1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
acpi_scsi_bus_match(struct device * dev)74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 return dev->bus == &scsi_bus_type;
77 }
78
scsi_register_acpi_bus_type(struct acpi_bus_type * bus)79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81 bus->match = acpi_scsi_bus_match;
82 return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
scsi_unregister_acpi_bus_type(struct acpi_bus_type * bus)86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95 * not change behaviour from the previous unplug mechanism, experimentation
96 * may prove this needs changing.
97 */
98 #define SCSI_QUEUE_DELAY 3
99
100 /*
101 * Function: scsi_unprep_request()
102 *
103 * Purpose: Remove all preparation done for a request, including its
104 * associated scsi_cmnd, so that it can be requeued.
105 *
106 * Arguments: req - request to unprepare
107 *
108 * Lock status: Assumed that no locks are held upon entry.
109 *
110 * Returns: Nothing.
111 */
scsi_unprep_request(struct request * req)112 static void scsi_unprep_request(struct request *req)
113 {
114 struct scsi_cmnd *cmd = req->special;
115
116 blk_unprep_request(req);
117 req->special = NULL;
118
119 scsi_put_command(cmd);
120 }
121
122 /**
123 * __scsi_queue_insert - private queue insertion
124 * @cmd: The SCSI command being requeued
125 * @reason: The reason for the requeue
126 * @unbusy: Whether the queue should be unbusied
127 *
128 * This is a private queue insertion. The public interface
129 * scsi_queue_insert() always assumes the queue should be unbusied
130 * because it's always called before the completion. This function is
131 * for a requeue after completion, which should only occur in this
132 * file.
133 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 struct Scsi_Host *host = cmd->device->host;
137 struct scsi_device *device = cmd->device;
138 struct scsi_target *starget = scsi_target(device);
139 struct request_queue *q = device->request_queue;
140 unsigned long flags;
141
142 SCSI_LOG_MLQUEUE(1,
143 printk("Inserting command %p into mlqueue\n", cmd));
144
145 /*
146 * Set the appropriate busy bit for the device/host.
147 *
148 * If the host/device isn't busy, assume that something actually
149 * completed, and that we should be able to queue a command now.
150 *
151 * Note that the prior mid-layer assumption that any host could
152 * always queue at least one command is now broken. The mid-layer
153 * will implement a user specifiable stall (see
154 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 * if a command is requeued with no other commands outstanding
156 * either for the device or for the host.
157 */
158 switch (reason) {
159 case SCSI_MLQUEUE_HOST_BUSY:
160 host->host_blocked = host->max_host_blocked;
161 break;
162 case SCSI_MLQUEUE_DEVICE_BUSY:
163 case SCSI_MLQUEUE_EH_RETRY:
164 device->device_blocked = device->max_device_blocked;
165 break;
166 case SCSI_MLQUEUE_TARGET_BUSY:
167 starget->target_blocked = starget->max_target_blocked;
168 break;
169 }
170
171 /*
172 * Decrement the counters, since these commands are no longer
173 * active on the host/device.
174 */
175 if (unbusy)
176 scsi_device_unbusy(device);
177
178 /*
179 * Requeue this command. It will go before all other commands
180 * that are already in the queue. Schedule requeue work under
181 * lock such that the kblockd_schedule_work() call happens
182 * before blk_cleanup_queue() finishes.
183 */
184 spin_lock_irqsave(q->queue_lock, flags);
185 blk_requeue_request(q, cmd->request);
186 kblockd_schedule_work(q, &device->requeue_work);
187 spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191 * Function: scsi_queue_insert()
192 *
193 * Purpose: Insert a command in the midlevel queue.
194 *
195 * Arguments: cmd - command that we are adding to queue.
196 * reason - why we are inserting command to queue.
197 *
198 * Lock status: Assumed that lock is not held upon entry.
199 *
200 * Returns: Nothing.
201 *
202 * Notes: We do this for one of two cases. Either the host is busy
203 * and it cannot accept any more commands for the time being,
204 * or the device returned QUEUE_FULL and can accept no more
205 * commands.
206 * Notes: This could be called either from an interrupt context or a
207 * normal process context.
208 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214 * scsi_execute - insert request and wait for the result
215 * @sdev: scsi device
216 * @cmd: scsi command
217 * @data_direction: data direction
218 * @buffer: data buffer
219 * @bufflen: len of buffer
220 * @sense: optional sense buffer
221 * @timeout: request timeout in seconds
222 * @retries: number of times to retry request
223 * @flags: or into request flags;
224 * @resid: optional residual length
225 *
226 * returns the req->errors value which is the scsi_cmnd result
227 * field.
228 */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,int flags,int * resid)229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 int data_direction, void *buffer, unsigned bufflen,
231 unsigned char *sense, int timeout, int retries, int flags,
232 int *resid)
233 {
234 struct request *req;
235 int write = (data_direction == DMA_TO_DEVICE);
236 int ret = DRIVER_ERROR << 24;
237
238 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 if (!req)
240 return ret;
241
242 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
243 buffer, bufflen, __GFP_WAIT))
244 goto out;
245
246 req->cmd_len = COMMAND_SIZE(cmd[0]);
247 memcpy(req->cmd, cmd, req->cmd_len);
248 req->sense = sense;
249 req->sense_len = 0;
250 req->retries = retries;
251 req->timeout = timeout;
252 req->cmd_type = REQ_TYPE_BLOCK_PC;
253 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255 /*
256 * head injection *required* here otherwise quiesce won't work
257 */
258 blk_execute_rq(req->q, NULL, req, 1);
259
260 /*
261 * Some devices (USB mass-storage in particular) may transfer
262 * garbage data together with a residue indicating that the data
263 * is invalid. Prevent the garbage from being misinterpreted
264 * and prevent security leaks by zeroing out the excess data.
265 */
266 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269 if (resid)
270 *resid = req->resid_len;
271 ret = req->errors;
272 out:
273 blk_put_request(req);
274
275 return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,int flags)279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280 int data_direction, void *buffer, unsigned bufflen,
281 struct scsi_sense_hdr *sshdr, int timeout, int retries,
282 int *resid, int flags)
283 {
284 char *sense = NULL;
285 int result;
286
287 if (sshdr) {
288 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 if (!sense)
290 return DRIVER_ERROR << 24;
291 }
292 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293 sense, timeout, retries, flags, resid);
294 if (sshdr)
295 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296
297 kfree(sense);
298 return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301
302 /*
303 * Function: scsi_init_cmd_errh()
304 *
305 * Purpose: Initialize cmd fields related to error handling.
306 *
307 * Arguments: cmd - command that is ready to be queued.
308 *
309 * Notes: This function has the job of initializing a number of
310 * fields related to error handling. Typically this will
311 * be called once for each command, as required.
312 */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 cmd->serial_number = 0;
316 scsi_set_resid(cmd, 0);
317 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 if (cmd->cmd_len == 0)
319 cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321
scsi_device_unbusy(struct scsi_device * sdev)322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324 struct Scsi_Host *shost = sdev->host;
325 struct scsi_target *starget = scsi_target(sdev);
326 unsigned long flags;
327
328 spin_lock_irqsave(shost->host_lock, flags);
329 shost->host_busy--;
330 starget->target_busy--;
331 if (unlikely(scsi_host_in_recovery(shost) &&
332 (shost->host_failed || shost->host_eh_scheduled)))
333 scsi_eh_wakeup(shost);
334 spin_unlock(shost->host_lock);
335 spin_lock(sdev->request_queue->queue_lock);
336 sdev->device_busy--;
337 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339
340 /*
341 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342 * and call blk_run_queue for all the scsi_devices on the target -
343 * including current_sdev first.
344 *
345 * Called with *no* scsi locks held.
346 */
scsi_single_lun_run(struct scsi_device * current_sdev)347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349 struct Scsi_Host *shost = current_sdev->host;
350 struct scsi_device *sdev, *tmp;
351 struct scsi_target *starget = scsi_target(current_sdev);
352 unsigned long flags;
353
354 spin_lock_irqsave(shost->host_lock, flags);
355 starget->starget_sdev_user = NULL;
356 spin_unlock_irqrestore(shost->host_lock, flags);
357
358 /*
359 * Call blk_run_queue for all LUNs on the target, starting with
360 * current_sdev. We race with others (to set starget_sdev_user),
361 * but in most cases, we will be first. Ideally, each LU on the
362 * target would get some limited time or requests on the target.
363 */
364 blk_run_queue(current_sdev->request_queue);
365
366 spin_lock_irqsave(shost->host_lock, flags);
367 if (starget->starget_sdev_user)
368 goto out;
369 list_for_each_entry_safe(sdev, tmp, &starget->devices,
370 same_target_siblings) {
371 if (sdev == current_sdev)
372 continue;
373 if (scsi_device_get(sdev))
374 continue;
375
376 spin_unlock_irqrestore(shost->host_lock, flags);
377 blk_run_queue(sdev->request_queue);
378 spin_lock_irqsave(shost->host_lock, flags);
379
380 scsi_device_put(sdev);
381 }
382 out:
383 spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
scsi_device_is_busy(struct scsi_device * sdev)386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389 return 1;
390
391 return 0;
392 }
393
scsi_target_is_busy(struct scsi_target * starget)394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396 return ((starget->can_queue > 0 &&
397 starget->target_busy >= starget->can_queue) ||
398 starget->target_blocked);
399 }
400
scsi_host_is_busy(struct Scsi_Host * shost)401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404 shost->host_blocked || shost->host_self_blocked)
405 return 1;
406
407 return 0;
408 }
409
410 /*
411 * Function: scsi_run_queue()
412 *
413 * Purpose: Select a proper request queue to serve next
414 *
415 * Arguments: q - last request's queue
416 *
417 * Returns: Nothing
418 *
419 * Notes: The previous command was completely finished, start
420 * a new one if possible.
421 */
scsi_run_queue(struct request_queue * q)422 static void scsi_run_queue(struct request_queue *q)
423 {
424 struct scsi_device *sdev = q->queuedata;
425 struct Scsi_Host *shost;
426 LIST_HEAD(starved_list);
427 unsigned long flags;
428
429 shost = sdev->host;
430 if (scsi_target(sdev)->single_lun)
431 scsi_single_lun_run(sdev);
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 list_splice_init(&shost->starved_list, &starved_list);
435
436 while (!list_empty(&starved_list)) {
437 /*
438 * As long as shost is accepting commands and we have
439 * starved queues, call blk_run_queue. scsi_request_fn
440 * drops the queue_lock and can add us back to the
441 * starved_list.
442 *
443 * host_lock protects the starved_list and starved_entry.
444 * scsi_request_fn must get the host_lock before checking
445 * or modifying starved_list or starved_entry.
446 */
447 if (scsi_host_is_busy(shost))
448 break;
449
450 sdev = list_entry(starved_list.next,
451 struct scsi_device, starved_entry);
452 list_del_init(&sdev->starved_entry);
453 if (scsi_target_is_busy(scsi_target(sdev))) {
454 list_move_tail(&sdev->starved_entry,
455 &shost->starved_list);
456 continue;
457 }
458
459 spin_unlock(shost->host_lock);
460 spin_lock(sdev->request_queue->queue_lock);
461 __blk_run_queue(sdev->request_queue);
462 spin_unlock(sdev->request_queue->queue_lock);
463 spin_lock(shost->host_lock);
464 }
465 /* put any unprocessed entries back */
466 list_splice(&starved_list, &shost->starved_list);
467 spin_unlock_irqrestore(shost->host_lock, flags);
468
469 blk_run_queue(q);
470 }
471
scsi_requeue_run_queue(struct work_struct * work)472 void scsi_requeue_run_queue(struct work_struct *work)
473 {
474 struct scsi_device *sdev;
475 struct request_queue *q;
476
477 sdev = container_of(work, struct scsi_device, requeue_work);
478 q = sdev->request_queue;
479 scsi_run_queue(q);
480 }
481
482 /*
483 * Function: scsi_requeue_command()
484 *
485 * Purpose: Handle post-processing of completed commands.
486 *
487 * Arguments: q - queue to operate on
488 * cmd - command that may need to be requeued.
489 *
490 * Returns: Nothing
491 *
492 * Notes: After command completion, there may be blocks left
493 * over which weren't finished by the previous command
494 * this can be for a number of reasons - the main one is
495 * I/O errors in the middle of the request, in which case
496 * we need to request the blocks that come after the bad
497 * sector.
498 * Notes: Upon return, cmd is a stale pointer.
499 */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)500 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
501 {
502 struct scsi_device *sdev = cmd->device;
503 struct request *req = cmd->request;
504 unsigned long flags;
505
506 /*
507 * We need to hold a reference on the device to avoid the queue being
508 * killed after the unlock and before scsi_run_queue is invoked which
509 * may happen because scsi_unprep_request() puts the command which
510 * releases its reference on the device.
511 */
512 get_device(&sdev->sdev_gendev);
513
514 spin_lock_irqsave(q->queue_lock, flags);
515 scsi_unprep_request(req);
516 blk_requeue_request(q, req);
517 spin_unlock_irqrestore(q->queue_lock, flags);
518
519 scsi_run_queue(q);
520
521 put_device(&sdev->sdev_gendev);
522 }
523
scsi_next_command(struct scsi_cmnd * cmd)524 void scsi_next_command(struct scsi_cmnd *cmd)
525 {
526 struct scsi_device *sdev = cmd->device;
527 struct request_queue *q = sdev->request_queue;
528
529 /* need to hold a reference on the device before we let go of the cmd */
530 get_device(&sdev->sdev_gendev);
531
532 scsi_put_command(cmd);
533 scsi_run_queue(q);
534
535 /* ok to remove device now */
536 put_device(&sdev->sdev_gendev);
537 }
538
scsi_run_host_queues(struct Scsi_Host * shost)539 void scsi_run_host_queues(struct Scsi_Host *shost)
540 {
541 struct scsi_device *sdev;
542
543 shost_for_each_device(sdev, shost)
544 scsi_run_queue(sdev->request_queue);
545 }
546
547 static void __scsi_release_buffers(struct scsi_cmnd *, int);
548
549 /*
550 * Function: scsi_end_request()
551 *
552 * Purpose: Post-processing of completed commands (usually invoked at end
553 * of upper level post-processing and scsi_io_completion).
554 *
555 * Arguments: cmd - command that is complete.
556 * error - 0 if I/O indicates success, < 0 for I/O error.
557 * bytes - number of bytes of completed I/O
558 * requeue - indicates whether we should requeue leftovers.
559 *
560 * Lock status: Assumed that lock is not held upon entry.
561 *
562 * Returns: cmd if requeue required, NULL otherwise.
563 *
564 * Notes: This is called for block device requests in order to
565 * mark some number of sectors as complete.
566 *
567 * We are guaranteeing that the request queue will be goosed
568 * at some point during this call.
569 * Notes: If cmd was requeued, upon return it will be a stale pointer.
570 */
scsi_end_request(struct scsi_cmnd * cmd,int error,int bytes,int requeue)571 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
572 int bytes, int requeue)
573 {
574 struct request_queue *q = cmd->device->request_queue;
575 struct request *req = cmd->request;
576
577 /*
578 * If there are blocks left over at the end, set up the command
579 * to queue the remainder of them.
580 */
581 if (blk_end_request(req, error, bytes)) {
582 /* kill remainder if no retrys */
583 if (error && scsi_noretry_cmd(cmd))
584 blk_end_request_all(req, error);
585 else {
586 if (requeue) {
587 /*
588 * Bleah. Leftovers again. Stick the
589 * leftovers in the front of the
590 * queue, and goose the queue again.
591 */
592 scsi_release_buffers(cmd);
593 scsi_requeue_command(q, cmd);
594 cmd = NULL;
595 }
596 return cmd;
597 }
598 }
599
600 /*
601 * This will goose the queue request function at the end, so we don't
602 * need to worry about launching another command.
603 */
604 __scsi_release_buffers(cmd, 0);
605 scsi_next_command(cmd);
606 return NULL;
607 }
608
scsi_sgtable_index(unsigned short nents)609 static inline unsigned int scsi_sgtable_index(unsigned short nents)
610 {
611 unsigned int index;
612
613 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
614
615 if (nents <= 8)
616 index = 0;
617 else
618 index = get_count_order(nents) - 3;
619
620 return index;
621 }
622
scsi_sg_free(struct scatterlist * sgl,unsigned int nents)623 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
624 {
625 struct scsi_host_sg_pool *sgp;
626
627 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
628 mempool_free(sgl, sgp->pool);
629 }
630
scsi_sg_alloc(unsigned int nents,gfp_t gfp_mask)631 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
632 {
633 struct scsi_host_sg_pool *sgp;
634
635 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
636 return mempool_alloc(sgp->pool, gfp_mask);
637 }
638
scsi_alloc_sgtable(struct scsi_data_buffer * sdb,int nents,gfp_t gfp_mask)639 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
640 gfp_t gfp_mask)
641 {
642 int ret;
643
644 BUG_ON(!nents);
645
646 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
647 gfp_mask, scsi_sg_alloc);
648 if (unlikely(ret))
649 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
650 scsi_sg_free);
651
652 return ret;
653 }
654
scsi_free_sgtable(struct scsi_data_buffer * sdb)655 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
656 {
657 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
658 }
659
__scsi_release_buffers(struct scsi_cmnd * cmd,int do_bidi_check)660 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
661 {
662
663 if (cmd->sdb.table.nents)
664 scsi_free_sgtable(&cmd->sdb);
665
666 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
667
668 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
669 struct scsi_data_buffer *bidi_sdb =
670 cmd->request->next_rq->special;
671 scsi_free_sgtable(bidi_sdb);
672 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
673 cmd->request->next_rq->special = NULL;
674 }
675
676 if (scsi_prot_sg_count(cmd))
677 scsi_free_sgtable(cmd->prot_sdb);
678 }
679
680 /*
681 * Function: scsi_release_buffers()
682 *
683 * Purpose: Completion processing for block device I/O requests.
684 *
685 * Arguments: cmd - command that we are bailing.
686 *
687 * Lock status: Assumed that no lock is held upon entry.
688 *
689 * Returns: Nothing
690 *
691 * Notes: In the event that an upper level driver rejects a
692 * command, we must release resources allocated during
693 * the __init_io() function. Primarily this would involve
694 * the scatter-gather table, and potentially any bounce
695 * buffers.
696 */
scsi_release_buffers(struct scsi_cmnd * cmd)697 void scsi_release_buffers(struct scsi_cmnd *cmd)
698 {
699 __scsi_release_buffers(cmd, 1);
700 }
701 EXPORT_SYMBOL(scsi_release_buffers);
702
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)703 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
704 {
705 int error = 0;
706
707 switch(host_byte(result)) {
708 case DID_TRANSPORT_FAILFAST:
709 error = -ENOLINK;
710 break;
711 case DID_TARGET_FAILURE:
712 set_host_byte(cmd, DID_OK);
713 error = -EREMOTEIO;
714 break;
715 case DID_NEXUS_FAILURE:
716 set_host_byte(cmd, DID_OK);
717 error = -EBADE;
718 break;
719 default:
720 error = -EIO;
721 break;
722 }
723
724 return error;
725 }
726
727 /*
728 * Function: scsi_io_completion()
729 *
730 * Purpose: Completion processing for block device I/O requests.
731 *
732 * Arguments: cmd - command that is finished.
733 *
734 * Lock status: Assumed that no lock is held upon entry.
735 *
736 * Returns: Nothing
737 *
738 * Notes: This function is matched in terms of capabilities to
739 * the function that created the scatter-gather list.
740 * In other words, if there are no bounce buffers
741 * (the normal case for most drivers), we don't need
742 * the logic to deal with cleaning up afterwards.
743 *
744 * We must call scsi_end_request(). This will finish off
745 * the specified number of sectors. If we are done, the
746 * command block will be released and the queue function
747 * will be goosed. If we are not done then we have to
748 * figure out what to do next:
749 *
750 * a) We can call scsi_requeue_command(). The request
751 * will be unprepared and put back on the queue. Then
752 * a new command will be created for it. This should
753 * be used if we made forward progress, or if we want
754 * to switch from READ(10) to READ(6) for example.
755 *
756 * b) We can call scsi_queue_insert(). The request will
757 * be put back on the queue and retried using the same
758 * command as before, possibly after a delay.
759 *
760 * c) We can call blk_end_request() with -EIO to fail
761 * the remainder of the request.
762 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)763 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
764 {
765 int result = cmd->result;
766 struct request_queue *q = cmd->device->request_queue;
767 struct request *req = cmd->request;
768 int error = 0;
769 struct scsi_sense_hdr sshdr;
770 int sense_valid = 0;
771 int sense_deferred = 0;
772 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
773 ACTION_DELAYED_RETRY} action;
774 char *description = NULL;
775
776 if (result) {
777 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
778 if (sense_valid)
779 sense_deferred = scsi_sense_is_deferred(&sshdr);
780 }
781
782 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
783 if (result) {
784 if (sense_valid && req->sense) {
785 /*
786 * SG_IO wants current and deferred errors
787 */
788 int len = 8 + cmd->sense_buffer[7];
789
790 if (len > SCSI_SENSE_BUFFERSIZE)
791 len = SCSI_SENSE_BUFFERSIZE;
792 memcpy(req->sense, cmd->sense_buffer, len);
793 req->sense_len = len;
794 }
795 if (!sense_deferred)
796 error = __scsi_error_from_host_byte(cmd, result);
797 }
798 /*
799 * __scsi_error_from_host_byte may have reset the host_byte
800 */
801 req->errors = cmd->result;
802
803 req->resid_len = scsi_get_resid(cmd);
804
805 if (scsi_bidi_cmnd(cmd)) {
806 /*
807 * Bidi commands Must be complete as a whole,
808 * both sides at once.
809 */
810 req->next_rq->resid_len = scsi_in(cmd)->resid;
811
812 scsi_release_buffers(cmd);
813 blk_end_request_all(req, 0);
814
815 scsi_next_command(cmd);
816 return;
817 }
818 }
819
820 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
821 BUG_ON(blk_bidi_rq(req));
822
823 /*
824 * Next deal with any sectors which we were able to correctly
825 * handle.
826 */
827 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
828 "%d bytes done.\n",
829 blk_rq_sectors(req), good_bytes));
830
831 /*
832 * Recovered errors need reporting, but they're always treated
833 * as success, so fiddle the result code here. For BLOCK_PC
834 * we already took a copy of the original into rq->errors which
835 * is what gets returned to the user
836 */
837 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
838 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
839 * print since caller wants ATA registers. Only occurs on
840 * SCSI ATA PASS_THROUGH commands when CK_COND=1
841 */
842 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
843 ;
844 else if (!(req->cmd_flags & REQ_QUIET))
845 scsi_print_sense("", cmd);
846 result = 0;
847 /* BLOCK_PC may have set error */
848 error = 0;
849 }
850
851 /*
852 * A number of bytes were successfully read. If there
853 * are leftovers and there is some kind of error
854 * (result != 0), retry the rest.
855 */
856 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
857 return;
858
859 error = __scsi_error_from_host_byte(cmd, result);
860
861 if (host_byte(result) == DID_RESET) {
862 /* Third party bus reset or reset for error recovery
863 * reasons. Just retry the command and see what
864 * happens.
865 */
866 action = ACTION_RETRY;
867 } else if (sense_valid && !sense_deferred) {
868 switch (sshdr.sense_key) {
869 case UNIT_ATTENTION:
870 if (cmd->device->removable) {
871 /* Detected disc change. Set a bit
872 * and quietly refuse further access.
873 */
874 cmd->device->changed = 1;
875 description = "Media Changed";
876 action = ACTION_FAIL;
877 } else {
878 /* Must have been a power glitch, or a
879 * bus reset. Could not have been a
880 * media change, so we just retry the
881 * command and see what happens.
882 */
883 action = ACTION_RETRY;
884 }
885 break;
886 case ILLEGAL_REQUEST:
887 /* If we had an ILLEGAL REQUEST returned, then
888 * we may have performed an unsupported
889 * command. The only thing this should be
890 * would be a ten byte read where only a six
891 * byte read was supported. Also, on a system
892 * where READ CAPACITY failed, we may have
893 * read past the end of the disk.
894 */
895 if ((cmd->device->use_10_for_rw &&
896 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
897 (cmd->cmnd[0] == READ_10 ||
898 cmd->cmnd[0] == WRITE_10)) {
899 /* This will issue a new 6-byte command. */
900 cmd->device->use_10_for_rw = 0;
901 action = ACTION_REPREP;
902 } else if (sshdr.asc == 0x10) /* DIX */ {
903 description = "Host Data Integrity Failure";
904 action = ACTION_FAIL;
905 error = -EILSEQ;
906 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
907 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
908 switch (cmd->cmnd[0]) {
909 case UNMAP:
910 description = "Discard failure";
911 break;
912 case WRITE_SAME:
913 case WRITE_SAME_16:
914 if (cmd->cmnd[1] & 0x8)
915 description = "Discard failure";
916 else
917 description =
918 "Write same failure";
919 break;
920 default:
921 description = "Invalid command failure";
922 break;
923 }
924 action = ACTION_FAIL;
925 error = -EREMOTEIO;
926 } else
927 action = ACTION_FAIL;
928 break;
929 case ABORTED_COMMAND:
930 action = ACTION_FAIL;
931 if (sshdr.asc == 0x10) { /* DIF */
932 description = "Target Data Integrity Failure";
933 error = -EILSEQ;
934 }
935 break;
936 case NOT_READY:
937 /* If the device is in the process of becoming
938 * ready, or has a temporary blockage, retry.
939 */
940 if (sshdr.asc == 0x04) {
941 switch (sshdr.ascq) {
942 case 0x01: /* becoming ready */
943 case 0x04: /* format in progress */
944 case 0x05: /* rebuild in progress */
945 case 0x06: /* recalculation in progress */
946 case 0x07: /* operation in progress */
947 case 0x08: /* Long write in progress */
948 case 0x09: /* self test in progress */
949 case 0x14: /* space allocation in progress */
950 action = ACTION_DELAYED_RETRY;
951 break;
952 default:
953 description = "Device not ready";
954 action = ACTION_FAIL;
955 break;
956 }
957 } else {
958 description = "Device not ready";
959 action = ACTION_FAIL;
960 }
961 break;
962 case VOLUME_OVERFLOW:
963 /* See SSC3rXX or current. */
964 action = ACTION_FAIL;
965 break;
966 default:
967 description = "Unhandled sense code";
968 action = ACTION_FAIL;
969 break;
970 }
971 } else {
972 description = "Unhandled error code";
973 action = ACTION_FAIL;
974 }
975
976 switch (action) {
977 case ACTION_FAIL:
978 /* Give up and fail the remainder of the request */
979 scsi_release_buffers(cmd);
980 if (!(req->cmd_flags & REQ_QUIET)) {
981 if (description)
982 scmd_printk(KERN_INFO, cmd, "%s\n",
983 description);
984 scsi_print_result(cmd);
985 if (driver_byte(result) & DRIVER_SENSE)
986 scsi_print_sense("", cmd);
987 scsi_print_command(cmd);
988 }
989 if (blk_end_request_err(req, error))
990 scsi_requeue_command(q, cmd);
991 else
992 scsi_next_command(cmd);
993 break;
994 case ACTION_REPREP:
995 /* Unprep the request and put it back at the head of the queue.
996 * A new command will be prepared and issued.
997 */
998 scsi_release_buffers(cmd);
999 scsi_requeue_command(q, cmd);
1000 break;
1001 case ACTION_RETRY:
1002 /* Retry the same command immediately */
1003 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1004 break;
1005 case ACTION_DELAYED_RETRY:
1006 /* Retry the same command after a delay */
1007 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1008 break;
1009 }
1010 }
1011
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb,gfp_t gfp_mask)1012 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1013 gfp_t gfp_mask)
1014 {
1015 int count;
1016
1017 /*
1018 * If sg table allocation fails, requeue request later.
1019 */
1020 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1021 gfp_mask))) {
1022 return BLKPREP_DEFER;
1023 }
1024
1025 req->buffer = NULL;
1026
1027 /*
1028 * Next, walk the list, and fill in the addresses and sizes of
1029 * each segment.
1030 */
1031 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1032 BUG_ON(count > sdb->table.nents);
1033 sdb->table.nents = count;
1034 sdb->length = blk_rq_bytes(req);
1035 return BLKPREP_OK;
1036 }
1037
1038 /*
1039 * Function: scsi_init_io()
1040 *
1041 * Purpose: SCSI I/O initialize function.
1042 *
1043 * Arguments: cmd - Command descriptor we wish to initialize
1044 *
1045 * Returns: 0 on success
1046 * BLKPREP_DEFER if the failure is retryable
1047 * BLKPREP_KILL if the failure is fatal
1048 */
scsi_init_io(struct scsi_cmnd * cmd,gfp_t gfp_mask)1049 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1050 {
1051 struct request *rq = cmd->request;
1052
1053 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1054 if (error)
1055 goto err_exit;
1056
1057 if (blk_bidi_rq(rq)) {
1058 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1059 scsi_sdb_cache, GFP_ATOMIC);
1060 if (!bidi_sdb) {
1061 error = BLKPREP_DEFER;
1062 goto err_exit;
1063 }
1064
1065 rq->next_rq->special = bidi_sdb;
1066 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1067 if (error)
1068 goto err_exit;
1069 }
1070
1071 if (blk_integrity_rq(rq)) {
1072 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1073 int ivecs, count;
1074
1075 BUG_ON(prot_sdb == NULL);
1076 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077
1078 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1079 error = BLKPREP_DEFER;
1080 goto err_exit;
1081 }
1082
1083 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1084 prot_sdb->table.sgl);
1085 BUG_ON(unlikely(count > ivecs));
1086 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1087
1088 cmd->prot_sdb = prot_sdb;
1089 cmd->prot_sdb->table.nents = count;
1090 }
1091
1092 return BLKPREP_OK ;
1093
1094 err_exit:
1095 scsi_release_buffers(cmd);
1096 cmd->request->special = NULL;
1097 scsi_put_command(cmd);
1098 return error;
1099 }
1100 EXPORT_SYMBOL(scsi_init_io);
1101
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1102 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1103 struct request *req)
1104 {
1105 struct scsi_cmnd *cmd;
1106
1107 if (!req->special) {
1108 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1109 if (unlikely(!cmd))
1110 return NULL;
1111 req->special = cmd;
1112 } else {
1113 cmd = req->special;
1114 }
1115
1116 /* pull a tag out of the request if we have one */
1117 cmd->tag = req->tag;
1118 cmd->request = req;
1119
1120 cmd->cmnd = req->cmd;
1121 cmd->prot_op = SCSI_PROT_NORMAL;
1122
1123 return cmd;
1124 }
1125
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1126 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1127 {
1128 struct scsi_cmnd *cmd;
1129 int ret = scsi_prep_state_check(sdev, req);
1130
1131 if (ret != BLKPREP_OK)
1132 return ret;
1133
1134 cmd = scsi_get_cmd_from_req(sdev, req);
1135 if (unlikely(!cmd))
1136 return BLKPREP_DEFER;
1137
1138 /*
1139 * BLOCK_PC requests may transfer data, in which case they must
1140 * a bio attached to them. Or they might contain a SCSI command
1141 * that does not transfer data, in which case they may optionally
1142 * submit a request without an attached bio.
1143 */
1144 if (req->bio) {
1145 int ret;
1146
1147 BUG_ON(!req->nr_phys_segments);
1148
1149 ret = scsi_init_io(cmd, GFP_ATOMIC);
1150 if (unlikely(ret))
1151 return ret;
1152 } else {
1153 BUG_ON(blk_rq_bytes(req));
1154
1155 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1156 req->buffer = NULL;
1157 }
1158
1159 cmd->cmd_len = req->cmd_len;
1160 if (!blk_rq_bytes(req))
1161 cmd->sc_data_direction = DMA_NONE;
1162 else if (rq_data_dir(req) == WRITE)
1163 cmd->sc_data_direction = DMA_TO_DEVICE;
1164 else
1165 cmd->sc_data_direction = DMA_FROM_DEVICE;
1166
1167 cmd->transfersize = blk_rq_bytes(req);
1168 cmd->allowed = req->retries;
1169 return BLKPREP_OK;
1170 }
1171 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1172
1173 /*
1174 * Setup a REQ_TYPE_FS command. These are simple read/write request
1175 * from filesystems that still need to be translated to SCSI CDBs from
1176 * the ULD.
1177 */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1178 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 struct scsi_cmnd *cmd;
1181 int ret = scsi_prep_state_check(sdev, req);
1182
1183 if (ret != BLKPREP_OK)
1184 return ret;
1185
1186 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1187 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1188 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1189 if (ret != BLKPREP_OK)
1190 return ret;
1191 }
1192
1193 /*
1194 * Filesystem requests must transfer data.
1195 */
1196 BUG_ON(!req->nr_phys_segments);
1197
1198 cmd = scsi_get_cmd_from_req(sdev, req);
1199 if (unlikely(!cmd))
1200 return BLKPREP_DEFER;
1201
1202 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1203 return scsi_init_io(cmd, GFP_ATOMIC);
1204 }
1205 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1206
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1207 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209 int ret = BLKPREP_OK;
1210
1211 /*
1212 * If the device is not in running state we will reject some
1213 * or all commands.
1214 */
1215 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1216 switch (sdev->sdev_state) {
1217 case SDEV_OFFLINE:
1218 case SDEV_TRANSPORT_OFFLINE:
1219 /*
1220 * If the device is offline we refuse to process any
1221 * commands. The device must be brought online
1222 * before trying any recovery commands.
1223 */
1224 sdev_printk(KERN_ERR, sdev,
1225 "rejecting I/O to offline device\n");
1226 ret = BLKPREP_KILL;
1227 break;
1228 case SDEV_DEL:
1229 /*
1230 * If the device is fully deleted, we refuse to
1231 * process any commands as well.
1232 */
1233 sdev_printk(KERN_ERR, sdev,
1234 "rejecting I/O to dead device\n");
1235 ret = BLKPREP_KILL;
1236 break;
1237 case SDEV_QUIESCE:
1238 case SDEV_BLOCK:
1239 case SDEV_CREATED_BLOCK:
1240 /*
1241 * If the devices is blocked we defer normal commands.
1242 */
1243 if (!(req->cmd_flags & REQ_PREEMPT))
1244 ret = BLKPREP_DEFER;
1245 break;
1246 default:
1247 /*
1248 * For any other not fully online state we only allow
1249 * special commands. In particular any user initiated
1250 * command is not allowed.
1251 */
1252 if (!(req->cmd_flags & REQ_PREEMPT))
1253 ret = BLKPREP_KILL;
1254 break;
1255 }
1256 }
1257 return ret;
1258 }
1259 EXPORT_SYMBOL(scsi_prep_state_check);
1260
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1261 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1262 {
1263 struct scsi_device *sdev = q->queuedata;
1264
1265 switch (ret) {
1266 case BLKPREP_KILL:
1267 req->errors = DID_NO_CONNECT << 16;
1268 /* release the command and kill it */
1269 if (req->special) {
1270 struct scsi_cmnd *cmd = req->special;
1271 scsi_release_buffers(cmd);
1272 scsi_put_command(cmd);
1273 req->special = NULL;
1274 }
1275 break;
1276 case BLKPREP_DEFER:
1277 /*
1278 * If we defer, the blk_peek_request() returns NULL, but the
1279 * queue must be restarted, so we schedule a callback to happen
1280 * shortly.
1281 */
1282 if (sdev->device_busy == 0)
1283 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1284 break;
1285 default:
1286 req->cmd_flags |= REQ_DONTPREP;
1287 }
1288
1289 return ret;
1290 }
1291 EXPORT_SYMBOL(scsi_prep_return);
1292
scsi_prep_fn(struct request_queue * q,struct request * req)1293 int scsi_prep_fn(struct request_queue *q, struct request *req)
1294 {
1295 struct scsi_device *sdev = q->queuedata;
1296 int ret = BLKPREP_KILL;
1297
1298 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1299 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1300 return scsi_prep_return(q, req, ret);
1301 }
1302 EXPORT_SYMBOL(scsi_prep_fn);
1303
1304 /*
1305 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1306 * return 0.
1307 *
1308 * Called with the queue_lock held.
1309 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1310 static inline int scsi_dev_queue_ready(struct request_queue *q,
1311 struct scsi_device *sdev)
1312 {
1313 if (sdev->device_busy == 0 && sdev->device_blocked) {
1314 /*
1315 * unblock after device_blocked iterates to zero
1316 */
1317 if (--sdev->device_blocked == 0) {
1318 SCSI_LOG_MLQUEUE(3,
1319 sdev_printk(KERN_INFO, sdev,
1320 "unblocking device at zero depth\n"));
1321 } else {
1322 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1323 return 0;
1324 }
1325 }
1326 if (scsi_device_is_busy(sdev))
1327 return 0;
1328
1329 return 1;
1330 }
1331
1332
1333 /*
1334 * scsi_target_queue_ready: checks if there we can send commands to target
1335 * @sdev: scsi device on starget to check.
1336 *
1337 * Called with the host lock held.
1338 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1339 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1340 struct scsi_device *sdev)
1341 {
1342 struct scsi_target *starget = scsi_target(sdev);
1343
1344 if (starget->single_lun) {
1345 if (starget->starget_sdev_user &&
1346 starget->starget_sdev_user != sdev)
1347 return 0;
1348 starget->starget_sdev_user = sdev;
1349 }
1350
1351 if (starget->target_busy == 0 && starget->target_blocked) {
1352 /*
1353 * unblock after target_blocked iterates to zero
1354 */
1355 if (--starget->target_blocked == 0) {
1356 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1357 "unblocking target at zero depth\n"));
1358 } else
1359 return 0;
1360 }
1361
1362 if (scsi_target_is_busy(starget)) {
1363 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1364 return 0;
1365 }
1366
1367 return 1;
1368 }
1369
1370 /*
1371 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1372 * return 0. We must end up running the queue again whenever 0 is
1373 * returned, else IO can hang.
1374 *
1375 * Called with host_lock held.
1376 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1377 static inline int scsi_host_queue_ready(struct request_queue *q,
1378 struct Scsi_Host *shost,
1379 struct scsi_device *sdev)
1380 {
1381 if (scsi_host_in_recovery(shost))
1382 return 0;
1383 if (shost->host_busy == 0 && shost->host_blocked) {
1384 /*
1385 * unblock after host_blocked iterates to zero
1386 */
1387 if (--shost->host_blocked == 0) {
1388 SCSI_LOG_MLQUEUE(3,
1389 printk("scsi%d unblocking host at zero depth\n",
1390 shost->host_no));
1391 } else {
1392 return 0;
1393 }
1394 }
1395 if (scsi_host_is_busy(shost)) {
1396 if (list_empty(&sdev->starved_entry))
1397 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398 return 0;
1399 }
1400
1401 /* We're OK to process the command, so we can't be starved */
1402 if (!list_empty(&sdev->starved_entry))
1403 list_del_init(&sdev->starved_entry);
1404
1405 return 1;
1406 }
1407
1408 /*
1409 * Busy state exporting function for request stacking drivers.
1410 *
1411 * For efficiency, no lock is taken to check the busy state of
1412 * shost/starget/sdev, since the returned value is not guaranteed and
1413 * may be changed after request stacking drivers call the function,
1414 * regardless of taking lock or not.
1415 *
1416 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1417 * needs to return 'not busy'. Otherwise, request stacking drivers
1418 * may hold requests forever.
1419 */
scsi_lld_busy(struct request_queue * q)1420 static int scsi_lld_busy(struct request_queue *q)
1421 {
1422 struct scsi_device *sdev = q->queuedata;
1423 struct Scsi_Host *shost;
1424
1425 if (blk_queue_dying(q))
1426 return 0;
1427
1428 shost = sdev->host;
1429
1430 /*
1431 * Ignore host/starget busy state.
1432 * Since block layer does not have a concept of fairness across
1433 * multiple queues, congestion of host/starget needs to be handled
1434 * in SCSI layer.
1435 */
1436 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1437 return 1;
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * Kill a request for a dead device
1444 */
scsi_kill_request(struct request * req,struct request_queue * q)1445 static void scsi_kill_request(struct request *req, struct request_queue *q)
1446 {
1447 struct scsi_cmnd *cmd = req->special;
1448 struct scsi_device *sdev;
1449 struct scsi_target *starget;
1450 struct Scsi_Host *shost;
1451
1452 blk_start_request(req);
1453
1454 scmd_printk(KERN_INFO, cmd, "killing request\n");
1455
1456 sdev = cmd->device;
1457 starget = scsi_target(sdev);
1458 shost = sdev->host;
1459 scsi_init_cmd_errh(cmd);
1460 cmd->result = DID_NO_CONNECT << 16;
1461 atomic_inc(&cmd->device->iorequest_cnt);
1462
1463 /*
1464 * SCSI request completion path will do scsi_device_unbusy(),
1465 * bump busy counts. To bump the counters, we need to dance
1466 * with the locks as normal issue path does.
1467 */
1468 sdev->device_busy++;
1469 spin_unlock(sdev->request_queue->queue_lock);
1470 spin_lock(shost->host_lock);
1471 shost->host_busy++;
1472 starget->target_busy++;
1473 spin_unlock(shost->host_lock);
1474 spin_lock(sdev->request_queue->queue_lock);
1475
1476 blk_complete_request(req);
1477 }
1478
scsi_softirq_done(struct request * rq)1479 static void scsi_softirq_done(struct request *rq)
1480 {
1481 struct scsi_cmnd *cmd = rq->special;
1482 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1483 int disposition;
1484
1485 INIT_LIST_HEAD(&cmd->eh_entry);
1486
1487 atomic_inc(&cmd->device->iodone_cnt);
1488 if (cmd->result)
1489 atomic_inc(&cmd->device->ioerr_cnt);
1490
1491 disposition = scsi_decide_disposition(cmd);
1492 if (disposition != SUCCESS &&
1493 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1494 sdev_printk(KERN_ERR, cmd->device,
1495 "timing out command, waited %lus\n",
1496 wait_for/HZ);
1497 disposition = SUCCESS;
1498 }
1499
1500 scsi_log_completion(cmd, disposition);
1501
1502 switch (disposition) {
1503 case SUCCESS:
1504 scsi_finish_command(cmd);
1505 break;
1506 case NEEDS_RETRY:
1507 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1508 break;
1509 case ADD_TO_MLQUEUE:
1510 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1511 break;
1512 default:
1513 if (!scsi_eh_scmd_add(cmd, 0))
1514 scsi_finish_command(cmd);
1515 }
1516 }
1517
1518 /*
1519 * Function: scsi_request_fn()
1520 *
1521 * Purpose: Main strategy routine for SCSI.
1522 *
1523 * Arguments: q - Pointer to actual queue.
1524 *
1525 * Returns: Nothing
1526 *
1527 * Lock status: IO request lock assumed to be held when called.
1528 */
scsi_request_fn(struct request_queue * q)1529 static void scsi_request_fn(struct request_queue *q)
1530 {
1531 struct scsi_device *sdev = q->queuedata;
1532 struct Scsi_Host *shost;
1533 struct scsi_cmnd *cmd;
1534 struct request *req;
1535
1536 if(!get_device(&sdev->sdev_gendev))
1537 /* We must be tearing the block queue down already */
1538 return;
1539
1540 /*
1541 * To start with, we keep looping until the queue is empty, or until
1542 * the host is no longer able to accept any more requests.
1543 */
1544 shost = sdev->host;
1545 for (;;) {
1546 int rtn;
1547 /*
1548 * get next queueable request. We do this early to make sure
1549 * that the request is fully prepared even if we cannot
1550 * accept it.
1551 */
1552 req = blk_peek_request(q);
1553 if (!req || !scsi_dev_queue_ready(q, sdev))
1554 break;
1555
1556 if (unlikely(!scsi_device_online(sdev))) {
1557 sdev_printk(KERN_ERR, sdev,
1558 "rejecting I/O to offline device\n");
1559 scsi_kill_request(req, q);
1560 continue;
1561 }
1562
1563
1564 /*
1565 * Remove the request from the request list.
1566 */
1567 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1568 blk_start_request(req);
1569 sdev->device_busy++;
1570
1571 spin_unlock(q->queue_lock);
1572 cmd = req->special;
1573 if (unlikely(cmd == NULL)) {
1574 printk(KERN_CRIT "impossible request in %s.\n"
1575 "please mail a stack trace to "
1576 "linux-scsi@vger.kernel.org\n",
1577 __func__);
1578 blk_dump_rq_flags(req, "foo");
1579 BUG();
1580 }
1581 spin_lock(shost->host_lock);
1582
1583 /*
1584 * We hit this when the driver is using a host wide
1585 * tag map. For device level tag maps the queue_depth check
1586 * in the device ready fn would prevent us from trying
1587 * to allocate a tag. Since the map is a shared host resource
1588 * we add the dev to the starved list so it eventually gets
1589 * a run when a tag is freed.
1590 */
1591 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1592 if (list_empty(&sdev->starved_entry))
1593 list_add_tail(&sdev->starved_entry,
1594 &shost->starved_list);
1595 goto not_ready;
1596 }
1597
1598 if (!scsi_target_queue_ready(shost, sdev))
1599 goto not_ready;
1600
1601 if (!scsi_host_queue_ready(q, shost, sdev))
1602 goto not_ready;
1603
1604 scsi_target(sdev)->target_busy++;
1605 shost->host_busy++;
1606
1607 /*
1608 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1609 * take the lock again.
1610 */
1611 spin_unlock_irq(shost->host_lock);
1612
1613 /*
1614 * Finally, initialize any error handling parameters, and set up
1615 * the timers for timeouts.
1616 */
1617 scsi_init_cmd_errh(cmd);
1618
1619 /*
1620 * Dispatch the command to the low-level driver.
1621 */
1622 rtn = scsi_dispatch_cmd(cmd);
1623 spin_lock_irq(q->queue_lock);
1624 if (rtn)
1625 goto out_delay;
1626 }
1627
1628 goto out;
1629
1630 not_ready:
1631 spin_unlock_irq(shost->host_lock);
1632
1633 /*
1634 * lock q, handle tag, requeue req, and decrement device_busy. We
1635 * must return with queue_lock held.
1636 *
1637 * Decrementing device_busy without checking it is OK, as all such
1638 * cases (host limits or settings) should run the queue at some
1639 * later time.
1640 */
1641 spin_lock_irq(q->queue_lock);
1642 blk_requeue_request(q, req);
1643 sdev->device_busy--;
1644 out_delay:
1645 if (sdev->device_busy == 0)
1646 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1647 out:
1648 /* must be careful here...if we trigger the ->remove() function
1649 * we cannot be holding the q lock */
1650 spin_unlock_irq(q->queue_lock);
1651 put_device(&sdev->sdev_gendev);
1652 spin_lock_irq(q->queue_lock);
1653 }
1654
scsi_calculate_bounce_limit(struct Scsi_Host * shost)1655 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1656 {
1657 struct device *host_dev;
1658 u64 bounce_limit = 0xffffffff;
1659
1660 if (shost->unchecked_isa_dma)
1661 return BLK_BOUNCE_ISA;
1662 /*
1663 * Platforms with virtual-DMA translation
1664 * hardware have no practical limit.
1665 */
1666 if (!PCI_DMA_BUS_IS_PHYS)
1667 return BLK_BOUNCE_ANY;
1668
1669 host_dev = scsi_get_device(shost);
1670 if (host_dev && host_dev->dma_mask)
1671 bounce_limit = *host_dev->dma_mask;
1672
1673 return bounce_limit;
1674 }
1675 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1676
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)1677 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1678 request_fn_proc *request_fn)
1679 {
1680 struct request_queue *q;
1681 struct device *dev = shost->dma_dev;
1682
1683 q = blk_init_queue(request_fn, NULL);
1684 if (!q)
1685 return NULL;
1686
1687 /*
1688 * this limit is imposed by hardware restrictions
1689 */
1690 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1691 SCSI_MAX_SG_CHAIN_SEGMENTS));
1692
1693 if (scsi_host_prot_dma(shost)) {
1694 shost->sg_prot_tablesize =
1695 min_not_zero(shost->sg_prot_tablesize,
1696 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1697 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1698 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1699 }
1700
1701 blk_queue_max_hw_sectors(q, shost->max_sectors);
1702 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1703 blk_queue_segment_boundary(q, shost->dma_boundary);
1704 dma_set_seg_boundary(dev, shost->dma_boundary);
1705
1706 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1707
1708 if (!shost->use_clustering)
1709 q->limits.cluster = 0;
1710
1711 /*
1712 * set a reasonable default alignment on word boundaries: the
1713 * host and device may alter it using
1714 * blk_queue_update_dma_alignment() later.
1715 */
1716 blk_queue_dma_alignment(q, 0x03);
1717
1718 return q;
1719 }
1720 EXPORT_SYMBOL(__scsi_alloc_queue);
1721
scsi_alloc_queue(struct scsi_device * sdev)1722 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1723 {
1724 struct request_queue *q;
1725
1726 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1727 if (!q)
1728 return NULL;
1729
1730 blk_queue_prep_rq(q, scsi_prep_fn);
1731 blk_queue_softirq_done(q, scsi_softirq_done);
1732 blk_queue_rq_timed_out(q, scsi_times_out);
1733 blk_queue_lld_busy(q, scsi_lld_busy);
1734 return q;
1735 }
1736
1737 /*
1738 * Function: scsi_block_requests()
1739 *
1740 * Purpose: Utility function used by low-level drivers to prevent further
1741 * commands from being queued to the device.
1742 *
1743 * Arguments: shost - Host in question
1744 *
1745 * Returns: Nothing
1746 *
1747 * Lock status: No locks are assumed held.
1748 *
1749 * Notes: There is no timer nor any other means by which the requests
1750 * get unblocked other than the low-level driver calling
1751 * scsi_unblock_requests().
1752 */
scsi_block_requests(struct Scsi_Host * shost)1753 void scsi_block_requests(struct Scsi_Host *shost)
1754 {
1755 shost->host_self_blocked = 1;
1756 }
1757 EXPORT_SYMBOL(scsi_block_requests);
1758
1759 /*
1760 * Function: scsi_unblock_requests()
1761 *
1762 * Purpose: Utility function used by low-level drivers to allow further
1763 * commands from being queued to the device.
1764 *
1765 * Arguments: shost - Host in question
1766 *
1767 * Returns: Nothing
1768 *
1769 * Lock status: No locks are assumed held.
1770 *
1771 * Notes: There is no timer nor any other means by which the requests
1772 * get unblocked other than the low-level driver calling
1773 * scsi_unblock_requests().
1774 *
1775 * This is done as an API function so that changes to the
1776 * internals of the scsi mid-layer won't require wholesale
1777 * changes to drivers that use this feature.
1778 */
scsi_unblock_requests(struct Scsi_Host * shost)1779 void scsi_unblock_requests(struct Scsi_Host *shost)
1780 {
1781 shost->host_self_blocked = 0;
1782 scsi_run_host_queues(shost);
1783 }
1784 EXPORT_SYMBOL(scsi_unblock_requests);
1785
scsi_init_queue(void)1786 int __init scsi_init_queue(void)
1787 {
1788 int i;
1789
1790 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1791 sizeof(struct scsi_data_buffer),
1792 0, 0, NULL);
1793 if (!scsi_sdb_cache) {
1794 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1795 return -ENOMEM;
1796 }
1797
1798 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1799 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1800 int size = sgp->size * sizeof(struct scatterlist);
1801
1802 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1803 SLAB_HWCACHE_ALIGN, NULL);
1804 if (!sgp->slab) {
1805 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1806 sgp->name);
1807 goto cleanup_sdb;
1808 }
1809
1810 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1811 sgp->slab);
1812 if (!sgp->pool) {
1813 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1814 sgp->name);
1815 goto cleanup_sdb;
1816 }
1817 }
1818
1819 return 0;
1820
1821 cleanup_sdb:
1822 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1823 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1824 if (sgp->pool)
1825 mempool_destroy(sgp->pool);
1826 if (sgp->slab)
1827 kmem_cache_destroy(sgp->slab);
1828 }
1829 kmem_cache_destroy(scsi_sdb_cache);
1830
1831 return -ENOMEM;
1832 }
1833
scsi_exit_queue(void)1834 void scsi_exit_queue(void)
1835 {
1836 int i;
1837
1838 kmem_cache_destroy(scsi_sdb_cache);
1839
1840 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1841 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1842 mempool_destroy(sgp->pool);
1843 kmem_cache_destroy(sgp->slab);
1844 }
1845 }
1846
1847 /**
1848 * scsi_mode_select - issue a mode select
1849 * @sdev: SCSI device to be queried
1850 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1851 * @sp: Save page bit (0 == don't save, 1 == save)
1852 * @modepage: mode page being requested
1853 * @buffer: request buffer (may not be smaller than eight bytes)
1854 * @len: length of request buffer.
1855 * @timeout: command timeout
1856 * @retries: number of retries before failing
1857 * @data: returns a structure abstracting the mode header data
1858 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1859 * must be SCSI_SENSE_BUFFERSIZE big.
1860 *
1861 * Returns zero if successful; negative error number or scsi
1862 * status on error
1863 *
1864 */
1865 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)1866 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1867 unsigned char *buffer, int len, int timeout, int retries,
1868 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1869 {
1870 unsigned char cmd[10];
1871 unsigned char *real_buffer;
1872 int ret;
1873
1874 memset(cmd, 0, sizeof(cmd));
1875 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1876
1877 if (sdev->use_10_for_ms) {
1878 if (len > 65535)
1879 return -EINVAL;
1880 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1881 if (!real_buffer)
1882 return -ENOMEM;
1883 memcpy(real_buffer + 8, buffer, len);
1884 len += 8;
1885 real_buffer[0] = 0;
1886 real_buffer[1] = 0;
1887 real_buffer[2] = data->medium_type;
1888 real_buffer[3] = data->device_specific;
1889 real_buffer[4] = data->longlba ? 0x01 : 0;
1890 real_buffer[5] = 0;
1891 real_buffer[6] = data->block_descriptor_length >> 8;
1892 real_buffer[7] = data->block_descriptor_length;
1893
1894 cmd[0] = MODE_SELECT_10;
1895 cmd[7] = len >> 8;
1896 cmd[8] = len;
1897 } else {
1898 if (len > 255 || data->block_descriptor_length > 255 ||
1899 data->longlba)
1900 return -EINVAL;
1901
1902 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1903 if (!real_buffer)
1904 return -ENOMEM;
1905 memcpy(real_buffer + 4, buffer, len);
1906 len += 4;
1907 real_buffer[0] = 0;
1908 real_buffer[1] = data->medium_type;
1909 real_buffer[2] = data->device_specific;
1910 real_buffer[3] = data->block_descriptor_length;
1911
1912
1913 cmd[0] = MODE_SELECT;
1914 cmd[4] = len;
1915 }
1916
1917 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1918 sshdr, timeout, retries, NULL);
1919 kfree(real_buffer);
1920 return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(scsi_mode_select);
1923
1924 /**
1925 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1926 * @sdev: SCSI device to be queried
1927 * @dbd: set if mode sense will allow block descriptors to be returned
1928 * @modepage: mode page being requested
1929 * @buffer: request buffer (may not be smaller than eight bytes)
1930 * @len: length of request buffer.
1931 * @timeout: command timeout
1932 * @retries: number of retries before failing
1933 * @data: returns a structure abstracting the mode header data
1934 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1935 * must be SCSI_SENSE_BUFFERSIZE big.
1936 *
1937 * Returns zero if unsuccessful, or the header offset (either 4
1938 * or 8 depending on whether a six or ten byte command was
1939 * issued) if successful.
1940 */
1941 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)1942 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1943 unsigned char *buffer, int len, int timeout, int retries,
1944 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1945 {
1946 unsigned char cmd[12];
1947 int use_10_for_ms;
1948 int header_length;
1949 int result;
1950 struct scsi_sense_hdr my_sshdr;
1951
1952 memset(data, 0, sizeof(*data));
1953 memset(&cmd[0], 0, 12);
1954 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1955 cmd[2] = modepage;
1956
1957 /* caller might not be interested in sense, but we need it */
1958 if (!sshdr)
1959 sshdr = &my_sshdr;
1960
1961 retry:
1962 use_10_for_ms = sdev->use_10_for_ms;
1963
1964 if (use_10_for_ms) {
1965 if (len < 8)
1966 len = 8;
1967
1968 cmd[0] = MODE_SENSE_10;
1969 cmd[8] = len;
1970 header_length = 8;
1971 } else {
1972 if (len < 4)
1973 len = 4;
1974
1975 cmd[0] = MODE_SENSE;
1976 cmd[4] = len;
1977 header_length = 4;
1978 }
1979
1980 memset(buffer, 0, len);
1981
1982 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1983 sshdr, timeout, retries, NULL);
1984
1985 /* This code looks awful: what it's doing is making sure an
1986 * ILLEGAL REQUEST sense return identifies the actual command
1987 * byte as the problem. MODE_SENSE commands can return
1988 * ILLEGAL REQUEST if the code page isn't supported */
1989
1990 if (use_10_for_ms && !scsi_status_is_good(result) &&
1991 (driver_byte(result) & DRIVER_SENSE)) {
1992 if (scsi_sense_valid(sshdr)) {
1993 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1994 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1995 /*
1996 * Invalid command operation code
1997 */
1998 sdev->use_10_for_ms = 0;
1999 goto retry;
2000 }
2001 }
2002 }
2003
2004 if(scsi_status_is_good(result)) {
2005 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2006 (modepage == 6 || modepage == 8))) {
2007 /* Initio breakage? */
2008 header_length = 0;
2009 data->length = 13;
2010 data->medium_type = 0;
2011 data->device_specific = 0;
2012 data->longlba = 0;
2013 data->block_descriptor_length = 0;
2014 } else if(use_10_for_ms) {
2015 data->length = buffer[0]*256 + buffer[1] + 2;
2016 data->medium_type = buffer[2];
2017 data->device_specific = buffer[3];
2018 data->longlba = buffer[4] & 0x01;
2019 data->block_descriptor_length = buffer[6]*256
2020 + buffer[7];
2021 } else {
2022 data->length = buffer[0] + 1;
2023 data->medium_type = buffer[1];
2024 data->device_specific = buffer[2];
2025 data->block_descriptor_length = buffer[3];
2026 }
2027 data->header_length = header_length;
2028 }
2029
2030 return result;
2031 }
2032 EXPORT_SYMBOL(scsi_mode_sense);
2033
2034 /**
2035 * scsi_test_unit_ready - test if unit is ready
2036 * @sdev: scsi device to change the state of.
2037 * @timeout: command timeout
2038 * @retries: number of retries before failing
2039 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2040 * returning sense. Make sure that this is cleared before passing
2041 * in.
2042 *
2043 * Returns zero if unsuccessful or an error if TUR failed. For
2044 * removable media, UNIT_ATTENTION sets ->changed flag.
2045 **/
2046 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2047 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2048 struct scsi_sense_hdr *sshdr_external)
2049 {
2050 char cmd[] = {
2051 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2052 };
2053 struct scsi_sense_hdr *sshdr;
2054 int result;
2055
2056 if (!sshdr_external)
2057 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2058 else
2059 sshdr = sshdr_external;
2060
2061 /* try to eat the UNIT_ATTENTION if there are enough retries */
2062 do {
2063 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2064 timeout, retries, NULL);
2065 if (sdev->removable && scsi_sense_valid(sshdr) &&
2066 sshdr->sense_key == UNIT_ATTENTION)
2067 sdev->changed = 1;
2068 } while (scsi_sense_valid(sshdr) &&
2069 sshdr->sense_key == UNIT_ATTENTION && --retries);
2070
2071 if (!sshdr_external)
2072 kfree(sshdr);
2073 return result;
2074 }
2075 EXPORT_SYMBOL(scsi_test_unit_ready);
2076
2077 /**
2078 * scsi_device_set_state - Take the given device through the device state model.
2079 * @sdev: scsi device to change the state of.
2080 * @state: state to change to.
2081 *
2082 * Returns zero if unsuccessful or an error if the requested
2083 * transition is illegal.
2084 */
2085 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2086 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2087 {
2088 enum scsi_device_state oldstate = sdev->sdev_state;
2089
2090 if (state == oldstate)
2091 return 0;
2092
2093 switch (state) {
2094 case SDEV_CREATED:
2095 switch (oldstate) {
2096 case SDEV_CREATED_BLOCK:
2097 break;
2098 default:
2099 goto illegal;
2100 }
2101 break;
2102
2103 case SDEV_RUNNING:
2104 switch (oldstate) {
2105 case SDEV_CREATED:
2106 case SDEV_OFFLINE:
2107 case SDEV_TRANSPORT_OFFLINE:
2108 case SDEV_QUIESCE:
2109 case SDEV_BLOCK:
2110 break;
2111 default:
2112 goto illegal;
2113 }
2114 break;
2115
2116 case SDEV_QUIESCE:
2117 switch (oldstate) {
2118 case SDEV_RUNNING:
2119 case SDEV_OFFLINE:
2120 case SDEV_TRANSPORT_OFFLINE:
2121 break;
2122 default:
2123 goto illegal;
2124 }
2125 break;
2126
2127 case SDEV_OFFLINE:
2128 case SDEV_TRANSPORT_OFFLINE:
2129 switch (oldstate) {
2130 case SDEV_CREATED:
2131 case SDEV_RUNNING:
2132 case SDEV_QUIESCE:
2133 case SDEV_BLOCK:
2134 break;
2135 default:
2136 goto illegal;
2137 }
2138 break;
2139
2140 case SDEV_BLOCK:
2141 switch (oldstate) {
2142 case SDEV_RUNNING:
2143 case SDEV_CREATED_BLOCK:
2144 break;
2145 default:
2146 goto illegal;
2147 }
2148 break;
2149
2150 case SDEV_CREATED_BLOCK:
2151 switch (oldstate) {
2152 case SDEV_CREATED:
2153 break;
2154 default:
2155 goto illegal;
2156 }
2157 break;
2158
2159 case SDEV_CANCEL:
2160 switch (oldstate) {
2161 case SDEV_CREATED:
2162 case SDEV_RUNNING:
2163 case SDEV_QUIESCE:
2164 case SDEV_OFFLINE:
2165 case SDEV_TRANSPORT_OFFLINE:
2166 case SDEV_BLOCK:
2167 break;
2168 default:
2169 goto illegal;
2170 }
2171 break;
2172
2173 case SDEV_DEL:
2174 switch (oldstate) {
2175 case SDEV_CREATED:
2176 case SDEV_RUNNING:
2177 case SDEV_OFFLINE:
2178 case SDEV_TRANSPORT_OFFLINE:
2179 case SDEV_CANCEL:
2180 break;
2181 default:
2182 goto illegal;
2183 }
2184 break;
2185
2186 }
2187 sdev->sdev_state = state;
2188 return 0;
2189
2190 illegal:
2191 SCSI_LOG_ERROR_RECOVERY(1,
2192 sdev_printk(KERN_ERR, sdev,
2193 "Illegal state transition %s->%s\n",
2194 scsi_device_state_name(oldstate),
2195 scsi_device_state_name(state))
2196 );
2197 return -EINVAL;
2198 }
2199 EXPORT_SYMBOL(scsi_device_set_state);
2200
2201 /**
2202 * sdev_evt_emit - emit a single SCSI device uevent
2203 * @sdev: associated SCSI device
2204 * @evt: event to emit
2205 *
2206 * Send a single uevent (scsi_event) to the associated scsi_device.
2207 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2208 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2209 {
2210 int idx = 0;
2211 char *envp[3];
2212
2213 switch (evt->evt_type) {
2214 case SDEV_EVT_MEDIA_CHANGE:
2215 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2216 break;
2217
2218 default:
2219 /* do nothing */
2220 break;
2221 }
2222
2223 envp[idx++] = NULL;
2224
2225 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2226 }
2227
2228 /**
2229 * sdev_evt_thread - send a uevent for each scsi event
2230 * @work: work struct for scsi_device
2231 *
2232 * Dispatch queued events to their associated scsi_device kobjects
2233 * as uevents.
2234 */
scsi_evt_thread(struct work_struct * work)2235 void scsi_evt_thread(struct work_struct *work)
2236 {
2237 struct scsi_device *sdev;
2238 LIST_HEAD(event_list);
2239
2240 sdev = container_of(work, struct scsi_device, event_work);
2241
2242 while (1) {
2243 struct scsi_event *evt;
2244 struct list_head *this, *tmp;
2245 unsigned long flags;
2246
2247 spin_lock_irqsave(&sdev->list_lock, flags);
2248 list_splice_init(&sdev->event_list, &event_list);
2249 spin_unlock_irqrestore(&sdev->list_lock, flags);
2250
2251 if (list_empty(&event_list))
2252 break;
2253
2254 list_for_each_safe(this, tmp, &event_list) {
2255 evt = list_entry(this, struct scsi_event, node);
2256 list_del(&evt->node);
2257 scsi_evt_emit(sdev, evt);
2258 kfree(evt);
2259 }
2260 }
2261 }
2262
2263 /**
2264 * sdev_evt_send - send asserted event to uevent thread
2265 * @sdev: scsi_device event occurred on
2266 * @evt: event to send
2267 *
2268 * Assert scsi device event asynchronously.
2269 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2270 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2271 {
2272 unsigned long flags;
2273
2274 #if 0
2275 /* FIXME: currently this check eliminates all media change events
2276 * for polled devices. Need to update to discriminate between AN
2277 * and polled events */
2278 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2279 kfree(evt);
2280 return;
2281 }
2282 #endif
2283
2284 spin_lock_irqsave(&sdev->list_lock, flags);
2285 list_add_tail(&evt->node, &sdev->event_list);
2286 schedule_work(&sdev->event_work);
2287 spin_unlock_irqrestore(&sdev->list_lock, flags);
2288 }
2289 EXPORT_SYMBOL_GPL(sdev_evt_send);
2290
2291 /**
2292 * sdev_evt_alloc - allocate a new scsi event
2293 * @evt_type: type of event to allocate
2294 * @gfpflags: GFP flags for allocation
2295 *
2296 * Allocates and returns a new scsi_event.
2297 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2298 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2299 gfp_t gfpflags)
2300 {
2301 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2302 if (!evt)
2303 return NULL;
2304
2305 evt->evt_type = evt_type;
2306 INIT_LIST_HEAD(&evt->node);
2307
2308 /* evt_type-specific initialization, if any */
2309 switch (evt_type) {
2310 case SDEV_EVT_MEDIA_CHANGE:
2311 default:
2312 /* do nothing */
2313 break;
2314 }
2315
2316 return evt;
2317 }
2318 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2319
2320 /**
2321 * sdev_evt_send_simple - send asserted event to uevent thread
2322 * @sdev: scsi_device event occurred on
2323 * @evt_type: type of event to send
2324 * @gfpflags: GFP flags for allocation
2325 *
2326 * Assert scsi device event asynchronously, given an event type.
2327 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2328 void sdev_evt_send_simple(struct scsi_device *sdev,
2329 enum scsi_device_event evt_type, gfp_t gfpflags)
2330 {
2331 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2332 if (!evt) {
2333 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2334 evt_type);
2335 return;
2336 }
2337
2338 sdev_evt_send(sdev, evt);
2339 }
2340 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2341
2342 /**
2343 * scsi_device_quiesce - Block user issued commands.
2344 * @sdev: scsi device to quiesce.
2345 *
2346 * This works by trying to transition to the SDEV_QUIESCE state
2347 * (which must be a legal transition). When the device is in this
2348 * state, only special requests will be accepted, all others will
2349 * be deferred. Since special requests may also be requeued requests,
2350 * a successful return doesn't guarantee the device will be
2351 * totally quiescent.
2352 *
2353 * Must be called with user context, may sleep.
2354 *
2355 * Returns zero if unsuccessful or an error if not.
2356 */
2357 int
scsi_device_quiesce(struct scsi_device * sdev)2358 scsi_device_quiesce(struct scsi_device *sdev)
2359 {
2360 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2361 if (err)
2362 return err;
2363
2364 scsi_run_queue(sdev->request_queue);
2365 while (sdev->device_busy) {
2366 msleep_interruptible(200);
2367 scsi_run_queue(sdev->request_queue);
2368 }
2369 return 0;
2370 }
2371 EXPORT_SYMBOL(scsi_device_quiesce);
2372
2373 /**
2374 * scsi_device_resume - Restart user issued commands to a quiesced device.
2375 * @sdev: scsi device to resume.
2376 *
2377 * Moves the device from quiesced back to running and restarts the
2378 * queues.
2379 *
2380 * Must be called with user context, may sleep.
2381 */
scsi_device_resume(struct scsi_device * sdev)2382 void scsi_device_resume(struct scsi_device *sdev)
2383 {
2384 /* check if the device state was mutated prior to resume, and if
2385 * so assume the state is being managed elsewhere (for example
2386 * device deleted during suspend)
2387 */
2388 if (sdev->sdev_state != SDEV_QUIESCE ||
2389 scsi_device_set_state(sdev, SDEV_RUNNING))
2390 return;
2391 scsi_run_queue(sdev->request_queue);
2392 }
2393 EXPORT_SYMBOL(scsi_device_resume);
2394
2395 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2396 device_quiesce_fn(struct scsi_device *sdev, void *data)
2397 {
2398 scsi_device_quiesce(sdev);
2399 }
2400
2401 void
scsi_target_quiesce(struct scsi_target * starget)2402 scsi_target_quiesce(struct scsi_target *starget)
2403 {
2404 starget_for_each_device(starget, NULL, device_quiesce_fn);
2405 }
2406 EXPORT_SYMBOL(scsi_target_quiesce);
2407
2408 static void
device_resume_fn(struct scsi_device * sdev,void * data)2409 device_resume_fn(struct scsi_device *sdev, void *data)
2410 {
2411 scsi_device_resume(sdev);
2412 }
2413
2414 void
scsi_target_resume(struct scsi_target * starget)2415 scsi_target_resume(struct scsi_target *starget)
2416 {
2417 starget_for_each_device(starget, NULL, device_resume_fn);
2418 }
2419 EXPORT_SYMBOL(scsi_target_resume);
2420
2421 /**
2422 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2423 * @sdev: device to block
2424 *
2425 * Block request made by scsi lld's to temporarily stop all
2426 * scsi commands on the specified device. Called from interrupt
2427 * or normal process context.
2428 *
2429 * Returns zero if successful or error if not
2430 *
2431 * Notes:
2432 * This routine transitions the device to the SDEV_BLOCK state
2433 * (which must be a legal transition). When the device is in this
2434 * state, all commands are deferred until the scsi lld reenables
2435 * the device with scsi_device_unblock or device_block_tmo fires.
2436 */
2437 int
scsi_internal_device_block(struct scsi_device * sdev)2438 scsi_internal_device_block(struct scsi_device *sdev)
2439 {
2440 struct request_queue *q = sdev->request_queue;
2441 unsigned long flags;
2442 int err = 0;
2443
2444 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2445 if (err) {
2446 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2447
2448 if (err)
2449 return err;
2450 }
2451
2452 /*
2453 * The device has transitioned to SDEV_BLOCK. Stop the
2454 * block layer from calling the midlayer with this device's
2455 * request queue.
2456 */
2457 spin_lock_irqsave(q->queue_lock, flags);
2458 blk_stop_queue(q);
2459 spin_unlock_irqrestore(q->queue_lock, flags);
2460
2461 return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2464
2465 /**
2466 * scsi_internal_device_unblock - resume a device after a block request
2467 * @sdev: device to resume
2468 * @new_state: state to set devices to after unblocking
2469 *
2470 * Called by scsi lld's or the midlayer to restart the device queue
2471 * for the previously suspended scsi device. Called from interrupt or
2472 * normal process context.
2473 *
2474 * Returns zero if successful or error if not.
2475 *
2476 * Notes:
2477 * This routine transitions the device to the SDEV_RUNNING state
2478 * or to one of the offline states (which must be a legal transition)
2479 * allowing the midlayer to goose the queue for this device.
2480 */
2481 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2482 scsi_internal_device_unblock(struct scsi_device *sdev,
2483 enum scsi_device_state new_state)
2484 {
2485 struct request_queue *q = sdev->request_queue;
2486 unsigned long flags;
2487
2488 /*
2489 * Try to transition the scsi device to SDEV_RUNNING or one of the
2490 * offlined states and goose the device queue if successful.
2491 */
2492 if ((sdev->sdev_state == SDEV_BLOCK) ||
2493 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2494 sdev->sdev_state = new_state;
2495 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2496 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2497 new_state == SDEV_OFFLINE)
2498 sdev->sdev_state = new_state;
2499 else
2500 sdev->sdev_state = SDEV_CREATED;
2501 } else if (sdev->sdev_state != SDEV_CANCEL &&
2502 sdev->sdev_state != SDEV_OFFLINE)
2503 return -EINVAL;
2504
2505 spin_lock_irqsave(q->queue_lock, flags);
2506 blk_start_queue(q);
2507 spin_unlock_irqrestore(q->queue_lock, flags);
2508
2509 return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2512
2513 static void
device_block(struct scsi_device * sdev,void * data)2514 device_block(struct scsi_device *sdev, void *data)
2515 {
2516 scsi_internal_device_block(sdev);
2517 }
2518
2519 static int
target_block(struct device * dev,void * data)2520 target_block(struct device *dev, void *data)
2521 {
2522 if (scsi_is_target_device(dev))
2523 starget_for_each_device(to_scsi_target(dev), NULL,
2524 device_block);
2525 return 0;
2526 }
2527
2528 void
scsi_target_block(struct device * dev)2529 scsi_target_block(struct device *dev)
2530 {
2531 if (scsi_is_target_device(dev))
2532 starget_for_each_device(to_scsi_target(dev), NULL,
2533 device_block);
2534 else
2535 device_for_each_child(dev, NULL, target_block);
2536 }
2537 EXPORT_SYMBOL_GPL(scsi_target_block);
2538
2539 static void
device_unblock(struct scsi_device * sdev,void * data)2540 device_unblock(struct scsi_device *sdev, void *data)
2541 {
2542 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2543 }
2544
2545 static int
target_unblock(struct device * dev,void * data)2546 target_unblock(struct device *dev, void *data)
2547 {
2548 if (scsi_is_target_device(dev))
2549 starget_for_each_device(to_scsi_target(dev), data,
2550 device_unblock);
2551 return 0;
2552 }
2553
2554 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2555 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2556 {
2557 if (scsi_is_target_device(dev))
2558 starget_for_each_device(to_scsi_target(dev), &new_state,
2559 device_unblock);
2560 else
2561 device_for_each_child(dev, &new_state, target_unblock);
2562 }
2563 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2564
2565 /**
2566 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2567 * @sgl: scatter-gather list
2568 * @sg_count: number of segments in sg
2569 * @offset: offset in bytes into sg, on return offset into the mapped area
2570 * @len: bytes to map, on return number of bytes mapped
2571 *
2572 * Returns virtual address of the start of the mapped page
2573 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2574 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2575 size_t *offset, size_t *len)
2576 {
2577 int i;
2578 size_t sg_len = 0, len_complete = 0;
2579 struct scatterlist *sg;
2580 struct page *page;
2581
2582 WARN_ON(!irqs_disabled());
2583
2584 for_each_sg(sgl, sg, sg_count, i) {
2585 len_complete = sg_len; /* Complete sg-entries */
2586 sg_len += sg->length;
2587 if (sg_len > *offset)
2588 break;
2589 }
2590
2591 if (unlikely(i == sg_count)) {
2592 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2593 "elements %d\n",
2594 __func__, sg_len, *offset, sg_count);
2595 WARN_ON(1);
2596 return NULL;
2597 }
2598
2599 /* Offset starting from the beginning of first page in this sg-entry */
2600 *offset = *offset - len_complete + sg->offset;
2601
2602 /* Assumption: contiguous pages can be accessed as "page + i" */
2603 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2604 *offset &= ~PAGE_MASK;
2605
2606 /* Bytes in this sg-entry from *offset to the end of the page */
2607 sg_len = PAGE_SIZE - *offset;
2608 if (*len > sg_len)
2609 *len = sg_len;
2610
2611 return kmap_atomic(page);
2612 }
2613 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2614
2615 /**
2616 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2617 * @virt: virtual address to be unmapped
2618 */
scsi_kunmap_atomic_sg(void * virt)2619 void scsi_kunmap_atomic_sg(void *virt)
2620 {
2621 kunmap_atomic(virt);
2622 }
2623 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2624
sdev_disable_disk_events(struct scsi_device * sdev)2625 void sdev_disable_disk_events(struct scsi_device *sdev)
2626 {
2627 atomic_inc(&sdev->disk_events_disable_depth);
2628 }
2629 EXPORT_SYMBOL(sdev_disable_disk_events);
2630
sdev_enable_disk_events(struct scsi_device * sdev)2631 void sdev_enable_disk_events(struct scsi_device *sdev)
2632 {
2633 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2634 return;
2635 atomic_dec(&sdev->disk_events_disable_depth);
2636 }
2637 EXPORT_SYMBOL(sdev_enable_disk_events);
2638