• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h> /* sync_mapping_buffers */
16 
17 #include <asm/uaccess.h>
18 
19 #include "internal.h"
20 
simple_positive(struct dentry * dentry)21 static inline int simple_positive(struct dentry *dentry)
22 {
23 	return dentry->d_inode && !d_unhashed(dentry);
24 }
25 
simple_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 		   struct kstat *stat)
28 {
29 	struct inode *inode = dentry->d_inode;
30 	generic_fillattr(inode, stat);
31 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 	return 0;
33 }
34 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
36 {
37 	buf->f_type = dentry->d_sb->s_magic;
38 	buf->f_bsize = PAGE_CACHE_SIZE;
39 	buf->f_namelen = NAME_MAX;
40 	return 0;
41 }
42 
43 /*
44  * Retaining negative dentries for an in-memory filesystem just wastes
45  * memory and lookup time: arrange for them to be deleted immediately.
46  */
simple_delete_dentry(const struct dentry * dentry)47 static int simple_delete_dentry(const struct dentry *dentry)
48 {
49 	return 1;
50 }
51 
52 /*
53  * Lookup the data. This is trivial - if the dentry didn't already
54  * exist, we know it is negative.  Set d_op to delete negative dentries.
55  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
57 {
58 	static const struct dentry_operations simple_dentry_operations = {
59 		.d_delete = simple_delete_dentry,
60 	};
61 
62 	if (dentry->d_name.len > NAME_MAX)
63 		return ERR_PTR(-ENAMETOOLONG);
64 	d_set_d_op(dentry, &simple_dentry_operations);
65 	d_add(dentry, NULL);
66 	return NULL;
67 }
68 
dcache_dir_open(struct inode * inode,struct file * file)69 int dcache_dir_open(struct inode *inode, struct file *file)
70 {
71 	static struct qstr cursor_name = QSTR_INIT(".", 1);
72 
73 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
74 
75 	return file->private_data ? 0 : -ENOMEM;
76 }
77 
dcache_dir_close(struct inode * inode,struct file * file)78 int dcache_dir_close(struct inode *inode, struct file *file)
79 {
80 	dput(file->private_data);
81 	return 0;
82 }
83 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
85 {
86 	struct dentry *dentry = file->f_path.dentry;
87 	mutex_lock(&dentry->d_inode->i_mutex);
88 	switch (whence) {
89 		case 1:
90 			offset += file->f_pos;
91 		case 0:
92 			if (offset >= 0)
93 				break;
94 		default:
95 			mutex_unlock(&dentry->d_inode->i_mutex);
96 			return -EINVAL;
97 	}
98 	if (offset != file->f_pos) {
99 		file->f_pos = offset;
100 		if (file->f_pos >= 2) {
101 			struct list_head *p;
102 			struct dentry *cursor = file->private_data;
103 			loff_t n = file->f_pos - 2;
104 
105 			spin_lock(&dentry->d_lock);
106 			/* d_lock not required for cursor */
107 			list_del(&cursor->d_u.d_child);
108 			p = dentry->d_subdirs.next;
109 			while (n && p != &dentry->d_subdirs) {
110 				struct dentry *next;
111 				next = list_entry(p, struct dentry, d_u.d_child);
112 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 				if (simple_positive(next))
114 					n--;
115 				spin_unlock(&next->d_lock);
116 				p = p->next;
117 			}
118 			list_add_tail(&cursor->d_u.d_child, p);
119 			spin_unlock(&dentry->d_lock);
120 		}
121 	}
122 	mutex_unlock(&dentry->d_inode->i_mutex);
123 	return offset;
124 }
125 
126 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)127 static inline unsigned char dt_type(struct inode *inode)
128 {
129 	return (inode->i_mode >> 12) & 15;
130 }
131 
132 /*
133  * Directory is locked and all positive dentries in it are safe, since
134  * for ramfs-type trees they can't go away without unlink() or rmdir(),
135  * both impossible due to the lock on directory.
136  */
137 
dcache_readdir(struct file * filp,void * dirent,filldir_t filldir)138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
139 {
140 	struct dentry *dentry = filp->f_path.dentry;
141 	struct dentry *cursor = filp->private_data;
142 	struct list_head *p, *q = &cursor->d_u.d_child;
143 	ino_t ino;
144 	int i = filp->f_pos;
145 
146 	switch (i) {
147 		case 0:
148 			ino = dentry->d_inode->i_ino;
149 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 				break;
151 			filp->f_pos++;
152 			i++;
153 			/* fallthrough */
154 		case 1:
155 			ino = parent_ino(dentry);
156 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 				break;
158 			filp->f_pos++;
159 			i++;
160 			/* fallthrough */
161 		default:
162 			spin_lock(&dentry->d_lock);
163 			if (filp->f_pos == 2)
164 				list_move(q, &dentry->d_subdirs);
165 
166 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
167 				struct dentry *next;
168 				next = list_entry(p, struct dentry, d_u.d_child);
169 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
170 				if (!simple_positive(next)) {
171 					spin_unlock(&next->d_lock);
172 					continue;
173 				}
174 
175 				spin_unlock(&next->d_lock);
176 				spin_unlock(&dentry->d_lock);
177 				if (filldir(dirent, next->d_name.name,
178 					    next->d_name.len, filp->f_pos,
179 					    next->d_inode->i_ino,
180 					    dt_type(next->d_inode)) < 0)
181 					return 0;
182 				spin_lock(&dentry->d_lock);
183 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
184 				/* next is still alive */
185 				list_move(q, p);
186 				spin_unlock(&next->d_lock);
187 				p = q;
188 				filp->f_pos++;
189 			}
190 			spin_unlock(&dentry->d_lock);
191 	}
192 	return 0;
193 }
194 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)195 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
196 {
197 	return -EISDIR;
198 }
199 
200 const struct file_operations simple_dir_operations = {
201 	.open		= dcache_dir_open,
202 	.release	= dcache_dir_close,
203 	.llseek		= dcache_dir_lseek,
204 	.read		= generic_read_dir,
205 	.readdir	= dcache_readdir,
206 	.fsync		= noop_fsync,
207 };
208 
209 const struct inode_operations simple_dir_inode_operations = {
210 	.lookup		= simple_lookup,
211 };
212 
213 static const struct super_operations simple_super_operations = {
214 	.statfs		= simple_statfs,
215 };
216 
217 /*
218  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219  * will never be mountable)
220  */
mount_pseudo(struct file_system_type * fs_type,char * name,const struct super_operations * ops,const struct dentry_operations * dops,unsigned long magic)221 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
222 	const struct super_operations *ops,
223 	const struct dentry_operations *dops, unsigned long magic)
224 {
225 	struct super_block *s;
226 	struct dentry *dentry;
227 	struct inode *root;
228 	struct qstr d_name = QSTR_INIT(name, strlen(name));
229 
230 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
231 	if (IS_ERR(s))
232 		return ERR_CAST(s);
233 
234 	s->s_maxbytes = MAX_LFS_FILESIZE;
235 	s->s_blocksize = PAGE_SIZE;
236 	s->s_blocksize_bits = PAGE_SHIFT;
237 	s->s_magic = magic;
238 	s->s_op = ops ? ops : &simple_super_operations;
239 	s->s_time_gran = 1;
240 	root = new_inode(s);
241 	if (!root)
242 		goto Enomem;
243 	/*
244 	 * since this is the first inode, make it number 1. New inodes created
245 	 * after this must take care not to collide with it (by passing
246 	 * max_reserved of 1 to iunique).
247 	 */
248 	root->i_ino = 1;
249 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
250 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
251 	dentry = __d_alloc(s, &d_name);
252 	if (!dentry) {
253 		iput(root);
254 		goto Enomem;
255 	}
256 	d_instantiate(dentry, root);
257 	s->s_root = dentry;
258 	s->s_d_op = dops;
259 	s->s_flags |= MS_ACTIVE;
260 	return dget(s->s_root);
261 
262 Enomem:
263 	deactivate_locked_super(s);
264 	return ERR_PTR(-ENOMEM);
265 }
266 
simple_open(struct inode * inode,struct file * file)267 int simple_open(struct inode *inode, struct file *file)
268 {
269 	if (inode->i_private)
270 		file->private_data = inode->i_private;
271 	return 0;
272 }
273 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)274 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
275 {
276 	struct inode *inode = old_dentry->d_inode;
277 
278 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
279 	inc_nlink(inode);
280 	ihold(inode);
281 	dget(dentry);
282 	d_instantiate(dentry, inode);
283 	return 0;
284 }
285 
simple_empty(struct dentry * dentry)286 int simple_empty(struct dentry *dentry)
287 {
288 	struct dentry *child;
289 	int ret = 0;
290 
291 	spin_lock(&dentry->d_lock);
292 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
293 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
294 		if (simple_positive(child)) {
295 			spin_unlock(&child->d_lock);
296 			goto out;
297 		}
298 		spin_unlock(&child->d_lock);
299 	}
300 	ret = 1;
301 out:
302 	spin_unlock(&dentry->d_lock);
303 	return ret;
304 }
305 
simple_unlink(struct inode * dir,struct dentry * dentry)306 int simple_unlink(struct inode *dir, struct dentry *dentry)
307 {
308 	struct inode *inode = dentry->d_inode;
309 
310 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
311 	drop_nlink(inode);
312 	dput(dentry);
313 	return 0;
314 }
315 
simple_rmdir(struct inode * dir,struct dentry * dentry)316 int simple_rmdir(struct inode *dir, struct dentry *dentry)
317 {
318 	if (!simple_empty(dentry))
319 		return -ENOTEMPTY;
320 
321 	drop_nlink(dentry->d_inode);
322 	simple_unlink(dir, dentry);
323 	drop_nlink(dir);
324 	return 0;
325 }
326 
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)327 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
328 		struct inode *new_dir, struct dentry *new_dentry)
329 {
330 	struct inode *inode = old_dentry->d_inode;
331 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
332 
333 	if (!simple_empty(new_dentry))
334 		return -ENOTEMPTY;
335 
336 	if (new_dentry->d_inode) {
337 		simple_unlink(new_dir, new_dentry);
338 		if (they_are_dirs) {
339 			drop_nlink(new_dentry->d_inode);
340 			drop_nlink(old_dir);
341 		}
342 	} else if (they_are_dirs) {
343 		drop_nlink(old_dir);
344 		inc_nlink(new_dir);
345 	}
346 
347 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
348 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
349 
350 	return 0;
351 }
352 
353 /**
354  * simple_setattr - setattr for simple filesystem
355  * @dentry: dentry
356  * @iattr: iattr structure
357  *
358  * Returns 0 on success, -error on failure.
359  *
360  * simple_setattr is a simple ->setattr implementation without a proper
361  * implementation of size changes.
362  *
363  * It can either be used for in-memory filesystems or special files
364  * on simple regular filesystems.  Anything that needs to change on-disk
365  * or wire state on size changes needs its own setattr method.
366  */
simple_setattr(struct dentry * dentry,struct iattr * iattr)367 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
368 {
369 	struct inode *inode = dentry->d_inode;
370 	int error;
371 
372 	error = inode_change_ok(inode, iattr);
373 	if (error)
374 		return error;
375 
376 	if (iattr->ia_valid & ATTR_SIZE)
377 		truncate_setsize(inode, iattr->ia_size);
378 	setattr_copy(inode, iattr);
379 	mark_inode_dirty(inode);
380 	return 0;
381 }
382 EXPORT_SYMBOL(simple_setattr);
383 
simple_readpage(struct file * file,struct page * page)384 int simple_readpage(struct file *file, struct page *page)
385 {
386 	clear_highpage(page);
387 	flush_dcache_page(page);
388 	SetPageUptodate(page);
389 	unlock_page(page);
390 	return 0;
391 }
392 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)393 int simple_write_begin(struct file *file, struct address_space *mapping,
394 			loff_t pos, unsigned len, unsigned flags,
395 			struct page **pagep, void **fsdata)
396 {
397 	struct page *page;
398 	pgoff_t index;
399 
400 	index = pos >> PAGE_CACHE_SHIFT;
401 
402 	page = grab_cache_page_write_begin(mapping, index, flags);
403 	if (!page)
404 		return -ENOMEM;
405 
406 	*pagep = page;
407 
408 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
409 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
410 
411 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
412 	}
413 	return 0;
414 }
415 
416 /**
417  * simple_write_end - .write_end helper for non-block-device FSes
418  * @available: See .write_end of address_space_operations
419  * @file: 		"
420  * @mapping: 		"
421  * @pos: 		"
422  * @len: 		"
423  * @copied: 		"
424  * @page: 		"
425  * @fsdata: 		"
426  *
427  * simple_write_end does the minimum needed for updating a page after writing is
428  * done. It has the same API signature as the .write_end of
429  * address_space_operations vector. So it can just be set onto .write_end for
430  * FSes that don't need any other processing. i_mutex is assumed to be held.
431  * Block based filesystems should use generic_write_end().
432  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
433  * is not called, so a filesystem that actually does store data in .write_inode
434  * should extend on what's done here with a call to mark_inode_dirty() in the
435  * case that i_size has changed.
436  */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)437 int simple_write_end(struct file *file, struct address_space *mapping,
438 			loff_t pos, unsigned len, unsigned copied,
439 			struct page *page, void *fsdata)
440 {
441 	struct inode *inode = page->mapping->host;
442 	loff_t last_pos = pos + copied;
443 
444 	/* zero the stale part of the page if we did a short copy */
445 	if (copied < len) {
446 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
447 
448 		zero_user(page, from + copied, len - copied);
449 	}
450 
451 	if (!PageUptodate(page))
452 		SetPageUptodate(page);
453 	/*
454 	 * No need to use i_size_read() here, the i_size
455 	 * cannot change under us because we hold the i_mutex.
456 	 */
457 	if (last_pos > inode->i_size)
458 		i_size_write(inode, last_pos);
459 
460 	set_page_dirty(page);
461 	unlock_page(page);
462 	page_cache_release(page);
463 
464 	return copied;
465 }
466 
467 /*
468  * the inodes created here are not hashed. If you use iunique to generate
469  * unique inode values later for this filesystem, then you must take care
470  * to pass it an appropriate max_reserved value to avoid collisions.
471  */
simple_fill_super(struct super_block * s,unsigned long magic,struct tree_descr * files)472 int simple_fill_super(struct super_block *s, unsigned long magic,
473 		      struct tree_descr *files)
474 {
475 	struct inode *inode;
476 	struct dentry *root;
477 	struct dentry *dentry;
478 	int i;
479 
480 	s->s_blocksize = PAGE_CACHE_SIZE;
481 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
482 	s->s_magic = magic;
483 	s->s_op = &simple_super_operations;
484 	s->s_time_gran = 1;
485 
486 	inode = new_inode(s);
487 	if (!inode)
488 		return -ENOMEM;
489 	/*
490 	 * because the root inode is 1, the files array must not contain an
491 	 * entry at index 1
492 	 */
493 	inode->i_ino = 1;
494 	inode->i_mode = S_IFDIR | 0755;
495 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
496 	inode->i_op = &simple_dir_inode_operations;
497 	inode->i_fop = &simple_dir_operations;
498 	set_nlink(inode, 2);
499 	root = d_make_root(inode);
500 	if (!root)
501 		return -ENOMEM;
502 	for (i = 0; !files->name || files->name[0]; i++, files++) {
503 		if (!files->name)
504 			continue;
505 
506 		/* warn if it tries to conflict with the root inode */
507 		if (unlikely(i == 1))
508 			printk(KERN_WARNING "%s: %s passed in a files array"
509 				"with an index of 1!\n", __func__,
510 				s->s_type->name);
511 
512 		dentry = d_alloc_name(root, files->name);
513 		if (!dentry)
514 			goto out;
515 		inode = new_inode(s);
516 		if (!inode) {
517 			dput(dentry);
518 			goto out;
519 		}
520 		inode->i_mode = S_IFREG | files->mode;
521 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
522 		inode->i_fop = files->ops;
523 		inode->i_ino = i;
524 		d_add(dentry, inode);
525 	}
526 	s->s_root = root;
527 	return 0;
528 out:
529 	d_genocide(root);
530 	shrink_dcache_parent(root);
531 	dput(root);
532 	return -ENOMEM;
533 }
534 
535 static DEFINE_SPINLOCK(pin_fs_lock);
536 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)537 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
538 {
539 	struct vfsmount *mnt = NULL;
540 	spin_lock(&pin_fs_lock);
541 	if (unlikely(!*mount)) {
542 		spin_unlock(&pin_fs_lock);
543 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
544 		if (IS_ERR(mnt))
545 			return PTR_ERR(mnt);
546 		spin_lock(&pin_fs_lock);
547 		if (!*mount)
548 			*mount = mnt;
549 	}
550 	mntget(*mount);
551 	++*count;
552 	spin_unlock(&pin_fs_lock);
553 	mntput(mnt);
554 	return 0;
555 }
556 
simple_release_fs(struct vfsmount ** mount,int * count)557 void simple_release_fs(struct vfsmount **mount, int *count)
558 {
559 	struct vfsmount *mnt;
560 	spin_lock(&pin_fs_lock);
561 	mnt = *mount;
562 	if (!--*count)
563 		*mount = NULL;
564 	spin_unlock(&pin_fs_lock);
565 	mntput(mnt);
566 }
567 
568 /**
569  * simple_read_from_buffer - copy data from the buffer to user space
570  * @to: the user space buffer to read to
571  * @count: the maximum number of bytes to read
572  * @ppos: the current position in the buffer
573  * @from: the buffer to read from
574  * @available: the size of the buffer
575  *
576  * The simple_read_from_buffer() function reads up to @count bytes from the
577  * buffer @from at offset @ppos into the user space address starting at @to.
578  *
579  * On success, the number of bytes read is returned and the offset @ppos is
580  * advanced by this number, or negative value is returned on error.
581  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)582 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
583 				const void *from, size_t available)
584 {
585 	loff_t pos = *ppos;
586 	size_t ret;
587 
588 	if (pos < 0)
589 		return -EINVAL;
590 	if (pos >= available || !count)
591 		return 0;
592 	if (count > available - pos)
593 		count = available - pos;
594 	ret = copy_to_user(to, from + pos, count);
595 	if (ret == count)
596 		return -EFAULT;
597 	count -= ret;
598 	*ppos = pos + count;
599 	return count;
600 }
601 
602 /**
603  * simple_write_to_buffer - copy data from user space to the buffer
604  * @to: the buffer to write to
605  * @available: the size of the buffer
606  * @ppos: the current position in the buffer
607  * @from: the user space buffer to read from
608  * @count: the maximum number of bytes to read
609  *
610  * The simple_write_to_buffer() function reads up to @count bytes from the user
611  * space address starting at @from into the buffer @to at offset @ppos.
612  *
613  * On success, the number of bytes written is returned and the offset @ppos is
614  * advanced by this number, or negative value is returned on error.
615  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)616 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
617 		const void __user *from, size_t count)
618 {
619 	loff_t pos = *ppos;
620 	size_t res;
621 
622 	if (pos < 0)
623 		return -EINVAL;
624 	if (pos >= available || !count)
625 		return 0;
626 	if (count > available - pos)
627 		count = available - pos;
628 	res = copy_from_user(to + pos, from, count);
629 	if (res == count)
630 		return -EFAULT;
631 	count -= res;
632 	*ppos = pos + count;
633 	return count;
634 }
635 
636 /**
637  * memory_read_from_buffer - copy data from the buffer
638  * @to: the kernel space buffer to read to
639  * @count: the maximum number of bytes to read
640  * @ppos: the current position in the buffer
641  * @from: the buffer to read from
642  * @available: the size of the buffer
643  *
644  * The memory_read_from_buffer() function reads up to @count bytes from the
645  * buffer @from at offset @ppos into the kernel space address starting at @to.
646  *
647  * On success, the number of bytes read is returned and the offset @ppos is
648  * advanced by this number, or negative value is returned on error.
649  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)650 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
651 				const void *from, size_t available)
652 {
653 	loff_t pos = *ppos;
654 
655 	if (pos < 0)
656 		return -EINVAL;
657 	if (pos >= available)
658 		return 0;
659 	if (count > available - pos)
660 		count = available - pos;
661 	memcpy(to, from + pos, count);
662 	*ppos = pos + count;
663 
664 	return count;
665 }
666 
667 /*
668  * Transaction based IO.
669  * The file expects a single write which triggers the transaction, and then
670  * possibly a read which collects the result - which is stored in a
671  * file-local buffer.
672  */
673 
simple_transaction_set(struct file * file,size_t n)674 void simple_transaction_set(struct file *file, size_t n)
675 {
676 	struct simple_transaction_argresp *ar = file->private_data;
677 
678 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
679 
680 	/*
681 	 * The barrier ensures that ar->size will really remain zero until
682 	 * ar->data is ready for reading.
683 	 */
684 	smp_mb();
685 	ar->size = n;
686 }
687 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)688 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
689 {
690 	struct simple_transaction_argresp *ar;
691 	static DEFINE_SPINLOCK(simple_transaction_lock);
692 
693 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
694 		return ERR_PTR(-EFBIG);
695 
696 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
697 	if (!ar)
698 		return ERR_PTR(-ENOMEM);
699 
700 	spin_lock(&simple_transaction_lock);
701 
702 	/* only one write allowed per open */
703 	if (file->private_data) {
704 		spin_unlock(&simple_transaction_lock);
705 		free_page((unsigned long)ar);
706 		return ERR_PTR(-EBUSY);
707 	}
708 
709 	file->private_data = ar;
710 
711 	spin_unlock(&simple_transaction_lock);
712 
713 	if (copy_from_user(ar->data, buf, size))
714 		return ERR_PTR(-EFAULT);
715 
716 	return ar->data;
717 }
718 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)719 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
720 {
721 	struct simple_transaction_argresp *ar = file->private_data;
722 
723 	if (!ar)
724 		return 0;
725 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
726 }
727 
simple_transaction_release(struct inode * inode,struct file * file)728 int simple_transaction_release(struct inode *inode, struct file *file)
729 {
730 	free_page((unsigned long)file->private_data);
731 	return 0;
732 }
733 
734 /* Simple attribute files */
735 
736 struct simple_attr {
737 	int (*get)(void *, u64 *);
738 	int (*set)(void *, u64);
739 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
740 	char set_buf[24];
741 	void *data;
742 	const char *fmt;	/* format for read operation */
743 	struct mutex mutex;	/* protects access to these buffers */
744 };
745 
746 /* simple_attr_open is called by an actual attribute open file operation
747  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)748 int simple_attr_open(struct inode *inode, struct file *file,
749 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
750 		     const char *fmt)
751 {
752 	struct simple_attr *attr;
753 
754 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
755 	if (!attr)
756 		return -ENOMEM;
757 
758 	attr->get = get;
759 	attr->set = set;
760 	attr->data = inode->i_private;
761 	attr->fmt = fmt;
762 	mutex_init(&attr->mutex);
763 
764 	file->private_data = attr;
765 
766 	return nonseekable_open(inode, file);
767 }
768 
simple_attr_release(struct inode * inode,struct file * file)769 int simple_attr_release(struct inode *inode, struct file *file)
770 {
771 	kfree(file->private_data);
772 	return 0;
773 }
774 
775 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)776 ssize_t simple_attr_read(struct file *file, char __user *buf,
777 			 size_t len, loff_t *ppos)
778 {
779 	struct simple_attr *attr;
780 	size_t size;
781 	ssize_t ret;
782 
783 	attr = file->private_data;
784 
785 	if (!attr->get)
786 		return -EACCES;
787 
788 	ret = mutex_lock_interruptible(&attr->mutex);
789 	if (ret)
790 		return ret;
791 
792 	if (*ppos) {		/* continued read */
793 		size = strlen(attr->get_buf);
794 	} else {		/* first read */
795 		u64 val;
796 		ret = attr->get(attr->data, &val);
797 		if (ret)
798 			goto out;
799 
800 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
801 				 attr->fmt, (unsigned long long)val);
802 	}
803 
804 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
805 out:
806 	mutex_unlock(&attr->mutex);
807 	return ret;
808 }
809 
810 /* interpret the buffer as a number to call the set function with */
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)811 ssize_t simple_attr_write(struct file *file, const char __user *buf,
812 			  size_t len, loff_t *ppos)
813 {
814 	struct simple_attr *attr;
815 	u64 val;
816 	size_t size;
817 	ssize_t ret;
818 
819 	attr = file->private_data;
820 	if (!attr->set)
821 		return -EACCES;
822 
823 	ret = mutex_lock_interruptible(&attr->mutex);
824 	if (ret)
825 		return ret;
826 
827 	ret = -EFAULT;
828 	size = min(sizeof(attr->set_buf) - 1, len);
829 	if (copy_from_user(attr->set_buf, buf, size))
830 		goto out;
831 
832 	attr->set_buf[size] = '\0';
833 	val = simple_strtoll(attr->set_buf, NULL, 0);
834 	ret = attr->set(attr->data, val);
835 	if (ret == 0)
836 		ret = len; /* on success, claim we got the whole input */
837 out:
838 	mutex_unlock(&attr->mutex);
839 	return ret;
840 }
841 
842 /**
843  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
844  * @sb:		filesystem to do the file handle conversion on
845  * @fid:	file handle to convert
846  * @fh_len:	length of the file handle in bytes
847  * @fh_type:	type of file handle
848  * @get_inode:	filesystem callback to retrieve inode
849  *
850  * This function decodes @fid as long as it has one of the well-known
851  * Linux filehandle types and calls @get_inode on it to retrieve the
852  * inode for the object specified in the file handle.
853  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))854 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
855 		int fh_len, int fh_type, struct inode *(*get_inode)
856 			(struct super_block *sb, u64 ino, u32 gen))
857 {
858 	struct inode *inode = NULL;
859 
860 	if (fh_len < 2)
861 		return NULL;
862 
863 	switch (fh_type) {
864 	case FILEID_INO32_GEN:
865 	case FILEID_INO32_GEN_PARENT:
866 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
867 		break;
868 	}
869 
870 	return d_obtain_alias(inode);
871 }
872 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
873 
874 /**
875  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
876  * @sb:		filesystem to do the file handle conversion on
877  * @fid:	file handle to convert
878  * @fh_len:	length of the file handle in bytes
879  * @fh_type:	type of file handle
880  * @get_inode:	filesystem callback to retrieve inode
881  *
882  * This function decodes @fid as long as it has one of the well-known
883  * Linux filehandle types and calls @get_inode on it to retrieve the
884  * inode for the _parent_ object specified in the file handle if it
885  * is specified in the file handle, or NULL otherwise.
886  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))887 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
888 		int fh_len, int fh_type, struct inode *(*get_inode)
889 			(struct super_block *sb, u64 ino, u32 gen))
890 {
891 	struct inode *inode = NULL;
892 
893 	if (fh_len <= 2)
894 		return NULL;
895 
896 	switch (fh_type) {
897 	case FILEID_INO32_GEN_PARENT:
898 		inode = get_inode(sb, fid->i32.parent_ino,
899 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
900 		break;
901 	}
902 
903 	return d_obtain_alias(inode);
904 }
905 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
906 
907 /**
908  * generic_file_fsync - generic fsync implementation for simple filesystems
909  * @file:	file to synchronize
910  * @datasync:	only synchronize essential metadata if true
911  *
912  * This is a generic implementation of the fsync method for simple
913  * filesystems which track all non-inode metadata in the buffers list
914  * hanging off the address_space structure.
915  */
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)916 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
917 		       int datasync)
918 {
919 	struct inode *inode = file->f_mapping->host;
920 	int err;
921 	int ret;
922 
923 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
924 	if (err)
925 		return err;
926 
927 	mutex_lock(&inode->i_mutex);
928 	ret = sync_mapping_buffers(inode->i_mapping);
929 	if (!(inode->i_state & I_DIRTY))
930 		goto out;
931 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
932 		goto out;
933 
934 	err = sync_inode_metadata(inode, 1);
935 	if (ret == 0)
936 		ret = err;
937 out:
938 	mutex_unlock(&inode->i_mutex);
939 	return ret;
940 }
941 EXPORT_SYMBOL(generic_file_fsync);
942 
943 /**
944  * generic_check_addressable - Check addressability of file system
945  * @blocksize_bits:	log of file system block size
946  * @num_blocks:		number of blocks in file system
947  *
948  * Determine whether a file system with @num_blocks blocks (and a
949  * block size of 2**@blocksize_bits) is addressable by the sector_t
950  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
951  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)952 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
953 {
954 	u64 last_fs_block = num_blocks - 1;
955 	u64 last_fs_page =
956 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
957 
958 	if (unlikely(num_blocks == 0))
959 		return 0;
960 
961 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
962 		return -EINVAL;
963 
964 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
965 	    (last_fs_page > (pgoff_t)(~0ULL))) {
966 		return -EFBIG;
967 	}
968 	return 0;
969 }
970 EXPORT_SYMBOL(generic_check_addressable);
971 
972 /*
973  * No-op implementation of ->fsync for in-memory filesystems.
974  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)975 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
976 {
977 	return 0;
978 }
979 
980 EXPORT_SYMBOL(dcache_dir_close);
981 EXPORT_SYMBOL(dcache_dir_lseek);
982 EXPORT_SYMBOL(dcache_dir_open);
983 EXPORT_SYMBOL(dcache_readdir);
984 EXPORT_SYMBOL(generic_read_dir);
985 EXPORT_SYMBOL(mount_pseudo);
986 EXPORT_SYMBOL(simple_write_begin);
987 EXPORT_SYMBOL(simple_write_end);
988 EXPORT_SYMBOL(simple_dir_inode_operations);
989 EXPORT_SYMBOL(simple_dir_operations);
990 EXPORT_SYMBOL(simple_empty);
991 EXPORT_SYMBOL(simple_fill_super);
992 EXPORT_SYMBOL(simple_getattr);
993 EXPORT_SYMBOL(simple_open);
994 EXPORT_SYMBOL(simple_link);
995 EXPORT_SYMBOL(simple_lookup);
996 EXPORT_SYMBOL(simple_pin_fs);
997 EXPORT_SYMBOL(simple_readpage);
998 EXPORT_SYMBOL(simple_release_fs);
999 EXPORT_SYMBOL(simple_rename);
1000 EXPORT_SYMBOL(simple_rmdir);
1001 EXPORT_SYMBOL(simple_statfs);
1002 EXPORT_SYMBOL(noop_fsync);
1003 EXPORT_SYMBOL(simple_unlink);
1004 EXPORT_SYMBOL(simple_read_from_buffer);
1005 EXPORT_SYMBOL(simple_write_to_buffer);
1006 EXPORT_SYMBOL(memory_read_from_buffer);
1007 EXPORT_SYMBOL(simple_transaction_set);
1008 EXPORT_SYMBOL(simple_transaction_get);
1009 EXPORT_SYMBOL(simple_transaction_read);
1010 EXPORT_SYMBOL(simple_transaction_release);
1011 EXPORT_SYMBOL_GPL(simple_attr_open);
1012 EXPORT_SYMBOL_GPL(simple_attr_release);
1013 EXPORT_SYMBOL_GPL(simple_attr_read);
1014 EXPORT_SYMBOL_GPL(simple_attr_write);
1015