• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34 
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
snd_pcm_playback_silence(struct snd_pcm_substream * substream,snd_pcm_uframes_t new_hw_ptr)44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 	struct snd_pcm_runtime *runtime = substream->runtime;
47 	snd_pcm_uframes_t frames, ofs, transfer;
48 
49 	if (runtime->silence_size < runtime->boundary) {
50 		snd_pcm_sframes_t noise_dist, n;
51 		if (runtime->silence_start != runtime->control->appl_ptr) {
52 			n = runtime->control->appl_ptr - runtime->silence_start;
53 			if (n < 0)
54 				n += runtime->boundary;
55 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 				runtime->silence_filled -= n;
57 			else
58 				runtime->silence_filled = 0;
59 			runtime->silence_start = runtime->control->appl_ptr;
60 		}
61 		if (runtime->silence_filled >= runtime->buffer_size)
62 			return;
63 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 			return;
66 		frames = runtime->silence_threshold - noise_dist;
67 		if (frames > runtime->silence_size)
68 			frames = runtime->silence_size;
69 	} else {
70 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
71 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 			if (avail > runtime->buffer_size)
73 				avail = runtime->buffer_size;
74 			runtime->silence_filled = avail > 0 ? avail : 0;
75 			runtime->silence_start = (runtime->status->hw_ptr +
76 						  runtime->silence_filled) %
77 						 runtime->boundary;
78 		} else {
79 			ofs = runtime->status->hw_ptr;
80 			frames = new_hw_ptr - ofs;
81 			if ((snd_pcm_sframes_t)frames < 0)
82 				frames += runtime->boundary;
83 			runtime->silence_filled -= frames;
84 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 				runtime->silence_filled = 0;
86 				runtime->silence_start = new_hw_ptr;
87 			} else {
88 				runtime->silence_start = ofs;
89 			}
90 		}
91 		frames = runtime->buffer_size - runtime->silence_filled;
92 	}
93 	if (snd_BUG_ON(frames > runtime->buffer_size))
94 		return;
95 	if (frames == 0)
96 		return;
97 	ofs = runtime->silence_start % runtime->buffer_size;
98 	while (frames > 0) {
99 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 			if (substream->ops->silence) {
103 				int err;
104 				err = substream->ops->silence(substream, -1, ofs, transfer);
105 				snd_BUG_ON(err < 0);
106 			} else {
107 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 			}
110 		} else {
111 			unsigned int c;
112 			unsigned int channels = runtime->channels;
113 			if (substream->ops->silence) {
114 				for (c = 0; c < channels; ++c) {
115 					int err;
116 					err = substream->ops->silence(substream, c, ofs, transfer);
117 					snd_BUG_ON(err < 0);
118 				}
119 			} else {
120 				size_t dma_csize = runtime->dma_bytes / channels;
121 				for (c = 0; c < channels; ++c) {
122 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 				}
125 			}
126 		}
127 		runtime->silence_filled += transfer;
128 		frames -= transfer;
129 		ofs = 0;
130 	}
131 }
132 
133 #ifdef CONFIG_SND_DEBUG
snd_pcm_debug_name(struct snd_pcm_substream * substream,char * name,size_t len)134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 			   char *name, size_t len)
136 {
137 	snprintf(name, len, "pcmC%dD%d%c:%d",
138 		 substream->pcm->card->number,
139 		 substream->pcm->device,
140 		 substream->stream ? 'c' : 'p',
141 		 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145 
146 #define XRUN_DEBUG_BASIC	(1<<0)
147 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
151 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
153 
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155 
156 #define xrun_debug(substream, mask) \
157 			((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)	0
160 #endif
161 
162 #define dump_stack_on_xrun(substream) do {			\
163 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
164 			dump_stack();				\
165 	} while (0)
166 
xrun(struct snd_pcm_substream * substream)167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 	struct snd_pcm_runtime *runtime = substream->runtime;
170 
171 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 		char name[16];
176 		snd_pcm_debug_name(substream, name, sizeof(name));
177 		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
178 		dump_stack_on_xrun(substream);
179 	}
180 }
181 
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)				\
184 	do {								\
185 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
186 			xrun_log_show(substream);			\
187 			if (printk_ratelimit()) {			\
188 				snd_printd("PCM: " fmt, ##args);	\
189 			}						\
190 			dump_stack_on_xrun(substream);			\
191 		}							\
192 	} while (0)
193 
194 #define XRUN_LOG_CNT	10
195 
196 struct hwptr_log_entry {
197 	unsigned int in_interrupt;
198 	unsigned long jiffies;
199 	snd_pcm_uframes_t pos;
200 	snd_pcm_uframes_t period_size;
201 	snd_pcm_uframes_t buffer_size;
202 	snd_pcm_uframes_t old_hw_ptr;
203 	snd_pcm_uframes_t hw_ptr_base;
204 };
205 
206 struct snd_pcm_hwptr_log {
207 	unsigned int idx;
208 	unsigned int hit: 1;
209 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
210 };
211 
xrun_log(struct snd_pcm_substream * substream,snd_pcm_uframes_t pos,int in_interrupt)212 static void xrun_log(struct snd_pcm_substream *substream,
213 		     snd_pcm_uframes_t pos, int in_interrupt)
214 {
215 	struct snd_pcm_runtime *runtime = substream->runtime;
216 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
217 	struct hwptr_log_entry *entry;
218 
219 	if (log == NULL) {
220 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
221 		if (log == NULL)
222 			return;
223 		runtime->hwptr_log = log;
224 	} else {
225 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
226 			return;
227 	}
228 	entry = &log->entries[log->idx];
229 	entry->in_interrupt = in_interrupt;
230 	entry->jiffies = jiffies;
231 	entry->pos = pos;
232 	entry->period_size = runtime->period_size;
233 	entry->buffer_size = runtime->buffer_size;
234 	entry->old_hw_ptr = runtime->status->hw_ptr;
235 	entry->hw_ptr_base = runtime->hw_ptr_base;
236 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
237 }
238 
xrun_log_show(struct snd_pcm_substream * substream)239 static void xrun_log_show(struct snd_pcm_substream *substream)
240 {
241 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
242 	struct hwptr_log_entry *entry;
243 	char name[16];
244 	unsigned int idx;
245 	int cnt;
246 
247 	if (log == NULL)
248 		return;
249 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
250 		return;
251 	snd_pcm_debug_name(substream, name, sizeof(name));
252 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
253 		entry = &log->entries[idx];
254 		if (entry->period_size == 0)
255 			break;
256 		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
257 			   "hwptr=%ld/%ld\n",
258 			   name, entry->in_interrupt ? "[Q] " : "",
259 			   entry->jiffies,
260 			   (unsigned long)entry->pos,
261 			   (unsigned long)entry->period_size,
262 			   (unsigned long)entry->buffer_size,
263 			   (unsigned long)entry->old_hw_ptr,
264 			   (unsigned long)entry->hw_ptr_base);
265 		idx++;
266 		idx %= XRUN_LOG_CNT;
267 	}
268 	log->hit = 1;
269 }
270 
271 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
272 
273 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
274 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
275 #define xrun_log_show(substream)	do { } while (0)
276 
277 #endif
278 
snd_pcm_update_state(struct snd_pcm_substream * substream,struct snd_pcm_runtime * runtime)279 int snd_pcm_update_state(struct snd_pcm_substream *substream,
280 			 struct snd_pcm_runtime *runtime)
281 {
282 	snd_pcm_uframes_t avail;
283 
284 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
285 		avail = snd_pcm_playback_avail(runtime);
286 	else
287 		avail = snd_pcm_capture_avail(runtime);
288 	if (avail > runtime->avail_max)
289 		runtime->avail_max = avail;
290 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
291 		if (avail >= runtime->buffer_size) {
292 			snd_pcm_drain_done(substream);
293 			return -EPIPE;
294 		}
295 	} else {
296 		if (avail >= runtime->stop_threshold) {
297 			xrun(substream);
298 			return -EPIPE;
299 		}
300 	}
301 	if (runtime->twake) {
302 		if (avail >= runtime->twake)
303 			wake_up(&runtime->tsleep);
304 	} else if (avail >= runtime->control->avail_min)
305 		wake_up(&runtime->sleep);
306 	return 0;
307 }
308 
snd_pcm_update_hw_ptr0(struct snd_pcm_substream * substream,unsigned int in_interrupt)309 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
310 				  unsigned int in_interrupt)
311 {
312 	struct snd_pcm_runtime *runtime = substream->runtime;
313 	snd_pcm_uframes_t pos;
314 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315 	snd_pcm_sframes_t hdelta, delta;
316 	unsigned long jdelta;
317 	unsigned long curr_jiffies;
318 	struct timespec curr_tstamp;
319 	struct timespec audio_tstamp;
320 	int crossed_boundary = 0;
321 
322 	old_hw_ptr = runtime->status->hw_ptr;
323 
324 	/*
325 	 * group pointer, time and jiffies reads to allow for more
326 	 * accurate correlations/corrections.
327 	 * The values are stored at the end of this routine after
328 	 * corrections for hw_ptr position
329 	 */
330 	pos = substream->ops->pointer(substream);
331 	curr_jiffies = jiffies;
332 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
333 		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
334 
335 		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
336 			(substream->ops->wall_clock))
337 			substream->ops->wall_clock(substream, &audio_tstamp);
338 	}
339 
340 	if (pos == SNDRV_PCM_POS_XRUN) {
341 		xrun(substream);
342 		return -EPIPE;
343 	}
344 	if (pos >= runtime->buffer_size) {
345 		if (printk_ratelimit()) {
346 			char name[16];
347 			snd_pcm_debug_name(substream, name, sizeof(name));
348 			xrun_log_show(substream);
349 			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
350 				   "buffer size = %ld, period size = %ld\n",
351 				   name, pos, runtime->buffer_size,
352 				   runtime->period_size);
353 		}
354 		pos = 0;
355 	}
356 	pos -= pos % runtime->min_align;
357 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
358 		xrun_log(substream, pos, in_interrupt);
359 	hw_base = runtime->hw_ptr_base;
360 	new_hw_ptr = hw_base + pos;
361 	if (in_interrupt) {
362 		/* we know that one period was processed */
363 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
364 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
365 		if (delta > new_hw_ptr) {
366 			/* check for double acknowledged interrupts */
367 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
368 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
369 				hw_base += runtime->buffer_size;
370 				if (hw_base >= runtime->boundary) {
371 					hw_base = 0;
372 					crossed_boundary++;
373 				}
374 				new_hw_ptr = hw_base + pos;
375 				goto __delta;
376 			}
377 		}
378 	}
379 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
380 	/* pointer crosses the end of the ring buffer */
381 	if (new_hw_ptr < old_hw_ptr) {
382 		hw_base += runtime->buffer_size;
383 		if (hw_base >= runtime->boundary) {
384 			hw_base = 0;
385 			crossed_boundary++;
386 		}
387 		new_hw_ptr = hw_base + pos;
388 	}
389       __delta:
390 	delta = new_hw_ptr - old_hw_ptr;
391 	if (delta < 0)
392 		delta += runtime->boundary;
393 	if (xrun_debug(substream, in_interrupt ?
394 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
395 		char name[16];
396 		snd_pcm_debug_name(substream, name, sizeof(name));
397 		snd_printd("%s_update: %s: pos=%u/%u/%u, "
398 			   "hwptr=%ld/%ld/%ld/%ld\n",
399 			   in_interrupt ? "period" : "hwptr",
400 			   name,
401 			   (unsigned int)pos,
402 			   (unsigned int)runtime->period_size,
403 			   (unsigned int)runtime->buffer_size,
404 			   (unsigned long)delta,
405 			   (unsigned long)old_hw_ptr,
406 			   (unsigned long)new_hw_ptr,
407 			   (unsigned long)runtime->hw_ptr_base);
408 	}
409 
410 	if (runtime->no_period_wakeup) {
411 		snd_pcm_sframes_t xrun_threshold;
412 		/*
413 		 * Without regular period interrupts, we have to check
414 		 * the elapsed time to detect xruns.
415 		 */
416 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
417 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
418 			goto no_delta_check;
419 		hdelta = jdelta - delta * HZ / runtime->rate;
420 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
421 		while (hdelta > xrun_threshold) {
422 			delta += runtime->buffer_size;
423 			hw_base += runtime->buffer_size;
424 			if (hw_base >= runtime->boundary) {
425 				hw_base = 0;
426 				crossed_boundary++;
427 			}
428 			new_hw_ptr = hw_base + pos;
429 			hdelta -= runtime->hw_ptr_buffer_jiffies;
430 		}
431 		goto no_delta_check;
432 	}
433 
434 	/* something must be really wrong */
435 	if (delta >= runtime->buffer_size + runtime->period_size) {
436 		hw_ptr_error(substream,
437 			       "Unexpected hw_pointer value %s"
438 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
439 			       "old_hw_ptr=%ld)\n",
440 				     in_interrupt ? "[Q] " : "[P]",
441 				     substream->stream, (long)pos,
442 				     (long)new_hw_ptr, (long)old_hw_ptr);
443 		return 0;
444 	}
445 
446 	/* Do jiffies check only in xrun_debug mode */
447 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
448 		goto no_jiffies_check;
449 
450 	/* Skip the jiffies check for hardwares with BATCH flag.
451 	 * Such hardware usually just increases the position at each IRQ,
452 	 * thus it can't give any strange position.
453 	 */
454 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
455 		goto no_jiffies_check;
456 	hdelta = delta;
457 	if (hdelta < runtime->delay)
458 		goto no_jiffies_check;
459 	hdelta -= runtime->delay;
460 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
461 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
462 		delta = jdelta /
463 			(((runtime->period_size * HZ) / runtime->rate)
464 								+ HZ/100);
465 		/* move new_hw_ptr according jiffies not pos variable */
466 		new_hw_ptr = old_hw_ptr;
467 		hw_base = delta;
468 		/* use loop to avoid checks for delta overflows */
469 		/* the delta value is small or zero in most cases */
470 		while (delta > 0) {
471 			new_hw_ptr += runtime->period_size;
472 			if (new_hw_ptr >= runtime->boundary) {
473 				new_hw_ptr -= runtime->boundary;
474 				crossed_boundary--;
475 			}
476 			delta--;
477 		}
478 		/* align hw_base to buffer_size */
479 		hw_ptr_error(substream,
480 			     "hw_ptr skipping! %s"
481 			     "(pos=%ld, delta=%ld, period=%ld, "
482 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
483 			     in_interrupt ? "[Q] " : "",
484 			     (long)pos, (long)hdelta,
485 			     (long)runtime->period_size, jdelta,
486 			     ((hdelta * HZ) / runtime->rate), hw_base,
487 			     (unsigned long)old_hw_ptr,
488 			     (unsigned long)new_hw_ptr);
489 		/* reset values to proper state */
490 		delta = 0;
491 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
492 	}
493  no_jiffies_check:
494 	if (delta > runtime->period_size + runtime->period_size / 2) {
495 		hw_ptr_error(substream,
496 			     "Lost interrupts? %s"
497 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
498 			     "old_hw_ptr=%ld)\n",
499 			     in_interrupt ? "[Q] " : "",
500 			     substream->stream, (long)delta,
501 			     (long)new_hw_ptr,
502 			     (long)old_hw_ptr);
503 	}
504 
505  no_delta_check:
506 	if (runtime->status->hw_ptr == new_hw_ptr)
507 		return 0;
508 
509 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
510 	    runtime->silence_size > 0)
511 		snd_pcm_playback_silence(substream, new_hw_ptr);
512 
513 	if (in_interrupt) {
514 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
515 		if (delta < 0)
516 			delta += runtime->boundary;
517 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
518 		runtime->hw_ptr_interrupt += delta;
519 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
520 			runtime->hw_ptr_interrupt -= runtime->boundary;
521 	}
522 	runtime->hw_ptr_base = hw_base;
523 	runtime->status->hw_ptr = new_hw_ptr;
524 	runtime->hw_ptr_jiffies = curr_jiffies;
525 	if (crossed_boundary) {
526 		snd_BUG_ON(crossed_boundary != 1);
527 		runtime->hw_ptr_wrap += runtime->boundary;
528 	}
529 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
530 		runtime->status->tstamp = curr_tstamp;
531 
532 		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
533 			/*
534 			 * no wall clock available, provide audio timestamp
535 			 * derived from pointer position+delay
536 			 */
537 			u64 audio_frames, audio_nsecs;
538 
539 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
540 				audio_frames = runtime->hw_ptr_wrap
541 					+ runtime->status->hw_ptr
542 					- runtime->delay;
543 			else
544 				audio_frames = runtime->hw_ptr_wrap
545 					+ runtime->status->hw_ptr
546 					+ runtime->delay;
547 			audio_nsecs = div_u64(audio_frames * 1000000000LL,
548 					runtime->rate);
549 			audio_tstamp = ns_to_timespec(audio_nsecs);
550 		}
551 		runtime->status->audio_tstamp = audio_tstamp;
552 	}
553 
554 	return snd_pcm_update_state(substream, runtime);
555 }
556 
557 /* CAUTION: call it with irq disabled */
snd_pcm_update_hw_ptr(struct snd_pcm_substream * substream)558 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
559 {
560 	return snd_pcm_update_hw_ptr0(substream, 0);
561 }
562 
563 /**
564  * snd_pcm_set_ops - set the PCM operators
565  * @pcm: the pcm instance
566  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
567  * @ops: the operator table
568  *
569  * Sets the given PCM operators to the pcm instance.
570  */
snd_pcm_set_ops(struct snd_pcm * pcm,int direction,struct snd_pcm_ops * ops)571 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
572 {
573 	struct snd_pcm_str *stream = &pcm->streams[direction];
574 	struct snd_pcm_substream *substream;
575 
576 	for (substream = stream->substream; substream != NULL; substream = substream->next)
577 		substream->ops = ops;
578 }
579 
580 EXPORT_SYMBOL(snd_pcm_set_ops);
581 
582 /**
583  * snd_pcm_sync - set the PCM sync id
584  * @substream: the pcm substream
585  *
586  * Sets the PCM sync identifier for the card.
587  */
snd_pcm_set_sync(struct snd_pcm_substream * substream)588 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
589 {
590 	struct snd_pcm_runtime *runtime = substream->runtime;
591 
592 	runtime->sync.id32[0] = substream->pcm->card->number;
593 	runtime->sync.id32[1] = -1;
594 	runtime->sync.id32[2] = -1;
595 	runtime->sync.id32[3] = -1;
596 }
597 
598 EXPORT_SYMBOL(snd_pcm_set_sync);
599 
600 /*
601  *  Standard ioctl routine
602  */
603 
div32(unsigned int a,unsigned int b,unsigned int * r)604 static inline unsigned int div32(unsigned int a, unsigned int b,
605 				 unsigned int *r)
606 {
607 	if (b == 0) {
608 		*r = 0;
609 		return UINT_MAX;
610 	}
611 	*r = a % b;
612 	return a / b;
613 }
614 
div_down(unsigned int a,unsigned int b)615 static inline unsigned int div_down(unsigned int a, unsigned int b)
616 {
617 	if (b == 0)
618 		return UINT_MAX;
619 	return a / b;
620 }
621 
div_up(unsigned int a,unsigned int b)622 static inline unsigned int div_up(unsigned int a, unsigned int b)
623 {
624 	unsigned int r;
625 	unsigned int q;
626 	if (b == 0)
627 		return UINT_MAX;
628 	q = div32(a, b, &r);
629 	if (r)
630 		++q;
631 	return q;
632 }
633 
mul(unsigned int a,unsigned int b)634 static inline unsigned int mul(unsigned int a, unsigned int b)
635 {
636 	if (a == 0)
637 		return 0;
638 	if (div_down(UINT_MAX, a) < b)
639 		return UINT_MAX;
640 	return a * b;
641 }
642 
muldiv32(unsigned int a,unsigned int b,unsigned int c,unsigned int * r)643 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
644 				    unsigned int c, unsigned int *r)
645 {
646 	u_int64_t n = (u_int64_t) a * b;
647 	if (c == 0) {
648 		snd_BUG_ON(!n);
649 		*r = 0;
650 		return UINT_MAX;
651 	}
652 	n = div_u64_rem(n, c, r);
653 	if (n >= UINT_MAX) {
654 		*r = 0;
655 		return UINT_MAX;
656 	}
657 	return n;
658 }
659 
660 /**
661  * snd_interval_refine - refine the interval value of configurator
662  * @i: the interval value to refine
663  * @v: the interval value to refer to
664  *
665  * Refines the interval value with the reference value.
666  * The interval is changed to the range satisfying both intervals.
667  * The interval status (min, max, integer, etc.) are evaluated.
668  *
669  * Return: Positive if the value is changed, zero if it's not changed, or a
670  * negative error code.
671  */
snd_interval_refine(struct snd_interval * i,const struct snd_interval * v)672 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
673 {
674 	int changed = 0;
675 	if (snd_BUG_ON(snd_interval_empty(i)))
676 		return -EINVAL;
677 	if (i->min < v->min) {
678 		i->min = v->min;
679 		i->openmin = v->openmin;
680 		changed = 1;
681 	} else if (i->min == v->min && !i->openmin && v->openmin) {
682 		i->openmin = 1;
683 		changed = 1;
684 	}
685 	if (i->max > v->max) {
686 		i->max = v->max;
687 		i->openmax = v->openmax;
688 		changed = 1;
689 	} else if (i->max == v->max && !i->openmax && v->openmax) {
690 		i->openmax = 1;
691 		changed = 1;
692 	}
693 	if (!i->integer && v->integer) {
694 		i->integer = 1;
695 		changed = 1;
696 	}
697 	if (i->integer) {
698 		if (i->openmin) {
699 			i->min++;
700 			i->openmin = 0;
701 		}
702 		if (i->openmax) {
703 			i->max--;
704 			i->openmax = 0;
705 		}
706 	} else if (!i->openmin && !i->openmax && i->min == i->max)
707 		i->integer = 1;
708 	if (snd_interval_checkempty(i)) {
709 		snd_interval_none(i);
710 		return -EINVAL;
711 	}
712 	return changed;
713 }
714 
715 EXPORT_SYMBOL(snd_interval_refine);
716 
snd_interval_refine_first(struct snd_interval * i)717 static int snd_interval_refine_first(struct snd_interval *i)
718 {
719 	if (snd_BUG_ON(snd_interval_empty(i)))
720 		return -EINVAL;
721 	if (snd_interval_single(i))
722 		return 0;
723 	i->max = i->min;
724 	i->openmax = i->openmin;
725 	if (i->openmax)
726 		i->max++;
727 	return 1;
728 }
729 
snd_interval_refine_last(struct snd_interval * i)730 static int snd_interval_refine_last(struct snd_interval *i)
731 {
732 	if (snd_BUG_ON(snd_interval_empty(i)))
733 		return -EINVAL;
734 	if (snd_interval_single(i))
735 		return 0;
736 	i->min = i->max;
737 	i->openmin = i->openmax;
738 	if (i->openmin)
739 		i->min--;
740 	return 1;
741 }
742 
snd_interval_mul(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)743 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
744 {
745 	if (a->empty || b->empty) {
746 		snd_interval_none(c);
747 		return;
748 	}
749 	c->empty = 0;
750 	c->min = mul(a->min, b->min);
751 	c->openmin = (a->openmin || b->openmin);
752 	c->max = mul(a->max,  b->max);
753 	c->openmax = (a->openmax || b->openmax);
754 	c->integer = (a->integer && b->integer);
755 }
756 
757 /**
758  * snd_interval_div - refine the interval value with division
759  * @a: dividend
760  * @b: divisor
761  * @c: quotient
762  *
763  * c = a / b
764  *
765  * Returns non-zero if the value is changed, zero if not changed.
766  */
snd_interval_div(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)767 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
768 {
769 	unsigned int r;
770 	if (a->empty || b->empty) {
771 		snd_interval_none(c);
772 		return;
773 	}
774 	c->empty = 0;
775 	c->min = div32(a->min, b->max, &r);
776 	c->openmin = (r || a->openmin || b->openmax);
777 	if (b->min > 0) {
778 		c->max = div32(a->max, b->min, &r);
779 		if (r) {
780 			c->max++;
781 			c->openmax = 1;
782 		} else
783 			c->openmax = (a->openmax || b->openmin);
784 	} else {
785 		c->max = UINT_MAX;
786 		c->openmax = 0;
787 	}
788 	c->integer = 0;
789 }
790 
791 /**
792  * snd_interval_muldivk - refine the interval value
793  * @a: dividend 1
794  * @b: dividend 2
795  * @k: divisor (as integer)
796  * @c: result
797   *
798  * c = a * b / k
799  *
800  * Returns non-zero if the value is changed, zero if not changed.
801  */
snd_interval_muldivk(const struct snd_interval * a,const struct snd_interval * b,unsigned int k,struct snd_interval * c)802 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
803 		      unsigned int k, struct snd_interval *c)
804 {
805 	unsigned int r;
806 	if (a->empty || b->empty) {
807 		snd_interval_none(c);
808 		return;
809 	}
810 	c->empty = 0;
811 	c->min = muldiv32(a->min, b->min, k, &r);
812 	c->openmin = (r || a->openmin || b->openmin);
813 	c->max = muldiv32(a->max, b->max, k, &r);
814 	if (r) {
815 		c->max++;
816 		c->openmax = 1;
817 	} else
818 		c->openmax = (a->openmax || b->openmax);
819 	c->integer = 0;
820 }
821 
822 /**
823  * snd_interval_mulkdiv - refine the interval value
824  * @a: dividend 1
825  * @k: dividend 2 (as integer)
826  * @b: divisor
827  * @c: result
828  *
829  * c = a * k / b
830  *
831  * Returns non-zero if the value is changed, zero if not changed.
832  */
snd_interval_mulkdiv(const struct snd_interval * a,unsigned int k,const struct snd_interval * b,struct snd_interval * c)833 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
834 		      const struct snd_interval *b, struct snd_interval *c)
835 {
836 	unsigned int r;
837 	if (a->empty || b->empty) {
838 		snd_interval_none(c);
839 		return;
840 	}
841 	c->empty = 0;
842 	c->min = muldiv32(a->min, k, b->max, &r);
843 	c->openmin = (r || a->openmin || b->openmax);
844 	if (b->min > 0) {
845 		c->max = muldiv32(a->max, k, b->min, &r);
846 		if (r) {
847 			c->max++;
848 			c->openmax = 1;
849 		} else
850 			c->openmax = (a->openmax || b->openmin);
851 	} else {
852 		c->max = UINT_MAX;
853 		c->openmax = 0;
854 	}
855 	c->integer = 0;
856 }
857 
858 /* ---- */
859 
860 
861 /**
862  * snd_interval_ratnum - refine the interval value
863  * @i: interval to refine
864  * @rats_count: number of ratnum_t
865  * @rats: ratnum_t array
866  * @nump: pointer to store the resultant numerator
867  * @denp: pointer to store the resultant denominator
868  *
869  * Return: Positive if the value is changed, zero if it's not changed, or a
870  * negative error code.
871  */
snd_interval_ratnum(struct snd_interval * i,unsigned int rats_count,struct snd_ratnum * rats,unsigned int * nump,unsigned int * denp)872 int snd_interval_ratnum(struct snd_interval *i,
873 			unsigned int rats_count, struct snd_ratnum *rats,
874 			unsigned int *nump, unsigned int *denp)
875 {
876 	unsigned int best_num, best_den;
877 	int best_diff;
878 	unsigned int k;
879 	struct snd_interval t;
880 	int err;
881 	unsigned int result_num, result_den;
882 	int result_diff;
883 
884 	best_num = best_den = best_diff = 0;
885 	for (k = 0; k < rats_count; ++k) {
886 		unsigned int num = rats[k].num;
887 		unsigned int den;
888 		unsigned int q = i->min;
889 		int diff;
890 		if (q == 0)
891 			q = 1;
892 		den = div_up(num, q);
893 		if (den < rats[k].den_min)
894 			continue;
895 		if (den > rats[k].den_max)
896 			den = rats[k].den_max;
897 		else {
898 			unsigned int r;
899 			r = (den - rats[k].den_min) % rats[k].den_step;
900 			if (r != 0)
901 				den -= r;
902 		}
903 		diff = num - q * den;
904 		if (diff < 0)
905 			diff = -diff;
906 		if (best_num == 0 ||
907 		    diff * best_den < best_diff * den) {
908 			best_diff = diff;
909 			best_den = den;
910 			best_num = num;
911 		}
912 	}
913 	if (best_den == 0) {
914 		i->empty = 1;
915 		return -EINVAL;
916 	}
917 	t.min = div_down(best_num, best_den);
918 	t.openmin = !!(best_num % best_den);
919 
920 	result_num = best_num;
921 	result_diff = best_diff;
922 	result_den = best_den;
923 	best_num = best_den = best_diff = 0;
924 	for (k = 0; k < rats_count; ++k) {
925 		unsigned int num = rats[k].num;
926 		unsigned int den;
927 		unsigned int q = i->max;
928 		int diff;
929 		if (q == 0) {
930 			i->empty = 1;
931 			return -EINVAL;
932 		}
933 		den = div_down(num, q);
934 		if (den > rats[k].den_max)
935 			continue;
936 		if (den < rats[k].den_min)
937 			den = rats[k].den_min;
938 		else {
939 			unsigned int r;
940 			r = (den - rats[k].den_min) % rats[k].den_step;
941 			if (r != 0)
942 				den += rats[k].den_step - r;
943 		}
944 		diff = q * den - num;
945 		if (diff < 0)
946 			diff = -diff;
947 		if (best_num == 0 ||
948 		    diff * best_den < best_diff * den) {
949 			best_diff = diff;
950 			best_den = den;
951 			best_num = num;
952 		}
953 	}
954 	if (best_den == 0) {
955 		i->empty = 1;
956 		return -EINVAL;
957 	}
958 	t.max = div_up(best_num, best_den);
959 	t.openmax = !!(best_num % best_den);
960 	t.integer = 0;
961 	err = snd_interval_refine(i, &t);
962 	if (err < 0)
963 		return err;
964 
965 	if (snd_interval_single(i)) {
966 		if (best_diff * result_den < result_diff * best_den) {
967 			result_num = best_num;
968 			result_den = best_den;
969 		}
970 		if (nump)
971 			*nump = result_num;
972 		if (denp)
973 			*denp = result_den;
974 	}
975 	return err;
976 }
977 
978 EXPORT_SYMBOL(snd_interval_ratnum);
979 
980 /**
981  * snd_interval_ratden - refine the interval value
982  * @i: interval to refine
983  * @rats_count: number of struct ratden
984  * @rats: struct ratden array
985  * @nump: pointer to store the resultant numerator
986  * @denp: pointer to store the resultant denominator
987  *
988  * Return: Positive if the value is changed, zero if it's not changed, or a
989  * negative error code.
990  */
snd_interval_ratden(struct snd_interval * i,unsigned int rats_count,struct snd_ratden * rats,unsigned int * nump,unsigned int * denp)991 static int snd_interval_ratden(struct snd_interval *i,
992 			       unsigned int rats_count, struct snd_ratden *rats,
993 			       unsigned int *nump, unsigned int *denp)
994 {
995 	unsigned int best_num, best_diff, best_den;
996 	unsigned int k;
997 	struct snd_interval t;
998 	int err;
999 
1000 	best_num = best_den = best_diff = 0;
1001 	for (k = 0; k < rats_count; ++k) {
1002 		unsigned int num;
1003 		unsigned int den = rats[k].den;
1004 		unsigned int q = i->min;
1005 		int diff;
1006 		num = mul(q, den);
1007 		if (num > rats[k].num_max)
1008 			continue;
1009 		if (num < rats[k].num_min)
1010 			num = rats[k].num_max;
1011 		else {
1012 			unsigned int r;
1013 			r = (num - rats[k].num_min) % rats[k].num_step;
1014 			if (r != 0)
1015 				num += rats[k].num_step - r;
1016 		}
1017 		diff = num - q * den;
1018 		if (best_num == 0 ||
1019 		    diff * best_den < best_diff * den) {
1020 			best_diff = diff;
1021 			best_den = den;
1022 			best_num = num;
1023 		}
1024 	}
1025 	if (best_den == 0) {
1026 		i->empty = 1;
1027 		return -EINVAL;
1028 	}
1029 	t.min = div_down(best_num, best_den);
1030 	t.openmin = !!(best_num % best_den);
1031 
1032 	best_num = best_den = best_diff = 0;
1033 	for (k = 0; k < rats_count; ++k) {
1034 		unsigned int num;
1035 		unsigned int den = rats[k].den;
1036 		unsigned int q = i->max;
1037 		int diff;
1038 		num = mul(q, den);
1039 		if (num < rats[k].num_min)
1040 			continue;
1041 		if (num > rats[k].num_max)
1042 			num = rats[k].num_max;
1043 		else {
1044 			unsigned int r;
1045 			r = (num - rats[k].num_min) % rats[k].num_step;
1046 			if (r != 0)
1047 				num -= r;
1048 		}
1049 		diff = q * den - num;
1050 		if (best_num == 0 ||
1051 		    diff * best_den < best_diff * den) {
1052 			best_diff = diff;
1053 			best_den = den;
1054 			best_num = num;
1055 		}
1056 	}
1057 	if (best_den == 0) {
1058 		i->empty = 1;
1059 		return -EINVAL;
1060 	}
1061 	t.max = div_up(best_num, best_den);
1062 	t.openmax = !!(best_num % best_den);
1063 	t.integer = 0;
1064 	err = snd_interval_refine(i, &t);
1065 	if (err < 0)
1066 		return err;
1067 
1068 	if (snd_interval_single(i)) {
1069 		if (nump)
1070 			*nump = best_num;
1071 		if (denp)
1072 			*denp = best_den;
1073 	}
1074 	return err;
1075 }
1076 
1077 /**
1078  * snd_interval_list - refine the interval value from the list
1079  * @i: the interval value to refine
1080  * @count: the number of elements in the list
1081  * @list: the value list
1082  * @mask: the bit-mask to evaluate
1083  *
1084  * Refines the interval value from the list.
1085  * When mask is non-zero, only the elements corresponding to bit 1 are
1086  * evaluated.
1087  *
1088  * Return: Positive if the value is changed, zero if it's not changed, or a
1089  * negative error code.
1090  */
snd_interval_list(struct snd_interval * i,unsigned int count,const unsigned int * list,unsigned int mask)1091 int snd_interval_list(struct snd_interval *i, unsigned int count,
1092 		      const unsigned int *list, unsigned int mask)
1093 {
1094         unsigned int k;
1095 	struct snd_interval list_range;
1096 
1097 	if (!count) {
1098 		i->empty = 1;
1099 		return -EINVAL;
1100 	}
1101 	snd_interval_any(&list_range);
1102 	list_range.min = UINT_MAX;
1103 	list_range.max = 0;
1104         for (k = 0; k < count; k++) {
1105 		if (mask && !(mask & (1 << k)))
1106 			continue;
1107 		if (!snd_interval_test(i, list[k]))
1108 			continue;
1109 		list_range.min = min(list_range.min, list[k]);
1110 		list_range.max = max(list_range.max, list[k]);
1111         }
1112 	return snd_interval_refine(i, &list_range);
1113 }
1114 
1115 EXPORT_SYMBOL(snd_interval_list);
1116 
snd_interval_step(struct snd_interval * i,unsigned int min,unsigned int step)1117 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1118 {
1119 	unsigned int n;
1120 	int changed = 0;
1121 	n = (i->min - min) % step;
1122 	if (n != 0 || i->openmin) {
1123 		i->min += step - n;
1124 		changed = 1;
1125 	}
1126 	n = (i->max - min) % step;
1127 	if (n != 0 || i->openmax) {
1128 		i->max -= n;
1129 		changed = 1;
1130 	}
1131 	if (snd_interval_checkempty(i)) {
1132 		i->empty = 1;
1133 		return -EINVAL;
1134 	}
1135 	return changed;
1136 }
1137 
1138 /* Info constraints helpers */
1139 
1140 /**
1141  * snd_pcm_hw_rule_add - add the hw-constraint rule
1142  * @runtime: the pcm runtime instance
1143  * @cond: condition bits
1144  * @var: the variable to evaluate
1145  * @func: the evaluation function
1146  * @private: the private data pointer passed to function
1147  * @dep: the dependent variables
1148  *
1149  * Return: Zero if successful, or a negative error code on failure.
1150  */
snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime,unsigned int cond,int var,snd_pcm_hw_rule_func_t func,void * private,int dep,...)1151 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1152 			int var,
1153 			snd_pcm_hw_rule_func_t func, void *private,
1154 			int dep, ...)
1155 {
1156 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1157 	struct snd_pcm_hw_rule *c;
1158 	unsigned int k;
1159 	va_list args;
1160 	va_start(args, dep);
1161 	if (constrs->rules_num >= constrs->rules_all) {
1162 		struct snd_pcm_hw_rule *new;
1163 		unsigned int new_rules = constrs->rules_all + 16;
1164 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1165 		if (!new) {
1166 			va_end(args);
1167 			return -ENOMEM;
1168 		}
1169 		if (constrs->rules) {
1170 			memcpy(new, constrs->rules,
1171 			       constrs->rules_num * sizeof(*c));
1172 			kfree(constrs->rules);
1173 		}
1174 		constrs->rules = new;
1175 		constrs->rules_all = new_rules;
1176 	}
1177 	c = &constrs->rules[constrs->rules_num];
1178 	c->cond = cond;
1179 	c->func = func;
1180 	c->var = var;
1181 	c->private = private;
1182 	k = 0;
1183 	while (1) {
1184 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1185 			va_end(args);
1186 			return -EINVAL;
1187 		}
1188 		c->deps[k++] = dep;
1189 		if (dep < 0)
1190 			break;
1191 		dep = va_arg(args, int);
1192 	}
1193 	constrs->rules_num++;
1194 	va_end(args);
1195 	return 0;
1196 }
1197 
1198 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1199 
1200 /**
1201  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1202  * @runtime: PCM runtime instance
1203  * @var: hw_params variable to apply the mask
1204  * @mask: the bitmap mask
1205  *
1206  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1207  *
1208  * Return: Zero if successful, or a negative error code on failure.
1209  */
snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int32_t mask)1210 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1211 			       u_int32_t mask)
1212 {
1213 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1214 	struct snd_mask *maskp = constrs_mask(constrs, var);
1215 	*maskp->bits &= mask;
1216 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1217 	if (*maskp->bits == 0)
1218 		return -EINVAL;
1219 	return 0;
1220 }
1221 
1222 /**
1223  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1224  * @runtime: PCM runtime instance
1225  * @var: hw_params variable to apply the mask
1226  * @mask: the 64bit bitmap mask
1227  *
1228  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1229  *
1230  * Return: Zero if successful, or a negative error code on failure.
1231  */
snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int64_t mask)1232 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1233 				 u_int64_t mask)
1234 {
1235 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1236 	struct snd_mask *maskp = constrs_mask(constrs, var);
1237 	maskp->bits[0] &= (u_int32_t)mask;
1238 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1239 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1240 	if (! maskp->bits[0] && ! maskp->bits[1])
1241 		return -EINVAL;
1242 	return 0;
1243 }
1244 
1245 /**
1246  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1247  * @runtime: PCM runtime instance
1248  * @var: hw_params variable to apply the integer constraint
1249  *
1250  * Apply the constraint of integer to an interval parameter.
1251  *
1252  * Return: Positive if the value is changed, zero if it's not changed, or a
1253  * negative error code.
1254  */
snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var)1255 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1256 {
1257 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1258 	return snd_interval_setinteger(constrs_interval(constrs, var));
1259 }
1260 
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1262 
1263 /**
1264  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1265  * @runtime: PCM runtime instance
1266  * @var: hw_params variable to apply the range
1267  * @min: the minimal value
1268  * @max: the maximal value
1269  *
1270  * Apply the min/max range constraint to an interval parameter.
1271  *
1272  * Return: Positive if the value is changed, zero if it's not changed, or a
1273  * negative error code.
1274  */
snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,unsigned int min,unsigned int max)1275 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1276 				 unsigned int min, unsigned int max)
1277 {
1278 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1279 	struct snd_interval t;
1280 	t.min = min;
1281 	t.max = max;
1282 	t.openmin = t.openmax = 0;
1283 	t.integer = 0;
1284 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1285 }
1286 
1287 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1288 
snd_pcm_hw_rule_list(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1289 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1290 				struct snd_pcm_hw_rule *rule)
1291 {
1292 	struct snd_pcm_hw_constraint_list *list = rule->private;
1293 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1294 }
1295 
1296 
1297 /**
1298  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the list constraint
1302  * @l: list
1303  *
1304  * Apply the list of constraints to an interval parameter.
1305  *
1306  * Return: Zero if successful, or a negative error code on failure.
1307  */
snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_list * l)1308 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1309 			       unsigned int cond,
1310 			       snd_pcm_hw_param_t var,
1311 			       const struct snd_pcm_hw_constraint_list *l)
1312 {
1313 	return snd_pcm_hw_rule_add(runtime, cond, var,
1314 				   snd_pcm_hw_rule_list, (void *)l,
1315 				   var, -1);
1316 }
1317 
1318 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1319 
snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1320 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1321 				   struct snd_pcm_hw_rule *rule)
1322 {
1323 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1324 	unsigned int num = 0, den = 0;
1325 	int err;
1326 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1327 				  r->nrats, r->rats, &num, &den);
1328 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1329 		params->rate_num = num;
1330 		params->rate_den = den;
1331 	}
1332 	return err;
1333 }
1334 
1335 /**
1336  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1337  * @runtime: PCM runtime instance
1338  * @cond: condition bits
1339  * @var: hw_params variable to apply the ratnums constraint
1340  * @r: struct snd_ratnums constriants
1341  *
1342  * Return: Zero if successful, or a negative error code on failure.
1343  */
snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratnums * r)1344 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1345 				  unsigned int cond,
1346 				  snd_pcm_hw_param_t var,
1347 				  struct snd_pcm_hw_constraint_ratnums *r)
1348 {
1349 	return snd_pcm_hw_rule_add(runtime, cond, var,
1350 				   snd_pcm_hw_rule_ratnums, r,
1351 				   var, -1);
1352 }
1353 
1354 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1355 
snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1356 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1357 				   struct snd_pcm_hw_rule *rule)
1358 {
1359 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1360 	unsigned int num = 0, den = 0;
1361 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1362 				  r->nrats, r->rats, &num, &den);
1363 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1364 		params->rate_num = num;
1365 		params->rate_den = den;
1366 	}
1367 	return err;
1368 }
1369 
1370 /**
1371  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1372  * @runtime: PCM runtime instance
1373  * @cond: condition bits
1374  * @var: hw_params variable to apply the ratdens constraint
1375  * @r: struct snd_ratdens constriants
1376  *
1377  * Return: Zero if successful, or a negative error code on failure.
1378  */
snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratdens * r)1379 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1380 				  unsigned int cond,
1381 				  snd_pcm_hw_param_t var,
1382 				  struct snd_pcm_hw_constraint_ratdens *r)
1383 {
1384 	return snd_pcm_hw_rule_add(runtime, cond, var,
1385 				   snd_pcm_hw_rule_ratdens, r,
1386 				   var, -1);
1387 }
1388 
1389 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1390 
snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1391 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1392 				  struct snd_pcm_hw_rule *rule)
1393 {
1394 	unsigned int l = (unsigned long) rule->private;
1395 	int width = l & 0xffff;
1396 	unsigned int msbits = l >> 16;
1397 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1398 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1399 		params->msbits = msbits;
1400 	return 0;
1401 }
1402 
1403 /**
1404  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1405  * @runtime: PCM runtime instance
1406  * @cond: condition bits
1407  * @width: sample bits width
1408  * @msbits: msbits width
1409  *
1410  * Return: Zero if successful, or a negative error code on failure.
1411  */
snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime,unsigned int cond,unsigned int width,unsigned int msbits)1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1413 				 unsigned int cond,
1414 				 unsigned int width,
1415 				 unsigned int msbits)
1416 {
1417 	unsigned long l = (msbits << 16) | width;
1418 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1419 				    snd_pcm_hw_rule_msbits,
1420 				    (void*) l,
1421 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423 
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425 
snd_pcm_hw_rule_step(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427 				struct snd_pcm_hw_rule *rule)
1428 {
1429 	unsigned long step = (unsigned long) rule->private;
1430 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1431 }
1432 
1433 /**
1434  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @var: hw_params variable to apply the step constraint
1438  * @step: step size
1439  *
1440  * Return: Zero if successful, or a negative error code on failure.
1441  */
snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,unsigned long step)1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443 			       unsigned int cond,
1444 			       snd_pcm_hw_param_t var,
1445 			       unsigned long step)
1446 {
1447 	return snd_pcm_hw_rule_add(runtime, cond, var,
1448 				   snd_pcm_hw_rule_step, (void *) step,
1449 				   var, -1);
1450 }
1451 
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453 
snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456 	static unsigned int pow2_sizes[] = {
1457 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461 	};
1462 	return snd_interval_list(hw_param_interval(params, rule->var),
1463 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }
1465 
1466 /**
1467  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the power-of-2 constraint
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var)1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475 			       unsigned int cond,
1476 			       snd_pcm_hw_param_t var)
1477 {
1478 	return snd_pcm_hw_rule_add(runtime, cond, var,
1479 				   snd_pcm_hw_rule_pow2, NULL,
1480 				   var, -1);
1481 }
1482 
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484 
snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486 					   struct snd_pcm_hw_rule *rule)
1487 {
1488 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489 	struct snd_interval *rate;
1490 
1491 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492 	return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494 
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime,unsigned int base_rate)1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503 			       unsigned int base_rate)
1504 {
1505 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506 				   SNDRV_PCM_HW_PARAM_RATE,
1507 				   snd_pcm_hw_rule_noresample_func,
1508 				   (void *)(uintptr_t)base_rate,
1509 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512 
_snd_pcm_hw_param_any(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514 				  snd_pcm_hw_param_t var)
1515 {
1516 	if (hw_is_mask(var)) {
1517 		snd_mask_any(hw_param_mask(params, var));
1518 		params->cmask |= 1 << var;
1519 		params->rmask |= 1 << var;
1520 		return;
1521 	}
1522 	if (hw_is_interval(var)) {
1523 		snd_interval_any(hw_param_interval(params, var));
1524 		params->cmask |= 1 << var;
1525 		params->rmask |= 1 << var;
1526 		return;
1527 	}
1528 	snd_BUG();
1529 }
1530 
_snd_pcm_hw_params_any(struct snd_pcm_hw_params * params)1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533 	unsigned int k;
1534 	memset(params, 0, sizeof(*params));
1535 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536 		_snd_pcm_hw_param_any(params, k);
1537 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538 		_snd_pcm_hw_param_any(params, k);
1539 	params->info = ~0U;
1540 }
1541 
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543 
1544 /**
1545  * snd_pcm_hw_param_value - return @params field @var value
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Return: The value for field @var if it's fixed in configuration space
1551  * defined by @params. -%EINVAL otherwise.
1552  */
snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554 			   snd_pcm_hw_param_t var, int *dir)
1555 {
1556 	if (hw_is_mask(var)) {
1557 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1558 		if (!snd_mask_single(mask))
1559 			return -EINVAL;
1560 		if (dir)
1561 			*dir = 0;
1562 		return snd_mask_value(mask);
1563 	}
1564 	if (hw_is_interval(var)) {
1565 		const struct snd_interval *i = hw_param_interval_c(params, var);
1566 		if (!snd_interval_single(i))
1567 			return -EINVAL;
1568 		if (dir)
1569 			*dir = i->openmin;
1570 		return snd_interval_value(i);
1571 	}
1572 	return -EINVAL;
1573 }
1574 
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576 
_snd_pcm_hw_param_setempty(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578 				snd_pcm_hw_param_t var)
1579 {
1580 	if (hw_is_mask(var)) {
1581 		snd_mask_none(hw_param_mask(params, var));
1582 		params->cmask |= 1 << var;
1583 		params->rmask |= 1 << var;
1584 	} else if (hw_is_interval(var)) {
1585 		snd_interval_none(hw_param_interval(params, var));
1586 		params->cmask |= 1 << var;
1587 		params->rmask |= 1 << var;
1588 	} else {
1589 		snd_BUG();
1590 	}
1591 }
1592 
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594 
_snd_pcm_hw_param_first(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596 				   snd_pcm_hw_param_t var)
1597 {
1598 	int changed;
1599 	if (hw_is_mask(var))
1600 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1601 	else if (hw_is_interval(var))
1602 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1603 	else
1604 		return -EINVAL;
1605 	if (changed) {
1606 		params->cmask |= 1 << var;
1607 		params->rmask |= 1 << var;
1608 	}
1609 	return changed;
1610 }
1611 
1612 
1613 /**
1614  * snd_pcm_hw_param_first - refine config space and return minimum value
1615  * @pcm: PCM instance
1616  * @params: the hw_params instance
1617  * @var: parameter to retrieve
1618  * @dir: pointer to the direction (-1,0,1) or %NULL
1619  *
1620  * Inside configuration space defined by @params remove from @var all
1621  * values > minimum. Reduce configuration space accordingly.
1622  *
1623  * Return: The minimum, or a negative error code on failure.
1624  */
snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1626 			   struct snd_pcm_hw_params *params,
1627 			   snd_pcm_hw_param_t var, int *dir)
1628 {
1629 	int changed = _snd_pcm_hw_param_first(params, var);
1630 	if (changed < 0)
1631 		return changed;
1632 	if (params->rmask) {
1633 		int err = snd_pcm_hw_refine(pcm, params);
1634 		if (snd_BUG_ON(err < 0))
1635 			return err;
1636 	}
1637 	return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639 
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641 
_snd_pcm_hw_param_last(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 				  snd_pcm_hw_param_t var)
1644 {
1645 	int changed;
1646 	if (hw_is_mask(var))
1647 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 	else if (hw_is_interval(var))
1649 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 	else
1651 		return -EINVAL;
1652 	if (changed) {
1653 		params->cmask |= 1 << var;
1654 		params->rmask |= 1 << var;
1655 	}
1656 	return changed;
1657 }
1658 
1659 
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 			  struct snd_pcm_hw_params *params,
1674 			  snd_pcm_hw_param_t var, int *dir)
1675 {
1676 	int changed = _snd_pcm_hw_param_last(params, var);
1677 	if (changed < 0)
1678 		return changed;
1679 	if (params->rmask) {
1680 		int err = snd_pcm_hw_refine(pcm, params);
1681 		if (snd_BUG_ON(err < 0))
1682 			return err;
1683 	}
1684 	return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688 
1689 /**
1690  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691  * @pcm: PCM instance
1692  * @params: the hw_params instance
1693  *
1694  * Choose one configuration from configuration space defined by @params.
1695  * The configuration chosen is that obtained fixing in this order:
1696  * first access, first format, first subformat, min channels,
1697  * min rate, min period time, max buffer size, min tick time
1698  *
1699  * Return: Zero if successful, or a negative error code on failure.
1700  */
snd_pcm_hw_params_choose(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params)1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702 			     struct snd_pcm_hw_params *params)
1703 {
1704 	static int vars[] = {
1705 		SNDRV_PCM_HW_PARAM_ACCESS,
1706 		SNDRV_PCM_HW_PARAM_FORMAT,
1707 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708 		SNDRV_PCM_HW_PARAM_CHANNELS,
1709 		SNDRV_PCM_HW_PARAM_RATE,
1710 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1713 		-1
1714 	};
1715 	int err, *v;
1716 
1717 	for (v = vars; *v != -1; v++) {
1718 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720 		else
1721 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722 		if (snd_BUG_ON(err < 0))
1723 			return err;
1724 	}
1725 	return 0;
1726 }
1727 
snd_pcm_lib_ioctl_reset(struct snd_pcm_substream * substream,void * arg)1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729 				   void *arg)
1730 {
1731 	struct snd_pcm_runtime *runtime = substream->runtime;
1732 	unsigned long flags;
1733 	snd_pcm_stream_lock_irqsave(substream, flags);
1734 	if (snd_pcm_running(substream) &&
1735 	    snd_pcm_update_hw_ptr(substream) >= 0)
1736 		runtime->status->hw_ptr %= runtime->buffer_size;
1737 	else {
1738 		runtime->status->hw_ptr = 0;
1739 		runtime->hw_ptr_wrap = 0;
1740 	}
1741 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1742 	return 0;
1743 }
1744 
snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream * substream,void * arg)1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746 					  void *arg)
1747 {
1748 	struct snd_pcm_channel_info *info = arg;
1749 	struct snd_pcm_runtime *runtime = substream->runtime;
1750 	int width;
1751 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752 		info->offset = -1;
1753 		return 0;
1754 	}
1755 	width = snd_pcm_format_physical_width(runtime->format);
1756 	if (width < 0)
1757 		return width;
1758 	info->offset = 0;
1759 	switch (runtime->access) {
1760 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762 		info->first = info->channel * width;
1763 		info->step = runtime->channels * width;
1764 		break;
1765 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767 	{
1768 		size_t size = runtime->dma_bytes / runtime->channels;
1769 		info->first = info->channel * size * 8;
1770 		info->step = width;
1771 		break;
1772 	}
1773 	default:
1774 		snd_BUG();
1775 		break;
1776 	}
1777 	return 0;
1778 }
1779 
snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream * substream,void * arg)1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781 				       void *arg)
1782 {
1783 	struct snd_pcm_hw_params *params = arg;
1784 	snd_pcm_format_t format;
1785 	int channels, width;
1786 
1787 	params->fifo_size = substream->runtime->hw.fifo_size;
1788 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1789 		format = params_format(params);
1790 		channels = params_channels(params);
1791 		width = snd_pcm_format_physical_width(format);
1792 		params->fifo_size /= width * channels;
1793 	}
1794 	return 0;
1795 }
1796 
1797 /**
1798  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1799  * @substream: the pcm substream instance
1800  * @cmd: ioctl command
1801  * @arg: ioctl argument
1802  *
1803  * Processes the generic ioctl commands for PCM.
1804  * Can be passed as the ioctl callback for PCM ops.
1805  *
1806  * Return: Zero if successful, or a negative error code on failure.
1807  */
snd_pcm_lib_ioctl(struct snd_pcm_substream * substream,unsigned int cmd,void * arg)1808 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1809 		      unsigned int cmd, void *arg)
1810 {
1811 	switch (cmd) {
1812 	case SNDRV_PCM_IOCTL1_INFO:
1813 		return 0;
1814 	case SNDRV_PCM_IOCTL1_RESET:
1815 		return snd_pcm_lib_ioctl_reset(substream, arg);
1816 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1817 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1818 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1819 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1820 	}
1821 	return -ENXIO;
1822 }
1823 
1824 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1825 
1826 /**
1827  * snd_pcm_period_elapsed - update the pcm status for the next period
1828  * @substream: the pcm substream instance
1829  *
1830  * This function is called from the interrupt handler when the
1831  * PCM has processed the period size.  It will update the current
1832  * pointer, wake up sleepers, etc.
1833  *
1834  * Even if more than one periods have elapsed since the last call, you
1835  * have to call this only once.
1836  */
snd_pcm_period_elapsed(struct snd_pcm_substream * substream)1837 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1838 {
1839 	struct snd_pcm_runtime *runtime;
1840 	unsigned long flags;
1841 
1842 	if (PCM_RUNTIME_CHECK(substream))
1843 		return;
1844 	runtime = substream->runtime;
1845 
1846 	if (runtime->transfer_ack_begin)
1847 		runtime->transfer_ack_begin(substream);
1848 
1849 	snd_pcm_stream_lock_irqsave(substream, flags);
1850 	if (!snd_pcm_running(substream) ||
1851 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1852 		goto _end;
1853 
1854 	if (substream->timer_running)
1855 		snd_timer_interrupt(substream->timer, 1);
1856  _end:
1857 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1858 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1859 	if (runtime->transfer_ack_end)
1860 		runtime->transfer_ack_end(substream);
1861 }
1862 
1863 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1864 
1865 /*
1866  * Wait until avail_min data becomes available
1867  * Returns a negative error code if any error occurs during operation.
1868  * The available space is stored on availp.  When err = 0 and avail = 0
1869  * on the capture stream, it indicates the stream is in DRAINING state.
1870  */
wait_for_avail(struct snd_pcm_substream * substream,snd_pcm_uframes_t * availp)1871 static int wait_for_avail(struct snd_pcm_substream *substream,
1872 			      snd_pcm_uframes_t *availp)
1873 {
1874 	struct snd_pcm_runtime *runtime = substream->runtime;
1875 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1876 	wait_queue_t wait;
1877 	int err = 0;
1878 	snd_pcm_uframes_t avail = 0;
1879 	long wait_time, tout;
1880 
1881 	init_waitqueue_entry(&wait, current);
1882 	set_current_state(TASK_INTERRUPTIBLE);
1883 	add_wait_queue(&runtime->tsleep, &wait);
1884 
1885 	if (runtime->no_period_wakeup)
1886 		wait_time = MAX_SCHEDULE_TIMEOUT;
1887 	else {
1888 		wait_time = 10;
1889 		if (runtime->rate) {
1890 			long t = runtime->period_size * 2 / runtime->rate;
1891 			wait_time = max(t, wait_time);
1892 		}
1893 		wait_time = msecs_to_jiffies(wait_time * 1000);
1894 	}
1895 
1896 	for (;;) {
1897 		if (signal_pending(current)) {
1898 			err = -ERESTARTSYS;
1899 			break;
1900 		}
1901 
1902 		/*
1903 		 * We need to check if space became available already
1904 		 * (and thus the wakeup happened already) first to close
1905 		 * the race of space already having become available.
1906 		 * This check must happen after been added to the waitqueue
1907 		 * and having current state be INTERRUPTIBLE.
1908 		 */
1909 		if (is_playback)
1910 			avail = snd_pcm_playback_avail(runtime);
1911 		else
1912 			avail = snd_pcm_capture_avail(runtime);
1913 		if (avail >= runtime->twake)
1914 			break;
1915 		snd_pcm_stream_unlock_irq(substream);
1916 
1917 		tout = schedule_timeout(wait_time);
1918 
1919 		snd_pcm_stream_lock_irq(substream);
1920 		set_current_state(TASK_INTERRUPTIBLE);
1921 		switch (runtime->status->state) {
1922 		case SNDRV_PCM_STATE_SUSPENDED:
1923 			err = -ESTRPIPE;
1924 			goto _endloop;
1925 		case SNDRV_PCM_STATE_XRUN:
1926 			err = -EPIPE;
1927 			goto _endloop;
1928 		case SNDRV_PCM_STATE_DRAINING:
1929 			if (is_playback)
1930 				err = -EPIPE;
1931 			else
1932 				avail = 0; /* indicate draining */
1933 			goto _endloop;
1934 		case SNDRV_PCM_STATE_OPEN:
1935 		case SNDRV_PCM_STATE_SETUP:
1936 		case SNDRV_PCM_STATE_DISCONNECTED:
1937 			err = -EBADFD;
1938 			goto _endloop;
1939 		}
1940 		if (!tout) {
1941 			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1942 				   is_playback ? "playback" : "capture");
1943 			err = -EIO;
1944 			break;
1945 		}
1946 	}
1947  _endloop:
1948 	set_current_state(TASK_RUNNING);
1949 	remove_wait_queue(&runtime->tsleep, &wait);
1950 	*availp = avail;
1951 	return err;
1952 }
1953 
snd_pcm_lib_write_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)1954 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1955 				      unsigned int hwoff,
1956 				      unsigned long data, unsigned int off,
1957 				      snd_pcm_uframes_t frames)
1958 {
1959 	struct snd_pcm_runtime *runtime = substream->runtime;
1960 	int err;
1961 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1962 	if (substream->ops->copy) {
1963 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1964 			return err;
1965 	} else {
1966 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1967 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1968 			return -EFAULT;
1969 	}
1970 	return 0;
1971 }
1972 
1973 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1974 			  unsigned long data, unsigned int off,
1975 			  snd_pcm_uframes_t size);
1976 
snd_pcm_lib_write1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)1977 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1978 					    unsigned long data,
1979 					    snd_pcm_uframes_t size,
1980 					    int nonblock,
1981 					    transfer_f transfer)
1982 {
1983 	struct snd_pcm_runtime *runtime = substream->runtime;
1984 	snd_pcm_uframes_t xfer = 0;
1985 	snd_pcm_uframes_t offset = 0;
1986 	snd_pcm_uframes_t avail;
1987 	int err = 0;
1988 
1989 	if (size == 0)
1990 		return 0;
1991 
1992 	snd_pcm_stream_lock_irq(substream);
1993 	switch (runtime->status->state) {
1994 	case SNDRV_PCM_STATE_PREPARED:
1995 	case SNDRV_PCM_STATE_RUNNING:
1996 	case SNDRV_PCM_STATE_PAUSED:
1997 		break;
1998 	case SNDRV_PCM_STATE_XRUN:
1999 		err = -EPIPE;
2000 		goto _end_unlock;
2001 	case SNDRV_PCM_STATE_SUSPENDED:
2002 		err = -ESTRPIPE;
2003 		goto _end_unlock;
2004 	default:
2005 		err = -EBADFD;
2006 		goto _end_unlock;
2007 	}
2008 
2009 	runtime->twake = runtime->control->avail_min ? : 1;
2010 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2011 		snd_pcm_update_hw_ptr(substream);
2012 	avail = snd_pcm_playback_avail(runtime);
2013 	while (size > 0) {
2014 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2015 		snd_pcm_uframes_t cont;
2016 		if (!avail) {
2017 			if (nonblock) {
2018 				err = -EAGAIN;
2019 				goto _end_unlock;
2020 			}
2021 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2022 					runtime->control->avail_min ? : 1);
2023 			err = wait_for_avail(substream, &avail);
2024 			if (err < 0)
2025 				goto _end_unlock;
2026 		}
2027 		frames = size > avail ? avail : size;
2028 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2029 		if (frames > cont)
2030 			frames = cont;
2031 		if (snd_BUG_ON(!frames)) {
2032 			runtime->twake = 0;
2033 			snd_pcm_stream_unlock_irq(substream);
2034 			return -EINVAL;
2035 		}
2036 		appl_ptr = runtime->control->appl_ptr;
2037 		appl_ofs = appl_ptr % runtime->buffer_size;
2038 		snd_pcm_stream_unlock_irq(substream);
2039 		err = transfer(substream, appl_ofs, data, offset, frames);
2040 		snd_pcm_stream_lock_irq(substream);
2041 		if (err < 0)
2042 			goto _end_unlock;
2043 		switch (runtime->status->state) {
2044 		case SNDRV_PCM_STATE_XRUN:
2045 			err = -EPIPE;
2046 			goto _end_unlock;
2047 		case SNDRV_PCM_STATE_SUSPENDED:
2048 			err = -ESTRPIPE;
2049 			goto _end_unlock;
2050 		default:
2051 			break;
2052 		}
2053 		appl_ptr += frames;
2054 		if (appl_ptr >= runtime->boundary)
2055 			appl_ptr -= runtime->boundary;
2056 		runtime->control->appl_ptr = appl_ptr;
2057 		if (substream->ops->ack)
2058 			substream->ops->ack(substream);
2059 
2060 		offset += frames;
2061 		size -= frames;
2062 		xfer += frames;
2063 		avail -= frames;
2064 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2065 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2066 			err = snd_pcm_start(substream);
2067 			if (err < 0)
2068 				goto _end_unlock;
2069 		}
2070 	}
2071  _end_unlock:
2072 	runtime->twake = 0;
2073 	if (xfer > 0 && err >= 0)
2074 		snd_pcm_update_state(substream, runtime);
2075 	snd_pcm_stream_unlock_irq(substream);
2076 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2077 }
2078 
2079 /* sanity-check for read/write methods */
pcm_sanity_check(struct snd_pcm_substream * substream)2080 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2081 {
2082 	struct snd_pcm_runtime *runtime;
2083 	if (PCM_RUNTIME_CHECK(substream))
2084 		return -ENXIO;
2085 	runtime = substream->runtime;
2086 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2087 		return -EINVAL;
2088 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2089 		return -EBADFD;
2090 	return 0;
2091 }
2092 
snd_pcm_lib_write(struct snd_pcm_substream * substream,const void __user * buf,snd_pcm_uframes_t size)2093 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2094 {
2095 	struct snd_pcm_runtime *runtime;
2096 	int nonblock;
2097 	int err;
2098 
2099 	err = pcm_sanity_check(substream);
2100 	if (err < 0)
2101 		return err;
2102 	runtime = substream->runtime;
2103 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2104 
2105 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2106 	    runtime->channels > 1)
2107 		return -EINVAL;
2108 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2109 				  snd_pcm_lib_write_transfer);
2110 }
2111 
2112 EXPORT_SYMBOL(snd_pcm_lib_write);
2113 
snd_pcm_lib_writev_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2114 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2115 				       unsigned int hwoff,
2116 				       unsigned long data, unsigned int off,
2117 				       snd_pcm_uframes_t frames)
2118 {
2119 	struct snd_pcm_runtime *runtime = substream->runtime;
2120 	int err;
2121 	void __user **bufs = (void __user **)data;
2122 	int channels = runtime->channels;
2123 	int c;
2124 	if (substream->ops->copy) {
2125 		if (snd_BUG_ON(!substream->ops->silence))
2126 			return -EINVAL;
2127 		for (c = 0; c < channels; ++c, ++bufs) {
2128 			if (*bufs == NULL) {
2129 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2130 					return err;
2131 			} else {
2132 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2133 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2134 					return err;
2135 			}
2136 		}
2137 	} else {
2138 		/* default transfer behaviour */
2139 		size_t dma_csize = runtime->dma_bytes / channels;
2140 		for (c = 0; c < channels; ++c, ++bufs) {
2141 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2142 			if (*bufs == NULL) {
2143 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2144 			} else {
2145 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2146 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2147 					return -EFAULT;
2148 			}
2149 		}
2150 	}
2151 	return 0;
2152 }
2153 
snd_pcm_lib_writev(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2154 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2155 				     void __user **bufs,
2156 				     snd_pcm_uframes_t frames)
2157 {
2158 	struct snd_pcm_runtime *runtime;
2159 	int nonblock;
2160 	int err;
2161 
2162 	err = pcm_sanity_check(substream);
2163 	if (err < 0)
2164 		return err;
2165 	runtime = substream->runtime;
2166 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2167 
2168 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2169 		return -EINVAL;
2170 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2171 				  nonblock, snd_pcm_lib_writev_transfer);
2172 }
2173 
2174 EXPORT_SYMBOL(snd_pcm_lib_writev);
2175 
snd_pcm_lib_read_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2176 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2177 				     unsigned int hwoff,
2178 				     unsigned long data, unsigned int off,
2179 				     snd_pcm_uframes_t frames)
2180 {
2181 	struct snd_pcm_runtime *runtime = substream->runtime;
2182 	int err;
2183 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2184 	if (substream->ops->copy) {
2185 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2186 			return err;
2187 	} else {
2188 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2189 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2190 			return -EFAULT;
2191 	}
2192 	return 0;
2193 }
2194 
snd_pcm_lib_read1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)2195 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2196 					   unsigned long data,
2197 					   snd_pcm_uframes_t size,
2198 					   int nonblock,
2199 					   transfer_f transfer)
2200 {
2201 	struct snd_pcm_runtime *runtime = substream->runtime;
2202 	snd_pcm_uframes_t xfer = 0;
2203 	snd_pcm_uframes_t offset = 0;
2204 	snd_pcm_uframes_t avail;
2205 	int err = 0;
2206 
2207 	if (size == 0)
2208 		return 0;
2209 
2210 	snd_pcm_stream_lock_irq(substream);
2211 	switch (runtime->status->state) {
2212 	case SNDRV_PCM_STATE_PREPARED:
2213 		if (size >= runtime->start_threshold) {
2214 			err = snd_pcm_start(substream);
2215 			if (err < 0)
2216 				goto _end_unlock;
2217 		}
2218 		break;
2219 	case SNDRV_PCM_STATE_DRAINING:
2220 	case SNDRV_PCM_STATE_RUNNING:
2221 	case SNDRV_PCM_STATE_PAUSED:
2222 		break;
2223 	case SNDRV_PCM_STATE_XRUN:
2224 		err = -EPIPE;
2225 		goto _end_unlock;
2226 	case SNDRV_PCM_STATE_SUSPENDED:
2227 		err = -ESTRPIPE;
2228 		goto _end_unlock;
2229 	default:
2230 		err = -EBADFD;
2231 		goto _end_unlock;
2232 	}
2233 
2234 	runtime->twake = runtime->control->avail_min ? : 1;
2235 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2236 		snd_pcm_update_hw_ptr(substream);
2237 	avail = snd_pcm_capture_avail(runtime);
2238 	while (size > 0) {
2239 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2240 		snd_pcm_uframes_t cont;
2241 		if (!avail) {
2242 			if (runtime->status->state ==
2243 			    SNDRV_PCM_STATE_DRAINING) {
2244 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2245 				goto _end_unlock;
2246 			}
2247 			if (nonblock) {
2248 				err = -EAGAIN;
2249 				goto _end_unlock;
2250 			}
2251 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2252 					runtime->control->avail_min ? : 1);
2253 			err = wait_for_avail(substream, &avail);
2254 			if (err < 0)
2255 				goto _end_unlock;
2256 			if (!avail)
2257 				continue; /* draining */
2258 		}
2259 		frames = size > avail ? avail : size;
2260 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2261 		if (frames > cont)
2262 			frames = cont;
2263 		if (snd_BUG_ON(!frames)) {
2264 			runtime->twake = 0;
2265 			snd_pcm_stream_unlock_irq(substream);
2266 			return -EINVAL;
2267 		}
2268 		appl_ptr = runtime->control->appl_ptr;
2269 		appl_ofs = appl_ptr % runtime->buffer_size;
2270 		snd_pcm_stream_unlock_irq(substream);
2271 		err = transfer(substream, appl_ofs, data, offset, frames);
2272 		snd_pcm_stream_lock_irq(substream);
2273 		if (err < 0)
2274 			goto _end_unlock;
2275 		switch (runtime->status->state) {
2276 		case SNDRV_PCM_STATE_XRUN:
2277 			err = -EPIPE;
2278 			goto _end_unlock;
2279 		case SNDRV_PCM_STATE_SUSPENDED:
2280 			err = -ESTRPIPE;
2281 			goto _end_unlock;
2282 		default:
2283 			break;
2284 		}
2285 		appl_ptr += frames;
2286 		if (appl_ptr >= runtime->boundary)
2287 			appl_ptr -= runtime->boundary;
2288 		runtime->control->appl_ptr = appl_ptr;
2289 		if (substream->ops->ack)
2290 			substream->ops->ack(substream);
2291 
2292 		offset += frames;
2293 		size -= frames;
2294 		xfer += frames;
2295 		avail -= frames;
2296 	}
2297  _end_unlock:
2298 	runtime->twake = 0;
2299 	if (xfer > 0 && err >= 0)
2300 		snd_pcm_update_state(substream, runtime);
2301 	snd_pcm_stream_unlock_irq(substream);
2302 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2303 }
2304 
snd_pcm_lib_read(struct snd_pcm_substream * substream,void __user * buf,snd_pcm_uframes_t size)2305 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2306 {
2307 	struct snd_pcm_runtime *runtime;
2308 	int nonblock;
2309 	int err;
2310 
2311 	err = pcm_sanity_check(substream);
2312 	if (err < 0)
2313 		return err;
2314 	runtime = substream->runtime;
2315 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2316 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2317 		return -EINVAL;
2318 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2319 }
2320 
2321 EXPORT_SYMBOL(snd_pcm_lib_read);
2322 
snd_pcm_lib_readv_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2323 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2324 				      unsigned int hwoff,
2325 				      unsigned long data, unsigned int off,
2326 				      snd_pcm_uframes_t frames)
2327 {
2328 	struct snd_pcm_runtime *runtime = substream->runtime;
2329 	int err;
2330 	void __user **bufs = (void __user **)data;
2331 	int channels = runtime->channels;
2332 	int c;
2333 	if (substream->ops->copy) {
2334 		for (c = 0; c < channels; ++c, ++bufs) {
2335 			char __user *buf;
2336 			if (*bufs == NULL)
2337 				continue;
2338 			buf = *bufs + samples_to_bytes(runtime, off);
2339 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2340 				return err;
2341 		}
2342 	} else {
2343 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2344 		for (c = 0; c < channels; ++c, ++bufs) {
2345 			char *hwbuf;
2346 			char __user *buf;
2347 			if (*bufs == NULL)
2348 				continue;
2349 
2350 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2351 			buf = *bufs + samples_to_bytes(runtime, off);
2352 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2353 				return -EFAULT;
2354 		}
2355 	}
2356 	return 0;
2357 }
2358 
snd_pcm_lib_readv(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2359 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2360 				    void __user **bufs,
2361 				    snd_pcm_uframes_t frames)
2362 {
2363 	struct snd_pcm_runtime *runtime;
2364 	int nonblock;
2365 	int err;
2366 
2367 	err = pcm_sanity_check(substream);
2368 	if (err < 0)
2369 		return err;
2370 	runtime = substream->runtime;
2371 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2372 		return -EBADFD;
2373 
2374 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2375 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2376 		return -EINVAL;
2377 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2378 }
2379 
2380 EXPORT_SYMBOL(snd_pcm_lib_readv);
2381 
2382 /*
2383  * standard channel mapping helpers
2384  */
2385 
2386 /* default channel maps for multi-channel playbacks, up to 8 channels */
2387 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2388 	{ .channels = 1,
2389 	  .map = { SNDRV_CHMAP_MONO } },
2390 	{ .channels = 2,
2391 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2392 	{ .channels = 4,
2393 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2394 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2395 	{ .channels = 6,
2396 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2398 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2399 	{ .channels = 8,
2400 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2401 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2402 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2403 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2404 	{ }
2405 };
2406 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2407 
2408 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2409 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2410 	{ .channels = 1,
2411 	  .map = { SNDRV_CHMAP_MONO } },
2412 	{ .channels = 2,
2413 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2414 	{ .channels = 4,
2415 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2416 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2417 	{ .channels = 6,
2418 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2420 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2421 	{ .channels = 8,
2422 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2423 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2424 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2425 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2426 	{ }
2427 };
2428 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2429 
valid_chmap_channels(const struct snd_pcm_chmap * info,int ch)2430 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2431 {
2432 	if (ch > info->max_channels)
2433 		return false;
2434 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2435 }
2436 
pcm_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2437 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2438 			      struct snd_ctl_elem_info *uinfo)
2439 {
2440 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2441 
2442 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2443 	uinfo->count = 0;
2444 	uinfo->count = info->max_channels;
2445 	uinfo->value.integer.min = 0;
2446 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2447 	return 0;
2448 }
2449 
2450 /* get callback for channel map ctl element
2451  * stores the channel position firstly matching with the current channels
2452  */
pcm_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2453 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2454 			     struct snd_ctl_elem_value *ucontrol)
2455 {
2456 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2457 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2458 	struct snd_pcm_substream *substream;
2459 	const struct snd_pcm_chmap_elem *map;
2460 
2461 	if (snd_BUG_ON(!info->chmap))
2462 		return -EINVAL;
2463 	substream = snd_pcm_chmap_substream(info, idx);
2464 	if (!substream)
2465 		return -ENODEV;
2466 	memset(ucontrol->value.integer.value, 0,
2467 	       sizeof(ucontrol->value.integer.value));
2468 	if (!substream->runtime)
2469 		return 0; /* no channels set */
2470 	for (map = info->chmap; map->channels; map++) {
2471 		int i;
2472 		if (map->channels == substream->runtime->channels &&
2473 		    valid_chmap_channels(info, map->channels)) {
2474 			for (i = 0; i < map->channels; i++)
2475 				ucontrol->value.integer.value[i] = map->map[i];
2476 			return 0;
2477 		}
2478 	}
2479 	return -EINVAL;
2480 }
2481 
2482 /* tlv callback for channel map ctl element
2483  * expands the pre-defined channel maps in a form of TLV
2484  */
pcm_chmap_ctl_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)2485 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2486 			     unsigned int size, unsigned int __user *tlv)
2487 {
2488 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2489 	const struct snd_pcm_chmap_elem *map;
2490 	unsigned int __user *dst;
2491 	int c, count = 0;
2492 
2493 	if (snd_BUG_ON(!info->chmap))
2494 		return -EINVAL;
2495 	if (size < 8)
2496 		return -ENOMEM;
2497 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2498 		return -EFAULT;
2499 	size -= 8;
2500 	dst = tlv + 2;
2501 	for (map = info->chmap; map->channels; map++) {
2502 		int chs_bytes = map->channels * 4;
2503 		if (!valid_chmap_channels(info, map->channels))
2504 			continue;
2505 		if (size < 8)
2506 			return -ENOMEM;
2507 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2508 		    put_user(chs_bytes, dst + 1))
2509 			return -EFAULT;
2510 		dst += 2;
2511 		size -= 8;
2512 		count += 8;
2513 		if (size < chs_bytes)
2514 			return -ENOMEM;
2515 		size -= chs_bytes;
2516 		count += chs_bytes;
2517 		for (c = 0; c < map->channels; c++) {
2518 			if (put_user(map->map[c], dst))
2519 				return -EFAULT;
2520 			dst++;
2521 		}
2522 	}
2523 	if (put_user(count, tlv + 1))
2524 		return -EFAULT;
2525 	return 0;
2526 }
2527 
pcm_chmap_ctl_private_free(struct snd_kcontrol * kcontrol)2528 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2529 {
2530 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2531 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2532 	kfree(info);
2533 }
2534 
2535 /**
2536  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2537  * @pcm: the assigned PCM instance
2538  * @stream: stream direction
2539  * @chmap: channel map elements (for query)
2540  * @max_channels: the max number of channels for the stream
2541  * @private_value: the value passed to each kcontrol's private_value field
2542  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2543  *
2544  * Create channel-mapping control elements assigned to the given PCM stream(s).
2545  * Return: Zero if successful, or a negative error value.
2546  */
snd_pcm_add_chmap_ctls(struct snd_pcm * pcm,int stream,const struct snd_pcm_chmap_elem * chmap,int max_channels,unsigned long private_value,struct snd_pcm_chmap ** info_ret)2547 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2548 			   const struct snd_pcm_chmap_elem *chmap,
2549 			   int max_channels,
2550 			   unsigned long private_value,
2551 			   struct snd_pcm_chmap **info_ret)
2552 {
2553 	struct snd_pcm_chmap *info;
2554 	struct snd_kcontrol_new knew = {
2555 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2556 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2557 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2558 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2559 		.info = pcm_chmap_ctl_info,
2560 		.get = pcm_chmap_ctl_get,
2561 		.tlv.c = pcm_chmap_ctl_tlv,
2562 	};
2563 	int err;
2564 
2565 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2566 	if (!info)
2567 		return -ENOMEM;
2568 	info->pcm = pcm;
2569 	info->stream = stream;
2570 	info->chmap = chmap;
2571 	info->max_channels = max_channels;
2572 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2573 		knew.name = "Playback Channel Map";
2574 	else
2575 		knew.name = "Capture Channel Map";
2576 	knew.device = pcm->device;
2577 	knew.count = pcm->streams[stream].substream_count;
2578 	knew.private_value = private_value;
2579 	info->kctl = snd_ctl_new1(&knew, info);
2580 	if (!info->kctl) {
2581 		kfree(info);
2582 		return -ENOMEM;
2583 	}
2584 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2585 	err = snd_ctl_add(pcm->card, info->kctl);
2586 	if (err < 0)
2587 		return err;
2588 	pcm->streams[stream].chmap_kctl = info->kctl;
2589 	if (info_ret)
2590 		*info_ret = info;
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2594