1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35 * RPC slabs and memory pools
36 */
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
44
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55 * rpciod-related stuff
56 */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
63 */
64 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84 * Set up a timer for the current task.
85 */
86 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task)87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 if (!task->tk_timeout)
90 return;
91
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
rpc_rotate_queue_owner(struct rpc_wait_queue * queue)101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103 struct list_head *q = &queue->tasks[queue->priority];
104 struct rpc_task *task;
105
106 if (!list_empty(q)) {
107 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108 if (task->tk_owner == queue->owner)
109 list_move_tail(&task->u.tk_wait.list, q);
110 }
111 }
112
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 if (queue->priority != priority) {
116 /* Fairness: rotate the list when changing priority */
117 rpc_rotate_queue_owner(queue);
118 queue->priority = priority;
119 }
120 }
121
rpc_set_waitqueue_owner(struct rpc_wait_queue * queue,pid_t pid)122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124 queue->owner = pid;
125 queue->nr = RPC_BATCH_COUNT;
126 }
127
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130 rpc_set_waitqueue_priority(queue, queue->maxpriority);
131 rpc_set_waitqueue_owner(queue, 0);
132 }
133
134 /*
135 * Add new request to a priority queue.
136 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138 struct rpc_task *task,
139 unsigned char queue_priority)
140 {
141 struct list_head *q;
142 struct rpc_task *t;
143
144 INIT_LIST_HEAD(&task->u.tk_wait.links);
145 if (unlikely(queue_priority > queue->maxpriority))
146 queue_priority = queue->maxpriority;
147 if (queue_priority > queue->priority)
148 rpc_set_waitqueue_priority(queue, queue_priority);
149 q = &queue->tasks[queue_priority];
150 list_for_each_entry(t, q, u.tk_wait.list) {
151 if (t->tk_owner == task->tk_owner) {
152 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 return;
154 }
155 }
156 list_add_tail(&task->u.tk_wait.list, q);
157 }
158
159 /*
160 * Add new request to wait queue.
161 *
162 * Swapper tasks always get inserted at the head of the queue.
163 * This should avoid many nasty memory deadlocks and hopefully
164 * improve overall performance.
165 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168 struct rpc_task *task,
169 unsigned char queue_priority)
170 {
171 WARN_ON_ONCE(RPC_IS_QUEUED(task));
172 if (RPC_IS_QUEUED(task))
173 return;
174
175 if (RPC_IS_PRIORITY(queue))
176 __rpc_add_wait_queue_priority(queue, task, queue_priority);
177 else if (RPC_IS_SWAPPER(task))
178 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179 else
180 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181 task->tk_waitqueue = queue;
182 queue->qlen++;
183 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
184 smp_wmb();
185 rpc_set_queued(task);
186
187 dprintk("RPC: %5u added to queue %p \"%s\"\n",
188 task->tk_pid, queue, rpc_qname(queue));
189 }
190
191 /*
192 * Remove request from a priority queue.
193 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196 struct rpc_task *t;
197
198 if (!list_empty(&task->u.tk_wait.links)) {
199 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202 }
203 }
204
205 /*
206 * Remove request from queue.
207 * Note: must be called with spin lock held.
208 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211 __rpc_disable_timer(queue, task);
212 if (RPC_IS_PRIORITY(queue))
213 __rpc_remove_wait_queue_priority(task);
214 list_del(&task->u.tk_wait.list);
215 queue->qlen--;
216 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217 task->tk_pid, queue, rpc_qname(queue));
218 }
219
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222 int i;
223
224 spin_lock_init(&queue->lock);
225 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226 INIT_LIST_HEAD(&queue->tasks[i]);
227 queue->maxpriority = nr_queues - 1;
228 rpc_reset_waitqueue_priority(queue);
229 queue->qlen = 0;
230 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231 INIT_LIST_HEAD(&queue->timer_list.list);
232 rpc_assign_waitqueue_name(queue, qname);
233 }
234
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243 __rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249 del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252
rpc_wait_bit_killable(void * word)253 static int rpc_wait_bit_killable(void *word)
254 {
255 if (fatal_signal_pending(current))
256 return -ERESTARTSYS;
257 freezable_schedule_unsafe();
258 return 0;
259 }
260
261 #ifdef RPC_DEBUG
rpc_task_set_debuginfo(struct rpc_task * task)262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264 static atomic_t rpc_pid;
265
266 task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
rpc_task_set_debuginfo(struct rpc_task * task)269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273
rpc_set_active(struct rpc_task * task)274 static void rpc_set_active(struct rpc_task *task)
275 {
276 trace_rpc_task_begin(task->tk_client, task, NULL);
277
278 rpc_task_set_debuginfo(task);
279 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
280 }
281
282 /*
283 * Mark an RPC call as having completed by clearing the 'active' bit
284 * and then waking up all tasks that were sleeping.
285 */
rpc_complete_task(struct rpc_task * task)286 static int rpc_complete_task(struct rpc_task *task)
287 {
288 void *m = &task->tk_runstate;
289 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291 unsigned long flags;
292 int ret;
293
294 trace_rpc_task_complete(task->tk_client, task, NULL);
295
296 spin_lock_irqsave(&wq->lock, flags);
297 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298 ret = atomic_dec_and_test(&task->tk_count);
299 if (waitqueue_active(wq))
300 __wake_up_locked_key(wq, TASK_NORMAL, &k);
301 spin_unlock_irqrestore(&wq->lock, flags);
302 return ret;
303 }
304
305 /*
306 * Allow callers to wait for completion of an RPC call
307 *
308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309 * to enforce taking of the wq->lock and hence avoid races with
310 * rpc_complete_task().
311 */
__rpc_wait_for_completion_task(struct rpc_task * task,int (* action)(void *))312 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
313 {
314 if (action == NULL)
315 action = rpc_wait_bit_killable;
316 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317 action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320
321 /*
322 * Make an RPC task runnable.
323 *
324 * Note: If the task is ASYNC, and is being made runnable after sitting on an
325 * rpc_wait_queue, this must be called with the queue spinlock held to protect
326 * the wait queue operation.
327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
330 * the RPC_TASK_RUNNING flag.
331 */
rpc_make_runnable(struct rpc_task * task)332 static void rpc_make_runnable(struct rpc_task *task)
333 {
334 bool need_wakeup = !rpc_test_and_set_running(task);
335
336 rpc_clear_queued(task);
337 if (!need_wakeup)
338 return;
339 if (RPC_IS_ASYNC(task)) {
340 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
341 queue_work(rpciod_workqueue, &task->u.tk_work);
342 } else
343 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
344 }
345
346 /*
347 * Prepare for sleeping on a wait queue.
348 * By always appending tasks to the list we ensure FIFO behavior.
349 * NB: An RPC task will only receive interrupt-driven events as long
350 * as it's on a wait queue.
351 */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned char queue_priority)352 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
353 struct rpc_task *task,
354 rpc_action action,
355 unsigned char queue_priority)
356 {
357 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
358 task->tk_pid, rpc_qname(q), jiffies);
359
360 trace_rpc_task_sleep(task->tk_client, task, q);
361
362 __rpc_add_wait_queue(q, task, queue_priority);
363
364 WARN_ON_ONCE(task->tk_callback != NULL);
365 task->tk_callback = action;
366 __rpc_add_timer(q, task);
367 }
368
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)369 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
370 rpc_action action)
371 {
372 /* We shouldn't ever put an inactive task to sleep */
373 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
374 if (!RPC_IS_ACTIVATED(task)) {
375 task->tk_status = -EIO;
376 rpc_put_task_async(task);
377 return;
378 }
379
380 /*
381 * Protect the queue operations.
382 */
383 spin_lock_bh(&q->lock);
384 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
385 spin_unlock_bh(&q->lock);
386 }
387 EXPORT_SYMBOL_GPL(rpc_sleep_on);
388
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,int priority)389 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
390 rpc_action action, int priority)
391 {
392 /* We shouldn't ever put an inactive task to sleep */
393 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
394 if (!RPC_IS_ACTIVATED(task)) {
395 task->tk_status = -EIO;
396 rpc_put_task_async(task);
397 return;
398 }
399
400 /*
401 * Protect the queue operations.
402 */
403 spin_lock_bh(&q->lock);
404 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
405 spin_unlock_bh(&q->lock);
406 }
407 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
408
409 /**
410 * __rpc_do_wake_up_task - wake up a single rpc_task
411 * @queue: wait queue
412 * @task: task to be woken up
413 *
414 * Caller must hold queue->lock, and have cleared the task queued flag.
415 */
__rpc_do_wake_up_task(struct rpc_wait_queue * queue,struct rpc_task * task)416 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
417 {
418 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
419 task->tk_pid, jiffies);
420
421 /* Has the task been executed yet? If not, we cannot wake it up! */
422 if (!RPC_IS_ACTIVATED(task)) {
423 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
424 return;
425 }
426
427 trace_rpc_task_wakeup(task->tk_client, task, queue);
428
429 __rpc_remove_wait_queue(queue, task);
430
431 rpc_make_runnable(task);
432
433 dprintk("RPC: __rpc_wake_up_task done\n");
434 }
435
436 /*
437 * Wake up a queued task while the queue lock is being held
438 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)439 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
440 {
441 if (RPC_IS_QUEUED(task)) {
442 smp_rmb();
443 if (task->tk_waitqueue == queue)
444 __rpc_do_wake_up_task(queue, task);
445 }
446 }
447
448 /*
449 * Tests whether rpc queue is empty
450 */
rpc_queue_empty(struct rpc_wait_queue * queue)451 int rpc_queue_empty(struct rpc_wait_queue *queue)
452 {
453 int res;
454
455 spin_lock_bh(&queue->lock);
456 res = queue->qlen;
457 spin_unlock_bh(&queue->lock);
458 return res == 0;
459 }
460 EXPORT_SYMBOL_GPL(rpc_queue_empty);
461
462 /*
463 * Wake up a task on a specific queue
464 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)465 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467 spin_lock_bh(&queue->lock);
468 rpc_wake_up_task_queue_locked(queue, task);
469 spin_unlock_bh(&queue->lock);
470 }
471 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
472
473 /*
474 * Wake up the next task on a priority queue.
475 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)476 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
477 {
478 struct list_head *q;
479 struct rpc_task *task;
480
481 /*
482 * Service a batch of tasks from a single owner.
483 */
484 q = &queue->tasks[queue->priority];
485 if (!list_empty(q)) {
486 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
487 if (queue->owner == task->tk_owner) {
488 if (--queue->nr)
489 goto out;
490 list_move_tail(&task->u.tk_wait.list, q);
491 }
492 /*
493 * Check if we need to switch queues.
494 */
495 goto new_owner;
496 }
497
498 /*
499 * Service the next queue.
500 */
501 do {
502 if (q == &queue->tasks[0])
503 q = &queue->tasks[queue->maxpriority];
504 else
505 q = q - 1;
506 if (!list_empty(q)) {
507 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
508 goto new_queue;
509 }
510 } while (q != &queue->tasks[queue->priority]);
511
512 rpc_reset_waitqueue_priority(queue);
513 return NULL;
514
515 new_queue:
516 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
517 new_owner:
518 rpc_set_waitqueue_owner(queue, task->tk_owner);
519 out:
520 return task;
521 }
522
__rpc_find_next_queued(struct rpc_wait_queue * queue)523 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
524 {
525 if (RPC_IS_PRIORITY(queue))
526 return __rpc_find_next_queued_priority(queue);
527 if (!list_empty(&queue->tasks[0]))
528 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
529 return NULL;
530 }
531
532 /*
533 * Wake up the first task on the wait queue.
534 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)535 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
536 bool (*func)(struct rpc_task *, void *), void *data)
537 {
538 struct rpc_task *task = NULL;
539
540 dprintk("RPC: wake_up_first(%p \"%s\")\n",
541 queue, rpc_qname(queue));
542 spin_lock_bh(&queue->lock);
543 task = __rpc_find_next_queued(queue);
544 if (task != NULL) {
545 if (func(task, data))
546 rpc_wake_up_task_queue_locked(queue, task);
547 else
548 task = NULL;
549 }
550 spin_unlock_bh(&queue->lock);
551
552 return task;
553 }
554 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
555
rpc_wake_up_next_func(struct rpc_task * task,void * data)556 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
557 {
558 return true;
559 }
560
561 /*
562 * Wake up the next task on the wait queue.
563 */
rpc_wake_up_next(struct rpc_wait_queue * queue)564 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
565 {
566 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
567 }
568 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
569
570 /**
571 * rpc_wake_up - wake up all rpc_tasks
572 * @queue: rpc_wait_queue on which the tasks are sleeping
573 *
574 * Grabs queue->lock
575 */
rpc_wake_up(struct rpc_wait_queue * queue)576 void rpc_wake_up(struct rpc_wait_queue *queue)
577 {
578 struct list_head *head;
579
580 spin_lock_bh(&queue->lock);
581 head = &queue->tasks[queue->maxpriority];
582 for (;;) {
583 while (!list_empty(head)) {
584 struct rpc_task *task;
585 task = list_first_entry(head,
586 struct rpc_task,
587 u.tk_wait.list);
588 rpc_wake_up_task_queue_locked(queue, task);
589 }
590 if (head == &queue->tasks[0])
591 break;
592 head--;
593 }
594 spin_unlock_bh(&queue->lock);
595 }
596 EXPORT_SYMBOL_GPL(rpc_wake_up);
597
598 /**
599 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
600 * @queue: rpc_wait_queue on which the tasks are sleeping
601 * @status: status value to set
602 *
603 * Grabs queue->lock
604 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)605 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
606 {
607 struct list_head *head;
608
609 spin_lock_bh(&queue->lock);
610 head = &queue->tasks[queue->maxpriority];
611 for (;;) {
612 while (!list_empty(head)) {
613 struct rpc_task *task;
614 task = list_first_entry(head,
615 struct rpc_task,
616 u.tk_wait.list);
617 task->tk_status = status;
618 rpc_wake_up_task_queue_locked(queue, task);
619 }
620 if (head == &queue->tasks[0])
621 break;
622 head--;
623 }
624 spin_unlock_bh(&queue->lock);
625 }
626 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
627
__rpc_queue_timer_fn(unsigned long ptr)628 static void __rpc_queue_timer_fn(unsigned long ptr)
629 {
630 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
631 struct rpc_task *task, *n;
632 unsigned long expires, now, timeo;
633
634 spin_lock(&queue->lock);
635 expires = now = jiffies;
636 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
637 timeo = task->u.tk_wait.expires;
638 if (time_after_eq(now, timeo)) {
639 dprintk("RPC: %5u timeout\n", task->tk_pid);
640 task->tk_status = -ETIMEDOUT;
641 rpc_wake_up_task_queue_locked(queue, task);
642 continue;
643 }
644 if (expires == now || time_after(expires, timeo))
645 expires = timeo;
646 }
647 if (!list_empty(&queue->timer_list.list))
648 rpc_set_queue_timer(queue, expires);
649 spin_unlock(&queue->lock);
650 }
651
__rpc_atrun(struct rpc_task * task)652 static void __rpc_atrun(struct rpc_task *task)
653 {
654 task->tk_status = 0;
655 }
656
657 /*
658 * Run a task at a later time
659 */
rpc_delay(struct rpc_task * task,unsigned long delay)660 void rpc_delay(struct rpc_task *task, unsigned long delay)
661 {
662 task->tk_timeout = delay;
663 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
664 }
665 EXPORT_SYMBOL_GPL(rpc_delay);
666
667 /*
668 * Helper to call task->tk_ops->rpc_call_prepare
669 */
rpc_prepare_task(struct rpc_task * task)670 void rpc_prepare_task(struct rpc_task *task)
671 {
672 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
673 }
674
675 static void
rpc_init_task_statistics(struct rpc_task * task)676 rpc_init_task_statistics(struct rpc_task *task)
677 {
678 /* Initialize retry counters */
679 task->tk_garb_retry = 2;
680 task->tk_cred_retry = 2;
681 task->tk_rebind_retry = 2;
682
683 /* starting timestamp */
684 task->tk_start = ktime_get();
685 }
686
687 static void
rpc_reset_task_statistics(struct rpc_task * task)688 rpc_reset_task_statistics(struct rpc_task *task)
689 {
690 task->tk_timeouts = 0;
691 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
692
693 rpc_init_task_statistics(task);
694 }
695
696 /*
697 * Helper that calls task->tk_ops->rpc_call_done if it exists
698 */
rpc_exit_task(struct rpc_task * task)699 void rpc_exit_task(struct rpc_task *task)
700 {
701 task->tk_action = NULL;
702 if (task->tk_ops->rpc_call_done != NULL) {
703 task->tk_ops->rpc_call_done(task, task->tk_calldata);
704 if (task->tk_action != NULL) {
705 WARN_ON(RPC_ASSASSINATED(task));
706 /* Always release the RPC slot and buffer memory */
707 xprt_release(task);
708 rpc_reset_task_statistics(task);
709 }
710 }
711 }
712
rpc_exit(struct rpc_task * task,int status)713 void rpc_exit(struct rpc_task *task, int status)
714 {
715 task->tk_status = status;
716 task->tk_action = rpc_exit_task;
717 if (RPC_IS_QUEUED(task))
718 rpc_wake_up_queued_task(task->tk_waitqueue, task);
719 }
720 EXPORT_SYMBOL_GPL(rpc_exit);
721
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)722 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
723 {
724 if (ops->rpc_release != NULL)
725 ops->rpc_release(calldata);
726 }
727
728 /*
729 * This is the RPC `scheduler' (or rather, the finite state machine).
730 */
__rpc_execute(struct rpc_task * task)731 static void __rpc_execute(struct rpc_task *task)
732 {
733 struct rpc_wait_queue *queue;
734 int task_is_async = RPC_IS_ASYNC(task);
735 int status = 0;
736
737 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
738 task->tk_pid, task->tk_flags);
739
740 WARN_ON_ONCE(RPC_IS_QUEUED(task));
741 if (RPC_IS_QUEUED(task))
742 return;
743
744 for (;;) {
745 void (*do_action)(struct rpc_task *);
746
747 /*
748 * Execute any pending callback first.
749 */
750 do_action = task->tk_callback;
751 task->tk_callback = NULL;
752 if (do_action == NULL) {
753 /*
754 * Perform the next FSM step.
755 * tk_action may be NULL if the task has been killed.
756 * In particular, note that rpc_killall_tasks may
757 * do this at any time, so beware when dereferencing.
758 */
759 do_action = task->tk_action;
760 if (do_action == NULL)
761 break;
762 }
763 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
764 do_action(task);
765
766 /*
767 * Lockless check for whether task is sleeping or not.
768 */
769 if (!RPC_IS_QUEUED(task))
770 continue;
771 /*
772 * The queue->lock protects against races with
773 * rpc_make_runnable().
774 *
775 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
776 * rpc_task, rpc_make_runnable() can assign it to a
777 * different workqueue. We therefore cannot assume that the
778 * rpc_task pointer may still be dereferenced.
779 */
780 queue = task->tk_waitqueue;
781 spin_lock_bh(&queue->lock);
782 if (!RPC_IS_QUEUED(task)) {
783 spin_unlock_bh(&queue->lock);
784 continue;
785 }
786 rpc_clear_running(task);
787 spin_unlock_bh(&queue->lock);
788 if (task_is_async)
789 return;
790
791 /* sync task: sleep here */
792 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
793 status = out_of_line_wait_on_bit(&task->tk_runstate,
794 RPC_TASK_QUEUED, rpc_wait_bit_killable,
795 TASK_KILLABLE);
796 if (status == -ERESTARTSYS) {
797 /*
798 * When a sync task receives a signal, it exits with
799 * -ERESTARTSYS. In order to catch any callbacks that
800 * clean up after sleeping on some queue, we don't
801 * break the loop here, but go around once more.
802 */
803 dprintk("RPC: %5u got signal\n", task->tk_pid);
804 task->tk_flags |= RPC_TASK_KILLED;
805 rpc_exit(task, -ERESTARTSYS);
806 }
807 rpc_set_running(task);
808 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
809 }
810
811 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
812 task->tk_status);
813 /* Release all resources associated with the task */
814 rpc_release_task(task);
815 }
816
817 /*
818 * User-visible entry point to the scheduler.
819 *
820 * This may be called recursively if e.g. an async NFS task updates
821 * the attributes and finds that dirty pages must be flushed.
822 * NOTE: Upon exit of this function the task is guaranteed to be
823 * released. In particular note that tk_release() will have
824 * been called, so your task memory may have been freed.
825 */
rpc_execute(struct rpc_task * task)826 void rpc_execute(struct rpc_task *task)
827 {
828 rpc_set_active(task);
829 rpc_make_runnable(task);
830 if (!RPC_IS_ASYNC(task))
831 __rpc_execute(task);
832 }
833
rpc_async_schedule(struct work_struct * work)834 static void rpc_async_schedule(struct work_struct *work)
835 {
836 current->flags |= PF_FSTRANS;
837 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
838 current->flags &= ~PF_FSTRANS;
839 }
840
841 /**
842 * rpc_malloc - allocate an RPC buffer
843 * @task: RPC task that will use this buffer
844 * @size: requested byte size
845 *
846 * To prevent rpciod from hanging, this allocator never sleeps,
847 * returning NULL if the request cannot be serviced immediately.
848 * The caller can arrange to sleep in a way that is safe for rpciod.
849 *
850 * Most requests are 'small' (under 2KiB) and can be serviced from a
851 * mempool, ensuring that NFS reads and writes can always proceed,
852 * and that there is good locality of reference for these buffers.
853 *
854 * In order to avoid memory starvation triggering more writebacks of
855 * NFS requests, we avoid using GFP_KERNEL.
856 */
rpc_malloc(struct rpc_task * task,size_t size)857 void *rpc_malloc(struct rpc_task *task, size_t size)
858 {
859 struct rpc_buffer *buf;
860 gfp_t gfp = GFP_NOWAIT;
861
862 if (RPC_IS_SWAPPER(task))
863 gfp |= __GFP_MEMALLOC;
864
865 size += sizeof(struct rpc_buffer);
866 if (size <= RPC_BUFFER_MAXSIZE)
867 buf = mempool_alloc(rpc_buffer_mempool, gfp);
868 else
869 buf = kmalloc(size, gfp);
870
871 if (!buf)
872 return NULL;
873
874 buf->len = size;
875 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
876 task->tk_pid, size, buf);
877 return &buf->data;
878 }
879 EXPORT_SYMBOL_GPL(rpc_malloc);
880
881 /**
882 * rpc_free - free buffer allocated via rpc_malloc
883 * @buffer: buffer to free
884 *
885 */
rpc_free(void * buffer)886 void rpc_free(void *buffer)
887 {
888 size_t size;
889 struct rpc_buffer *buf;
890
891 if (!buffer)
892 return;
893
894 buf = container_of(buffer, struct rpc_buffer, data);
895 size = buf->len;
896
897 dprintk("RPC: freeing buffer of size %zu at %p\n",
898 size, buf);
899
900 if (size <= RPC_BUFFER_MAXSIZE)
901 mempool_free(buf, rpc_buffer_mempool);
902 else
903 kfree(buf);
904 }
905 EXPORT_SYMBOL_GPL(rpc_free);
906
907 /*
908 * Creation and deletion of RPC task structures
909 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)910 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
911 {
912 memset(task, 0, sizeof(*task));
913 atomic_set(&task->tk_count, 1);
914 task->tk_flags = task_setup_data->flags;
915 task->tk_ops = task_setup_data->callback_ops;
916 task->tk_calldata = task_setup_data->callback_data;
917 INIT_LIST_HEAD(&task->tk_task);
918
919 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
920 task->tk_owner = current->tgid;
921
922 /* Initialize workqueue for async tasks */
923 task->tk_workqueue = task_setup_data->workqueue;
924
925 if (task->tk_ops->rpc_call_prepare != NULL)
926 task->tk_action = rpc_prepare_task;
927
928 rpc_init_task_statistics(task);
929
930 dprintk("RPC: new task initialized, procpid %u\n",
931 task_pid_nr(current));
932 }
933
934 static struct rpc_task *
rpc_alloc_task(void)935 rpc_alloc_task(void)
936 {
937 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
938 }
939
940 /*
941 * Create a new task for the specified client.
942 */
rpc_new_task(const struct rpc_task_setup * setup_data)943 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
944 {
945 struct rpc_task *task = setup_data->task;
946 unsigned short flags = 0;
947
948 if (task == NULL) {
949 task = rpc_alloc_task();
950 if (task == NULL) {
951 rpc_release_calldata(setup_data->callback_ops,
952 setup_data->callback_data);
953 return ERR_PTR(-ENOMEM);
954 }
955 flags = RPC_TASK_DYNAMIC;
956 }
957
958 rpc_init_task(task, setup_data);
959 task->tk_flags |= flags;
960 dprintk("RPC: allocated task %p\n", task);
961 return task;
962 }
963
964 /*
965 * rpc_free_task - release rpc task and perform cleanups
966 *
967 * Note that we free up the rpc_task _after_ rpc_release_calldata()
968 * in order to work around a workqueue dependency issue.
969 *
970 * Tejun Heo states:
971 * "Workqueue currently considers two work items to be the same if they're
972 * on the same address and won't execute them concurrently - ie. it
973 * makes a work item which is queued again while being executed wait
974 * for the previous execution to complete.
975 *
976 * If a work function frees the work item, and then waits for an event
977 * which should be performed by another work item and *that* work item
978 * recycles the freed work item, it can create a false dependency loop.
979 * There really is no reliable way to detect this short of verifying
980 * every memory free."
981 *
982 */
rpc_free_task(struct rpc_task * task)983 static void rpc_free_task(struct rpc_task *task)
984 {
985 unsigned short tk_flags = task->tk_flags;
986
987 rpc_release_calldata(task->tk_ops, task->tk_calldata);
988
989 if (tk_flags & RPC_TASK_DYNAMIC) {
990 dprintk("RPC: %5u freeing task\n", task->tk_pid);
991 mempool_free(task, rpc_task_mempool);
992 }
993 }
994
rpc_async_release(struct work_struct * work)995 static void rpc_async_release(struct work_struct *work)
996 {
997 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
998 }
999
rpc_release_resources_task(struct rpc_task * task)1000 static void rpc_release_resources_task(struct rpc_task *task)
1001 {
1002 xprt_release(task);
1003 if (task->tk_msg.rpc_cred) {
1004 put_rpccred(task->tk_msg.rpc_cred);
1005 task->tk_msg.rpc_cred = NULL;
1006 }
1007 rpc_task_release_client(task);
1008 }
1009
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1010 static void rpc_final_put_task(struct rpc_task *task,
1011 struct workqueue_struct *q)
1012 {
1013 if (q != NULL) {
1014 INIT_WORK(&task->u.tk_work, rpc_async_release);
1015 queue_work(q, &task->u.tk_work);
1016 } else
1017 rpc_free_task(task);
1018 }
1019
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1020 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1021 {
1022 if (atomic_dec_and_test(&task->tk_count)) {
1023 rpc_release_resources_task(task);
1024 rpc_final_put_task(task, q);
1025 }
1026 }
1027
rpc_put_task(struct rpc_task * task)1028 void rpc_put_task(struct rpc_task *task)
1029 {
1030 rpc_do_put_task(task, NULL);
1031 }
1032 EXPORT_SYMBOL_GPL(rpc_put_task);
1033
rpc_put_task_async(struct rpc_task * task)1034 void rpc_put_task_async(struct rpc_task *task)
1035 {
1036 rpc_do_put_task(task, task->tk_workqueue);
1037 }
1038 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1039
rpc_release_task(struct rpc_task * task)1040 static void rpc_release_task(struct rpc_task *task)
1041 {
1042 dprintk("RPC: %5u release task\n", task->tk_pid);
1043
1044 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1045
1046 rpc_release_resources_task(task);
1047
1048 /*
1049 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1050 * so it should be safe to use task->tk_count as a test for whether
1051 * or not any other processes still hold references to our rpc_task.
1052 */
1053 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1054 /* Wake up anyone who may be waiting for task completion */
1055 if (!rpc_complete_task(task))
1056 return;
1057 } else {
1058 if (!atomic_dec_and_test(&task->tk_count))
1059 return;
1060 }
1061 rpc_final_put_task(task, task->tk_workqueue);
1062 }
1063
rpciod_up(void)1064 int rpciod_up(void)
1065 {
1066 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1067 }
1068
rpciod_down(void)1069 void rpciod_down(void)
1070 {
1071 module_put(THIS_MODULE);
1072 }
1073
1074 /*
1075 * Start up the rpciod workqueue.
1076 */
rpciod_start(void)1077 static int rpciod_start(void)
1078 {
1079 struct workqueue_struct *wq;
1080
1081 /*
1082 * Create the rpciod thread and wait for it to start.
1083 */
1084 dprintk("RPC: creating workqueue rpciod\n");
1085 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1086 rpciod_workqueue = wq;
1087 return rpciod_workqueue != NULL;
1088 }
1089
rpciod_stop(void)1090 static void rpciod_stop(void)
1091 {
1092 struct workqueue_struct *wq = NULL;
1093
1094 if (rpciod_workqueue == NULL)
1095 return;
1096 dprintk("RPC: destroying workqueue rpciod\n");
1097
1098 wq = rpciod_workqueue;
1099 rpciod_workqueue = NULL;
1100 destroy_workqueue(wq);
1101 }
1102
1103 void
rpc_destroy_mempool(void)1104 rpc_destroy_mempool(void)
1105 {
1106 rpciod_stop();
1107 if (rpc_buffer_mempool)
1108 mempool_destroy(rpc_buffer_mempool);
1109 if (rpc_task_mempool)
1110 mempool_destroy(rpc_task_mempool);
1111 if (rpc_task_slabp)
1112 kmem_cache_destroy(rpc_task_slabp);
1113 if (rpc_buffer_slabp)
1114 kmem_cache_destroy(rpc_buffer_slabp);
1115 rpc_destroy_wait_queue(&delay_queue);
1116 }
1117
1118 int
rpc_init_mempool(void)1119 rpc_init_mempool(void)
1120 {
1121 /*
1122 * The following is not strictly a mempool initialisation,
1123 * but there is no harm in doing it here
1124 */
1125 rpc_init_wait_queue(&delay_queue, "delayq");
1126 if (!rpciod_start())
1127 goto err_nomem;
1128
1129 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1130 sizeof(struct rpc_task),
1131 0, SLAB_HWCACHE_ALIGN,
1132 NULL);
1133 if (!rpc_task_slabp)
1134 goto err_nomem;
1135 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1136 RPC_BUFFER_MAXSIZE,
1137 0, SLAB_HWCACHE_ALIGN,
1138 NULL);
1139 if (!rpc_buffer_slabp)
1140 goto err_nomem;
1141 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1142 rpc_task_slabp);
1143 if (!rpc_task_mempool)
1144 goto err_nomem;
1145 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1146 rpc_buffer_slabp);
1147 if (!rpc_buffer_mempool)
1148 goto err_nomem;
1149 return 0;
1150 err_nomem:
1151 rpc_destroy_mempool();
1152 return -ENOMEM;
1153 }
1154