1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/signal.h>
38
39 #include <asm/param.h>
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/siginfo.h>
43 #include <asm/cacheflush.h>
44 #include "audit.h" /* audit_signal_info() */
45
46 /*
47 * SLAB caches for signal bits.
48 */
49
50 static struct kmem_cache *sigqueue_cachep;
51
52 int print_fatal_signals __read_mostly;
53
sig_handler(struct task_struct * t,int sig)54 static void __user *sig_handler(struct task_struct *t, int sig)
55 {
56 return t->sighand->action[sig - 1].sa.sa_handler;
57 }
58
sig_handler_ignored(void __user * handler,int sig)59 static int sig_handler_ignored(void __user *handler, int sig)
60 {
61 /* Is it explicitly or implicitly ignored? */
62 return handler == SIG_IGN ||
63 (handler == SIG_DFL && sig_kernel_ignore(sig));
64 }
65
sig_task_ignored(struct task_struct * t,int sig,bool force)66 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
67 {
68 void __user *handler;
69
70 handler = sig_handler(t, sig);
71
72 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
73 handler == SIG_DFL && !force)
74 return 1;
75
76 return sig_handler_ignored(handler, sig);
77 }
78
sig_ignored(struct task_struct * t,int sig,bool force)79 static int sig_ignored(struct task_struct *t, int sig, bool force)
80 {
81 /*
82 * Blocked signals are never ignored, since the
83 * signal handler may change by the time it is
84 * unblocked.
85 */
86 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
87 return 0;
88
89 if (!sig_task_ignored(t, sig, force))
90 return 0;
91
92 /*
93 * Tracers may want to know about even ignored signals.
94 */
95 return !t->ptrace;
96 }
97
98 /*
99 * Re-calculate pending state from the set of locally pending
100 * signals, globally pending signals, and blocked signals.
101 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)102 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
103 {
104 unsigned long ready;
105 long i;
106
107 switch (_NSIG_WORDS) {
108 default:
109 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
110 ready |= signal->sig[i] &~ blocked->sig[i];
111 break;
112
113 case 4: ready = signal->sig[3] &~ blocked->sig[3];
114 ready |= signal->sig[2] &~ blocked->sig[2];
115 ready |= signal->sig[1] &~ blocked->sig[1];
116 ready |= signal->sig[0] &~ blocked->sig[0];
117 break;
118
119 case 2: ready = signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
122
123 case 1: ready = signal->sig[0] &~ blocked->sig[0];
124 }
125 return ready != 0;
126 }
127
128 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
129
recalc_sigpending_tsk(struct task_struct * t)130 static int recalc_sigpending_tsk(struct task_struct *t)
131 {
132 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
133 PENDING(&t->pending, &t->blocked) ||
134 PENDING(&t->signal->shared_pending, &t->blocked)) {
135 set_tsk_thread_flag(t, TIF_SIGPENDING);
136 return 1;
137 }
138 /*
139 * We must never clear the flag in another thread, or in current
140 * when it's possible the current syscall is returning -ERESTART*.
141 * So we don't clear it here, and only callers who know they should do.
142 */
143 return 0;
144 }
145
146 /*
147 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
148 * This is superfluous when called on current, the wakeup is a harmless no-op.
149 */
recalc_sigpending_and_wake(struct task_struct * t)150 void recalc_sigpending_and_wake(struct task_struct *t)
151 {
152 if (recalc_sigpending_tsk(t))
153 signal_wake_up(t, 0);
154 }
155
recalc_sigpending(void)156 void recalc_sigpending(void)
157 {
158 if (!recalc_sigpending_tsk(current) && !freezing(current))
159 clear_thread_flag(TIF_SIGPENDING);
160
161 }
162
163 /* Given the mask, find the first available signal that should be serviced. */
164
165 #define SYNCHRONOUS_MASK \
166 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
167 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
168
next_signal(struct sigpending * pending,sigset_t * mask)169 int next_signal(struct sigpending *pending, sigset_t *mask)
170 {
171 unsigned long i, *s, *m, x;
172 int sig = 0;
173
174 s = pending->signal.sig;
175 m = mask->sig;
176
177 /*
178 * Handle the first word specially: it contains the
179 * synchronous signals that need to be dequeued first.
180 */
181 x = *s &~ *m;
182 if (x) {
183 if (x & SYNCHRONOUS_MASK)
184 x &= SYNCHRONOUS_MASK;
185 sig = ffz(~x) + 1;
186 return sig;
187 }
188
189 switch (_NSIG_WORDS) {
190 default:
191 for (i = 1; i < _NSIG_WORDS; ++i) {
192 x = *++s &~ *++m;
193 if (!x)
194 continue;
195 sig = ffz(~x) + i*_NSIG_BPW + 1;
196 break;
197 }
198 break;
199
200 case 2:
201 x = s[1] &~ m[1];
202 if (!x)
203 break;
204 sig = ffz(~x) + _NSIG_BPW + 1;
205 break;
206
207 case 1:
208 /* Nothing to do */
209 break;
210 }
211
212 return sig;
213 }
214
print_dropped_signal(int sig)215 static inline void print_dropped_signal(int sig)
216 {
217 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
218
219 if (!print_fatal_signals)
220 return;
221
222 if (!__ratelimit(&ratelimit_state))
223 return;
224
225 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
226 current->comm, current->pid, sig);
227 }
228
229 /**
230 * task_set_jobctl_pending - set jobctl pending bits
231 * @task: target task
232 * @mask: pending bits to set
233 *
234 * Clear @mask from @task->jobctl. @mask must be subset of
235 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
236 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
237 * cleared. If @task is already being killed or exiting, this function
238 * becomes noop.
239 *
240 * CONTEXT:
241 * Must be called with @task->sighand->siglock held.
242 *
243 * RETURNS:
244 * %true if @mask is set, %false if made noop because @task was dying.
245 */
task_set_jobctl_pending(struct task_struct * task,unsigned int mask)246 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
247 {
248 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
249 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
250 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
251
252 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
253 return false;
254
255 if (mask & JOBCTL_STOP_SIGMASK)
256 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
257
258 task->jobctl |= mask;
259 return true;
260 }
261
262 /**
263 * task_clear_jobctl_trapping - clear jobctl trapping bit
264 * @task: target task
265 *
266 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
267 * Clear it and wake up the ptracer. Note that we don't need any further
268 * locking. @task->siglock guarantees that @task->parent points to the
269 * ptracer.
270 *
271 * CONTEXT:
272 * Must be called with @task->sighand->siglock held.
273 */
task_clear_jobctl_trapping(struct task_struct * task)274 void task_clear_jobctl_trapping(struct task_struct *task)
275 {
276 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
277 task->jobctl &= ~JOBCTL_TRAPPING;
278 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
279 }
280 }
281
282 /**
283 * task_clear_jobctl_pending - clear jobctl pending bits
284 * @task: target task
285 * @mask: pending bits to clear
286 *
287 * Clear @mask from @task->jobctl. @mask must be subset of
288 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
289 * STOP bits are cleared together.
290 *
291 * If clearing of @mask leaves no stop or trap pending, this function calls
292 * task_clear_jobctl_trapping().
293 *
294 * CONTEXT:
295 * Must be called with @task->sighand->siglock held.
296 */
task_clear_jobctl_pending(struct task_struct * task,unsigned int mask)297 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
298 {
299 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
300
301 if (mask & JOBCTL_STOP_PENDING)
302 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
303
304 task->jobctl &= ~mask;
305
306 if (!(task->jobctl & JOBCTL_PENDING_MASK))
307 task_clear_jobctl_trapping(task);
308 }
309
310 /**
311 * task_participate_group_stop - participate in a group stop
312 * @task: task participating in a group stop
313 *
314 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
315 * Group stop states are cleared and the group stop count is consumed if
316 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
317 * stop, the appropriate %SIGNAL_* flags are set.
318 *
319 * CONTEXT:
320 * Must be called with @task->sighand->siglock held.
321 *
322 * RETURNS:
323 * %true if group stop completion should be notified to the parent, %false
324 * otherwise.
325 */
task_participate_group_stop(struct task_struct * task)326 static bool task_participate_group_stop(struct task_struct *task)
327 {
328 struct signal_struct *sig = task->signal;
329 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
330
331 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
332
333 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
334
335 if (!consume)
336 return false;
337
338 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
339 sig->group_stop_count--;
340
341 /*
342 * Tell the caller to notify completion iff we are entering into a
343 * fresh group stop. Read comment in do_signal_stop() for details.
344 */
345 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
346 sig->flags = SIGNAL_STOP_STOPPED;
347 return true;
348 }
349 return false;
350 }
351
352 /*
353 * allocate a new signal queue record
354 * - this may be called without locks if and only if t == current, otherwise an
355 * appropriate lock must be held to stop the target task from exiting
356 */
357 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)358 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
359 {
360 struct sigqueue *q = NULL;
361 struct user_struct *user;
362
363 /*
364 * Protect access to @t credentials. This can go away when all
365 * callers hold rcu read lock.
366 */
367 rcu_read_lock();
368 user = get_uid(__task_cred(t)->user);
369 atomic_inc(&user->sigpending);
370 rcu_read_unlock();
371
372 if (override_rlimit ||
373 atomic_read(&user->sigpending) <=
374 task_rlimit(t, RLIMIT_SIGPENDING)) {
375 q = kmem_cache_alloc(sigqueue_cachep, flags);
376 } else {
377 print_dropped_signal(sig);
378 }
379
380 if (unlikely(q == NULL)) {
381 atomic_dec(&user->sigpending);
382 free_uid(user);
383 } else {
384 INIT_LIST_HEAD(&q->list);
385 q->flags = 0;
386 q->user = user;
387 }
388
389 return q;
390 }
391
__sigqueue_free(struct sigqueue * q)392 static void __sigqueue_free(struct sigqueue *q)
393 {
394 if (q->flags & SIGQUEUE_PREALLOC)
395 return;
396 atomic_dec(&q->user->sigpending);
397 free_uid(q->user);
398 kmem_cache_free(sigqueue_cachep, q);
399 }
400
flush_sigqueue(struct sigpending * queue)401 void flush_sigqueue(struct sigpending *queue)
402 {
403 struct sigqueue *q;
404
405 sigemptyset(&queue->signal);
406 while (!list_empty(&queue->list)) {
407 q = list_entry(queue->list.next, struct sigqueue , list);
408 list_del_init(&q->list);
409 __sigqueue_free(q);
410 }
411 }
412
413 /*
414 * Flush all pending signals for a task.
415 */
__flush_signals(struct task_struct * t)416 void __flush_signals(struct task_struct *t)
417 {
418 clear_tsk_thread_flag(t, TIF_SIGPENDING);
419 flush_sigqueue(&t->pending);
420 flush_sigqueue(&t->signal->shared_pending);
421 }
422
flush_signals(struct task_struct * t)423 void flush_signals(struct task_struct *t)
424 {
425 unsigned long flags;
426
427 spin_lock_irqsave(&t->sighand->siglock, flags);
428 __flush_signals(t);
429 spin_unlock_irqrestore(&t->sighand->siglock, flags);
430 }
431
__flush_itimer_signals(struct sigpending * pending)432 static void __flush_itimer_signals(struct sigpending *pending)
433 {
434 sigset_t signal, retain;
435 struct sigqueue *q, *n;
436
437 signal = pending->signal;
438 sigemptyset(&retain);
439
440 list_for_each_entry_safe(q, n, &pending->list, list) {
441 int sig = q->info.si_signo;
442
443 if (likely(q->info.si_code != SI_TIMER)) {
444 sigaddset(&retain, sig);
445 } else {
446 sigdelset(&signal, sig);
447 list_del_init(&q->list);
448 __sigqueue_free(q);
449 }
450 }
451
452 sigorsets(&pending->signal, &signal, &retain);
453 }
454
flush_itimer_signals(void)455 void flush_itimer_signals(void)
456 {
457 struct task_struct *tsk = current;
458 unsigned long flags;
459
460 spin_lock_irqsave(&tsk->sighand->siglock, flags);
461 __flush_itimer_signals(&tsk->pending);
462 __flush_itimer_signals(&tsk->signal->shared_pending);
463 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
464 }
465
ignore_signals(struct task_struct * t)466 void ignore_signals(struct task_struct *t)
467 {
468 int i;
469
470 for (i = 0; i < _NSIG; ++i)
471 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472
473 flush_signals(t);
474 }
475
476 /*
477 * Flush all handlers for a task.
478 */
479
480 void
flush_signal_handlers(struct task_struct * t,int force_default)481 flush_signal_handlers(struct task_struct *t, int force_default)
482 {
483 int i;
484 struct k_sigaction *ka = &t->sighand->action[0];
485 for (i = _NSIG ; i != 0 ; i--) {
486 if (force_default || ka->sa.sa_handler != SIG_IGN)
487 ka->sa.sa_handler = SIG_DFL;
488 ka->sa.sa_flags = 0;
489 #ifdef __ARCH_HAS_SA_RESTORER
490 ka->sa.sa_restorer = NULL;
491 #endif
492 sigemptyset(&ka->sa.sa_mask);
493 ka++;
494 }
495 }
496
unhandled_signal(struct task_struct * tsk,int sig)497 int unhandled_signal(struct task_struct *tsk, int sig)
498 {
499 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
500 if (is_global_init(tsk))
501 return 1;
502 if (handler != SIG_IGN && handler != SIG_DFL)
503 return 0;
504 /* if ptraced, let the tracer determine */
505 return !tsk->ptrace;
506 }
507
508 /*
509 * Notify the system that a driver wants to block all signals for this
510 * process, and wants to be notified if any signals at all were to be
511 * sent/acted upon. If the notifier routine returns non-zero, then the
512 * signal will be acted upon after all. If the notifier routine returns 0,
513 * then then signal will be blocked. Only one block per process is
514 * allowed. priv is a pointer to private data that the notifier routine
515 * can use to determine if the signal should be blocked or not.
516 */
517 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)518 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
519 {
520 unsigned long flags;
521
522 spin_lock_irqsave(¤t->sighand->siglock, flags);
523 current->notifier_mask = mask;
524 current->notifier_data = priv;
525 current->notifier = notifier;
526 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
527 }
528
529 /* Notify the system that blocking has ended. */
530
531 void
unblock_all_signals(void)532 unblock_all_signals(void)
533 {
534 unsigned long flags;
535
536 spin_lock_irqsave(¤t->sighand->siglock, flags);
537 current->notifier = NULL;
538 current->notifier_data = NULL;
539 recalc_sigpending();
540 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
541 }
542
collect_signal(int sig,struct sigpending * list,siginfo_t * info)543 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
544 {
545 struct sigqueue *q, *first = NULL;
546
547 /*
548 * Collect the siginfo appropriate to this signal. Check if
549 * there is another siginfo for the same signal.
550 */
551 list_for_each_entry(q, &list->list, list) {
552 if (q->info.si_signo == sig) {
553 if (first)
554 goto still_pending;
555 first = q;
556 }
557 }
558
559 sigdelset(&list->signal, sig);
560
561 if (first) {
562 still_pending:
563 list_del_init(&first->list);
564 copy_siginfo(info, &first->info);
565 __sigqueue_free(first);
566 } else {
567 /*
568 * Ok, it wasn't in the queue. This must be
569 * a fast-pathed signal or we must have been
570 * out of queue space. So zero out the info.
571 */
572 info->si_signo = sig;
573 info->si_errno = 0;
574 info->si_code = SI_USER;
575 info->si_pid = 0;
576 info->si_uid = 0;
577 }
578 }
579
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info)580 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
581 siginfo_t *info)
582 {
583 int sig = next_signal(pending, mask);
584
585 if (sig) {
586 if (current->notifier) {
587 if (sigismember(current->notifier_mask, sig)) {
588 if (!(current->notifier)(current->notifier_data)) {
589 clear_thread_flag(TIF_SIGPENDING);
590 return 0;
591 }
592 }
593 }
594
595 collect_signal(sig, pending, info);
596 }
597
598 return sig;
599 }
600
601 /*
602 * Dequeue a signal and return the element to the caller, which is
603 * expected to free it.
604 *
605 * All callers have to hold the siglock.
606 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)607 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
608 {
609 int signr;
610
611 /* We only dequeue private signals from ourselves, we don't let
612 * signalfd steal them
613 */
614 signr = __dequeue_signal(&tsk->pending, mask, info);
615 if (!signr) {
616 signr = __dequeue_signal(&tsk->signal->shared_pending,
617 mask, info);
618 /*
619 * itimer signal ?
620 *
621 * itimers are process shared and we restart periodic
622 * itimers in the signal delivery path to prevent DoS
623 * attacks in the high resolution timer case. This is
624 * compliant with the old way of self-restarting
625 * itimers, as the SIGALRM is a legacy signal and only
626 * queued once. Changing the restart behaviour to
627 * restart the timer in the signal dequeue path is
628 * reducing the timer noise on heavy loaded !highres
629 * systems too.
630 */
631 if (unlikely(signr == SIGALRM)) {
632 struct hrtimer *tmr = &tsk->signal->real_timer;
633
634 if (!hrtimer_is_queued(tmr) &&
635 tsk->signal->it_real_incr.tv64 != 0) {
636 hrtimer_forward(tmr, tmr->base->get_time(),
637 tsk->signal->it_real_incr);
638 hrtimer_restart(tmr);
639 }
640 }
641 }
642
643 recalc_sigpending();
644 if (!signr)
645 return 0;
646
647 if (unlikely(sig_kernel_stop(signr))) {
648 /*
649 * Set a marker that we have dequeued a stop signal. Our
650 * caller might release the siglock and then the pending
651 * stop signal it is about to process is no longer in the
652 * pending bitmasks, but must still be cleared by a SIGCONT
653 * (and overruled by a SIGKILL). So those cases clear this
654 * shared flag after we've set it. Note that this flag may
655 * remain set after the signal we return is ignored or
656 * handled. That doesn't matter because its only purpose
657 * is to alert stop-signal processing code when another
658 * processor has come along and cleared the flag.
659 */
660 current->jobctl |= JOBCTL_STOP_DEQUEUED;
661 }
662 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
663 /*
664 * Release the siglock to ensure proper locking order
665 * of timer locks outside of siglocks. Note, we leave
666 * irqs disabled here, since the posix-timers code is
667 * about to disable them again anyway.
668 */
669 spin_unlock(&tsk->sighand->siglock);
670 do_schedule_next_timer(info);
671 spin_lock(&tsk->sighand->siglock);
672 }
673 return signr;
674 }
675
676 /*
677 * Tell a process that it has a new active signal..
678 *
679 * NOTE! we rely on the previous spin_lock to
680 * lock interrupts for us! We can only be called with
681 * "siglock" held, and the local interrupt must
682 * have been disabled when that got acquired!
683 *
684 * No need to set need_resched since signal event passing
685 * goes through ->blocked
686 */
signal_wake_up_state(struct task_struct * t,unsigned int state)687 void signal_wake_up_state(struct task_struct *t, unsigned int state)
688 {
689 set_tsk_thread_flag(t, TIF_SIGPENDING);
690 /*
691 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
692 * case. We don't check t->state here because there is a race with it
693 * executing another processor and just now entering stopped state.
694 * By using wake_up_state, we ensure the process will wake up and
695 * handle its death signal.
696 */
697 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
698 kick_process(t);
699 }
700
701 /*
702 * Remove signals in mask from the pending set and queue.
703 * Returns 1 if any signals were found.
704 *
705 * All callers must be holding the siglock.
706 *
707 * This version takes a sigset mask and looks at all signals,
708 * not just those in the first mask word.
709 */
rm_from_queue_full(sigset_t * mask,struct sigpending * s)710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 {
712 struct sigqueue *q, *n;
713 sigset_t m;
714
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
718
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
724 }
725 }
726 return 1;
727 }
728 /*
729 * Remove signals in mask from the pending set and queue.
730 * Returns 1 if any signals were found.
731 *
732 * All callers must be holding the siglock.
733 */
rm_from_queue(unsigned long mask,struct sigpending * s)734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 {
736 struct sigqueue *q, *n;
737
738 if (!sigtestsetmask(&s->signal, mask))
739 return 0;
740
741 sigdelsetmask(&s->signal, mask);
742 list_for_each_entry_safe(q, n, &s->list, list) {
743 if (q->info.si_signo < SIGRTMIN &&
744 (mask & sigmask(q->info.si_signo))) {
745 list_del_init(&q->list);
746 __sigqueue_free(q);
747 }
748 }
749 return 1;
750 }
751
is_si_special(const struct siginfo * info)752 static inline int is_si_special(const struct siginfo *info)
753 {
754 return info <= SEND_SIG_FORCED;
755 }
756
si_fromuser(const struct siginfo * info)757 static inline bool si_fromuser(const struct siginfo *info)
758 {
759 return info == SEND_SIG_NOINFO ||
760 (!is_si_special(info) && SI_FROMUSER(info));
761 }
762
763 /*
764 * called with RCU read lock from check_kill_permission()
765 */
kill_ok_by_cred(struct task_struct * t)766 static int kill_ok_by_cred(struct task_struct *t)
767 {
768 const struct cred *cred = current_cred();
769 const struct cred *tcred = __task_cred(t);
770
771 if (uid_eq(cred->euid, tcred->suid) ||
772 uid_eq(cred->euid, tcred->uid) ||
773 uid_eq(cred->uid, tcred->suid) ||
774 uid_eq(cred->uid, tcred->uid))
775 return 1;
776
777 if (ns_capable(tcred->user_ns, CAP_KILL))
778 return 1;
779
780 return 0;
781 }
782
783 /*
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
786 */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
789 {
790 struct pid *sid;
791 int error;
792
793 if (!valid_signal(sig))
794 return -EINVAL;
795
796 if (!si_fromuser(info))
797 return 0;
798
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
802
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
808 /*
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
811 */
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
816 }
817 }
818
819 return security_task_kill(t, info, sig, 0);
820 }
821
822 /**
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
825 *
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
829 *
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
835 *
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
838 */
ptrace_trap_notify(struct task_struct * t)839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
843
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847
848 /*
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
854 *
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
857 */
prepare_signal(int sig,struct task_struct * p,bool force)858 static bool prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
862
863 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
864 if (signal->flags & SIGNAL_GROUP_COREDUMP)
865 return sig == SIGKILL;
866 /*
867 * The process is in the middle of dying, nothing to do.
868 */
869 } else if (sig_kernel_stop(sig)) {
870 /*
871 * This is a stop signal. Remove SIGCONT from all queues.
872 */
873 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
874 t = p;
875 do {
876 rm_from_queue(sigmask(SIGCONT), &t->pending);
877 } while_each_thread(p, t);
878 } else if (sig == SIGCONT) {
879 unsigned int why;
880 /*
881 * Remove all stop signals from all queues, wake all threads.
882 */
883 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
884 t = p;
885 do {
886 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
887 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
888 if (likely(!(t->ptrace & PT_SEIZED)))
889 wake_up_state(t, __TASK_STOPPED);
890 else
891 ptrace_trap_notify(t);
892 } while_each_thread(p, t);
893
894 /*
895 * Notify the parent with CLD_CONTINUED if we were stopped.
896 *
897 * If we were in the middle of a group stop, we pretend it
898 * was already finished, and then continued. Since SIGCHLD
899 * doesn't queue we report only CLD_STOPPED, as if the next
900 * CLD_CONTINUED was dropped.
901 */
902 why = 0;
903 if (signal->flags & SIGNAL_STOP_STOPPED)
904 why |= SIGNAL_CLD_CONTINUED;
905 else if (signal->group_stop_count)
906 why |= SIGNAL_CLD_STOPPED;
907
908 if (why) {
909 /*
910 * The first thread which returns from do_signal_stop()
911 * will take ->siglock, notice SIGNAL_CLD_MASK, and
912 * notify its parent. See get_signal_to_deliver().
913 */
914 signal->flags = why | SIGNAL_STOP_CONTINUED;
915 signal->group_stop_count = 0;
916 signal->group_exit_code = 0;
917 }
918 }
919
920 return !sig_ignored(p, sig, force);
921 }
922
923 /*
924 * Test if P wants to take SIG. After we've checked all threads with this,
925 * it's equivalent to finding no threads not blocking SIG. Any threads not
926 * blocking SIG were ruled out because they are not running and already
927 * have pending signals. Such threads will dequeue from the shared queue
928 * as soon as they're available, so putting the signal on the shared queue
929 * will be equivalent to sending it to one such thread.
930 */
wants_signal(int sig,struct task_struct * p)931 static inline int wants_signal(int sig, struct task_struct *p)
932 {
933 if (sigismember(&p->blocked, sig))
934 return 0;
935 if (p->flags & PF_EXITING)
936 return 0;
937 if (sig == SIGKILL)
938 return 1;
939 if (task_is_stopped_or_traced(p))
940 return 0;
941 return task_curr(p) || !signal_pending(p);
942 }
943
complete_signal(int sig,struct task_struct * p,int group)944 static void complete_signal(int sig, struct task_struct *p, int group)
945 {
946 struct signal_struct *signal = p->signal;
947 struct task_struct *t;
948
949 /*
950 * Now find a thread we can wake up to take the signal off the queue.
951 *
952 * If the main thread wants the signal, it gets first crack.
953 * Probably the least surprising to the average bear.
954 */
955 if (wants_signal(sig, p))
956 t = p;
957 else if (!group || thread_group_empty(p))
958 /*
959 * There is just one thread and it does not need to be woken.
960 * It will dequeue unblocked signals before it runs again.
961 */
962 return;
963 else {
964 /*
965 * Otherwise try to find a suitable thread.
966 */
967 t = signal->curr_target;
968 while (!wants_signal(sig, t)) {
969 t = next_thread(t);
970 if (t == signal->curr_target)
971 /*
972 * No thread needs to be woken.
973 * Any eligible threads will see
974 * the signal in the queue soon.
975 */
976 return;
977 }
978 signal->curr_target = t;
979 }
980
981 /*
982 * Found a killable thread. If the signal will be fatal,
983 * then start taking the whole group down immediately.
984 */
985 if (sig_fatal(p, sig) &&
986 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
987 !sigismember(&t->real_blocked, sig) &&
988 (sig == SIGKILL || !t->ptrace)) {
989 /*
990 * This signal will be fatal to the whole group.
991 */
992 if (!sig_kernel_coredump(sig)) {
993 /*
994 * Start a group exit and wake everybody up.
995 * This way we don't have other threads
996 * running and doing things after a slower
997 * thread has the fatal signal pending.
998 */
999 signal->flags = SIGNAL_GROUP_EXIT;
1000 signal->group_exit_code = sig;
1001 signal->group_stop_count = 0;
1002 t = p;
1003 do {
1004 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1005 sigaddset(&t->pending.signal, SIGKILL);
1006 signal_wake_up(t, 1);
1007 } while_each_thread(p, t);
1008 return;
1009 }
1010 }
1011
1012 /*
1013 * The signal is already in the shared-pending queue.
1014 * Tell the chosen thread to wake up and dequeue it.
1015 */
1016 signal_wake_up(t, sig == SIGKILL);
1017 return;
1018 }
1019
legacy_queue(struct sigpending * signals,int sig)1020 static inline int legacy_queue(struct sigpending *signals, int sig)
1021 {
1022 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 }
1024
1025 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1026 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1027 {
1028 if (current_user_ns() == task_cred_xxx(t, user_ns))
1029 return;
1030
1031 if (SI_FROMKERNEL(info))
1032 return;
1033
1034 rcu_read_lock();
1035 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1036 make_kuid(current_user_ns(), info->si_uid));
1037 rcu_read_unlock();
1038 }
1039 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1040 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1041 {
1042 return;
1043 }
1044 #endif
1045
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)1046 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1047 int group, int from_ancestor_ns)
1048 {
1049 struct sigpending *pending;
1050 struct sigqueue *q;
1051 int override_rlimit;
1052 int ret = 0, result;
1053
1054 assert_spin_locked(&t->sighand->siglock);
1055
1056 result = TRACE_SIGNAL_IGNORED;
1057 if (!prepare_signal(sig, t,
1058 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1059 goto ret;
1060
1061 pending = group ? &t->signal->shared_pending : &t->pending;
1062 /*
1063 * Short-circuit ignored signals and support queuing
1064 * exactly one non-rt signal, so that we can get more
1065 * detailed information about the cause of the signal.
1066 */
1067 result = TRACE_SIGNAL_ALREADY_PENDING;
1068 if (legacy_queue(pending, sig))
1069 goto ret;
1070
1071 result = TRACE_SIGNAL_DELIVERED;
1072 /*
1073 * fast-pathed signals for kernel-internal things like SIGSTOP
1074 * or SIGKILL.
1075 */
1076 if (info == SEND_SIG_FORCED)
1077 goto out_set;
1078
1079 /*
1080 * Real-time signals must be queued if sent by sigqueue, or
1081 * some other real-time mechanism. It is implementation
1082 * defined whether kill() does so. We attempt to do so, on
1083 * the principle of least surprise, but since kill is not
1084 * allowed to fail with EAGAIN when low on memory we just
1085 * make sure at least one signal gets delivered and don't
1086 * pass on the info struct.
1087 */
1088 if (sig < SIGRTMIN)
1089 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1090 else
1091 override_rlimit = 0;
1092
1093 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1094 override_rlimit);
1095 if (q) {
1096 list_add_tail(&q->list, &pending->list);
1097 switch ((unsigned long) info) {
1098 case (unsigned long) SEND_SIG_NOINFO:
1099 q->info.si_signo = sig;
1100 q->info.si_errno = 0;
1101 q->info.si_code = SI_USER;
1102 q->info.si_pid = task_tgid_nr_ns(current,
1103 task_active_pid_ns(t));
1104 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1105 break;
1106 case (unsigned long) SEND_SIG_PRIV:
1107 q->info.si_signo = sig;
1108 q->info.si_errno = 0;
1109 q->info.si_code = SI_KERNEL;
1110 q->info.si_pid = 0;
1111 q->info.si_uid = 0;
1112 break;
1113 default:
1114 copy_siginfo(&q->info, info);
1115 if (from_ancestor_ns)
1116 q->info.si_pid = 0;
1117 break;
1118 }
1119
1120 userns_fixup_signal_uid(&q->info, t);
1121
1122 } else if (!is_si_special(info)) {
1123 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1124 /*
1125 * Queue overflow, abort. We may abort if the
1126 * signal was rt and sent by user using something
1127 * other than kill().
1128 */
1129 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1130 ret = -EAGAIN;
1131 goto ret;
1132 } else {
1133 /*
1134 * This is a silent loss of information. We still
1135 * send the signal, but the *info bits are lost.
1136 */
1137 result = TRACE_SIGNAL_LOSE_INFO;
1138 }
1139 }
1140
1141 out_set:
1142 signalfd_notify(t, sig);
1143 sigaddset(&pending->signal, sig);
1144 complete_signal(sig, t, group);
1145 ret:
1146 trace_signal_generate(sig, info, t, group, result);
1147 return ret;
1148 }
1149
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1150 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1151 int group)
1152 {
1153 int from_ancestor_ns = 0;
1154
1155 #ifdef CONFIG_PID_NS
1156 from_ancestor_ns = si_fromuser(info) &&
1157 !task_pid_nr_ns(current, task_active_pid_ns(t));
1158 #endif
1159
1160 return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 }
1162
print_fatal_signal(int signr)1163 static void print_fatal_signal(int signr)
1164 {
1165 struct pt_regs *regs = signal_pt_regs();
1166 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1167
1168 #if defined(__i386__) && !defined(__arch_um__)
1169 printk(KERN_INFO "code at %08lx: ", regs->ip);
1170 {
1171 int i;
1172 for (i = 0; i < 16; i++) {
1173 unsigned char insn;
1174
1175 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1176 break;
1177 printk(KERN_CONT "%02x ", insn);
1178 }
1179 }
1180 printk(KERN_CONT "\n");
1181 #endif
1182 preempt_disable();
1183 show_regs(regs);
1184 preempt_enable();
1185 }
1186
setup_print_fatal_signals(char * str)1187 static int __init setup_print_fatal_signals(char *str)
1188 {
1189 get_option (&str, &print_fatal_signals);
1190
1191 return 1;
1192 }
1193
1194 __setup("print-fatal-signals=", setup_print_fatal_signals);
1195
1196 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1197 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1198 {
1199 return send_signal(sig, info, p, 1);
1200 }
1201
1202 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1203 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1204 {
1205 return send_signal(sig, info, t, 0);
1206 }
1207
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1208 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1209 bool group)
1210 {
1211 unsigned long flags;
1212 int ret = -ESRCH;
1213
1214 if (lock_task_sighand(p, &flags)) {
1215 ret = send_signal(sig, info, p, group);
1216 unlock_task_sighand(p, &flags);
1217 }
1218
1219 return ret;
1220 }
1221
1222 /*
1223 * Force a signal that the process can't ignore: if necessary
1224 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1225 *
1226 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1227 * since we do not want to have a signal handler that was blocked
1228 * be invoked when user space had explicitly blocked it.
1229 *
1230 * We don't want to have recursive SIGSEGV's etc, for example,
1231 * that is why we also clear SIGNAL_UNKILLABLE.
1232 */
1233 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1234 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1235 {
1236 unsigned long int flags;
1237 int ret, blocked, ignored;
1238 struct k_sigaction *action;
1239
1240 spin_lock_irqsave(&t->sighand->siglock, flags);
1241 action = &t->sighand->action[sig-1];
1242 ignored = action->sa.sa_handler == SIG_IGN;
1243 blocked = sigismember(&t->blocked, sig);
1244 if (blocked || ignored) {
1245 action->sa.sa_handler = SIG_DFL;
1246 if (blocked) {
1247 sigdelset(&t->blocked, sig);
1248 recalc_sigpending_and_wake(t);
1249 }
1250 }
1251 if (action->sa.sa_handler == SIG_DFL)
1252 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1253 ret = specific_send_sig_info(sig, info, t);
1254 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1255
1256 return ret;
1257 }
1258
1259 /*
1260 * Nuke all other threads in the group.
1261 */
zap_other_threads(struct task_struct * p)1262 int zap_other_threads(struct task_struct *p)
1263 {
1264 struct task_struct *t = p;
1265 int count = 0;
1266
1267 p->signal->group_stop_count = 0;
1268
1269 while_each_thread(p, t) {
1270 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1271 count++;
1272
1273 /* Don't bother with already dead threads */
1274 if (t->exit_state)
1275 continue;
1276 sigaddset(&t->pending.signal, SIGKILL);
1277 signal_wake_up(t, 1);
1278 }
1279
1280 return count;
1281 }
1282
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1283 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1284 unsigned long *flags)
1285 {
1286 struct sighand_struct *sighand;
1287
1288 for (;;) {
1289 local_irq_save(*flags);
1290 rcu_read_lock();
1291 sighand = rcu_dereference(tsk->sighand);
1292 if (unlikely(sighand == NULL)) {
1293 rcu_read_unlock();
1294 local_irq_restore(*flags);
1295 break;
1296 }
1297
1298 spin_lock(&sighand->siglock);
1299 if (likely(sighand == tsk->sighand)) {
1300 rcu_read_unlock();
1301 break;
1302 }
1303 spin_unlock(&sighand->siglock);
1304 rcu_read_unlock();
1305 local_irq_restore(*flags);
1306 }
1307
1308 return sighand;
1309 }
1310
1311 /*
1312 * send signal info to all the members of a group
1313 */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1314 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1315 {
1316 int ret;
1317
1318 rcu_read_lock();
1319 ret = check_kill_permission(sig, info, p);
1320 rcu_read_unlock();
1321
1322 if (!ret && sig)
1323 ret = do_send_sig_info(sig, info, p, true);
1324
1325 return ret;
1326 }
1327
1328 /*
1329 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1330 * control characters do (^C, ^Z etc)
1331 * - the caller must hold at least a readlock on tasklist_lock
1332 */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1333 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1334 {
1335 struct task_struct *p = NULL;
1336 int retval, success;
1337
1338 success = 0;
1339 retval = -ESRCH;
1340 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1341 int err = group_send_sig_info(sig, info, p);
1342 success |= !err;
1343 retval = err;
1344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1345 return success ? 0 : retval;
1346 }
1347
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1348 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1349 {
1350 int error = -ESRCH;
1351 struct task_struct *p;
1352
1353 rcu_read_lock();
1354 retry:
1355 p = pid_task(pid, PIDTYPE_PID);
1356 if (p) {
1357 error = group_send_sig_info(sig, info, p);
1358 if (unlikely(error == -ESRCH))
1359 /*
1360 * The task was unhashed in between, try again.
1361 * If it is dead, pid_task() will return NULL,
1362 * if we race with de_thread() it will find the
1363 * new leader.
1364 */
1365 goto retry;
1366 }
1367 rcu_read_unlock();
1368
1369 return error;
1370 }
1371
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1372 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1373 {
1374 int error;
1375 rcu_read_lock();
1376 error = kill_pid_info(sig, info, find_vpid(pid));
1377 rcu_read_unlock();
1378 return error;
1379 }
1380
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1381 static int kill_as_cred_perm(const struct cred *cred,
1382 struct task_struct *target)
1383 {
1384 const struct cred *pcred = __task_cred(target);
1385 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1386 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1387 return 0;
1388 return 1;
1389 }
1390
1391 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1392 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1393 const struct cred *cred, u32 secid)
1394 {
1395 int ret = -EINVAL;
1396 struct task_struct *p;
1397 unsigned long flags;
1398
1399 if (!valid_signal(sig))
1400 return ret;
1401
1402 rcu_read_lock();
1403 p = pid_task(pid, PIDTYPE_PID);
1404 if (!p) {
1405 ret = -ESRCH;
1406 goto out_unlock;
1407 }
1408 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1409 ret = -EPERM;
1410 goto out_unlock;
1411 }
1412 ret = security_task_kill(p, info, sig, secid);
1413 if (ret)
1414 goto out_unlock;
1415
1416 if (sig) {
1417 if (lock_task_sighand(p, &flags)) {
1418 ret = __send_signal(sig, info, p, 1, 0);
1419 unlock_task_sighand(p, &flags);
1420 } else
1421 ret = -ESRCH;
1422 }
1423 out_unlock:
1424 rcu_read_unlock();
1425 return ret;
1426 }
1427 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1428
1429 /*
1430 * kill_something_info() interprets pid in interesting ways just like kill(2).
1431 *
1432 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1433 * is probably wrong. Should make it like BSD or SYSV.
1434 */
1435
kill_something_info(int sig,struct siginfo * info,pid_t pid)1436 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1437 {
1438 int ret;
1439
1440 if (pid > 0) {
1441 rcu_read_lock();
1442 ret = kill_pid_info(sig, info, find_vpid(pid));
1443 rcu_read_unlock();
1444 return ret;
1445 }
1446
1447 read_lock(&tasklist_lock);
1448 if (pid != -1) {
1449 ret = __kill_pgrp_info(sig, info,
1450 pid ? find_vpid(-pid) : task_pgrp(current));
1451 } else {
1452 int retval = 0, count = 0;
1453 struct task_struct * p;
1454
1455 for_each_process(p) {
1456 if (task_pid_vnr(p) > 1 &&
1457 !same_thread_group(p, current)) {
1458 int err = group_send_sig_info(sig, info, p);
1459 ++count;
1460 if (err != -EPERM)
1461 retval = err;
1462 }
1463 }
1464 ret = count ? retval : -ESRCH;
1465 }
1466 read_unlock(&tasklist_lock);
1467
1468 return ret;
1469 }
1470
1471 /*
1472 * These are for backward compatibility with the rest of the kernel source.
1473 */
1474
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1475 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1476 {
1477 /*
1478 * Make sure legacy kernel users don't send in bad values
1479 * (normal paths check this in check_kill_permission).
1480 */
1481 if (!valid_signal(sig))
1482 return -EINVAL;
1483
1484 return do_send_sig_info(sig, info, p, false);
1485 }
1486
1487 #define __si_special(priv) \
1488 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1489
1490 int
send_sig(int sig,struct task_struct * p,int priv)1491 send_sig(int sig, struct task_struct *p, int priv)
1492 {
1493 return send_sig_info(sig, __si_special(priv), p);
1494 }
1495
1496 void
force_sig(int sig,struct task_struct * p)1497 force_sig(int sig, struct task_struct *p)
1498 {
1499 force_sig_info(sig, SEND_SIG_PRIV, p);
1500 }
1501
1502 /*
1503 * When things go south during signal handling, we
1504 * will force a SIGSEGV. And if the signal that caused
1505 * the problem was already a SIGSEGV, we'll want to
1506 * make sure we don't even try to deliver the signal..
1507 */
1508 int
force_sigsegv(int sig,struct task_struct * p)1509 force_sigsegv(int sig, struct task_struct *p)
1510 {
1511 if (sig == SIGSEGV) {
1512 unsigned long flags;
1513 spin_lock_irqsave(&p->sighand->siglock, flags);
1514 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1515 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1516 }
1517 force_sig(SIGSEGV, p);
1518 return 0;
1519 }
1520
kill_pgrp(struct pid * pid,int sig,int priv)1521 int kill_pgrp(struct pid *pid, int sig, int priv)
1522 {
1523 int ret;
1524
1525 read_lock(&tasklist_lock);
1526 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1527 read_unlock(&tasklist_lock);
1528
1529 return ret;
1530 }
1531 EXPORT_SYMBOL(kill_pgrp);
1532
kill_pid(struct pid * pid,int sig,int priv)1533 int kill_pid(struct pid *pid, int sig, int priv)
1534 {
1535 return kill_pid_info(sig, __si_special(priv), pid);
1536 }
1537 EXPORT_SYMBOL(kill_pid);
1538
1539 /*
1540 * These functions support sending signals using preallocated sigqueue
1541 * structures. This is needed "because realtime applications cannot
1542 * afford to lose notifications of asynchronous events, like timer
1543 * expirations or I/O completions". In the case of POSIX Timers
1544 * we allocate the sigqueue structure from the timer_create. If this
1545 * allocation fails we are able to report the failure to the application
1546 * with an EAGAIN error.
1547 */
sigqueue_alloc(void)1548 struct sigqueue *sigqueue_alloc(void)
1549 {
1550 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1551
1552 if (q)
1553 q->flags |= SIGQUEUE_PREALLOC;
1554
1555 return q;
1556 }
1557
sigqueue_free(struct sigqueue * q)1558 void sigqueue_free(struct sigqueue *q)
1559 {
1560 unsigned long flags;
1561 spinlock_t *lock = ¤t->sighand->siglock;
1562
1563 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1564 /*
1565 * We must hold ->siglock while testing q->list
1566 * to serialize with collect_signal() or with
1567 * __exit_signal()->flush_sigqueue().
1568 */
1569 spin_lock_irqsave(lock, flags);
1570 q->flags &= ~SIGQUEUE_PREALLOC;
1571 /*
1572 * If it is queued it will be freed when dequeued,
1573 * like the "regular" sigqueue.
1574 */
1575 if (!list_empty(&q->list))
1576 q = NULL;
1577 spin_unlock_irqrestore(lock, flags);
1578
1579 if (q)
1580 __sigqueue_free(q);
1581 }
1582
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1583 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1584 {
1585 int sig = q->info.si_signo;
1586 struct sigpending *pending;
1587 unsigned long flags;
1588 int ret, result;
1589
1590 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1591
1592 ret = -1;
1593 if (!likely(lock_task_sighand(t, &flags)))
1594 goto ret;
1595
1596 ret = 1; /* the signal is ignored */
1597 result = TRACE_SIGNAL_IGNORED;
1598 if (!prepare_signal(sig, t, false))
1599 goto out;
1600
1601 ret = 0;
1602 if (unlikely(!list_empty(&q->list))) {
1603 /*
1604 * If an SI_TIMER entry is already queue just increment
1605 * the overrun count.
1606 */
1607 BUG_ON(q->info.si_code != SI_TIMER);
1608 q->info.si_overrun++;
1609 result = TRACE_SIGNAL_ALREADY_PENDING;
1610 goto out;
1611 }
1612 q->info.si_overrun = 0;
1613
1614 signalfd_notify(t, sig);
1615 pending = group ? &t->signal->shared_pending : &t->pending;
1616 list_add_tail(&q->list, &pending->list);
1617 sigaddset(&pending->signal, sig);
1618 complete_signal(sig, t, group);
1619 result = TRACE_SIGNAL_DELIVERED;
1620 out:
1621 trace_signal_generate(sig, &q->info, t, group, result);
1622 unlock_task_sighand(t, &flags);
1623 ret:
1624 return ret;
1625 }
1626
1627 /*
1628 * Let a parent know about the death of a child.
1629 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1630 *
1631 * Returns true if our parent ignored us and so we've switched to
1632 * self-reaping.
1633 */
do_notify_parent(struct task_struct * tsk,int sig)1634 bool do_notify_parent(struct task_struct *tsk, int sig)
1635 {
1636 struct siginfo info;
1637 unsigned long flags;
1638 struct sighand_struct *psig;
1639 bool autoreap = false;
1640 cputime_t utime, stime;
1641
1642 BUG_ON(sig == -1);
1643
1644 /* do_notify_parent_cldstop should have been called instead. */
1645 BUG_ON(task_is_stopped_or_traced(tsk));
1646
1647 BUG_ON(!tsk->ptrace &&
1648 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1649
1650 if (sig != SIGCHLD) {
1651 /*
1652 * This is only possible if parent == real_parent.
1653 * Check if it has changed security domain.
1654 */
1655 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1656 sig = SIGCHLD;
1657 }
1658
1659 info.si_signo = sig;
1660 info.si_errno = 0;
1661 /*
1662 * We are under tasklist_lock here so our parent is tied to
1663 * us and cannot change.
1664 *
1665 * task_active_pid_ns will always return the same pid namespace
1666 * until a task passes through release_task.
1667 *
1668 * write_lock() currently calls preempt_disable() which is the
1669 * same as rcu_read_lock(), but according to Oleg, this is not
1670 * correct to rely on this
1671 */
1672 rcu_read_lock();
1673 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1674 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1675 task_uid(tsk));
1676 rcu_read_unlock();
1677
1678 task_cputime(tsk, &utime, &stime);
1679 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1680 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1681
1682 info.si_status = tsk->exit_code & 0x7f;
1683 if (tsk->exit_code & 0x80)
1684 info.si_code = CLD_DUMPED;
1685 else if (tsk->exit_code & 0x7f)
1686 info.si_code = CLD_KILLED;
1687 else {
1688 info.si_code = CLD_EXITED;
1689 info.si_status = tsk->exit_code >> 8;
1690 }
1691
1692 psig = tsk->parent->sighand;
1693 spin_lock_irqsave(&psig->siglock, flags);
1694 if (!tsk->ptrace && sig == SIGCHLD &&
1695 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1696 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1697 /*
1698 * We are exiting and our parent doesn't care. POSIX.1
1699 * defines special semantics for setting SIGCHLD to SIG_IGN
1700 * or setting the SA_NOCLDWAIT flag: we should be reaped
1701 * automatically and not left for our parent's wait4 call.
1702 * Rather than having the parent do it as a magic kind of
1703 * signal handler, we just set this to tell do_exit that we
1704 * can be cleaned up without becoming a zombie. Note that
1705 * we still call __wake_up_parent in this case, because a
1706 * blocked sys_wait4 might now return -ECHILD.
1707 *
1708 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1709 * is implementation-defined: we do (if you don't want
1710 * it, just use SIG_IGN instead).
1711 */
1712 autoreap = true;
1713 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1714 sig = 0;
1715 }
1716 if (valid_signal(sig) && sig)
1717 __group_send_sig_info(sig, &info, tsk->parent);
1718 __wake_up_parent(tsk, tsk->parent);
1719 spin_unlock_irqrestore(&psig->siglock, flags);
1720
1721 return autoreap;
1722 }
1723
1724 /**
1725 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1726 * @tsk: task reporting the state change
1727 * @for_ptracer: the notification is for ptracer
1728 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1729 *
1730 * Notify @tsk's parent that the stopped/continued state has changed. If
1731 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1732 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1733 *
1734 * CONTEXT:
1735 * Must be called with tasklist_lock at least read locked.
1736 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1737 static void do_notify_parent_cldstop(struct task_struct *tsk,
1738 bool for_ptracer, int why)
1739 {
1740 struct siginfo info;
1741 unsigned long flags;
1742 struct task_struct *parent;
1743 struct sighand_struct *sighand;
1744 cputime_t utime, stime;
1745
1746 if (for_ptracer) {
1747 parent = tsk->parent;
1748 } else {
1749 tsk = tsk->group_leader;
1750 parent = tsk->real_parent;
1751 }
1752
1753 info.si_signo = SIGCHLD;
1754 info.si_errno = 0;
1755 /*
1756 * see comment in do_notify_parent() about the following 4 lines
1757 */
1758 rcu_read_lock();
1759 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1760 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1761 rcu_read_unlock();
1762
1763 task_cputime(tsk, &utime, &stime);
1764 info.si_utime = cputime_to_clock_t(utime);
1765 info.si_stime = cputime_to_clock_t(stime);
1766
1767 info.si_code = why;
1768 switch (why) {
1769 case CLD_CONTINUED:
1770 info.si_status = SIGCONT;
1771 break;
1772 case CLD_STOPPED:
1773 info.si_status = tsk->signal->group_exit_code & 0x7f;
1774 break;
1775 case CLD_TRAPPED:
1776 info.si_status = tsk->exit_code & 0x7f;
1777 break;
1778 default:
1779 BUG();
1780 }
1781
1782 sighand = parent->sighand;
1783 spin_lock_irqsave(&sighand->siglock, flags);
1784 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1785 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1786 __group_send_sig_info(SIGCHLD, &info, parent);
1787 /*
1788 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1789 */
1790 __wake_up_parent(tsk, parent);
1791 spin_unlock_irqrestore(&sighand->siglock, flags);
1792 }
1793
may_ptrace_stop(void)1794 static inline int may_ptrace_stop(void)
1795 {
1796 if (!likely(current->ptrace))
1797 return 0;
1798 /*
1799 * Are we in the middle of do_coredump?
1800 * If so and our tracer is also part of the coredump stopping
1801 * is a deadlock situation, and pointless because our tracer
1802 * is dead so don't allow us to stop.
1803 * If SIGKILL was already sent before the caller unlocked
1804 * ->siglock we must see ->core_state != NULL. Otherwise it
1805 * is safe to enter schedule().
1806 *
1807 * This is almost outdated, a task with the pending SIGKILL can't
1808 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1809 * after SIGKILL was already dequeued.
1810 */
1811 if (unlikely(current->mm->core_state) &&
1812 unlikely(current->mm == current->parent->mm))
1813 return 0;
1814
1815 return 1;
1816 }
1817
1818 /*
1819 * Return non-zero if there is a SIGKILL that should be waking us up.
1820 * Called with the siglock held.
1821 */
sigkill_pending(struct task_struct * tsk)1822 static int sigkill_pending(struct task_struct *tsk)
1823 {
1824 return sigismember(&tsk->pending.signal, SIGKILL) ||
1825 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1826 }
1827
1828 /*
1829 * This must be called with current->sighand->siglock held.
1830 *
1831 * This should be the path for all ptrace stops.
1832 * We always set current->last_siginfo while stopped here.
1833 * That makes it a way to test a stopped process for
1834 * being ptrace-stopped vs being job-control-stopped.
1835 *
1836 * If we actually decide not to stop at all because the tracer
1837 * is gone, we keep current->exit_code unless clear_code.
1838 */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1839 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1840 __releases(¤t->sighand->siglock)
1841 __acquires(¤t->sighand->siglock)
1842 {
1843 bool gstop_done = false;
1844
1845 if (arch_ptrace_stop_needed(exit_code, info)) {
1846 /*
1847 * The arch code has something special to do before a
1848 * ptrace stop. This is allowed to block, e.g. for faults
1849 * on user stack pages. We can't keep the siglock while
1850 * calling arch_ptrace_stop, so we must release it now.
1851 * To preserve proper semantics, we must do this before
1852 * any signal bookkeeping like checking group_stop_count.
1853 * Meanwhile, a SIGKILL could come in before we retake the
1854 * siglock. That must prevent us from sleeping in TASK_TRACED.
1855 * So after regaining the lock, we must check for SIGKILL.
1856 */
1857 spin_unlock_irq(¤t->sighand->siglock);
1858 arch_ptrace_stop(exit_code, info);
1859 spin_lock_irq(¤t->sighand->siglock);
1860 if (sigkill_pending(current))
1861 return;
1862 }
1863
1864 /*
1865 * We're committing to trapping. TRACED should be visible before
1866 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1867 * Also, transition to TRACED and updates to ->jobctl should be
1868 * atomic with respect to siglock and should be done after the arch
1869 * hook as siglock is released and regrabbed across it.
1870 */
1871 set_current_state(TASK_TRACED);
1872
1873 current->last_siginfo = info;
1874 current->exit_code = exit_code;
1875
1876 /*
1877 * If @why is CLD_STOPPED, we're trapping to participate in a group
1878 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1879 * across siglock relocks since INTERRUPT was scheduled, PENDING
1880 * could be clear now. We act as if SIGCONT is received after
1881 * TASK_TRACED is entered - ignore it.
1882 */
1883 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1884 gstop_done = task_participate_group_stop(current);
1885
1886 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1887 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1888 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1889 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1890
1891 /* entering a trap, clear TRAPPING */
1892 task_clear_jobctl_trapping(current);
1893
1894 spin_unlock_irq(¤t->sighand->siglock);
1895 read_lock(&tasklist_lock);
1896 if (may_ptrace_stop()) {
1897 /*
1898 * Notify parents of the stop.
1899 *
1900 * While ptraced, there are two parents - the ptracer and
1901 * the real_parent of the group_leader. The ptracer should
1902 * know about every stop while the real parent is only
1903 * interested in the completion of group stop. The states
1904 * for the two don't interact with each other. Notify
1905 * separately unless they're gonna be duplicates.
1906 */
1907 do_notify_parent_cldstop(current, true, why);
1908 if (gstop_done && ptrace_reparented(current))
1909 do_notify_parent_cldstop(current, false, why);
1910
1911 /*
1912 * Don't want to allow preemption here, because
1913 * sys_ptrace() needs this task to be inactive.
1914 *
1915 * XXX: implement read_unlock_no_resched().
1916 */
1917 preempt_disable();
1918 read_unlock(&tasklist_lock);
1919 preempt_enable_no_resched();
1920 freezable_schedule();
1921 } else {
1922 /*
1923 * By the time we got the lock, our tracer went away.
1924 * Don't drop the lock yet, another tracer may come.
1925 *
1926 * If @gstop_done, the ptracer went away between group stop
1927 * completion and here. During detach, it would have set
1928 * JOBCTL_STOP_PENDING on us and we'll re-enter
1929 * TASK_STOPPED in do_signal_stop() on return, so notifying
1930 * the real parent of the group stop completion is enough.
1931 */
1932 if (gstop_done)
1933 do_notify_parent_cldstop(current, false, why);
1934
1935 /* tasklist protects us from ptrace_freeze_traced() */
1936 __set_current_state(TASK_RUNNING);
1937 if (clear_code)
1938 current->exit_code = 0;
1939 read_unlock(&tasklist_lock);
1940 }
1941
1942 /*
1943 * We are back. Now reacquire the siglock before touching
1944 * last_siginfo, so that we are sure to have synchronized with
1945 * any signal-sending on another CPU that wants to examine it.
1946 */
1947 spin_lock_irq(¤t->sighand->siglock);
1948 current->last_siginfo = NULL;
1949
1950 /* LISTENING can be set only during STOP traps, clear it */
1951 current->jobctl &= ~JOBCTL_LISTENING;
1952
1953 /*
1954 * Queued signals ignored us while we were stopped for tracing.
1955 * So check for any that we should take before resuming user mode.
1956 * This sets TIF_SIGPENDING, but never clears it.
1957 */
1958 recalc_sigpending_tsk(current);
1959 }
1960
ptrace_do_notify(int signr,int exit_code,int why)1961 static void ptrace_do_notify(int signr, int exit_code, int why)
1962 {
1963 siginfo_t info;
1964
1965 memset(&info, 0, sizeof info);
1966 info.si_signo = signr;
1967 info.si_code = exit_code;
1968 info.si_pid = task_pid_vnr(current);
1969 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1970
1971 /* Let the debugger run. */
1972 ptrace_stop(exit_code, why, 1, &info);
1973 }
1974
ptrace_notify(int exit_code)1975 void ptrace_notify(int exit_code)
1976 {
1977 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1978 if (unlikely(current->task_works))
1979 task_work_run();
1980
1981 spin_lock_irq(¤t->sighand->siglock);
1982 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1983 spin_unlock_irq(¤t->sighand->siglock);
1984 }
1985
1986 /**
1987 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1988 * @signr: signr causing group stop if initiating
1989 *
1990 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1991 * and participate in it. If already set, participate in the existing
1992 * group stop. If participated in a group stop (and thus slept), %true is
1993 * returned with siglock released.
1994 *
1995 * If ptraced, this function doesn't handle stop itself. Instead,
1996 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1997 * untouched. The caller must ensure that INTERRUPT trap handling takes
1998 * places afterwards.
1999 *
2000 * CONTEXT:
2001 * Must be called with @current->sighand->siglock held, which is released
2002 * on %true return.
2003 *
2004 * RETURNS:
2005 * %false if group stop is already cancelled or ptrace trap is scheduled.
2006 * %true if participated in group stop.
2007 */
do_signal_stop(int signr)2008 static bool do_signal_stop(int signr)
2009 __releases(¤t->sighand->siglock)
2010 {
2011 struct signal_struct *sig = current->signal;
2012
2013 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2014 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2015 struct task_struct *t;
2016
2017 /* signr will be recorded in task->jobctl for retries */
2018 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2019
2020 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2021 unlikely(signal_group_exit(sig)))
2022 return false;
2023 /*
2024 * There is no group stop already in progress. We must
2025 * initiate one now.
2026 *
2027 * While ptraced, a task may be resumed while group stop is
2028 * still in effect and then receive a stop signal and
2029 * initiate another group stop. This deviates from the
2030 * usual behavior as two consecutive stop signals can't
2031 * cause two group stops when !ptraced. That is why we
2032 * also check !task_is_stopped(t) below.
2033 *
2034 * The condition can be distinguished by testing whether
2035 * SIGNAL_STOP_STOPPED is already set. Don't generate
2036 * group_exit_code in such case.
2037 *
2038 * This is not necessary for SIGNAL_STOP_CONTINUED because
2039 * an intervening stop signal is required to cause two
2040 * continued events regardless of ptrace.
2041 */
2042 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2043 sig->group_exit_code = signr;
2044
2045 sig->group_stop_count = 0;
2046
2047 if (task_set_jobctl_pending(current, signr | gstop))
2048 sig->group_stop_count++;
2049
2050 for (t = next_thread(current); t != current;
2051 t = next_thread(t)) {
2052 /*
2053 * Setting state to TASK_STOPPED for a group
2054 * stop is always done with the siglock held,
2055 * so this check has no races.
2056 */
2057 if (!task_is_stopped(t) &&
2058 task_set_jobctl_pending(t, signr | gstop)) {
2059 sig->group_stop_count++;
2060 if (likely(!(t->ptrace & PT_SEIZED)))
2061 signal_wake_up(t, 0);
2062 else
2063 ptrace_trap_notify(t);
2064 }
2065 }
2066 }
2067
2068 if (likely(!current->ptrace)) {
2069 int notify = 0;
2070
2071 /*
2072 * If there are no other threads in the group, or if there
2073 * is a group stop in progress and we are the last to stop,
2074 * report to the parent.
2075 */
2076 if (task_participate_group_stop(current))
2077 notify = CLD_STOPPED;
2078
2079 __set_current_state(TASK_STOPPED);
2080 spin_unlock_irq(¤t->sighand->siglock);
2081
2082 /*
2083 * Notify the parent of the group stop completion. Because
2084 * we're not holding either the siglock or tasklist_lock
2085 * here, ptracer may attach inbetween; however, this is for
2086 * group stop and should always be delivered to the real
2087 * parent of the group leader. The new ptracer will get
2088 * its notification when this task transitions into
2089 * TASK_TRACED.
2090 */
2091 if (notify) {
2092 read_lock(&tasklist_lock);
2093 do_notify_parent_cldstop(current, false, notify);
2094 read_unlock(&tasklist_lock);
2095 }
2096
2097 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2098 freezable_schedule();
2099 return true;
2100 } else {
2101 /*
2102 * While ptraced, group stop is handled by STOP trap.
2103 * Schedule it and let the caller deal with it.
2104 */
2105 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2106 return false;
2107 }
2108 }
2109
2110 /**
2111 * do_jobctl_trap - take care of ptrace jobctl traps
2112 *
2113 * When PT_SEIZED, it's used for both group stop and explicit
2114 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2115 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2116 * the stop signal; otherwise, %SIGTRAP.
2117 *
2118 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2119 * number as exit_code and no siginfo.
2120 *
2121 * CONTEXT:
2122 * Must be called with @current->sighand->siglock held, which may be
2123 * released and re-acquired before returning with intervening sleep.
2124 */
do_jobctl_trap(void)2125 static void do_jobctl_trap(void)
2126 {
2127 struct signal_struct *signal = current->signal;
2128 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2129
2130 if (current->ptrace & PT_SEIZED) {
2131 if (!signal->group_stop_count &&
2132 !(signal->flags & SIGNAL_STOP_STOPPED))
2133 signr = SIGTRAP;
2134 WARN_ON_ONCE(!signr);
2135 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2136 CLD_STOPPED);
2137 } else {
2138 WARN_ON_ONCE(!signr);
2139 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2140 current->exit_code = 0;
2141 }
2142 }
2143
ptrace_signal(int signr,siginfo_t * info)2144 static int ptrace_signal(int signr, siginfo_t *info)
2145 {
2146 ptrace_signal_deliver();
2147 /*
2148 * We do not check sig_kernel_stop(signr) but set this marker
2149 * unconditionally because we do not know whether debugger will
2150 * change signr. This flag has no meaning unless we are going
2151 * to stop after return from ptrace_stop(). In this case it will
2152 * be checked in do_signal_stop(), we should only stop if it was
2153 * not cleared by SIGCONT while we were sleeping. See also the
2154 * comment in dequeue_signal().
2155 */
2156 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2157 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2158
2159 /* We're back. Did the debugger cancel the sig? */
2160 signr = current->exit_code;
2161 if (signr == 0)
2162 return signr;
2163
2164 current->exit_code = 0;
2165
2166 /*
2167 * Update the siginfo structure if the signal has
2168 * changed. If the debugger wanted something
2169 * specific in the siginfo structure then it should
2170 * have updated *info via PTRACE_SETSIGINFO.
2171 */
2172 if (signr != info->si_signo) {
2173 info->si_signo = signr;
2174 info->si_errno = 0;
2175 info->si_code = SI_USER;
2176 rcu_read_lock();
2177 info->si_pid = task_pid_vnr(current->parent);
2178 info->si_uid = from_kuid_munged(current_user_ns(),
2179 task_uid(current->parent));
2180 rcu_read_unlock();
2181 }
2182
2183 /* If the (new) signal is now blocked, requeue it. */
2184 if (sigismember(¤t->blocked, signr)) {
2185 specific_send_sig_info(signr, info, current);
2186 signr = 0;
2187 }
2188
2189 return signr;
2190 }
2191
get_signal_to_deliver(siginfo_t * info,struct k_sigaction * return_ka,struct pt_regs * regs,void * cookie)2192 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2193 struct pt_regs *regs, void *cookie)
2194 {
2195 struct sighand_struct *sighand = current->sighand;
2196 struct signal_struct *signal = current->signal;
2197 int signr;
2198
2199 if (unlikely(current->task_works))
2200 task_work_run();
2201
2202 if (unlikely(uprobe_deny_signal()))
2203 return 0;
2204
2205 /*
2206 * Do this once, we can't return to user-mode if freezing() == T.
2207 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2208 * thus do not need another check after return.
2209 */
2210 try_to_freeze();
2211
2212 relock:
2213 spin_lock_irq(&sighand->siglock);
2214 /*
2215 * Every stopped thread goes here after wakeup. Check to see if
2216 * we should notify the parent, prepare_signal(SIGCONT) encodes
2217 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2218 */
2219 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2220 int why;
2221
2222 if (signal->flags & SIGNAL_CLD_CONTINUED)
2223 why = CLD_CONTINUED;
2224 else
2225 why = CLD_STOPPED;
2226
2227 signal->flags &= ~SIGNAL_CLD_MASK;
2228
2229 spin_unlock_irq(&sighand->siglock);
2230
2231 /*
2232 * Notify the parent that we're continuing. This event is
2233 * always per-process and doesn't make whole lot of sense
2234 * for ptracers, who shouldn't consume the state via
2235 * wait(2) either, but, for backward compatibility, notify
2236 * the ptracer of the group leader too unless it's gonna be
2237 * a duplicate.
2238 */
2239 read_lock(&tasklist_lock);
2240 do_notify_parent_cldstop(current, false, why);
2241
2242 if (ptrace_reparented(current->group_leader))
2243 do_notify_parent_cldstop(current->group_leader,
2244 true, why);
2245 read_unlock(&tasklist_lock);
2246
2247 goto relock;
2248 }
2249
2250 for (;;) {
2251 struct k_sigaction *ka;
2252
2253 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2254 do_signal_stop(0))
2255 goto relock;
2256
2257 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2258 do_jobctl_trap();
2259 spin_unlock_irq(&sighand->siglock);
2260 goto relock;
2261 }
2262
2263 signr = dequeue_signal(current, ¤t->blocked, info);
2264
2265 if (!signr)
2266 break; /* will return 0 */
2267
2268 if (unlikely(current->ptrace) && signr != SIGKILL) {
2269 signr = ptrace_signal(signr, info);
2270 if (!signr)
2271 continue;
2272 }
2273
2274 ka = &sighand->action[signr-1];
2275
2276 /* Trace actually delivered signals. */
2277 trace_signal_deliver(signr, info, ka);
2278
2279 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2280 continue;
2281 if (ka->sa.sa_handler != SIG_DFL) {
2282 /* Run the handler. */
2283 *return_ka = *ka;
2284
2285 if (ka->sa.sa_flags & SA_ONESHOT)
2286 ka->sa.sa_handler = SIG_DFL;
2287
2288 break; /* will return non-zero "signr" value */
2289 }
2290
2291 /*
2292 * Now we are doing the default action for this signal.
2293 */
2294 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2295 continue;
2296
2297 /*
2298 * Global init gets no signals it doesn't want.
2299 * Container-init gets no signals it doesn't want from same
2300 * container.
2301 *
2302 * Note that if global/container-init sees a sig_kernel_only()
2303 * signal here, the signal must have been generated internally
2304 * or must have come from an ancestor namespace. In either
2305 * case, the signal cannot be dropped.
2306 */
2307 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2308 !sig_kernel_only(signr))
2309 continue;
2310
2311 if (sig_kernel_stop(signr)) {
2312 /*
2313 * The default action is to stop all threads in
2314 * the thread group. The job control signals
2315 * do nothing in an orphaned pgrp, but SIGSTOP
2316 * always works. Note that siglock needs to be
2317 * dropped during the call to is_orphaned_pgrp()
2318 * because of lock ordering with tasklist_lock.
2319 * This allows an intervening SIGCONT to be posted.
2320 * We need to check for that and bail out if necessary.
2321 */
2322 if (signr != SIGSTOP) {
2323 spin_unlock_irq(&sighand->siglock);
2324
2325 /* signals can be posted during this window */
2326
2327 if (is_current_pgrp_orphaned())
2328 goto relock;
2329
2330 spin_lock_irq(&sighand->siglock);
2331 }
2332
2333 if (likely(do_signal_stop(info->si_signo))) {
2334 /* It released the siglock. */
2335 goto relock;
2336 }
2337
2338 /*
2339 * We didn't actually stop, due to a race
2340 * with SIGCONT or something like that.
2341 */
2342 continue;
2343 }
2344
2345 spin_unlock_irq(&sighand->siglock);
2346
2347 /*
2348 * Anything else is fatal, maybe with a core dump.
2349 */
2350 current->flags |= PF_SIGNALED;
2351
2352 if (sig_kernel_coredump(signr)) {
2353 if (print_fatal_signals)
2354 print_fatal_signal(info->si_signo);
2355 proc_coredump_connector(current);
2356 /*
2357 * If it was able to dump core, this kills all
2358 * other threads in the group and synchronizes with
2359 * their demise. If we lost the race with another
2360 * thread getting here, it set group_exit_code
2361 * first and our do_group_exit call below will use
2362 * that value and ignore the one we pass it.
2363 */
2364 do_coredump(info);
2365 }
2366
2367 /*
2368 * Death signals, no core dump.
2369 */
2370 do_group_exit(info->si_signo);
2371 /* NOTREACHED */
2372 }
2373 spin_unlock_irq(&sighand->siglock);
2374 return signr;
2375 }
2376
2377 /**
2378 * signal_delivered -
2379 * @sig: number of signal being delivered
2380 * @info: siginfo_t of signal being delivered
2381 * @ka: sigaction setting that chose the handler
2382 * @regs: user register state
2383 * @stepping: nonzero if debugger single-step or block-step in use
2384 *
2385 * This function should be called when a signal has succesfully been
2386 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2387 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2388 * is set in @ka->sa.sa_flags. Tracing is notified.
2389 */
signal_delivered(int sig,siginfo_t * info,struct k_sigaction * ka,struct pt_regs * regs,int stepping)2390 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2391 struct pt_regs *regs, int stepping)
2392 {
2393 sigset_t blocked;
2394
2395 /* A signal was successfully delivered, and the
2396 saved sigmask was stored on the signal frame,
2397 and will be restored by sigreturn. So we can
2398 simply clear the restore sigmask flag. */
2399 clear_restore_sigmask();
2400
2401 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask);
2402 if (!(ka->sa.sa_flags & SA_NODEFER))
2403 sigaddset(&blocked, sig);
2404 set_current_blocked(&blocked);
2405 tracehook_signal_handler(sig, info, ka, regs, stepping);
2406 }
2407
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2408 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2409 {
2410 if (failed)
2411 force_sigsegv(ksig->sig, current);
2412 else
2413 signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2414 signal_pt_regs(), stepping);
2415 }
2416
2417 /*
2418 * It could be that complete_signal() picked us to notify about the
2419 * group-wide signal. Other threads should be notified now to take
2420 * the shared signals in @which since we will not.
2421 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2422 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2423 {
2424 sigset_t retarget;
2425 struct task_struct *t;
2426
2427 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2428 if (sigisemptyset(&retarget))
2429 return;
2430
2431 t = tsk;
2432 while_each_thread(tsk, t) {
2433 if (t->flags & PF_EXITING)
2434 continue;
2435
2436 if (!has_pending_signals(&retarget, &t->blocked))
2437 continue;
2438 /* Remove the signals this thread can handle. */
2439 sigandsets(&retarget, &retarget, &t->blocked);
2440
2441 if (!signal_pending(t))
2442 signal_wake_up(t, 0);
2443
2444 if (sigisemptyset(&retarget))
2445 break;
2446 }
2447 }
2448
exit_signals(struct task_struct * tsk)2449 void exit_signals(struct task_struct *tsk)
2450 {
2451 int group_stop = 0;
2452 sigset_t unblocked;
2453
2454 /*
2455 * @tsk is about to have PF_EXITING set - lock out users which
2456 * expect stable threadgroup.
2457 */
2458 threadgroup_change_begin(tsk);
2459
2460 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2461 tsk->flags |= PF_EXITING;
2462 threadgroup_change_end(tsk);
2463 return;
2464 }
2465
2466 spin_lock_irq(&tsk->sighand->siglock);
2467 /*
2468 * From now this task is not visible for group-wide signals,
2469 * see wants_signal(), do_signal_stop().
2470 */
2471 tsk->flags |= PF_EXITING;
2472
2473 threadgroup_change_end(tsk);
2474
2475 if (!signal_pending(tsk))
2476 goto out;
2477
2478 unblocked = tsk->blocked;
2479 signotset(&unblocked);
2480 retarget_shared_pending(tsk, &unblocked);
2481
2482 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2483 task_participate_group_stop(tsk))
2484 group_stop = CLD_STOPPED;
2485 out:
2486 spin_unlock_irq(&tsk->sighand->siglock);
2487
2488 /*
2489 * If group stop has completed, deliver the notification. This
2490 * should always go to the real parent of the group leader.
2491 */
2492 if (unlikely(group_stop)) {
2493 read_lock(&tasklist_lock);
2494 do_notify_parent_cldstop(tsk, false, group_stop);
2495 read_unlock(&tasklist_lock);
2496 }
2497 }
2498
2499 EXPORT_SYMBOL(recalc_sigpending);
2500 EXPORT_SYMBOL_GPL(dequeue_signal);
2501 EXPORT_SYMBOL(flush_signals);
2502 EXPORT_SYMBOL(force_sig);
2503 EXPORT_SYMBOL(send_sig);
2504 EXPORT_SYMBOL(send_sig_info);
2505 EXPORT_SYMBOL(sigprocmask);
2506 EXPORT_SYMBOL(block_all_signals);
2507 EXPORT_SYMBOL(unblock_all_signals);
2508
2509
2510 /*
2511 * System call entry points.
2512 */
2513
2514 /**
2515 * sys_restart_syscall - restart a system call
2516 */
SYSCALL_DEFINE0(restart_syscall)2517 SYSCALL_DEFINE0(restart_syscall)
2518 {
2519 struct restart_block *restart = ¤t_thread_info()->restart_block;
2520 return restart->fn(restart);
2521 }
2522
do_no_restart_syscall(struct restart_block * param)2523 long do_no_restart_syscall(struct restart_block *param)
2524 {
2525 return -EINTR;
2526 }
2527
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2528 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2529 {
2530 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2531 sigset_t newblocked;
2532 /* A set of now blocked but previously unblocked signals. */
2533 sigandnsets(&newblocked, newset, ¤t->blocked);
2534 retarget_shared_pending(tsk, &newblocked);
2535 }
2536 tsk->blocked = *newset;
2537 recalc_sigpending();
2538 }
2539
2540 /**
2541 * set_current_blocked - change current->blocked mask
2542 * @newset: new mask
2543 *
2544 * It is wrong to change ->blocked directly, this helper should be used
2545 * to ensure the process can't miss a shared signal we are going to block.
2546 */
set_current_blocked(sigset_t * newset)2547 void set_current_blocked(sigset_t *newset)
2548 {
2549 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2550 __set_current_blocked(newset);
2551 }
2552
__set_current_blocked(const sigset_t * newset)2553 void __set_current_blocked(const sigset_t *newset)
2554 {
2555 struct task_struct *tsk = current;
2556
2557 spin_lock_irq(&tsk->sighand->siglock);
2558 __set_task_blocked(tsk, newset);
2559 spin_unlock_irq(&tsk->sighand->siglock);
2560 }
2561
2562 /*
2563 * This is also useful for kernel threads that want to temporarily
2564 * (or permanently) block certain signals.
2565 *
2566 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2567 * interface happily blocks "unblockable" signals like SIGKILL
2568 * and friends.
2569 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2570 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2571 {
2572 struct task_struct *tsk = current;
2573 sigset_t newset;
2574
2575 /* Lockless, only current can change ->blocked, never from irq */
2576 if (oldset)
2577 *oldset = tsk->blocked;
2578
2579 switch (how) {
2580 case SIG_BLOCK:
2581 sigorsets(&newset, &tsk->blocked, set);
2582 break;
2583 case SIG_UNBLOCK:
2584 sigandnsets(&newset, &tsk->blocked, set);
2585 break;
2586 case SIG_SETMASK:
2587 newset = *set;
2588 break;
2589 default:
2590 return -EINVAL;
2591 }
2592
2593 __set_current_blocked(&newset);
2594 return 0;
2595 }
2596
2597 /**
2598 * sys_rt_sigprocmask - change the list of currently blocked signals
2599 * @how: whether to add, remove, or set signals
2600 * @nset: stores pending signals
2601 * @oset: previous value of signal mask if non-null
2602 * @sigsetsize: size of sigset_t type
2603 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2604 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2605 sigset_t __user *, oset, size_t, sigsetsize)
2606 {
2607 sigset_t old_set, new_set;
2608 int error;
2609
2610 /* XXX: Don't preclude handling different sized sigset_t's. */
2611 if (sigsetsize != sizeof(sigset_t))
2612 return -EINVAL;
2613
2614 old_set = current->blocked;
2615
2616 if (nset) {
2617 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2618 return -EFAULT;
2619 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2620
2621 error = sigprocmask(how, &new_set, NULL);
2622 if (error)
2623 return error;
2624 }
2625
2626 if (oset) {
2627 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2628 return -EFAULT;
2629 }
2630
2631 return 0;
2632 }
2633
2634 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)2635 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2636 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2637 {
2638 #ifdef __BIG_ENDIAN
2639 sigset_t old_set = current->blocked;
2640
2641 /* XXX: Don't preclude handling different sized sigset_t's. */
2642 if (sigsetsize != sizeof(sigset_t))
2643 return -EINVAL;
2644
2645 if (nset) {
2646 compat_sigset_t new32;
2647 sigset_t new_set;
2648 int error;
2649 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2650 return -EFAULT;
2651
2652 sigset_from_compat(&new_set, &new32);
2653 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2654
2655 error = sigprocmask(how, &new_set, NULL);
2656 if (error)
2657 return error;
2658 }
2659 if (oset) {
2660 compat_sigset_t old32;
2661 sigset_to_compat(&old32, &old_set);
2662 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2663 return -EFAULT;
2664 }
2665 return 0;
2666 #else
2667 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2668 (sigset_t __user *)oset, sigsetsize);
2669 #endif
2670 }
2671 #endif
2672
do_sigpending(void * set,unsigned long sigsetsize)2673 static int do_sigpending(void *set, unsigned long sigsetsize)
2674 {
2675 if (sigsetsize > sizeof(sigset_t))
2676 return -EINVAL;
2677
2678 spin_lock_irq(¤t->sighand->siglock);
2679 sigorsets(set, ¤t->pending.signal,
2680 ¤t->signal->shared_pending.signal);
2681 spin_unlock_irq(¤t->sighand->siglock);
2682
2683 /* Outside the lock because only this thread touches it. */
2684 sigandsets(set, ¤t->blocked, set);
2685 return 0;
2686 }
2687
2688 /**
2689 * sys_rt_sigpending - examine a pending signal that has been raised
2690 * while blocked
2691 * @uset: stores pending signals
2692 * @sigsetsize: size of sigset_t type or larger
2693 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)2694 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2695 {
2696 sigset_t set;
2697 int err = do_sigpending(&set, sigsetsize);
2698 if (!err && copy_to_user(uset, &set, sigsetsize))
2699 err = -EFAULT;
2700 return err;
2701 }
2702
2703 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)2704 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2705 compat_size_t, sigsetsize)
2706 {
2707 #ifdef __BIG_ENDIAN
2708 sigset_t set;
2709 int err = do_sigpending(&set, sigsetsize);
2710 if (!err) {
2711 compat_sigset_t set32;
2712 sigset_to_compat(&set32, &set);
2713 /* we can get here only if sigsetsize <= sizeof(set) */
2714 if (copy_to_user(uset, &set32, sigsetsize))
2715 err = -EFAULT;
2716 }
2717 return err;
2718 #else
2719 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2720 #endif
2721 }
2722 #endif
2723
2724 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2725
copy_siginfo_to_user(siginfo_t __user * to,siginfo_t * from)2726 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2727 {
2728 int err;
2729
2730 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2731 return -EFAULT;
2732 if (from->si_code < 0)
2733 return __copy_to_user(to, from, sizeof(siginfo_t))
2734 ? -EFAULT : 0;
2735 /*
2736 * If you change siginfo_t structure, please be sure
2737 * this code is fixed accordingly.
2738 * Please remember to update the signalfd_copyinfo() function
2739 * inside fs/signalfd.c too, in case siginfo_t changes.
2740 * It should never copy any pad contained in the structure
2741 * to avoid security leaks, but must copy the generic
2742 * 3 ints plus the relevant union member.
2743 */
2744 err = __put_user(from->si_signo, &to->si_signo);
2745 err |= __put_user(from->si_errno, &to->si_errno);
2746 err |= __put_user((short)from->si_code, &to->si_code);
2747 switch (from->si_code & __SI_MASK) {
2748 case __SI_KILL:
2749 err |= __put_user(from->si_pid, &to->si_pid);
2750 err |= __put_user(from->si_uid, &to->si_uid);
2751 break;
2752 case __SI_TIMER:
2753 err |= __put_user(from->si_tid, &to->si_tid);
2754 err |= __put_user(from->si_overrun, &to->si_overrun);
2755 err |= __put_user(from->si_ptr, &to->si_ptr);
2756 break;
2757 case __SI_POLL:
2758 err |= __put_user(from->si_band, &to->si_band);
2759 err |= __put_user(from->si_fd, &to->si_fd);
2760 break;
2761 case __SI_FAULT:
2762 err |= __put_user(from->si_addr, &to->si_addr);
2763 #ifdef __ARCH_SI_TRAPNO
2764 err |= __put_user(from->si_trapno, &to->si_trapno);
2765 #endif
2766 #ifdef BUS_MCEERR_AO
2767 /*
2768 * Other callers might not initialize the si_lsb field,
2769 * so check explicitly for the right codes here.
2770 */
2771 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2772 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2773 #endif
2774 break;
2775 case __SI_CHLD:
2776 err |= __put_user(from->si_pid, &to->si_pid);
2777 err |= __put_user(from->si_uid, &to->si_uid);
2778 err |= __put_user(from->si_status, &to->si_status);
2779 err |= __put_user(from->si_utime, &to->si_utime);
2780 err |= __put_user(from->si_stime, &to->si_stime);
2781 break;
2782 case __SI_RT: /* This is not generated by the kernel as of now. */
2783 case __SI_MESGQ: /* But this is */
2784 err |= __put_user(from->si_pid, &to->si_pid);
2785 err |= __put_user(from->si_uid, &to->si_uid);
2786 err |= __put_user(from->si_ptr, &to->si_ptr);
2787 break;
2788 #ifdef __ARCH_SIGSYS
2789 case __SI_SYS:
2790 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2791 err |= __put_user(from->si_syscall, &to->si_syscall);
2792 err |= __put_user(from->si_arch, &to->si_arch);
2793 break;
2794 #endif
2795 default: /* this is just in case for now ... */
2796 err |= __put_user(from->si_pid, &to->si_pid);
2797 err |= __put_user(from->si_uid, &to->si_uid);
2798 break;
2799 }
2800 return err;
2801 }
2802
2803 #endif
2804
2805 /**
2806 * do_sigtimedwait - wait for queued signals specified in @which
2807 * @which: queued signals to wait for
2808 * @info: if non-null, the signal's siginfo is returned here
2809 * @ts: upper bound on process time suspension
2810 */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2811 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2812 const struct timespec *ts)
2813 {
2814 struct task_struct *tsk = current;
2815 long timeout = MAX_SCHEDULE_TIMEOUT;
2816 sigset_t mask = *which;
2817 int sig;
2818
2819 if (ts) {
2820 if (!timespec_valid(ts))
2821 return -EINVAL;
2822 timeout = timespec_to_jiffies(ts);
2823 /*
2824 * We can be close to the next tick, add another one
2825 * to ensure we will wait at least the time asked for.
2826 */
2827 if (ts->tv_sec || ts->tv_nsec)
2828 timeout++;
2829 }
2830
2831 /*
2832 * Invert the set of allowed signals to get those we want to block.
2833 */
2834 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2835 signotset(&mask);
2836
2837 spin_lock_irq(&tsk->sighand->siglock);
2838 sig = dequeue_signal(tsk, &mask, info);
2839 if (!sig && timeout) {
2840 /*
2841 * None ready, temporarily unblock those we're interested
2842 * while we are sleeping in so that we'll be awakened when
2843 * they arrive. Unblocking is always fine, we can avoid
2844 * set_current_blocked().
2845 */
2846 tsk->real_blocked = tsk->blocked;
2847 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2848 recalc_sigpending();
2849 spin_unlock_irq(&tsk->sighand->siglock);
2850
2851 timeout = freezable_schedule_timeout_interruptible(timeout);
2852
2853 spin_lock_irq(&tsk->sighand->siglock);
2854 __set_task_blocked(tsk, &tsk->real_blocked);
2855 siginitset(&tsk->real_blocked, 0);
2856 sig = dequeue_signal(tsk, &mask, info);
2857 }
2858 spin_unlock_irq(&tsk->sighand->siglock);
2859
2860 if (sig)
2861 return sig;
2862 return timeout ? -EINTR : -EAGAIN;
2863 }
2864
2865 /**
2866 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2867 * in @uthese
2868 * @uthese: queued signals to wait for
2869 * @uinfo: if non-null, the signal's siginfo is returned here
2870 * @uts: upper bound on process time suspension
2871 * @sigsetsize: size of sigset_t type
2872 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2873 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2874 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2875 size_t, sigsetsize)
2876 {
2877 sigset_t these;
2878 struct timespec ts;
2879 siginfo_t info;
2880 int ret;
2881
2882 /* XXX: Don't preclude handling different sized sigset_t's. */
2883 if (sigsetsize != sizeof(sigset_t))
2884 return -EINVAL;
2885
2886 if (copy_from_user(&these, uthese, sizeof(these)))
2887 return -EFAULT;
2888
2889 if (uts) {
2890 if (copy_from_user(&ts, uts, sizeof(ts)))
2891 return -EFAULT;
2892 }
2893
2894 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2895
2896 if (ret > 0 && uinfo) {
2897 if (copy_siginfo_to_user(uinfo, &info))
2898 ret = -EFAULT;
2899 }
2900
2901 return ret;
2902 }
2903
2904 /**
2905 * sys_kill - send a signal to a process
2906 * @pid: the PID of the process
2907 * @sig: signal to be sent
2908 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2909 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2910 {
2911 struct siginfo info;
2912
2913 info.si_signo = sig;
2914 info.si_errno = 0;
2915 info.si_code = SI_USER;
2916 info.si_pid = task_tgid_vnr(current);
2917 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2918
2919 return kill_something_info(sig, &info, pid);
2920 }
2921
2922 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2923 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2924 {
2925 struct task_struct *p;
2926 int error = -ESRCH;
2927
2928 rcu_read_lock();
2929 p = find_task_by_vpid(pid);
2930 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2931 error = check_kill_permission(sig, info, p);
2932 /*
2933 * The null signal is a permissions and process existence
2934 * probe. No signal is actually delivered.
2935 */
2936 if (!error && sig) {
2937 error = do_send_sig_info(sig, info, p, false);
2938 /*
2939 * If lock_task_sighand() failed we pretend the task
2940 * dies after receiving the signal. The window is tiny,
2941 * and the signal is private anyway.
2942 */
2943 if (unlikely(error == -ESRCH))
2944 error = 0;
2945 }
2946 }
2947 rcu_read_unlock();
2948
2949 return error;
2950 }
2951
do_tkill(pid_t tgid,pid_t pid,int sig)2952 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2953 {
2954 struct siginfo info = {};
2955
2956 info.si_signo = sig;
2957 info.si_errno = 0;
2958 info.si_code = SI_TKILL;
2959 info.si_pid = task_tgid_vnr(current);
2960 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2961
2962 return do_send_specific(tgid, pid, sig, &info);
2963 }
2964
2965 /**
2966 * sys_tgkill - send signal to one specific thread
2967 * @tgid: the thread group ID of the thread
2968 * @pid: the PID of the thread
2969 * @sig: signal to be sent
2970 *
2971 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2972 * exists but it's not belonging to the target process anymore. This
2973 * method solves the problem of threads exiting and PIDs getting reused.
2974 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2975 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2976 {
2977 /* This is only valid for single tasks */
2978 if (pid <= 0 || tgid <= 0)
2979 return -EINVAL;
2980
2981 return do_tkill(tgid, pid, sig);
2982 }
2983
2984 /**
2985 * sys_tkill - send signal to one specific task
2986 * @pid: the PID of the task
2987 * @sig: signal to be sent
2988 *
2989 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2990 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2991 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2992 {
2993 /* This is only valid for single tasks */
2994 if (pid <= 0)
2995 return -EINVAL;
2996
2997 return do_tkill(0, pid, sig);
2998 }
2999
do_rt_sigqueueinfo(pid_t pid,int sig,siginfo_t * info)3000 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3001 {
3002 /* Not even root can pretend to send signals from the kernel.
3003 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3004 */
3005 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3006 (task_pid_vnr(current) != pid)) {
3007 /* We used to allow any < 0 si_code */
3008 WARN_ON_ONCE(info->si_code < 0);
3009 return -EPERM;
3010 }
3011 info->si_signo = sig;
3012
3013 /* POSIX.1b doesn't mention process groups. */
3014 return kill_proc_info(sig, info, pid);
3015 }
3016
3017 /**
3018 * sys_rt_sigqueueinfo - send signal information to a signal
3019 * @pid: the PID of the thread
3020 * @sig: signal to be sent
3021 * @uinfo: signal info to be sent
3022 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3023 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3024 siginfo_t __user *, uinfo)
3025 {
3026 siginfo_t info;
3027 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3028 return -EFAULT;
3029 return do_rt_sigqueueinfo(pid, sig, &info);
3030 }
3031
3032 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3033 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3034 compat_pid_t, pid,
3035 int, sig,
3036 struct compat_siginfo __user *, uinfo)
3037 {
3038 siginfo_t info;
3039 int ret = copy_siginfo_from_user32(&info, uinfo);
3040 if (unlikely(ret))
3041 return ret;
3042 return do_rt_sigqueueinfo(pid, sig, &info);
3043 }
3044 #endif
3045
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)3046 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3047 {
3048 /* This is only valid for single tasks */
3049 if (pid <= 0 || tgid <= 0)
3050 return -EINVAL;
3051
3052 /* Not even root can pretend to send signals from the kernel.
3053 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3054 */
3055 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3056 (task_pid_vnr(current) != pid)) {
3057 /* We used to allow any < 0 si_code */
3058 WARN_ON_ONCE(info->si_code < 0);
3059 return -EPERM;
3060 }
3061 info->si_signo = sig;
3062
3063 return do_send_specific(tgid, pid, sig, info);
3064 }
3065
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3066 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3067 siginfo_t __user *, uinfo)
3068 {
3069 siginfo_t info;
3070
3071 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3072 return -EFAULT;
3073
3074 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3075 }
3076
3077 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3078 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3079 compat_pid_t, tgid,
3080 compat_pid_t, pid,
3081 int, sig,
3082 struct compat_siginfo __user *, uinfo)
3083 {
3084 siginfo_t info;
3085
3086 if (copy_siginfo_from_user32(&info, uinfo))
3087 return -EFAULT;
3088 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3089 }
3090 #endif
3091
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)3092 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3093 {
3094 struct task_struct *t = current;
3095 struct k_sigaction *k;
3096 sigset_t mask;
3097
3098 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3099 return -EINVAL;
3100
3101 k = &t->sighand->action[sig-1];
3102
3103 spin_lock_irq(¤t->sighand->siglock);
3104 if (oact)
3105 *oact = *k;
3106
3107 if (act) {
3108 sigdelsetmask(&act->sa.sa_mask,
3109 sigmask(SIGKILL) | sigmask(SIGSTOP));
3110 *k = *act;
3111 /*
3112 * POSIX 3.3.1.3:
3113 * "Setting a signal action to SIG_IGN for a signal that is
3114 * pending shall cause the pending signal to be discarded,
3115 * whether or not it is blocked."
3116 *
3117 * "Setting a signal action to SIG_DFL for a signal that is
3118 * pending and whose default action is to ignore the signal
3119 * (for example, SIGCHLD), shall cause the pending signal to
3120 * be discarded, whether or not it is blocked"
3121 */
3122 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3123 sigemptyset(&mask);
3124 sigaddset(&mask, sig);
3125 rm_from_queue_full(&mask, &t->signal->shared_pending);
3126 do {
3127 rm_from_queue_full(&mask, &t->pending);
3128 t = next_thread(t);
3129 } while (t != current);
3130 }
3131 }
3132
3133 spin_unlock_irq(¤t->sighand->siglock);
3134 return 0;
3135 }
3136
3137 static int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)3138 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3139 {
3140 stack_t oss;
3141 int error;
3142
3143 oss.ss_sp = (void __user *) current->sas_ss_sp;
3144 oss.ss_size = current->sas_ss_size;
3145 oss.ss_flags = sas_ss_flags(sp);
3146
3147 if (uss) {
3148 void __user *ss_sp;
3149 size_t ss_size;
3150 int ss_flags;
3151
3152 error = -EFAULT;
3153 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3154 goto out;
3155 error = __get_user(ss_sp, &uss->ss_sp) |
3156 __get_user(ss_flags, &uss->ss_flags) |
3157 __get_user(ss_size, &uss->ss_size);
3158 if (error)
3159 goto out;
3160
3161 error = -EPERM;
3162 if (on_sig_stack(sp))
3163 goto out;
3164
3165 error = -EINVAL;
3166 /*
3167 * Note - this code used to test ss_flags incorrectly:
3168 * old code may have been written using ss_flags==0
3169 * to mean ss_flags==SS_ONSTACK (as this was the only
3170 * way that worked) - this fix preserves that older
3171 * mechanism.
3172 */
3173 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3174 goto out;
3175
3176 if (ss_flags == SS_DISABLE) {
3177 ss_size = 0;
3178 ss_sp = NULL;
3179 } else {
3180 error = -ENOMEM;
3181 if (ss_size < MINSIGSTKSZ)
3182 goto out;
3183 }
3184
3185 current->sas_ss_sp = (unsigned long) ss_sp;
3186 current->sas_ss_size = ss_size;
3187 }
3188
3189 error = 0;
3190 if (uoss) {
3191 error = -EFAULT;
3192 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3193 goto out;
3194 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3195 __put_user(oss.ss_size, &uoss->ss_size) |
3196 __put_user(oss.ss_flags, &uoss->ss_flags);
3197 }
3198
3199 out:
3200 return error;
3201 }
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)3202 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3203 {
3204 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3205 }
3206
restore_altstack(const stack_t __user * uss)3207 int restore_altstack(const stack_t __user *uss)
3208 {
3209 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3210 /* squash all but EFAULT for now */
3211 return err == -EFAULT ? err : 0;
3212 }
3213
__save_altstack(stack_t __user * uss,unsigned long sp)3214 int __save_altstack(stack_t __user *uss, unsigned long sp)
3215 {
3216 struct task_struct *t = current;
3217 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3218 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3219 __put_user(t->sas_ss_size, &uss->ss_size);
3220 }
3221
3222 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)3223 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3224 const compat_stack_t __user *, uss_ptr,
3225 compat_stack_t __user *, uoss_ptr)
3226 {
3227 stack_t uss, uoss;
3228 int ret;
3229 mm_segment_t seg;
3230
3231 if (uss_ptr) {
3232 compat_stack_t uss32;
3233
3234 memset(&uss, 0, sizeof(stack_t));
3235 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3236 return -EFAULT;
3237 uss.ss_sp = compat_ptr(uss32.ss_sp);
3238 uss.ss_flags = uss32.ss_flags;
3239 uss.ss_size = uss32.ss_size;
3240 }
3241 seg = get_fs();
3242 set_fs(KERNEL_DS);
3243 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3244 (stack_t __force __user *) &uoss,
3245 compat_user_stack_pointer());
3246 set_fs(seg);
3247 if (ret >= 0 && uoss_ptr) {
3248 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3249 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3250 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3251 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3252 ret = -EFAULT;
3253 }
3254 return ret;
3255 }
3256
compat_restore_altstack(const compat_stack_t __user * uss)3257 int compat_restore_altstack(const compat_stack_t __user *uss)
3258 {
3259 int err = compat_sys_sigaltstack(uss, NULL);
3260 /* squash all but -EFAULT for now */
3261 return err == -EFAULT ? err : 0;
3262 }
3263
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)3264 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3265 {
3266 struct task_struct *t = current;
3267 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3268 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3269 __put_user(t->sas_ss_size, &uss->ss_size);
3270 }
3271 #endif
3272
3273 #ifdef __ARCH_WANT_SYS_SIGPENDING
3274
3275 /**
3276 * sys_sigpending - examine pending signals
3277 * @set: where mask of pending signal is returned
3278 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3279 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3280 {
3281 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3282 }
3283
3284 #endif
3285
3286 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3287 /**
3288 * sys_sigprocmask - examine and change blocked signals
3289 * @how: whether to add, remove, or set signals
3290 * @nset: signals to add or remove (if non-null)
3291 * @oset: previous value of signal mask if non-null
3292 *
3293 * Some platforms have their own version with special arguments;
3294 * others support only sys_rt_sigprocmask.
3295 */
3296
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3297 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3298 old_sigset_t __user *, oset)
3299 {
3300 old_sigset_t old_set, new_set;
3301 sigset_t new_blocked;
3302
3303 old_set = current->blocked.sig[0];
3304
3305 if (nset) {
3306 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3307 return -EFAULT;
3308
3309 new_blocked = current->blocked;
3310
3311 switch (how) {
3312 case SIG_BLOCK:
3313 sigaddsetmask(&new_blocked, new_set);
3314 break;
3315 case SIG_UNBLOCK:
3316 sigdelsetmask(&new_blocked, new_set);
3317 break;
3318 case SIG_SETMASK:
3319 new_blocked.sig[0] = new_set;
3320 break;
3321 default:
3322 return -EINVAL;
3323 }
3324
3325 set_current_blocked(&new_blocked);
3326 }
3327
3328 if (oset) {
3329 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3330 return -EFAULT;
3331 }
3332
3333 return 0;
3334 }
3335 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3336
3337 #ifndef CONFIG_ODD_RT_SIGACTION
3338 /**
3339 * sys_rt_sigaction - alter an action taken by a process
3340 * @sig: signal to be sent
3341 * @act: new sigaction
3342 * @oact: used to save the previous sigaction
3343 * @sigsetsize: size of sigset_t type
3344 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3345 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3346 const struct sigaction __user *, act,
3347 struct sigaction __user *, oact,
3348 size_t, sigsetsize)
3349 {
3350 struct k_sigaction new_sa, old_sa;
3351 int ret = -EINVAL;
3352
3353 /* XXX: Don't preclude handling different sized sigset_t's. */
3354 if (sigsetsize != sizeof(sigset_t))
3355 goto out;
3356
3357 if (act) {
3358 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3359 return -EFAULT;
3360 }
3361
3362 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3363
3364 if (!ret && oact) {
3365 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3366 return -EFAULT;
3367 }
3368 out:
3369 return ret;
3370 }
3371 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)3372 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3373 const struct compat_sigaction __user *, act,
3374 struct compat_sigaction __user *, oact,
3375 compat_size_t, sigsetsize)
3376 {
3377 struct k_sigaction new_ka, old_ka;
3378 compat_sigset_t mask;
3379 #ifdef __ARCH_HAS_SA_RESTORER
3380 compat_uptr_t restorer;
3381 #endif
3382 int ret;
3383
3384 /* XXX: Don't preclude handling different sized sigset_t's. */
3385 if (sigsetsize != sizeof(compat_sigset_t))
3386 return -EINVAL;
3387
3388 if (act) {
3389 compat_uptr_t handler;
3390 ret = get_user(handler, &act->sa_handler);
3391 new_ka.sa.sa_handler = compat_ptr(handler);
3392 #ifdef __ARCH_HAS_SA_RESTORER
3393 ret |= get_user(restorer, &act->sa_restorer);
3394 new_ka.sa.sa_restorer = compat_ptr(restorer);
3395 #endif
3396 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3397 ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags);
3398 if (ret)
3399 return -EFAULT;
3400 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3401 }
3402
3403 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3404 if (!ret && oact) {
3405 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3406 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3407 &oact->sa_handler);
3408 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3409 ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3410 #ifdef __ARCH_HAS_SA_RESTORER
3411 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3412 &oact->sa_restorer);
3413 #endif
3414 }
3415 return ret;
3416 }
3417 #endif
3418 #endif /* !CONFIG_ODD_RT_SIGACTION */
3419
3420 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)3421 SYSCALL_DEFINE3(sigaction, int, sig,
3422 const struct old_sigaction __user *, act,
3423 struct old_sigaction __user *, oact)
3424 {
3425 struct k_sigaction new_ka, old_ka;
3426 int ret;
3427
3428 if (act) {
3429 old_sigset_t mask;
3430 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3431 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3432 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3433 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3434 __get_user(mask, &act->sa_mask))
3435 return -EFAULT;
3436 #ifdef __ARCH_HAS_KA_RESTORER
3437 new_ka.ka_restorer = NULL;
3438 #endif
3439 siginitset(&new_ka.sa.sa_mask, mask);
3440 }
3441
3442 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3443
3444 if (!ret && oact) {
3445 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3446 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3447 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3448 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3449 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3450 return -EFAULT;
3451 }
3452
3453 return ret;
3454 }
3455 #endif
3456 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)3457 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3458 const struct compat_old_sigaction __user *, act,
3459 struct compat_old_sigaction __user *, oact)
3460 {
3461 struct k_sigaction new_ka, old_ka;
3462 int ret;
3463 compat_old_sigset_t mask;
3464 compat_uptr_t handler, restorer;
3465
3466 if (act) {
3467 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3468 __get_user(handler, &act->sa_handler) ||
3469 __get_user(restorer, &act->sa_restorer) ||
3470 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3471 __get_user(mask, &act->sa_mask))
3472 return -EFAULT;
3473
3474 #ifdef __ARCH_HAS_KA_RESTORER
3475 new_ka.ka_restorer = NULL;
3476 #endif
3477 new_ka.sa.sa_handler = compat_ptr(handler);
3478 new_ka.sa.sa_restorer = compat_ptr(restorer);
3479 siginitset(&new_ka.sa.sa_mask, mask);
3480 }
3481
3482 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3483
3484 if (!ret && oact) {
3485 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3486 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3487 &oact->sa_handler) ||
3488 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3489 &oact->sa_restorer) ||
3490 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3491 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3492 return -EFAULT;
3493 }
3494 return ret;
3495 }
3496 #endif
3497
3498 #ifdef __ARCH_WANT_SYS_SGETMASK
3499
3500 /*
3501 * For backwards compatibility. Functionality superseded by sigprocmask.
3502 */
SYSCALL_DEFINE0(sgetmask)3503 SYSCALL_DEFINE0(sgetmask)
3504 {
3505 /* SMP safe */
3506 return current->blocked.sig[0];
3507 }
3508
SYSCALL_DEFINE1(ssetmask,int,newmask)3509 SYSCALL_DEFINE1(ssetmask, int, newmask)
3510 {
3511 int old = current->blocked.sig[0];
3512 sigset_t newset;
3513
3514 siginitset(&newset, newmask);
3515 set_current_blocked(&newset);
3516
3517 return old;
3518 }
3519 #endif /* __ARCH_WANT_SGETMASK */
3520
3521 #ifdef __ARCH_WANT_SYS_SIGNAL
3522 /*
3523 * For backwards compatibility. Functionality superseded by sigaction.
3524 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3525 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3526 {
3527 struct k_sigaction new_sa, old_sa;
3528 int ret;
3529
3530 new_sa.sa.sa_handler = handler;
3531 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3532 sigemptyset(&new_sa.sa.sa_mask);
3533
3534 ret = do_sigaction(sig, &new_sa, &old_sa);
3535
3536 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3537 }
3538 #endif /* __ARCH_WANT_SYS_SIGNAL */
3539
3540 #ifdef __ARCH_WANT_SYS_PAUSE
3541
SYSCALL_DEFINE0(pause)3542 SYSCALL_DEFINE0(pause)
3543 {
3544 while (!signal_pending(current)) {
3545 current->state = TASK_INTERRUPTIBLE;
3546 schedule();
3547 }
3548 return -ERESTARTNOHAND;
3549 }
3550
3551 #endif
3552
sigsuspend(sigset_t * set)3553 int sigsuspend(sigset_t *set)
3554 {
3555 current->saved_sigmask = current->blocked;
3556 set_current_blocked(set);
3557
3558 current->state = TASK_INTERRUPTIBLE;
3559 schedule();
3560 set_restore_sigmask();
3561 return -ERESTARTNOHAND;
3562 }
3563
3564 /**
3565 * sys_rt_sigsuspend - replace the signal mask for a value with the
3566 * @unewset value until a signal is received
3567 * @unewset: new signal mask value
3568 * @sigsetsize: size of sigset_t type
3569 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3570 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3571 {
3572 sigset_t newset;
3573
3574 /* XXX: Don't preclude handling different sized sigset_t's. */
3575 if (sigsetsize != sizeof(sigset_t))
3576 return -EINVAL;
3577
3578 if (copy_from_user(&newset, unewset, sizeof(newset)))
3579 return -EFAULT;
3580 return sigsuspend(&newset);
3581 }
3582
3583 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)3584 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3585 {
3586 #ifdef __BIG_ENDIAN
3587 sigset_t newset;
3588 compat_sigset_t newset32;
3589
3590 /* XXX: Don't preclude handling different sized sigset_t's. */
3591 if (sigsetsize != sizeof(sigset_t))
3592 return -EINVAL;
3593
3594 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3595 return -EFAULT;
3596 sigset_from_compat(&newset, &newset32);
3597 return sigsuspend(&newset);
3598 #else
3599 /* on little-endian bitmaps don't care about granularity */
3600 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3601 #endif
3602 }
3603 #endif
3604
3605 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)3606 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3607 {
3608 sigset_t blocked;
3609 siginitset(&blocked, mask);
3610 return sigsuspend(&blocked);
3611 }
3612 #endif
3613 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)3614 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3615 {
3616 sigset_t blocked;
3617 siginitset(&blocked, mask);
3618 return sigsuspend(&blocked);
3619 }
3620 #endif
3621
arch_vma_name(struct vm_area_struct * vma)3622 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3623 {
3624 return NULL;
3625 }
3626
signals_init(void)3627 void __init signals_init(void)
3628 {
3629 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3630 }
3631
3632 #ifdef CONFIG_KGDB_KDB
3633 #include <linux/kdb.h>
3634 /*
3635 * kdb_send_sig_info - Allows kdb to send signals without exposing
3636 * signal internals. This function checks if the required locks are
3637 * available before calling the main signal code, to avoid kdb
3638 * deadlocks.
3639 */
3640 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3641 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3642 {
3643 static struct task_struct *kdb_prev_t;
3644 int sig, new_t;
3645 if (!spin_trylock(&t->sighand->siglock)) {
3646 kdb_printf("Can't do kill command now.\n"
3647 "The sigmask lock is held somewhere else in "
3648 "kernel, try again later\n");
3649 return;
3650 }
3651 spin_unlock(&t->sighand->siglock);
3652 new_t = kdb_prev_t != t;
3653 kdb_prev_t = t;
3654 if (t->state != TASK_RUNNING && new_t) {
3655 kdb_printf("Process is not RUNNING, sending a signal from "
3656 "kdb risks deadlock\n"
3657 "on the run queue locks. "
3658 "The signal has _not_ been sent.\n"
3659 "Reissue the kill command if you want to risk "
3660 "the deadlock.\n");
3661 return;
3662 }
3663 sig = info->si_signo;
3664 if (send_sig_info(sig, info, t))
3665 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3666 sig, t->pid);
3667 else
3668 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3669 }
3670 #endif /* CONFIG_KGDB_KDB */
3671