1 /*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
41 */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75
76 static DEFINE_RWLOCK(policy_rwlock);
77
78 static struct sidtab sidtab;
79 struct policydb policydb;
80 int ss_initialized;
81
82 /*
83 * The largest sequence number that has been used when
84 * providing an access decision to the access vector cache.
85 * The sequence number only changes when a policy change
86 * occurs.
87 */
88 static u32 latest_granting;
89
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context *context, char **scontext,
92 u32 *scontext_len);
93
94 static void context_struct_compute_av(struct context *scontext,
95 struct context *tcontext,
96 u16 tclass,
97 struct av_decision *avd,
98 struct extended_perms *xperms);
99
100 struct selinux_mapping {
101 u16 value; /* policy value */
102 unsigned num_perms;
103 u32 perms[sizeof(u32) * 8];
104 };
105
106 static struct selinux_mapping *current_mapping;
107 static u16 current_mapping_size;
108
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_mapping ** out_map_p,u16 * out_map_size)109 static int selinux_set_mapping(struct policydb *pol,
110 struct security_class_mapping *map,
111 struct selinux_mapping **out_map_p,
112 u16 *out_map_size)
113 {
114 struct selinux_mapping *out_map = NULL;
115 size_t size = sizeof(struct selinux_mapping);
116 u16 i, j;
117 unsigned k;
118 bool print_unknown_handle = false;
119
120 /* Find number of classes in the input mapping */
121 if (!map)
122 return -EINVAL;
123 i = 0;
124 while (map[i].name)
125 i++;
126
127 /* Allocate space for the class records, plus one for class zero */
128 out_map = kcalloc(++i, size, GFP_ATOMIC);
129 if (!out_map)
130 return -ENOMEM;
131
132 /* Store the raw class and permission values */
133 j = 0;
134 while (map[j].name) {
135 struct security_class_mapping *p_in = map + (j++);
136 struct selinux_mapping *p_out = out_map + j;
137
138 /* An empty class string skips ahead */
139 if (!strcmp(p_in->name, "")) {
140 p_out->num_perms = 0;
141 continue;
142 }
143
144 p_out->value = string_to_security_class(pol, p_in->name);
145 if (!p_out->value) {
146 printk(KERN_INFO
147 "SELinux: Class %s not defined in policy.\n",
148 p_in->name);
149 if (pol->reject_unknown)
150 goto err;
151 p_out->num_perms = 0;
152 print_unknown_handle = true;
153 continue;
154 }
155
156 k = 0;
157 while (p_in->perms && p_in->perms[k]) {
158 /* An empty permission string skips ahead */
159 if (!*p_in->perms[k]) {
160 k++;
161 continue;
162 }
163 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164 p_in->perms[k]);
165 if (!p_out->perms[k]) {
166 printk(KERN_INFO
167 "SELinux: Permission %s in class %s not defined in policy.\n",
168 p_in->perms[k], p_in->name);
169 if (pol->reject_unknown)
170 goto err;
171 print_unknown_handle = true;
172 }
173
174 k++;
175 }
176 p_out->num_perms = k;
177 }
178
179 if (print_unknown_handle)
180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181 pol->allow_unknown ? "allowed" : "denied");
182
183 *out_map_p = out_map;
184 *out_map_size = i;
185 return 0;
186 err:
187 kfree(out_map);
188 return -EINVAL;
189 }
190
191 /*
192 * Get real, policy values from mapped values
193 */
194
unmap_class(u16 tclass)195 static u16 unmap_class(u16 tclass)
196 {
197 if (tclass < current_mapping_size)
198 return current_mapping[tclass].value;
199
200 return tclass;
201 }
202
203 /*
204 * Get kernel value for class from its policy value
205 */
map_class(u16 pol_value)206 static u16 map_class(u16 pol_value)
207 {
208 u16 i;
209
210 for (i = 1; i < current_mapping_size; i++) {
211 if (current_mapping[i].value == pol_value)
212 return i;
213 }
214
215 return SECCLASS_NULL;
216 }
217
map_decision(u16 tclass,struct av_decision * avd,int allow_unknown)218 static void map_decision(u16 tclass, struct av_decision *avd,
219 int allow_unknown)
220 {
221 if (tclass < current_mapping_size) {
222 unsigned i, n = current_mapping[tclass].num_perms;
223 u32 result;
224
225 for (i = 0, result = 0; i < n; i++) {
226 if (avd->allowed & current_mapping[tclass].perms[i])
227 result |= 1<<i;
228 if (allow_unknown && !current_mapping[tclass].perms[i])
229 result |= 1<<i;
230 }
231 avd->allowed = result;
232
233 for (i = 0, result = 0; i < n; i++)
234 if (avd->auditallow & current_mapping[tclass].perms[i])
235 result |= 1<<i;
236 avd->auditallow = result;
237
238 for (i = 0, result = 0; i < n; i++) {
239 if (avd->auditdeny & current_mapping[tclass].perms[i])
240 result |= 1<<i;
241 if (!allow_unknown && !current_mapping[tclass].perms[i])
242 result |= 1<<i;
243 }
244 /*
245 * In case the kernel has a bug and requests a permission
246 * between num_perms and the maximum permission number, we
247 * should audit that denial
248 */
249 for (; i < (sizeof(u32)*8); i++)
250 result |= 1<<i;
251 avd->auditdeny = result;
252 }
253 }
254
security_mls_enabled(void)255 int security_mls_enabled(void)
256 {
257 return policydb.mls_enabled;
258 }
259
260 /*
261 * Return the boolean value of a constraint expression
262 * when it is applied to the specified source and target
263 * security contexts.
264 *
265 * xcontext is a special beast... It is used by the validatetrans rules
266 * only. For these rules, scontext is the context before the transition,
267 * tcontext is the context after the transition, and xcontext is the context
268 * of the process performing the transition. All other callers of
269 * constraint_expr_eval should pass in NULL for xcontext.
270 */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)271 static int constraint_expr_eval(struct context *scontext,
272 struct context *tcontext,
273 struct context *xcontext,
274 struct constraint_expr *cexpr)
275 {
276 u32 val1, val2;
277 struct context *c;
278 struct role_datum *r1, *r2;
279 struct mls_level *l1, *l2;
280 struct constraint_expr *e;
281 int s[CEXPR_MAXDEPTH];
282 int sp = -1;
283
284 for (e = cexpr; e; e = e->next) {
285 switch (e->expr_type) {
286 case CEXPR_NOT:
287 BUG_ON(sp < 0);
288 s[sp] = !s[sp];
289 break;
290 case CEXPR_AND:
291 BUG_ON(sp < 1);
292 sp--;
293 s[sp] &= s[sp + 1];
294 break;
295 case CEXPR_OR:
296 BUG_ON(sp < 1);
297 sp--;
298 s[sp] |= s[sp + 1];
299 break;
300 case CEXPR_ATTR:
301 if (sp == (CEXPR_MAXDEPTH - 1))
302 return 0;
303 switch (e->attr) {
304 case CEXPR_USER:
305 val1 = scontext->user;
306 val2 = tcontext->user;
307 break;
308 case CEXPR_TYPE:
309 val1 = scontext->type;
310 val2 = tcontext->type;
311 break;
312 case CEXPR_ROLE:
313 val1 = scontext->role;
314 val2 = tcontext->role;
315 r1 = policydb.role_val_to_struct[val1 - 1];
316 r2 = policydb.role_val_to_struct[val2 - 1];
317 switch (e->op) {
318 case CEXPR_DOM:
319 s[++sp] = ebitmap_get_bit(&r1->dominates,
320 val2 - 1);
321 continue;
322 case CEXPR_DOMBY:
323 s[++sp] = ebitmap_get_bit(&r2->dominates,
324 val1 - 1);
325 continue;
326 case CEXPR_INCOMP:
327 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
328 val2 - 1) &&
329 !ebitmap_get_bit(&r2->dominates,
330 val1 - 1));
331 continue;
332 default:
333 break;
334 }
335 break;
336 case CEXPR_L1L2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_L1H2:
341 l1 = &(scontext->range.level[0]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_H1L2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[0]);
347 goto mls_ops;
348 case CEXPR_H1H2:
349 l1 = &(scontext->range.level[1]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L1H1:
353 l1 = &(scontext->range.level[0]);
354 l2 = &(scontext->range.level[1]);
355 goto mls_ops;
356 case CEXPR_L2H2:
357 l1 = &(tcontext->range.level[0]);
358 l2 = &(tcontext->range.level[1]);
359 goto mls_ops;
360 mls_ops:
361 switch (e->op) {
362 case CEXPR_EQ:
363 s[++sp] = mls_level_eq(l1, l2);
364 continue;
365 case CEXPR_NEQ:
366 s[++sp] = !mls_level_eq(l1, l2);
367 continue;
368 case CEXPR_DOM:
369 s[++sp] = mls_level_dom(l1, l2);
370 continue;
371 case CEXPR_DOMBY:
372 s[++sp] = mls_level_dom(l2, l1);
373 continue;
374 case CEXPR_INCOMP:
375 s[++sp] = mls_level_incomp(l2, l1);
376 continue;
377 default:
378 BUG();
379 return 0;
380 }
381 break;
382 default:
383 BUG();
384 return 0;
385 }
386
387 switch (e->op) {
388 case CEXPR_EQ:
389 s[++sp] = (val1 == val2);
390 break;
391 case CEXPR_NEQ:
392 s[++sp] = (val1 != val2);
393 break;
394 default:
395 BUG();
396 return 0;
397 }
398 break;
399 case CEXPR_NAMES:
400 if (sp == (CEXPR_MAXDEPTH-1))
401 return 0;
402 c = scontext;
403 if (e->attr & CEXPR_TARGET)
404 c = tcontext;
405 else if (e->attr & CEXPR_XTARGET) {
406 c = xcontext;
407 if (!c) {
408 BUG();
409 return 0;
410 }
411 }
412 if (e->attr & CEXPR_USER)
413 val1 = c->user;
414 else if (e->attr & CEXPR_ROLE)
415 val1 = c->role;
416 else if (e->attr & CEXPR_TYPE)
417 val1 = c->type;
418 else {
419 BUG();
420 return 0;
421 }
422
423 switch (e->op) {
424 case CEXPR_EQ:
425 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
426 break;
427 case CEXPR_NEQ:
428 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
429 break;
430 default:
431 BUG();
432 return 0;
433 }
434 break;
435 default:
436 BUG();
437 return 0;
438 }
439 }
440
441 BUG_ON(sp != 0);
442 return s[0];
443 }
444
445 /*
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 */
dump_masked_av_helper(void * k,void * d,void * args)449 static int dump_masked_av_helper(void *k, void *d, void *args)
450 {
451 struct perm_datum *pdatum = d;
452 char **permission_names = args;
453
454 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455
456 permission_names[pdatum->value - 1] = (char *)k;
457
458 return 0;
459 }
460
security_dump_masked_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)461 static void security_dump_masked_av(struct context *scontext,
462 struct context *tcontext,
463 u16 tclass,
464 u32 permissions,
465 const char *reason)
466 {
467 struct common_datum *common_dat;
468 struct class_datum *tclass_dat;
469 struct audit_buffer *ab;
470 char *tclass_name;
471 char *scontext_name = NULL;
472 char *tcontext_name = NULL;
473 char *permission_names[32];
474 int index;
475 u32 length;
476 bool need_comma = false;
477
478 if (!permissions)
479 return;
480
481 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
482 tclass_dat = policydb.class_val_to_struct[tclass - 1];
483 common_dat = tclass_dat->comdatum;
484
485 /* init permission_names */
486 if (common_dat &&
487 hashtab_map(common_dat->permissions.table,
488 dump_masked_av_helper, permission_names) < 0)
489 goto out;
490
491 if (hashtab_map(tclass_dat->permissions.table,
492 dump_masked_av_helper, permission_names) < 0)
493 goto out;
494
495 /* get scontext/tcontext in text form */
496 if (context_struct_to_string(scontext,
497 &scontext_name, &length) < 0)
498 goto out;
499
500 if (context_struct_to_string(tcontext,
501 &tcontext_name, &length) < 0)
502 goto out;
503
504 /* audit a message */
505 ab = audit_log_start(current->audit_context,
506 GFP_ATOMIC, AUDIT_SELINUX_ERR);
507 if (!ab)
508 goto out;
509
510 audit_log_format(ab, "op=security_compute_av reason=%s "
511 "scontext=%s tcontext=%s tclass=%s perms=",
512 reason, scontext_name, tcontext_name, tclass_name);
513
514 for (index = 0; index < 32; index++) {
515 u32 mask = (1 << index);
516
517 if ((mask & permissions) == 0)
518 continue;
519
520 audit_log_format(ab, "%s%s",
521 need_comma ? "," : "",
522 permission_names[index]
523 ? permission_names[index] : "????");
524 need_comma = true;
525 }
526 audit_log_end(ab);
527 out:
528 /* release scontext/tcontext */
529 kfree(tcontext_name);
530 kfree(scontext_name);
531
532 return;
533 }
534
535 /*
536 * security_boundary_permission - drops violated permissions
537 * on boundary constraint.
538 */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)539 static void type_attribute_bounds_av(struct context *scontext,
540 struct context *tcontext,
541 u16 tclass,
542 struct av_decision *avd)
543 {
544 struct context lo_scontext;
545 struct context lo_tcontext;
546 struct av_decision lo_avd;
547 struct type_datum *source;
548 struct type_datum *target;
549 u32 masked = 0;
550
551 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
552 scontext->type - 1);
553 BUG_ON(!source);
554
555 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
556 tcontext->type - 1);
557 BUG_ON(!target);
558
559 if (source->bounds) {
560 memset(&lo_avd, 0, sizeof(lo_avd));
561
562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 lo_scontext.type = source->bounds;
564
565 context_struct_compute_av(&lo_scontext,
566 tcontext,
567 tclass,
568 &lo_avd,
569 NULL);
570 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571 return; /* no masked permission */
572 masked = ~lo_avd.allowed & avd->allowed;
573 }
574
575 if (target->bounds) {
576 memset(&lo_avd, 0, sizeof(lo_avd));
577
578 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
579 lo_tcontext.type = target->bounds;
580
581 context_struct_compute_av(scontext,
582 &lo_tcontext,
583 tclass,
584 &lo_avd,
585 NULL);
586 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
587 return; /* no masked permission */
588 masked = ~lo_avd.allowed & avd->allowed;
589 }
590
591 if (source->bounds && target->bounds) {
592 memset(&lo_avd, 0, sizeof(lo_avd));
593 /*
594 * lo_scontext and lo_tcontext are already
595 * set up.
596 */
597
598 context_struct_compute_av(&lo_scontext,
599 &lo_tcontext,
600 tclass,
601 &lo_avd,
602 NULL);
603 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
604 return; /* no masked permission */
605 masked = ~lo_avd.allowed & avd->allowed;
606 }
607
608 if (masked) {
609 /* mask violated permissions */
610 avd->allowed &= ~masked;
611
612 /* audit masked permissions */
613 security_dump_masked_av(scontext, tcontext,
614 tclass, masked, "bounds");
615 }
616 }
617
618 /*
619 * flag which drivers have permissions
620 * only looking for ioctl based extended permssions
621 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)622 void services_compute_xperms_drivers(
623 struct extended_perms *xperms,
624 struct avtab_node *node)
625 {
626 unsigned int i;
627
628 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
629 /* if one or more driver has all permissions allowed */
630 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
631 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
632 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
633 /* if allowing permissions within a driver */
634 security_xperm_set(xperms->drivers.p,
635 node->datum.u.xperms->driver);
636 }
637
638 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
639 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
640 xperms->len = 1;
641 }
642
643 /*
644 * Compute access vectors and extended permissions based on a context
645 * structure pair for the permissions in a particular class.
646 */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)647 static void context_struct_compute_av(struct context *scontext,
648 struct context *tcontext,
649 u16 tclass,
650 struct av_decision *avd,
651 struct extended_perms *xperms)
652 {
653 struct constraint_node *constraint;
654 struct role_allow *ra;
655 struct avtab_key avkey;
656 struct avtab_node *node;
657 struct class_datum *tclass_datum;
658 struct ebitmap *sattr, *tattr;
659 struct ebitmap_node *snode, *tnode;
660 unsigned int i, j;
661
662 avd->allowed = 0;
663 avd->auditallow = 0;
664 avd->auditdeny = 0xffffffff;
665 if (xperms) {
666 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
667 xperms->len = 0;
668 }
669
670 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
671 if (printk_ratelimit())
672 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
673 return;
674 }
675
676 tclass_datum = policydb.class_val_to_struct[tclass - 1];
677
678 /*
679 * If a specific type enforcement rule was defined for
680 * this permission check, then use it.
681 */
682 avkey.target_class = tclass;
683 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
684 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
685 BUG_ON(!sattr);
686 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
687 BUG_ON(!tattr);
688 ebitmap_for_each_positive_bit(sattr, snode, i) {
689 ebitmap_for_each_positive_bit(tattr, tnode, j) {
690 avkey.source_type = i + 1;
691 avkey.target_type = j + 1;
692 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
693 node;
694 node = avtab_search_node_next(node, avkey.specified)) {
695 if (node->key.specified == AVTAB_ALLOWED)
696 avd->allowed |= node->datum.u.data;
697 else if (node->key.specified == AVTAB_AUDITALLOW)
698 avd->auditallow |= node->datum.u.data;
699 else if (node->key.specified == AVTAB_AUDITDENY)
700 avd->auditdeny &= node->datum.u.data;
701 else if (xperms && (node->key.specified & AVTAB_XPERMS))
702 services_compute_xperms_drivers(xperms, node);
703 }
704
705 /* Check conditional av table for additional permissions */
706 cond_compute_av(&policydb.te_cond_avtab, &avkey,
707 avd, xperms);
708
709 }
710 }
711
712 /*
713 * Remove any permissions prohibited by a constraint (this includes
714 * the MLS policy).
715 */
716 constraint = tclass_datum->constraints;
717 while (constraint) {
718 if ((constraint->permissions & (avd->allowed)) &&
719 !constraint_expr_eval(scontext, tcontext, NULL,
720 constraint->expr)) {
721 avd->allowed &= ~(constraint->permissions);
722 }
723 constraint = constraint->next;
724 }
725
726 /*
727 * If checking process transition permission and the
728 * role is changing, then check the (current_role, new_role)
729 * pair.
730 */
731 if (tclass == policydb.process_class &&
732 (avd->allowed & policydb.process_trans_perms) &&
733 scontext->role != tcontext->role) {
734 for (ra = policydb.role_allow; ra; ra = ra->next) {
735 if (scontext->role == ra->role &&
736 tcontext->role == ra->new_role)
737 break;
738 }
739 if (!ra)
740 avd->allowed &= ~policydb.process_trans_perms;
741 }
742
743 /*
744 * If the given source and target types have boundary
745 * constraint, lazy checks have to mask any violated
746 * permission and notice it to userspace via audit.
747 */
748 type_attribute_bounds_av(scontext, tcontext,
749 tclass, avd);
750 }
751
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)752 static int security_validtrans_handle_fail(struct context *ocontext,
753 struct context *ncontext,
754 struct context *tcontext,
755 u16 tclass)
756 {
757 char *o = NULL, *n = NULL, *t = NULL;
758 u32 olen, nlen, tlen;
759
760 if (context_struct_to_string(ocontext, &o, &olen))
761 goto out;
762 if (context_struct_to_string(ncontext, &n, &nlen))
763 goto out;
764 if (context_struct_to_string(tcontext, &t, &tlen))
765 goto out;
766 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
767 "security_validate_transition: denied for"
768 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
769 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
770 out:
771 kfree(o);
772 kfree(n);
773 kfree(t);
774
775 if (!selinux_enforcing)
776 return 0;
777 return -EPERM;
778 }
779
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)780 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
781 u16 orig_tclass)
782 {
783 struct context *ocontext;
784 struct context *ncontext;
785 struct context *tcontext;
786 struct class_datum *tclass_datum;
787 struct constraint_node *constraint;
788 u16 tclass;
789 int rc = 0;
790
791 if (!ss_initialized)
792 return 0;
793
794 read_lock(&policy_rwlock);
795
796 tclass = unmap_class(orig_tclass);
797
798 if (!tclass || tclass > policydb.p_classes.nprim) {
799 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
800 __func__, tclass);
801 rc = -EINVAL;
802 goto out;
803 }
804 tclass_datum = policydb.class_val_to_struct[tclass - 1];
805
806 ocontext = sidtab_search(&sidtab, oldsid);
807 if (!ocontext) {
808 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
809 __func__, oldsid);
810 rc = -EINVAL;
811 goto out;
812 }
813
814 ncontext = sidtab_search(&sidtab, newsid);
815 if (!ncontext) {
816 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
817 __func__, newsid);
818 rc = -EINVAL;
819 goto out;
820 }
821
822 tcontext = sidtab_search(&sidtab, tasksid);
823 if (!tcontext) {
824 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
825 __func__, tasksid);
826 rc = -EINVAL;
827 goto out;
828 }
829
830 constraint = tclass_datum->validatetrans;
831 while (constraint) {
832 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
833 constraint->expr)) {
834 rc = security_validtrans_handle_fail(ocontext, ncontext,
835 tcontext, tclass);
836 goto out;
837 }
838 constraint = constraint->next;
839 }
840
841 out:
842 read_unlock(&policy_rwlock);
843 return rc;
844 }
845
846 /*
847 * security_bounded_transition - check whether the given
848 * transition is directed to bounded, or not.
849 * It returns 0, if @newsid is bounded by @oldsid.
850 * Otherwise, it returns error code.
851 *
852 * @oldsid : current security identifier
853 * @newsid : destinated security identifier
854 */
security_bounded_transition(u32 old_sid,u32 new_sid)855 int security_bounded_transition(u32 old_sid, u32 new_sid)
856 {
857 struct context *old_context, *new_context;
858 struct type_datum *type;
859 int index;
860 int rc;
861
862 read_lock(&policy_rwlock);
863
864 rc = -EINVAL;
865 old_context = sidtab_search(&sidtab, old_sid);
866 if (!old_context) {
867 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
868 __func__, old_sid);
869 goto out;
870 }
871
872 rc = -EINVAL;
873 new_context = sidtab_search(&sidtab, new_sid);
874 if (!new_context) {
875 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
876 __func__, new_sid);
877 goto out;
878 }
879
880 rc = 0;
881 /* type/domain unchanged */
882 if (old_context->type == new_context->type)
883 goto out;
884
885 index = new_context->type;
886 while (true) {
887 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
888 index - 1);
889 BUG_ON(!type);
890
891 /* not bounded anymore */
892 rc = -EPERM;
893 if (!type->bounds)
894 break;
895
896 /* @newsid is bounded by @oldsid */
897 rc = 0;
898 if (type->bounds == old_context->type)
899 break;
900
901 index = type->bounds;
902 }
903
904 if (rc) {
905 char *old_name = NULL;
906 char *new_name = NULL;
907 u32 length;
908
909 if (!context_struct_to_string(old_context,
910 &old_name, &length) &&
911 !context_struct_to_string(new_context,
912 &new_name, &length)) {
913 audit_log(current->audit_context,
914 GFP_ATOMIC, AUDIT_SELINUX_ERR,
915 "op=security_bounded_transition "
916 "result=denied "
917 "oldcontext=%s newcontext=%s",
918 old_name, new_name);
919 }
920 kfree(new_name);
921 kfree(old_name);
922 }
923 out:
924 read_unlock(&policy_rwlock);
925
926 return rc;
927 }
928
avd_init(struct av_decision * avd)929 static void avd_init(struct av_decision *avd)
930 {
931 avd->allowed = 0;
932 avd->auditallow = 0;
933 avd->auditdeny = 0xffffffff;
934 avd->seqno = latest_granting;
935 avd->flags = 0;
936 }
937
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)938 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
939 struct avtab_node *node)
940 {
941 unsigned int i;
942
943 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
944 if (xpermd->driver != node->datum.u.xperms->driver)
945 return;
946 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
947 if (!security_xperm_test(node->datum.u.xperms->perms.p,
948 xpermd->driver))
949 return;
950 } else {
951 BUG();
952 }
953
954 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
955 xpermd->used |= XPERMS_ALLOWED;
956 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
957 memset(xpermd->allowed->p, 0xff,
958 sizeof(xpermd->allowed->p));
959 }
960 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
961 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
962 xpermd->allowed->p[i] |=
963 node->datum.u.xperms->perms.p[i];
964 }
965 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
966 xpermd->used |= XPERMS_AUDITALLOW;
967 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 memset(xpermd->auditallow->p, 0xff,
969 sizeof(xpermd->auditallow->p));
970 }
971 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
972 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
973 xpermd->auditallow->p[i] |=
974 node->datum.u.xperms->perms.p[i];
975 }
976 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
977 xpermd->used |= XPERMS_DONTAUDIT;
978 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
979 memset(xpermd->dontaudit->p, 0xff,
980 sizeof(xpermd->dontaudit->p));
981 }
982 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
983 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
984 xpermd->dontaudit->p[i] |=
985 node->datum.u.xperms->perms.p[i];
986 }
987 } else {
988 BUG();
989 }
990 }
991
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)992 void security_compute_xperms_decision(u32 ssid,
993 u32 tsid,
994 u16 orig_tclass,
995 u8 driver,
996 struct extended_perms_decision *xpermd)
997 {
998 u16 tclass;
999 struct context *scontext, *tcontext;
1000 struct avtab_key avkey;
1001 struct avtab_node *node;
1002 struct ebitmap *sattr, *tattr;
1003 struct ebitmap_node *snode, *tnode;
1004 unsigned int i, j;
1005
1006 xpermd->driver = driver;
1007 xpermd->used = 0;
1008 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1009 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1010 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1011
1012 read_lock(&policy_rwlock);
1013 if (!ss_initialized)
1014 goto allow;
1015
1016 scontext = sidtab_search(&sidtab, ssid);
1017 if (!scontext) {
1018 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1019 __func__, ssid);
1020 goto out;
1021 }
1022
1023 tcontext = sidtab_search(&sidtab, tsid);
1024 if (!tcontext) {
1025 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1026 __func__, tsid);
1027 goto out;
1028 }
1029
1030 tclass = unmap_class(orig_tclass);
1031 if (unlikely(orig_tclass && !tclass)) {
1032 if (policydb.allow_unknown)
1033 goto allow;
1034 goto out;
1035 }
1036
1037
1038 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1039 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1040 goto out;
1041 }
1042
1043 avkey.target_class = tclass;
1044 avkey.specified = AVTAB_XPERMS;
1045 sattr = flex_array_get(policydb.type_attr_map_array,
1046 scontext->type - 1);
1047 BUG_ON(!sattr);
1048 tattr = flex_array_get(policydb.type_attr_map_array,
1049 tcontext->type - 1);
1050 BUG_ON(!tattr);
1051 ebitmap_for_each_positive_bit(sattr, snode, i) {
1052 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1053 avkey.source_type = i + 1;
1054 avkey.target_type = j + 1;
1055 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1056 node;
1057 node = avtab_search_node_next(node, avkey.specified))
1058 services_compute_xperms_decision(xpermd, node);
1059
1060 cond_compute_xperms(&policydb.te_cond_avtab,
1061 &avkey, xpermd);
1062 }
1063 }
1064 out:
1065 read_unlock(&policy_rwlock);
1066 return;
1067 allow:
1068 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1069 goto out;
1070 }
1071
1072 /**
1073 * security_compute_av - Compute access vector decisions.
1074 * @ssid: source security identifier
1075 * @tsid: target security identifier
1076 * @tclass: target security class
1077 * @avd: access vector decisions
1078 * @xperms: extended permissions
1079 *
1080 * Compute a set of access vector decisions based on the
1081 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1082 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1083 void security_compute_av(u32 ssid,
1084 u32 tsid,
1085 u16 orig_tclass,
1086 struct av_decision *avd,
1087 struct extended_perms *xperms)
1088 {
1089 u16 tclass;
1090 struct context *scontext = NULL, *tcontext = NULL;
1091
1092 read_lock(&policy_rwlock);
1093 avd_init(avd);
1094 xperms->len = 0;
1095 if (!ss_initialized)
1096 goto allow;
1097
1098 scontext = sidtab_search(&sidtab, ssid);
1099 if (!scontext) {
1100 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1101 __func__, ssid);
1102 goto out;
1103 }
1104
1105 /* permissive domain? */
1106 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1107 avd->flags |= AVD_FLAGS_PERMISSIVE;
1108
1109 tcontext = sidtab_search(&sidtab, tsid);
1110 if (!tcontext) {
1111 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1112 __func__, tsid);
1113 goto out;
1114 }
1115
1116 tclass = unmap_class(orig_tclass);
1117 if (unlikely(orig_tclass && !tclass)) {
1118 if (policydb.allow_unknown)
1119 goto allow;
1120 goto out;
1121 }
1122 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1123 map_decision(orig_tclass, avd, policydb.allow_unknown);
1124 out:
1125 read_unlock(&policy_rwlock);
1126 return;
1127 allow:
1128 avd->allowed = 0xffffffff;
1129 goto out;
1130 }
1131
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1132 void security_compute_av_user(u32 ssid,
1133 u32 tsid,
1134 u16 tclass,
1135 struct av_decision *avd)
1136 {
1137 struct context *scontext = NULL, *tcontext = NULL;
1138
1139 read_lock(&policy_rwlock);
1140 avd_init(avd);
1141 if (!ss_initialized)
1142 goto allow;
1143
1144 scontext = sidtab_search(&sidtab, ssid);
1145 if (!scontext) {
1146 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1147 __func__, ssid);
1148 goto out;
1149 }
1150
1151 /* permissive domain? */
1152 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1153 avd->flags |= AVD_FLAGS_PERMISSIVE;
1154
1155 tcontext = sidtab_search(&sidtab, tsid);
1156 if (!tcontext) {
1157 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1158 __func__, tsid);
1159 goto out;
1160 }
1161
1162 if (unlikely(!tclass)) {
1163 if (policydb.allow_unknown)
1164 goto allow;
1165 goto out;
1166 }
1167
1168 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1169 out:
1170 read_unlock(&policy_rwlock);
1171 return;
1172 allow:
1173 avd->allowed = 0xffffffff;
1174 goto out;
1175 }
1176
1177 /*
1178 * Write the security context string representation of
1179 * the context structure `context' into a dynamically
1180 * allocated string of the correct size. Set `*scontext'
1181 * to point to this string and set `*scontext_len' to
1182 * the length of the string.
1183 */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)1184 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1185 {
1186 char *scontextp;
1187
1188 if (scontext)
1189 *scontext = NULL;
1190 *scontext_len = 0;
1191
1192 if (context->len) {
1193 *scontext_len = context->len;
1194 if (scontext) {
1195 *scontext = kstrdup(context->str, GFP_ATOMIC);
1196 if (!(*scontext))
1197 return -ENOMEM;
1198 }
1199 return 0;
1200 }
1201
1202 /* Compute the size of the context. */
1203 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1204 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1205 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1206 *scontext_len += mls_compute_context_len(context);
1207
1208 if (!scontext)
1209 return 0;
1210
1211 /* Allocate space for the context; caller must free this space. */
1212 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1213 if (!scontextp)
1214 return -ENOMEM;
1215 *scontext = scontextp;
1216
1217 /*
1218 * Copy the user name, role name and type name into the context.
1219 */
1220 sprintf(scontextp, "%s:%s:%s",
1221 sym_name(&policydb, SYM_USERS, context->user - 1),
1222 sym_name(&policydb, SYM_ROLES, context->role - 1),
1223 sym_name(&policydb, SYM_TYPES, context->type - 1));
1224 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1225 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1226 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1227
1228 mls_sid_to_context(context, &scontextp);
1229
1230 *scontextp = 0;
1231
1232 return 0;
1233 }
1234
1235 #include "initial_sid_to_string.h"
1236
security_get_initial_sid_context(u32 sid)1237 const char *security_get_initial_sid_context(u32 sid)
1238 {
1239 if (unlikely(sid > SECINITSID_NUM))
1240 return NULL;
1241 return initial_sid_to_string[sid];
1242 }
1243
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)1244 static int security_sid_to_context_core(u32 sid, char **scontext,
1245 u32 *scontext_len, int force)
1246 {
1247 struct context *context;
1248 int rc = 0;
1249
1250 if (scontext)
1251 *scontext = NULL;
1252 *scontext_len = 0;
1253
1254 if (!ss_initialized) {
1255 if (sid <= SECINITSID_NUM) {
1256 char *scontextp;
1257
1258 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1259 if (!scontext)
1260 goto out;
1261 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1262 if (!scontextp) {
1263 rc = -ENOMEM;
1264 goto out;
1265 }
1266 strcpy(scontextp, initial_sid_to_string[sid]);
1267 *scontext = scontextp;
1268 goto out;
1269 }
1270 printk(KERN_ERR "SELinux: %s: called before initial "
1271 "load_policy on unknown SID %d\n", __func__, sid);
1272 rc = -EINVAL;
1273 goto out;
1274 }
1275 read_lock(&policy_rwlock);
1276 if (force)
1277 context = sidtab_search_force(&sidtab, sid);
1278 else
1279 context = sidtab_search(&sidtab, sid);
1280 if (!context) {
1281 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1282 __func__, sid);
1283 rc = -EINVAL;
1284 goto out_unlock;
1285 }
1286 rc = context_struct_to_string(context, scontext, scontext_len);
1287 out_unlock:
1288 read_unlock(&policy_rwlock);
1289 out:
1290 return rc;
1291
1292 }
1293
1294 /**
1295 * security_sid_to_context - Obtain a context for a given SID.
1296 * @sid: security identifier, SID
1297 * @scontext: security context
1298 * @scontext_len: length in bytes
1299 *
1300 * Write the string representation of the context associated with @sid
1301 * into a dynamically allocated string of the correct size. Set @scontext
1302 * to point to this string and set @scontext_len to the length of the string.
1303 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1304 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1305 {
1306 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1307 }
1308
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1309 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1310 {
1311 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1312 }
1313
1314 /*
1315 * Caveat: Mutates scontext.
1316 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1317 static int string_to_context_struct(struct policydb *pol,
1318 struct sidtab *sidtabp,
1319 char *scontext,
1320 u32 scontext_len,
1321 struct context *ctx,
1322 u32 def_sid)
1323 {
1324 struct role_datum *role;
1325 struct type_datum *typdatum;
1326 struct user_datum *usrdatum;
1327 char *scontextp, *p, oldc;
1328 int rc = 0;
1329
1330 context_init(ctx);
1331
1332 /* Parse the security context. */
1333
1334 rc = -EINVAL;
1335 scontextp = (char *) scontext;
1336
1337 /* Extract the user. */
1338 p = scontextp;
1339 while (*p && *p != ':')
1340 p++;
1341
1342 if (*p == 0)
1343 goto out;
1344
1345 *p++ = 0;
1346
1347 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1348 if (!usrdatum)
1349 goto out;
1350
1351 ctx->user = usrdatum->value;
1352
1353 /* Extract role. */
1354 scontextp = p;
1355 while (*p && *p != ':')
1356 p++;
1357
1358 if (*p == 0)
1359 goto out;
1360
1361 *p++ = 0;
1362
1363 role = hashtab_search(pol->p_roles.table, scontextp);
1364 if (!role)
1365 goto out;
1366 ctx->role = role->value;
1367
1368 /* Extract type. */
1369 scontextp = p;
1370 while (*p && *p != ':')
1371 p++;
1372 oldc = *p;
1373 *p++ = 0;
1374
1375 typdatum = hashtab_search(pol->p_types.table, scontextp);
1376 if (!typdatum || typdatum->attribute)
1377 goto out;
1378
1379 ctx->type = typdatum->value;
1380
1381 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1382 if (rc)
1383 goto out;
1384
1385 rc = -EINVAL;
1386 if ((p - scontext) < scontext_len)
1387 goto out;
1388
1389 /* Check the validity of the new context. */
1390 if (!policydb_context_isvalid(pol, ctx))
1391 goto out;
1392 rc = 0;
1393 out:
1394 if (rc)
1395 context_destroy(ctx);
1396 return rc;
1397 }
1398
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1399 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1400 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1401 int force)
1402 {
1403 char *scontext2, *str = NULL;
1404 struct context context;
1405 int rc = 0;
1406
1407 /* An empty security context is never valid. */
1408 if (!scontext_len)
1409 return -EINVAL;
1410
1411 if (!ss_initialized) {
1412 int i;
1413
1414 for (i = 1; i < SECINITSID_NUM; i++) {
1415 if (!strcmp(initial_sid_to_string[i], scontext)) {
1416 *sid = i;
1417 return 0;
1418 }
1419 }
1420 *sid = SECINITSID_KERNEL;
1421 return 0;
1422 }
1423 *sid = SECSID_NULL;
1424
1425 /* Copy the string so that we can modify the copy as we parse it. */
1426 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1427 if (!scontext2)
1428 return -ENOMEM;
1429 memcpy(scontext2, scontext, scontext_len);
1430 scontext2[scontext_len] = 0;
1431
1432 if (force) {
1433 /* Save another copy for storing in uninterpreted form */
1434 rc = -ENOMEM;
1435 str = kstrdup(scontext2, gfp_flags);
1436 if (!str)
1437 goto out;
1438 }
1439
1440 read_lock(&policy_rwlock);
1441 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1442 scontext_len, &context, def_sid);
1443 if (rc == -EINVAL && force) {
1444 context.str = str;
1445 context.len = scontext_len;
1446 str = NULL;
1447 } else if (rc)
1448 goto out_unlock;
1449 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1450 context_destroy(&context);
1451 out_unlock:
1452 read_unlock(&policy_rwlock);
1453 out:
1454 kfree(scontext2);
1455 kfree(str);
1456 return rc;
1457 }
1458
1459 /**
1460 * security_context_to_sid - Obtain a SID for a given security context.
1461 * @scontext: security context
1462 * @scontext_len: length in bytes
1463 * @sid: security identifier, SID
1464 *
1465 * Obtains a SID associated with the security context that
1466 * has the string representation specified by @scontext.
1467 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1468 * memory is available, or 0 on success.
1469 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid)1470 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1471 {
1472 return security_context_to_sid_core(scontext, scontext_len,
1473 sid, SECSID_NULL, GFP_KERNEL, 0);
1474 }
1475
1476 /**
1477 * security_context_to_sid_default - Obtain a SID for a given security context,
1478 * falling back to specified default if needed.
1479 *
1480 * @scontext: security context
1481 * @scontext_len: length in bytes
1482 * @sid: security identifier, SID
1483 * @def_sid: default SID to assign on error
1484 *
1485 * Obtains a SID associated with the security context that
1486 * has the string representation specified by @scontext.
1487 * The default SID is passed to the MLS layer to be used to allow
1488 * kernel labeling of the MLS field if the MLS field is not present
1489 * (for upgrading to MLS without full relabel).
1490 * Implicitly forces adding of the context even if it cannot be mapped yet.
1491 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1492 * memory is available, or 0 on success.
1493 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1494 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1495 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1496 {
1497 return security_context_to_sid_core(scontext, scontext_len,
1498 sid, def_sid, gfp_flags, 1);
1499 }
1500
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1501 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1502 u32 *sid)
1503 {
1504 return security_context_to_sid_core(scontext, scontext_len,
1505 sid, SECSID_NULL, GFP_KERNEL, 1);
1506 }
1507
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1508 static int compute_sid_handle_invalid_context(
1509 struct context *scontext,
1510 struct context *tcontext,
1511 u16 tclass,
1512 struct context *newcontext)
1513 {
1514 char *s = NULL, *t = NULL, *n = NULL;
1515 u32 slen, tlen, nlen;
1516
1517 if (context_struct_to_string(scontext, &s, &slen))
1518 goto out;
1519 if (context_struct_to_string(tcontext, &t, &tlen))
1520 goto out;
1521 if (context_struct_to_string(newcontext, &n, &nlen))
1522 goto out;
1523 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1524 "security_compute_sid: invalid context %s"
1525 " for scontext=%s"
1526 " tcontext=%s"
1527 " tclass=%s",
1528 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1529 out:
1530 kfree(s);
1531 kfree(t);
1532 kfree(n);
1533 if (!selinux_enforcing)
1534 return 0;
1535 return -EACCES;
1536 }
1537
filename_compute_type(struct policydb * p,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1538 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1539 u32 stype, u32 ttype, u16 tclass,
1540 const char *objname)
1541 {
1542 struct filename_trans ft;
1543 struct filename_trans_datum *otype;
1544
1545 /*
1546 * Most filename trans rules are going to live in specific directories
1547 * like /dev or /var/run. This bitmap will quickly skip rule searches
1548 * if the ttype does not contain any rules.
1549 */
1550 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1551 return;
1552
1553 ft.stype = stype;
1554 ft.ttype = ttype;
1555 ft.tclass = tclass;
1556 ft.name = objname;
1557
1558 otype = hashtab_search(p->filename_trans, &ft);
1559 if (otype)
1560 newcontext->type = otype->otype;
1561 }
1562
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1563 static int security_compute_sid(u32 ssid,
1564 u32 tsid,
1565 u16 orig_tclass,
1566 u32 specified,
1567 const char *objname,
1568 u32 *out_sid,
1569 bool kern)
1570 {
1571 struct class_datum *cladatum = NULL;
1572 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1573 struct role_trans *roletr = NULL;
1574 struct avtab_key avkey;
1575 struct avtab_datum *avdatum;
1576 struct avtab_node *node;
1577 u16 tclass;
1578 int rc = 0;
1579 bool sock;
1580
1581 if (!ss_initialized) {
1582 switch (orig_tclass) {
1583 case SECCLASS_PROCESS: /* kernel value */
1584 *out_sid = ssid;
1585 break;
1586 default:
1587 *out_sid = tsid;
1588 break;
1589 }
1590 goto out;
1591 }
1592
1593 context_init(&newcontext);
1594
1595 read_lock(&policy_rwlock);
1596
1597 if (kern) {
1598 tclass = unmap_class(orig_tclass);
1599 sock = security_is_socket_class(orig_tclass);
1600 } else {
1601 tclass = orig_tclass;
1602 sock = security_is_socket_class(map_class(tclass));
1603 }
1604
1605 scontext = sidtab_search(&sidtab, ssid);
1606 if (!scontext) {
1607 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1608 __func__, ssid);
1609 rc = -EINVAL;
1610 goto out_unlock;
1611 }
1612 tcontext = sidtab_search(&sidtab, tsid);
1613 if (!tcontext) {
1614 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1615 __func__, tsid);
1616 rc = -EINVAL;
1617 goto out_unlock;
1618 }
1619
1620 if (tclass && tclass <= policydb.p_classes.nprim)
1621 cladatum = policydb.class_val_to_struct[tclass - 1];
1622
1623 /* Set the user identity. */
1624 switch (specified) {
1625 case AVTAB_TRANSITION:
1626 case AVTAB_CHANGE:
1627 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1628 newcontext.user = tcontext->user;
1629 } else {
1630 /* notice this gets both DEFAULT_SOURCE and unset */
1631 /* Use the process user identity. */
1632 newcontext.user = scontext->user;
1633 }
1634 break;
1635 case AVTAB_MEMBER:
1636 /* Use the related object owner. */
1637 newcontext.user = tcontext->user;
1638 break;
1639 }
1640
1641 /* Set the role to default values. */
1642 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1643 newcontext.role = scontext->role;
1644 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1645 newcontext.role = tcontext->role;
1646 } else {
1647 if ((tclass == policydb.process_class) || (sock == true))
1648 newcontext.role = scontext->role;
1649 else
1650 newcontext.role = OBJECT_R_VAL;
1651 }
1652
1653 /* Set the type to default values. */
1654 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1655 newcontext.type = scontext->type;
1656 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1657 newcontext.type = tcontext->type;
1658 } else {
1659 if ((tclass == policydb.process_class) || (sock == true)) {
1660 /* Use the type of process. */
1661 newcontext.type = scontext->type;
1662 } else {
1663 /* Use the type of the related object. */
1664 newcontext.type = tcontext->type;
1665 }
1666 }
1667
1668 /* Look for a type transition/member/change rule. */
1669 avkey.source_type = scontext->type;
1670 avkey.target_type = tcontext->type;
1671 avkey.target_class = tclass;
1672 avkey.specified = specified;
1673 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1674
1675 /* If no permanent rule, also check for enabled conditional rules */
1676 if (!avdatum) {
1677 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1678 for (; node; node = avtab_search_node_next(node, specified)) {
1679 if (node->key.specified & AVTAB_ENABLED) {
1680 avdatum = &node->datum;
1681 break;
1682 }
1683 }
1684 }
1685
1686 if (avdatum) {
1687 /* Use the type from the type transition/member/change rule. */
1688 newcontext.type = avdatum->u.data;
1689 }
1690
1691 /* if we have a objname this is a file trans check so check those rules */
1692 if (objname)
1693 filename_compute_type(&policydb, &newcontext, scontext->type,
1694 tcontext->type, tclass, objname);
1695
1696 /* Check for class-specific changes. */
1697 if (specified & AVTAB_TRANSITION) {
1698 /* Look for a role transition rule. */
1699 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1700 if ((roletr->role == scontext->role) &&
1701 (roletr->type == tcontext->type) &&
1702 (roletr->tclass == tclass)) {
1703 /* Use the role transition rule. */
1704 newcontext.role = roletr->new_role;
1705 break;
1706 }
1707 }
1708 }
1709
1710 /* Set the MLS attributes.
1711 This is done last because it may allocate memory. */
1712 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1713 &newcontext, sock);
1714 if (rc)
1715 goto out_unlock;
1716
1717 /* Check the validity of the context. */
1718 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1719 rc = compute_sid_handle_invalid_context(scontext,
1720 tcontext,
1721 tclass,
1722 &newcontext);
1723 if (rc)
1724 goto out_unlock;
1725 }
1726 /* Obtain the sid for the context. */
1727 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1728 out_unlock:
1729 read_unlock(&policy_rwlock);
1730 context_destroy(&newcontext);
1731 out:
1732 return rc;
1733 }
1734
1735 /**
1736 * security_transition_sid - Compute the SID for a new subject/object.
1737 * @ssid: source security identifier
1738 * @tsid: target security identifier
1739 * @tclass: target security class
1740 * @out_sid: security identifier for new subject/object
1741 *
1742 * Compute a SID to use for labeling a new subject or object in the
1743 * class @tclass based on a SID pair (@ssid, @tsid).
1744 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1745 * if insufficient memory is available, or %0 if the new SID was
1746 * computed successfully.
1747 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1748 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1749 const struct qstr *qstr, u32 *out_sid)
1750 {
1751 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1752 qstr ? qstr->name : NULL, out_sid, true);
1753 }
1754
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1755 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1756 const char *objname, u32 *out_sid)
1757 {
1758 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1759 objname, out_sid, false);
1760 }
1761
1762 /**
1763 * security_member_sid - Compute the SID for member selection.
1764 * @ssid: source security identifier
1765 * @tsid: target security identifier
1766 * @tclass: target security class
1767 * @out_sid: security identifier for selected member
1768 *
1769 * Compute a SID to use when selecting a member of a polyinstantiated
1770 * object of class @tclass based on a SID pair (@ssid, @tsid).
1771 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1772 * if insufficient memory is available, or %0 if the SID was
1773 * computed successfully.
1774 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1775 int security_member_sid(u32 ssid,
1776 u32 tsid,
1777 u16 tclass,
1778 u32 *out_sid)
1779 {
1780 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1781 out_sid, false);
1782 }
1783
1784 /**
1785 * security_change_sid - Compute the SID for object relabeling.
1786 * @ssid: source security identifier
1787 * @tsid: target security identifier
1788 * @tclass: target security class
1789 * @out_sid: security identifier for selected member
1790 *
1791 * Compute a SID to use for relabeling an object of class @tclass
1792 * based on a SID pair (@ssid, @tsid).
1793 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1794 * if insufficient memory is available, or %0 if the SID was
1795 * computed successfully.
1796 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1797 int security_change_sid(u32 ssid,
1798 u32 tsid,
1799 u16 tclass,
1800 u32 *out_sid)
1801 {
1802 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1803 out_sid, false);
1804 }
1805
1806 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1807 static int clone_sid(u32 sid,
1808 struct context *context,
1809 void *arg)
1810 {
1811 struct sidtab *s = arg;
1812
1813 if (sid > SECINITSID_NUM)
1814 return sidtab_insert(s, sid, context);
1815 else
1816 return 0;
1817 }
1818
convert_context_handle_invalid_context(struct context * context)1819 static inline int convert_context_handle_invalid_context(struct context *context)
1820 {
1821 char *s;
1822 u32 len;
1823
1824 if (selinux_enforcing)
1825 return -EINVAL;
1826
1827 if (!context_struct_to_string(context, &s, &len)) {
1828 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1829 kfree(s);
1830 }
1831 return 0;
1832 }
1833
1834 struct convert_context_args {
1835 struct policydb *oldp;
1836 struct policydb *newp;
1837 };
1838
1839 /*
1840 * Convert the values in the security context
1841 * structure `c' from the values specified
1842 * in the policy `p->oldp' to the values specified
1843 * in the policy `p->newp'. Verify that the
1844 * context is valid under the new policy.
1845 */
convert_context(u32 key,struct context * c,void * p)1846 static int convert_context(u32 key,
1847 struct context *c,
1848 void *p)
1849 {
1850 struct convert_context_args *args;
1851 struct context oldc;
1852 struct ocontext *oc;
1853 struct mls_range *range;
1854 struct role_datum *role;
1855 struct type_datum *typdatum;
1856 struct user_datum *usrdatum;
1857 char *s;
1858 u32 len;
1859 int rc = 0;
1860
1861 if (key <= SECINITSID_NUM)
1862 goto out;
1863
1864 args = p;
1865
1866 if (c->str) {
1867 struct context ctx;
1868
1869 rc = -ENOMEM;
1870 s = kstrdup(c->str, GFP_KERNEL);
1871 if (!s)
1872 goto out;
1873
1874 rc = string_to_context_struct(args->newp, NULL, s,
1875 c->len, &ctx, SECSID_NULL);
1876 kfree(s);
1877 if (!rc) {
1878 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1879 c->str);
1880 /* Replace string with mapped representation. */
1881 kfree(c->str);
1882 memcpy(c, &ctx, sizeof(*c));
1883 goto out;
1884 } else if (rc == -EINVAL) {
1885 /* Retain string representation for later mapping. */
1886 rc = 0;
1887 goto out;
1888 } else {
1889 /* Other error condition, e.g. ENOMEM. */
1890 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1891 c->str, -rc);
1892 goto out;
1893 }
1894 }
1895
1896 rc = context_cpy(&oldc, c);
1897 if (rc)
1898 goto out;
1899
1900 /* Convert the user. */
1901 rc = -EINVAL;
1902 usrdatum = hashtab_search(args->newp->p_users.table,
1903 sym_name(args->oldp, SYM_USERS, c->user - 1));
1904 if (!usrdatum)
1905 goto bad;
1906 c->user = usrdatum->value;
1907
1908 /* Convert the role. */
1909 rc = -EINVAL;
1910 role = hashtab_search(args->newp->p_roles.table,
1911 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1912 if (!role)
1913 goto bad;
1914 c->role = role->value;
1915
1916 /* Convert the type. */
1917 rc = -EINVAL;
1918 typdatum = hashtab_search(args->newp->p_types.table,
1919 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1920 if (!typdatum)
1921 goto bad;
1922 c->type = typdatum->value;
1923
1924 /* Convert the MLS fields if dealing with MLS policies */
1925 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1926 rc = mls_convert_context(args->oldp, args->newp, c);
1927 if (rc)
1928 goto bad;
1929 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1930 /*
1931 * Switching between MLS and non-MLS policy:
1932 * free any storage used by the MLS fields in the
1933 * context for all existing entries in the sidtab.
1934 */
1935 mls_context_destroy(c);
1936 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1937 /*
1938 * Switching between non-MLS and MLS policy:
1939 * ensure that the MLS fields of the context for all
1940 * existing entries in the sidtab are filled in with a
1941 * suitable default value, likely taken from one of the
1942 * initial SIDs.
1943 */
1944 oc = args->newp->ocontexts[OCON_ISID];
1945 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1946 oc = oc->next;
1947 rc = -EINVAL;
1948 if (!oc) {
1949 printk(KERN_ERR "SELinux: unable to look up"
1950 " the initial SIDs list\n");
1951 goto bad;
1952 }
1953 range = &oc->context[0].range;
1954 rc = mls_range_set(c, range);
1955 if (rc)
1956 goto bad;
1957 }
1958
1959 /* Check the validity of the new context. */
1960 if (!policydb_context_isvalid(args->newp, c)) {
1961 rc = convert_context_handle_invalid_context(&oldc);
1962 if (rc)
1963 goto bad;
1964 }
1965
1966 context_destroy(&oldc);
1967
1968 rc = 0;
1969 out:
1970 return rc;
1971 bad:
1972 /* Map old representation to string and save it. */
1973 rc = context_struct_to_string(&oldc, &s, &len);
1974 if (rc)
1975 return rc;
1976 context_destroy(&oldc);
1977 context_destroy(c);
1978 c->str = s;
1979 c->len = len;
1980 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1981 c->str);
1982 rc = 0;
1983 goto out;
1984 }
1985
security_load_policycaps(void)1986 static void security_load_policycaps(void)
1987 {
1988 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1989 POLICYDB_CAPABILITY_NETPEER);
1990 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1991 POLICYDB_CAPABILITY_OPENPERM);
1992 }
1993
1994 static int security_preserve_bools(struct policydb *p);
1995
1996 /**
1997 * security_load_policy - Load a security policy configuration.
1998 * @data: binary policy data
1999 * @len: length of data in bytes
2000 *
2001 * Load a new set of security policy configuration data,
2002 * validate it and convert the SID table as necessary.
2003 * This function will flush the access vector cache after
2004 * loading the new policy.
2005 */
security_load_policy(void * data,size_t len)2006 int security_load_policy(void *data, size_t len)
2007 {
2008 struct policydb oldpolicydb, newpolicydb;
2009 struct sidtab oldsidtab, newsidtab;
2010 struct selinux_mapping *oldmap, *map = NULL;
2011 struct convert_context_args args;
2012 u32 seqno;
2013 u16 map_size;
2014 int rc = 0;
2015 struct policy_file file = { data, len }, *fp = &file;
2016
2017 if (!ss_initialized) {
2018 avtab_cache_init();
2019 rc = policydb_read(&policydb, fp);
2020 if (rc) {
2021 avtab_cache_destroy();
2022 return rc;
2023 }
2024
2025 policydb.len = len;
2026 rc = selinux_set_mapping(&policydb, secclass_map,
2027 ¤t_mapping,
2028 ¤t_mapping_size);
2029 if (rc) {
2030 policydb_destroy(&policydb);
2031 avtab_cache_destroy();
2032 return rc;
2033 }
2034
2035 rc = policydb_load_isids(&policydb, &sidtab);
2036 if (rc) {
2037 policydb_destroy(&policydb);
2038 avtab_cache_destroy();
2039 return rc;
2040 }
2041
2042 security_load_policycaps();
2043 ss_initialized = 1;
2044 seqno = ++latest_granting;
2045 selinux_complete_init();
2046 avc_ss_reset(seqno);
2047 selnl_notify_policyload(seqno);
2048 selinux_status_update_policyload(seqno);
2049 selinux_netlbl_cache_invalidate();
2050 selinux_xfrm_notify_policyload();
2051 return 0;
2052 }
2053
2054 #if 0
2055 sidtab_hash_eval(&sidtab, "sids");
2056 #endif
2057
2058 rc = policydb_read(&newpolicydb, fp);
2059 if (rc)
2060 return rc;
2061
2062 newpolicydb.len = len;
2063 /* If switching between different policy types, log MLS status */
2064 if (policydb.mls_enabled && !newpolicydb.mls_enabled)
2065 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2066 else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
2067 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2068
2069 rc = policydb_load_isids(&newpolicydb, &newsidtab);
2070 if (rc) {
2071 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
2072 policydb_destroy(&newpolicydb);
2073 return rc;
2074 }
2075
2076 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
2077 if (rc)
2078 goto err;
2079
2080 rc = security_preserve_bools(&newpolicydb);
2081 if (rc) {
2082 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
2083 goto err;
2084 }
2085
2086 /* Clone the SID table. */
2087 sidtab_shutdown(&sidtab);
2088
2089 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2090 if (rc)
2091 goto err;
2092
2093 /*
2094 * Convert the internal representations of contexts
2095 * in the new SID table.
2096 */
2097 args.oldp = &policydb;
2098 args.newp = &newpolicydb;
2099 rc = sidtab_map(&newsidtab, convert_context, &args);
2100 if (rc) {
2101 printk(KERN_ERR "SELinux: unable to convert the internal"
2102 " representation of contexts in the new SID"
2103 " table\n");
2104 goto err;
2105 }
2106
2107 /* Save the old policydb and SID table to free later. */
2108 memcpy(&oldpolicydb, &policydb, sizeof policydb);
2109 sidtab_set(&oldsidtab, &sidtab);
2110
2111 /* Install the new policydb and SID table. */
2112 write_lock_irq(&policy_rwlock);
2113 memcpy(&policydb, &newpolicydb, sizeof policydb);
2114 sidtab_set(&sidtab, &newsidtab);
2115 security_load_policycaps();
2116 oldmap = current_mapping;
2117 current_mapping = map;
2118 current_mapping_size = map_size;
2119 seqno = ++latest_granting;
2120 write_unlock_irq(&policy_rwlock);
2121
2122 /* Free the old policydb and SID table. */
2123 policydb_destroy(&oldpolicydb);
2124 sidtab_destroy(&oldsidtab);
2125 kfree(oldmap);
2126
2127 avc_ss_reset(seqno);
2128 selnl_notify_policyload(seqno);
2129 selinux_status_update_policyload(seqno);
2130 selinux_netlbl_cache_invalidate();
2131 selinux_xfrm_notify_policyload();
2132
2133 return 0;
2134
2135 err:
2136 kfree(map);
2137 sidtab_destroy(&newsidtab);
2138 policydb_destroy(&newpolicydb);
2139 return rc;
2140
2141 }
2142
security_policydb_len(void)2143 size_t security_policydb_len(void)
2144 {
2145 size_t len;
2146
2147 read_lock(&policy_rwlock);
2148 len = policydb.len;
2149 read_unlock(&policy_rwlock);
2150
2151 return len;
2152 }
2153
2154 /**
2155 * security_port_sid - Obtain the SID for a port.
2156 * @protocol: protocol number
2157 * @port: port number
2158 * @out_sid: security identifier
2159 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2160 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2161 {
2162 struct ocontext *c;
2163 int rc = 0;
2164
2165 read_lock(&policy_rwlock);
2166
2167 c = policydb.ocontexts[OCON_PORT];
2168 while (c) {
2169 if (c->u.port.protocol == protocol &&
2170 c->u.port.low_port <= port &&
2171 c->u.port.high_port >= port)
2172 break;
2173 c = c->next;
2174 }
2175
2176 if (c) {
2177 if (!c->sid[0]) {
2178 rc = sidtab_context_to_sid(&sidtab,
2179 &c->context[0],
2180 &c->sid[0]);
2181 if (rc)
2182 goto out;
2183 }
2184 *out_sid = c->sid[0];
2185 } else {
2186 *out_sid = SECINITSID_PORT;
2187 }
2188
2189 out:
2190 read_unlock(&policy_rwlock);
2191 return rc;
2192 }
2193
2194 /**
2195 * security_netif_sid - Obtain the SID for a network interface.
2196 * @name: interface name
2197 * @if_sid: interface SID
2198 */
security_netif_sid(char * name,u32 * if_sid)2199 int security_netif_sid(char *name, u32 *if_sid)
2200 {
2201 int rc = 0;
2202 struct ocontext *c;
2203
2204 read_lock(&policy_rwlock);
2205
2206 c = policydb.ocontexts[OCON_NETIF];
2207 while (c) {
2208 if (strcmp(name, c->u.name) == 0)
2209 break;
2210 c = c->next;
2211 }
2212
2213 if (c) {
2214 if (!c->sid[0] || !c->sid[1]) {
2215 rc = sidtab_context_to_sid(&sidtab,
2216 &c->context[0],
2217 &c->sid[0]);
2218 if (rc)
2219 goto out;
2220 rc = sidtab_context_to_sid(&sidtab,
2221 &c->context[1],
2222 &c->sid[1]);
2223 if (rc)
2224 goto out;
2225 }
2226 *if_sid = c->sid[0];
2227 } else
2228 *if_sid = SECINITSID_NETIF;
2229
2230 out:
2231 read_unlock(&policy_rwlock);
2232 return rc;
2233 }
2234
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2235 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2236 {
2237 int i, fail = 0;
2238
2239 for (i = 0; i < 4; i++)
2240 if (addr[i] != (input[i] & mask[i])) {
2241 fail = 1;
2242 break;
2243 }
2244
2245 return !fail;
2246 }
2247
2248 /**
2249 * security_node_sid - Obtain the SID for a node (host).
2250 * @domain: communication domain aka address family
2251 * @addrp: address
2252 * @addrlen: address length in bytes
2253 * @out_sid: security identifier
2254 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2255 int security_node_sid(u16 domain,
2256 void *addrp,
2257 u32 addrlen,
2258 u32 *out_sid)
2259 {
2260 int rc;
2261 struct ocontext *c;
2262
2263 read_lock(&policy_rwlock);
2264
2265 switch (domain) {
2266 case AF_INET: {
2267 u32 addr;
2268
2269 rc = -EINVAL;
2270 if (addrlen != sizeof(u32))
2271 goto out;
2272
2273 addr = *((u32 *)addrp);
2274
2275 c = policydb.ocontexts[OCON_NODE];
2276 while (c) {
2277 if (c->u.node.addr == (addr & c->u.node.mask))
2278 break;
2279 c = c->next;
2280 }
2281 break;
2282 }
2283
2284 case AF_INET6:
2285 rc = -EINVAL;
2286 if (addrlen != sizeof(u64) * 2)
2287 goto out;
2288 c = policydb.ocontexts[OCON_NODE6];
2289 while (c) {
2290 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2291 c->u.node6.mask))
2292 break;
2293 c = c->next;
2294 }
2295 break;
2296
2297 default:
2298 rc = 0;
2299 *out_sid = SECINITSID_NODE;
2300 goto out;
2301 }
2302
2303 if (c) {
2304 if (!c->sid[0]) {
2305 rc = sidtab_context_to_sid(&sidtab,
2306 &c->context[0],
2307 &c->sid[0]);
2308 if (rc)
2309 goto out;
2310 }
2311 *out_sid = c->sid[0];
2312 } else {
2313 *out_sid = SECINITSID_NODE;
2314 }
2315
2316 rc = 0;
2317 out:
2318 read_unlock(&policy_rwlock);
2319 return rc;
2320 }
2321
2322 #define SIDS_NEL 25
2323
2324 /**
2325 * security_get_user_sids - Obtain reachable SIDs for a user.
2326 * @fromsid: starting SID
2327 * @username: username
2328 * @sids: array of reachable SIDs for user
2329 * @nel: number of elements in @sids
2330 *
2331 * Generate the set of SIDs for legal security contexts
2332 * for a given user that can be reached by @fromsid.
2333 * Set *@sids to point to a dynamically allocated
2334 * array containing the set of SIDs. Set *@nel to the
2335 * number of elements in the array.
2336 */
2337
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2338 int security_get_user_sids(u32 fromsid,
2339 char *username,
2340 u32 **sids,
2341 u32 *nel)
2342 {
2343 struct context *fromcon, usercon;
2344 u32 *mysids = NULL, *mysids2, sid;
2345 u32 mynel = 0, maxnel = SIDS_NEL;
2346 struct user_datum *user;
2347 struct role_datum *role;
2348 struct ebitmap_node *rnode, *tnode;
2349 int rc = 0, i, j;
2350
2351 *sids = NULL;
2352 *nel = 0;
2353
2354 if (!ss_initialized)
2355 goto out;
2356
2357 read_lock(&policy_rwlock);
2358
2359 context_init(&usercon);
2360
2361 rc = -EINVAL;
2362 fromcon = sidtab_search(&sidtab, fromsid);
2363 if (!fromcon)
2364 goto out_unlock;
2365
2366 rc = -EINVAL;
2367 user = hashtab_search(policydb.p_users.table, username);
2368 if (!user)
2369 goto out_unlock;
2370
2371 usercon.user = user->value;
2372
2373 rc = -ENOMEM;
2374 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2375 if (!mysids)
2376 goto out_unlock;
2377
2378 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2379 role = policydb.role_val_to_struct[i];
2380 usercon.role = i + 1;
2381 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2382 usercon.type = j + 1;
2383
2384 if (mls_setup_user_range(fromcon, user, &usercon))
2385 continue;
2386
2387 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2388 if (rc)
2389 goto out_unlock;
2390 if (mynel < maxnel) {
2391 mysids[mynel++] = sid;
2392 } else {
2393 rc = -ENOMEM;
2394 maxnel += SIDS_NEL;
2395 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2396 if (!mysids2)
2397 goto out_unlock;
2398 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2399 kfree(mysids);
2400 mysids = mysids2;
2401 mysids[mynel++] = sid;
2402 }
2403 }
2404 }
2405 rc = 0;
2406 out_unlock:
2407 read_unlock(&policy_rwlock);
2408 if (rc || !mynel) {
2409 kfree(mysids);
2410 goto out;
2411 }
2412
2413 rc = -ENOMEM;
2414 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2415 if (!mysids2) {
2416 kfree(mysids);
2417 goto out;
2418 }
2419 for (i = 0, j = 0; i < mynel; i++) {
2420 struct av_decision dummy_avd;
2421 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2422 SECCLASS_PROCESS, /* kernel value */
2423 PROCESS__TRANSITION, AVC_STRICT,
2424 &dummy_avd);
2425 if (!rc)
2426 mysids2[j++] = mysids[i];
2427 cond_resched();
2428 }
2429 rc = 0;
2430 kfree(mysids);
2431 *sids = mysids2;
2432 *nel = j;
2433 out:
2434 return rc;
2435 }
2436
2437 /**
2438 * security_genfs_sid - Obtain a SID for a file in a filesystem
2439 * @fstype: filesystem type
2440 * @path: path from root of mount
2441 * @sclass: file security class
2442 * @sid: SID for path
2443 *
2444 * Obtain a SID to use for a file in a filesystem that
2445 * cannot support xattr or use a fixed labeling behavior like
2446 * transition SIDs or task SIDs.
2447 */
security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2448 int security_genfs_sid(const char *fstype,
2449 char *path,
2450 u16 orig_sclass,
2451 u32 *sid)
2452 {
2453 int len;
2454 u16 sclass;
2455 struct genfs *genfs;
2456 struct ocontext *c;
2457 int rc, cmp = 0;
2458
2459 while (path[0] == '/' && path[1] == '/')
2460 path++;
2461
2462 read_lock(&policy_rwlock);
2463
2464 sclass = unmap_class(orig_sclass);
2465 *sid = SECINITSID_UNLABELED;
2466
2467 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2468 cmp = strcmp(fstype, genfs->fstype);
2469 if (cmp <= 0)
2470 break;
2471 }
2472
2473 rc = -ENOENT;
2474 if (!genfs || cmp)
2475 goto out;
2476
2477 for (c = genfs->head; c; c = c->next) {
2478 len = strlen(c->u.name);
2479 if ((!c->v.sclass || sclass == c->v.sclass) &&
2480 (strncmp(c->u.name, path, len) == 0))
2481 break;
2482 }
2483
2484 rc = -ENOENT;
2485 if (!c)
2486 goto out;
2487
2488 if (!c->sid[0]) {
2489 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2490 if (rc)
2491 goto out;
2492 }
2493
2494 *sid = c->sid[0];
2495 rc = 0;
2496 out:
2497 read_unlock(&policy_rwlock);
2498 return rc;
2499 }
2500
2501 /**
2502 * security_fs_use - Determine how to handle labeling for a filesystem.
2503 * @fstype: filesystem type
2504 * @behavior: labeling behavior
2505 * @sid: SID for filesystem (superblock)
2506 */
security_fs_use(const char * fstype,unsigned int * behavior,u32 * sid)2507 int security_fs_use(
2508 const char *fstype,
2509 unsigned int *behavior,
2510 u32 *sid)
2511 {
2512 int rc = 0;
2513 struct ocontext *c;
2514
2515 read_lock(&policy_rwlock);
2516
2517 c = policydb.ocontexts[OCON_FSUSE];
2518 while (c) {
2519 if (strcmp(fstype, c->u.name) == 0)
2520 break;
2521 c = c->next;
2522 }
2523
2524 if (c) {
2525 *behavior = c->v.behavior;
2526 if (!c->sid[0]) {
2527 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2528 &c->sid[0]);
2529 if (rc)
2530 goto out;
2531 }
2532 *sid = c->sid[0];
2533 } else {
2534 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2535 if (rc) {
2536 *behavior = SECURITY_FS_USE_NONE;
2537 rc = 0;
2538 } else {
2539 *behavior = SECURITY_FS_USE_GENFS;
2540 }
2541 }
2542
2543 out:
2544 read_unlock(&policy_rwlock);
2545 return rc;
2546 }
2547
security_get_bools(int * len,char *** names,int ** values)2548 int security_get_bools(int *len, char ***names, int **values)
2549 {
2550 int i, rc;
2551
2552 read_lock(&policy_rwlock);
2553 *names = NULL;
2554 *values = NULL;
2555
2556 rc = 0;
2557 *len = policydb.p_bools.nprim;
2558 if (!*len)
2559 goto out;
2560
2561 rc = -ENOMEM;
2562 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2563 if (!*names)
2564 goto err;
2565
2566 rc = -ENOMEM;
2567 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2568 if (!*values)
2569 goto err;
2570
2571 for (i = 0; i < *len; i++) {
2572 size_t name_len;
2573
2574 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2575 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2576
2577 rc = -ENOMEM;
2578 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2579 if (!(*names)[i])
2580 goto err;
2581
2582 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2583 (*names)[i][name_len - 1] = 0;
2584 }
2585 rc = 0;
2586 out:
2587 read_unlock(&policy_rwlock);
2588 return rc;
2589 err:
2590 if (*names) {
2591 for (i = 0; i < *len; i++)
2592 kfree((*names)[i]);
2593 }
2594 kfree(*values);
2595 goto out;
2596 }
2597
2598
security_set_bools(int len,int * values)2599 int security_set_bools(int len, int *values)
2600 {
2601 int i, rc;
2602 int lenp, seqno = 0;
2603 struct cond_node *cur;
2604
2605 write_lock_irq(&policy_rwlock);
2606
2607 rc = -EFAULT;
2608 lenp = policydb.p_bools.nprim;
2609 if (len != lenp)
2610 goto out;
2611
2612 for (i = 0; i < len; i++) {
2613 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2614 audit_log(current->audit_context, GFP_ATOMIC,
2615 AUDIT_MAC_CONFIG_CHANGE,
2616 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2617 sym_name(&policydb, SYM_BOOLS, i),
2618 !!values[i],
2619 policydb.bool_val_to_struct[i]->state,
2620 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2621 audit_get_sessionid(current));
2622 }
2623 if (values[i])
2624 policydb.bool_val_to_struct[i]->state = 1;
2625 else
2626 policydb.bool_val_to_struct[i]->state = 0;
2627 }
2628
2629 for (cur = policydb.cond_list; cur; cur = cur->next) {
2630 rc = evaluate_cond_node(&policydb, cur);
2631 if (rc)
2632 goto out;
2633 }
2634
2635 seqno = ++latest_granting;
2636 rc = 0;
2637 out:
2638 write_unlock_irq(&policy_rwlock);
2639 if (!rc) {
2640 avc_ss_reset(seqno);
2641 selnl_notify_policyload(seqno);
2642 selinux_status_update_policyload(seqno);
2643 selinux_xfrm_notify_policyload();
2644 }
2645 return rc;
2646 }
2647
security_get_bool_value(int bool)2648 int security_get_bool_value(int bool)
2649 {
2650 int rc;
2651 int len;
2652
2653 read_lock(&policy_rwlock);
2654
2655 rc = -EFAULT;
2656 len = policydb.p_bools.nprim;
2657 if (bool >= len)
2658 goto out;
2659
2660 rc = policydb.bool_val_to_struct[bool]->state;
2661 out:
2662 read_unlock(&policy_rwlock);
2663 return rc;
2664 }
2665
security_preserve_bools(struct policydb * p)2666 static int security_preserve_bools(struct policydb *p)
2667 {
2668 int rc, nbools = 0, *bvalues = NULL, i;
2669 char **bnames = NULL;
2670 struct cond_bool_datum *booldatum;
2671 struct cond_node *cur;
2672
2673 rc = security_get_bools(&nbools, &bnames, &bvalues);
2674 if (rc)
2675 goto out;
2676 for (i = 0; i < nbools; i++) {
2677 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2678 if (booldatum)
2679 booldatum->state = bvalues[i];
2680 }
2681 for (cur = p->cond_list; cur; cur = cur->next) {
2682 rc = evaluate_cond_node(p, cur);
2683 if (rc)
2684 goto out;
2685 }
2686
2687 out:
2688 if (bnames) {
2689 for (i = 0; i < nbools; i++)
2690 kfree(bnames[i]);
2691 }
2692 kfree(bnames);
2693 kfree(bvalues);
2694 return rc;
2695 }
2696
2697 /*
2698 * security_sid_mls_copy() - computes a new sid based on the given
2699 * sid and the mls portion of mls_sid.
2700 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2701 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2702 {
2703 struct context *context1;
2704 struct context *context2;
2705 struct context newcon;
2706 char *s;
2707 u32 len;
2708 int rc;
2709
2710 rc = 0;
2711 if (!ss_initialized || !policydb.mls_enabled) {
2712 *new_sid = sid;
2713 goto out;
2714 }
2715
2716 context_init(&newcon);
2717
2718 read_lock(&policy_rwlock);
2719
2720 rc = -EINVAL;
2721 context1 = sidtab_search(&sidtab, sid);
2722 if (!context1) {
2723 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2724 __func__, sid);
2725 goto out_unlock;
2726 }
2727
2728 rc = -EINVAL;
2729 context2 = sidtab_search(&sidtab, mls_sid);
2730 if (!context2) {
2731 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2732 __func__, mls_sid);
2733 goto out_unlock;
2734 }
2735
2736 newcon.user = context1->user;
2737 newcon.role = context1->role;
2738 newcon.type = context1->type;
2739 rc = mls_context_cpy(&newcon, context2);
2740 if (rc)
2741 goto out_unlock;
2742
2743 /* Check the validity of the new context. */
2744 if (!policydb_context_isvalid(&policydb, &newcon)) {
2745 rc = convert_context_handle_invalid_context(&newcon);
2746 if (rc) {
2747 if (!context_struct_to_string(&newcon, &s, &len)) {
2748 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2749 "security_sid_mls_copy: invalid context %s", s);
2750 kfree(s);
2751 }
2752 goto out_unlock;
2753 }
2754 }
2755
2756 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2757 out_unlock:
2758 read_unlock(&policy_rwlock);
2759 context_destroy(&newcon);
2760 out:
2761 return rc;
2762 }
2763
2764 /**
2765 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2766 * @nlbl_sid: NetLabel SID
2767 * @nlbl_type: NetLabel labeling protocol type
2768 * @xfrm_sid: XFRM SID
2769 *
2770 * Description:
2771 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2772 * resolved into a single SID it is returned via @peer_sid and the function
2773 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2774 * returns a negative value. A table summarizing the behavior is below:
2775 *
2776 * | function return | @sid
2777 * ------------------------------+-----------------+-----------------
2778 * no peer labels | 0 | SECSID_NULL
2779 * single peer label | 0 | <peer_label>
2780 * multiple, consistent labels | 0 | <peer_label>
2781 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2782 *
2783 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2784 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2785 u32 xfrm_sid,
2786 u32 *peer_sid)
2787 {
2788 int rc;
2789 struct context *nlbl_ctx;
2790 struct context *xfrm_ctx;
2791
2792 *peer_sid = SECSID_NULL;
2793
2794 /* handle the common (which also happens to be the set of easy) cases
2795 * right away, these two if statements catch everything involving a
2796 * single or absent peer SID/label */
2797 if (xfrm_sid == SECSID_NULL) {
2798 *peer_sid = nlbl_sid;
2799 return 0;
2800 }
2801 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2802 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2803 * is present */
2804 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2805 *peer_sid = xfrm_sid;
2806 return 0;
2807 }
2808
2809 /* we don't need to check ss_initialized here since the only way both
2810 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2811 * security server was initialized and ss_initialized was true */
2812 if (!policydb.mls_enabled)
2813 return 0;
2814
2815 read_lock(&policy_rwlock);
2816
2817 rc = -EINVAL;
2818 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2819 if (!nlbl_ctx) {
2820 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2821 __func__, nlbl_sid);
2822 goto out;
2823 }
2824 rc = -EINVAL;
2825 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2826 if (!xfrm_ctx) {
2827 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2828 __func__, xfrm_sid);
2829 goto out;
2830 }
2831 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2832 if (rc)
2833 goto out;
2834
2835 /* at present NetLabel SIDs/labels really only carry MLS
2836 * information so if the MLS portion of the NetLabel SID
2837 * matches the MLS portion of the labeled XFRM SID/label
2838 * then pass along the XFRM SID as it is the most
2839 * expressive */
2840 *peer_sid = xfrm_sid;
2841 out:
2842 read_unlock(&policy_rwlock);
2843 return rc;
2844 }
2845
get_classes_callback(void * k,void * d,void * args)2846 static int get_classes_callback(void *k, void *d, void *args)
2847 {
2848 struct class_datum *datum = d;
2849 char *name = k, **classes = args;
2850 int value = datum->value - 1;
2851
2852 classes[value] = kstrdup(name, GFP_ATOMIC);
2853 if (!classes[value])
2854 return -ENOMEM;
2855
2856 return 0;
2857 }
2858
security_get_classes(char *** classes,int * nclasses)2859 int security_get_classes(char ***classes, int *nclasses)
2860 {
2861 int rc;
2862
2863 read_lock(&policy_rwlock);
2864
2865 rc = -ENOMEM;
2866 *nclasses = policydb.p_classes.nprim;
2867 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2868 if (!*classes)
2869 goto out;
2870
2871 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2872 *classes);
2873 if (rc) {
2874 int i;
2875 for (i = 0; i < *nclasses; i++)
2876 kfree((*classes)[i]);
2877 kfree(*classes);
2878 }
2879
2880 out:
2881 read_unlock(&policy_rwlock);
2882 return rc;
2883 }
2884
get_permissions_callback(void * k,void * d,void * args)2885 static int get_permissions_callback(void *k, void *d, void *args)
2886 {
2887 struct perm_datum *datum = d;
2888 char *name = k, **perms = args;
2889 int value = datum->value - 1;
2890
2891 perms[value] = kstrdup(name, GFP_ATOMIC);
2892 if (!perms[value])
2893 return -ENOMEM;
2894
2895 return 0;
2896 }
2897
security_get_permissions(char * class,char *** perms,int * nperms)2898 int security_get_permissions(char *class, char ***perms, int *nperms)
2899 {
2900 int rc, i;
2901 struct class_datum *match;
2902
2903 read_lock(&policy_rwlock);
2904
2905 rc = -EINVAL;
2906 match = hashtab_search(policydb.p_classes.table, class);
2907 if (!match) {
2908 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2909 __func__, class);
2910 goto out;
2911 }
2912
2913 rc = -ENOMEM;
2914 *nperms = match->permissions.nprim;
2915 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2916 if (!*perms)
2917 goto out;
2918
2919 if (match->comdatum) {
2920 rc = hashtab_map(match->comdatum->permissions.table,
2921 get_permissions_callback, *perms);
2922 if (rc)
2923 goto err;
2924 }
2925
2926 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2927 *perms);
2928 if (rc)
2929 goto err;
2930
2931 out:
2932 read_unlock(&policy_rwlock);
2933 return rc;
2934
2935 err:
2936 read_unlock(&policy_rwlock);
2937 for (i = 0; i < *nperms; i++)
2938 kfree((*perms)[i]);
2939 kfree(*perms);
2940 return rc;
2941 }
2942
security_get_reject_unknown(void)2943 int security_get_reject_unknown(void)
2944 {
2945 return policydb.reject_unknown;
2946 }
2947
security_get_allow_unknown(void)2948 int security_get_allow_unknown(void)
2949 {
2950 return policydb.allow_unknown;
2951 }
2952
2953 /**
2954 * security_policycap_supported - Check for a specific policy capability
2955 * @req_cap: capability
2956 *
2957 * Description:
2958 * This function queries the currently loaded policy to see if it supports the
2959 * capability specified by @req_cap. Returns true (1) if the capability is
2960 * supported, false (0) if it isn't supported.
2961 *
2962 */
security_policycap_supported(unsigned int req_cap)2963 int security_policycap_supported(unsigned int req_cap)
2964 {
2965 int rc;
2966
2967 read_lock(&policy_rwlock);
2968 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2969 read_unlock(&policy_rwlock);
2970
2971 return rc;
2972 }
2973
2974 struct selinux_audit_rule {
2975 u32 au_seqno;
2976 struct context au_ctxt;
2977 };
2978
selinux_audit_rule_free(void * vrule)2979 void selinux_audit_rule_free(void *vrule)
2980 {
2981 struct selinux_audit_rule *rule = vrule;
2982
2983 if (rule) {
2984 context_destroy(&rule->au_ctxt);
2985 kfree(rule);
2986 }
2987 }
2988
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)2989 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2990 {
2991 struct selinux_audit_rule *tmprule;
2992 struct role_datum *roledatum;
2993 struct type_datum *typedatum;
2994 struct user_datum *userdatum;
2995 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2996 int rc = 0;
2997
2998 *rule = NULL;
2999
3000 if (!ss_initialized)
3001 return -EOPNOTSUPP;
3002
3003 switch (field) {
3004 case AUDIT_SUBJ_USER:
3005 case AUDIT_SUBJ_ROLE:
3006 case AUDIT_SUBJ_TYPE:
3007 case AUDIT_OBJ_USER:
3008 case AUDIT_OBJ_ROLE:
3009 case AUDIT_OBJ_TYPE:
3010 /* only 'equals' and 'not equals' fit user, role, and type */
3011 if (op != Audit_equal && op != Audit_not_equal)
3012 return -EINVAL;
3013 break;
3014 case AUDIT_SUBJ_SEN:
3015 case AUDIT_SUBJ_CLR:
3016 case AUDIT_OBJ_LEV_LOW:
3017 case AUDIT_OBJ_LEV_HIGH:
3018 /* we do not allow a range, indicated by the presence of '-' */
3019 if (strchr(rulestr, '-'))
3020 return -EINVAL;
3021 break;
3022 default:
3023 /* only the above fields are valid */
3024 return -EINVAL;
3025 }
3026
3027 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3028 if (!tmprule)
3029 return -ENOMEM;
3030
3031 context_init(&tmprule->au_ctxt);
3032
3033 read_lock(&policy_rwlock);
3034
3035 tmprule->au_seqno = latest_granting;
3036
3037 switch (field) {
3038 case AUDIT_SUBJ_USER:
3039 case AUDIT_OBJ_USER:
3040 rc = -EINVAL;
3041 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3042 if (!userdatum)
3043 goto out;
3044 tmprule->au_ctxt.user = userdatum->value;
3045 break;
3046 case AUDIT_SUBJ_ROLE:
3047 case AUDIT_OBJ_ROLE:
3048 rc = -EINVAL;
3049 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3050 if (!roledatum)
3051 goto out;
3052 tmprule->au_ctxt.role = roledatum->value;
3053 break;
3054 case AUDIT_SUBJ_TYPE:
3055 case AUDIT_OBJ_TYPE:
3056 rc = -EINVAL;
3057 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3058 if (!typedatum)
3059 goto out;
3060 tmprule->au_ctxt.type = typedatum->value;
3061 break;
3062 case AUDIT_SUBJ_SEN:
3063 case AUDIT_SUBJ_CLR:
3064 case AUDIT_OBJ_LEV_LOW:
3065 case AUDIT_OBJ_LEV_HIGH:
3066 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3067 if (rc)
3068 goto out;
3069 break;
3070 }
3071 rc = 0;
3072 out:
3073 read_unlock(&policy_rwlock);
3074
3075 if (rc) {
3076 selinux_audit_rule_free(tmprule);
3077 tmprule = NULL;
3078 }
3079
3080 *rule = tmprule;
3081
3082 return rc;
3083 }
3084
3085 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3086 int selinux_audit_rule_known(struct audit_krule *rule)
3087 {
3088 int i;
3089
3090 for (i = 0; i < rule->field_count; i++) {
3091 struct audit_field *f = &rule->fields[i];
3092 switch (f->type) {
3093 case AUDIT_SUBJ_USER:
3094 case AUDIT_SUBJ_ROLE:
3095 case AUDIT_SUBJ_TYPE:
3096 case AUDIT_SUBJ_SEN:
3097 case AUDIT_SUBJ_CLR:
3098 case AUDIT_OBJ_USER:
3099 case AUDIT_OBJ_ROLE:
3100 case AUDIT_OBJ_TYPE:
3101 case AUDIT_OBJ_LEV_LOW:
3102 case AUDIT_OBJ_LEV_HIGH:
3103 return 1;
3104 }
3105 }
3106
3107 return 0;
3108 }
3109
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)3110 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3111 struct audit_context *actx)
3112 {
3113 struct context *ctxt;
3114 struct mls_level *level;
3115 struct selinux_audit_rule *rule = vrule;
3116 int match = 0;
3117
3118 if (!rule) {
3119 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
3120 "selinux_audit_rule_match: missing rule\n");
3121 return -ENOENT;
3122 }
3123
3124 read_lock(&policy_rwlock);
3125
3126 if (rule->au_seqno < latest_granting) {
3127 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
3128 "selinux_audit_rule_match: stale rule\n");
3129 match = -ESTALE;
3130 goto out;
3131 }
3132
3133 ctxt = sidtab_search(&sidtab, sid);
3134 if (!ctxt) {
3135 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
3136 "selinux_audit_rule_match: unrecognized SID %d\n",
3137 sid);
3138 match = -ENOENT;
3139 goto out;
3140 }
3141
3142 /* a field/op pair that is not caught here will simply fall through
3143 without a match */
3144 switch (field) {
3145 case AUDIT_SUBJ_USER:
3146 case AUDIT_OBJ_USER:
3147 switch (op) {
3148 case Audit_equal:
3149 match = (ctxt->user == rule->au_ctxt.user);
3150 break;
3151 case Audit_not_equal:
3152 match = (ctxt->user != rule->au_ctxt.user);
3153 break;
3154 }
3155 break;
3156 case AUDIT_SUBJ_ROLE:
3157 case AUDIT_OBJ_ROLE:
3158 switch (op) {
3159 case Audit_equal:
3160 match = (ctxt->role == rule->au_ctxt.role);
3161 break;
3162 case Audit_not_equal:
3163 match = (ctxt->role != rule->au_ctxt.role);
3164 break;
3165 }
3166 break;
3167 case AUDIT_SUBJ_TYPE:
3168 case AUDIT_OBJ_TYPE:
3169 switch (op) {
3170 case Audit_equal:
3171 match = (ctxt->type == rule->au_ctxt.type);
3172 break;
3173 case Audit_not_equal:
3174 match = (ctxt->type != rule->au_ctxt.type);
3175 break;
3176 }
3177 break;
3178 case AUDIT_SUBJ_SEN:
3179 case AUDIT_SUBJ_CLR:
3180 case AUDIT_OBJ_LEV_LOW:
3181 case AUDIT_OBJ_LEV_HIGH:
3182 level = ((field == AUDIT_SUBJ_SEN ||
3183 field == AUDIT_OBJ_LEV_LOW) ?
3184 &ctxt->range.level[0] : &ctxt->range.level[1]);
3185 switch (op) {
3186 case Audit_equal:
3187 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3188 level);
3189 break;
3190 case Audit_not_equal:
3191 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3192 level);
3193 break;
3194 case Audit_lt:
3195 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3196 level) &&
3197 !mls_level_eq(&rule->au_ctxt.range.level[0],
3198 level));
3199 break;
3200 case Audit_le:
3201 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3202 level);
3203 break;
3204 case Audit_gt:
3205 match = (mls_level_dom(level,
3206 &rule->au_ctxt.range.level[0]) &&
3207 !mls_level_eq(level,
3208 &rule->au_ctxt.range.level[0]));
3209 break;
3210 case Audit_ge:
3211 match = mls_level_dom(level,
3212 &rule->au_ctxt.range.level[0]);
3213 break;
3214 }
3215 }
3216
3217 out:
3218 read_unlock(&policy_rwlock);
3219 return match;
3220 }
3221
3222 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3223
aurule_avc_callback(u32 event)3224 static int aurule_avc_callback(u32 event)
3225 {
3226 int err = 0;
3227
3228 if (event == AVC_CALLBACK_RESET && aurule_callback)
3229 err = aurule_callback();
3230 return err;
3231 }
3232
aurule_init(void)3233 static int __init aurule_init(void)
3234 {
3235 int err;
3236
3237 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3238 if (err)
3239 panic("avc_add_callback() failed, error %d\n", err);
3240
3241 return err;
3242 }
3243 __initcall(aurule_init);
3244
3245 #ifdef CONFIG_NETLABEL
3246 /**
3247 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3248 * @secattr: the NetLabel packet security attributes
3249 * @sid: the SELinux SID
3250 *
3251 * Description:
3252 * Attempt to cache the context in @ctx, which was derived from the packet in
3253 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3254 * already been initialized.
3255 *
3256 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3257 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3258 u32 sid)
3259 {
3260 u32 *sid_cache;
3261
3262 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3263 if (sid_cache == NULL)
3264 return;
3265 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3266 if (secattr->cache == NULL) {
3267 kfree(sid_cache);
3268 return;
3269 }
3270
3271 *sid_cache = sid;
3272 secattr->cache->free = kfree;
3273 secattr->cache->data = sid_cache;
3274 secattr->flags |= NETLBL_SECATTR_CACHE;
3275 }
3276
3277 /**
3278 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3279 * @secattr: the NetLabel packet security attributes
3280 * @sid: the SELinux SID
3281 *
3282 * Description:
3283 * Convert the given NetLabel security attributes in @secattr into a
3284 * SELinux SID. If the @secattr field does not contain a full SELinux
3285 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3286 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3287 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3288 * conversion for future lookups. Returns zero on success, negative values on
3289 * failure.
3290 *
3291 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3292 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3293 u32 *sid)
3294 {
3295 int rc;
3296 struct context *ctx;
3297 struct context ctx_new;
3298
3299 if (!ss_initialized) {
3300 *sid = SECSID_NULL;
3301 return 0;
3302 }
3303
3304 read_lock(&policy_rwlock);
3305
3306 if (secattr->flags & NETLBL_SECATTR_CACHE)
3307 *sid = *(u32 *)secattr->cache->data;
3308 else if (secattr->flags & NETLBL_SECATTR_SECID)
3309 *sid = secattr->attr.secid;
3310 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3311 rc = -EIDRM;
3312 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3313 if (ctx == NULL)
3314 goto out;
3315
3316 context_init(&ctx_new);
3317 ctx_new.user = ctx->user;
3318 ctx_new.role = ctx->role;
3319 ctx_new.type = ctx->type;
3320 mls_import_netlbl_lvl(&ctx_new, secattr);
3321 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3322 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3323 secattr->attr.mls.cat);
3324 if (rc)
3325 goto out;
3326 memcpy(&ctx_new.range.level[1].cat,
3327 &ctx_new.range.level[0].cat,
3328 sizeof(ctx_new.range.level[0].cat));
3329 }
3330 rc = -EIDRM;
3331 if (!mls_context_isvalid(&policydb, &ctx_new))
3332 goto out_free;
3333
3334 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3335 if (rc)
3336 goto out_free;
3337
3338 security_netlbl_cache_add(secattr, *sid);
3339
3340 ebitmap_destroy(&ctx_new.range.level[0].cat);
3341 } else
3342 *sid = SECSID_NULL;
3343
3344 read_unlock(&policy_rwlock);
3345 return 0;
3346 out_free:
3347 ebitmap_destroy(&ctx_new.range.level[0].cat);
3348 out:
3349 read_unlock(&policy_rwlock);
3350 return rc;
3351 }
3352
3353 /**
3354 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3355 * @sid: the SELinux SID
3356 * @secattr: the NetLabel packet security attributes
3357 *
3358 * Description:
3359 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3360 * Returns zero on success, negative values on failure.
3361 *
3362 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3363 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3364 {
3365 int rc;
3366 struct context *ctx;
3367
3368 if (!ss_initialized)
3369 return 0;
3370
3371 read_lock(&policy_rwlock);
3372
3373 rc = -ENOENT;
3374 ctx = sidtab_search(&sidtab, sid);
3375 if (ctx == NULL)
3376 goto out;
3377
3378 rc = -ENOMEM;
3379 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3380 GFP_ATOMIC);
3381 if (secattr->domain == NULL)
3382 goto out;
3383
3384 secattr->attr.secid = sid;
3385 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3386 mls_export_netlbl_lvl(ctx, secattr);
3387 rc = mls_export_netlbl_cat(ctx, secattr);
3388 out:
3389 read_unlock(&policy_rwlock);
3390 return rc;
3391 }
3392 #endif /* CONFIG_NETLABEL */
3393
3394 /**
3395 * security_read_policy - read the policy.
3396 * @data: binary policy data
3397 * @len: length of data in bytes
3398 *
3399 */
security_read_policy(void ** data,size_t * len)3400 int security_read_policy(void **data, size_t *len)
3401 {
3402 int rc;
3403 struct policy_file fp;
3404
3405 if (!ss_initialized)
3406 return -EINVAL;
3407
3408 *len = security_policydb_len();
3409
3410 *data = vmalloc_user(*len);
3411 if (!*data)
3412 return -ENOMEM;
3413
3414 fp.data = *data;
3415 fp.len = *len;
3416
3417 read_lock(&policy_rwlock);
3418 rc = policydb_write(&policydb, &fp);
3419 read_unlock(&policy_rwlock);
3420
3421 if (rc)
3422 return rc;
3423
3424 *len = (unsigned long)fp.data - (unsigned long)*data;
3425 return 0;
3426
3427 }
3428