code needs to handle some hotplug events */
6871 	hotcpu_notifier(update_runtime, 0);
6872 
6873 	init_hrtick();
6874 
6875 	/* Move init over to a non-isolated CPU */
6876 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6877 		BUG();
6878 	sched_init_granularity();
6879 	free_cpumask_var(non_isolated_cpus);
6880 
6881 	init_sched_rt_class();
6882 }
6883 #else
sched_init_smp(void)6884 void __init sched_init_smp(void)
6885 {
6886 	sched_init_granularity();
6887 }
6888 #endif /* CONFIG_SMP */
6889 
6890 const_debug unsigned int sysctl_timer_migration = 1;
6891 
in_sched_functions(unsigned long addr)6892 int in_sched_functions(unsigned long addr)
6893 {
6894 	return in_lock_functions(addr) ||
6895 		(addr >= (unsigned long)__sched_text_start
6896 		&& addr < (unsigned long)__sched_text_end);
6897 }
6898 
6899 #ifdef CONFIG_CGROUP_SCHED
6900 /*
6901  * Default task group.
6902  * Every task in system belongs to this group at bootup.
6903  */
6904 struct task_group root_task_group;
6905 LIST_HEAD(task_groups);
6906 #endif
6907 
6908 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6909 
sched_init(void)6910 void __init sched_init(void)
6911 {
6912 	int i, j;
6913 	unsigned long alloc_size = 0, ptr;
6914 
6915 #ifdef CONFIG_FAIR_GROUP_SCHED
6916 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6917 #endif
6918 #ifdef CONFIG_RT_GROUP_SCHED
6919 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6920 #endif
6921 #ifdef CONFIG_CPUMASK_OFFSTACK
6922 	alloc_size += num_possible_cpus() * cpumask_size();
6923 #endif
6924 	if (alloc_size) {
6925 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6926 
6927 #ifdef CONFIG_FAIR_GROUP_SCHED
6928 		root_task_group.se = (struct sched_entity **)ptr;
6929 		ptr += nr_cpu_ids * sizeof(void **);
6930 
6931 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6932 		ptr += nr_cpu_ids * sizeof(void **);
6933 
6934 #endif /* CONFIG_FAIR_GROUP_SCHED */
6935 #ifdef CONFIG_RT_GROUP_SCHED
6936 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6937 		ptr += nr_cpu_ids * sizeof(void **);
6938 
6939 		root_task_group.rt_rq = (struct rt_rq **)ptr;
6940 		ptr += nr_cpu_ids * sizeof(void **);
6941 
6942 #endif /* CONFIG_RT_GROUP_SCHED */
6943 #ifdef CONFIG_CPUMASK_OFFSTACK
6944 		for_each_possible_cpu(i) {
6945 			per_cpu(load_balance_mask, i) = (void *)ptr;
6946 			ptr += cpumask_size();
6947 		}
6948 #endif /* CONFIG_CPUMASK_OFFSTACK */
6949 	}
6950 
6951 #ifdef CONFIG_SMP
6952 	init_defrootdomain();
6953 #endif
6954 
6955 	init_rt_bandwidth(&def_rt_bandwidth,
6956 			global_rt_period(), global_rt_runtime());
6957 
6958 #ifdef CONFIG_RT_GROUP_SCHED
6959 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6960 			global_rt_period(), global_rt_runtime());
6961 #endif /* CONFIG_RT_GROUP_SCHED */
6962 
6963 #ifdef CONFIG_CGROUP_SCHED
6964 	list_add(&root_task_group.list, &task_groups);
6965 	INIT_LIST_HEAD(&root_task_group.children);
6966 	INIT_LIST_HEAD(&root_task_group.siblings);
6967 	autogroup_init(&init_task);
6968 
6969 #endif /* CONFIG_CGROUP_SCHED */
6970 
6971 	for_each_possible_cpu(i) {
6972 		struct rq *rq;
6973 
6974 		rq = cpu_rq(i);
6975 		raw_spin_lock_init(&rq->lock);
6976 		rq->nr_running = 0;
6977 		rq->calc_load_active = 0;
6978 		rq->calc_load_update = jiffies + LOAD_FREQ;
6979 		init_cfs_rq(&rq->cfs);
6980 		init_rt_rq(&rq->rt, rq);
6981 #ifdef CONFIG_FAIR_GROUP_SCHED
6982 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6983 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6984 		/*
6985 		 * How much cpu bandwidth does root_task_group get?
6986 		 *
6987 		 * In case of task-groups formed thr' the cgroup filesystem, it
6988 		 * gets 100% of the cpu resources in the system. This overall
6989 		 * system cpu resource is divided among the tasks of
6990 		 * root_task_group and its child task-groups in a fair manner,
6991 		 * based on each entity's (task or task-group's) weight
6992 		 * (se->load.weight).
6993 		 *
6994 		 * In other words, if root_task_group has 10 tasks of weight
6995 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6996 		 * then A0's share of the cpu resource is:
6997 		 *
6998 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6999 		 *
7000 		 * We achieve this by letting root_task_group's tasks sit
7001 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7002 		 */
7003 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7004 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7005 #endif /* CONFIG_FAIR_GROUP_SCHED */
7006 
7007 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7008 #ifdef CONFIG_RT_GROUP_SCHED
7009 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7010 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7011 #endif
7012 
7013 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7014 			rq->cpu_load[j] = 0;
7015 
7016 		rq->last_load_update_tick = jiffies;
7017 
7018 #ifdef CONFIG_SMP
7019 		rq->sd = NULL;
7020 		rq->rd = NULL;
7021 		rq->cpu_power = SCHED_POWER_SCALE;
7022 		rq->post_schedule = 0;
7023 		rq->active_balance = 0;
7024 		rq->next_balance = jiffies;
7025 		rq->push_cpu = 0;
7026 		rq->cpu = i;
7027 		rq->online = 0;
7028 		rq->idle_stamp = 0;
7029 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7030 
7031 		INIT_LIST_HEAD(&rq->cfs_tasks);
7032 
7033 		rq_attach_root(rq, &def_root_domain);
7034 #ifdef CONFIG_NO_HZ_COMMON
7035 		rq->nohz_flags = 0;
7036 #endif
7037 #ifdef CONFIG_NO_HZ_FULL
7038 		rq->last_sched_tick = 0;
7039 #endif
7040 #endif
7041 		init_rq_hrtick(rq);
7042 		atomic_set(&rq->nr_iowait, 0);
7043 	}
7044 
7045 	set_load_weight(&init_task);
7046 
7047 #ifdef CONFIG_PREEMPT_NOTIFIERS
7048 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7049 #endif
7050 
7051 #ifdef CONFIG_RT_MUTEXES
7052 	plist_head_init(&init_task.pi_waiters);
7053 #endif
7054 
7055 	/*
7056 	 * The boot idle thread does lazy MMU switching as well:
7057 	 */
7058 	atomic_inc(&init_mm.mm_count);
7059 	enter_lazy_tlb(&init_mm, current);
7060 
7061 	/*
7062 	 * Make us the idle thread. Technically, schedule() should not be
7063 	 * called from this thread, however somewhere below it might be,
7064 	 * but because we are the idle thread, we just pick up running again
7065 	 * when this runqueue becomes "idle".
7066 	 */
7067 	init_idle(current, smp_processor_id());
7068 
7069 	calc_load_update = jiffies + LOAD_FREQ;
7070 
7071 	/*
7072 	 * During early bootup we pretend to be a normal task:
7073 	 */
7074 	current->sched_class = &fair_sched_class;
7075 
7076 #ifdef CONFIG_SMP
7077 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7078 	/* May be allocated at isolcpus cmdline parse time */
7079 	if (cpu_isolated_map == NULL)
7080 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7081 	idle_thread_set_boot_cpu();
7082 #endif
7083 	init_sched_fair_class();
7084 
7085 	scheduler_running = 1;
7086 }
7087 
7088 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7089 static inline int preempt_count_equals(int preempt_offset)
7090 {
7091 	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7092 
7093 	return (nested == preempt_offset);
7094 }
7095 
7096 static int __might_sleep_init_called;
__might_sleep_init(void)7097 int __init __might_sleep_init(void)
7098 {
7099 	__might_sleep_init_called = 1;
7100 	return 0;
7101 }
7102 early_initcall(__might_sleep_init);
7103 
__might_sleep(const char * file,int line,int preempt_offset)7104 void __might_sleep(const char *file, int line, int preempt_offset)
7105 {
7106 	static unsigned long prev_jiffy;	/* ratelimiting */
7107 
7108 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7109 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7110 	    oops_in_progress)
7111 		return;
7112 	if (system_state != SYSTEM_RUNNING &&
7113 	    (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
7114 		return;
7115 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7116 		return;
7117 	prev_jiffy = jiffies;
7118 
7119 	printk(KERN_ERR
7120 		"BUG: sleeping function called from invalid context at %s:%d\n",
7121 			file, line);
7122 	printk(KERN_ERR
7123 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7124 			in_atomic(), irqs_disabled(),
7125 			current->pid, current->comm);
7126 
7127 	debug_show_held_locks(current);
7128 	if (irqs_disabled())
7129 		print_irqtrace_events(current);
7130 	dump_stack();
7131 }
7132 EXPORT_SYMBOL(__might_sleep);
7133 #endif
7134 
7135 #ifdef CONFIG_MAGIC_SYSRQ
normalize_task(struct rq * rq,struct task_struct * p)7136 static void normalize_task(struct rq *rq, struct task_struct *p)
7137 {
7138 	const struct sched_class *prev_class = p->sched_class;
7139 	int old_prio = p->prio;
7140 	int on_rq;
7141 
7142 	on_rq = p->on_rq;
7143 	if (on_rq)
7144 		dequeue_task(rq, p, 0);
7145 	__setscheduler(rq, p, SCHED_NORMAL, 0);
7146 	if (on_rq) {
7147 		enqueue_task(rq, p, 0);
7148 		resched_task(rq->curr);
7149 	}
7150 
7151 	check_class_changed(rq, p, prev_class, old_prio);
7152 }
7153 
normalize_rt_tasks(void)7154 void normalize_rt_tasks(void)
7155 {
7156 	struct task_struct *g, *p;
7157 	unsigned long flags;
7158 	struct rq *rq;
7159 
7160 	read_lock_irqsave(&tasklist_lock, flags);
7161 	do_each_thread(g, p) {
7162 		/*
7163 		 * Only normalize user tasks:
7164 		 */
7165 		if (!p->mm)
7166 			continue;
7167 
7168 		p->se.exec_start		= 0;
7169 #ifdef CONFIG_SCHEDSTATS
7170 		p->se.statistics.wait_start	= 0;
7171 		p->se.statistics.sleep_start	= 0;
7172 		p->se.statistics.block_start	= 0;
7173 #endif
7174 
7175 		if (!rt_task(p)) {
7176 			/*
7177 			 * Renice negative nice level userspace
7178 			 * tasks back to 0:
7179 			 */
7180 			if (TASK_NICE(p) < 0 && p->mm)
7181 				set_user_nice(p, 0);
7182 			continue;
7183 		}
7184 
7185 		raw_spin_lock(&p->pi_lock);
7186 		rq = __task_rq_lock(p);
7187 
7188 		normalize_task(rq, p);
7189 
7190 		__task_rq_unlock(rq);
7191 		raw_spin_unlock(&p->pi_lock);
7192 	} while_each_thread(g, p);
7193 
7194 	read_unlock_irqrestore(&tasklist_lock, flags);
7195 }
7196 
7197 #endif /* CONFIG_MAGIC_SYSRQ */
7198 
7199 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7200 /*
7201  * These functions are only useful for the IA64 MCA handling, or kdb.
7202  *
7203  * They can only be called when the whole system has been
7204  * stopped - every CPU needs to be quiescent, and no scheduling
7205  * activity can take place. Using them for anything else would
7206  * be a serious bug, and as a result, they aren't even visible
7207  * under any other configuration.
7208  */
7209 
7210 /**
7211  * curr_task - return the current task for a given cpu.
7212  * @cpu: the processor in question.
7213  *
7214  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7215  */
curr_task(int cpu)7216 struct task_struct *curr_task(int cpu)
7217 {
7218 	return cpu_curr(cpu);
7219 }
7220 
7221 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7222 
7223 #ifdef CONFIG_IA64
7224 /**
7225  * set_curr_task - set the current task for a given cpu.
7226  * @cpu: the processor in question.
7227  * @p: the task pointer to set.
7228  *
7229  * Description: This function must only be used when non-maskable interrupts
7230  * are serviced on a separate stack. It allows the architecture to switch the
7231  * notion of the current task on a cpu in a non-blocking manner. This function
7232  * must be called with all CPU's synchronized, and interrupts disabled, the
7233  * and caller must save the original value of the current task (see
7234  * curr_task() above) and restore that value before reenabling interrupts and
7235  * re-starting the system.
7236  *
7237  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7238  */
set_curr_task(int cpu,struct task_struct * p)7239 void set_curr_task(int cpu, struct task_struct *p)
7240 {
7241 	cpu_curr(cpu) = p;
7242 }
7243 
7244 #endif
7245 
7246 #ifdef CONFIG_CGROUP_SCHED
7247 /* task_group_lock serializes the addition/removal of task groups */
7248 static DEFINE_SPINLOCK(task_group_lock);
7249 
free_sched_group(struct task_group * tg)7250 static void free_sched_group(struct task_group *tg)
7251 {
7252 	free_fair_sched_group(tg);
7253 	free_rt_sched_group(tg);
7254 	autogroup_free(tg);
7255 	kfree(tg);
7256 }
7257 
7258 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7259 struct task_group *sched_create_group(struct task_group *parent)
7260 {
7261 	struct task_group *tg;
7262 
7263 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7264 	if (!tg)
7265 		return ERR_PTR(-ENOMEM);
7266 
7267 	if (!alloc_fair_sched_group(tg, parent))
7268 		goto err;
7269 
7270 	if (!alloc_rt_sched_group(tg, parent))
7271 		goto err;
7272 
7273 	return tg;
7274 
7275 err:
7276 	free_sched_group(tg);
7277 	return ERR_PTR(-ENOMEM);
7278 }
7279 
sched_online_group(struct task_group * tg,struct task_group * parent)7280 void sched_online_group(struct task_group *tg, struct task_group *parent)
7281 {
7282 	unsigned long flags;
7283 
7284 	spin_lock_irqsave(&task_group_lock, flags);
7285 	list_add_rcu(&tg->list, &task_groups);
7286 
7287 	WARN_ON(!parent); /* root should already exist */
7288 
7289 	tg->parent = parent;
7290 	INIT_LIST_HEAD(&tg->children);
7291 	list_add_rcu(&tg->siblings, &parent->children);
7292 	spin_unlock_irqrestore(&task_group_lock, flags);
7293 }
7294 
7295 /* rcu callback to free various structures associated with a task group */
free_sched_group_rcu(struct rcu_head * rhp)7296 static void free_sched_group_rcu(struct rcu_head *rhp)
7297 {
7298 	/* now it should be safe to free those cfs_rqs */
7299 	free_sched_group(container_of(rhp, struct task_group, rcu));
7300 }
7301 
7302 /* Destroy runqueue etc associated with a task group */
sched_destroy_group(struct task_group * tg)7303 void sched_destroy_group(struct task_group *tg)
7304 {
7305 	/* wait for possible concurrent references to cfs_rqs complete */
7306 	call_rcu(&tg->rcu, free_sched_group_rcu);
7307 }
7308 
sched_offline_group(struct task_group * tg)7309 void sched_offline_group(struct task_group *tg)
7310 {
7311 	unsigned long flags;
7312 	int i;
7313 
7314 	/* end participation in shares distribution */
7315 	for_each_possible_cpu(i)
7316 		unregister_fair_sched_group(tg, i);
7317 
7318 	spin_lock_irqsave(&task_group_lock, flags);
7319 	list_del_rcu(&tg->list);
7320 	list_del_rcu(&tg->siblings);
7321 	spin_unlock_irqrestore(&task_group_lock, flags);
7322 }
7323 
7324 /* change task's runqueue when it moves between groups.
7325  *	The caller of this function should have put the task in its new group
7326  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7327  *	reflect its new group.
7328  */
sched_move_task(struct task_struct * tsk)7329 void sched_move_task(struct task_struct *tsk)
7330 {
7331 	struct task_group *tg;
7332 	int on_rq, running;
7333 	unsigned long flags;
7334 	struct rq *rq;
7335 
7336 	rq = task_rq_lock(tsk, &flags);
7337 
7338 	running = task_current(rq, tsk);
7339 	on_rq = tsk->on_rq;
7340 
7341 	if (on_rq)
7342 		dequeue_task(rq, tsk, 0);
7343 	if (unlikely(running))
7344 		tsk->sched_class->put_prev_task(rq, tsk);
7345 
7346 	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7347 				lockdep_is_held(&tsk->sighand->siglock)),
7348 			  struct task_group, css);
7349 	tg = autogroup_task_group(tsk, tg);
7350 	tsk->sched_task_group = tg;
7351 
7352 #ifdef CONFIG_FAIR_GROUP_SCHED
7353 	if (tsk->sched_class->task_move_group)
7354 		tsk->sched_class->task_move_group(tsk, on_rq);
7355 	else
7356 #endif
7357 		set_task_rq(tsk, task_cpu(tsk));
7358 
7359 	if (unlikely(running))
7360 		tsk->sched_class->set_curr_task(rq);
7361 	if (on_rq)
7362 		enqueue_task(rq, tsk, 0);
7363 
7364 	task_rq_unlock(rq, tsk, &flags);
7365 }
7366 #endif /* CONFIG_CGROUP_SCHED */
7367 
7368 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
to_ratio(u64 period,u64 runtime)7369 static unsigned long to_ratio(u64 period, u64 runtime)
7370 {
7371 	if (runtime == RUNTIME_INF)
7372 		return 1ULL << 20;
7373 
7374 	return div64_u64(runtime << 20, period);
7375 }
7376 #endif
7377 
7378 #ifdef CONFIG_RT_GROUP_SCHED
7379 /*
7380  * Ensure that the real time constraints are schedulable.
7381  */
7382 static DEFINE_MUTEX(rt_constraints_mutex);
7383 
7384 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)7385 static inline int tg_has_rt_tasks(struct task_group *tg)
7386 {
7387 	struct task_struct *g, *p;
7388 
7389 	do_each_thread(g, p) {
7390 		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7391 			return 1;
7392 	} while_each_thread(g, p);
7393 
7394 	return 0;
7395 }
7396 
7397 struct rt_schedulable_data {
7398 	struct task_group *tg;
7399 	u64 rt_period;
7400 	u64 rt_runtime;
7401 };
7402 
tg_rt_schedulable(struct task_group * tg,void * data)7403 static int tg_rt_schedulable(struct task_group *tg, void *data)
7404 {
7405 	struct rt_schedulable_data *d = data;
7406 	struct task_group *child;
7407 	unsigned long total, sum = 0;
7408 	u64 period, runtime;
7409 
7410 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7411 	runtime = tg->rt_bandwidth.rt_runtime;
7412 
7413 	if (tg == d->tg) {
7414 		period = d->rt_period;
7415 		runtime = d->rt_runtime;
7416 	}
7417 
7418 	/*
7419 	 * Cannot have more runtime than the period.
7420 	 */
7421 	if (runtime > period && runtime != RUNTIME_INF)
7422 		return -EINVAL;
7423 
7424 	/*
7425 	 * Ensure we don't starve existing RT tasks.
7426 	 */
7427 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7428 		return -EBUSY;
7429 
7430 	total = to_ratio(period, runtime);
7431 
7432 	/*
7433 	 * Nobody can have more than the global setting allows.
7434 	 */
7435 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7436 		return -EINVAL;
7437 
7438 	/*
7439 	 * The sum of our children's runtime should not exceed our own.
7440 	 */
7441 	list_for_each_entry_rcu(child, &tg->children, siblings) {
7442 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7443 		runtime = child->rt_bandwidth.rt_runtime;
7444 
7445 		if (child == d->tg) {
7446 			period = d->rt_period;
7447 			runtime = d->rt_runtime;
7448 		}
7449 
7450 		sum += to_ratio(period, runtime);
7451 	}
7452 
7453 	if (sum > total)
7454 		return -EINVAL;
7455 
7456 	return 0;
7457 }
7458 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)7459 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7460 {
7461 	int ret;
7462 
7463 	struct rt_schedulable_data data = {
7464 		.tg = tg,
7465 		.rt_period = period,
7466 		.rt_runtime = runtime,
7467 	};
7468 
7469 	rcu_read_lock();
7470 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7471 	rcu_read_unlock();
7472 
7473 	return ret;
7474 }
7475 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)7476 static int tg_set_rt_bandwidth(struct task_group *tg,
7477 		u64 rt_period, u64 rt_runtime)
7478 {
7479 	int i, err = 0;
7480 
7481 	mutex_lock(&rt_constraints_mutex);
7482 	read_lock(&tasklist_lock);
7483 	err = __rt_schedulable(tg, rt_period, rt_runtime);
7484 	if (err)
7485 		goto unlock;
7486 
7487 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7488 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7489 	tg->rt_bandwidth.rt_runtime = rt_runtime;
7490 
7491 	for_each_possible_cpu(i) {
7492 		struct rt_rq *rt_rq = tg->rt_rq[i];
7493 
7494 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7495 		rt_rq->rt_runtime = rt_runtime;
7496 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7497 	}
7498 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7499 unlock:
7500 	read_unlock(&tasklist_lock);
7501 	mutex_unlock(&rt_constraints_mutex);
7502 
7503 	return err;
7504 }
7505 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)7506 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7507 {
7508 	u64 rt_runtime, rt_period;
7509 
7510 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7511 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7512 	if (rt_runtime_us < 0)
7513 		rt_runtime = RUNTIME_INF;
7514 
7515 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7516 }
7517 
sched_group_rt_runtime(struct task_group * tg)7518 static long sched_group_rt_runtime(struct task_group *tg)
7519 {
7520 	u64 rt_runtime_us;
7521 
7522 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7523 		return -1;
7524 
7525 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7526 	do_div(rt_runtime_us, NSEC_PER_USEC);
7527 	return rt_runtime_us;
7528 }
7529 
sched_group_set_rt_period(struct task_group * tg,long rt_period_us)7530 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7531 {
7532 	u64 rt_runtime, rt_period;
7533 
7534 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7535 	rt_runtime = tg->rt_bandwidth.rt_runtime;
7536 
7537 	if (rt_period == 0)
7538 		return -EINVAL;
7539 
7540 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7541 }
7542 
sched_group_rt_period(struct task_group * tg)7543 static long sched_group_rt_period(struct task_group *tg)
7544 {
7545 	u64 rt_period_us;
7546 
7547 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7548 	do_div(rt_period_us, NSEC_PER_USEC);
7549 	return rt_period_us;
7550 }
7551 
sched_rt_global_constraints(void)7552 static int sched_rt_global_constraints(void)
7553 {
7554 	u64 runtime, period;
7555 	int ret = 0;
7556 
7557 	if (sysctl_sched_rt_period <= 0)
7558 		return -EINVAL;
7559 
7560 	runtime = global_rt_runtime();
7561 	period = global_rt_period();
7562 
7563 	/*
7564 	 * Sanity check on the sysctl variables.
7565 	 */
7566 	if (runtime > period && runtime != RUNTIME_INF)
7567 		return -EINVAL;
7568 
7569 	mutex_lock(&rt_constraints_mutex);
7570 	read_lock(&tasklist_lock);
7571 	ret = __rt_schedulable(NULL, 0, 0);
7572 	read_unlock(&tasklist_lock);
7573 	mutex_unlock(&rt_constraints_mutex);
7574 
7575 	return ret;
7576 }
7577 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)7578 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7579 {
7580 	/* Don't accept realtime tasks when there is no way for them to run */
7581 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7582 		return 0;
7583 
7584 	return 1;
7585 }
7586 
7587 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)7588 static int sched_rt_global_constraints(void)
7589 {
7590 	unsigned long flags;
7591 	int i;
7592 
7593 	if (sysctl_sched_rt_period <= 0)
7594 		return -EINVAL;
7595 
7596 	/*
7597 	 * There's always some RT tasks in the root group
7598 	 * -- migration, kstopmachine etc..
7599 	 */
7600 	if (sysctl_sched_rt_runtime == 0)
7601 		return -EBUSY;
7602 
7603 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7604 	for_each_possible_cpu(i) {
7605 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7606 
7607 		raw_spin_lock(&rt_rq->rt_runtime_lock);
7608 		rt_rq->rt_runtime = global_rt_runtime();
7609 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7610 	}
7611 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7612 
7613 	return 0;
7614 }
7615 #endif /* CONFIG_RT_GROUP_SCHED */
7616 
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)7617 int sched_rr_handler(struct ctl_table *table, int write,
7618 		void __user *buffer, size_t *lenp,
7619 		loff_t *ppos)
7620 {
7621 	int ret;
7622 	static DEFINE_MUTEX(mutex);
7623 
7624 	mutex_lock(&mutex);
7625 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7626 	/* make sure that internally we keep jiffies */
7627 	/* also, writing zero resets timeslice to default */
7628 	if (!ret && write) {
7629 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7630 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7631 	}
7632 	mutex_unlock(&mutex);
7633 	return ret;
7634 }
7635 
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)7636 int sched_rt_handler(struct ctl_table *table, int write,
7637 		void __user *buffer, size_t *lenp,
7638 		loff_t *ppos)
7639 {
7640 	int ret;
7641 	int old_period, old_runtime;
7642 	static DEFINE_MUTEX(mutex);
7643 
7644 	mutex_lock(&mutex);
7645 	old_period = sysctl_sched_rt_period;
7646 	old_runtime = sysctl_sched_rt_runtime;
7647 
7648 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7649 
7650 	if (!ret && write) {
7651 		ret = sched_rt_global_constraints();
7652 		if (ret) {
7653 			sysctl_sched_rt_period = old_period;
7654 			sysctl_sched_rt_runtime = old_runtime;
7655 		} else {
7656 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7657 			def_rt_bandwidth.rt_period =
7658 				ns_to_ktime(global_rt_period());
7659 		}
7660 	}
7661 	mutex_unlock(&mutex);
7662 
7663 	return ret;
7664 }
7665 
7666 #ifdef CONFIG_CGROUP_SCHED
7667 
7668 /* return corresponding task_group object of a cgroup */
cgroup_tg(struct cgroup * cgrp)7669 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7670 {
7671 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7672 			    struct task_group, css);
7673 }
7674 
cpu_cgroup_css_alloc(struct cgroup * cgrp)7675 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7676 {
7677 	struct task_group *tg, *parent;
7678 
7679 	if (!cgrp->parent) {
7680 		/* This is early initialization for the top cgroup */
7681 		return &root_task_group.css;
7682 	}
7683 
7684 	parent = cgroup_tg(cgrp->parent);
7685 	tg = sched_create_group(parent);
7686 	if (IS_ERR(tg))
7687 		return ERR_PTR(-ENOMEM);
7688 
7689 	return &tg->css;
7690 }
7691 
cpu_cgroup_css_online(struct cgroup * cgrp)7692 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7693 {
7694 	struct task_group *tg = cgroup_tg(cgrp);
7695 	struct task_group *parent;
7696 
7697 	if (!cgrp->parent)
7698 		return 0;
7699 
7700 	parent = cgroup_tg(cgrp->parent);
7701 	sched_online_group(tg, parent);
7702 	return 0;
7703 }
7704 
cpu_cgroup_css_free(struct cgroup * cgrp)7705 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7706 {
7707 	struct task_group *tg = cgroup_tg(cgrp);
7708 
7709 	sched_destroy_group(tg);
7710 }
7711 
cpu_cgroup_css_offline(struct cgroup * cgrp)7712 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7713 {
7714 	struct task_group *tg = cgroup_tg(cgrp);
7715 
7716 	sched_offline_group(tg);
7717 }
7718 
cpu_cgroup_can_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)7719 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7720 				 struct cgroup_taskset *tset)
7721 {
7722 	struct task_struct *task;
7723 
7724 	cgroup_taskset_for_each(task, cgrp, tset) {
7725 #ifdef CONFIG_RT_GROUP_SCHED
7726 		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7727 			return -EINVAL;
7728 #else
7729 		/* We don't support RT-tasks being in separate groups */
7730 		if (task->sched_class != &fair_sched_class)
7731 			return -EINVAL;
7732 #endif
7733 	}
7734 	return 0;
7735 }
7736 
cpu_cgroup_attach(struct cgroup * cgrp,struct cgroup_taskset * tset)7737 static void cpu_cgroup_attach(struct cgroup *cgrp,
7738 			      struct cgroup_taskset *tset)
7739 {
7740 	struct task_struct *task;
7741 
7742 	cgroup_taskset_for_each(task, cgrp, tset)
7743 		sched_move_task(task);
7744 }
7745 
7746 static void
cpu_cgroup_exit(struct cgroup * cgrp,struct cgroup * old_cgrp,struct task_struct * task)7747 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7748 		struct task_struct *task)
7749 {
7750 	/*
7751 	 * cgroup_exit() is called in the copy_process() failure path.
7752 	 * Ignore this case since the task hasn't ran yet, this avoids
7753 	 * trying to poke a half freed task state from generic code.
7754 	 */
7755 	if (!(task->flags & PF_EXITING))
7756 		return;
7757 
7758 	sched_move_task(task);
7759 }
7760 
7761 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup * cgrp,struct cftype * cftype,u64 shareval)7762 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7763 				u64 shareval)
7764 {
7765 	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7766 }
7767 
cpu_shares_read_u64(struct cgroup * cgrp,struct cftype * cft)7768 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7769 {
7770 	struct task_group *tg = cgroup_tg(cgrp);
7771 
7772 	return (u64) scale_load_down(tg->shares);
7773 }
7774 
7775 #ifdef CONFIG_CFS_BANDWIDTH
7776 static DEFINE_MUTEX(cfs_constraints_mutex);
7777 
7778 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7779 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7780 
7781 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7782 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)7783 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7784 {
7785 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7786 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7787 
7788 	if (tg == &root_task_group)
7789 		return -EINVAL;
7790 
7791 	/*
7792 	 * Ensure we have at some amount of bandwidth every period.  This is
7793 	 * to prevent reaching a state of large arrears when throttled via
7794 	 * entity_tick() resulting in prolonged exit starvation.
7795 	 */
7796 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7797 		return -EINVAL;
7798 
7799 	/*
7800 	 * Likewise, bound things on the otherside by preventing insane quota
7801 	 * periods.  This also allows us to normalize in computing quota
7802 	 * feasibility.
7803 	 */
7804 	if (period > max_cfs_quota_period)
7805 		return -EINVAL;
7806 
7807 	mutex_lock(&cfs_constraints_mutex);
7808 	ret = __cfs_schedulable(tg, period, quota);
7809 	if (ret)
7810 		goto out_unlock;
7811 
7812 	runtime_enabled = quota != RUNTIME_INF;
7813 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7814 	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7815 	raw_spin_lock_irq(&cfs_b->lock);
7816 	cfs_b->period = ns_to_ktime(period);
7817 	cfs_b->quota = quota;
7818 
7819 	__refill_cfs_bandwidth_runtime(cfs_b);
7820 	/* restart the period timer (if active) to handle new period expiry */
7821 	if (runtime_enabled && cfs_b->timer_active) {
7822 		/* force a reprogram */
7823 		cfs_b->timer_active = 0;
7824 		__start_cfs_bandwidth(cfs_b);
7825 	}
7826 	raw_spin_unlock_irq(&cfs_b->lock);
7827 
7828 	for_each_possible_cpu(i) {
7829 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7830 		struct rq *rq = cfs_rq->rq;
7831 
7832 		raw_spin_lock_irq(&rq->lock);
7833 		cfs_rq->runtime_enabled = runtime_enabled;
7834 		cfs_rq->runtime_remaining = 0;
7835 
7836 		if (cfs_rq->throttled)
7837 			unthrottle_cfs_rq(cfs_rq);
7838 		raw_spin_unlock_irq(&rq->lock);
7839 	}
7840 out_unlock:
7841 	mutex_unlock(&cfs_constraints_mutex);
7842 
7843 	return ret;
7844 }
7845 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)7846 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7847 {
7848 	u64 quota, period;
7849 
7850 	period = ktime_to_ns(tg->cfs_bandwidth.period);
7851 	if (cfs_quota_us < 0)
7852 		quota = RUNTIME_INF;
7853 	else
7854 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7855 
7856 	return tg_set_cfs_bandwidth(tg, period, quota);
7857 }
7858 
tg_get_cfs_quota(struct task_group * tg)7859 long tg_get_cfs_quota(struct task_group *tg)
7860 {
7861 	u64 quota_us;
7862 
7863 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7864 		return -1;
7865 
7866 	quota_us = tg->cfs_bandwidth.quota;
7867 	do_div(quota_us, NSEC_PER_USEC);
7868 
7869 	return quota_us;
7870 }
7871 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)7872 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7873 {
7874 	u64 quota, period;
7875 
7876 	period = (u64)cfs_period_us * NSEC_PER_USEC;
7877 	quota = tg->cfs_bandwidth.quota;
7878 
7879 	return tg_set_cfs_bandwidth(tg, period, quota);
7880 }
7881 
tg_get_cfs_period(struct task_group * tg)7882 long tg_get_cfs_period(struct task_group *tg)
7883 {
7884 	u64 cfs_period_us;
7885 
7886 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7887 	do_div(cfs_period_us, NSEC_PER_USEC);
7888 
7889 	return cfs_period_us;
7890 }
7891 
cpu_cfs_quota_read_s64(struct cgroup * cgrp,struct cftype * cft)7892 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7893 {
7894 	return tg_get_cfs_quota(cgroup_tg(cgrp));
7895 }
7896 
cpu_cfs_quota_write_s64(struct cgroup * cgrp,struct cftype * cftype,s64 cfs_quota_us)7897 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7898 				s64 cfs_quota_us)
7899 {
7900 	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7901 }
7902 
cpu_cfs_period_read_u64(struct cgroup * cgrp,struct cftype * cft)7903 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7904 {
7905 	return tg_get_cfs_period(cgroup_tg(cgrp));
7906 }
7907 
cpu_cfs_period_write_u64(struct cgroup * cgrp,struct cftype * cftype,u64 cfs_period_us)7908 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7909 				u64 cfs_period_us)
7910 {
7911 	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7912 }
7913 
7914 struct cfs_schedulable_data {
7915 	struct task_group *tg;
7916 	u64 period, quota;
7917 };
7918 
7919 /*
7920  * normalize group quota/period to be quota/max_period
7921  * note: units are usecs
7922  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)7923 static u64 normalize_cfs_quota(struct task_group *tg,
7924 			       struct cfs_schedulable_data *d)
7925 {
7926 	u64 quota, period;
7927 
7928 	if (tg == d->tg) {
7929 		period = d->period;
7930 		quota = d->quota;
7931 	} else {
7932 		period = tg_get_cfs_period(tg);
7933 		quota = tg_get_cfs_quota(tg);
7934 	}
7935 
7936 	/* note: these should typically be equivalent */
7937 	if (quota == RUNTIME_INF || quota == -1)
7938 		return RUNTIME_INF;
7939 
7940 	return to_ratio(period, quota);
7941 }
7942 
tg_cfs_schedulable_down(struct task_group * tg,void * data)7943 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7944 {
7945 	struct cfs_schedulable_data *d = data;
7946 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7947 	s64 quota = 0, parent_quota = -1;
7948 
7949 	if (!tg->parent) {
7950 		quota = RUNTIME_INF;
7951 	} else {
7952 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7953 
7954 		quota = normalize_cfs_quota(tg, d);
7955 		parent_quota = parent_b->hierarchal_quota;
7956 
7957 		/*
7958 		 * ensure max(child_quota) <= parent_quota, inherit when no
7959 		 * limit is set
7960 		 */
7961 		if (quota == RUNTIME_INF)
7962 			quota = parent_quota;
7963 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7964 			return -EINVAL;
7965 	}
7966 	cfs_b->hierarchal_quota = quota;
7967 
7968 	return 0;
7969 }
7970 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)7971 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7972 {
7973 	int ret;
7974 	struct cfs_schedulable_data data = {
7975 		.tg = tg,
7976 		.period = period,
7977 		.quota = quota,
7978 	};
7979 
7980 	if (quota != RUNTIME_INF) {
7981 		do_div(data.period, NSEC_PER_USEC);
7982 		do_div(data.quota, NSEC_PER_USEC);
7983 	}
7984 
7985 	rcu_read_lock();
7986 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7987 	rcu_read_unlock();
7988 
7989 	return ret;
7990 }
7991 
cpu_stats_show(struct cgroup * cgrp,struct cftype * cft,struct cgroup_map_cb * cb)7992 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7993 		struct cgroup_map_cb *cb)
7994 {
7995 	struct task_group *tg = cgroup_tg(cgrp);
7996 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7997 
7998 	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7999 	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8000 	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8001 
8002 	return 0;
8003 }
8004 #endif /* CONFIG_CFS_BANDWIDTH */
8005 #endif /* CONFIG_FAIR_GROUP_SCHED */
8006 
8007 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup * cgrp,struct cftype * cft,s64 val)8008 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8009 				s64 val)
8010 {
8011 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8012 }
8013 
cpu_rt_runtime_read(struct cgroup * cgrp,struct cftype * cft)8014 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8015 {
8016 	return sched_group_rt_runtime(cgroup_tg(cgrp));
8017 }
8018 
cpu_rt_period_write_uint(struct cgroup * cgrp,struct cftype * cftype,u64 rt_period_us)8019 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8020 		u64 rt_period_us)
8021 {
8022 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8023 }
8024 
cpu_rt_period_read_uint(struct cgroup * cgrp,struct cftype * cft)8025 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8026 {
8027 	return sched_group_rt_period(cgroup_tg(cgrp));
8028 }
8029 #endif /* CONFIG_RT_GROUP_SCHED */
8030 
8031 static struct cftype cpu_files[] = {
8032 #ifdef CONFIG_FAIR_GROUP_SCHED
8033 	{
8034 		.name = "shares",
8035 		.read_u64 = cpu_shares_read_u64,
8036 		.write_u64 = cpu_shares_write_u64,
8037 	},
8038 #endif
8039 #ifdef CONFIG_CFS_BANDWIDTH
8040 	{
8041 		.name = "cfs_quota_us",
8042 		.read_s64 = cpu_cfs_quota_read_s64,
8043 		.write_s64 = cpu_cfs_quota_write_s64,
8044 	},
8045 	{
8046 		.name = "cfs_period_us",
8047 		.read_u64 = cpu_cfs_period_read_u64,
8048 		.write_u64 = cpu_cfs_period_write_u64,
8049 	},
8050 	{
8051 		.name = "stat",
8052 		.read_map = cpu_stats_show,
8053 	},
8054 #endif
8055 #ifdef CONFIG_RT_GROUP_SCHED
8056 	{
8057 		.name = "rt_runtime_us",
8058 		.read_s64 = cpu_rt_runtime_read,
8059 		.write_s64 = cpu_rt_runtime_write,
8060 	},
8061 	{
8062 		.name = "rt_period_us",
8063 		.read_u64 = cpu_rt_period_read_uint,
8064 		.write_u64 = cpu_rt_period_write_uint,
8065 	},
8066 #endif
8067 	{ }	/* terminate */
8068 };
8069 
8070 struct cgroup_subsys cpu_cgroup_subsys = {
8071 	.name		= "cpu",
8072 	.css_alloc	= cpu_cgroup_css_alloc,
8073 	.css_free	= cpu_cgroup_css_free,
8074 	.css_online	= cpu_cgroup_css_online,
8075 	.css_offline	= cpu_cgroup_css_offline,
8076 	.can_attach	= cpu_cgroup_can_attach,
8077 	.attach		= cpu_cgroup_attach,
8078 	.allow_attach	= subsys_cgroup_allow_attach,
8079 	.exit		= cpu_cgroup_exit,
8080 	.subsys_id	= cpu_cgroup_subsys_id,
8081 	.base_cftypes	= cpu_files,
8082 	.early_init	= 1,
8083 };
8084 
8085 #endif	/* CONFIG_CGROUP_SCHED */
8086 
dump_cpu_task(int cpu)8087 void dump_cpu_task(int cpu)
8088 {
8089 	pr_info("Task dump for CPU %d:\n", cpu);
8090 	sched_show_task(cpu_curr(cpu));
8091 }
8092