1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/random.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "spi.h"
22 #include "regs.h"
23 #include "io.h"
24 #include "phy.h"
25 #include "workarounds.h"
26 #include "mcdi.h"
27 #include "mcdi_pcol.h"
28 #include "selftest.h"
29
30 /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
31
32 static void siena_init_wol(struct efx_nic *efx);
33 static int siena_reset_hw(struct efx_nic *efx, enum reset_type method);
34
35
siena_push_irq_moderation(struct efx_channel * channel)36 static void siena_push_irq_moderation(struct efx_channel *channel)
37 {
38 efx_dword_t timer_cmd;
39
40 if (channel->irq_moderation)
41 EFX_POPULATE_DWORD_2(timer_cmd,
42 FRF_CZ_TC_TIMER_MODE,
43 FFE_CZ_TIMER_MODE_INT_HLDOFF,
44 FRF_CZ_TC_TIMER_VAL,
45 channel->irq_moderation - 1);
46 else
47 EFX_POPULATE_DWORD_2(timer_cmd,
48 FRF_CZ_TC_TIMER_MODE,
49 FFE_CZ_TIMER_MODE_DIS,
50 FRF_CZ_TC_TIMER_VAL, 0);
51 efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
52 channel->channel);
53 }
54
siena_mdio_write(struct net_device * net_dev,int prtad,int devad,u16 addr,u16 value)55 static int siena_mdio_write(struct net_device *net_dev,
56 int prtad, int devad, u16 addr, u16 value)
57 {
58 struct efx_nic *efx = netdev_priv(net_dev);
59 uint32_t status;
60 int rc;
61
62 rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
63 addr, value, &status);
64 if (rc)
65 return rc;
66 if (status != MC_CMD_MDIO_STATUS_GOOD)
67 return -EIO;
68
69 return 0;
70 }
71
siena_mdio_read(struct net_device * net_dev,int prtad,int devad,u16 addr)72 static int siena_mdio_read(struct net_device *net_dev,
73 int prtad, int devad, u16 addr)
74 {
75 struct efx_nic *efx = netdev_priv(net_dev);
76 uint16_t value;
77 uint32_t status;
78 int rc;
79
80 rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
81 addr, &value, &status);
82 if (rc)
83 return rc;
84 if (status != MC_CMD_MDIO_STATUS_GOOD)
85 return -EIO;
86
87 return (int)value;
88 }
89
90 /* This call is responsible for hooking in the MAC and PHY operations */
siena_probe_port(struct efx_nic * efx)91 static int siena_probe_port(struct efx_nic *efx)
92 {
93 int rc;
94
95 /* Hook in PHY operations table */
96 efx->phy_op = &efx_mcdi_phy_ops;
97
98 /* Set up MDIO structure for PHY */
99 efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
100 efx->mdio.mdio_read = siena_mdio_read;
101 efx->mdio.mdio_write = siena_mdio_write;
102
103 /* Fill out MDIO structure, loopback modes, and initial link state */
104 rc = efx->phy_op->probe(efx);
105 if (rc != 0)
106 return rc;
107
108 /* Allocate buffer for stats */
109 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
110 MC_CMD_MAC_NSTATS * sizeof(u64));
111 if (rc)
112 return rc;
113 netif_dbg(efx, probe, efx->net_dev,
114 "stats buffer at %llx (virt %p phys %llx)\n",
115 (u64)efx->stats_buffer.dma_addr,
116 efx->stats_buffer.addr,
117 (u64)virt_to_phys(efx->stats_buffer.addr));
118
119 efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
120
121 return 0;
122 }
123
siena_remove_port(struct efx_nic * efx)124 static void siena_remove_port(struct efx_nic *efx)
125 {
126 efx->phy_op->remove(efx);
127 efx_nic_free_buffer(efx, &efx->stats_buffer);
128 }
129
siena_prepare_flush(struct efx_nic * efx)130 void siena_prepare_flush(struct efx_nic *efx)
131 {
132 if (efx->fc_disable++ == 0)
133 efx_mcdi_set_mac(efx);
134 }
135
siena_finish_flush(struct efx_nic * efx)136 void siena_finish_flush(struct efx_nic *efx)
137 {
138 if (--efx->fc_disable == 0)
139 efx_mcdi_set_mac(efx);
140 }
141
142 static const struct efx_nic_register_test siena_register_tests[] = {
143 { FR_AZ_ADR_REGION,
144 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
145 { FR_CZ_USR_EV_CFG,
146 EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
147 { FR_AZ_RX_CFG,
148 EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
149 { FR_AZ_TX_CFG,
150 EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
151 { FR_AZ_TX_RESERVED,
152 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
153 { FR_AZ_SRM_TX_DC_CFG,
154 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
155 { FR_AZ_RX_DC_CFG,
156 EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
157 { FR_AZ_RX_DC_PF_WM,
158 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
159 { FR_BZ_DP_CTRL,
160 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
161 { FR_BZ_RX_RSS_TKEY,
162 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
163 { FR_CZ_RX_RSS_IPV6_REG1,
164 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
165 { FR_CZ_RX_RSS_IPV6_REG2,
166 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
167 { FR_CZ_RX_RSS_IPV6_REG3,
168 EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
169 };
170
siena_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)171 static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
172 {
173 enum reset_type reset_method = RESET_TYPE_ALL;
174 int rc, rc2;
175
176 efx_reset_down(efx, reset_method);
177
178 /* Reset the chip immediately so that it is completely
179 * quiescent regardless of what any VF driver does.
180 */
181 rc = siena_reset_hw(efx, reset_method);
182 if (rc)
183 goto out;
184
185 tests->registers =
186 efx_nic_test_registers(efx, siena_register_tests,
187 ARRAY_SIZE(siena_register_tests))
188 ? -1 : 1;
189
190 rc = siena_reset_hw(efx, reset_method);
191 out:
192 rc2 = efx_reset_up(efx, reset_method, rc == 0);
193 return rc ? rc : rc2;
194 }
195
196 /**************************************************************************
197 *
198 * Device reset
199 *
200 **************************************************************************
201 */
202
siena_map_reset_reason(enum reset_type reason)203 static enum reset_type siena_map_reset_reason(enum reset_type reason)
204 {
205 return RESET_TYPE_RECOVER_OR_ALL;
206 }
207
siena_map_reset_flags(u32 * flags)208 static int siena_map_reset_flags(u32 *flags)
209 {
210 enum {
211 SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
212 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
213 ETH_RESET_PHY),
214 SIENA_RESET_MC = (SIENA_RESET_PORT |
215 ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
216 };
217
218 if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
219 *flags &= ~SIENA_RESET_MC;
220 return RESET_TYPE_WORLD;
221 }
222
223 if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
224 *flags &= ~SIENA_RESET_PORT;
225 return RESET_TYPE_ALL;
226 }
227
228 /* no invisible reset implemented */
229
230 return -EINVAL;
231 }
232
siena_reset_hw(struct efx_nic * efx,enum reset_type method)233 static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
234 {
235 int rc;
236
237 /* Recover from a failed assertion pre-reset */
238 rc = efx_mcdi_handle_assertion(efx);
239 if (rc)
240 return rc;
241
242 if (method == RESET_TYPE_WORLD)
243 return efx_mcdi_reset_mc(efx);
244 else
245 return efx_mcdi_reset_port(efx);
246 }
247
248 #ifdef CONFIG_EEH
249 /* When a PCI device is isolated from the bus, a subsequent MMIO read is
250 * required for the kernel EEH mechanisms to notice. As the Solarflare driver
251 * was written to minimise MMIO read (for latency) then a periodic call to check
252 * the EEH status of the device is required so that device recovery can happen
253 * in a timely fashion.
254 */
siena_monitor(struct efx_nic * efx)255 static void siena_monitor(struct efx_nic *efx)
256 {
257 struct eeh_dev *eehdev =
258 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
259
260 eeh_dev_check_failure(eehdev);
261 }
262 #endif
263
siena_probe_nvconfig(struct efx_nic * efx)264 static int siena_probe_nvconfig(struct efx_nic *efx)
265 {
266 u32 caps = 0;
267 int rc;
268
269 rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
270
271 efx->timer_quantum_ns =
272 (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
273 3072 : 6144; /* 768 cycles */
274 return rc;
275 }
276
siena_dimension_resources(struct efx_nic * efx)277 static void siena_dimension_resources(struct efx_nic *efx)
278 {
279 /* Each port has a small block of internal SRAM dedicated to
280 * the buffer table and descriptor caches. In theory we can
281 * map both blocks to one port, but we don't.
282 */
283 efx_nic_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
284 }
285
siena_probe_nic(struct efx_nic * efx)286 static int siena_probe_nic(struct efx_nic *efx)
287 {
288 struct siena_nic_data *nic_data;
289 bool already_attached = false;
290 efx_oword_t reg;
291 int rc;
292
293 /* Allocate storage for hardware specific data */
294 nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
295 if (!nic_data)
296 return -ENOMEM;
297 efx->nic_data = nic_data;
298
299 if (efx_nic_fpga_ver(efx) != 0) {
300 netif_err(efx, probe, efx->net_dev,
301 "Siena FPGA not supported\n");
302 rc = -ENODEV;
303 goto fail1;
304 }
305
306 efx_reado(efx, ®, FR_AZ_CS_DEBUG);
307 efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
308
309 efx_mcdi_init(efx);
310
311 /* Recover from a failed assertion before probing */
312 rc = efx_mcdi_handle_assertion(efx);
313 if (rc)
314 goto fail1;
315
316 /* Let the BMC know that the driver is now in charge of link and
317 * filter settings. We must do this before we reset the NIC */
318 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
319 if (rc) {
320 netif_err(efx, probe, efx->net_dev,
321 "Unable to register driver with MCPU\n");
322 goto fail2;
323 }
324 if (already_attached)
325 /* Not a fatal error */
326 netif_err(efx, probe, efx->net_dev,
327 "Host already registered with MCPU\n");
328
329 /* Now we can reset the NIC */
330 rc = siena_reset_hw(efx, RESET_TYPE_ALL);
331 if (rc) {
332 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
333 goto fail3;
334 }
335
336 siena_init_wol(efx);
337
338 /* Allocate memory for INT_KER */
339 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
340 if (rc)
341 goto fail4;
342 BUG_ON(efx->irq_status.dma_addr & 0x0f);
343
344 netif_dbg(efx, probe, efx->net_dev,
345 "INT_KER at %llx (virt %p phys %llx)\n",
346 (unsigned long long)efx->irq_status.dma_addr,
347 efx->irq_status.addr,
348 (unsigned long long)virt_to_phys(efx->irq_status.addr));
349
350 /* Read in the non-volatile configuration */
351 rc = siena_probe_nvconfig(efx);
352 if (rc == -EINVAL) {
353 netif_err(efx, probe, efx->net_dev,
354 "NVRAM is invalid therefore using defaults\n");
355 efx->phy_type = PHY_TYPE_NONE;
356 efx->mdio.prtad = MDIO_PRTAD_NONE;
357 } else if (rc) {
358 goto fail5;
359 }
360
361 rc = efx_mcdi_mon_probe(efx);
362 if (rc)
363 goto fail5;
364
365 efx_sriov_probe(efx);
366 efx_ptp_probe(efx);
367
368 return 0;
369
370 fail5:
371 efx_nic_free_buffer(efx, &efx->irq_status);
372 fail4:
373 fail3:
374 efx_mcdi_drv_attach(efx, false, NULL);
375 fail2:
376 fail1:
377 kfree(efx->nic_data);
378 return rc;
379 }
380
381 /* This call performs hardware-specific global initialisation, such as
382 * defining the descriptor cache sizes and number of RSS channels.
383 * It does not set up any buffers, descriptor rings or event queues.
384 */
siena_init_nic(struct efx_nic * efx)385 static int siena_init_nic(struct efx_nic *efx)
386 {
387 efx_oword_t temp;
388 int rc;
389
390 /* Recover from a failed assertion post-reset */
391 rc = efx_mcdi_handle_assertion(efx);
392 if (rc)
393 return rc;
394
395 /* Squash TX of packets of 16 bytes or less */
396 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
397 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
398 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
399
400 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
401 * descriptors (which is bad).
402 */
403 efx_reado(efx, &temp, FR_AZ_TX_CFG);
404 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
405 EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
406 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
407
408 efx_reado(efx, &temp, FR_AZ_RX_CFG);
409 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
410 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
411 /* Enable hash insertion. This is broken for the 'Falcon' hash
412 * if IPv6 hashing is also enabled, so also select Toeplitz
413 * TCP/IPv4 and IPv4 hashes. */
414 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
415 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
416 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
417 EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
418 EFX_RX_USR_BUF_SIZE >> 5);
419 efx_writeo(efx, &temp, FR_AZ_RX_CFG);
420
421 /* Set hash key for IPv4 */
422 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
423 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
424
425 /* Enable IPv6 RSS */
426 BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
427 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
428 FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
429 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
430 efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
431 memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
432 efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
433 EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
434 FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
435 memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
436 FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
437 efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
438
439 /* Enable event logging */
440 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
441 if (rc)
442 return rc;
443
444 /* Set destination of both TX and RX Flush events */
445 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
446 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
447
448 EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
449 efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
450
451 efx_nic_init_common(efx);
452 return 0;
453 }
454
siena_remove_nic(struct efx_nic * efx)455 static void siena_remove_nic(struct efx_nic *efx)
456 {
457 efx_mcdi_mon_remove(efx);
458
459 efx_nic_free_buffer(efx, &efx->irq_status);
460
461 siena_reset_hw(efx, RESET_TYPE_ALL);
462
463 /* Relinquish the device back to the BMC */
464 efx_mcdi_drv_attach(efx, false, NULL);
465
466 /* Tear down the private nic state */
467 kfree(efx->nic_data);
468 efx->nic_data = NULL;
469 }
470
471 #define STATS_GENERATION_INVALID ((__force __le64)(-1))
472
siena_try_update_nic_stats(struct efx_nic * efx)473 static int siena_try_update_nic_stats(struct efx_nic *efx)
474 {
475 __le64 *dma_stats;
476 struct efx_mac_stats *mac_stats;
477 __le64 generation_start, generation_end;
478
479 mac_stats = &efx->mac_stats;
480 dma_stats = efx->stats_buffer.addr;
481
482 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
483 if (generation_end == STATS_GENERATION_INVALID)
484 return 0;
485 rmb();
486
487 #define MAC_STAT(M, D) \
488 mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
489
490 MAC_STAT(tx_bytes, TX_BYTES);
491 MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
492 efx_update_diff_stat(&mac_stats->tx_good_bytes,
493 mac_stats->tx_bytes - mac_stats->tx_bad_bytes);
494 MAC_STAT(tx_packets, TX_PKTS);
495 MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
496 MAC_STAT(tx_pause, TX_PAUSE_PKTS);
497 MAC_STAT(tx_control, TX_CONTROL_PKTS);
498 MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
499 MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
500 MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
501 MAC_STAT(tx_lt64, TX_LT64_PKTS);
502 MAC_STAT(tx_64, TX_64_PKTS);
503 MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
504 MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
505 MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
506 MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
507 MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
508 MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
509 MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
510 mac_stats->tx_collision = 0;
511 MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
512 MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
513 MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
514 MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
515 MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
516 mac_stats->tx_collision = (mac_stats->tx_single_collision +
517 mac_stats->tx_multiple_collision +
518 mac_stats->tx_excessive_collision +
519 mac_stats->tx_late_collision);
520 MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
521 MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
522 MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
523 MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
524 MAC_STAT(rx_bytes, RX_BYTES);
525 MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
526 efx_update_diff_stat(&mac_stats->rx_good_bytes,
527 mac_stats->rx_bytes - mac_stats->rx_bad_bytes);
528 MAC_STAT(rx_packets, RX_PKTS);
529 MAC_STAT(rx_good, RX_GOOD_PKTS);
530 MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
531 MAC_STAT(rx_pause, RX_PAUSE_PKTS);
532 MAC_STAT(rx_control, RX_CONTROL_PKTS);
533 MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
534 MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
535 MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
536 MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
537 MAC_STAT(rx_64, RX_64_PKTS);
538 MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
539 MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
540 MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
541 MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
542 MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
543 MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
544 MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
545 mac_stats->rx_bad_lt64 = 0;
546 mac_stats->rx_bad_64_to_15xx = 0;
547 mac_stats->rx_bad_15xx_to_jumbo = 0;
548 MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
549 MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
550 mac_stats->rx_missed = 0;
551 MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
552 MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
553 MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
554 MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
555 MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
556 mac_stats->rx_good_lt64 = 0;
557
558 efx->n_rx_nodesc_drop_cnt =
559 le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
560
561 #undef MAC_STAT
562
563 rmb();
564 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
565 if (generation_end != generation_start)
566 return -EAGAIN;
567
568 return 0;
569 }
570
siena_update_nic_stats(struct efx_nic * efx)571 static void siena_update_nic_stats(struct efx_nic *efx)
572 {
573 int retry;
574
575 /* If we're unlucky enough to read statistics wduring the DMA, wait
576 * up to 10ms for it to finish (typically takes <500us) */
577 for (retry = 0; retry < 100; ++retry) {
578 if (siena_try_update_nic_stats(efx) == 0)
579 return;
580 udelay(100);
581 }
582
583 /* Use the old values instead */
584 }
585
siena_start_nic_stats(struct efx_nic * efx)586 static void siena_start_nic_stats(struct efx_nic *efx)
587 {
588 __le64 *dma_stats = efx->stats_buffer.addr;
589
590 dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
591
592 efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
593 MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
594 }
595
siena_stop_nic_stats(struct efx_nic * efx)596 static void siena_stop_nic_stats(struct efx_nic *efx)
597 {
598 efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
599 }
600
601 /**************************************************************************
602 *
603 * Wake on LAN
604 *
605 **************************************************************************
606 */
607
siena_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)608 static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
609 {
610 struct siena_nic_data *nic_data = efx->nic_data;
611
612 wol->supported = WAKE_MAGIC;
613 if (nic_data->wol_filter_id != -1)
614 wol->wolopts = WAKE_MAGIC;
615 else
616 wol->wolopts = 0;
617 memset(&wol->sopass, 0, sizeof(wol->sopass));
618 }
619
620
siena_set_wol(struct efx_nic * efx,u32 type)621 static int siena_set_wol(struct efx_nic *efx, u32 type)
622 {
623 struct siena_nic_data *nic_data = efx->nic_data;
624 int rc;
625
626 if (type & ~WAKE_MAGIC)
627 return -EINVAL;
628
629 if (type & WAKE_MAGIC) {
630 if (nic_data->wol_filter_id != -1)
631 efx_mcdi_wol_filter_remove(efx,
632 nic_data->wol_filter_id);
633 rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
634 &nic_data->wol_filter_id);
635 if (rc)
636 goto fail;
637
638 pci_wake_from_d3(efx->pci_dev, true);
639 } else {
640 rc = efx_mcdi_wol_filter_reset(efx);
641 nic_data->wol_filter_id = -1;
642 pci_wake_from_d3(efx->pci_dev, false);
643 if (rc)
644 goto fail;
645 }
646
647 return 0;
648 fail:
649 netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
650 __func__, type, rc);
651 return rc;
652 }
653
654
siena_init_wol(struct efx_nic * efx)655 static void siena_init_wol(struct efx_nic *efx)
656 {
657 struct siena_nic_data *nic_data = efx->nic_data;
658 int rc;
659
660 rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
661
662 if (rc != 0) {
663 /* If it failed, attempt to get into a synchronised
664 * state with MC by resetting any set WoL filters */
665 efx_mcdi_wol_filter_reset(efx);
666 nic_data->wol_filter_id = -1;
667 } else if (nic_data->wol_filter_id != -1) {
668 pci_wake_from_d3(efx->pci_dev, true);
669 }
670 }
671
672
673 /**************************************************************************
674 *
675 * Revision-dependent attributes used by efx.c and nic.c
676 *
677 **************************************************************************
678 */
679
680 const struct efx_nic_type siena_a0_nic_type = {
681 .probe = siena_probe_nic,
682 .remove = siena_remove_nic,
683 .init = siena_init_nic,
684 .dimension_resources = siena_dimension_resources,
685 .fini = efx_port_dummy_op_void,
686 #ifdef CONFIG_EEH
687 .monitor = siena_monitor,
688 #else
689 .monitor = NULL,
690 #endif
691 .map_reset_reason = siena_map_reset_reason,
692 .map_reset_flags = siena_map_reset_flags,
693 .reset = siena_reset_hw,
694 .probe_port = siena_probe_port,
695 .remove_port = siena_remove_port,
696 .prepare_flush = siena_prepare_flush,
697 .finish_flush = siena_finish_flush,
698 .update_stats = siena_update_nic_stats,
699 .start_stats = siena_start_nic_stats,
700 .stop_stats = siena_stop_nic_stats,
701 .set_id_led = efx_mcdi_set_id_led,
702 .push_irq_moderation = siena_push_irq_moderation,
703 .reconfigure_mac = efx_mcdi_mac_reconfigure,
704 .check_mac_fault = efx_mcdi_mac_check_fault,
705 .reconfigure_port = efx_mcdi_phy_reconfigure,
706 .get_wol = siena_get_wol,
707 .set_wol = siena_set_wol,
708 .resume_wol = siena_init_wol,
709 .test_chip = siena_test_chip,
710 .test_nvram = efx_mcdi_nvram_test_all,
711
712 .revision = EFX_REV_SIENA_A0,
713 .mem_map_size = (FR_CZ_MC_TREG_SMEM +
714 FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
715 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
716 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
717 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
718 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
719 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
720 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
721 .rx_buffer_hash_size = 0x10,
722 .rx_buffer_padding = 0,
723 .can_rx_scatter = true,
724 .max_interrupt_mode = EFX_INT_MODE_MSIX,
725 .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
726 * interrupt handler only supports 32
727 * channels */
728 .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
729 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
730 NETIF_F_RXHASH | NETIF_F_NTUPLE),
731 };
732