• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49 
50 enum {
51 	ec_schedule = 0,
52 	ec_call_function,
53 	ec_call_function_single,
54 	ec_stop_cpu,
55 };
56 
57 enum {
58 	CPU_STATE_STANDBY,
59 	CPU_STATE_CONFIGURED,
60 };
61 
62 struct pcpu {
63 	struct cpu cpu;
64 	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
65 	unsigned long async_stack;	/* async stack for the cpu */
66 	unsigned long panic_stack;	/* panic stack for the cpu */
67 	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
68 	int state;			/* physical cpu state */
69 	int polarization;		/* physical polarization */
70 	u16 address;			/* physical cpu address */
71 };
72 
73 static u8 boot_cpu_type;
74 static u16 boot_cpu_address;
75 static struct pcpu pcpu_devices[NR_CPUS];
76 
77 /*
78  * The smp_cpu_state_mutex must be held when changing the state or polarization
79  * member of a pcpu data structure within the pcpu_devices arreay.
80  */
81 DEFINE_MUTEX(smp_cpu_state_mutex);
82 
83 /*
84  * Signal processor helper functions.
85  */
__pcpu_sigp(u16 addr,u8 order,u32 parm,u32 * status)86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
87 {
88 	register unsigned int reg1 asm ("1") = parm;
89 	int cc;
90 
91 	asm volatile(
92 		"	sigp	%1,%2,0(%3)\n"
93 		"	ipm	%0\n"
94 		"	srl	%0,28\n"
95 		: "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
96 	if (status && cc == 1)
97 		*status = reg1;
98 	return cc;
99 }
100 
__pcpu_sigp_relax(u16 addr,u8 order,u32 parm,u32 * status)101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
102 {
103 	int cc;
104 
105 	while (1) {
106 		cc = __pcpu_sigp(addr, order, parm, NULL);
107 		if (cc != SIGP_CC_BUSY)
108 			return cc;
109 		cpu_relax();
110 	}
111 }
112 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
114 {
115 	int cc, retry;
116 
117 	for (retry = 0; ; retry++) {
118 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
119 		if (cc != SIGP_CC_BUSY)
120 			break;
121 		if (retry >= 3)
122 			udelay(10);
123 	}
124 	return cc;
125 }
126 
pcpu_stopped(struct pcpu * pcpu)127 static inline int pcpu_stopped(struct pcpu *pcpu)
128 {
129 	u32 uninitialized_var(status);
130 
131 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
132 			0, &status) != SIGP_CC_STATUS_STORED)
133 		return 0;
134 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
135 }
136 
pcpu_running(struct pcpu * pcpu)137 static inline int pcpu_running(struct pcpu *pcpu)
138 {
139 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
140 			0, NULL) != SIGP_CC_STATUS_STORED)
141 		return 1;
142 	/* Status stored condition code is equivalent to cpu not running. */
143 	return 0;
144 }
145 
146 /*
147  * Find struct pcpu by cpu address.
148  */
pcpu_find_address(const struct cpumask * mask,int address)149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
150 {
151 	int cpu;
152 
153 	for_each_cpu(cpu, mask)
154 		if (pcpu_devices[cpu].address == address)
155 			return pcpu_devices + cpu;
156 	return NULL;
157 }
158 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
160 {
161 	int order;
162 
163 	set_bit(ec_bit, &pcpu->ec_mask);
164 	order = pcpu_running(pcpu) ?
165 		SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
166 	pcpu_sigp_retry(pcpu, order, 0);
167 }
168 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
170 {
171 	struct _lowcore *lc;
172 
173 	if (pcpu != &pcpu_devices[0]) {
174 		pcpu->lowcore =	(struct _lowcore *)
175 			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
176 		pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
177 		pcpu->panic_stack = __get_free_page(GFP_KERNEL);
178 		if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
179 			goto out;
180 	}
181 	lc = pcpu->lowcore;
182 	memcpy(lc, &S390_lowcore, 512);
183 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
184 	lc->async_stack = pcpu->async_stack + ASYNC_SIZE
185 		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
186 	lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
187 		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
188 	lc->cpu_nr = cpu;
189 #ifndef CONFIG_64BIT
190 	if (MACHINE_HAS_IEEE) {
191 		lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
192 		if (!lc->extended_save_area_addr)
193 			goto out;
194 	}
195 #else
196 	if (vdso_alloc_per_cpu(lc))
197 		goto out;
198 #endif
199 	lowcore_ptr[cpu] = lc;
200 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
201 	return 0;
202 out:
203 	if (pcpu != &pcpu_devices[0]) {
204 		free_page(pcpu->panic_stack);
205 		free_pages(pcpu->async_stack, ASYNC_ORDER);
206 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
207 	}
208 	return -ENOMEM;
209 }
210 
211 #ifdef CONFIG_HOTPLUG_CPU
212 
pcpu_free_lowcore(struct pcpu * pcpu)213 static void pcpu_free_lowcore(struct pcpu *pcpu)
214 {
215 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
216 	lowcore_ptr[pcpu - pcpu_devices] = NULL;
217 #ifndef CONFIG_64BIT
218 	if (MACHINE_HAS_IEEE) {
219 		struct _lowcore *lc = pcpu->lowcore;
220 
221 		free_page((unsigned long) lc->extended_save_area_addr);
222 		lc->extended_save_area_addr = 0;
223 	}
224 #else
225 	vdso_free_per_cpu(pcpu->lowcore);
226 #endif
227 	if (pcpu != &pcpu_devices[0]) {
228 		free_page(pcpu->panic_stack);
229 		free_pages(pcpu->async_stack, ASYNC_ORDER);
230 		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231 	}
232 }
233 
234 #endif /* CONFIG_HOTPLUG_CPU */
235 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
237 {
238 	struct _lowcore *lc = pcpu->lowcore;
239 
240 	atomic_inc(&init_mm.context.attach_count);
241 	lc->cpu_nr = cpu;
242 	lc->percpu_offset = __per_cpu_offset[cpu];
243 	lc->kernel_asce = S390_lowcore.kernel_asce;
244 	lc->machine_flags = S390_lowcore.machine_flags;
245 	lc->ftrace_func = S390_lowcore.ftrace_func;
246 	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
247 	__ctl_store(lc->cregs_save_area, 0, 15);
248 	save_access_regs((unsigned int *) lc->access_regs_save_area);
249 	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
250 	       MAX_FACILITY_BIT/8);
251 }
252 
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)253 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
254 {
255 	struct _lowcore *lc = pcpu->lowcore;
256 	struct thread_info *ti = task_thread_info(tsk);
257 
258 	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
259 		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
260 	lc->thread_info = (unsigned long) task_thread_info(tsk);
261 	lc->current_task = (unsigned long) tsk;
262 	lc->user_timer = ti->user_timer;
263 	lc->system_timer = ti->system_timer;
264 	lc->steal_timer = 0;
265 }
266 
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)267 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
268 {
269 	struct _lowcore *lc = pcpu->lowcore;
270 
271 	lc->restart_stack = lc->kernel_stack;
272 	lc->restart_fn = (unsigned long) func;
273 	lc->restart_data = (unsigned long) data;
274 	lc->restart_source = -1UL;
275 	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
276 }
277 
278 /*
279  * Call function via PSW restart on pcpu and stop the current cpu.
280  */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)281 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
282 			  void *data, unsigned long stack)
283 {
284 	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
285 	unsigned long source_cpu = stap();
286 
287 	__load_psw_mask(psw_kernel_bits);
288 	if (pcpu->address == source_cpu)
289 		func(data);	/* should not return */
290 	/* Stop target cpu (if func returns this stops the current cpu). */
291 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
292 	/* Restart func on the target cpu and stop the current cpu. */
293 	mem_assign_absolute(lc->restart_stack, stack);
294 	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
295 	mem_assign_absolute(lc->restart_data, (unsigned long) data);
296 	mem_assign_absolute(lc->restart_source, source_cpu);
297 	asm volatile(
298 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
299 		"	brc	2,0b	# busy, try again\n"
300 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
301 		"	brc	2,1b	# busy, try again\n"
302 		: : "d" (pcpu->address), "d" (source_cpu),
303 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
304 		: "0", "1", "cc");
305 	for (;;) ;
306 }
307 
308 /*
309  * Call function on an online CPU.
310  */
smp_call_online_cpu(void (* func)(void *),void * data)311 void smp_call_online_cpu(void (*func)(void *), void *data)
312 {
313 	struct pcpu *pcpu;
314 
315 	/* Use the current cpu if it is online. */
316 	pcpu = pcpu_find_address(cpu_online_mask, stap());
317 	if (!pcpu)
318 		/* Use the first online cpu. */
319 		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
320 	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
321 }
322 
323 /*
324  * Call function on the ipl CPU.
325  */
smp_call_ipl_cpu(void (* func)(void *),void * data)326 void smp_call_ipl_cpu(void (*func)(void *), void *data)
327 {
328 	pcpu_delegate(&pcpu_devices[0], func, data,
329 		      pcpu_devices->panic_stack + PAGE_SIZE);
330 }
331 
smp_find_processor_id(u16 address)332 int smp_find_processor_id(u16 address)
333 {
334 	int cpu;
335 
336 	for_each_present_cpu(cpu)
337 		if (pcpu_devices[cpu].address == address)
338 			return cpu;
339 	return -1;
340 }
341 
smp_vcpu_scheduled(int cpu)342 int smp_vcpu_scheduled(int cpu)
343 {
344 	return pcpu_running(pcpu_devices + cpu);
345 }
346 
smp_yield(void)347 void smp_yield(void)
348 {
349 	if (MACHINE_HAS_DIAG44)
350 		asm volatile("diag 0,0,0x44");
351 }
352 
smp_yield_cpu(int cpu)353 void smp_yield_cpu(int cpu)
354 {
355 	if (MACHINE_HAS_DIAG9C)
356 		asm volatile("diag %0,0,0x9c"
357 			     : : "d" (pcpu_devices[cpu].address));
358 	else if (MACHINE_HAS_DIAG44)
359 		asm volatile("diag 0,0,0x44");
360 }
361 
362 /*
363  * Send cpus emergency shutdown signal. This gives the cpus the
364  * opportunity to complete outstanding interrupts.
365  */
smp_emergency_stop(cpumask_t * cpumask)366 void smp_emergency_stop(cpumask_t *cpumask)
367 {
368 	u64 end;
369 	int cpu;
370 
371 	end = get_tod_clock() + (1000000UL << 12);
372 	for_each_cpu(cpu, cpumask) {
373 		struct pcpu *pcpu = pcpu_devices + cpu;
374 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
375 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
376 				   0, NULL) == SIGP_CC_BUSY &&
377 		       get_tod_clock() < end)
378 			cpu_relax();
379 	}
380 	while (get_tod_clock() < end) {
381 		for_each_cpu(cpu, cpumask)
382 			if (pcpu_stopped(pcpu_devices + cpu))
383 				cpumask_clear_cpu(cpu, cpumask);
384 		if (cpumask_empty(cpumask))
385 			break;
386 		cpu_relax();
387 	}
388 }
389 
390 /*
391  * Stop all cpus but the current one.
392  */
smp_send_stop(void)393 void smp_send_stop(void)
394 {
395 	cpumask_t cpumask;
396 	int cpu;
397 
398 	/* Disable all interrupts/machine checks */
399 	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
400 	trace_hardirqs_off();
401 
402 	debug_set_critical();
403 	cpumask_copy(&cpumask, cpu_online_mask);
404 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
405 
406 	if (oops_in_progress)
407 		smp_emergency_stop(&cpumask);
408 
409 	/* stop all processors */
410 	for_each_cpu(cpu, &cpumask) {
411 		struct pcpu *pcpu = pcpu_devices + cpu;
412 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
413 		while (!pcpu_stopped(pcpu))
414 			cpu_relax();
415 	}
416 }
417 
418 /*
419  * Stop the current cpu.
420  */
smp_stop_cpu(void)421 void smp_stop_cpu(void)
422 {
423 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
424 	for (;;) ;
425 }
426 
427 /*
428  * This is the main routine where commands issued by other
429  * cpus are handled.
430  */
smp_handle_ext_call(void)431 static void smp_handle_ext_call(void)
432 {
433 	unsigned long bits;
434 
435 	/* handle bit signal external calls */
436 	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
437 	if (test_bit(ec_stop_cpu, &bits))
438 		smp_stop_cpu();
439 	if (test_bit(ec_schedule, &bits))
440 		scheduler_ipi();
441 	if (test_bit(ec_call_function, &bits))
442 		generic_smp_call_function_interrupt();
443 	if (test_bit(ec_call_function_single, &bits))
444 		generic_smp_call_function_single_interrupt();
445 }
446 
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)447 static void do_ext_call_interrupt(struct ext_code ext_code,
448 				  unsigned int param32, unsigned long param64)
449 {
450 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
451 	smp_handle_ext_call();
452 }
453 
arch_send_call_function_ipi_mask(const struct cpumask * mask)454 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
455 {
456 	int cpu;
457 
458 	for_each_cpu(cpu, mask)
459 		pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
460 }
461 
arch_send_call_function_single_ipi(int cpu)462 void arch_send_call_function_single_ipi(int cpu)
463 {
464 	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
465 }
466 
467 #ifndef CONFIG_64BIT
468 /*
469  * this function sends a 'purge tlb' signal to another CPU.
470  */
smp_ptlb_callback(void * info)471 static void smp_ptlb_callback(void *info)
472 {
473 	__tlb_flush_local();
474 }
475 
smp_ptlb_all(void)476 void smp_ptlb_all(void)
477 {
478 	on_each_cpu(smp_ptlb_callback, NULL, 1);
479 }
480 EXPORT_SYMBOL(smp_ptlb_all);
481 #endif /* ! CONFIG_64BIT */
482 
483 /*
484  * this function sends a 'reschedule' IPI to another CPU.
485  * it goes straight through and wastes no time serializing
486  * anything. Worst case is that we lose a reschedule ...
487  */
smp_send_reschedule(int cpu)488 void smp_send_reschedule(int cpu)
489 {
490 	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
491 }
492 
493 /*
494  * parameter area for the set/clear control bit callbacks
495  */
496 struct ec_creg_mask_parms {
497 	unsigned long orval;
498 	unsigned long andval;
499 	int cr;
500 };
501 
502 /*
503  * callback for setting/clearing control bits
504  */
smp_ctl_bit_callback(void * info)505 static void smp_ctl_bit_callback(void *info)
506 {
507 	struct ec_creg_mask_parms *pp = info;
508 	unsigned long cregs[16];
509 
510 	__ctl_store(cregs, 0, 15);
511 	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
512 	__ctl_load(cregs, 0, 15);
513 }
514 
515 /*
516  * Set a bit in a control register of all cpus
517  */
smp_ctl_set_bit(int cr,int bit)518 void smp_ctl_set_bit(int cr, int bit)
519 {
520 	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
521 
522 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
523 }
524 EXPORT_SYMBOL(smp_ctl_set_bit);
525 
526 /*
527  * Clear a bit in a control register of all cpus
528  */
smp_ctl_clear_bit(int cr,int bit)529 void smp_ctl_clear_bit(int cr, int bit)
530 {
531 	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
532 
533 	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
534 }
535 EXPORT_SYMBOL(smp_ctl_clear_bit);
536 
537 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
538 
539 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
540 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
541 
smp_get_save_area(int cpu,u16 address)542 static void __init smp_get_save_area(int cpu, u16 address)
543 {
544 	void *lc = pcpu_devices[0].lowcore;
545 	struct save_area *save_area;
546 
547 	if (is_kdump_kernel())
548 		return;
549 	if (!OLDMEM_BASE && (address == boot_cpu_address ||
550 			     ipl_info.type != IPL_TYPE_FCP_DUMP))
551 		return;
552 	if (cpu >= NR_CPUS) {
553 		pr_warning("CPU %i exceeds the maximum %i and is excluded "
554 			   "from the dump\n", cpu, NR_CPUS - 1);
555 		return;
556 	}
557 	save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
558 	if (!save_area)
559 		panic("could not allocate memory for save area\n");
560 	zfcpdump_save_areas[cpu] = save_area;
561 #ifdef CONFIG_CRASH_DUMP
562 	if (address == boot_cpu_address) {
563 		/* Copy the registers of the boot cpu. */
564 		copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
565 				 SAVE_AREA_BASE - PAGE_SIZE, 0);
566 		return;
567 	}
568 #endif
569 	/* Get the registers of a non-boot cpu. */
570 	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
571 	memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
572 }
573 
smp_store_status(int cpu)574 int smp_store_status(int cpu)
575 {
576 	struct pcpu *pcpu;
577 
578 	pcpu = pcpu_devices + cpu;
579 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
580 			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
581 		return -EIO;
582 	return 0;
583 }
584 
585 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
586 
smp_get_save_area(int cpu,u16 address)587 static inline void smp_get_save_area(int cpu, u16 address) { }
588 
589 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
590 
smp_cpu_set_polarization(int cpu,int val)591 void smp_cpu_set_polarization(int cpu, int val)
592 {
593 	pcpu_devices[cpu].polarization = val;
594 }
595 
smp_cpu_get_polarization(int cpu)596 int smp_cpu_get_polarization(int cpu)
597 {
598 	return pcpu_devices[cpu].polarization;
599 }
600 
smp_get_cpu_info(void)601 static struct sclp_cpu_info *smp_get_cpu_info(void)
602 {
603 	static int use_sigp_detection;
604 	struct sclp_cpu_info *info;
605 	int address;
606 
607 	info = kzalloc(sizeof(*info), GFP_KERNEL);
608 	if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
609 		use_sigp_detection = 1;
610 		for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
611 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
612 			    SIGP_CC_NOT_OPERATIONAL)
613 				continue;
614 			info->cpu[info->configured].address = address;
615 			info->configured++;
616 		}
617 		info->combined = info->configured;
618 	}
619 	return info;
620 }
621 
622 static int __cpuinit smp_add_present_cpu(int cpu);
623 
__smp_rescan_cpus(struct sclp_cpu_info * info,int sysfs_add)624 static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info,
625 				       int sysfs_add)
626 {
627 	struct pcpu *pcpu;
628 	cpumask_t avail;
629 	int cpu, nr, i;
630 
631 	nr = 0;
632 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
633 	cpu = cpumask_first(&avail);
634 	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
635 		if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
636 			continue;
637 		if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
638 			continue;
639 		pcpu = pcpu_devices + cpu;
640 		pcpu->address = info->cpu[i].address;
641 		pcpu->state = (i >= info->configured) ?
642 			CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
643 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
644 		set_cpu_present(cpu, true);
645 		if (sysfs_add && smp_add_present_cpu(cpu) != 0)
646 			set_cpu_present(cpu, false);
647 		else
648 			nr++;
649 		cpu = cpumask_next(cpu, &avail);
650 	}
651 	return nr;
652 }
653 
smp_detect_cpus(void)654 static void __init smp_detect_cpus(void)
655 {
656 	unsigned int cpu, c_cpus, s_cpus;
657 	struct sclp_cpu_info *info;
658 
659 	info = smp_get_cpu_info();
660 	if (!info)
661 		panic("smp_detect_cpus failed to allocate memory\n");
662 	if (info->has_cpu_type) {
663 		for (cpu = 0; cpu < info->combined; cpu++) {
664 			if (info->cpu[cpu].address != boot_cpu_address)
665 				continue;
666 			/* The boot cpu dictates the cpu type. */
667 			boot_cpu_type = info->cpu[cpu].type;
668 			break;
669 		}
670 	}
671 	c_cpus = s_cpus = 0;
672 	for (cpu = 0; cpu < info->combined; cpu++) {
673 		if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
674 			continue;
675 		if (cpu < info->configured) {
676 			smp_get_save_area(c_cpus, info->cpu[cpu].address);
677 			c_cpus++;
678 		} else
679 			s_cpus++;
680 	}
681 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
682 	get_online_cpus();
683 	__smp_rescan_cpus(info, 0);
684 	put_online_cpus();
685 	kfree(info);
686 }
687 
688 /*
689  *	Activate a secondary processor.
690  */
smp_start_secondary(void * cpuvoid)691 static void __cpuinit smp_start_secondary(void *cpuvoid)
692 {
693 	S390_lowcore.last_update_clock = get_tod_clock();
694 	S390_lowcore.restart_stack = (unsigned long) restart_stack;
695 	S390_lowcore.restart_fn = (unsigned long) do_restart;
696 	S390_lowcore.restart_data = 0;
697 	S390_lowcore.restart_source = -1UL;
698 	restore_access_regs(S390_lowcore.access_regs_save_area);
699 	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
700 	__load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
701 	cpu_init();
702 	preempt_disable();
703 	init_cpu_timer();
704 	init_cpu_vtimer();
705 	pfault_init();
706 	notify_cpu_starting(smp_processor_id());
707 	set_cpu_online(smp_processor_id(), true);
708 	inc_irq_stat(CPU_RST);
709 	local_irq_enable();
710 	cpu_startup_entry(CPUHP_ONLINE);
711 }
712 
713 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)714 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
715 {
716 	struct pcpu *pcpu;
717 	int rc;
718 
719 	pcpu = pcpu_devices + cpu;
720 	if (pcpu->state != CPU_STATE_CONFIGURED)
721 		return -EIO;
722 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
723 	    SIGP_CC_ORDER_CODE_ACCEPTED)
724 		return -EIO;
725 
726 	rc = pcpu_alloc_lowcore(pcpu, cpu);
727 	if (rc)
728 		return rc;
729 	pcpu_prepare_secondary(pcpu, cpu);
730 	pcpu_attach_task(pcpu, tidle);
731 	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
732 	while (!cpu_online(cpu))
733 		cpu_relax();
734 	return 0;
735 }
736 
setup_possible_cpus(char * s)737 static int __init setup_possible_cpus(char *s)
738 {
739 	int max, cpu;
740 
741 	if (kstrtoint(s, 0, &max) < 0)
742 		return 0;
743 	init_cpu_possible(cpumask_of(0));
744 	for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
745 		set_cpu_possible(cpu, true);
746 	return 0;
747 }
748 early_param("possible_cpus", setup_possible_cpus);
749 
750 #ifdef CONFIG_HOTPLUG_CPU
751 
__cpu_disable(void)752 int __cpu_disable(void)
753 {
754 	unsigned long cregs[16];
755 
756 	/* Handle possible pending IPIs */
757 	smp_handle_ext_call();
758 	set_cpu_online(smp_processor_id(), false);
759 	/* Disable pseudo page faults on this cpu. */
760 	pfault_fini();
761 	/* Disable interrupt sources via control register. */
762 	__ctl_store(cregs, 0, 15);
763 	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
764 	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
765 	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
766 	__ctl_load(cregs, 0, 15);
767 	return 0;
768 }
769 
__cpu_die(unsigned int cpu)770 void __cpu_die(unsigned int cpu)
771 {
772 	struct pcpu *pcpu;
773 
774 	/* Wait until target cpu is down */
775 	pcpu = pcpu_devices + cpu;
776 	while (!pcpu_stopped(pcpu))
777 		cpu_relax();
778 	pcpu_free_lowcore(pcpu);
779 	atomic_dec(&init_mm.context.attach_count);
780 }
781 
cpu_die(void)782 void __noreturn cpu_die(void)
783 {
784 	idle_task_exit();
785 	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
786 	for (;;) ;
787 }
788 
789 #endif /* CONFIG_HOTPLUG_CPU */
790 
smp_prepare_cpus(unsigned int max_cpus)791 void __init smp_prepare_cpus(unsigned int max_cpus)
792 {
793 	/* request the 0x1201 emergency signal external interrupt */
794 	if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
795 		panic("Couldn't request external interrupt 0x1201");
796 	/* request the 0x1202 external call external interrupt */
797 	if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
798 		panic("Couldn't request external interrupt 0x1202");
799 	smp_detect_cpus();
800 }
801 
smp_prepare_boot_cpu(void)802 void __init smp_prepare_boot_cpu(void)
803 {
804 	struct pcpu *pcpu = pcpu_devices;
805 
806 	boot_cpu_address = stap();
807 	pcpu->state = CPU_STATE_CONFIGURED;
808 	pcpu->address = boot_cpu_address;
809 	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
810 	pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
811 		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
812 	pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
813 		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
814 	S390_lowcore.percpu_offset = __per_cpu_offset[0];
815 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
816 	set_cpu_present(0, true);
817 	set_cpu_online(0, true);
818 }
819 
smp_cpus_done(unsigned int max_cpus)820 void __init smp_cpus_done(unsigned int max_cpus)
821 {
822 }
823 
smp_setup_processor_id(void)824 void __init smp_setup_processor_id(void)
825 {
826 	S390_lowcore.cpu_nr = 0;
827 }
828 
829 /*
830  * the frequency of the profiling timer can be changed
831  * by writing a multiplier value into /proc/profile.
832  *
833  * usually you want to run this on all CPUs ;)
834  */
setup_profiling_timer(unsigned int multiplier)835 int setup_profiling_timer(unsigned int multiplier)
836 {
837 	return 0;
838 }
839 
840 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)841 static ssize_t cpu_configure_show(struct device *dev,
842 				  struct device_attribute *attr, char *buf)
843 {
844 	ssize_t count;
845 
846 	mutex_lock(&smp_cpu_state_mutex);
847 	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
848 	mutex_unlock(&smp_cpu_state_mutex);
849 	return count;
850 }
851 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)852 static ssize_t cpu_configure_store(struct device *dev,
853 				   struct device_attribute *attr,
854 				   const char *buf, size_t count)
855 {
856 	struct pcpu *pcpu;
857 	int cpu, val, rc;
858 	char delim;
859 
860 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
861 		return -EINVAL;
862 	if (val != 0 && val != 1)
863 		return -EINVAL;
864 	get_online_cpus();
865 	mutex_lock(&smp_cpu_state_mutex);
866 	rc = -EBUSY;
867 	/* disallow configuration changes of online cpus and cpu 0 */
868 	cpu = dev->id;
869 	if (cpu_online(cpu) || cpu == 0)
870 		goto out;
871 	pcpu = pcpu_devices + cpu;
872 	rc = 0;
873 	switch (val) {
874 	case 0:
875 		if (pcpu->state != CPU_STATE_CONFIGURED)
876 			break;
877 		rc = sclp_cpu_deconfigure(pcpu->address);
878 		if (rc)
879 			break;
880 		pcpu->state = CPU_STATE_STANDBY;
881 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
882 		topology_expect_change();
883 		break;
884 	case 1:
885 		if (pcpu->state != CPU_STATE_STANDBY)
886 			break;
887 		rc = sclp_cpu_configure(pcpu->address);
888 		if (rc)
889 			break;
890 		pcpu->state = CPU_STATE_CONFIGURED;
891 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
892 		topology_expect_change();
893 		break;
894 	default:
895 		break;
896 	}
897 out:
898 	mutex_unlock(&smp_cpu_state_mutex);
899 	put_online_cpus();
900 	return rc ? rc : count;
901 }
902 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
903 #endif /* CONFIG_HOTPLUG_CPU */
904 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)905 static ssize_t show_cpu_address(struct device *dev,
906 				struct device_attribute *attr, char *buf)
907 {
908 	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
909 }
910 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
911 
912 static struct attribute *cpu_common_attrs[] = {
913 #ifdef CONFIG_HOTPLUG_CPU
914 	&dev_attr_configure.attr,
915 #endif
916 	&dev_attr_address.attr,
917 	NULL,
918 };
919 
920 static struct attribute_group cpu_common_attr_group = {
921 	.attrs = cpu_common_attrs,
922 };
923 
show_idle_count(struct device * dev,struct device_attribute * attr,char * buf)924 static ssize_t show_idle_count(struct device *dev,
925 				struct device_attribute *attr, char *buf)
926 {
927 	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
928 	unsigned long long idle_count;
929 	unsigned int sequence;
930 
931 	do {
932 		sequence = ACCESS_ONCE(idle->sequence);
933 		idle_count = ACCESS_ONCE(idle->idle_count);
934 		if (ACCESS_ONCE(idle->clock_idle_enter))
935 			idle_count++;
936 	} while ((sequence & 1) || (idle->sequence != sequence));
937 	return sprintf(buf, "%llu\n", idle_count);
938 }
939 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
940 
show_idle_time(struct device * dev,struct device_attribute * attr,char * buf)941 static ssize_t show_idle_time(struct device *dev,
942 				struct device_attribute *attr, char *buf)
943 {
944 	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
945 	unsigned long long now, idle_time, idle_enter, idle_exit;
946 	unsigned int sequence;
947 
948 	do {
949 		now = get_tod_clock();
950 		sequence = ACCESS_ONCE(idle->sequence);
951 		idle_time = ACCESS_ONCE(idle->idle_time);
952 		idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
953 		idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
954 	} while ((sequence & 1) || (idle->sequence != sequence));
955 	idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
956 	return sprintf(buf, "%llu\n", idle_time >> 12);
957 }
958 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
959 
960 static struct attribute *cpu_online_attrs[] = {
961 	&dev_attr_idle_count.attr,
962 	&dev_attr_idle_time_us.attr,
963 	NULL,
964 };
965 
966 static struct attribute_group cpu_online_attr_group = {
967 	.attrs = cpu_online_attrs,
968 };
969 
smp_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)970 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
971 				    unsigned long action, void *hcpu)
972 {
973 	unsigned int cpu = (unsigned int)(long)hcpu;
974 	struct cpu *c = &pcpu_devices[cpu].cpu;
975 	struct device *s = &c->dev;
976 	int err = 0;
977 
978 	switch (action & ~CPU_TASKS_FROZEN) {
979 	case CPU_ONLINE:
980 		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
981 		break;
982 	case CPU_DEAD:
983 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
984 		break;
985 	}
986 	return notifier_from_errno(err);
987 }
988 
smp_add_present_cpu(int cpu)989 static int __cpuinit smp_add_present_cpu(int cpu)
990 {
991 	struct cpu *c = &pcpu_devices[cpu].cpu;
992 	struct device *s = &c->dev;
993 	int rc;
994 
995 	c->hotpluggable = 1;
996 	rc = register_cpu(c, cpu);
997 	if (rc)
998 		goto out;
999 	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1000 	if (rc)
1001 		goto out_cpu;
1002 	if (cpu_online(cpu)) {
1003 		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1004 		if (rc)
1005 			goto out_online;
1006 	}
1007 	rc = topology_cpu_init(c);
1008 	if (rc)
1009 		goto out_topology;
1010 	return 0;
1011 
1012 out_topology:
1013 	if (cpu_online(cpu))
1014 		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1015 out_online:
1016 	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1017 out_cpu:
1018 #ifdef CONFIG_HOTPLUG_CPU
1019 	unregister_cpu(c);
1020 #endif
1021 out:
1022 	return rc;
1023 }
1024 
1025 #ifdef CONFIG_HOTPLUG_CPU
1026 
smp_rescan_cpus(void)1027 int __ref smp_rescan_cpus(void)
1028 {
1029 	struct sclp_cpu_info *info;
1030 	int nr;
1031 
1032 	info = smp_get_cpu_info();
1033 	if (!info)
1034 		return -ENOMEM;
1035 	get_online_cpus();
1036 	mutex_lock(&smp_cpu_state_mutex);
1037 	nr = __smp_rescan_cpus(info, 1);
1038 	mutex_unlock(&smp_cpu_state_mutex);
1039 	put_online_cpus();
1040 	kfree(info);
1041 	if (nr)
1042 		topology_schedule_update();
1043 	return 0;
1044 }
1045 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1046 static ssize_t __ref rescan_store(struct device *dev,
1047 				  struct device_attribute *attr,
1048 				  const char *buf,
1049 				  size_t count)
1050 {
1051 	int rc;
1052 
1053 	rc = smp_rescan_cpus();
1054 	return rc ? rc : count;
1055 }
1056 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1057 #endif /* CONFIG_HOTPLUG_CPU */
1058 
s390_smp_init(void)1059 static int __init s390_smp_init(void)
1060 {
1061 	int cpu, rc;
1062 
1063 	hotcpu_notifier(smp_cpu_notify, 0);
1064 #ifdef CONFIG_HOTPLUG_CPU
1065 	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1066 	if (rc)
1067 		return rc;
1068 #endif
1069 	for_each_present_cpu(cpu) {
1070 		rc = smp_add_present_cpu(cpu);
1071 		if (rc)
1072 			return rc;
1073 	}
1074 	return 0;
1075 }
1076 subsys_initcall(s390_smp_init);
1077