• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73 
acpi_scsi_bus_match(struct device * dev)74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 	return dev->bus == &scsi_bus_type;
77 }
78 
scsi_register_acpi_bus_type(struct acpi_bus_type * bus)79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85 
scsi_unregister_acpi_bus_type(struct acpi_bus_type * bus)86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 	unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92 
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY	3
99 
100 /*
101  * Function:	scsi_unprep_request()
102  *
103  * Purpose:	Remove all preparation done for a request, including its
104  *		associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:	req	- request to unprepare
107  *
108  * Lock status:	Assumed that no locks are held upon entry.
109  *
110  * Returns:	Nothing.
111  */
scsi_unprep_request(struct request * req)112 static void scsi_unprep_request(struct request *req)
113 {
114 	struct scsi_cmnd *cmd = req->special;
115 
116 	blk_unprep_request(req);
117 	req->special = NULL;
118 
119 	scsi_put_command(cmd);
120 }
121 
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 	struct Scsi_Host *host = cmd->device->host;
137 	struct scsi_device *device = cmd->device;
138 	struct scsi_target *starget = scsi_target(device);
139 	struct request_queue *q = device->request_queue;
140 	unsigned long flags;
141 
142 	SCSI_LOG_MLQUEUE(1,
143 		 printk("Inserting command %p into mlqueue\n", cmd));
144 
145 	/*
146 	 * Set the appropriate busy bit for the device/host.
147 	 *
148 	 * If the host/device isn't busy, assume that something actually
149 	 * completed, and that we should be able to queue a command now.
150 	 *
151 	 * Note that the prior mid-layer assumption that any host could
152 	 * always queue at least one command is now broken.  The mid-layer
153 	 * will implement a user specifiable stall (see
154 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 	 * if a command is requeued with no other commands outstanding
156 	 * either for the device or for the host.
157 	 */
158 	switch (reason) {
159 	case SCSI_MLQUEUE_HOST_BUSY:
160 		host->host_blocked = host->max_host_blocked;
161 		break;
162 	case SCSI_MLQUEUE_DEVICE_BUSY:
163 	case SCSI_MLQUEUE_EH_RETRY:
164 		device->device_blocked = device->max_device_blocked;
165 		break;
166 	case SCSI_MLQUEUE_TARGET_BUSY:
167 		starget->target_blocked = starget->max_target_blocked;
168 		break;
169 	}
170 
171 	/*
172 	 * Decrement the counters, since these commands are no longer
173 	 * active on the host/device.
174 	 */
175 	if (unbusy)
176 		scsi_device_unbusy(device);
177 
178 	/*
179 	 * Requeue this command.  It will go before all other commands
180 	 * that are already in the queue. Schedule requeue work under
181 	 * lock such that the kblockd_schedule_work() call happens
182 	 * before blk_cleanup_queue() finishes.
183 	 */
184 	spin_lock_irqsave(q->queue_lock, flags);
185 	blk_requeue_request(q, cmd->request);
186 	kblockd_schedule_work(q, &device->requeue_work);
187 	spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189 
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 	__scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:	scsi device
216  * @cmd:	scsi command
217  * @data_direction: data direction
218  * @buffer:	data buffer
219  * @bufflen:	len of buffer
220  * @sense:	optional sense buffer
221  * @timeout:	request timeout in seconds
222  * @retries:	number of times to retry request
223  * @flags:	or into request flags;
224  * @resid:	optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,int flags,int * resid)229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 		 int data_direction, void *buffer, unsigned bufflen,
231 		 unsigned char *sense, int timeout, int retries, int flags,
232 		 int *resid)
233 {
234 	struct request *req;
235 	int write = (data_direction == DMA_TO_DEVICE);
236 	int ret = DRIVER_ERROR << 24;
237 
238 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 	if (!req)
240 		return ret;
241 
242 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
243 					buffer, bufflen, __GFP_WAIT))
244 		goto out;
245 
246 	req->cmd_len = COMMAND_SIZE(cmd[0]);
247 	memcpy(req->cmd, cmd, req->cmd_len);
248 	req->sense = sense;
249 	req->sense_len = 0;
250 	req->retries = retries;
251 	req->timeout = timeout;
252 	req->cmd_type = REQ_TYPE_BLOCK_PC;
253 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254 
255 	/*
256 	 * head injection *required* here otherwise quiesce won't work
257 	 */
258 	blk_execute_rq(req->q, NULL, req, 1);
259 
260 	/*
261 	 * Some devices (USB mass-storage in particular) may transfer
262 	 * garbage data together with a residue indicating that the data
263 	 * is invalid.  Prevent the garbage from being misinterpreted
264 	 * and prevent security leaks by zeroing out the excess data.
265 	 */
266 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268 
269 	if (resid)
270 		*resid = req->resid_len;
271 	ret = req->errors;
272  out:
273 	blk_put_request(req);
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278 
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,int flags)279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280 		     int data_direction, void *buffer, unsigned bufflen,
281 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
282 		     int *resid, int flags)
283 {
284 	char *sense = NULL;
285 	int result;
286 
287 	if (sshdr) {
288 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 		if (!sense)
290 			return DRIVER_ERROR << 24;
291 	}
292 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293 			      sense, timeout, retries, flags, resid);
294 	if (sshdr)
295 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296 
297 	kfree(sense);
298 	return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301 
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd	- command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 	cmd->serial_number = 0;
316 	scsi_set_resid(cmd, 0);
317 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 	if (cmd->cmd_len == 0)
319 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321 
scsi_device_unbusy(struct scsi_device * sdev)322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324 	struct Scsi_Host *shost = sdev->host;
325 	struct scsi_target *starget = scsi_target(sdev);
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(shost->host_lock, flags);
329 	shost->host_busy--;
330 	starget->target_busy--;
331 	if (unlikely(scsi_host_in_recovery(shost) &&
332 		     (shost->host_failed || shost->host_eh_scheduled)))
333 		scsi_eh_wakeup(shost);
334 	spin_unlock(shost->host_lock);
335 	spin_lock(sdev->request_queue->queue_lock);
336 	sdev->device_busy--;
337 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339 
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
scsi_single_lun_run(struct scsi_device * current_sdev)347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349 	struct Scsi_Host *shost = current_sdev->host;
350 	struct scsi_device *sdev, *tmp;
351 	struct scsi_target *starget = scsi_target(current_sdev);
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(shost->host_lock, flags);
355 	starget->starget_sdev_user = NULL;
356 	spin_unlock_irqrestore(shost->host_lock, flags);
357 
358 	/*
359 	 * Call blk_run_queue for all LUNs on the target, starting with
360 	 * current_sdev. We race with others (to set starget_sdev_user),
361 	 * but in most cases, we will be first. Ideally, each LU on the
362 	 * target would get some limited time or requests on the target.
363 	 */
364 	blk_run_queue(current_sdev->request_queue);
365 
366 	spin_lock_irqsave(shost->host_lock, flags);
367 	if (starget->starget_sdev_user)
368 		goto out;
369 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
370 			same_target_siblings) {
371 		if (sdev == current_sdev)
372 			continue;
373 		if (scsi_device_get(sdev))
374 			continue;
375 
376 		spin_unlock_irqrestore(shost->host_lock, flags);
377 		blk_run_queue(sdev->request_queue);
378 		spin_lock_irqsave(shost->host_lock, flags);
379 
380 		scsi_device_put(sdev);
381 	}
382  out:
383 	spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385 
scsi_device_is_busy(struct scsi_device * sdev)386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389 		return 1;
390 
391 	return 0;
392 }
393 
scsi_target_is_busy(struct scsi_target * starget)394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	return ((starget->can_queue > 0 &&
397 		 starget->target_busy >= starget->can_queue) ||
398 		 starget->target_blocked);
399 }
400 
scsi_host_is_busy(struct Scsi_Host * shost)401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404 	    shost->host_blocked || shost->host_self_blocked)
405 		return 1;
406 
407 	return 0;
408 }
409 
410 /*
411  * Function:	scsi_run_queue()
412  *
413  * Purpose:	Select a proper request queue to serve next
414  *
415  * Arguments:	q	- last request's queue
416  *
417  * Returns:     Nothing
418  *
419  * Notes:	The previous command was completely finished, start
420  *		a new one if possible.
421  */
scsi_run_queue(struct request_queue * q)422 static void scsi_run_queue(struct request_queue *q)
423 {
424 	struct scsi_device *sdev = q->queuedata;
425 	struct Scsi_Host *shost;
426 	LIST_HEAD(starved_list);
427 	unsigned long flags;
428 
429 	shost = sdev->host;
430 	if (scsi_target(sdev)->single_lun)
431 		scsi_single_lun_run(sdev);
432 
433 	spin_lock_irqsave(shost->host_lock, flags);
434 	list_splice_init(&shost->starved_list, &starved_list);
435 
436 	while (!list_empty(&starved_list)) {
437 		/*
438 		 * As long as shost is accepting commands and we have
439 		 * starved queues, call blk_run_queue. scsi_request_fn
440 		 * drops the queue_lock and can add us back to the
441 		 * starved_list.
442 		 *
443 		 * host_lock protects the starved_list and starved_entry.
444 		 * scsi_request_fn must get the host_lock before checking
445 		 * or modifying starved_list or starved_entry.
446 		 */
447 		if (scsi_host_is_busy(shost))
448 			break;
449 
450 		sdev = list_entry(starved_list.next,
451 				  struct scsi_device, starved_entry);
452 		list_del_init(&sdev->starved_entry);
453 		if (scsi_target_is_busy(scsi_target(sdev))) {
454 			list_move_tail(&sdev->starved_entry,
455 				       &shost->starved_list);
456 			continue;
457 		}
458 
459 		spin_unlock(shost->host_lock);
460 		spin_lock(sdev->request_queue->queue_lock);
461 		__blk_run_queue(sdev->request_queue);
462 		spin_unlock(sdev->request_queue->queue_lock);
463 		spin_lock(shost->host_lock);
464 	}
465 	/* put any unprocessed entries back */
466 	list_splice(&starved_list, &shost->starved_list);
467 	spin_unlock_irqrestore(shost->host_lock, flags);
468 
469 	blk_run_queue(q);
470 }
471 
scsi_requeue_run_queue(struct work_struct * work)472 void scsi_requeue_run_queue(struct work_struct *work)
473 {
474 	struct scsi_device *sdev;
475 	struct request_queue *q;
476 
477 	sdev = container_of(work, struct scsi_device, requeue_work);
478 	q = sdev->request_queue;
479 	scsi_run_queue(q);
480 }
481 
482 /*
483  * Function:	scsi_requeue_command()
484  *
485  * Purpose:	Handle post-processing of completed commands.
486  *
487  * Arguments:	q	- queue to operate on
488  *		cmd	- command that may need to be requeued.
489  *
490  * Returns:	Nothing
491  *
492  * Notes:	After command completion, there may be blocks left
493  *		over which weren't finished by the previous command
494  *		this can be for a number of reasons - the main one is
495  *		I/O errors in the middle of the request, in which case
496  *		we need to request the blocks that come after the bad
497  *		sector.
498  * Notes:	Upon return, cmd is a stale pointer.
499  */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)500 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
501 {
502 	struct scsi_device *sdev = cmd->device;
503 	struct request *req = cmd->request;
504 	unsigned long flags;
505 
506 	/*
507 	 * We need to hold a reference on the device to avoid the queue being
508 	 * killed after the unlock and before scsi_run_queue is invoked which
509 	 * may happen because scsi_unprep_request() puts the command which
510 	 * releases its reference on the device.
511 	 */
512 	get_device(&sdev->sdev_gendev);
513 
514 	spin_lock_irqsave(q->queue_lock, flags);
515 	scsi_unprep_request(req);
516 	blk_requeue_request(q, req);
517 	spin_unlock_irqrestore(q->queue_lock, flags);
518 
519 	scsi_run_queue(q);
520 
521 	put_device(&sdev->sdev_gendev);
522 }
523 
scsi_next_command(struct scsi_cmnd * cmd)524 void scsi_next_command(struct scsi_cmnd *cmd)
525 {
526 	struct scsi_device *sdev = cmd->device;
527 	struct request_queue *q = sdev->request_queue;
528 
529 	/* need to hold a reference on the device before we let go of the cmd */
530 	get_device(&sdev->sdev_gendev);
531 
532 	scsi_put_command(cmd);
533 	scsi_run_queue(q);
534 
535 	/* ok to remove device now */
536 	put_device(&sdev->sdev_gendev);
537 }
538 
scsi_run_host_queues(struct Scsi_Host * shost)539 void scsi_run_host_queues(struct Scsi_Host *shost)
540 {
541 	struct scsi_device *sdev;
542 
543 	shost_for_each_device(sdev, shost)
544 		scsi_run_queue(sdev->request_queue);
545 }
546 
547 static void __scsi_release_buffers(struct scsi_cmnd *, int);
548 
549 /*
550  * Function:    scsi_end_request()
551  *
552  * Purpose:     Post-processing of completed commands (usually invoked at end
553  *		of upper level post-processing and scsi_io_completion).
554  *
555  * Arguments:   cmd	 - command that is complete.
556  *              error    - 0 if I/O indicates success, < 0 for I/O error.
557  *              bytes    - number of bytes of completed I/O
558  *		requeue  - indicates whether we should requeue leftovers.
559  *
560  * Lock status: Assumed that lock is not held upon entry.
561  *
562  * Returns:     cmd if requeue required, NULL otherwise.
563  *
564  * Notes:       This is called for block device requests in order to
565  *              mark some number of sectors as complete.
566  *
567  *		We are guaranteeing that the request queue will be goosed
568  *		at some point during this call.
569  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
570  */
scsi_end_request(struct scsi_cmnd * cmd,int error,int bytes,int requeue)571 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
572 					  int bytes, int requeue)
573 {
574 	struct request_queue *q = cmd->device->request_queue;
575 	struct request *req = cmd->request;
576 
577 	/*
578 	 * If there are blocks left over at the end, set up the command
579 	 * to queue the remainder of them.
580 	 */
581 	if (blk_end_request(req, error, bytes)) {
582 		/* kill remainder if no retrys */
583 		if (error && scsi_noretry_cmd(cmd))
584 			blk_end_request_all(req, error);
585 		else {
586 			if (requeue) {
587 				/*
588 				 * Bleah.  Leftovers again.  Stick the
589 				 * leftovers in the front of the
590 				 * queue, and goose the queue again.
591 				 */
592 				scsi_release_buffers(cmd);
593 				scsi_requeue_command(q, cmd);
594 				cmd = NULL;
595 			}
596 			return cmd;
597 		}
598 	}
599 
600 	/*
601 	 * This will goose the queue request function at the end, so we don't
602 	 * need to worry about launching another command.
603 	 */
604 	__scsi_release_buffers(cmd, 0);
605 	scsi_next_command(cmd);
606 	return NULL;
607 }
608 
scsi_sgtable_index(unsigned short nents)609 static inline unsigned int scsi_sgtable_index(unsigned short nents)
610 {
611 	unsigned int index;
612 
613 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
614 
615 	if (nents <= 8)
616 		index = 0;
617 	else
618 		index = get_count_order(nents) - 3;
619 
620 	return index;
621 }
622 
scsi_sg_free(struct scatterlist * sgl,unsigned int nents)623 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
624 {
625 	struct scsi_host_sg_pool *sgp;
626 
627 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
628 	mempool_free(sgl, sgp->pool);
629 }
630 
scsi_sg_alloc(unsigned int nents,gfp_t gfp_mask)631 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
632 {
633 	struct scsi_host_sg_pool *sgp;
634 
635 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
636 	return mempool_alloc(sgp->pool, gfp_mask);
637 }
638 
scsi_alloc_sgtable(struct scsi_data_buffer * sdb,int nents,gfp_t gfp_mask)639 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
640 			      gfp_t gfp_mask)
641 {
642 	int ret;
643 
644 	BUG_ON(!nents);
645 
646 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
647 			       gfp_mask, scsi_sg_alloc);
648 	if (unlikely(ret))
649 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
650 				scsi_sg_free);
651 
652 	return ret;
653 }
654 
scsi_free_sgtable(struct scsi_data_buffer * sdb)655 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
656 {
657 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
658 }
659 
__scsi_release_buffers(struct scsi_cmnd * cmd,int do_bidi_check)660 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
661 {
662 
663 	if (cmd->sdb.table.nents)
664 		scsi_free_sgtable(&cmd->sdb);
665 
666 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
667 
668 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
669 		struct scsi_data_buffer *bidi_sdb =
670 			cmd->request->next_rq->special;
671 		scsi_free_sgtable(bidi_sdb);
672 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
673 		cmd->request->next_rq->special = NULL;
674 	}
675 
676 	if (scsi_prot_sg_count(cmd))
677 		scsi_free_sgtable(cmd->prot_sdb);
678 }
679 
680 /*
681  * Function:    scsi_release_buffers()
682  *
683  * Purpose:     Completion processing for block device I/O requests.
684  *
685  * Arguments:   cmd	- command that we are bailing.
686  *
687  * Lock status: Assumed that no lock is held upon entry.
688  *
689  * Returns:     Nothing
690  *
691  * Notes:       In the event that an upper level driver rejects a
692  *		command, we must release resources allocated during
693  *		the __init_io() function.  Primarily this would involve
694  *		the scatter-gather table, and potentially any bounce
695  *		buffers.
696  */
scsi_release_buffers(struct scsi_cmnd * cmd)697 void scsi_release_buffers(struct scsi_cmnd *cmd)
698 {
699 	__scsi_release_buffers(cmd, 1);
700 }
701 EXPORT_SYMBOL(scsi_release_buffers);
702 
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)703 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
704 {
705 	int error = 0;
706 
707 	switch(host_byte(result)) {
708 	case DID_TRANSPORT_FAILFAST:
709 		error = -ENOLINK;
710 		break;
711 	case DID_TARGET_FAILURE:
712 		set_host_byte(cmd, DID_OK);
713 		error = -EREMOTEIO;
714 		break;
715 	case DID_NEXUS_FAILURE:
716 		set_host_byte(cmd, DID_OK);
717 		error = -EBADE;
718 		break;
719 	default:
720 		error = -EIO;
721 		break;
722 	}
723 
724 	return error;
725 }
726 
727 /*
728  * Function:    scsi_io_completion()
729  *
730  * Purpose:     Completion processing for block device I/O requests.
731  *
732  * Arguments:   cmd   - command that is finished.
733  *
734  * Lock status: Assumed that no lock is held upon entry.
735  *
736  * Returns:     Nothing
737  *
738  * Notes:       This function is matched in terms of capabilities to
739  *              the function that created the scatter-gather list.
740  *              In other words, if there are no bounce buffers
741  *              (the normal case for most drivers), we don't need
742  *              the logic to deal with cleaning up afterwards.
743  *
744  *		We must call scsi_end_request().  This will finish off
745  *		the specified number of sectors.  If we are done, the
746  *		command block will be released and the queue function
747  *		will be goosed.  If we are not done then we have to
748  *		figure out what to do next:
749  *
750  *		a) We can call scsi_requeue_command().  The request
751  *		   will be unprepared and put back on the queue.  Then
752  *		   a new command will be created for it.  This should
753  *		   be used if we made forward progress, or if we want
754  *		   to switch from READ(10) to READ(6) for example.
755  *
756  *		b) We can call scsi_queue_insert().  The request will
757  *		   be put back on the queue and retried using the same
758  *		   command as before, possibly after a delay.
759  *
760  *		c) We can call blk_end_request() with -EIO to fail
761  *		   the remainder of the request.
762  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)763 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
764 {
765 	int result = cmd->result;
766 	struct request_queue *q = cmd->device->request_queue;
767 	struct request *req = cmd->request;
768 	int error = 0;
769 	struct scsi_sense_hdr sshdr;
770 	int sense_valid = 0;
771 	int sense_deferred = 0;
772 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
773 	      ACTION_DELAYED_RETRY} action;
774 	char *description = NULL;
775 
776 	if (result) {
777 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
778 		if (sense_valid)
779 			sense_deferred = scsi_sense_is_deferred(&sshdr);
780 	}
781 
782 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
783 		if (result) {
784 			if (sense_valid && req->sense) {
785 				/*
786 				 * SG_IO wants current and deferred errors
787 				 */
788 				int len = 8 + cmd->sense_buffer[7];
789 
790 				if (len > SCSI_SENSE_BUFFERSIZE)
791 					len = SCSI_SENSE_BUFFERSIZE;
792 				memcpy(req->sense, cmd->sense_buffer,  len);
793 				req->sense_len = len;
794 			}
795 			if (!sense_deferred)
796 				error = __scsi_error_from_host_byte(cmd, result);
797 		}
798 		/*
799 		 * __scsi_error_from_host_byte may have reset the host_byte
800 		 */
801 		req->errors = cmd->result;
802 
803 		req->resid_len = scsi_get_resid(cmd);
804 
805 		if (scsi_bidi_cmnd(cmd)) {
806 			/*
807 			 * Bidi commands Must be complete as a whole,
808 			 * both sides at once.
809 			 */
810 			req->next_rq->resid_len = scsi_in(cmd)->resid;
811 
812 			scsi_release_buffers(cmd);
813 			blk_end_request_all(req, 0);
814 
815 			scsi_next_command(cmd);
816 			return;
817 		}
818 	}
819 
820 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
821 	BUG_ON(blk_bidi_rq(req));
822 
823 	/*
824 	 * Next deal with any sectors which we were able to correctly
825 	 * handle.
826 	 */
827 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
828 				      "%d bytes done.\n",
829 				      blk_rq_sectors(req), good_bytes));
830 
831 	/*
832 	 * Recovered errors need reporting, but they're always treated
833 	 * as success, so fiddle the result code here.  For BLOCK_PC
834 	 * we already took a copy of the original into rq->errors which
835 	 * is what gets returned to the user
836 	 */
837 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
838 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
839 		 * print since caller wants ATA registers. Only occurs on
840 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
841 		 */
842 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
843 			;
844 		else if (!(req->cmd_flags & REQ_QUIET))
845 			scsi_print_sense("", cmd);
846 		result = 0;
847 		/* BLOCK_PC may have set error */
848 		error = 0;
849 	}
850 
851 	/*
852 	 * A number of bytes were successfully read.  If there
853 	 * are leftovers and there is some kind of error
854 	 * (result != 0), retry the rest.
855 	 */
856 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
857 		return;
858 
859 	error = __scsi_error_from_host_byte(cmd, result);
860 
861 	if (host_byte(result) == DID_RESET) {
862 		/* Third party bus reset or reset for error recovery
863 		 * reasons.  Just retry the command and see what
864 		 * happens.
865 		 */
866 		action = ACTION_RETRY;
867 	} else if (sense_valid && !sense_deferred) {
868 		switch (sshdr.sense_key) {
869 		case UNIT_ATTENTION:
870 			if (cmd->device->removable) {
871 				/* Detected disc change.  Set a bit
872 				 * and quietly refuse further access.
873 				 */
874 				cmd->device->changed = 1;
875 				description = "Media Changed";
876 				action = ACTION_FAIL;
877 			} else {
878 				/* Must have been a power glitch, or a
879 				 * bus reset.  Could not have been a
880 				 * media change, so we just retry the
881 				 * command and see what happens.
882 				 */
883 				action = ACTION_RETRY;
884 			}
885 			break;
886 		case ILLEGAL_REQUEST:
887 			/* If we had an ILLEGAL REQUEST returned, then
888 			 * we may have performed an unsupported
889 			 * command.  The only thing this should be
890 			 * would be a ten byte read where only a six
891 			 * byte read was supported.  Also, on a system
892 			 * where READ CAPACITY failed, we may have
893 			 * read past the end of the disk.
894 			 */
895 			if ((cmd->device->use_10_for_rw &&
896 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
897 			    (cmd->cmnd[0] == READ_10 ||
898 			     cmd->cmnd[0] == WRITE_10)) {
899 				/* This will issue a new 6-byte command. */
900 				cmd->device->use_10_for_rw = 0;
901 				action = ACTION_REPREP;
902 			} else if (sshdr.asc == 0x10) /* DIX */ {
903 				description = "Host Data Integrity Failure";
904 				action = ACTION_FAIL;
905 				error = -EILSEQ;
906 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
907 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
908 				switch (cmd->cmnd[0]) {
909 				case UNMAP:
910 					description = "Discard failure";
911 					break;
912 				case WRITE_SAME:
913 				case WRITE_SAME_16:
914 					if (cmd->cmnd[1] & 0x8)
915 						description = "Discard failure";
916 					else
917 						description =
918 							"Write same failure";
919 					break;
920 				default:
921 					description = "Invalid command failure";
922 					break;
923 				}
924 				action = ACTION_FAIL;
925 				error = -EREMOTEIO;
926 			} else
927 				action = ACTION_FAIL;
928 			break;
929 		case ABORTED_COMMAND:
930 			action = ACTION_FAIL;
931 			if (sshdr.asc == 0x10) { /* DIF */
932 				description = "Target Data Integrity Failure";
933 				error = -EILSEQ;
934 			}
935 			break;
936 		case NOT_READY:
937 			/* If the device is in the process of becoming
938 			 * ready, or has a temporary blockage, retry.
939 			 */
940 			if (sshdr.asc == 0x04) {
941 				switch (sshdr.ascq) {
942 				case 0x01: /* becoming ready */
943 				case 0x04: /* format in progress */
944 				case 0x05: /* rebuild in progress */
945 				case 0x06: /* recalculation in progress */
946 				case 0x07: /* operation in progress */
947 				case 0x08: /* Long write in progress */
948 				case 0x09: /* self test in progress */
949 				case 0x14: /* space allocation in progress */
950 					action = ACTION_DELAYED_RETRY;
951 					break;
952 				default:
953 					description = "Device not ready";
954 					action = ACTION_FAIL;
955 					break;
956 				}
957 			} else {
958 				description = "Device not ready";
959 				action = ACTION_FAIL;
960 			}
961 			break;
962 		case VOLUME_OVERFLOW:
963 			/* See SSC3rXX or current. */
964 			action = ACTION_FAIL;
965 			break;
966 		default:
967 			description = "Unhandled sense code";
968 			action = ACTION_FAIL;
969 			break;
970 		}
971 	} else {
972 		description = "Unhandled error code";
973 		action = ACTION_FAIL;
974 	}
975 
976 	switch (action) {
977 	case ACTION_FAIL:
978 		/* Give up and fail the remainder of the request */
979 		scsi_release_buffers(cmd);
980 		if (!(req->cmd_flags & REQ_QUIET)) {
981 			if (description)
982 				scmd_printk(KERN_INFO, cmd, "%s\n",
983 					    description);
984 			scsi_print_result(cmd);
985 			if (driver_byte(result) & DRIVER_SENSE)
986 				scsi_print_sense("", cmd);
987 			scsi_print_command(cmd);
988 		}
989 		if (blk_end_request_err(req, error))
990 			scsi_requeue_command(q, cmd);
991 		else
992 			scsi_next_command(cmd);
993 		break;
994 	case ACTION_REPREP:
995 		/* Unprep the request and put it back at the head of the queue.
996 		 * A new command will be prepared and issued.
997 		 */
998 		scsi_release_buffers(cmd);
999 		scsi_requeue_command(q, cmd);
1000 		break;
1001 	case ACTION_RETRY:
1002 		/* Retry the same command immediately */
1003 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1004 		break;
1005 	case ACTION_DELAYED_RETRY:
1006 		/* Retry the same command after a delay */
1007 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1008 		break;
1009 	}
1010 }
1011 
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb,gfp_t gfp_mask)1012 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1013 			     gfp_t gfp_mask)
1014 {
1015 	int count;
1016 
1017 	/*
1018 	 * If sg table allocation fails, requeue request later.
1019 	 */
1020 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1021 					gfp_mask))) {
1022 		return BLKPREP_DEFER;
1023 	}
1024 
1025 	req->buffer = NULL;
1026 
1027 	/*
1028 	 * Next, walk the list, and fill in the addresses and sizes of
1029 	 * each segment.
1030 	 */
1031 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1032 	BUG_ON(count > sdb->table.nents);
1033 	sdb->table.nents = count;
1034 	sdb->length = blk_rq_bytes(req);
1035 	return BLKPREP_OK;
1036 }
1037 
1038 /*
1039  * Function:    scsi_init_io()
1040  *
1041  * Purpose:     SCSI I/O initialize function.
1042  *
1043  * Arguments:   cmd   - Command descriptor we wish to initialize
1044  *
1045  * Returns:     0 on success
1046  *		BLKPREP_DEFER if the failure is retryable
1047  *		BLKPREP_KILL if the failure is fatal
1048  */
scsi_init_io(struct scsi_cmnd * cmd,gfp_t gfp_mask)1049 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1050 {
1051 	struct request *rq = cmd->request;
1052 
1053 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1054 	if (error)
1055 		goto err_exit;
1056 
1057 	if (blk_bidi_rq(rq)) {
1058 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1059 			scsi_sdb_cache, GFP_ATOMIC);
1060 		if (!bidi_sdb) {
1061 			error = BLKPREP_DEFER;
1062 			goto err_exit;
1063 		}
1064 
1065 		rq->next_rq->special = bidi_sdb;
1066 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1067 		if (error)
1068 			goto err_exit;
1069 	}
1070 
1071 	if (blk_integrity_rq(rq)) {
1072 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1073 		int ivecs, count;
1074 
1075 		BUG_ON(prot_sdb == NULL);
1076 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077 
1078 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1079 			error = BLKPREP_DEFER;
1080 			goto err_exit;
1081 		}
1082 
1083 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1084 						prot_sdb->table.sgl);
1085 		BUG_ON(unlikely(count > ivecs));
1086 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1087 
1088 		cmd->prot_sdb = prot_sdb;
1089 		cmd->prot_sdb->table.nents = count;
1090 	}
1091 
1092 	return BLKPREP_OK ;
1093 
1094 err_exit:
1095 	scsi_release_buffers(cmd);
1096 	cmd->request->special = NULL;
1097 	scsi_put_command(cmd);
1098 	return error;
1099 }
1100 EXPORT_SYMBOL(scsi_init_io);
1101 
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1102 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1103 		struct request *req)
1104 {
1105 	struct scsi_cmnd *cmd;
1106 
1107 	if (!req->special) {
1108 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1109 		if (unlikely(!cmd))
1110 			return NULL;
1111 		req->special = cmd;
1112 	} else {
1113 		cmd = req->special;
1114 	}
1115 
1116 	/* pull a tag out of the request if we have one */
1117 	cmd->tag = req->tag;
1118 	cmd->request = req;
1119 
1120 	cmd->cmnd = req->cmd;
1121 	cmd->prot_op = SCSI_PROT_NORMAL;
1122 
1123 	return cmd;
1124 }
1125 
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1126 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1127 {
1128 	struct scsi_cmnd *cmd;
1129 	int ret = scsi_prep_state_check(sdev, req);
1130 
1131 	if (ret != BLKPREP_OK)
1132 		return ret;
1133 
1134 	cmd = scsi_get_cmd_from_req(sdev, req);
1135 	if (unlikely(!cmd))
1136 		return BLKPREP_DEFER;
1137 
1138 	/*
1139 	 * BLOCK_PC requests may transfer data, in which case they must
1140 	 * a bio attached to them.  Or they might contain a SCSI command
1141 	 * that does not transfer data, in which case they may optionally
1142 	 * submit a request without an attached bio.
1143 	 */
1144 	if (req->bio) {
1145 		int ret;
1146 
1147 		BUG_ON(!req->nr_phys_segments);
1148 
1149 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1150 		if (unlikely(ret))
1151 			return ret;
1152 	} else {
1153 		BUG_ON(blk_rq_bytes(req));
1154 
1155 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1156 		req->buffer = NULL;
1157 	}
1158 
1159 	cmd->cmd_len = req->cmd_len;
1160 	if (!blk_rq_bytes(req))
1161 		cmd->sc_data_direction = DMA_NONE;
1162 	else if (rq_data_dir(req) == WRITE)
1163 		cmd->sc_data_direction = DMA_TO_DEVICE;
1164 	else
1165 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1166 
1167 	cmd->transfersize = blk_rq_bytes(req);
1168 	cmd->allowed = req->retries;
1169 	return BLKPREP_OK;
1170 }
1171 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1172 
1173 /*
1174  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1175  * from filesystems that still need to be translated to SCSI CDBs from
1176  * the ULD.
1177  */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1178 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd;
1181 	int ret = scsi_prep_state_check(sdev, req);
1182 
1183 	if (ret != BLKPREP_OK)
1184 		return ret;
1185 
1186 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1187 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1188 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1189 		if (ret != BLKPREP_OK)
1190 			return ret;
1191 	}
1192 
1193 	/*
1194 	 * Filesystem requests must transfer data.
1195 	 */
1196 	BUG_ON(!req->nr_phys_segments);
1197 
1198 	cmd = scsi_get_cmd_from_req(sdev, req);
1199 	if (unlikely(!cmd))
1200 		return BLKPREP_DEFER;
1201 
1202 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1203 	return scsi_init_io(cmd, GFP_ATOMIC);
1204 }
1205 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1206 
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1207 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209 	int ret = BLKPREP_OK;
1210 
1211 	/*
1212 	 * If the device is not in running state we will reject some
1213 	 * or all commands.
1214 	 */
1215 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1216 		switch (sdev->sdev_state) {
1217 		case SDEV_OFFLINE:
1218 		case SDEV_TRANSPORT_OFFLINE:
1219 			/*
1220 			 * If the device is offline we refuse to process any
1221 			 * commands.  The device must be brought online
1222 			 * before trying any recovery commands.
1223 			 */
1224 			sdev_printk(KERN_ERR, sdev,
1225 				    "rejecting I/O to offline device\n");
1226 			ret = BLKPREP_KILL;
1227 			break;
1228 		case SDEV_DEL:
1229 			/*
1230 			 * If the device is fully deleted, we refuse to
1231 			 * process any commands as well.
1232 			 */
1233 			sdev_printk(KERN_ERR, sdev,
1234 				    "rejecting I/O to dead device\n");
1235 			ret = BLKPREP_KILL;
1236 			break;
1237 		case SDEV_QUIESCE:
1238 		case SDEV_BLOCK:
1239 		case SDEV_CREATED_BLOCK:
1240 			/*
1241 			 * If the devices is blocked we defer normal commands.
1242 			 */
1243 			if (!(req->cmd_flags & REQ_PREEMPT))
1244 				ret = BLKPREP_DEFER;
1245 			break;
1246 		default:
1247 			/*
1248 			 * For any other not fully online state we only allow
1249 			 * special commands.  In particular any user initiated
1250 			 * command is not allowed.
1251 			 */
1252 			if (!(req->cmd_flags & REQ_PREEMPT))
1253 				ret = BLKPREP_KILL;
1254 			break;
1255 		}
1256 	}
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL(scsi_prep_state_check);
1260 
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1261 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1262 {
1263 	struct scsi_device *sdev = q->queuedata;
1264 
1265 	switch (ret) {
1266 	case BLKPREP_KILL:
1267 		req->errors = DID_NO_CONNECT << 16;
1268 		/* release the command and kill it */
1269 		if (req->special) {
1270 			struct scsi_cmnd *cmd = req->special;
1271 			scsi_release_buffers(cmd);
1272 			scsi_put_command(cmd);
1273 			req->special = NULL;
1274 		}
1275 		break;
1276 	case BLKPREP_DEFER:
1277 		/*
1278 		 * If we defer, the blk_peek_request() returns NULL, but the
1279 		 * queue must be restarted, so we schedule a callback to happen
1280 		 * shortly.
1281 		 */
1282 		if (sdev->device_busy == 0)
1283 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1284 		break;
1285 	default:
1286 		req->cmd_flags |= REQ_DONTPREP;
1287 	}
1288 
1289 	return ret;
1290 }
1291 EXPORT_SYMBOL(scsi_prep_return);
1292 
scsi_prep_fn(struct request_queue * q,struct request * req)1293 int scsi_prep_fn(struct request_queue *q, struct request *req)
1294 {
1295 	struct scsi_device *sdev = q->queuedata;
1296 	int ret = BLKPREP_KILL;
1297 
1298 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1299 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1300 	return scsi_prep_return(q, req, ret);
1301 }
1302 EXPORT_SYMBOL(scsi_prep_fn);
1303 
1304 /*
1305  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1306  * return 0.
1307  *
1308  * Called with the queue_lock held.
1309  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1310 static inline int scsi_dev_queue_ready(struct request_queue *q,
1311 				  struct scsi_device *sdev)
1312 {
1313 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1314 		/*
1315 		 * unblock after device_blocked iterates to zero
1316 		 */
1317 		if (--sdev->device_blocked == 0) {
1318 			SCSI_LOG_MLQUEUE(3,
1319 				   sdev_printk(KERN_INFO, sdev,
1320 				   "unblocking device at zero depth\n"));
1321 		} else {
1322 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1323 			return 0;
1324 		}
1325 	}
1326 	if (scsi_device_is_busy(sdev))
1327 		return 0;
1328 
1329 	return 1;
1330 }
1331 
1332 
1333 /*
1334  * scsi_target_queue_ready: checks if there we can send commands to target
1335  * @sdev: scsi device on starget to check.
1336  *
1337  * Called with the host lock held.
1338  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1339 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1340 					   struct scsi_device *sdev)
1341 {
1342 	struct scsi_target *starget = scsi_target(sdev);
1343 
1344 	if (starget->single_lun) {
1345 		if (starget->starget_sdev_user &&
1346 		    starget->starget_sdev_user != sdev)
1347 			return 0;
1348 		starget->starget_sdev_user = sdev;
1349 	}
1350 
1351 	if (starget->target_busy == 0 && starget->target_blocked) {
1352 		/*
1353 		 * unblock after target_blocked iterates to zero
1354 		 */
1355 		if (--starget->target_blocked == 0) {
1356 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1357 					 "unblocking target at zero depth\n"));
1358 		} else
1359 			return 0;
1360 	}
1361 
1362 	if (scsi_target_is_busy(starget)) {
1363 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1364 		return 0;
1365 	}
1366 
1367 	return 1;
1368 }
1369 
1370 /*
1371  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1372  * return 0. We must end up running the queue again whenever 0 is
1373  * returned, else IO can hang.
1374  *
1375  * Called with host_lock held.
1376  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1377 static inline int scsi_host_queue_ready(struct request_queue *q,
1378 				   struct Scsi_Host *shost,
1379 				   struct scsi_device *sdev)
1380 {
1381 	if (scsi_host_in_recovery(shost))
1382 		return 0;
1383 	if (shost->host_busy == 0 && shost->host_blocked) {
1384 		/*
1385 		 * unblock after host_blocked iterates to zero
1386 		 */
1387 		if (--shost->host_blocked == 0) {
1388 			SCSI_LOG_MLQUEUE(3,
1389 				printk("scsi%d unblocking host at zero depth\n",
1390 					shost->host_no));
1391 		} else {
1392 			return 0;
1393 		}
1394 	}
1395 	if (scsi_host_is_busy(shost)) {
1396 		if (list_empty(&sdev->starved_entry))
1397 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398 		return 0;
1399 	}
1400 
1401 	/* We're OK to process the command, so we can't be starved */
1402 	if (!list_empty(&sdev->starved_entry))
1403 		list_del_init(&sdev->starved_entry);
1404 
1405 	return 1;
1406 }
1407 
1408 /*
1409  * Busy state exporting function for request stacking drivers.
1410  *
1411  * For efficiency, no lock is taken to check the busy state of
1412  * shost/starget/sdev, since the returned value is not guaranteed and
1413  * may be changed after request stacking drivers call the function,
1414  * regardless of taking lock or not.
1415  *
1416  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1417  * needs to return 'not busy'. Otherwise, request stacking drivers
1418  * may hold requests forever.
1419  */
scsi_lld_busy(struct request_queue * q)1420 static int scsi_lld_busy(struct request_queue *q)
1421 {
1422 	struct scsi_device *sdev = q->queuedata;
1423 	struct Scsi_Host *shost;
1424 
1425 	if (blk_queue_dying(q))
1426 		return 0;
1427 
1428 	shost = sdev->host;
1429 
1430 	/*
1431 	 * Ignore host/starget busy state.
1432 	 * Since block layer does not have a concept of fairness across
1433 	 * multiple queues, congestion of host/starget needs to be handled
1434 	 * in SCSI layer.
1435 	 */
1436 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1437 		return 1;
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * Kill a request for a dead device
1444  */
scsi_kill_request(struct request * req,struct request_queue * q)1445 static void scsi_kill_request(struct request *req, struct request_queue *q)
1446 {
1447 	struct scsi_cmnd *cmd = req->special;
1448 	struct scsi_device *sdev;
1449 	struct scsi_target *starget;
1450 	struct Scsi_Host *shost;
1451 
1452 	blk_start_request(req);
1453 
1454 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1455 
1456 	sdev = cmd->device;
1457 	starget = scsi_target(sdev);
1458 	shost = sdev->host;
1459 	scsi_init_cmd_errh(cmd);
1460 	cmd->result = DID_NO_CONNECT << 16;
1461 	atomic_inc(&cmd->device->iorequest_cnt);
1462 
1463 	/*
1464 	 * SCSI request completion path will do scsi_device_unbusy(),
1465 	 * bump busy counts.  To bump the counters, we need to dance
1466 	 * with the locks as normal issue path does.
1467 	 */
1468 	sdev->device_busy++;
1469 	spin_unlock(sdev->request_queue->queue_lock);
1470 	spin_lock(shost->host_lock);
1471 	shost->host_busy++;
1472 	starget->target_busy++;
1473 	spin_unlock(shost->host_lock);
1474 	spin_lock(sdev->request_queue->queue_lock);
1475 
1476 	blk_complete_request(req);
1477 }
1478 
scsi_softirq_done(struct request * rq)1479 static void scsi_softirq_done(struct request *rq)
1480 {
1481 	struct scsi_cmnd *cmd = rq->special;
1482 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1483 	int disposition;
1484 
1485 	INIT_LIST_HEAD(&cmd->eh_entry);
1486 
1487 	atomic_inc(&cmd->device->iodone_cnt);
1488 	if (cmd->result)
1489 		atomic_inc(&cmd->device->ioerr_cnt);
1490 
1491 	disposition = scsi_decide_disposition(cmd);
1492 	if (disposition != SUCCESS &&
1493 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1494 		sdev_printk(KERN_ERR, cmd->device,
1495 			    "timing out command, waited %lus\n",
1496 			    wait_for/HZ);
1497 		disposition = SUCCESS;
1498 	}
1499 
1500 	scsi_log_completion(cmd, disposition);
1501 
1502 	switch (disposition) {
1503 		case SUCCESS:
1504 			scsi_finish_command(cmd);
1505 			break;
1506 		case NEEDS_RETRY:
1507 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1508 			break;
1509 		case ADD_TO_MLQUEUE:
1510 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1511 			break;
1512 		default:
1513 			if (!scsi_eh_scmd_add(cmd, 0))
1514 				scsi_finish_command(cmd);
1515 	}
1516 }
1517 
1518 /*
1519  * Function:    scsi_request_fn()
1520  *
1521  * Purpose:     Main strategy routine for SCSI.
1522  *
1523  * Arguments:   q       - Pointer to actual queue.
1524  *
1525  * Returns:     Nothing
1526  *
1527  * Lock status: IO request lock assumed to be held when called.
1528  */
scsi_request_fn(struct request_queue * q)1529 static void scsi_request_fn(struct request_queue *q)
1530 {
1531 	struct scsi_device *sdev = q->queuedata;
1532 	struct Scsi_Host *shost;
1533 	struct scsi_cmnd *cmd;
1534 	struct request *req;
1535 
1536 	if(!get_device(&sdev->sdev_gendev))
1537 		/* We must be tearing the block queue down already */
1538 		return;
1539 
1540 	/*
1541 	 * To start with, we keep looping until the queue is empty, or until
1542 	 * the host is no longer able to accept any more requests.
1543 	 */
1544 	shost = sdev->host;
1545 	for (;;) {
1546 		int rtn;
1547 		/*
1548 		 * get next queueable request.  We do this early to make sure
1549 		 * that the request is fully prepared even if we cannot
1550 		 * accept it.
1551 		 */
1552 		req = blk_peek_request(q);
1553 		if (!req || !scsi_dev_queue_ready(q, sdev))
1554 			break;
1555 
1556 		if (unlikely(!scsi_device_online(sdev))) {
1557 			sdev_printk(KERN_ERR, sdev,
1558 				    "rejecting I/O to offline device\n");
1559 			scsi_kill_request(req, q);
1560 			continue;
1561 		}
1562 
1563 
1564 		/*
1565 		 * Remove the request from the request list.
1566 		 */
1567 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1568 			blk_start_request(req);
1569 		sdev->device_busy++;
1570 
1571 		spin_unlock(q->queue_lock);
1572 		cmd = req->special;
1573 		if (unlikely(cmd == NULL)) {
1574 			printk(KERN_CRIT "impossible request in %s.\n"
1575 					 "please mail a stack trace to "
1576 					 "linux-scsi@vger.kernel.org\n",
1577 					 __func__);
1578 			blk_dump_rq_flags(req, "foo");
1579 			BUG();
1580 		}
1581 		spin_lock(shost->host_lock);
1582 
1583 		/*
1584 		 * We hit this when the driver is using a host wide
1585 		 * tag map. For device level tag maps the queue_depth check
1586 		 * in the device ready fn would prevent us from trying
1587 		 * to allocate a tag. Since the map is a shared host resource
1588 		 * we add the dev to the starved list so it eventually gets
1589 		 * a run when a tag is freed.
1590 		 */
1591 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1592 			if (list_empty(&sdev->starved_entry))
1593 				list_add_tail(&sdev->starved_entry,
1594 					      &shost->starved_list);
1595 			goto not_ready;
1596 		}
1597 
1598 		if (!scsi_target_queue_ready(shost, sdev))
1599 			goto not_ready;
1600 
1601 		if (!scsi_host_queue_ready(q, shost, sdev))
1602 			goto not_ready;
1603 
1604 		scsi_target(sdev)->target_busy++;
1605 		shost->host_busy++;
1606 
1607 		/*
1608 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1609 		 *		take the lock again.
1610 		 */
1611 		spin_unlock_irq(shost->host_lock);
1612 
1613 		/*
1614 		 * Finally, initialize any error handling parameters, and set up
1615 		 * the timers for timeouts.
1616 		 */
1617 		scsi_init_cmd_errh(cmd);
1618 
1619 		/*
1620 		 * Dispatch the command to the low-level driver.
1621 		 */
1622 		rtn = scsi_dispatch_cmd(cmd);
1623 		spin_lock_irq(q->queue_lock);
1624 		if (rtn)
1625 			goto out_delay;
1626 	}
1627 
1628 	goto out;
1629 
1630  not_ready:
1631 	spin_unlock_irq(shost->host_lock);
1632 
1633 	/*
1634 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1635 	 * must return with queue_lock held.
1636 	 *
1637 	 * Decrementing device_busy without checking it is OK, as all such
1638 	 * cases (host limits or settings) should run the queue at some
1639 	 * later time.
1640 	 */
1641 	spin_lock_irq(q->queue_lock);
1642 	blk_requeue_request(q, req);
1643 	sdev->device_busy--;
1644 out_delay:
1645 	if (sdev->device_busy == 0)
1646 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1647 out:
1648 	/* must be careful here...if we trigger the ->remove() function
1649 	 * we cannot be holding the q lock */
1650 	spin_unlock_irq(q->queue_lock);
1651 	put_device(&sdev->sdev_gendev);
1652 	spin_lock_irq(q->queue_lock);
1653 }
1654 
scsi_calculate_bounce_limit(struct Scsi_Host * shost)1655 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1656 {
1657 	struct device *host_dev;
1658 	u64 bounce_limit = 0xffffffff;
1659 
1660 	if (shost->unchecked_isa_dma)
1661 		return BLK_BOUNCE_ISA;
1662 	/*
1663 	 * Platforms with virtual-DMA translation
1664 	 * hardware have no practical limit.
1665 	 */
1666 	if (!PCI_DMA_BUS_IS_PHYS)
1667 		return BLK_BOUNCE_ANY;
1668 
1669 	host_dev = scsi_get_device(shost);
1670 	if (host_dev && host_dev->dma_mask)
1671 		bounce_limit = *host_dev->dma_mask;
1672 
1673 	return bounce_limit;
1674 }
1675 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1676 
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)1677 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1678 					 request_fn_proc *request_fn)
1679 {
1680 	struct request_queue *q;
1681 	struct device *dev = shost->dma_dev;
1682 
1683 	q = blk_init_queue(request_fn, NULL);
1684 	if (!q)
1685 		return NULL;
1686 
1687 	/*
1688 	 * this limit is imposed by hardware restrictions
1689 	 */
1690 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1691 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1692 
1693 	if (scsi_host_prot_dma(shost)) {
1694 		shost->sg_prot_tablesize =
1695 			min_not_zero(shost->sg_prot_tablesize,
1696 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1697 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1698 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1699 	}
1700 
1701 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1702 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1703 	blk_queue_segment_boundary(q, shost->dma_boundary);
1704 	dma_set_seg_boundary(dev, shost->dma_boundary);
1705 
1706 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1707 
1708 	if (!shost->use_clustering)
1709 		q->limits.cluster = 0;
1710 
1711 	/*
1712 	 * set a reasonable default alignment on word boundaries: the
1713 	 * host and device may alter it using
1714 	 * blk_queue_update_dma_alignment() later.
1715 	 */
1716 	blk_queue_dma_alignment(q, 0x03);
1717 
1718 	return q;
1719 }
1720 EXPORT_SYMBOL(__scsi_alloc_queue);
1721 
scsi_alloc_queue(struct scsi_device * sdev)1722 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1723 {
1724 	struct request_queue *q;
1725 
1726 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1727 	if (!q)
1728 		return NULL;
1729 
1730 	blk_queue_prep_rq(q, scsi_prep_fn);
1731 	blk_queue_softirq_done(q, scsi_softirq_done);
1732 	blk_queue_rq_timed_out(q, scsi_times_out);
1733 	blk_queue_lld_busy(q, scsi_lld_busy);
1734 	return q;
1735 }
1736 
1737 /*
1738  * Function:    scsi_block_requests()
1739  *
1740  * Purpose:     Utility function used by low-level drivers to prevent further
1741  *		commands from being queued to the device.
1742  *
1743  * Arguments:   shost       - Host in question
1744  *
1745  * Returns:     Nothing
1746  *
1747  * Lock status: No locks are assumed held.
1748  *
1749  * Notes:       There is no timer nor any other means by which the requests
1750  *		get unblocked other than the low-level driver calling
1751  *		scsi_unblock_requests().
1752  */
scsi_block_requests(struct Scsi_Host * shost)1753 void scsi_block_requests(struct Scsi_Host *shost)
1754 {
1755 	shost->host_self_blocked = 1;
1756 }
1757 EXPORT_SYMBOL(scsi_block_requests);
1758 
1759 /*
1760  * Function:    scsi_unblock_requests()
1761  *
1762  * Purpose:     Utility function used by low-level drivers to allow further
1763  *		commands from being queued to the device.
1764  *
1765  * Arguments:   shost       - Host in question
1766  *
1767  * Returns:     Nothing
1768  *
1769  * Lock status: No locks are assumed held.
1770  *
1771  * Notes:       There is no timer nor any other means by which the requests
1772  *		get unblocked other than the low-level driver calling
1773  *		scsi_unblock_requests().
1774  *
1775  *		This is done as an API function so that changes to the
1776  *		internals of the scsi mid-layer won't require wholesale
1777  *		changes to drivers that use this feature.
1778  */
scsi_unblock_requests(struct Scsi_Host * shost)1779 void scsi_unblock_requests(struct Scsi_Host *shost)
1780 {
1781 	shost->host_self_blocked = 0;
1782 	scsi_run_host_queues(shost);
1783 }
1784 EXPORT_SYMBOL(scsi_unblock_requests);
1785 
scsi_init_queue(void)1786 int __init scsi_init_queue(void)
1787 {
1788 	int i;
1789 
1790 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1791 					   sizeof(struct scsi_data_buffer),
1792 					   0, 0, NULL);
1793 	if (!scsi_sdb_cache) {
1794 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1795 		return -ENOMEM;
1796 	}
1797 
1798 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1799 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1800 		int size = sgp->size * sizeof(struct scatterlist);
1801 
1802 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1803 				SLAB_HWCACHE_ALIGN, NULL);
1804 		if (!sgp->slab) {
1805 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1806 					sgp->name);
1807 			goto cleanup_sdb;
1808 		}
1809 
1810 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1811 						     sgp->slab);
1812 		if (!sgp->pool) {
1813 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1814 					sgp->name);
1815 			goto cleanup_sdb;
1816 		}
1817 	}
1818 
1819 	return 0;
1820 
1821 cleanup_sdb:
1822 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1823 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1824 		if (sgp->pool)
1825 			mempool_destroy(sgp->pool);
1826 		if (sgp->slab)
1827 			kmem_cache_destroy(sgp->slab);
1828 	}
1829 	kmem_cache_destroy(scsi_sdb_cache);
1830 
1831 	return -ENOMEM;
1832 }
1833 
scsi_exit_queue(void)1834 void scsi_exit_queue(void)
1835 {
1836 	int i;
1837 
1838 	kmem_cache_destroy(scsi_sdb_cache);
1839 
1840 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1841 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1842 		mempool_destroy(sgp->pool);
1843 		kmem_cache_destroy(sgp->slab);
1844 	}
1845 }
1846 
1847 /**
1848  *	scsi_mode_select - issue a mode select
1849  *	@sdev:	SCSI device to be queried
1850  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1851  *	@sp:	Save page bit (0 == don't save, 1 == save)
1852  *	@modepage: mode page being requested
1853  *	@buffer: request buffer (may not be smaller than eight bytes)
1854  *	@len:	length of request buffer.
1855  *	@timeout: command timeout
1856  *	@retries: number of retries before failing
1857  *	@data: returns a structure abstracting the mode header data
1858  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1859  *		must be SCSI_SENSE_BUFFERSIZE big.
1860  *
1861  *	Returns zero if successful; negative error number or scsi
1862  *	status on error
1863  *
1864  */
1865 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)1866 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1867 		 unsigned char *buffer, int len, int timeout, int retries,
1868 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1869 {
1870 	unsigned char cmd[10];
1871 	unsigned char *real_buffer;
1872 	int ret;
1873 
1874 	memset(cmd, 0, sizeof(cmd));
1875 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1876 
1877 	if (sdev->use_10_for_ms) {
1878 		if (len > 65535)
1879 			return -EINVAL;
1880 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1881 		if (!real_buffer)
1882 			return -ENOMEM;
1883 		memcpy(real_buffer + 8, buffer, len);
1884 		len += 8;
1885 		real_buffer[0] = 0;
1886 		real_buffer[1] = 0;
1887 		real_buffer[2] = data->medium_type;
1888 		real_buffer[3] = data->device_specific;
1889 		real_buffer[4] = data->longlba ? 0x01 : 0;
1890 		real_buffer[5] = 0;
1891 		real_buffer[6] = data->block_descriptor_length >> 8;
1892 		real_buffer[7] = data->block_descriptor_length;
1893 
1894 		cmd[0] = MODE_SELECT_10;
1895 		cmd[7] = len >> 8;
1896 		cmd[8] = len;
1897 	} else {
1898 		if (len > 255 || data->block_descriptor_length > 255 ||
1899 		    data->longlba)
1900 			return -EINVAL;
1901 
1902 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1903 		if (!real_buffer)
1904 			return -ENOMEM;
1905 		memcpy(real_buffer + 4, buffer, len);
1906 		len += 4;
1907 		real_buffer[0] = 0;
1908 		real_buffer[1] = data->medium_type;
1909 		real_buffer[2] = data->device_specific;
1910 		real_buffer[3] = data->block_descriptor_length;
1911 
1912 
1913 		cmd[0] = MODE_SELECT;
1914 		cmd[4] = len;
1915 	}
1916 
1917 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1918 			       sshdr, timeout, retries, NULL);
1919 	kfree(real_buffer);
1920 	return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(scsi_mode_select);
1923 
1924 /**
1925  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1926  *	@sdev:	SCSI device to be queried
1927  *	@dbd:	set if mode sense will allow block descriptors to be returned
1928  *	@modepage: mode page being requested
1929  *	@buffer: request buffer (may not be smaller than eight bytes)
1930  *	@len:	length of request buffer.
1931  *	@timeout: command timeout
1932  *	@retries: number of retries before failing
1933  *	@data: returns a structure abstracting the mode header data
1934  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1935  *		must be SCSI_SENSE_BUFFERSIZE big.
1936  *
1937  *	Returns zero if unsuccessful, or the header offset (either 4
1938  *	or 8 depending on whether a six or ten byte command was
1939  *	issued) if successful.
1940  */
1941 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)1942 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1943 		  unsigned char *buffer, int len, int timeout, int retries,
1944 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1945 {
1946 	unsigned char cmd[12];
1947 	int use_10_for_ms;
1948 	int header_length;
1949 	int result;
1950 	struct scsi_sense_hdr my_sshdr;
1951 
1952 	memset(data, 0, sizeof(*data));
1953 	memset(&cmd[0], 0, 12);
1954 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1955 	cmd[2] = modepage;
1956 
1957 	/* caller might not be interested in sense, but we need it */
1958 	if (!sshdr)
1959 		sshdr = &my_sshdr;
1960 
1961  retry:
1962 	use_10_for_ms = sdev->use_10_for_ms;
1963 
1964 	if (use_10_for_ms) {
1965 		if (len < 8)
1966 			len = 8;
1967 
1968 		cmd[0] = MODE_SENSE_10;
1969 		cmd[8] = len;
1970 		header_length = 8;
1971 	} else {
1972 		if (len < 4)
1973 			len = 4;
1974 
1975 		cmd[0] = MODE_SENSE;
1976 		cmd[4] = len;
1977 		header_length = 4;
1978 	}
1979 
1980 	memset(buffer, 0, len);
1981 
1982 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1983 				  sshdr, timeout, retries, NULL);
1984 
1985 	/* This code looks awful: what it's doing is making sure an
1986 	 * ILLEGAL REQUEST sense return identifies the actual command
1987 	 * byte as the problem.  MODE_SENSE commands can return
1988 	 * ILLEGAL REQUEST if the code page isn't supported */
1989 
1990 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1991 	    (driver_byte(result) & DRIVER_SENSE)) {
1992 		if (scsi_sense_valid(sshdr)) {
1993 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1994 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1995 				/*
1996 				 * Invalid command operation code
1997 				 */
1998 				sdev->use_10_for_ms = 0;
1999 				goto retry;
2000 			}
2001 		}
2002 	}
2003 
2004 	if(scsi_status_is_good(result)) {
2005 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2006 			     (modepage == 6 || modepage == 8))) {
2007 			/* Initio breakage? */
2008 			header_length = 0;
2009 			data->length = 13;
2010 			data->medium_type = 0;
2011 			data->device_specific = 0;
2012 			data->longlba = 0;
2013 			data->block_descriptor_length = 0;
2014 		} else if(use_10_for_ms) {
2015 			data->length = buffer[0]*256 + buffer[1] + 2;
2016 			data->medium_type = buffer[2];
2017 			data->device_specific = buffer[3];
2018 			data->longlba = buffer[4] & 0x01;
2019 			data->block_descriptor_length = buffer[6]*256
2020 				+ buffer[7];
2021 		} else {
2022 			data->length = buffer[0] + 1;
2023 			data->medium_type = buffer[1];
2024 			data->device_specific = buffer[2];
2025 			data->block_descriptor_length = buffer[3];
2026 		}
2027 		data->header_length = header_length;
2028 	}
2029 
2030 	return result;
2031 }
2032 EXPORT_SYMBOL(scsi_mode_sense);
2033 
2034 /**
2035  *	scsi_test_unit_ready - test if unit is ready
2036  *	@sdev:	scsi device to change the state of.
2037  *	@timeout: command timeout
2038  *	@retries: number of retries before failing
2039  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2040  *		returning sense. Make sure that this is cleared before passing
2041  *		in.
2042  *
2043  *	Returns zero if unsuccessful or an error if TUR failed.  For
2044  *	removable media, UNIT_ATTENTION sets ->changed flag.
2045  **/
2046 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2047 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2048 		     struct scsi_sense_hdr *sshdr_external)
2049 {
2050 	char cmd[] = {
2051 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2052 	};
2053 	struct scsi_sense_hdr *sshdr;
2054 	int result;
2055 
2056 	if (!sshdr_external)
2057 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2058 	else
2059 		sshdr = sshdr_external;
2060 
2061 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2062 	do {
2063 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2064 					  timeout, retries, NULL);
2065 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2066 		    sshdr->sense_key == UNIT_ATTENTION)
2067 			sdev->changed = 1;
2068 	} while (scsi_sense_valid(sshdr) &&
2069 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2070 
2071 	if (!sshdr_external)
2072 		kfree(sshdr);
2073 	return result;
2074 }
2075 EXPORT_SYMBOL(scsi_test_unit_ready);
2076 
2077 /**
2078  *	scsi_device_set_state - Take the given device through the device state model.
2079  *	@sdev:	scsi device to change the state of.
2080  *	@state:	state to change to.
2081  *
2082  *	Returns zero if unsuccessful or an error if the requested
2083  *	transition is illegal.
2084  */
2085 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2086 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2087 {
2088 	enum scsi_device_state oldstate = sdev->sdev_state;
2089 
2090 	if (state == oldstate)
2091 		return 0;
2092 
2093 	switch (state) {
2094 	case SDEV_CREATED:
2095 		switch (oldstate) {
2096 		case SDEV_CREATED_BLOCK:
2097 			break;
2098 		default:
2099 			goto illegal;
2100 		}
2101 		break;
2102 
2103 	case SDEV_RUNNING:
2104 		switch (oldstate) {
2105 		case SDEV_CREATED:
2106 		case SDEV_OFFLINE:
2107 		case SDEV_TRANSPORT_OFFLINE:
2108 		case SDEV_QUIESCE:
2109 		case SDEV_BLOCK:
2110 			break;
2111 		default:
2112 			goto illegal;
2113 		}
2114 		break;
2115 
2116 	case SDEV_QUIESCE:
2117 		switch (oldstate) {
2118 		case SDEV_RUNNING:
2119 		case SDEV_OFFLINE:
2120 		case SDEV_TRANSPORT_OFFLINE:
2121 			break;
2122 		default:
2123 			goto illegal;
2124 		}
2125 		break;
2126 
2127 	case SDEV_OFFLINE:
2128 	case SDEV_TRANSPORT_OFFLINE:
2129 		switch (oldstate) {
2130 		case SDEV_CREATED:
2131 		case SDEV_RUNNING:
2132 		case SDEV_QUIESCE:
2133 		case SDEV_BLOCK:
2134 			break;
2135 		default:
2136 			goto illegal;
2137 		}
2138 		break;
2139 
2140 	case SDEV_BLOCK:
2141 		switch (oldstate) {
2142 		case SDEV_RUNNING:
2143 		case SDEV_CREATED_BLOCK:
2144 			break;
2145 		default:
2146 			goto illegal;
2147 		}
2148 		break;
2149 
2150 	case SDEV_CREATED_BLOCK:
2151 		switch (oldstate) {
2152 		case SDEV_CREATED:
2153 			break;
2154 		default:
2155 			goto illegal;
2156 		}
2157 		break;
2158 
2159 	case SDEV_CANCEL:
2160 		switch (oldstate) {
2161 		case SDEV_CREATED:
2162 		case SDEV_RUNNING:
2163 		case SDEV_QUIESCE:
2164 		case SDEV_OFFLINE:
2165 		case SDEV_TRANSPORT_OFFLINE:
2166 		case SDEV_BLOCK:
2167 			break;
2168 		default:
2169 			goto illegal;
2170 		}
2171 		break;
2172 
2173 	case SDEV_DEL:
2174 		switch (oldstate) {
2175 		case SDEV_CREATED:
2176 		case SDEV_RUNNING:
2177 		case SDEV_OFFLINE:
2178 		case SDEV_TRANSPORT_OFFLINE:
2179 		case SDEV_CANCEL:
2180 			break;
2181 		default:
2182 			goto illegal;
2183 		}
2184 		break;
2185 
2186 	}
2187 	sdev->sdev_state = state;
2188 	return 0;
2189 
2190  illegal:
2191 	SCSI_LOG_ERROR_RECOVERY(1,
2192 				sdev_printk(KERN_ERR, sdev,
2193 					    "Illegal state transition %s->%s\n",
2194 					    scsi_device_state_name(oldstate),
2195 					    scsi_device_state_name(state))
2196 				);
2197 	return -EINVAL;
2198 }
2199 EXPORT_SYMBOL(scsi_device_set_state);
2200 
2201 /**
2202  * 	sdev_evt_emit - emit a single SCSI device uevent
2203  *	@sdev: associated SCSI device
2204  *	@evt: event to emit
2205  *
2206  *	Send a single uevent (scsi_event) to the associated scsi_device.
2207  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2208 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2209 {
2210 	int idx = 0;
2211 	char *envp[3];
2212 
2213 	switch (evt->evt_type) {
2214 	case SDEV_EVT_MEDIA_CHANGE:
2215 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2216 		break;
2217 
2218 	default:
2219 		/* do nothing */
2220 		break;
2221 	}
2222 
2223 	envp[idx++] = NULL;
2224 
2225 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2226 }
2227 
2228 /**
2229  * 	sdev_evt_thread - send a uevent for each scsi event
2230  *	@work: work struct for scsi_device
2231  *
2232  *	Dispatch queued events to their associated scsi_device kobjects
2233  *	as uevents.
2234  */
scsi_evt_thread(struct work_struct * work)2235 void scsi_evt_thread(struct work_struct *work)
2236 {
2237 	struct scsi_device *sdev;
2238 	LIST_HEAD(event_list);
2239 
2240 	sdev = container_of(work, struct scsi_device, event_work);
2241 
2242 	while (1) {
2243 		struct scsi_event *evt;
2244 		struct list_head *this, *tmp;
2245 		unsigned long flags;
2246 
2247 		spin_lock_irqsave(&sdev->list_lock, flags);
2248 		list_splice_init(&sdev->event_list, &event_list);
2249 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2250 
2251 		if (list_empty(&event_list))
2252 			break;
2253 
2254 		list_for_each_safe(this, tmp, &event_list) {
2255 			evt = list_entry(this, struct scsi_event, node);
2256 			list_del(&evt->node);
2257 			scsi_evt_emit(sdev, evt);
2258 			kfree(evt);
2259 		}
2260 	}
2261 }
2262 
2263 /**
2264  * 	sdev_evt_send - send asserted event to uevent thread
2265  *	@sdev: scsi_device event occurred on
2266  *	@evt: event to send
2267  *
2268  *	Assert scsi device event asynchronously.
2269  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2270 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2271 {
2272 	unsigned long flags;
2273 
2274 #if 0
2275 	/* FIXME: currently this check eliminates all media change events
2276 	 * for polled devices.  Need to update to discriminate between AN
2277 	 * and polled events */
2278 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2279 		kfree(evt);
2280 		return;
2281 	}
2282 #endif
2283 
2284 	spin_lock_irqsave(&sdev->list_lock, flags);
2285 	list_add_tail(&evt->node, &sdev->event_list);
2286 	schedule_work(&sdev->event_work);
2287 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2288 }
2289 EXPORT_SYMBOL_GPL(sdev_evt_send);
2290 
2291 /**
2292  * 	sdev_evt_alloc - allocate a new scsi event
2293  *	@evt_type: type of event to allocate
2294  *	@gfpflags: GFP flags for allocation
2295  *
2296  *	Allocates and returns a new scsi_event.
2297  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2298 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2299 				  gfp_t gfpflags)
2300 {
2301 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2302 	if (!evt)
2303 		return NULL;
2304 
2305 	evt->evt_type = evt_type;
2306 	INIT_LIST_HEAD(&evt->node);
2307 
2308 	/* evt_type-specific initialization, if any */
2309 	switch (evt_type) {
2310 	case SDEV_EVT_MEDIA_CHANGE:
2311 	default:
2312 		/* do nothing */
2313 		break;
2314 	}
2315 
2316 	return evt;
2317 }
2318 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2319 
2320 /**
2321  * 	sdev_evt_send_simple - send asserted event to uevent thread
2322  *	@sdev: scsi_device event occurred on
2323  *	@evt_type: type of event to send
2324  *	@gfpflags: GFP flags for allocation
2325  *
2326  *	Assert scsi device event asynchronously, given an event type.
2327  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2328 void sdev_evt_send_simple(struct scsi_device *sdev,
2329 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2330 {
2331 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2332 	if (!evt) {
2333 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2334 			    evt_type);
2335 		return;
2336 	}
2337 
2338 	sdev_evt_send(sdev, evt);
2339 }
2340 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2341 
2342 /**
2343  *	scsi_device_quiesce - Block user issued commands.
2344  *	@sdev:	scsi device to quiesce.
2345  *
2346  *	This works by trying to transition to the SDEV_QUIESCE state
2347  *	(which must be a legal transition).  When the device is in this
2348  *	state, only special requests will be accepted, all others will
2349  *	be deferred.  Since special requests may also be requeued requests,
2350  *	a successful return doesn't guarantee the device will be
2351  *	totally quiescent.
2352  *
2353  *	Must be called with user context, may sleep.
2354  *
2355  *	Returns zero if unsuccessful or an error if not.
2356  */
2357 int
scsi_device_quiesce(struct scsi_device * sdev)2358 scsi_device_quiesce(struct scsi_device *sdev)
2359 {
2360 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2361 	if (err)
2362 		return err;
2363 
2364 	scsi_run_queue(sdev->request_queue);
2365 	while (sdev->device_busy) {
2366 		msleep_interruptible(200);
2367 		scsi_run_queue(sdev->request_queue);
2368 	}
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL(scsi_device_quiesce);
2372 
2373 /**
2374  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2375  *	@sdev:	scsi device to resume.
2376  *
2377  *	Moves the device from quiesced back to running and restarts the
2378  *	queues.
2379  *
2380  *	Must be called with user context, may sleep.
2381  */
scsi_device_resume(struct scsi_device * sdev)2382 void scsi_device_resume(struct scsi_device *sdev)
2383 {
2384 	/* check if the device state was mutated prior to resume, and if
2385 	 * so assume the state is being managed elsewhere (for example
2386 	 * device deleted during suspend)
2387 	 */
2388 	if (sdev->sdev_state != SDEV_QUIESCE ||
2389 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2390 		return;
2391 	scsi_run_queue(sdev->request_queue);
2392 }
2393 EXPORT_SYMBOL(scsi_device_resume);
2394 
2395 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2396 device_quiesce_fn(struct scsi_device *sdev, void *data)
2397 {
2398 	scsi_device_quiesce(sdev);
2399 }
2400 
2401 void
scsi_target_quiesce(struct scsi_target * starget)2402 scsi_target_quiesce(struct scsi_target *starget)
2403 {
2404 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2405 }
2406 EXPORT_SYMBOL(scsi_target_quiesce);
2407 
2408 static void
device_resume_fn(struct scsi_device * sdev,void * data)2409 device_resume_fn(struct scsi_device *sdev, void *data)
2410 {
2411 	scsi_device_resume(sdev);
2412 }
2413 
2414 void
scsi_target_resume(struct scsi_target * starget)2415 scsi_target_resume(struct scsi_target *starget)
2416 {
2417 	starget_for_each_device(starget, NULL, device_resume_fn);
2418 }
2419 EXPORT_SYMBOL(scsi_target_resume);
2420 
2421 /**
2422  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2423  * @sdev:	device to block
2424  *
2425  * Block request made by scsi lld's to temporarily stop all
2426  * scsi commands on the specified device.  Called from interrupt
2427  * or normal process context.
2428  *
2429  * Returns zero if successful or error if not
2430  *
2431  * Notes:
2432  *	This routine transitions the device to the SDEV_BLOCK state
2433  *	(which must be a legal transition).  When the device is in this
2434  *	state, all commands are deferred until the scsi lld reenables
2435  *	the device with scsi_device_unblock or device_block_tmo fires.
2436  */
2437 int
scsi_internal_device_block(struct scsi_device * sdev)2438 scsi_internal_device_block(struct scsi_device *sdev)
2439 {
2440 	struct request_queue *q = sdev->request_queue;
2441 	unsigned long flags;
2442 	int err = 0;
2443 
2444 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2445 	if (err) {
2446 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2447 
2448 		if (err)
2449 			return err;
2450 	}
2451 
2452 	/*
2453 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2454 	 * block layer from calling the midlayer with this device's
2455 	 * request queue.
2456 	 */
2457 	spin_lock_irqsave(q->queue_lock, flags);
2458 	blk_stop_queue(q);
2459 	spin_unlock_irqrestore(q->queue_lock, flags);
2460 
2461 	return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2464 
2465 /**
2466  * scsi_internal_device_unblock - resume a device after a block request
2467  * @sdev:	device to resume
2468  * @new_state:	state to set devices to after unblocking
2469  *
2470  * Called by scsi lld's or the midlayer to restart the device queue
2471  * for the previously suspended scsi device.  Called from interrupt or
2472  * normal process context.
2473  *
2474  * Returns zero if successful or error if not.
2475  *
2476  * Notes:
2477  *	This routine transitions the device to the SDEV_RUNNING state
2478  *	or to one of the offline states (which must be a legal transition)
2479  *	allowing the midlayer to goose the queue for this device.
2480  */
2481 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2482 scsi_internal_device_unblock(struct scsi_device *sdev,
2483 			     enum scsi_device_state new_state)
2484 {
2485 	struct request_queue *q = sdev->request_queue;
2486 	unsigned long flags;
2487 
2488 	/*
2489 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2490 	 * offlined states and goose the device queue if successful.
2491 	 */
2492 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2493 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2494 		sdev->sdev_state = new_state;
2495 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2496 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2497 		    new_state == SDEV_OFFLINE)
2498 			sdev->sdev_state = new_state;
2499 		else
2500 			sdev->sdev_state = SDEV_CREATED;
2501 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2502 		 sdev->sdev_state != SDEV_OFFLINE)
2503 		return -EINVAL;
2504 
2505 	spin_lock_irqsave(q->queue_lock, flags);
2506 	blk_start_queue(q);
2507 	spin_unlock_irqrestore(q->queue_lock, flags);
2508 
2509 	return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2512 
2513 static void
device_block(struct scsi_device * sdev,void * data)2514 device_block(struct scsi_device *sdev, void *data)
2515 {
2516 	scsi_internal_device_block(sdev);
2517 }
2518 
2519 static int
target_block(struct device * dev,void * data)2520 target_block(struct device *dev, void *data)
2521 {
2522 	if (scsi_is_target_device(dev))
2523 		starget_for_each_device(to_scsi_target(dev), NULL,
2524 					device_block);
2525 	return 0;
2526 }
2527 
2528 void
scsi_target_block(struct device * dev)2529 scsi_target_block(struct device *dev)
2530 {
2531 	if (scsi_is_target_device(dev))
2532 		starget_for_each_device(to_scsi_target(dev), NULL,
2533 					device_block);
2534 	else
2535 		device_for_each_child(dev, NULL, target_block);
2536 }
2537 EXPORT_SYMBOL_GPL(scsi_target_block);
2538 
2539 static void
device_unblock(struct scsi_device * sdev,void * data)2540 device_unblock(struct scsi_device *sdev, void *data)
2541 {
2542 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2543 }
2544 
2545 static int
target_unblock(struct device * dev,void * data)2546 target_unblock(struct device *dev, void *data)
2547 {
2548 	if (scsi_is_target_device(dev))
2549 		starget_for_each_device(to_scsi_target(dev), data,
2550 					device_unblock);
2551 	return 0;
2552 }
2553 
2554 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2555 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2556 {
2557 	if (scsi_is_target_device(dev))
2558 		starget_for_each_device(to_scsi_target(dev), &new_state,
2559 					device_unblock);
2560 	else
2561 		device_for_each_child(dev, &new_state, target_unblock);
2562 }
2563 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2564 
2565 /**
2566  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2567  * @sgl:	scatter-gather list
2568  * @sg_count:	number of segments in sg
2569  * @offset:	offset in bytes into sg, on return offset into the mapped area
2570  * @len:	bytes to map, on return number of bytes mapped
2571  *
2572  * Returns virtual address of the start of the mapped page
2573  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2574 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2575 			  size_t *offset, size_t *len)
2576 {
2577 	int i;
2578 	size_t sg_len = 0, len_complete = 0;
2579 	struct scatterlist *sg;
2580 	struct page *page;
2581 
2582 	WARN_ON(!irqs_disabled());
2583 
2584 	for_each_sg(sgl, sg, sg_count, i) {
2585 		len_complete = sg_len; /* Complete sg-entries */
2586 		sg_len += sg->length;
2587 		if (sg_len > *offset)
2588 			break;
2589 	}
2590 
2591 	if (unlikely(i == sg_count)) {
2592 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2593 			"elements %d\n",
2594 		       __func__, sg_len, *offset, sg_count);
2595 		WARN_ON(1);
2596 		return NULL;
2597 	}
2598 
2599 	/* Offset starting from the beginning of first page in this sg-entry */
2600 	*offset = *offset - len_complete + sg->offset;
2601 
2602 	/* Assumption: contiguous pages can be accessed as "page + i" */
2603 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2604 	*offset &= ~PAGE_MASK;
2605 
2606 	/* Bytes in this sg-entry from *offset to the end of the page */
2607 	sg_len = PAGE_SIZE - *offset;
2608 	if (*len > sg_len)
2609 		*len = sg_len;
2610 
2611 	return kmap_atomic(page);
2612 }
2613 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2614 
2615 /**
2616  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2617  * @virt:	virtual address to be unmapped
2618  */
scsi_kunmap_atomic_sg(void * virt)2619 void scsi_kunmap_atomic_sg(void *virt)
2620 {
2621 	kunmap_atomic(virt);
2622 }
2623 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2624 
sdev_disable_disk_events(struct scsi_device * sdev)2625 void sdev_disable_disk_events(struct scsi_device *sdev)
2626 {
2627 	atomic_inc(&sdev->disk_events_disable_depth);
2628 }
2629 EXPORT_SYMBOL(sdev_disable_disk_events);
2630 
sdev_enable_disk_events(struct scsi_device * sdev)2631 void sdev_enable_disk_events(struct scsi_device *sdev)
2632 {
2633 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2634 		return;
2635 	atomic_dec(&sdev->disk_events_disable_depth);
2636 }
2637 EXPORT_SYMBOL(sdev_enable_disk_events);
2638