• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66 
btrfs_decode_error(int errno)67 static const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
save_error_info(struct btrfs_fs_info * fs_info)95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
btrfs_handle_error(struct btrfs_fs_info * fs_info)105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 		sb->s_flags |= MS_RDONLY;
114 		btrfs_info(fs_info, "forced readonly");
115 		/*
116 		 * Note that a running device replace operation is not
117 		 * canceled here although there is no way to update
118 		 * the progress. It would add the risk of a deadlock,
119 		 * therefore the canceling is ommited. The only penalty
120 		 * is that some I/O remains active until the procedure
121 		 * completes. The next time when the filesystem is
122 		 * mounted writeable again, the device replace
123 		 * operation continues.
124 		 */
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
__btrfs_std_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	const char *errstr;
138 
139 	/*
140 	 * Special case: if the error is EROFS, and we're already
141 	 * under MS_RDONLY, then it is safe here.
142 	 */
143 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144   		return;
145 
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 
163 	/* Don't go through full error handling during mount */
164 	save_error_info(fs_info);
165 	if (sb->s_flags & MS_BORN)
166 		btrfs_handle_error(fs_info);
167 }
168 
169 static const char * const logtypes[] = {
170 	"emergency",
171 	"alert",
172 	"critical",
173 	"error",
174 	"warning",
175 	"notice",
176 	"info",
177 	"debug",
178 };
179 
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182 	struct super_block *sb = fs_info->sb;
183 	char lvl[4];
184 	struct va_format vaf;
185 	va_list args;
186 	const char *type = logtypes[4];
187 	int kern_level;
188 
189 	va_start(args, fmt);
190 
191 	kern_level = printk_get_level(fmt);
192 	if (kern_level) {
193 		size_t size = printk_skip_level(fmt) - fmt;
194 		memcpy(lvl, fmt,  size);
195 		lvl[size] = '\0';
196 		fmt += size;
197 		type = logtypes[kern_level - '0'];
198 	} else
199 		*lvl = '\0';
200 
201 	vaf.fmt = fmt;
202 	vaf.va = &args;
203 
204 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
205 
206 	va_end(args);
207 }
208 
209 #else
210 
__btrfs_std_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
212 		       unsigned int line, int errno, const char *fmt, ...)
213 {
214 	struct super_block *sb = fs_info->sb;
215 
216 	/*
217 	 * Special case: if the error is EROFS, and we're already
218 	 * under MS_RDONLY, then it is safe here.
219 	 */
220 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221 		return;
222 
223 	/* Don't go through full error handling during mount */
224 	if (sb->s_flags & MS_BORN) {
225 		save_error_info(fs_info);
226 		btrfs_handle_error(fs_info);
227 	}
228 }
229 #endif
230 
231 /*
232  * We only mark the transaction aborted and then set the file system read-only.
233  * This will prevent new transactions from starting or trying to join this
234  * one.
235  *
236  * This means that error recovery at the call site is limited to freeing
237  * any local memory allocations and passing the error code up without
238  * further cleanup. The transaction should complete as it normally would
239  * in the call path but will return -EIO.
240  *
241  * We'll complete the cleanup in btrfs_end_transaction and
242  * btrfs_commit_transaction.
243  */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * function,unsigned int line,int errno)244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
245 			       struct btrfs_root *root, const char *function,
246 			       unsigned int line, int errno)
247 {
248 	/*
249 	 * Report first abort since mount
250 	 */
251 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
252 				&root->fs_info->fs_state)) {
253 		WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
254 				errno);
255 	}
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->blocks_used) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(root->fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	ACCESS_ONCE(trans->transaction->aborted) = errno;
269 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
270 }
271 /*
272  * __btrfs_panic decodes unexpected, fatal errors from the caller,
273  * issues an alert, and either panics or BUGs, depending on mount options.
274  */
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)275 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
276 		   unsigned int line, int errno, const char *fmt, ...)
277 {
278 	char *s_id = "<unknown>";
279 	const char *errstr;
280 	struct va_format vaf = { .fmt = fmt };
281 	va_list args;
282 
283 	if (fs_info)
284 		s_id = fs_info->sb->s_id;
285 
286 	va_start(args, fmt);
287 	vaf.va = &args;
288 
289 	errstr = btrfs_decode_error(errno);
290 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
291 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
292 			s_id, function, line, &vaf, errno, errstr);
293 
294 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
295 	       s_id, function, line, &vaf, errno, errstr);
296 	va_end(args);
297 	/* Caller calls BUG() */
298 }
299 
btrfs_put_super(struct super_block * sb)300 static void btrfs_put_super(struct super_block *sb)
301 {
302 	(void)close_ctree(btrfs_sb(sb)->tree_root);
303 	/* FIXME: need to fix VFS to return error? */
304 	/* AV: return it _where_?  ->put_super() can be triggered by any number
305 	 * of async events, up to and including delivery of SIGKILL to the
306 	 * last process that kept it busy.  Or segfault in the aforementioned
307 	 * process...  Whom would you report that to?
308 	 */
309 }
310 
311 enum {
312 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
313 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
314 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
315 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
316 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
317 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
318 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
319 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
320 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
321 	Opt_check_integrity_print_mask, Opt_fatal_errors,
322 	Opt_err,
323 };
324 
325 static match_table_t tokens = {
326 	{Opt_degraded, "degraded"},
327 	{Opt_subvol, "subvol=%s"},
328 	{Opt_subvolid, "subvolid=%d"},
329 	{Opt_device, "device=%s"},
330 	{Opt_nodatasum, "nodatasum"},
331 	{Opt_nodatacow, "nodatacow"},
332 	{Opt_nobarrier, "nobarrier"},
333 	{Opt_max_inline, "max_inline=%s"},
334 	{Opt_alloc_start, "alloc_start=%s"},
335 	{Opt_thread_pool, "thread_pool=%d"},
336 	{Opt_compress, "compress"},
337 	{Opt_compress_type, "compress=%s"},
338 	{Opt_compress_force, "compress-force"},
339 	{Opt_compress_force_type, "compress-force=%s"},
340 	{Opt_ssd, "ssd"},
341 	{Opt_ssd_spread, "ssd_spread"},
342 	{Opt_nossd, "nossd"},
343 	{Opt_noacl, "noacl"},
344 	{Opt_notreelog, "notreelog"},
345 	{Opt_flushoncommit, "flushoncommit"},
346 	{Opt_ratio, "metadata_ratio=%d"},
347 	{Opt_discard, "discard"},
348 	{Opt_space_cache, "space_cache"},
349 	{Opt_clear_cache, "clear_cache"},
350 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
351 	{Opt_enospc_debug, "enospc_debug"},
352 	{Opt_subvolrootid, "subvolrootid=%d"},
353 	{Opt_defrag, "autodefrag"},
354 	{Opt_inode_cache, "inode_cache"},
355 	{Opt_no_space_cache, "nospace_cache"},
356 	{Opt_recovery, "recovery"},
357 	{Opt_skip_balance, "skip_balance"},
358 	{Opt_check_integrity, "check_int"},
359 	{Opt_check_integrity_including_extent_data, "check_int_data"},
360 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
361 	{Opt_fatal_errors, "fatal_errors=%s"},
362 	{Opt_err, NULL},
363 };
364 
365 /*
366  * Regular mount options parser.  Everything that is needed only when
367  * reading in a new superblock is parsed here.
368  * XXX JDM: This needs to be cleaned up for remount.
369  */
btrfs_parse_options(struct btrfs_root * root,char * options)370 int btrfs_parse_options(struct btrfs_root *root, char *options)
371 {
372 	struct btrfs_fs_info *info = root->fs_info;
373 	substring_t args[MAX_OPT_ARGS];
374 	char *p, *num, *orig = NULL;
375 	u64 cache_gen;
376 	int intarg;
377 	int ret = 0;
378 	char *compress_type;
379 	bool compress_force = false;
380 
381 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
382 	if (cache_gen)
383 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
384 
385 	if (!options)
386 		goto out;
387 
388 	/*
389 	 * strsep changes the string, duplicate it because parse_options
390 	 * gets called twice
391 	 */
392 	options = kstrdup(options, GFP_NOFS);
393 	if (!options)
394 		return -ENOMEM;
395 
396 	orig = options;
397 
398 	while ((p = strsep(&options, ",")) != NULL) {
399 		int token;
400 		if (!*p)
401 			continue;
402 
403 		token = match_token(p, tokens, args);
404 		switch (token) {
405 		case Opt_degraded:
406 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
407 			btrfs_set_opt(info->mount_opt, DEGRADED);
408 			break;
409 		case Opt_subvol:
410 		case Opt_subvolid:
411 		case Opt_subvolrootid:
412 		case Opt_device:
413 			/*
414 			 * These are parsed by btrfs_parse_early_options
415 			 * and can be happily ignored here.
416 			 */
417 			break;
418 		case Opt_nodatasum:
419 			printk(KERN_INFO "btrfs: setting nodatasum\n");
420 			btrfs_set_opt(info->mount_opt, NODATASUM);
421 			break;
422 		case Opt_nodatacow:
423 			if (!btrfs_test_opt(root, COMPRESS) ||
424 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
425 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
426 			} else {
427 				printk(KERN_INFO "btrfs: setting nodatacow\n");
428 			}
429 			info->compress_type = BTRFS_COMPRESS_NONE;
430 			btrfs_clear_opt(info->mount_opt, COMPRESS);
431 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
432 			btrfs_set_opt(info->mount_opt, NODATACOW);
433 			btrfs_set_opt(info->mount_opt, NODATASUM);
434 			break;
435 		case Opt_compress_force:
436 		case Opt_compress_force_type:
437 			compress_force = true;
438 			/* Fallthrough */
439 		case Opt_compress:
440 		case Opt_compress_type:
441 			if (token == Opt_compress ||
442 			    token == Opt_compress_force ||
443 			    strcmp(args[0].from, "zlib") == 0) {
444 				compress_type = "zlib";
445 				info->compress_type = BTRFS_COMPRESS_ZLIB;
446 				btrfs_set_opt(info->mount_opt, COMPRESS);
447 				btrfs_clear_opt(info->mount_opt, NODATACOW);
448 				btrfs_clear_opt(info->mount_opt, NODATASUM);
449 			} else if (strcmp(args[0].from, "lzo") == 0) {
450 				compress_type = "lzo";
451 				info->compress_type = BTRFS_COMPRESS_LZO;
452 				btrfs_set_opt(info->mount_opt, COMPRESS);
453 				btrfs_clear_opt(info->mount_opt, NODATACOW);
454 				btrfs_clear_opt(info->mount_opt, NODATASUM);
455 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
456 			} else if (strncmp(args[0].from, "no", 2) == 0) {
457 				compress_type = "no";
458 				info->compress_type = BTRFS_COMPRESS_NONE;
459 				btrfs_clear_opt(info->mount_opt, COMPRESS);
460 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
461 				compress_force = false;
462 			} else {
463 				ret = -EINVAL;
464 				goto out;
465 			}
466 
467 			if (compress_force) {
468 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
469 				pr_info("btrfs: force %s compression\n",
470 					compress_type);
471 			} else
472 				pr_info("btrfs: use %s compression\n",
473 					compress_type);
474 			break;
475 		case Opt_ssd:
476 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
477 			btrfs_set_opt(info->mount_opt, SSD);
478 			break;
479 		case Opt_ssd_spread:
480 			printk(KERN_INFO "btrfs: use spread ssd "
481 			       "allocation scheme\n");
482 			btrfs_set_opt(info->mount_opt, SSD);
483 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
484 			break;
485 		case Opt_nossd:
486 			printk(KERN_INFO "btrfs: not using ssd allocation "
487 			       "scheme\n");
488 			btrfs_set_opt(info->mount_opt, NOSSD);
489 			btrfs_clear_opt(info->mount_opt, SSD);
490 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
491 			break;
492 		case Opt_nobarrier:
493 			printk(KERN_INFO "btrfs: turning off barriers\n");
494 			btrfs_set_opt(info->mount_opt, NOBARRIER);
495 			break;
496 		case Opt_thread_pool:
497 			intarg = 0;
498 			match_int(&args[0], &intarg);
499 			if (intarg)
500 				info->thread_pool_size = intarg;
501 			break;
502 		case Opt_max_inline:
503 			num = match_strdup(&args[0]);
504 			if (num) {
505 				info->max_inline = memparse(num, NULL);
506 				kfree(num);
507 
508 				if (info->max_inline) {
509 					info->max_inline = max_t(u64,
510 						info->max_inline,
511 						root->sectorsize);
512 				}
513 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
514 					(unsigned long long)info->max_inline);
515 			}
516 			break;
517 		case Opt_alloc_start:
518 			num = match_strdup(&args[0]);
519 			if (num) {
520 				mutex_lock(&info->chunk_mutex);
521 				info->alloc_start = memparse(num, NULL);
522 				mutex_unlock(&info->chunk_mutex);
523 				kfree(num);
524 				printk(KERN_INFO
525 					"btrfs: allocations start at %llu\n",
526 					(unsigned long long)info->alloc_start);
527 			}
528 			break;
529 		case Opt_noacl:
530 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
531 			break;
532 		case Opt_notreelog:
533 			printk(KERN_INFO "btrfs: disabling tree log\n");
534 			btrfs_set_opt(info->mount_opt, NOTREELOG);
535 			break;
536 		case Opt_flushoncommit:
537 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
538 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
539 			break;
540 		case Opt_ratio:
541 			intarg = 0;
542 			match_int(&args[0], &intarg);
543 			if (intarg) {
544 				info->metadata_ratio = intarg;
545 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
546 				       info->metadata_ratio);
547 			}
548 			break;
549 		case Opt_discard:
550 			btrfs_set_opt(info->mount_opt, DISCARD);
551 			break;
552 		case Opt_space_cache:
553 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
554 			break;
555 		case Opt_no_space_cache:
556 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
557 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
558 			break;
559 		case Opt_inode_cache:
560 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
561 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
562 			break;
563 		case Opt_clear_cache:
564 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
565 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
566 			break;
567 		case Opt_user_subvol_rm_allowed:
568 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
569 			break;
570 		case Opt_enospc_debug:
571 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
572 			break;
573 		case Opt_defrag:
574 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
575 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
576 			break;
577 		case Opt_recovery:
578 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
579 			btrfs_set_opt(info->mount_opt, RECOVERY);
580 			break;
581 		case Opt_skip_balance:
582 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
583 			break;
584 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
585 		case Opt_check_integrity_including_extent_data:
586 			printk(KERN_INFO "btrfs: enabling check integrity"
587 			       " including extent data\n");
588 			btrfs_set_opt(info->mount_opt,
589 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
590 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
591 			break;
592 		case Opt_check_integrity:
593 			printk(KERN_INFO "btrfs: enabling check integrity\n");
594 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
595 			break;
596 		case Opt_check_integrity_print_mask:
597 			intarg = 0;
598 			match_int(&args[0], &intarg);
599 			if (intarg) {
600 				info->check_integrity_print_mask = intarg;
601 				printk(KERN_INFO "btrfs:"
602 				       " check_integrity_print_mask 0x%x\n",
603 				       info->check_integrity_print_mask);
604 			}
605 			break;
606 #else
607 		case Opt_check_integrity_including_extent_data:
608 		case Opt_check_integrity:
609 		case Opt_check_integrity_print_mask:
610 			printk(KERN_ERR "btrfs: support for check_integrity*"
611 			       " not compiled in!\n");
612 			ret = -EINVAL;
613 			goto out;
614 #endif
615 		case Opt_fatal_errors:
616 			if (strcmp(args[0].from, "panic") == 0)
617 				btrfs_set_opt(info->mount_opt,
618 					      PANIC_ON_FATAL_ERROR);
619 			else if (strcmp(args[0].from, "bug") == 0)
620 				btrfs_clear_opt(info->mount_opt,
621 					      PANIC_ON_FATAL_ERROR);
622 			else {
623 				ret = -EINVAL;
624 				goto out;
625 			}
626 			break;
627 		case Opt_err:
628 			printk(KERN_INFO "btrfs: unrecognized mount option "
629 			       "'%s'\n", p);
630 			ret = -EINVAL;
631 			goto out;
632 		default:
633 			break;
634 		}
635 	}
636 out:
637 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
638 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
639 	kfree(orig);
640 	return ret;
641 }
642 
643 /*
644  * Parse mount options that are required early in the mount process.
645  *
646  * All other options will be parsed on much later in the mount process and
647  * only when we need to allocate a new super block.
648  */
btrfs_parse_early_options(const char * options,fmode_t flags,void * holder,char ** subvol_name,u64 * subvol_objectid,struct btrfs_fs_devices ** fs_devices)649 static int btrfs_parse_early_options(const char *options, fmode_t flags,
650 		void *holder, char **subvol_name, u64 *subvol_objectid,
651 		struct btrfs_fs_devices **fs_devices)
652 {
653 	substring_t args[MAX_OPT_ARGS];
654 	char *device_name, *opts, *orig, *p;
655 	int error = 0;
656 	int intarg;
657 
658 	if (!options)
659 		return 0;
660 
661 	/*
662 	 * strsep changes the string, duplicate it because parse_options
663 	 * gets called twice
664 	 */
665 	opts = kstrdup(options, GFP_KERNEL);
666 	if (!opts)
667 		return -ENOMEM;
668 	orig = opts;
669 
670 	while ((p = strsep(&opts, ",")) != NULL) {
671 		int token;
672 		if (!*p)
673 			continue;
674 
675 		token = match_token(p, tokens, args);
676 		switch (token) {
677 		case Opt_subvol:
678 			kfree(*subvol_name);
679 			*subvol_name = match_strdup(&args[0]);
680 			break;
681 		case Opt_subvolid:
682 			intarg = 0;
683 			error = match_int(&args[0], &intarg);
684 			if (!error) {
685 				/* we want the original fs_tree */
686 				if (!intarg)
687 					*subvol_objectid =
688 						BTRFS_FS_TREE_OBJECTID;
689 				else
690 					*subvol_objectid = intarg;
691 			}
692 			break;
693 		case Opt_subvolrootid:
694 			printk(KERN_WARNING
695 				"btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
696 			break;
697 		case Opt_device:
698 			device_name = match_strdup(&args[0]);
699 			if (!device_name) {
700 				error = -ENOMEM;
701 				goto out;
702 			}
703 			error = btrfs_scan_one_device(device_name,
704 					flags, holder, fs_devices);
705 			kfree(device_name);
706 			if (error)
707 				goto out;
708 			break;
709 		default:
710 			break;
711 		}
712 	}
713 
714 out:
715 	kfree(orig);
716 	return error;
717 }
718 
get_default_root(struct super_block * sb,u64 subvol_objectid)719 static struct dentry *get_default_root(struct super_block *sb,
720 				       u64 subvol_objectid)
721 {
722 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
723 	struct btrfs_root *root = fs_info->tree_root;
724 	struct btrfs_root *new_root;
725 	struct btrfs_dir_item *di;
726 	struct btrfs_path *path;
727 	struct btrfs_key location;
728 	struct inode *inode;
729 	u64 dir_id;
730 	int new = 0;
731 
732 	/*
733 	 * We have a specific subvol we want to mount, just setup location and
734 	 * go look up the root.
735 	 */
736 	if (subvol_objectid) {
737 		location.objectid = subvol_objectid;
738 		location.type = BTRFS_ROOT_ITEM_KEY;
739 		location.offset = (u64)-1;
740 		goto find_root;
741 	}
742 
743 	path = btrfs_alloc_path();
744 	if (!path)
745 		return ERR_PTR(-ENOMEM);
746 	path->leave_spinning = 1;
747 
748 	/*
749 	 * Find the "default" dir item which points to the root item that we
750 	 * will mount by default if we haven't been given a specific subvolume
751 	 * to mount.
752 	 */
753 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
754 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
755 	if (IS_ERR(di)) {
756 		btrfs_free_path(path);
757 		return ERR_CAST(di);
758 	}
759 	if (!di) {
760 		/*
761 		 * Ok the default dir item isn't there.  This is weird since
762 		 * it's always been there, but don't freak out, just try and
763 		 * mount to root most subvolume.
764 		 */
765 		btrfs_free_path(path);
766 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
767 		new_root = fs_info->fs_root;
768 		goto setup_root;
769 	}
770 
771 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
772 	btrfs_free_path(path);
773 
774 find_root:
775 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
776 	if (IS_ERR(new_root))
777 		return ERR_CAST(new_root);
778 
779 	if (btrfs_root_refs(&new_root->root_item) == 0)
780 		return ERR_PTR(-ENOENT);
781 
782 	dir_id = btrfs_root_dirid(&new_root->root_item);
783 setup_root:
784 	location.objectid = dir_id;
785 	location.type = BTRFS_INODE_ITEM_KEY;
786 	location.offset = 0;
787 
788 	inode = btrfs_iget(sb, &location, new_root, &new);
789 	if (IS_ERR(inode))
790 		return ERR_CAST(inode);
791 
792 	/*
793 	 * If we're just mounting the root most subvol put the inode and return
794 	 * a reference to the dentry.  We will have already gotten a reference
795 	 * to the inode in btrfs_fill_super so we're good to go.
796 	 */
797 	if (!new && sb->s_root->d_inode == inode) {
798 		iput(inode);
799 		return dget(sb->s_root);
800 	}
801 
802 	return d_obtain_alias(inode);
803 }
804 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data,int silent)805 static int btrfs_fill_super(struct super_block *sb,
806 			    struct btrfs_fs_devices *fs_devices,
807 			    void *data, int silent)
808 {
809 	struct inode *inode;
810 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
811 	struct btrfs_key key;
812 	int err;
813 
814 	sb->s_maxbytes = MAX_LFS_FILESIZE;
815 	sb->s_magic = BTRFS_SUPER_MAGIC;
816 	sb->s_op = &btrfs_super_ops;
817 	sb->s_d_op = &btrfs_dentry_operations;
818 	sb->s_export_op = &btrfs_export_ops;
819 	sb->s_xattr = btrfs_xattr_handlers;
820 	sb->s_time_gran = 1;
821 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
822 	sb->s_flags |= MS_POSIXACL;
823 #endif
824 	sb->s_flags |= MS_I_VERSION;
825 	err = open_ctree(sb, fs_devices, (char *)data);
826 	if (err) {
827 		printk("btrfs: open_ctree failed\n");
828 		return err;
829 	}
830 
831 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
832 	key.type = BTRFS_INODE_ITEM_KEY;
833 	key.offset = 0;
834 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
835 	if (IS_ERR(inode)) {
836 		err = PTR_ERR(inode);
837 		goto fail_close;
838 	}
839 
840 	sb->s_root = d_make_root(inode);
841 	if (!sb->s_root) {
842 		err = -ENOMEM;
843 		goto fail_close;
844 	}
845 
846 	save_mount_options(sb, data);
847 	cleancache_init_fs(sb);
848 	sb->s_flags |= MS_ACTIVE;
849 	return 0;
850 
851 fail_close:
852 	close_ctree(fs_info->tree_root);
853 	return err;
854 }
855 
btrfs_sync_fs(struct super_block * sb,int wait)856 int btrfs_sync_fs(struct super_block *sb, int wait)
857 {
858 	struct btrfs_trans_handle *trans;
859 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
860 	struct btrfs_root *root = fs_info->tree_root;
861 
862 	trace_btrfs_sync_fs(wait);
863 
864 	if (!wait) {
865 		filemap_flush(fs_info->btree_inode->i_mapping);
866 		return 0;
867 	}
868 
869 	btrfs_wait_ordered_extents(root, 1);
870 
871 	trans = btrfs_attach_transaction_barrier(root);
872 	if (IS_ERR(trans)) {
873 		/* no transaction, don't bother */
874 		if (PTR_ERR(trans) == -ENOENT)
875 			return 0;
876 		return PTR_ERR(trans);
877 	}
878 	return btrfs_commit_transaction(trans, root);
879 }
880 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)881 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
882 {
883 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
884 	struct btrfs_root *root = info->tree_root;
885 	char *compress_type;
886 
887 	if (btrfs_test_opt(root, DEGRADED))
888 		seq_puts(seq, ",degraded");
889 	if (btrfs_test_opt(root, NODATASUM))
890 		seq_puts(seq, ",nodatasum");
891 	if (btrfs_test_opt(root, NODATACOW))
892 		seq_puts(seq, ",nodatacow");
893 	if (btrfs_test_opt(root, NOBARRIER))
894 		seq_puts(seq, ",nobarrier");
895 	if (info->max_inline != 8192 * 1024)
896 		seq_printf(seq, ",max_inline=%llu",
897 			   (unsigned long long)info->max_inline);
898 	if (info->alloc_start != 0)
899 		seq_printf(seq, ",alloc_start=%llu",
900 			   (unsigned long long)info->alloc_start);
901 	if (info->thread_pool_size !=  min_t(unsigned long,
902 					     num_online_cpus() + 2, 8))
903 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
904 	if (btrfs_test_opt(root, COMPRESS)) {
905 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
906 			compress_type = "zlib";
907 		else
908 			compress_type = "lzo";
909 		if (btrfs_test_opt(root, FORCE_COMPRESS))
910 			seq_printf(seq, ",compress-force=%s", compress_type);
911 		else
912 			seq_printf(seq, ",compress=%s", compress_type);
913 	}
914 	if (btrfs_test_opt(root, NOSSD))
915 		seq_puts(seq, ",nossd");
916 	if (btrfs_test_opt(root, SSD_SPREAD))
917 		seq_puts(seq, ",ssd_spread");
918 	else if (btrfs_test_opt(root, SSD))
919 		seq_puts(seq, ",ssd");
920 	if (btrfs_test_opt(root, NOTREELOG))
921 		seq_puts(seq, ",notreelog");
922 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
923 		seq_puts(seq, ",flushoncommit");
924 	if (btrfs_test_opt(root, DISCARD))
925 		seq_puts(seq, ",discard");
926 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
927 		seq_puts(seq, ",noacl");
928 	if (btrfs_test_opt(root, SPACE_CACHE))
929 		seq_puts(seq, ",space_cache");
930 	else
931 		seq_puts(seq, ",nospace_cache");
932 	if (btrfs_test_opt(root, CLEAR_CACHE))
933 		seq_puts(seq, ",clear_cache");
934 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
935 		seq_puts(seq, ",user_subvol_rm_allowed");
936 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
937 		seq_puts(seq, ",enospc_debug");
938 	if (btrfs_test_opt(root, AUTO_DEFRAG))
939 		seq_puts(seq, ",autodefrag");
940 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
941 		seq_puts(seq, ",inode_cache");
942 	if (btrfs_test_opt(root, SKIP_BALANCE))
943 		seq_puts(seq, ",skip_balance");
944 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
945 		seq_puts(seq, ",fatal_errors=panic");
946 	return 0;
947 }
948 
btrfs_test_super(struct super_block * s,void * data)949 static int btrfs_test_super(struct super_block *s, void *data)
950 {
951 	struct btrfs_fs_info *p = data;
952 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
953 
954 	return fs_info->fs_devices == p->fs_devices;
955 }
956 
btrfs_set_super(struct super_block * s,void * data)957 static int btrfs_set_super(struct super_block *s, void *data)
958 {
959 	int err = set_anon_super(s, data);
960 	if (!err)
961 		s->s_fs_info = data;
962 	return err;
963 }
964 
965 /*
966  * subvolumes are identified by ino 256
967  */
is_subvolume_inode(struct inode * inode)968 static inline int is_subvolume_inode(struct inode *inode)
969 {
970 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
971 		return 1;
972 	return 0;
973 }
974 
975 /*
976  * This will strip out the subvol=%s argument for an argument string and add
977  * subvolid=0 to make sure we get the actual tree root for path walking to the
978  * subvol we want.
979  */
setup_root_args(char * args)980 static char *setup_root_args(char *args)
981 {
982 	unsigned len = strlen(args) + 2 + 1;
983 	char *src, *dst, *buf;
984 
985 	/*
986 	 * We need the same args as before, but with this substitution:
987 	 * s!subvol=[^,]+!subvolid=0!
988 	 *
989 	 * Since the replacement string is up to 2 bytes longer than the
990 	 * original, allocate strlen(args) + 2 + 1 bytes.
991 	 */
992 
993 	src = strstr(args, "subvol=");
994 	/* This shouldn't happen, but just in case.. */
995 	if (!src)
996 		return NULL;
997 
998 	buf = dst = kmalloc(len, GFP_NOFS);
999 	if (!buf)
1000 		return NULL;
1001 
1002 	/*
1003 	 * If the subvol= arg is not at the start of the string,
1004 	 * copy whatever precedes it into buf.
1005 	 */
1006 	if (src != args) {
1007 		*src++ = '\0';
1008 		strcpy(buf, args);
1009 		dst += strlen(args);
1010 	}
1011 
1012 	strcpy(dst, "subvolid=0");
1013 	dst += strlen("subvolid=0");
1014 
1015 	/*
1016 	 * If there is a "," after the original subvol=... string,
1017 	 * copy that suffix into our buffer.  Otherwise, we're done.
1018 	 */
1019 	src = strchr(src, ',');
1020 	if (src)
1021 		strcpy(dst, src);
1022 
1023 	return buf;
1024 }
1025 
mount_subvol(const char * subvol_name,int flags,const char * device_name,char * data)1026 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1027 				   const char *device_name, char *data)
1028 {
1029 	struct dentry *root;
1030 	struct vfsmount *mnt;
1031 	char *newargs;
1032 
1033 	newargs = setup_root_args(data);
1034 	if (!newargs)
1035 		return ERR_PTR(-ENOMEM);
1036 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1037 			     newargs);
1038 	kfree(newargs);
1039 	if (IS_ERR(mnt))
1040 		return ERR_CAST(mnt);
1041 
1042 	root = mount_subtree(mnt, subvol_name);
1043 
1044 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1045 		struct super_block *s = root->d_sb;
1046 		dput(root);
1047 		root = ERR_PTR(-EINVAL);
1048 		deactivate_locked_super(s);
1049 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1050 				subvol_name);
1051 	}
1052 
1053 	return root;
1054 }
1055 
1056 /*
1057  * Find a superblock for the given device / mount point.
1058  *
1059  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1060  *	  for multiple device setup.  Make sure to keep it in sync.
1061  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1062 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1063 		const char *device_name, void *data)
1064 {
1065 	struct block_device *bdev = NULL;
1066 	struct super_block *s;
1067 	struct dentry *root;
1068 	struct btrfs_fs_devices *fs_devices = NULL;
1069 	struct btrfs_fs_info *fs_info = NULL;
1070 	fmode_t mode = FMODE_READ;
1071 	char *subvol_name = NULL;
1072 	u64 subvol_objectid = 0;
1073 	int error = 0;
1074 
1075 	if (!(flags & MS_RDONLY))
1076 		mode |= FMODE_WRITE;
1077 
1078 	error = btrfs_parse_early_options(data, mode, fs_type,
1079 					  &subvol_name, &subvol_objectid,
1080 					  &fs_devices);
1081 	if (error) {
1082 		kfree(subvol_name);
1083 		return ERR_PTR(error);
1084 	}
1085 
1086 	if (subvol_name) {
1087 		root = mount_subvol(subvol_name, flags, device_name, data);
1088 		kfree(subvol_name);
1089 		return root;
1090 	}
1091 
1092 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1093 	if (error)
1094 		return ERR_PTR(error);
1095 
1096 	/*
1097 	 * Setup a dummy root and fs_info for test/set super.  This is because
1098 	 * we don't actually fill this stuff out until open_ctree, but we need
1099 	 * it for searching for existing supers, so this lets us do that and
1100 	 * then open_ctree will properly initialize everything later.
1101 	 */
1102 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1103 	if (!fs_info)
1104 		return ERR_PTR(-ENOMEM);
1105 
1106 	fs_info->fs_devices = fs_devices;
1107 
1108 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1110 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1111 		error = -ENOMEM;
1112 		goto error_fs_info;
1113 	}
1114 
1115 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1116 	if (error)
1117 		goto error_fs_info;
1118 
1119 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1120 		error = -EACCES;
1121 		goto error_close_devices;
1122 	}
1123 
1124 	bdev = fs_devices->latest_bdev;
1125 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1126 		 fs_info);
1127 	if (IS_ERR(s)) {
1128 		error = PTR_ERR(s);
1129 		goto error_close_devices;
1130 	}
1131 
1132 	if (s->s_root) {
1133 		btrfs_close_devices(fs_devices);
1134 		free_fs_info(fs_info);
1135 		if ((flags ^ s->s_flags) & MS_RDONLY)
1136 			error = -EBUSY;
1137 	} else {
1138 		char b[BDEVNAME_SIZE];
1139 
1140 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1141 		btrfs_sb(s)->bdev_holder = fs_type;
1142 		error = btrfs_fill_super(s, fs_devices, data,
1143 					 flags & MS_SILENT ? 1 : 0);
1144 	}
1145 
1146 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1147 	if (IS_ERR(root))
1148 		deactivate_locked_super(s);
1149 
1150 	return root;
1151 
1152 error_close_devices:
1153 	btrfs_close_devices(fs_devices);
1154 error_fs_info:
1155 	free_fs_info(fs_info);
1156 	return ERR_PTR(error);
1157 }
1158 
btrfs_set_max_workers(struct btrfs_workers * workers,int new_limit)1159 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1160 {
1161 	spin_lock_irq(&workers->lock);
1162 	workers->max_workers = new_limit;
1163 	spin_unlock_irq(&workers->lock);
1164 }
1165 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,int new_pool_size,int old_pool_size)1166 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1167 				     int new_pool_size, int old_pool_size)
1168 {
1169 	if (new_pool_size == old_pool_size)
1170 		return;
1171 
1172 	fs_info->thread_pool_size = new_pool_size;
1173 
1174 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1175 	       old_pool_size, new_pool_size);
1176 
1177 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1178 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1179 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1180 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1181 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1182 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1183 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1184 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1185 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1186 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1187 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1188 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1189 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1190 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1191 			      new_pool_size);
1192 }
1193 
btrfs_remount_prepare(struct btrfs_fs_info * fs_info)1194 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1195 {
1196 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1197 }
1198 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1199 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1200 				       unsigned long old_opts, int flags)
1201 {
1202 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1203 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1204 	     (flags & MS_RDONLY))) {
1205 		/* wait for any defraggers to finish */
1206 		wait_event(fs_info->transaction_wait,
1207 			   (atomic_read(&fs_info->defrag_running) == 0));
1208 		if (flags & MS_RDONLY)
1209 			sync_filesystem(fs_info->sb);
1210 	}
1211 }
1212 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1213 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1214 					 unsigned long old_opts)
1215 {
1216 	/*
1217 	 * We need cleanup all defragable inodes if the autodefragment is
1218 	 * close or the fs is R/O.
1219 	 */
1220 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1221 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1222 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1223 		btrfs_cleanup_defrag_inodes(fs_info);
1224 	}
1225 
1226 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1227 }
1228 
btrfs_remount(struct super_block * sb,int * flags,char * data)1229 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1230 {
1231 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1232 	struct btrfs_root *root = fs_info->tree_root;
1233 	unsigned old_flags = sb->s_flags;
1234 	unsigned long old_opts = fs_info->mount_opt;
1235 	unsigned long old_compress_type = fs_info->compress_type;
1236 	u64 old_max_inline = fs_info->max_inline;
1237 	u64 old_alloc_start = fs_info->alloc_start;
1238 	int old_thread_pool_size = fs_info->thread_pool_size;
1239 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1240 	int ret;
1241 
1242 	sync_filesystem(sb);
1243 	btrfs_remount_prepare(fs_info);
1244 
1245 	ret = btrfs_parse_options(root, data);
1246 	if (ret) {
1247 		ret = -EINVAL;
1248 		goto restore;
1249 	}
1250 
1251 	btrfs_remount_begin(fs_info, old_opts, *flags);
1252 	btrfs_resize_thread_pool(fs_info,
1253 		fs_info->thread_pool_size, old_thread_pool_size);
1254 
1255 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1256 		goto out;
1257 
1258 	if (*flags & MS_RDONLY) {
1259 		/*
1260 		 * this also happens on 'umount -rf' or on shutdown, when
1261 		 * the filesystem is busy.
1262 		 */
1263 		sb->s_flags |= MS_RDONLY;
1264 
1265 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1266 		btrfs_scrub_cancel(fs_info);
1267 		btrfs_pause_balance(fs_info);
1268 
1269 		ret = btrfs_commit_super(root);
1270 		if (ret)
1271 			goto restore;
1272 	} else {
1273 		if (fs_info->fs_devices->rw_devices == 0) {
1274 			ret = -EACCES;
1275 			goto restore;
1276 		}
1277 
1278 		if (fs_info->fs_devices->missing_devices >
1279 		     fs_info->num_tolerated_disk_barrier_failures &&
1280 		    !(*flags & MS_RDONLY)) {
1281 			printk(KERN_WARNING
1282 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1283 			ret = -EACCES;
1284 			goto restore;
1285 		}
1286 
1287 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1288 			ret = -EINVAL;
1289 			goto restore;
1290 		}
1291 
1292 		ret = btrfs_cleanup_fs_roots(fs_info);
1293 		if (ret)
1294 			goto restore;
1295 
1296 		/* recover relocation */
1297 		ret = btrfs_recover_relocation(root);
1298 		if (ret)
1299 			goto restore;
1300 
1301 		ret = btrfs_resume_balance_async(fs_info);
1302 		if (ret)
1303 			goto restore;
1304 
1305 		ret = btrfs_resume_dev_replace_async(fs_info);
1306 		if (ret) {
1307 			pr_warn("btrfs: failed to resume dev_replace\n");
1308 			goto restore;
1309 		}
1310 		sb->s_flags &= ~MS_RDONLY;
1311 	}
1312 out:
1313 	btrfs_remount_cleanup(fs_info, old_opts);
1314 	return 0;
1315 
1316 restore:
1317 	/* We've hit an error - don't reset MS_RDONLY */
1318 	if (sb->s_flags & MS_RDONLY)
1319 		old_flags |= MS_RDONLY;
1320 	sb->s_flags = old_flags;
1321 	fs_info->mount_opt = old_opts;
1322 	fs_info->compress_type = old_compress_type;
1323 	fs_info->max_inline = old_max_inline;
1324 	mutex_lock(&fs_info->chunk_mutex);
1325 	fs_info->alloc_start = old_alloc_start;
1326 	mutex_unlock(&fs_info->chunk_mutex);
1327 	btrfs_resize_thread_pool(fs_info,
1328 		old_thread_pool_size, fs_info->thread_pool_size);
1329 	fs_info->metadata_ratio = old_metadata_ratio;
1330 	btrfs_remount_cleanup(fs_info, old_opts);
1331 	return ret;
1332 }
1333 
1334 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)1335 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1336 				       const void *dev_info2)
1337 {
1338 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1339 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1340 		return -1;
1341 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1342 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1343 		return 1;
1344 	else
1345 	return 0;
1346 }
1347 
1348 /*
1349  * sort the devices by max_avail, in which max free extent size of each device
1350  * is stored.(Descending Sort)
1351  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1352 static inline void btrfs_descending_sort_devices(
1353 					struct btrfs_device_info *devices,
1354 					size_t nr_devices)
1355 {
1356 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1357 	     btrfs_cmp_device_free_bytes, NULL);
1358 }
1359 
1360 /*
1361  * The helper to calc the free space on the devices that can be used to store
1362  * file data.
1363  */
btrfs_calc_avail_data_space(struct btrfs_root * root,u64 * free_bytes)1364 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1365 {
1366 	struct btrfs_fs_info *fs_info = root->fs_info;
1367 	struct btrfs_device_info *devices_info;
1368 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1369 	struct btrfs_device *device;
1370 	u64 skip_space;
1371 	u64 type;
1372 	u64 avail_space;
1373 	u64 used_space;
1374 	u64 min_stripe_size;
1375 	int min_stripes = 1, num_stripes = 1;
1376 	int i = 0, nr_devices;
1377 	int ret;
1378 
1379 	nr_devices = fs_info->fs_devices->open_devices;
1380 	BUG_ON(!nr_devices);
1381 
1382 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1383 			       GFP_NOFS);
1384 	if (!devices_info)
1385 		return -ENOMEM;
1386 
1387 	/* calc min stripe number for data space alloction */
1388 	type = btrfs_get_alloc_profile(root, 1);
1389 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1390 		min_stripes = 2;
1391 		num_stripes = nr_devices;
1392 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1393 		min_stripes = 2;
1394 		num_stripes = 2;
1395 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1396 		min_stripes = 4;
1397 		num_stripes = 4;
1398 	}
1399 
1400 	if (type & BTRFS_BLOCK_GROUP_DUP)
1401 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1402 	else
1403 		min_stripe_size = BTRFS_STRIPE_LEN;
1404 
1405 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1406 		if (!device->in_fs_metadata || !device->bdev ||
1407 		    device->is_tgtdev_for_dev_replace)
1408 			continue;
1409 
1410 		avail_space = device->total_bytes - device->bytes_used;
1411 
1412 		/* align with stripe_len */
1413 		do_div(avail_space, BTRFS_STRIPE_LEN);
1414 		avail_space *= BTRFS_STRIPE_LEN;
1415 
1416 		/*
1417 		 * In order to avoid overwritting the superblock on the drive,
1418 		 * btrfs starts at an offset of at least 1MB when doing chunk
1419 		 * allocation.
1420 		 */
1421 		skip_space = 1024 * 1024;
1422 
1423 		/* user can set the offset in fs_info->alloc_start. */
1424 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1425 		    device->total_bytes)
1426 			skip_space = max(fs_info->alloc_start, skip_space);
1427 
1428 		/*
1429 		 * btrfs can not use the free space in [0, skip_space - 1],
1430 		 * we must subtract it from the total. In order to implement
1431 		 * it, we account the used space in this range first.
1432 		 */
1433 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1434 						     &used_space);
1435 		if (ret) {
1436 			kfree(devices_info);
1437 			return ret;
1438 		}
1439 
1440 		/* calc the free space in [0, skip_space - 1] */
1441 		skip_space -= used_space;
1442 
1443 		/*
1444 		 * we can use the free space in [0, skip_space - 1], subtract
1445 		 * it from the total.
1446 		 */
1447 		if (avail_space && avail_space >= skip_space)
1448 			avail_space -= skip_space;
1449 		else
1450 			avail_space = 0;
1451 
1452 		if (avail_space < min_stripe_size)
1453 			continue;
1454 
1455 		devices_info[i].dev = device;
1456 		devices_info[i].max_avail = avail_space;
1457 
1458 		i++;
1459 	}
1460 
1461 	nr_devices = i;
1462 
1463 	btrfs_descending_sort_devices(devices_info, nr_devices);
1464 
1465 	i = nr_devices - 1;
1466 	avail_space = 0;
1467 	while (nr_devices >= min_stripes) {
1468 		if (num_stripes > nr_devices)
1469 			num_stripes = nr_devices;
1470 
1471 		if (devices_info[i].max_avail >= min_stripe_size) {
1472 			int j;
1473 			u64 alloc_size;
1474 
1475 			avail_space += devices_info[i].max_avail * num_stripes;
1476 			alloc_size = devices_info[i].max_avail;
1477 			for (j = i + 1 - num_stripes; j <= i; j++)
1478 				devices_info[j].max_avail -= alloc_size;
1479 		}
1480 		i--;
1481 		nr_devices--;
1482 	}
1483 
1484 	kfree(devices_info);
1485 	*free_bytes = avail_space;
1486 	return 0;
1487 }
1488 
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1489 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1490 {
1491 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1492 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1493 	struct list_head *head = &fs_info->space_info;
1494 	struct btrfs_space_info *found;
1495 	u64 total_used = 0;
1496 	u64 total_free_data = 0;
1497 	int bits = dentry->d_sb->s_blocksize_bits;
1498 	__be32 *fsid = (__be32 *)fs_info->fsid;
1499 	int ret;
1500 
1501 	/* holding chunk_muext to avoid allocating new chunks */
1502 	mutex_lock(&fs_info->chunk_mutex);
1503 	rcu_read_lock();
1504 	list_for_each_entry_rcu(found, head, list) {
1505 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1506 			total_free_data += found->disk_total - found->disk_used;
1507 			total_free_data -=
1508 				btrfs_account_ro_block_groups_free_space(found);
1509 		}
1510 
1511 		total_used += found->disk_used;
1512 	}
1513 	rcu_read_unlock();
1514 
1515 	buf->f_namelen = BTRFS_NAME_LEN;
1516 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1517 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1518 	buf->f_bsize = dentry->d_sb->s_blocksize;
1519 	buf->f_type = BTRFS_SUPER_MAGIC;
1520 	buf->f_bavail = total_free_data;
1521 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1522 	if (ret) {
1523 		mutex_unlock(&fs_info->chunk_mutex);
1524 		return ret;
1525 	}
1526 	buf->f_bavail += total_free_data;
1527 	buf->f_bavail = buf->f_bavail >> bits;
1528 	mutex_unlock(&fs_info->chunk_mutex);
1529 
1530 	/* We treat it as constant endianness (it doesn't matter _which_)
1531 	   because we want the fsid to come out the same whether mounted
1532 	   on a big-endian or little-endian host */
1533 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1534 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1535 	/* Mask in the root object ID too, to disambiguate subvols */
1536 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1537 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1538 
1539 	return 0;
1540 }
1541 
btrfs_kill_super(struct super_block * sb)1542 static void btrfs_kill_super(struct super_block *sb)
1543 {
1544 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1545 	kill_anon_super(sb);
1546 	free_fs_info(fs_info);
1547 }
1548 
1549 static struct file_system_type btrfs_fs_type = {
1550 	.owner		= THIS_MODULE,
1551 	.name		= "btrfs",
1552 	.mount		= btrfs_mount,
1553 	.kill_sb	= btrfs_kill_super,
1554 	.fs_flags	= FS_REQUIRES_DEV,
1555 };
1556 MODULE_ALIAS_FS("btrfs");
1557 
1558 /*
1559  * used by btrfsctl to scan devices when no FS is mounted
1560  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1561 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1562 				unsigned long arg)
1563 {
1564 	struct btrfs_ioctl_vol_args *vol;
1565 	struct btrfs_fs_devices *fs_devices;
1566 	int ret = -ENOTTY;
1567 
1568 	if (!capable(CAP_SYS_ADMIN))
1569 		return -EPERM;
1570 
1571 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1572 	if (IS_ERR(vol))
1573 		return PTR_ERR(vol);
1574 
1575 	switch (cmd) {
1576 	case BTRFS_IOC_SCAN_DEV:
1577 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1578 					    &btrfs_fs_type, &fs_devices);
1579 		break;
1580 	case BTRFS_IOC_DEVICES_READY:
1581 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1582 					    &btrfs_fs_type, &fs_devices);
1583 		if (ret)
1584 			break;
1585 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1586 		break;
1587 	}
1588 
1589 	kfree(vol);
1590 	return ret;
1591 }
1592 
btrfs_freeze(struct super_block * sb)1593 static int btrfs_freeze(struct super_block *sb)
1594 {
1595 	struct btrfs_trans_handle *trans;
1596 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1597 
1598 	trans = btrfs_attach_transaction_barrier(root);
1599 	if (IS_ERR(trans)) {
1600 		/* no transaction, don't bother */
1601 		if (PTR_ERR(trans) == -ENOENT)
1602 			return 0;
1603 		return PTR_ERR(trans);
1604 	}
1605 	return btrfs_commit_transaction(trans, root);
1606 }
1607 
btrfs_unfreeze(struct super_block * sb)1608 static int btrfs_unfreeze(struct super_block *sb)
1609 {
1610 	return 0;
1611 }
1612 
btrfs_show_devname(struct seq_file * m,struct dentry * root)1613 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1614 {
1615 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1616 	struct btrfs_fs_devices *cur_devices;
1617 	struct btrfs_device *dev, *first_dev = NULL;
1618 	struct list_head *head;
1619 	struct rcu_string *name;
1620 
1621 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1622 	cur_devices = fs_info->fs_devices;
1623 	while (cur_devices) {
1624 		head = &cur_devices->devices;
1625 		list_for_each_entry(dev, head, dev_list) {
1626 			if (dev->missing)
1627 				continue;
1628 			if (!first_dev || dev->devid < first_dev->devid)
1629 				first_dev = dev;
1630 		}
1631 		cur_devices = cur_devices->seed;
1632 	}
1633 
1634 	if (first_dev) {
1635 		rcu_read_lock();
1636 		name = rcu_dereference(first_dev->name);
1637 		seq_escape(m, name->str, " \t\n\\");
1638 		rcu_read_unlock();
1639 	} else {
1640 		WARN_ON(1);
1641 	}
1642 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1643 	return 0;
1644 }
1645 
1646 static const struct super_operations btrfs_super_ops = {
1647 	.drop_inode	= btrfs_drop_inode,
1648 	.evict_inode	= btrfs_evict_inode,
1649 	.put_super	= btrfs_put_super,
1650 	.sync_fs	= btrfs_sync_fs,
1651 	.show_options	= btrfs_show_options,
1652 	.show_devname	= btrfs_show_devname,
1653 	.write_inode	= btrfs_write_inode,
1654 	.alloc_inode	= btrfs_alloc_inode,
1655 	.destroy_inode	= btrfs_destroy_inode,
1656 	.statfs		= btrfs_statfs,
1657 	.remount_fs	= btrfs_remount,
1658 	.freeze_fs	= btrfs_freeze,
1659 	.unfreeze_fs	= btrfs_unfreeze,
1660 };
1661 
1662 static const struct file_operations btrfs_ctl_fops = {
1663 	.unlocked_ioctl	 = btrfs_control_ioctl,
1664 	.compat_ioctl = btrfs_control_ioctl,
1665 	.owner	 = THIS_MODULE,
1666 	.llseek = noop_llseek,
1667 };
1668 
1669 static struct miscdevice btrfs_misc = {
1670 	.minor		= BTRFS_MINOR,
1671 	.name		= "btrfs-control",
1672 	.fops		= &btrfs_ctl_fops
1673 };
1674 
1675 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1676 MODULE_ALIAS("devname:btrfs-control");
1677 
btrfs_interface_init(void)1678 static int btrfs_interface_init(void)
1679 {
1680 	return misc_register(&btrfs_misc);
1681 }
1682 
btrfs_interface_exit(void)1683 static void btrfs_interface_exit(void)
1684 {
1685 	if (misc_deregister(&btrfs_misc) < 0)
1686 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1687 }
1688 
init_btrfs_fs(void)1689 static int __init init_btrfs_fs(void)
1690 {
1691 	int err;
1692 
1693 	err = btrfs_init_sysfs();
1694 	if (err)
1695 		return err;
1696 
1697 	btrfs_init_compress();
1698 
1699 	err = btrfs_init_cachep();
1700 	if (err)
1701 		goto free_compress;
1702 
1703 	err = extent_io_init();
1704 	if (err)
1705 		goto free_cachep;
1706 
1707 	err = extent_map_init();
1708 	if (err)
1709 		goto free_extent_io;
1710 
1711 	err = ordered_data_init();
1712 	if (err)
1713 		goto free_extent_map;
1714 
1715 	err = btrfs_delayed_inode_init();
1716 	if (err)
1717 		goto free_ordered_data;
1718 
1719 	err = btrfs_auto_defrag_init();
1720 	if (err)
1721 		goto free_delayed_inode;
1722 
1723 	err = btrfs_delayed_ref_init();
1724 	if (err)
1725 		goto free_auto_defrag;
1726 
1727 	err = btrfs_interface_init();
1728 	if (err)
1729 		goto free_delayed_ref;
1730 
1731 	err = register_filesystem(&btrfs_fs_type);
1732 	if (err)
1733 		goto unregister_ioctl;
1734 
1735 	btrfs_init_lockdep();
1736 
1737 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1738 	btrfs_test_free_space_cache();
1739 #endif
1740 
1741 	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1742 	return 0;
1743 
1744 unregister_ioctl:
1745 	btrfs_interface_exit();
1746 free_delayed_ref:
1747 	btrfs_delayed_ref_exit();
1748 free_auto_defrag:
1749 	btrfs_auto_defrag_exit();
1750 free_delayed_inode:
1751 	btrfs_delayed_inode_exit();
1752 free_ordered_data:
1753 	ordered_data_exit();
1754 free_extent_map:
1755 	extent_map_exit();
1756 free_extent_io:
1757 	extent_io_exit();
1758 free_cachep:
1759 	btrfs_destroy_cachep();
1760 free_compress:
1761 	btrfs_exit_compress();
1762 	btrfs_exit_sysfs();
1763 	return err;
1764 }
1765 
exit_btrfs_fs(void)1766 static void __exit exit_btrfs_fs(void)
1767 {
1768 	btrfs_destroy_cachep();
1769 	btrfs_delayed_ref_exit();
1770 	btrfs_auto_defrag_exit();
1771 	btrfs_delayed_inode_exit();
1772 	ordered_data_exit();
1773 	extent_map_exit();
1774 	extent_io_exit();
1775 	btrfs_interface_exit();
1776 	unregister_filesystem(&btrfs_fs_type);
1777 	btrfs_exit_sysfs();
1778 	btrfs_cleanup_fs_uuids();
1779 	btrfs_exit_compress();
1780 }
1781 
1782 module_init(init_btrfs_fs)
1783 module_exit(exit_btrfs_fs)
1784 
1785 MODULE_LICENSE("GPL");
1786