1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999, 2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49
50 enum {
51 ec_schedule = 0,
52 ec_call_function,
53 ec_call_function_single,
54 ec_stop_cpu,
55 };
56
57 enum {
58 CPU_STATE_STANDBY,
59 CPU_STATE_CONFIGURED,
60 };
61
62 struct pcpu {
63 struct cpu cpu;
64 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
65 unsigned long async_stack; /* async stack for the cpu */
66 unsigned long panic_stack; /* panic stack for the cpu */
67 unsigned long ec_mask; /* bit mask for ec_xxx functions */
68 int state; /* physical cpu state */
69 int polarization; /* physical polarization */
70 u16 address; /* physical cpu address */
71 };
72
73 static u8 boot_cpu_type;
74 static u16 boot_cpu_address;
75 static struct pcpu pcpu_devices[NR_CPUS];
76
77 /*
78 * The smp_cpu_state_mutex must be held when changing the state or polarization
79 * member of a pcpu data structure within the pcpu_devices arreay.
80 */
81 DEFINE_MUTEX(smp_cpu_state_mutex);
82
83 /*
84 * Signal processor helper functions.
85 */
__pcpu_sigp(u16 addr,u8 order,u32 parm,u32 * status)86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
87 {
88 register unsigned int reg1 asm ("1") = parm;
89 int cc;
90
91 asm volatile(
92 " sigp %1,%2,0(%3)\n"
93 " ipm %0\n"
94 " srl %0,28\n"
95 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
96 if (status && cc == 1)
97 *status = reg1;
98 return cc;
99 }
100
__pcpu_sigp_relax(u16 addr,u8 order,u32 parm,u32 * status)101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
102 {
103 int cc;
104
105 while (1) {
106 cc = __pcpu_sigp(addr, order, parm, NULL);
107 if (cc != SIGP_CC_BUSY)
108 return cc;
109 cpu_relax();
110 }
111 }
112
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
114 {
115 int cc, retry;
116
117 for (retry = 0; ; retry++) {
118 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
119 if (cc != SIGP_CC_BUSY)
120 break;
121 if (retry >= 3)
122 udelay(10);
123 }
124 return cc;
125 }
126
pcpu_stopped(struct pcpu * pcpu)127 static inline int pcpu_stopped(struct pcpu *pcpu)
128 {
129 u32 uninitialized_var(status);
130
131 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
132 0, &status) != SIGP_CC_STATUS_STORED)
133 return 0;
134 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
135 }
136
pcpu_running(struct pcpu * pcpu)137 static inline int pcpu_running(struct pcpu *pcpu)
138 {
139 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
140 0, NULL) != SIGP_CC_STATUS_STORED)
141 return 1;
142 /* Status stored condition code is equivalent to cpu not running. */
143 return 0;
144 }
145
146 /*
147 * Find struct pcpu by cpu address.
148 */
pcpu_find_address(const struct cpumask * mask,int address)149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
150 {
151 int cpu;
152
153 for_each_cpu(cpu, mask)
154 if (pcpu_devices[cpu].address == address)
155 return pcpu_devices + cpu;
156 return NULL;
157 }
158
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
160 {
161 int order;
162
163 set_bit(ec_bit, &pcpu->ec_mask);
164 order = pcpu_running(pcpu) ?
165 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
166 pcpu_sigp_retry(pcpu, order, 0);
167 }
168
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
170 {
171 struct _lowcore *lc;
172
173 if (pcpu != &pcpu_devices[0]) {
174 pcpu->lowcore = (struct _lowcore *)
175 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
176 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
177 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
178 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
179 goto out;
180 }
181 lc = pcpu->lowcore;
182 memcpy(lc, &S390_lowcore, 512);
183 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
184 lc->async_stack = pcpu->async_stack + ASYNC_SIZE
185 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
186 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
187 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
188 lc->cpu_nr = cpu;
189 #ifndef CONFIG_64BIT
190 if (MACHINE_HAS_IEEE) {
191 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
192 if (!lc->extended_save_area_addr)
193 goto out;
194 }
195 #else
196 if (vdso_alloc_per_cpu(lc))
197 goto out;
198 #endif
199 lowcore_ptr[cpu] = lc;
200 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
201 return 0;
202 out:
203 if (pcpu != &pcpu_devices[0]) {
204 free_page(pcpu->panic_stack);
205 free_pages(pcpu->async_stack, ASYNC_ORDER);
206 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
207 }
208 return -ENOMEM;
209 }
210
211 #ifdef CONFIG_HOTPLUG_CPU
212
pcpu_free_lowcore(struct pcpu * pcpu)213 static void pcpu_free_lowcore(struct pcpu *pcpu)
214 {
215 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
216 lowcore_ptr[pcpu - pcpu_devices] = NULL;
217 #ifndef CONFIG_64BIT
218 if (MACHINE_HAS_IEEE) {
219 struct _lowcore *lc = pcpu->lowcore;
220
221 free_page((unsigned long) lc->extended_save_area_addr);
222 lc->extended_save_area_addr = 0;
223 }
224 #else
225 vdso_free_per_cpu(pcpu->lowcore);
226 #endif
227 if (pcpu != &pcpu_devices[0]) {
228 free_page(pcpu->panic_stack);
229 free_pages(pcpu->async_stack, ASYNC_ORDER);
230 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231 }
232 }
233
234 #endif /* CONFIG_HOTPLUG_CPU */
235
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
237 {
238 struct _lowcore *lc = pcpu->lowcore;
239
240 atomic_inc(&init_mm.context.attach_count);
241 lc->cpu_nr = cpu;
242 lc->percpu_offset = __per_cpu_offset[cpu];
243 lc->kernel_asce = S390_lowcore.kernel_asce;
244 lc->machine_flags = S390_lowcore.machine_flags;
245 lc->ftrace_func = S390_lowcore.ftrace_func;
246 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
247 __ctl_store(lc->cregs_save_area, 0, 15);
248 save_access_regs((unsigned int *) lc->access_regs_save_area);
249 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
250 MAX_FACILITY_BIT/8);
251 }
252
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)253 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
254 {
255 struct _lowcore *lc = pcpu->lowcore;
256 struct thread_info *ti = task_thread_info(tsk);
257
258 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
259 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
260 lc->thread_info = (unsigned long) task_thread_info(tsk);
261 lc->current_task = (unsigned long) tsk;
262 lc->user_timer = ti->user_timer;
263 lc->system_timer = ti->system_timer;
264 lc->steal_timer = 0;
265 }
266
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)267 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
268 {
269 struct _lowcore *lc = pcpu->lowcore;
270
271 lc->restart_stack = lc->kernel_stack;
272 lc->restart_fn = (unsigned long) func;
273 lc->restart_data = (unsigned long) data;
274 lc->restart_source = -1UL;
275 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
276 }
277
278 /*
279 * Call function via PSW restart on pcpu and stop the current cpu.
280 */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)281 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
282 void *data, unsigned long stack)
283 {
284 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
285 unsigned long source_cpu = stap();
286
287 __load_psw_mask(psw_kernel_bits);
288 if (pcpu->address == source_cpu)
289 func(data); /* should not return */
290 /* Stop target cpu (if func returns this stops the current cpu). */
291 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
292 /* Restart func on the target cpu and stop the current cpu. */
293 mem_assign_absolute(lc->restart_stack, stack);
294 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
295 mem_assign_absolute(lc->restart_data, (unsigned long) data);
296 mem_assign_absolute(lc->restart_source, source_cpu);
297 asm volatile(
298 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
299 " brc 2,0b # busy, try again\n"
300 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
301 " brc 2,1b # busy, try again\n"
302 : : "d" (pcpu->address), "d" (source_cpu),
303 "K" (SIGP_RESTART), "K" (SIGP_STOP)
304 : "0", "1", "cc");
305 for (;;) ;
306 }
307
308 /*
309 * Call function on an online CPU.
310 */
smp_call_online_cpu(void (* func)(void *),void * data)311 void smp_call_online_cpu(void (*func)(void *), void *data)
312 {
313 struct pcpu *pcpu;
314
315 /* Use the current cpu if it is online. */
316 pcpu = pcpu_find_address(cpu_online_mask, stap());
317 if (!pcpu)
318 /* Use the first online cpu. */
319 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
320 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
321 }
322
323 /*
324 * Call function on the ipl CPU.
325 */
smp_call_ipl_cpu(void (* func)(void *),void * data)326 void smp_call_ipl_cpu(void (*func)(void *), void *data)
327 {
328 pcpu_delegate(&pcpu_devices[0], func, data,
329 pcpu_devices->panic_stack + PAGE_SIZE);
330 }
331
smp_find_processor_id(u16 address)332 int smp_find_processor_id(u16 address)
333 {
334 int cpu;
335
336 for_each_present_cpu(cpu)
337 if (pcpu_devices[cpu].address == address)
338 return cpu;
339 return -1;
340 }
341
smp_vcpu_scheduled(int cpu)342 int smp_vcpu_scheduled(int cpu)
343 {
344 return pcpu_running(pcpu_devices + cpu);
345 }
346
smp_yield(void)347 void smp_yield(void)
348 {
349 if (MACHINE_HAS_DIAG44)
350 asm volatile("diag 0,0,0x44");
351 }
352
smp_yield_cpu(int cpu)353 void smp_yield_cpu(int cpu)
354 {
355 if (MACHINE_HAS_DIAG9C)
356 asm volatile("diag %0,0,0x9c"
357 : : "d" (pcpu_devices[cpu].address));
358 else if (MACHINE_HAS_DIAG44)
359 asm volatile("diag 0,0,0x44");
360 }
361
362 /*
363 * Send cpus emergency shutdown signal. This gives the cpus the
364 * opportunity to complete outstanding interrupts.
365 */
smp_emergency_stop(cpumask_t * cpumask)366 void smp_emergency_stop(cpumask_t *cpumask)
367 {
368 u64 end;
369 int cpu;
370
371 end = get_tod_clock() + (1000000UL << 12);
372 for_each_cpu(cpu, cpumask) {
373 struct pcpu *pcpu = pcpu_devices + cpu;
374 set_bit(ec_stop_cpu, &pcpu->ec_mask);
375 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
376 0, NULL) == SIGP_CC_BUSY &&
377 get_tod_clock() < end)
378 cpu_relax();
379 }
380 while (get_tod_clock() < end) {
381 for_each_cpu(cpu, cpumask)
382 if (pcpu_stopped(pcpu_devices + cpu))
383 cpumask_clear_cpu(cpu, cpumask);
384 if (cpumask_empty(cpumask))
385 break;
386 cpu_relax();
387 }
388 }
389
390 /*
391 * Stop all cpus but the current one.
392 */
smp_send_stop(void)393 void smp_send_stop(void)
394 {
395 cpumask_t cpumask;
396 int cpu;
397
398 /* Disable all interrupts/machine checks */
399 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
400 trace_hardirqs_off();
401
402 debug_set_critical();
403 cpumask_copy(&cpumask, cpu_online_mask);
404 cpumask_clear_cpu(smp_processor_id(), &cpumask);
405
406 if (oops_in_progress)
407 smp_emergency_stop(&cpumask);
408
409 /* stop all processors */
410 for_each_cpu(cpu, &cpumask) {
411 struct pcpu *pcpu = pcpu_devices + cpu;
412 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
413 while (!pcpu_stopped(pcpu))
414 cpu_relax();
415 }
416 }
417
418 /*
419 * Stop the current cpu.
420 */
smp_stop_cpu(void)421 void smp_stop_cpu(void)
422 {
423 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
424 for (;;) ;
425 }
426
427 /*
428 * This is the main routine where commands issued by other
429 * cpus are handled.
430 */
smp_handle_ext_call(void)431 static void smp_handle_ext_call(void)
432 {
433 unsigned long bits;
434
435 /* handle bit signal external calls */
436 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
437 if (test_bit(ec_stop_cpu, &bits))
438 smp_stop_cpu();
439 if (test_bit(ec_schedule, &bits))
440 scheduler_ipi();
441 if (test_bit(ec_call_function, &bits))
442 generic_smp_call_function_interrupt();
443 if (test_bit(ec_call_function_single, &bits))
444 generic_smp_call_function_single_interrupt();
445 }
446
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)447 static void do_ext_call_interrupt(struct ext_code ext_code,
448 unsigned int param32, unsigned long param64)
449 {
450 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
451 smp_handle_ext_call();
452 }
453
arch_send_call_function_ipi_mask(const struct cpumask * mask)454 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
455 {
456 int cpu;
457
458 for_each_cpu(cpu, mask)
459 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
460 }
461
arch_send_call_function_single_ipi(int cpu)462 void arch_send_call_function_single_ipi(int cpu)
463 {
464 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
465 }
466
467 #ifndef CONFIG_64BIT
468 /*
469 * this function sends a 'purge tlb' signal to another CPU.
470 */
smp_ptlb_callback(void * info)471 static void smp_ptlb_callback(void *info)
472 {
473 __tlb_flush_local();
474 }
475
smp_ptlb_all(void)476 void smp_ptlb_all(void)
477 {
478 on_each_cpu(smp_ptlb_callback, NULL, 1);
479 }
480 EXPORT_SYMBOL(smp_ptlb_all);
481 #endif /* ! CONFIG_64BIT */
482
483 /*
484 * this function sends a 'reschedule' IPI to another CPU.
485 * it goes straight through and wastes no time serializing
486 * anything. Worst case is that we lose a reschedule ...
487 */
smp_send_reschedule(int cpu)488 void smp_send_reschedule(int cpu)
489 {
490 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
491 }
492
493 /*
494 * parameter area for the set/clear control bit callbacks
495 */
496 struct ec_creg_mask_parms {
497 unsigned long orval;
498 unsigned long andval;
499 int cr;
500 };
501
502 /*
503 * callback for setting/clearing control bits
504 */
smp_ctl_bit_callback(void * info)505 static void smp_ctl_bit_callback(void *info)
506 {
507 struct ec_creg_mask_parms *pp = info;
508 unsigned long cregs[16];
509
510 __ctl_store(cregs, 0, 15);
511 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
512 __ctl_load(cregs, 0, 15);
513 }
514
515 /*
516 * Set a bit in a control register of all cpus
517 */
smp_ctl_set_bit(int cr,int bit)518 void smp_ctl_set_bit(int cr, int bit)
519 {
520 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
521
522 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
523 }
524 EXPORT_SYMBOL(smp_ctl_set_bit);
525
526 /*
527 * Clear a bit in a control register of all cpus
528 */
smp_ctl_clear_bit(int cr,int bit)529 void smp_ctl_clear_bit(int cr, int bit)
530 {
531 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
532
533 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
534 }
535 EXPORT_SYMBOL(smp_ctl_clear_bit);
536
537 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
538
539 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
540 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
541
smp_get_save_area(int cpu,u16 address)542 static void __init smp_get_save_area(int cpu, u16 address)
543 {
544 void *lc = pcpu_devices[0].lowcore;
545 struct save_area *save_area;
546
547 if (is_kdump_kernel())
548 return;
549 if (!OLDMEM_BASE && (address == boot_cpu_address ||
550 ipl_info.type != IPL_TYPE_FCP_DUMP))
551 return;
552 if (cpu >= NR_CPUS) {
553 pr_warning("CPU %i exceeds the maximum %i and is excluded "
554 "from the dump\n", cpu, NR_CPUS - 1);
555 return;
556 }
557 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
558 if (!save_area)
559 panic("could not allocate memory for save area\n");
560 zfcpdump_save_areas[cpu] = save_area;
561 #ifdef CONFIG_CRASH_DUMP
562 if (address == boot_cpu_address) {
563 /* Copy the registers of the boot cpu. */
564 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
565 SAVE_AREA_BASE - PAGE_SIZE, 0);
566 return;
567 }
568 #endif
569 /* Get the registers of a non-boot cpu. */
570 __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
571 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
572 }
573
smp_store_status(int cpu)574 int smp_store_status(int cpu)
575 {
576 struct pcpu *pcpu;
577
578 pcpu = pcpu_devices + cpu;
579 if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
580 0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
581 return -EIO;
582 return 0;
583 }
584
585 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
586
smp_get_save_area(int cpu,u16 address)587 static inline void smp_get_save_area(int cpu, u16 address) { }
588
589 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
590
smp_cpu_set_polarization(int cpu,int val)591 void smp_cpu_set_polarization(int cpu, int val)
592 {
593 pcpu_devices[cpu].polarization = val;
594 }
595
smp_cpu_get_polarization(int cpu)596 int smp_cpu_get_polarization(int cpu)
597 {
598 return pcpu_devices[cpu].polarization;
599 }
600
smp_get_cpu_info(void)601 static struct sclp_cpu_info *smp_get_cpu_info(void)
602 {
603 static int use_sigp_detection;
604 struct sclp_cpu_info *info;
605 int address;
606
607 info = kzalloc(sizeof(*info), GFP_KERNEL);
608 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
609 use_sigp_detection = 1;
610 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
611 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
612 SIGP_CC_NOT_OPERATIONAL)
613 continue;
614 info->cpu[info->configured].address = address;
615 info->configured++;
616 }
617 info->combined = info->configured;
618 }
619 return info;
620 }
621
622 static int __cpuinit smp_add_present_cpu(int cpu);
623
__smp_rescan_cpus(struct sclp_cpu_info * info,int sysfs_add)624 static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info,
625 int sysfs_add)
626 {
627 struct pcpu *pcpu;
628 cpumask_t avail;
629 int cpu, nr, i;
630
631 nr = 0;
632 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
633 cpu = cpumask_first(&avail);
634 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
635 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
636 continue;
637 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
638 continue;
639 pcpu = pcpu_devices + cpu;
640 pcpu->address = info->cpu[i].address;
641 pcpu->state = (i >= info->configured) ?
642 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
643 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
644 set_cpu_present(cpu, true);
645 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
646 set_cpu_present(cpu, false);
647 else
648 nr++;
649 cpu = cpumask_next(cpu, &avail);
650 }
651 return nr;
652 }
653
smp_detect_cpus(void)654 static void __init smp_detect_cpus(void)
655 {
656 unsigned int cpu, c_cpus, s_cpus;
657 struct sclp_cpu_info *info;
658
659 info = smp_get_cpu_info();
660 if (!info)
661 panic("smp_detect_cpus failed to allocate memory\n");
662 if (info->has_cpu_type) {
663 for (cpu = 0; cpu < info->combined; cpu++) {
664 if (info->cpu[cpu].address != boot_cpu_address)
665 continue;
666 /* The boot cpu dictates the cpu type. */
667 boot_cpu_type = info->cpu[cpu].type;
668 break;
669 }
670 }
671 c_cpus = s_cpus = 0;
672 for (cpu = 0; cpu < info->combined; cpu++) {
673 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
674 continue;
675 if (cpu < info->configured) {
676 smp_get_save_area(c_cpus, info->cpu[cpu].address);
677 c_cpus++;
678 } else
679 s_cpus++;
680 }
681 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
682 get_online_cpus();
683 __smp_rescan_cpus(info, 0);
684 put_online_cpus();
685 kfree(info);
686 }
687
688 /*
689 * Activate a secondary processor.
690 */
smp_start_secondary(void * cpuvoid)691 static void __cpuinit smp_start_secondary(void *cpuvoid)
692 {
693 S390_lowcore.last_update_clock = get_tod_clock();
694 S390_lowcore.restart_stack = (unsigned long) restart_stack;
695 S390_lowcore.restart_fn = (unsigned long) do_restart;
696 S390_lowcore.restart_data = 0;
697 S390_lowcore.restart_source = -1UL;
698 restore_access_regs(S390_lowcore.access_regs_save_area);
699 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
700 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
701 cpu_init();
702 preempt_disable();
703 init_cpu_timer();
704 init_cpu_vtimer();
705 pfault_init();
706 notify_cpu_starting(smp_processor_id());
707 set_cpu_online(smp_processor_id(), true);
708 inc_irq_stat(CPU_RST);
709 local_irq_enable();
710 cpu_startup_entry(CPUHP_ONLINE);
711 }
712
713 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)714 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
715 {
716 struct pcpu *pcpu;
717 int rc;
718
719 pcpu = pcpu_devices + cpu;
720 if (pcpu->state != CPU_STATE_CONFIGURED)
721 return -EIO;
722 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
723 SIGP_CC_ORDER_CODE_ACCEPTED)
724 return -EIO;
725
726 rc = pcpu_alloc_lowcore(pcpu, cpu);
727 if (rc)
728 return rc;
729 pcpu_prepare_secondary(pcpu, cpu);
730 pcpu_attach_task(pcpu, tidle);
731 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
732 while (!cpu_online(cpu))
733 cpu_relax();
734 return 0;
735 }
736
setup_possible_cpus(char * s)737 static int __init setup_possible_cpus(char *s)
738 {
739 int max, cpu;
740
741 if (kstrtoint(s, 0, &max) < 0)
742 return 0;
743 init_cpu_possible(cpumask_of(0));
744 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
745 set_cpu_possible(cpu, true);
746 return 0;
747 }
748 early_param("possible_cpus", setup_possible_cpus);
749
750 #ifdef CONFIG_HOTPLUG_CPU
751
__cpu_disable(void)752 int __cpu_disable(void)
753 {
754 unsigned long cregs[16];
755
756 /* Handle possible pending IPIs */
757 smp_handle_ext_call();
758 set_cpu_online(smp_processor_id(), false);
759 /* Disable pseudo page faults on this cpu. */
760 pfault_fini();
761 /* Disable interrupt sources via control register. */
762 __ctl_store(cregs, 0, 15);
763 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
764 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
765 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
766 __ctl_load(cregs, 0, 15);
767 return 0;
768 }
769
__cpu_die(unsigned int cpu)770 void __cpu_die(unsigned int cpu)
771 {
772 struct pcpu *pcpu;
773
774 /* Wait until target cpu is down */
775 pcpu = pcpu_devices + cpu;
776 while (!pcpu_stopped(pcpu))
777 cpu_relax();
778 pcpu_free_lowcore(pcpu);
779 atomic_dec(&init_mm.context.attach_count);
780 }
781
cpu_die(void)782 void __noreturn cpu_die(void)
783 {
784 idle_task_exit();
785 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
786 for (;;) ;
787 }
788
789 #endif /* CONFIG_HOTPLUG_CPU */
790
smp_prepare_cpus(unsigned int max_cpus)791 void __init smp_prepare_cpus(unsigned int max_cpus)
792 {
793 /* request the 0x1201 emergency signal external interrupt */
794 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
795 panic("Couldn't request external interrupt 0x1201");
796 /* request the 0x1202 external call external interrupt */
797 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
798 panic("Couldn't request external interrupt 0x1202");
799 smp_detect_cpus();
800 }
801
smp_prepare_boot_cpu(void)802 void __init smp_prepare_boot_cpu(void)
803 {
804 struct pcpu *pcpu = pcpu_devices;
805
806 boot_cpu_address = stap();
807 pcpu->state = CPU_STATE_CONFIGURED;
808 pcpu->address = boot_cpu_address;
809 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
810 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
811 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
812 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
813 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
814 S390_lowcore.percpu_offset = __per_cpu_offset[0];
815 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
816 set_cpu_present(0, true);
817 set_cpu_online(0, true);
818 }
819
smp_cpus_done(unsigned int max_cpus)820 void __init smp_cpus_done(unsigned int max_cpus)
821 {
822 }
823
smp_setup_processor_id(void)824 void __init smp_setup_processor_id(void)
825 {
826 S390_lowcore.cpu_nr = 0;
827 }
828
829 /*
830 * the frequency of the profiling timer can be changed
831 * by writing a multiplier value into /proc/profile.
832 *
833 * usually you want to run this on all CPUs ;)
834 */
setup_profiling_timer(unsigned int multiplier)835 int setup_profiling_timer(unsigned int multiplier)
836 {
837 return 0;
838 }
839
840 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)841 static ssize_t cpu_configure_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
843 {
844 ssize_t count;
845
846 mutex_lock(&smp_cpu_state_mutex);
847 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
848 mutex_unlock(&smp_cpu_state_mutex);
849 return count;
850 }
851
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)852 static ssize_t cpu_configure_store(struct device *dev,
853 struct device_attribute *attr,
854 const char *buf, size_t count)
855 {
856 struct pcpu *pcpu;
857 int cpu, val, rc;
858 char delim;
859
860 if (sscanf(buf, "%d %c", &val, &delim) != 1)
861 return -EINVAL;
862 if (val != 0 && val != 1)
863 return -EINVAL;
864 get_online_cpus();
865 mutex_lock(&smp_cpu_state_mutex);
866 rc = -EBUSY;
867 /* disallow configuration changes of online cpus and cpu 0 */
868 cpu = dev->id;
869 if (cpu_online(cpu) || cpu == 0)
870 goto out;
871 pcpu = pcpu_devices + cpu;
872 rc = 0;
873 switch (val) {
874 case 0:
875 if (pcpu->state != CPU_STATE_CONFIGURED)
876 break;
877 rc = sclp_cpu_deconfigure(pcpu->address);
878 if (rc)
879 break;
880 pcpu->state = CPU_STATE_STANDBY;
881 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
882 topology_expect_change();
883 break;
884 case 1:
885 if (pcpu->state != CPU_STATE_STANDBY)
886 break;
887 rc = sclp_cpu_configure(pcpu->address);
888 if (rc)
889 break;
890 pcpu->state = CPU_STATE_CONFIGURED;
891 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
892 topology_expect_change();
893 break;
894 default:
895 break;
896 }
897 out:
898 mutex_unlock(&smp_cpu_state_mutex);
899 put_online_cpus();
900 return rc ? rc : count;
901 }
902 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
903 #endif /* CONFIG_HOTPLUG_CPU */
904
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)905 static ssize_t show_cpu_address(struct device *dev,
906 struct device_attribute *attr, char *buf)
907 {
908 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
909 }
910 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
911
912 static struct attribute *cpu_common_attrs[] = {
913 #ifdef CONFIG_HOTPLUG_CPU
914 &dev_attr_configure.attr,
915 #endif
916 &dev_attr_address.attr,
917 NULL,
918 };
919
920 static struct attribute_group cpu_common_attr_group = {
921 .attrs = cpu_common_attrs,
922 };
923
show_idle_count(struct device * dev,struct device_attribute * attr,char * buf)924 static ssize_t show_idle_count(struct device *dev,
925 struct device_attribute *attr, char *buf)
926 {
927 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
928 unsigned long long idle_count;
929 unsigned int sequence;
930
931 do {
932 sequence = ACCESS_ONCE(idle->sequence);
933 idle_count = ACCESS_ONCE(idle->idle_count);
934 if (ACCESS_ONCE(idle->clock_idle_enter))
935 idle_count++;
936 } while ((sequence & 1) || (idle->sequence != sequence));
937 return sprintf(buf, "%llu\n", idle_count);
938 }
939 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
940
show_idle_time(struct device * dev,struct device_attribute * attr,char * buf)941 static ssize_t show_idle_time(struct device *dev,
942 struct device_attribute *attr, char *buf)
943 {
944 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
945 unsigned long long now, idle_time, idle_enter, idle_exit;
946 unsigned int sequence;
947
948 do {
949 now = get_tod_clock();
950 sequence = ACCESS_ONCE(idle->sequence);
951 idle_time = ACCESS_ONCE(idle->idle_time);
952 idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
953 idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
954 } while ((sequence & 1) || (idle->sequence != sequence));
955 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
956 return sprintf(buf, "%llu\n", idle_time >> 12);
957 }
958 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
959
960 static struct attribute *cpu_online_attrs[] = {
961 &dev_attr_idle_count.attr,
962 &dev_attr_idle_time_us.attr,
963 NULL,
964 };
965
966 static struct attribute_group cpu_online_attr_group = {
967 .attrs = cpu_online_attrs,
968 };
969
smp_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)970 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
971 unsigned long action, void *hcpu)
972 {
973 unsigned int cpu = (unsigned int)(long)hcpu;
974 struct cpu *c = &pcpu_devices[cpu].cpu;
975 struct device *s = &c->dev;
976 int err = 0;
977
978 switch (action & ~CPU_TASKS_FROZEN) {
979 case CPU_ONLINE:
980 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
981 break;
982 case CPU_DEAD:
983 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
984 break;
985 }
986 return notifier_from_errno(err);
987 }
988
smp_add_present_cpu(int cpu)989 static int __cpuinit smp_add_present_cpu(int cpu)
990 {
991 struct cpu *c = &pcpu_devices[cpu].cpu;
992 struct device *s = &c->dev;
993 int rc;
994
995 c->hotpluggable = 1;
996 rc = register_cpu(c, cpu);
997 if (rc)
998 goto out;
999 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1000 if (rc)
1001 goto out_cpu;
1002 if (cpu_online(cpu)) {
1003 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1004 if (rc)
1005 goto out_online;
1006 }
1007 rc = topology_cpu_init(c);
1008 if (rc)
1009 goto out_topology;
1010 return 0;
1011
1012 out_topology:
1013 if (cpu_online(cpu))
1014 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1015 out_online:
1016 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1017 out_cpu:
1018 #ifdef CONFIG_HOTPLUG_CPU
1019 unregister_cpu(c);
1020 #endif
1021 out:
1022 return rc;
1023 }
1024
1025 #ifdef CONFIG_HOTPLUG_CPU
1026
smp_rescan_cpus(void)1027 int __ref smp_rescan_cpus(void)
1028 {
1029 struct sclp_cpu_info *info;
1030 int nr;
1031
1032 info = smp_get_cpu_info();
1033 if (!info)
1034 return -ENOMEM;
1035 get_online_cpus();
1036 mutex_lock(&smp_cpu_state_mutex);
1037 nr = __smp_rescan_cpus(info, 1);
1038 mutex_unlock(&smp_cpu_state_mutex);
1039 put_online_cpus();
1040 kfree(info);
1041 if (nr)
1042 topology_schedule_update();
1043 return 0;
1044 }
1045
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1046 static ssize_t __ref rescan_store(struct device *dev,
1047 struct device_attribute *attr,
1048 const char *buf,
1049 size_t count)
1050 {
1051 int rc;
1052
1053 rc = smp_rescan_cpus();
1054 return rc ? rc : count;
1055 }
1056 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1057 #endif /* CONFIG_HOTPLUG_CPU */
1058
s390_smp_init(void)1059 static int __init s390_smp_init(void)
1060 {
1061 int cpu, rc;
1062
1063 hotcpu_notifier(smp_cpu_notify, 0);
1064 #ifdef CONFIG_HOTPLUG_CPU
1065 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1066 if (rc)
1067 return rc;
1068 #endif
1069 for_each_present_cpu(cpu) {
1070 rc = smp_add_present_cpu(cpu);
1071 if (rc)
1072 return rc;
1073 }
1074 return 0;
1075 }
1076 subsys_initcall(s390_smp_init);
1077