• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119 
120 #include <asm/uaccess.h>
121 
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133 
134 #include <linux/filter.h>
135 
136 #include <trace/events/sock.h>
137 
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141 
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144 
145 #ifdef CONFIG_MEMCG_KMEM
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 	struct proto *proto;
149 	int ret = 0;
150 
151 	mutex_lock(&proto_list_mutex);
152 	list_for_each_entry(proto, &proto_list, node) {
153 		if (proto->init_cgroup) {
154 			ret = proto->init_cgroup(memcg, ss);
155 			if (ret)
156 				goto out;
157 		}
158 	}
159 
160 	mutex_unlock(&proto_list_mutex);
161 	return ret;
162 out:
163 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 		if (proto->destroy_cgroup)
165 			proto->destroy_cgroup(memcg);
166 	mutex_unlock(&proto_list_mutex);
167 	return ret;
168 }
169 
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 	struct proto *proto;
173 
174 	mutex_lock(&proto_list_mutex);
175 	list_for_each_entry_reverse(proto, &proto_list, node)
176 		if (proto->destroy_cgroup)
177 			proto->destroy_cgroup(memcg);
178 	mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181 
182 /*
183  * Each address family might have different locking rules, so we have
184  * one slock key per address family:
185  */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188 
189 #if defined(CONFIG_MEMCG_KMEM)
190 struct static_key memcg_socket_limit_enabled;
191 EXPORT_SYMBOL(memcg_socket_limit_enabled);
192 #endif
193 
194 /*
195  * Make lock validator output more readable. (we pre-construct these
196  * strings build-time, so that runtime initialization of socket
197  * locks is fast):
198  */
199 static const char *const af_family_key_strings[AF_MAX+1] = {
200   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
201   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
202   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
203   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
204   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
205   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
206   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
207   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
208   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
209   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
210   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
211   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
212   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
213   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
214 };
215 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
216   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
217   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
218   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
219   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
220   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
221   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
222   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
223   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
224   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
225   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
226   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
227   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
228   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
229   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
230 };
231 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
232   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
233   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
234   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
235   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
236   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
237   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
238   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
239   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
240   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
241   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
242   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
243   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
244   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
245   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
246 };
247 
248 /*
249  * sk_callback_lock locking rules are per-address-family,
250  * so split the lock classes by using a per-AF key:
251  */
252 static struct lock_class_key af_callback_keys[AF_MAX];
253 
254 /* Take into consideration the size of the struct sk_buff overhead in the
255  * determination of these values, since that is non-constant across
256  * platforms.  This makes socket queueing behavior and performance
257  * not depend upon such differences.
258  */
259 #define _SK_MEM_PACKETS		256
260 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
261 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
263 
264 /* Run time adjustable parameters. */
265 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
266 EXPORT_SYMBOL(sysctl_wmem_max);
267 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
268 EXPORT_SYMBOL(sysctl_rmem_max);
269 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
270 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
271 
272 /* Maximal space eaten by iovec or ancillary data plus some space */
273 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
274 EXPORT_SYMBOL(sysctl_optmem_max);
275 
276 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
277 EXPORT_SYMBOL_GPL(memalloc_socks);
278 
279 /**
280  * sk_set_memalloc - sets %SOCK_MEMALLOC
281  * @sk: socket to set it on
282  *
283  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284  * It's the responsibility of the admin to adjust min_free_kbytes
285  * to meet the requirements
286  */
sk_set_memalloc(struct sock * sk)287 void sk_set_memalloc(struct sock *sk)
288 {
289 	sock_set_flag(sk, SOCK_MEMALLOC);
290 	sk->sk_allocation |= __GFP_MEMALLOC;
291 	static_key_slow_inc(&memalloc_socks);
292 }
293 EXPORT_SYMBOL_GPL(sk_set_memalloc);
294 
sk_clear_memalloc(struct sock * sk)295 void sk_clear_memalloc(struct sock *sk)
296 {
297 	sock_reset_flag(sk, SOCK_MEMALLOC);
298 	sk->sk_allocation &= ~__GFP_MEMALLOC;
299 	static_key_slow_dec(&memalloc_socks);
300 
301 	/*
302 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304 	 * it has rmem allocations there is a risk that the user of the
305 	 * socket cannot make forward progress due to exceeding the rmem
306 	 * limits. By rights, sk_clear_memalloc() should only be called
307 	 * on sockets being torn down but warn and reset the accounting if
308 	 * that assumption breaks.
309 	 */
310 	if (WARN_ON(sk->sk_forward_alloc))
311 		sk_mem_reclaim(sk);
312 }
313 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
314 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)315 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 {
317 	int ret;
318 	unsigned long pflags = current->flags;
319 
320 	/* these should have been dropped before queueing */
321 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
322 
323 	current->flags |= PF_MEMALLOC;
324 	ret = sk->sk_backlog_rcv(sk, skb);
325 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
326 
327 	return ret;
328 }
329 EXPORT_SYMBOL(__sk_backlog_rcv);
330 
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)331 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
332 {
333 	struct timeval tv;
334 
335 	if (optlen < sizeof(tv))
336 		return -EINVAL;
337 	if (copy_from_user(&tv, optval, sizeof(tv)))
338 		return -EFAULT;
339 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
340 		return -EDOM;
341 
342 	if (tv.tv_sec < 0) {
343 		static int warned __read_mostly;
344 
345 		*timeo_p = 0;
346 		if (warned < 10 && net_ratelimit()) {
347 			warned++;
348 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349 				__func__, current->comm, task_pid_nr(current));
350 		}
351 		return 0;
352 	}
353 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
354 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
355 		return 0;
356 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
357 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
358 	return 0;
359 }
360 
sock_warn_obsolete_bsdism(const char * name)361 static void sock_warn_obsolete_bsdism(const char *name)
362 {
363 	static int warned;
364 	static char warncomm[TASK_COMM_LEN];
365 	if (strcmp(warncomm, current->comm) && warned < 5) {
366 		strcpy(warncomm,  current->comm);
367 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
368 			warncomm, name);
369 		warned++;
370 	}
371 }
372 
373 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
374 
sock_disable_timestamp(struct sock * sk,unsigned long flags)375 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
376 {
377 	if (sk->sk_flags & flags) {
378 		sk->sk_flags &= ~flags;
379 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
380 			net_disable_timestamp();
381 	}
382 }
383 
384 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)385 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
386 {
387 	int err;
388 	int skb_len;
389 	unsigned long flags;
390 	struct sk_buff_head *list = &sk->sk_receive_queue;
391 
392 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
393 		atomic_inc(&sk->sk_drops);
394 		trace_sock_rcvqueue_full(sk, skb);
395 		return -ENOMEM;
396 	}
397 
398 	err = sk_filter(sk, skb);
399 	if (err)
400 		return err;
401 
402 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
403 		atomic_inc(&sk->sk_drops);
404 		return -ENOBUFS;
405 	}
406 
407 	skb->dev = NULL;
408 	skb_set_owner_r(skb, sk);
409 
410 	/* Cache the SKB length before we tack it onto the receive
411 	 * queue.  Once it is added it no longer belongs to us and
412 	 * may be freed by other threads of control pulling packets
413 	 * from the queue.
414 	 */
415 	skb_len = skb->len;
416 
417 	/* we escape from rcu protected region, make sure we dont leak
418 	 * a norefcounted dst
419 	 */
420 	skb_dst_force(skb);
421 
422 	spin_lock_irqsave(&list->lock, flags);
423 	skb->dropcount = atomic_read(&sk->sk_drops);
424 	__skb_queue_tail(list, skb);
425 	spin_unlock_irqrestore(&list->lock, flags);
426 
427 	if (!sock_flag(sk, SOCK_DEAD))
428 		sk->sk_data_ready(sk, skb_len);
429 	return 0;
430 }
431 EXPORT_SYMBOL(sock_queue_rcv_skb);
432 
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)433 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
434 {
435 	int rc = NET_RX_SUCCESS;
436 
437 	if (sk_filter(sk, skb))
438 		goto discard_and_relse;
439 
440 	skb->dev = NULL;
441 
442 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
443 		atomic_inc(&sk->sk_drops);
444 		goto discard_and_relse;
445 	}
446 	if (nested)
447 		bh_lock_sock_nested(sk);
448 	else
449 		bh_lock_sock(sk);
450 	if (!sock_owned_by_user(sk)) {
451 		/*
452 		 * trylock + unlock semantics:
453 		 */
454 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
455 
456 		rc = sk_backlog_rcv(sk, skb);
457 
458 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
459 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
460 		bh_unlock_sock(sk);
461 		atomic_inc(&sk->sk_drops);
462 		goto discard_and_relse;
463 	}
464 
465 	bh_unlock_sock(sk);
466 out:
467 	sock_put(sk);
468 	return rc;
469 discard_and_relse:
470 	kfree_skb(skb);
471 	goto out;
472 }
473 EXPORT_SYMBOL(sk_receive_skb);
474 
sk_reset_txq(struct sock * sk)475 void sk_reset_txq(struct sock *sk)
476 {
477 	sk_tx_queue_clear(sk);
478 }
479 EXPORT_SYMBOL(sk_reset_txq);
480 
__sk_dst_check(struct sock * sk,u32 cookie)481 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
482 {
483 	struct dst_entry *dst = __sk_dst_get(sk);
484 
485 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
486 		sk_tx_queue_clear(sk);
487 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
488 		dst_release(dst);
489 		return NULL;
490 	}
491 
492 	return dst;
493 }
494 EXPORT_SYMBOL(__sk_dst_check);
495 
sk_dst_check(struct sock * sk,u32 cookie)496 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
497 {
498 	struct dst_entry *dst = sk_dst_get(sk);
499 
500 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
501 		sk_dst_reset(sk);
502 		dst_release(dst);
503 		return NULL;
504 	}
505 
506 	return dst;
507 }
508 EXPORT_SYMBOL(sk_dst_check);
509 
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)510 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
511 				int optlen)
512 {
513 	int ret = -ENOPROTOOPT;
514 #ifdef CONFIG_NETDEVICES
515 	struct net *net = sock_net(sk);
516 	char devname[IFNAMSIZ];
517 	int index;
518 
519 	/* Sorry... */
520 	ret = -EPERM;
521 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
522 		goto out;
523 
524 	ret = -EINVAL;
525 	if (optlen < 0)
526 		goto out;
527 
528 	/* Bind this socket to a particular device like "eth0",
529 	 * as specified in the passed interface name. If the
530 	 * name is "" or the option length is zero the socket
531 	 * is not bound.
532 	 */
533 	if (optlen > IFNAMSIZ - 1)
534 		optlen = IFNAMSIZ - 1;
535 	memset(devname, 0, sizeof(devname));
536 
537 	ret = -EFAULT;
538 	if (copy_from_user(devname, optval, optlen))
539 		goto out;
540 
541 	index = 0;
542 	if (devname[0] != '\0') {
543 		struct net_device *dev;
544 
545 		rcu_read_lock();
546 		dev = dev_get_by_name_rcu(net, devname);
547 		if (dev)
548 			index = dev->ifindex;
549 		rcu_read_unlock();
550 		ret = -ENODEV;
551 		if (!dev)
552 			goto out;
553 	}
554 
555 	lock_sock(sk);
556 	sk->sk_bound_dev_if = index;
557 	sk_dst_reset(sk);
558 	release_sock(sk);
559 
560 	ret = 0;
561 
562 out:
563 #endif
564 
565 	return ret;
566 }
567 
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)568 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
569 				int __user *optlen, int len)
570 {
571 	int ret = -ENOPROTOOPT;
572 #ifdef CONFIG_NETDEVICES
573 	struct net *net = sock_net(sk);
574 	char devname[IFNAMSIZ];
575 
576 	if (sk->sk_bound_dev_if == 0) {
577 		len = 0;
578 		goto zero;
579 	}
580 
581 	ret = -EINVAL;
582 	if (len < IFNAMSIZ)
583 		goto out;
584 
585 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
586 	if (ret)
587 		goto out;
588 
589 	len = strlen(devname) + 1;
590 
591 	ret = -EFAULT;
592 	if (copy_to_user(optval, devname, len))
593 		goto out;
594 
595 zero:
596 	ret = -EFAULT;
597 	if (put_user(len, optlen))
598 		goto out;
599 
600 	ret = 0;
601 
602 out:
603 #endif
604 
605 	return ret;
606 }
607 
sock_valbool_flag(struct sock * sk,int bit,int valbool)608 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
609 {
610 	if (valbool)
611 		sock_set_flag(sk, bit);
612 	else
613 		sock_reset_flag(sk, bit);
614 }
615 
616 /*
617  *	This is meant for all protocols to use and covers goings on
618  *	at the socket level. Everything here is generic.
619  */
620 
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)621 int sock_setsockopt(struct socket *sock, int level, int optname,
622 		    char __user *optval, unsigned int optlen)
623 {
624 	struct sock *sk = sock->sk;
625 	int val;
626 	int valbool;
627 	struct linger ling;
628 	int ret = 0;
629 
630 	/*
631 	 *	Options without arguments
632 	 */
633 
634 	if (optname == SO_BINDTODEVICE)
635 		return sock_setbindtodevice(sk, optval, optlen);
636 
637 	if (optlen < sizeof(int))
638 		return -EINVAL;
639 
640 	if (get_user(val, (int __user *)optval))
641 		return -EFAULT;
642 
643 	valbool = val ? 1 : 0;
644 
645 	lock_sock(sk);
646 
647 	switch (optname) {
648 	case SO_DEBUG:
649 		if (val && !capable(CAP_NET_ADMIN))
650 			ret = -EACCES;
651 		else
652 			sock_valbool_flag(sk, SOCK_DBG, valbool);
653 		break;
654 	case SO_REUSEADDR:
655 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
656 		break;
657 	case SO_REUSEPORT:
658 		sk->sk_reuseport = valbool;
659 		break;
660 	case SO_TYPE:
661 	case SO_PROTOCOL:
662 	case SO_DOMAIN:
663 	case SO_ERROR:
664 		ret = -ENOPROTOOPT;
665 		break;
666 	case SO_DONTROUTE:
667 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
668 		break;
669 	case SO_BROADCAST:
670 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
671 		break;
672 	case SO_SNDBUF:
673 		/* Don't error on this BSD doesn't and if you think
674 		 * about it this is right. Otherwise apps have to
675 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
676 		 * are treated in BSD as hints
677 		 */
678 		val = min_t(u32, val, sysctl_wmem_max);
679 set_sndbuf:
680 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
681 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
682 		/* Wake up sending tasks if we upped the value. */
683 		sk->sk_write_space(sk);
684 		break;
685 
686 	case SO_SNDBUFFORCE:
687 		if (!capable(CAP_NET_ADMIN)) {
688 			ret = -EPERM;
689 			break;
690 		}
691 		goto set_sndbuf;
692 
693 	case SO_RCVBUF:
694 		/* Don't error on this BSD doesn't and if you think
695 		 * about it this is right. Otherwise apps have to
696 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
697 		 * are treated in BSD as hints
698 		 */
699 		val = min_t(u32, val, sysctl_rmem_max);
700 set_rcvbuf:
701 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
702 		/*
703 		 * We double it on the way in to account for
704 		 * "struct sk_buff" etc. overhead.   Applications
705 		 * assume that the SO_RCVBUF setting they make will
706 		 * allow that much actual data to be received on that
707 		 * socket.
708 		 *
709 		 * Applications are unaware that "struct sk_buff" and
710 		 * other overheads allocate from the receive buffer
711 		 * during socket buffer allocation.
712 		 *
713 		 * And after considering the possible alternatives,
714 		 * returning the value we actually used in getsockopt
715 		 * is the most desirable behavior.
716 		 */
717 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
718 		break;
719 
720 	case SO_RCVBUFFORCE:
721 		if (!capable(CAP_NET_ADMIN)) {
722 			ret = -EPERM;
723 			break;
724 		}
725 		goto set_rcvbuf;
726 
727 	case SO_KEEPALIVE:
728 #ifdef CONFIG_INET
729 		if (sk->sk_protocol == IPPROTO_TCP &&
730 		    sk->sk_type == SOCK_STREAM)
731 			tcp_set_keepalive(sk, valbool);
732 #endif
733 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
734 		break;
735 
736 	case SO_OOBINLINE:
737 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
738 		break;
739 
740 	case SO_NO_CHECK:
741 		sk->sk_no_check = valbool;
742 		break;
743 
744 	case SO_PRIORITY:
745 		if ((val >= 0 && val <= 6) ||
746 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
747 			sk->sk_priority = val;
748 		else
749 			ret = -EPERM;
750 		break;
751 
752 	case SO_LINGER:
753 		if (optlen < sizeof(ling)) {
754 			ret = -EINVAL;	/* 1003.1g */
755 			break;
756 		}
757 		if (copy_from_user(&ling, optval, sizeof(ling))) {
758 			ret = -EFAULT;
759 			break;
760 		}
761 		if (!ling.l_onoff)
762 			sock_reset_flag(sk, SOCK_LINGER);
763 		else {
764 #if (BITS_PER_LONG == 32)
765 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
766 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
767 			else
768 #endif
769 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
770 			sock_set_flag(sk, SOCK_LINGER);
771 		}
772 		break;
773 
774 	case SO_BSDCOMPAT:
775 		sock_warn_obsolete_bsdism("setsockopt");
776 		break;
777 
778 	case SO_PASSCRED:
779 		if (valbool)
780 			set_bit(SOCK_PASSCRED, &sock->flags);
781 		else
782 			clear_bit(SOCK_PASSCRED, &sock->flags);
783 		break;
784 
785 	case SO_TIMESTAMP:
786 	case SO_TIMESTAMPNS:
787 		if (valbool)  {
788 			if (optname == SO_TIMESTAMP)
789 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
790 			else
791 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
792 			sock_set_flag(sk, SOCK_RCVTSTAMP);
793 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
794 		} else {
795 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
796 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
797 		}
798 		break;
799 
800 	case SO_TIMESTAMPING:
801 		if (val & ~SOF_TIMESTAMPING_MASK) {
802 			ret = -EINVAL;
803 			break;
804 		}
805 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
806 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
807 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
808 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
809 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
810 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
811 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
812 			sock_enable_timestamp(sk,
813 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
814 		else
815 			sock_disable_timestamp(sk,
816 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
817 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
818 				  val & SOF_TIMESTAMPING_SOFTWARE);
819 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
820 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
821 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
822 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
823 		break;
824 
825 	case SO_RCVLOWAT:
826 		if (val < 0)
827 			val = INT_MAX;
828 		sk->sk_rcvlowat = val ? : 1;
829 		break;
830 
831 	case SO_RCVTIMEO:
832 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
833 		break;
834 
835 	case SO_SNDTIMEO:
836 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
837 		break;
838 
839 	case SO_ATTACH_FILTER:
840 		ret = -EINVAL;
841 		if (optlen == sizeof(struct sock_fprog)) {
842 			struct sock_fprog fprog;
843 
844 			ret = -EFAULT;
845 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
846 				break;
847 
848 			ret = sk_attach_filter(&fprog, sk);
849 		}
850 		break;
851 
852 	case SO_DETACH_FILTER:
853 		ret = sk_detach_filter(sk);
854 		break;
855 
856 	case SO_LOCK_FILTER:
857 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
858 			ret = -EPERM;
859 		else
860 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
861 		break;
862 
863 	case SO_PASSSEC:
864 		if (valbool)
865 			set_bit(SOCK_PASSSEC, &sock->flags);
866 		else
867 			clear_bit(SOCK_PASSSEC, &sock->flags);
868 		break;
869 	case SO_MARK:
870 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
871 			ret = -EPERM;
872 		else
873 			sk->sk_mark = val;
874 		break;
875 
876 		/* We implement the SO_SNDLOWAT etc to
877 		   not be settable (1003.1g 5.3) */
878 	case SO_RXQ_OVFL:
879 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
880 		break;
881 
882 	case SO_WIFI_STATUS:
883 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
884 		break;
885 
886 	case SO_PEEK_OFF:
887 		if (sock->ops->set_peek_off)
888 			sock->ops->set_peek_off(sk, val);
889 		else
890 			ret = -EOPNOTSUPP;
891 		break;
892 
893 	case SO_NOFCS:
894 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
895 		break;
896 
897 	case SO_SELECT_ERR_QUEUE:
898 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
899 		break;
900 
901 	default:
902 		ret = -ENOPROTOOPT;
903 		break;
904 	}
905 	release_sock(sk);
906 	return ret;
907 }
908 EXPORT_SYMBOL(sock_setsockopt);
909 
910 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)911 void cred_to_ucred(struct pid *pid, const struct cred *cred,
912 		   struct ucred *ucred)
913 {
914 	ucred->pid = pid_vnr(pid);
915 	ucred->uid = ucred->gid = -1;
916 	if (cred) {
917 		struct user_namespace *current_ns = current_user_ns();
918 
919 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
920 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
921 	}
922 }
923 EXPORT_SYMBOL_GPL(cred_to_ucred);
924 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)925 int sock_getsockopt(struct socket *sock, int level, int optname,
926 		    char __user *optval, int __user *optlen)
927 {
928 	struct sock *sk = sock->sk;
929 
930 	union {
931 		int val;
932 		struct linger ling;
933 		struct timeval tm;
934 	} v;
935 
936 	int lv = sizeof(int);
937 	int len;
938 
939 	if (get_user(len, optlen))
940 		return -EFAULT;
941 	if (len < 0)
942 		return -EINVAL;
943 
944 	memset(&v, 0, sizeof(v));
945 
946 	switch (optname) {
947 	case SO_DEBUG:
948 		v.val = sock_flag(sk, SOCK_DBG);
949 		break;
950 
951 	case SO_DONTROUTE:
952 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
953 		break;
954 
955 	case SO_BROADCAST:
956 		v.val = sock_flag(sk, SOCK_BROADCAST);
957 		break;
958 
959 	case SO_SNDBUF:
960 		v.val = sk->sk_sndbuf;
961 		break;
962 
963 	case SO_RCVBUF:
964 		v.val = sk->sk_rcvbuf;
965 		break;
966 
967 	case SO_REUSEADDR:
968 		v.val = sk->sk_reuse;
969 		break;
970 
971 	case SO_REUSEPORT:
972 		v.val = sk->sk_reuseport;
973 		break;
974 
975 	case SO_KEEPALIVE:
976 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
977 		break;
978 
979 	case SO_TYPE:
980 		v.val = sk->sk_type;
981 		break;
982 
983 	case SO_PROTOCOL:
984 		v.val = sk->sk_protocol;
985 		break;
986 
987 	case SO_DOMAIN:
988 		v.val = sk->sk_family;
989 		break;
990 
991 	case SO_ERROR:
992 		v.val = -sock_error(sk);
993 		if (v.val == 0)
994 			v.val = xchg(&sk->sk_err_soft, 0);
995 		break;
996 
997 	case SO_OOBINLINE:
998 		v.val = sock_flag(sk, SOCK_URGINLINE);
999 		break;
1000 
1001 	case SO_NO_CHECK:
1002 		v.val = sk->sk_no_check;
1003 		break;
1004 
1005 	case SO_PRIORITY:
1006 		v.val = sk->sk_priority;
1007 		break;
1008 
1009 	case SO_LINGER:
1010 		lv		= sizeof(v.ling);
1011 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1012 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1013 		break;
1014 
1015 	case SO_BSDCOMPAT:
1016 		sock_warn_obsolete_bsdism("getsockopt");
1017 		break;
1018 
1019 	case SO_TIMESTAMP:
1020 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1021 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1022 		break;
1023 
1024 	case SO_TIMESTAMPNS:
1025 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1026 		break;
1027 
1028 	case SO_TIMESTAMPING:
1029 		v.val = 0;
1030 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1031 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1032 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1033 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1034 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1035 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1036 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1037 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1038 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1039 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
1040 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1041 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1042 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1043 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1044 		break;
1045 
1046 	case SO_RCVTIMEO:
1047 		lv = sizeof(struct timeval);
1048 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1049 			v.tm.tv_sec = 0;
1050 			v.tm.tv_usec = 0;
1051 		} else {
1052 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1053 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1054 		}
1055 		break;
1056 
1057 	case SO_SNDTIMEO:
1058 		lv = sizeof(struct timeval);
1059 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1060 			v.tm.tv_sec = 0;
1061 			v.tm.tv_usec = 0;
1062 		} else {
1063 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1064 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1065 		}
1066 		break;
1067 
1068 	case SO_RCVLOWAT:
1069 		v.val = sk->sk_rcvlowat;
1070 		break;
1071 
1072 	case SO_SNDLOWAT:
1073 		v.val = 1;
1074 		break;
1075 
1076 	case SO_PASSCRED:
1077 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1078 		break;
1079 
1080 	case SO_PEERCRED:
1081 	{
1082 		struct ucred peercred;
1083 		if (len > sizeof(peercred))
1084 			len = sizeof(peercred);
1085 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1086 		if (copy_to_user(optval, &peercred, len))
1087 			return -EFAULT;
1088 		goto lenout;
1089 	}
1090 
1091 	case SO_PEERNAME:
1092 	{
1093 		char address[128];
1094 
1095 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1096 			return -ENOTCONN;
1097 		if (lv < len)
1098 			return -EINVAL;
1099 		if (copy_to_user(optval, address, len))
1100 			return -EFAULT;
1101 		goto lenout;
1102 	}
1103 
1104 	/* Dubious BSD thing... Probably nobody even uses it, but
1105 	 * the UNIX standard wants it for whatever reason... -DaveM
1106 	 */
1107 	case SO_ACCEPTCONN:
1108 		v.val = sk->sk_state == TCP_LISTEN;
1109 		break;
1110 
1111 	case SO_PASSSEC:
1112 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1113 		break;
1114 
1115 	case SO_PEERSEC:
1116 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1117 
1118 	case SO_MARK:
1119 		v.val = sk->sk_mark;
1120 		break;
1121 
1122 	case SO_RXQ_OVFL:
1123 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1124 		break;
1125 
1126 	case SO_WIFI_STATUS:
1127 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1128 		break;
1129 
1130 	case SO_PEEK_OFF:
1131 		if (!sock->ops->set_peek_off)
1132 			return -EOPNOTSUPP;
1133 
1134 		v.val = sk->sk_peek_off;
1135 		break;
1136 	case SO_NOFCS:
1137 		v.val = sock_flag(sk, SOCK_NOFCS);
1138 		break;
1139 
1140 	case SO_BINDTODEVICE:
1141 		return sock_getbindtodevice(sk, optval, optlen, len);
1142 
1143 	case SO_GET_FILTER:
1144 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1145 		if (len < 0)
1146 			return len;
1147 
1148 		goto lenout;
1149 
1150 	case SO_LOCK_FILTER:
1151 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1152 		break;
1153 
1154 	case SO_SELECT_ERR_QUEUE:
1155 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1156 		break;
1157 
1158 	default:
1159 		return -ENOPROTOOPT;
1160 	}
1161 
1162 	if (len > lv)
1163 		len = lv;
1164 	if (copy_to_user(optval, &v, len))
1165 		return -EFAULT;
1166 lenout:
1167 	if (put_user(len, optlen))
1168 		return -EFAULT;
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Initialize an sk_lock.
1174  *
1175  * (We also register the sk_lock with the lock validator.)
1176  */
sock_lock_init(struct sock * sk)1177 static inline void sock_lock_init(struct sock *sk)
1178 {
1179 	sock_lock_init_class_and_name(sk,
1180 			af_family_slock_key_strings[sk->sk_family],
1181 			af_family_slock_keys + sk->sk_family,
1182 			af_family_key_strings[sk->sk_family],
1183 			af_family_keys + sk->sk_family);
1184 }
1185 
1186 /*
1187  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1188  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1189  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1190  */
sock_copy(struct sock * nsk,const struct sock * osk)1191 static void sock_copy(struct sock *nsk, const struct sock *osk)
1192 {
1193 #ifdef CONFIG_SECURITY_NETWORK
1194 	void *sptr = nsk->sk_security;
1195 #endif
1196 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1197 
1198 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1199 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1200 
1201 #ifdef CONFIG_SECURITY_NETWORK
1202 	nsk->sk_security = sptr;
1203 	security_sk_clone(osk, nsk);
1204 #endif
1205 }
1206 
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1207 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1208 {
1209 	unsigned long nulls1, nulls2;
1210 
1211 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1212 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1213 	if (nulls1 > nulls2)
1214 		swap(nulls1, nulls2);
1215 
1216 	if (nulls1 != 0)
1217 		memset((char *)sk, 0, nulls1);
1218 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1219 	       nulls2 - nulls1 - sizeof(void *));
1220 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1221 	       size - nulls2 - sizeof(void *));
1222 }
1223 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1224 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1225 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1226 		int family)
1227 {
1228 	struct sock *sk;
1229 	struct kmem_cache *slab;
1230 
1231 	slab = prot->slab;
1232 	if (slab != NULL) {
1233 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1234 		if (!sk)
1235 			return sk;
1236 		if (priority & __GFP_ZERO) {
1237 			if (prot->clear_sk)
1238 				prot->clear_sk(sk, prot->obj_size);
1239 			else
1240 				sk_prot_clear_nulls(sk, prot->obj_size);
1241 		}
1242 	} else
1243 		sk = kmalloc(prot->obj_size, priority);
1244 
1245 	if (sk != NULL) {
1246 		kmemcheck_annotate_bitfield(sk, flags);
1247 
1248 		if (security_sk_alloc(sk, family, priority))
1249 			goto out_free;
1250 
1251 		if (!try_module_get(prot->owner))
1252 			goto out_free_sec;
1253 		sk_tx_queue_clear(sk);
1254 	}
1255 
1256 	return sk;
1257 
1258 out_free_sec:
1259 	security_sk_free(sk);
1260 out_free:
1261 	if (slab != NULL)
1262 		kmem_cache_free(slab, sk);
1263 	else
1264 		kfree(sk);
1265 	return NULL;
1266 }
1267 
sk_prot_free(struct proto * prot,struct sock * sk)1268 static void sk_prot_free(struct proto *prot, struct sock *sk)
1269 {
1270 	struct kmem_cache *slab;
1271 	struct module *owner;
1272 
1273 	owner = prot->owner;
1274 	slab = prot->slab;
1275 
1276 	security_sk_free(sk);
1277 	if (slab != NULL)
1278 		kmem_cache_free(slab, sk);
1279 	else
1280 		kfree(sk);
1281 	module_put(owner);
1282 }
1283 
1284 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
sock_update_classid(struct sock * sk)1285 void sock_update_classid(struct sock *sk)
1286 {
1287 	u32 classid;
1288 
1289 	classid = task_cls_classid(current);
1290 	if (classid != sk->sk_classid)
1291 		sk->sk_classid = classid;
1292 }
1293 EXPORT_SYMBOL(sock_update_classid);
1294 #endif
1295 
1296 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
sock_update_netprioidx(struct sock * sk)1297 void sock_update_netprioidx(struct sock *sk)
1298 {
1299 	if (in_interrupt())
1300 		return;
1301 
1302 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1303 }
1304 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1305 #endif
1306 
1307 /**
1308  *	sk_alloc - All socket objects are allocated here
1309  *	@net: the applicable net namespace
1310  *	@family: protocol family
1311  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1312  *	@prot: struct proto associated with this new sock instance
1313  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot)1314 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1315 		      struct proto *prot)
1316 {
1317 	struct sock *sk;
1318 
1319 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1320 	if (sk) {
1321 		sk->sk_family = family;
1322 		/*
1323 		 * See comment in struct sock definition to understand
1324 		 * why we need sk_prot_creator -acme
1325 		 */
1326 		sk->sk_prot = sk->sk_prot_creator = prot;
1327 		sock_lock_init(sk);
1328 		sock_net_set(sk, get_net(net));
1329 		atomic_set(&sk->sk_wmem_alloc, 1);
1330 
1331 		sock_update_classid(sk);
1332 		sock_update_netprioidx(sk);
1333 	}
1334 
1335 	return sk;
1336 }
1337 EXPORT_SYMBOL(sk_alloc);
1338 
__sk_free(struct sock * sk)1339 static void __sk_free(struct sock *sk)
1340 {
1341 	struct sk_filter *filter;
1342 
1343 	if (sk->sk_destruct)
1344 		sk->sk_destruct(sk);
1345 
1346 	filter = rcu_dereference_check(sk->sk_filter,
1347 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1348 	if (filter) {
1349 		sk_filter_uncharge(sk, filter);
1350 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1351 	}
1352 
1353 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1354 
1355 	if (atomic_read(&sk->sk_omem_alloc))
1356 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1357 			 __func__, atomic_read(&sk->sk_omem_alloc));
1358 
1359 	if (sk->sk_peer_cred)
1360 		put_cred(sk->sk_peer_cred);
1361 	put_pid(sk->sk_peer_pid);
1362 	put_net(sock_net(sk));
1363 	sk_prot_free(sk->sk_prot_creator, sk);
1364 }
1365 
sk_free(struct sock * sk)1366 void sk_free(struct sock *sk)
1367 {
1368 	/*
1369 	 * We subtract one from sk_wmem_alloc and can know if
1370 	 * some packets are still in some tx queue.
1371 	 * If not null, sock_wfree() will call __sk_free(sk) later
1372 	 */
1373 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1374 		__sk_free(sk);
1375 }
1376 EXPORT_SYMBOL(sk_free);
1377 
1378 /*
1379  * Last sock_put should drop reference to sk->sk_net. It has already
1380  * been dropped in sk_change_net. Taking reference to stopping namespace
1381  * is not an option.
1382  * Take reference to a socket to remove it from hash _alive_ and after that
1383  * destroy it in the context of init_net.
1384  */
sk_release_kernel(struct sock * sk)1385 void sk_release_kernel(struct sock *sk)
1386 {
1387 	if (sk == NULL || sk->sk_socket == NULL)
1388 		return;
1389 
1390 	sock_hold(sk);
1391 	sock_release(sk->sk_socket);
1392 	release_net(sock_net(sk));
1393 	sock_net_set(sk, get_net(&init_net));
1394 	sock_put(sk);
1395 }
1396 EXPORT_SYMBOL(sk_release_kernel);
1397 
sk_update_clone(const struct sock * sk,struct sock * newsk)1398 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1399 {
1400 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1401 		sock_update_memcg(newsk);
1402 }
1403 
1404 /**
1405  *	sk_clone_lock - clone a socket, and lock its clone
1406  *	@sk: the socket to clone
1407  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1408  *
1409  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1410  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1411 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1412 {
1413 	struct sock *newsk;
1414 
1415 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1416 	if (newsk != NULL) {
1417 		struct sk_filter *filter;
1418 
1419 		sock_copy(newsk, sk);
1420 
1421 		/* SANITY */
1422 		get_net(sock_net(newsk));
1423 		sk_node_init(&newsk->sk_node);
1424 		sock_lock_init(newsk);
1425 		bh_lock_sock(newsk);
1426 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1427 		newsk->sk_backlog.len = 0;
1428 
1429 		atomic_set(&newsk->sk_rmem_alloc, 0);
1430 		/*
1431 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1432 		 */
1433 		atomic_set(&newsk->sk_wmem_alloc, 1);
1434 		atomic_set(&newsk->sk_omem_alloc, 0);
1435 		skb_queue_head_init(&newsk->sk_receive_queue);
1436 		skb_queue_head_init(&newsk->sk_write_queue);
1437 #ifdef CONFIG_NET_DMA
1438 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1439 #endif
1440 
1441 		spin_lock_init(&newsk->sk_dst_lock);
1442 		rwlock_init(&newsk->sk_callback_lock);
1443 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1444 				af_callback_keys + newsk->sk_family,
1445 				af_family_clock_key_strings[newsk->sk_family]);
1446 
1447 		newsk->sk_dst_cache	= NULL;
1448 		newsk->sk_wmem_queued	= 0;
1449 		newsk->sk_forward_alloc = 0;
1450 		newsk->sk_send_head	= NULL;
1451 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1452 
1453 		sock_reset_flag(newsk, SOCK_DONE);
1454 		skb_queue_head_init(&newsk->sk_error_queue);
1455 
1456 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1457 		if (filter != NULL)
1458 			sk_filter_charge(newsk, filter);
1459 
1460 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1461 			/* It is still raw copy of parent, so invalidate
1462 			 * destructor and make plain sk_free() */
1463 			newsk->sk_destruct = NULL;
1464 			bh_unlock_sock(newsk);
1465 			sk_free(newsk);
1466 			newsk = NULL;
1467 			goto out;
1468 		}
1469 
1470 		newsk->sk_err	   = 0;
1471 		newsk->sk_priority = 0;
1472 		/*
1473 		 * Before updating sk_refcnt, we must commit prior changes to memory
1474 		 * (Documentation/RCU/rculist_nulls.txt for details)
1475 		 */
1476 		smp_wmb();
1477 		atomic_set(&newsk->sk_refcnt, 2);
1478 
1479 		/*
1480 		 * Increment the counter in the same struct proto as the master
1481 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1482 		 * is the same as sk->sk_prot->socks, as this field was copied
1483 		 * with memcpy).
1484 		 *
1485 		 * This _changes_ the previous behaviour, where
1486 		 * tcp_create_openreq_child always was incrementing the
1487 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1488 		 * to be taken into account in all callers. -acme
1489 		 */
1490 		sk_refcnt_debug_inc(newsk);
1491 		sk_set_socket(newsk, NULL);
1492 		newsk->sk_wq = NULL;
1493 
1494 		sk_update_clone(sk, newsk);
1495 
1496 		if (newsk->sk_prot->sockets_allocated)
1497 			sk_sockets_allocated_inc(newsk);
1498 
1499 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1500 			net_enable_timestamp();
1501 	}
1502 out:
1503 	return newsk;
1504 }
1505 EXPORT_SYMBOL_GPL(sk_clone_lock);
1506 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1507 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1508 {
1509 	__sk_dst_set(sk, dst);
1510 	sk->sk_route_caps = dst->dev->features;
1511 	if (sk->sk_route_caps & NETIF_F_GSO)
1512 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1513 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1514 	if (sk_can_gso(sk)) {
1515 		if (dst->header_len) {
1516 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1517 		} else {
1518 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1519 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1520 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1521 		}
1522 	}
1523 }
1524 EXPORT_SYMBOL_GPL(sk_setup_caps);
1525 
1526 /*
1527  *	Simple resource managers for sockets.
1528  */
1529 
1530 
1531 /*
1532  * Write buffer destructor automatically called from kfree_skb.
1533  */
sock_wfree(struct sk_buff * skb)1534 void sock_wfree(struct sk_buff *skb)
1535 {
1536 	struct sock *sk = skb->sk;
1537 	unsigned int len = skb->truesize;
1538 
1539 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1540 		/*
1541 		 * Keep a reference on sk_wmem_alloc, this will be released
1542 		 * after sk_write_space() call
1543 		 */
1544 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1545 		sk->sk_write_space(sk);
1546 		len = 1;
1547 	}
1548 	/*
1549 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1550 	 * could not do because of in-flight packets
1551 	 */
1552 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1553 		__sk_free(sk);
1554 }
1555 EXPORT_SYMBOL(sock_wfree);
1556 
1557 /*
1558  * Read buffer destructor automatically called from kfree_skb.
1559  */
sock_rfree(struct sk_buff * skb)1560 void sock_rfree(struct sk_buff *skb)
1561 {
1562 	struct sock *sk = skb->sk;
1563 	unsigned int len = skb->truesize;
1564 
1565 	atomic_sub(len, &sk->sk_rmem_alloc);
1566 	sk_mem_uncharge(sk, len);
1567 }
1568 EXPORT_SYMBOL(sock_rfree);
1569 
sock_edemux(struct sk_buff * skb)1570 void sock_edemux(struct sk_buff *skb)
1571 {
1572 	struct sock *sk = skb->sk;
1573 
1574 #ifdef CONFIG_INET
1575 	if (sk->sk_state == TCP_TIME_WAIT)
1576 		inet_twsk_put(inet_twsk(sk));
1577 	else
1578 #endif
1579 		sock_put(sk);
1580 }
1581 EXPORT_SYMBOL(sock_edemux);
1582 
sock_i_uid(struct sock * sk)1583 kuid_t sock_i_uid(struct sock *sk)
1584 {
1585 	kuid_t uid;
1586 
1587 	read_lock_bh(&sk->sk_callback_lock);
1588 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1589 	read_unlock_bh(&sk->sk_callback_lock);
1590 	return uid;
1591 }
1592 EXPORT_SYMBOL(sock_i_uid);
1593 
sock_i_ino(struct sock * sk)1594 unsigned long sock_i_ino(struct sock *sk)
1595 {
1596 	unsigned long ino;
1597 
1598 	read_lock_bh(&sk->sk_callback_lock);
1599 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1600 	read_unlock_bh(&sk->sk_callback_lock);
1601 	return ino;
1602 }
1603 EXPORT_SYMBOL(sock_i_ino);
1604 
1605 /*
1606  * Allocate a skb from the socket's send buffer.
1607  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1608 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1609 			     gfp_t priority)
1610 {
1611 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1612 		struct sk_buff *skb = alloc_skb(size, priority);
1613 		if (skb) {
1614 			skb_set_owner_w(skb, sk);
1615 			return skb;
1616 		}
1617 	}
1618 	return NULL;
1619 }
1620 EXPORT_SYMBOL(sock_wmalloc);
1621 
1622 /*
1623  * Allocate a skb from the socket's receive buffer.
1624  */
sock_rmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1625 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1626 			     gfp_t priority)
1627 {
1628 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1629 		struct sk_buff *skb = alloc_skb(size, priority);
1630 		if (skb) {
1631 			skb_set_owner_r(skb, sk);
1632 			return skb;
1633 		}
1634 	}
1635 	return NULL;
1636 }
1637 
1638 /*
1639  * Allocate a memory block from the socket's option memory buffer.
1640  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1641 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1642 {
1643 	if ((unsigned int)size <= sysctl_optmem_max &&
1644 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1645 		void *mem;
1646 		/* First do the add, to avoid the race if kmalloc
1647 		 * might sleep.
1648 		 */
1649 		atomic_add(size, &sk->sk_omem_alloc);
1650 		mem = kmalloc(size, priority);
1651 		if (mem)
1652 			return mem;
1653 		atomic_sub(size, &sk->sk_omem_alloc);
1654 	}
1655 	return NULL;
1656 }
1657 EXPORT_SYMBOL(sock_kmalloc);
1658 
1659 /*
1660  * Free an option memory block.
1661  */
sock_kfree_s(struct sock * sk,void * mem,int size)1662 void sock_kfree_s(struct sock *sk, void *mem, int size)
1663 {
1664 	kfree(mem);
1665 	atomic_sub(size, &sk->sk_omem_alloc);
1666 }
1667 EXPORT_SYMBOL(sock_kfree_s);
1668 
1669 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1670    I think, these locks should be removed for datagram sockets.
1671  */
sock_wait_for_wmem(struct sock * sk,long timeo)1672 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1673 {
1674 	DEFINE_WAIT(wait);
1675 
1676 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1677 	for (;;) {
1678 		if (!timeo)
1679 			break;
1680 		if (signal_pending(current))
1681 			break;
1682 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1683 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1684 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1685 			break;
1686 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1687 			break;
1688 		if (sk->sk_err)
1689 			break;
1690 		timeo = schedule_timeout(timeo);
1691 	}
1692 	finish_wait(sk_sleep(sk), &wait);
1693 	return timeo;
1694 }
1695 
1696 
1697 /*
1698  *	Generic send/receive buffer handlers
1699  */
1700 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode)1701 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1702 				     unsigned long data_len, int noblock,
1703 				     int *errcode)
1704 {
1705 	struct sk_buff *skb;
1706 	gfp_t gfp_mask;
1707 	long timeo;
1708 	int err;
1709 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1710 
1711 	err = -EMSGSIZE;
1712 	if (npages > MAX_SKB_FRAGS)
1713 		goto failure;
1714 
1715 	gfp_mask = sk->sk_allocation;
1716 	if (gfp_mask & __GFP_WAIT)
1717 		gfp_mask |= __GFP_REPEAT;
1718 
1719 	timeo = sock_sndtimeo(sk, noblock);
1720 	while (1) {
1721 		err = sock_error(sk);
1722 		if (err != 0)
1723 			goto failure;
1724 
1725 		err = -EPIPE;
1726 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1727 			goto failure;
1728 
1729 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1730 			skb = alloc_skb(header_len, gfp_mask);
1731 			if (skb) {
1732 				int i;
1733 
1734 				/* No pages, we're done... */
1735 				if (!data_len)
1736 					break;
1737 
1738 				skb->truesize += data_len;
1739 				skb_shinfo(skb)->nr_frags = npages;
1740 				for (i = 0; i < npages; i++) {
1741 					struct page *page;
1742 
1743 					page = alloc_pages(sk->sk_allocation, 0);
1744 					if (!page) {
1745 						err = -ENOBUFS;
1746 						skb_shinfo(skb)->nr_frags = i;
1747 						kfree_skb(skb);
1748 						goto failure;
1749 					}
1750 
1751 					__skb_fill_page_desc(skb, i,
1752 							page, 0,
1753 							(data_len >= PAGE_SIZE ?
1754 							 PAGE_SIZE :
1755 							 data_len));
1756 					data_len -= PAGE_SIZE;
1757 				}
1758 
1759 				/* Full success... */
1760 				break;
1761 			}
1762 			err = -ENOBUFS;
1763 			goto failure;
1764 		}
1765 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1766 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1767 		err = -EAGAIN;
1768 		if (!timeo)
1769 			goto failure;
1770 		if (signal_pending(current))
1771 			goto interrupted;
1772 		timeo = sock_wait_for_wmem(sk, timeo);
1773 	}
1774 
1775 	skb_set_owner_w(skb, sk);
1776 	return skb;
1777 
1778 interrupted:
1779 	err = sock_intr_errno(timeo);
1780 failure:
1781 	*errcode = err;
1782 	return NULL;
1783 }
1784 EXPORT_SYMBOL(sock_alloc_send_pskb);
1785 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1786 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1787 				    int noblock, int *errcode)
1788 {
1789 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1790 }
1791 EXPORT_SYMBOL(sock_alloc_send_skb);
1792 
1793 /* On 32bit arches, an skb frag is limited to 2^15 */
1794 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1795 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1796 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1797 {
1798 	int order;
1799 
1800 	if (pfrag->page) {
1801 		if (atomic_read(&pfrag->page->_count) == 1) {
1802 			pfrag->offset = 0;
1803 			return true;
1804 		}
1805 		if (pfrag->offset < pfrag->size)
1806 			return true;
1807 		put_page(pfrag->page);
1808 	}
1809 
1810 	/* We restrict high order allocations to users that can afford to wait */
1811 	order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1812 
1813 	do {
1814 		gfp_t gfp = sk->sk_allocation;
1815 
1816 		if (order)
1817 			gfp |= __GFP_COMP | __GFP_NOWARN;
1818 		pfrag->page = alloc_pages(gfp, order);
1819 		if (likely(pfrag->page)) {
1820 			pfrag->offset = 0;
1821 			pfrag->size = PAGE_SIZE << order;
1822 			return true;
1823 		}
1824 	} while (--order >= 0);
1825 
1826 	sk_enter_memory_pressure(sk);
1827 	sk_stream_moderate_sndbuf(sk);
1828 	return false;
1829 }
1830 EXPORT_SYMBOL(sk_page_frag_refill);
1831 
__lock_sock(struct sock * sk)1832 static void __lock_sock(struct sock *sk)
1833 	__releases(&sk->sk_lock.slock)
1834 	__acquires(&sk->sk_lock.slock)
1835 {
1836 	DEFINE_WAIT(wait);
1837 
1838 	for (;;) {
1839 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1840 					TASK_UNINTERRUPTIBLE);
1841 		spin_unlock_bh(&sk->sk_lock.slock);
1842 		schedule();
1843 		spin_lock_bh(&sk->sk_lock.slock);
1844 		if (!sock_owned_by_user(sk))
1845 			break;
1846 	}
1847 	finish_wait(&sk->sk_lock.wq, &wait);
1848 }
1849 
__release_sock(struct sock * sk)1850 static void __release_sock(struct sock *sk)
1851 	__releases(&sk->sk_lock.slock)
1852 	__acquires(&sk->sk_lock.slock)
1853 {
1854 	struct sk_buff *skb = sk->sk_backlog.head;
1855 
1856 	do {
1857 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1858 		bh_unlock_sock(sk);
1859 
1860 		do {
1861 			struct sk_buff *next = skb->next;
1862 
1863 			prefetch(next);
1864 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1865 			skb->next = NULL;
1866 			sk_backlog_rcv(sk, skb);
1867 
1868 			/*
1869 			 * We are in process context here with softirqs
1870 			 * disabled, use cond_resched_softirq() to preempt.
1871 			 * This is safe to do because we've taken the backlog
1872 			 * queue private:
1873 			 */
1874 			cond_resched_softirq();
1875 
1876 			skb = next;
1877 		} while (skb != NULL);
1878 
1879 		bh_lock_sock(sk);
1880 	} while ((skb = sk->sk_backlog.head) != NULL);
1881 
1882 	/*
1883 	 * Doing the zeroing here guarantee we can not loop forever
1884 	 * while a wild producer attempts to flood us.
1885 	 */
1886 	sk->sk_backlog.len = 0;
1887 }
1888 
1889 /**
1890  * sk_wait_data - wait for data to arrive at sk_receive_queue
1891  * @sk:    sock to wait on
1892  * @timeo: for how long
1893  *
1894  * Now socket state including sk->sk_err is changed only under lock,
1895  * hence we may omit checks after joining wait queue.
1896  * We check receive queue before schedule() only as optimization;
1897  * it is very likely that release_sock() added new data.
1898  */
sk_wait_data(struct sock * sk,long * timeo)1899 int sk_wait_data(struct sock *sk, long *timeo)
1900 {
1901 	int rc;
1902 	DEFINE_WAIT(wait);
1903 
1904 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1905 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1906 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1907 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1908 	finish_wait(sk_sleep(sk), &wait);
1909 	return rc;
1910 }
1911 EXPORT_SYMBOL(sk_wait_data);
1912 
1913 /**
1914  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1915  *	@sk: socket
1916  *	@size: memory size to allocate
1917  *	@kind: allocation type
1918  *
1919  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1920  *	rmem allocation. This function assumes that protocols which have
1921  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1922  */
__sk_mem_schedule(struct sock * sk,int size,int kind)1923 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1924 {
1925 	struct proto *prot = sk->sk_prot;
1926 	int amt = sk_mem_pages(size);
1927 	long allocated;
1928 	int parent_status = UNDER_LIMIT;
1929 
1930 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1931 
1932 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1933 
1934 	/* Under limit. */
1935 	if (parent_status == UNDER_LIMIT &&
1936 			allocated <= sk_prot_mem_limits(sk, 0)) {
1937 		sk_leave_memory_pressure(sk);
1938 		return 1;
1939 	}
1940 
1941 	/* Under pressure. (we or our parents) */
1942 	if ((parent_status > SOFT_LIMIT) ||
1943 			allocated > sk_prot_mem_limits(sk, 1))
1944 		sk_enter_memory_pressure(sk);
1945 
1946 	/* Over hard limit (we or our parents) */
1947 	if ((parent_status == OVER_LIMIT) ||
1948 			(allocated > sk_prot_mem_limits(sk, 2)))
1949 		goto suppress_allocation;
1950 
1951 	/* guarantee minimum buffer size under pressure */
1952 	if (kind == SK_MEM_RECV) {
1953 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1954 			return 1;
1955 
1956 	} else { /* SK_MEM_SEND */
1957 		if (sk->sk_type == SOCK_STREAM) {
1958 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1959 				return 1;
1960 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1961 			   prot->sysctl_wmem[0])
1962 				return 1;
1963 	}
1964 
1965 	if (sk_has_memory_pressure(sk)) {
1966 		int alloc;
1967 
1968 		if (!sk_under_memory_pressure(sk))
1969 			return 1;
1970 		alloc = sk_sockets_allocated_read_positive(sk);
1971 		if (sk_prot_mem_limits(sk, 2) > alloc *
1972 		    sk_mem_pages(sk->sk_wmem_queued +
1973 				 atomic_read(&sk->sk_rmem_alloc) +
1974 				 sk->sk_forward_alloc))
1975 			return 1;
1976 	}
1977 
1978 suppress_allocation:
1979 
1980 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1981 		sk_stream_moderate_sndbuf(sk);
1982 
1983 		/* Fail only if socket is _under_ its sndbuf.
1984 		 * In this case we cannot block, so that we have to fail.
1985 		 */
1986 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1987 			return 1;
1988 	}
1989 
1990 	trace_sock_exceed_buf_limit(sk, prot, allocated);
1991 
1992 	/* Alas. Undo changes. */
1993 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1994 
1995 	sk_memory_allocated_sub(sk, amt);
1996 
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(__sk_mem_schedule);
2000 
2001 /**
2002  *	__sk_reclaim - reclaim memory_allocated
2003  *	@sk: socket
2004  */
__sk_mem_reclaim(struct sock * sk)2005 void __sk_mem_reclaim(struct sock *sk)
2006 {
2007 	sk_memory_allocated_sub(sk,
2008 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2009 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2010 
2011 	if (sk_under_memory_pressure(sk) &&
2012 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2013 		sk_leave_memory_pressure(sk);
2014 }
2015 EXPORT_SYMBOL(__sk_mem_reclaim);
2016 
2017 
2018 /*
2019  * Set of default routines for initialising struct proto_ops when
2020  * the protocol does not support a particular function. In certain
2021  * cases where it makes no sense for a protocol to have a "do nothing"
2022  * function, some default processing is provided.
2023  */
2024 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2025 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2026 {
2027 	return -EOPNOTSUPP;
2028 }
2029 EXPORT_SYMBOL(sock_no_bind);
2030 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2031 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2032 		    int len, int flags)
2033 {
2034 	return -EOPNOTSUPP;
2035 }
2036 EXPORT_SYMBOL(sock_no_connect);
2037 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2038 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2039 {
2040 	return -EOPNOTSUPP;
2041 }
2042 EXPORT_SYMBOL(sock_no_socketpair);
2043 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)2044 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2045 {
2046 	return -EOPNOTSUPP;
2047 }
2048 EXPORT_SYMBOL(sock_no_accept);
2049 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)2050 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2051 		    int *len, int peer)
2052 {
2053 	return -EOPNOTSUPP;
2054 }
2055 EXPORT_SYMBOL(sock_no_getname);
2056 
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)2057 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2058 {
2059 	return 0;
2060 }
2061 EXPORT_SYMBOL(sock_no_poll);
2062 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2063 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2064 {
2065 	return -EOPNOTSUPP;
2066 }
2067 EXPORT_SYMBOL(sock_no_ioctl);
2068 
sock_no_listen(struct socket * sock,int backlog)2069 int sock_no_listen(struct socket *sock, int backlog)
2070 {
2071 	return -EOPNOTSUPP;
2072 }
2073 EXPORT_SYMBOL(sock_no_listen);
2074 
sock_no_shutdown(struct socket * sock,int how)2075 int sock_no_shutdown(struct socket *sock, int how)
2076 {
2077 	return -EOPNOTSUPP;
2078 }
2079 EXPORT_SYMBOL(sock_no_shutdown);
2080 
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2081 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2082 		    char __user *optval, unsigned int optlen)
2083 {
2084 	return -EOPNOTSUPP;
2085 }
2086 EXPORT_SYMBOL(sock_no_setsockopt);
2087 
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2088 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2089 		    char __user *optval, int __user *optlen)
2090 {
2091 	return -EOPNOTSUPP;
2092 }
2093 EXPORT_SYMBOL(sock_no_getsockopt);
2094 
sock_no_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len)2095 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2096 		    size_t len)
2097 {
2098 	return -EOPNOTSUPP;
2099 }
2100 EXPORT_SYMBOL(sock_no_sendmsg);
2101 
sock_no_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len,int flags)2102 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2103 		    size_t len, int flags)
2104 {
2105 	return -EOPNOTSUPP;
2106 }
2107 EXPORT_SYMBOL(sock_no_recvmsg);
2108 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2109 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2110 {
2111 	/* Mirror missing mmap method error code */
2112 	return -ENODEV;
2113 }
2114 EXPORT_SYMBOL(sock_no_mmap);
2115 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2116 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2117 {
2118 	ssize_t res;
2119 	struct msghdr msg = {.msg_flags = flags};
2120 	struct kvec iov;
2121 	char *kaddr = kmap(page);
2122 	iov.iov_base = kaddr + offset;
2123 	iov.iov_len = size;
2124 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2125 	kunmap(page);
2126 	return res;
2127 }
2128 EXPORT_SYMBOL(sock_no_sendpage);
2129 
2130 /*
2131  *	Default Socket Callbacks
2132  */
2133 
sock_def_wakeup(struct sock * sk)2134 static void sock_def_wakeup(struct sock *sk)
2135 {
2136 	struct socket_wq *wq;
2137 
2138 	rcu_read_lock();
2139 	wq = rcu_dereference(sk->sk_wq);
2140 	if (wq_has_sleeper(wq))
2141 		wake_up_interruptible_all(&wq->wait);
2142 	rcu_read_unlock();
2143 }
2144 
sock_def_error_report(struct sock * sk)2145 static void sock_def_error_report(struct sock *sk)
2146 {
2147 	struct socket_wq *wq;
2148 
2149 	rcu_read_lock();
2150 	wq = rcu_dereference(sk->sk_wq);
2151 	if (wq_has_sleeper(wq))
2152 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2153 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2154 	rcu_read_unlock();
2155 }
2156 
sock_def_readable(struct sock * sk,int len)2157 static void sock_def_readable(struct sock *sk, int len)
2158 {
2159 	struct socket_wq *wq;
2160 
2161 	rcu_read_lock();
2162 	wq = rcu_dereference(sk->sk_wq);
2163 	if (wq_has_sleeper(wq))
2164 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2165 						POLLRDNORM | POLLRDBAND);
2166 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2167 	rcu_read_unlock();
2168 }
2169 
sock_def_write_space(struct sock * sk)2170 static void sock_def_write_space(struct sock *sk)
2171 {
2172 	struct socket_wq *wq;
2173 
2174 	rcu_read_lock();
2175 
2176 	/* Do not wake up a writer until he can make "significant"
2177 	 * progress.  --DaveM
2178 	 */
2179 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2180 		wq = rcu_dereference(sk->sk_wq);
2181 		if (wq_has_sleeper(wq))
2182 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2183 						POLLWRNORM | POLLWRBAND);
2184 
2185 		/* Should agree with poll, otherwise some programs break */
2186 		if (sock_writeable(sk))
2187 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2188 	}
2189 
2190 	rcu_read_unlock();
2191 }
2192 
sock_def_destruct(struct sock * sk)2193 static void sock_def_destruct(struct sock *sk)
2194 {
2195 	kfree(sk->sk_protinfo);
2196 }
2197 
sk_send_sigurg(struct sock * sk)2198 void sk_send_sigurg(struct sock *sk)
2199 {
2200 	if (sk->sk_socket && sk->sk_socket->file)
2201 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2202 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2203 }
2204 EXPORT_SYMBOL(sk_send_sigurg);
2205 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2206 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2207 		    unsigned long expires)
2208 {
2209 	if (!mod_timer(timer, expires))
2210 		sock_hold(sk);
2211 }
2212 EXPORT_SYMBOL(sk_reset_timer);
2213 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2214 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2215 {
2216 	if (del_timer(timer))
2217 		__sock_put(sk);
2218 }
2219 EXPORT_SYMBOL(sk_stop_timer);
2220 
sock_init_data(struct socket * sock,struct sock * sk)2221 void sock_init_data(struct socket *sock, struct sock *sk)
2222 {
2223 	skb_queue_head_init(&sk->sk_receive_queue);
2224 	skb_queue_head_init(&sk->sk_write_queue);
2225 	skb_queue_head_init(&sk->sk_error_queue);
2226 #ifdef CONFIG_NET_DMA
2227 	skb_queue_head_init(&sk->sk_async_wait_queue);
2228 #endif
2229 
2230 	sk->sk_send_head	=	NULL;
2231 
2232 	init_timer(&sk->sk_timer);
2233 
2234 	sk->sk_allocation	=	GFP_KERNEL;
2235 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2236 	sk->sk_sndbuf		=	sysctl_wmem_default;
2237 	sk->sk_state		=	TCP_CLOSE;
2238 	sk_set_socket(sk, sock);
2239 
2240 	sock_set_flag(sk, SOCK_ZAPPED);
2241 
2242 	if (sock) {
2243 		sk->sk_type	=	sock->type;
2244 		sk->sk_wq	=	sock->wq;
2245 		sock->sk	=	sk;
2246 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2247 	} else {
2248 		sk->sk_wq	=	NULL;
2249 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2250 	}
2251 
2252 	spin_lock_init(&sk->sk_dst_lock);
2253 	rwlock_init(&sk->sk_callback_lock);
2254 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2255 			af_callback_keys + sk->sk_family,
2256 			af_family_clock_key_strings[sk->sk_family]);
2257 
2258 	sk->sk_state_change	=	sock_def_wakeup;
2259 	sk->sk_data_ready	=	sock_def_readable;
2260 	sk->sk_write_space	=	sock_def_write_space;
2261 	sk->sk_error_report	=	sock_def_error_report;
2262 	sk->sk_destruct		=	sock_def_destruct;
2263 
2264 	sk->sk_frag.page	=	NULL;
2265 	sk->sk_frag.offset	=	0;
2266 	sk->sk_peek_off		=	-1;
2267 
2268 	sk->sk_peer_pid 	=	NULL;
2269 	sk->sk_peer_cred	=	NULL;
2270 	sk->sk_write_pending	=	0;
2271 	sk->sk_rcvlowat		=	1;
2272 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2273 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2274 
2275 	sk->sk_stamp = ktime_set(-1L, 0);
2276 
2277 	/*
2278 	 * Before updating sk_refcnt, we must commit prior changes to memory
2279 	 * (Documentation/RCU/rculist_nulls.txt for details)
2280 	 */
2281 	smp_wmb();
2282 	atomic_set(&sk->sk_refcnt, 1);
2283 	atomic_set(&sk->sk_drops, 0);
2284 }
2285 EXPORT_SYMBOL(sock_init_data);
2286 
lock_sock_nested(struct sock * sk,int subclass)2287 void lock_sock_nested(struct sock *sk, int subclass)
2288 {
2289 	might_sleep();
2290 	spin_lock_bh(&sk->sk_lock.slock);
2291 	if (sk->sk_lock.owned)
2292 		__lock_sock(sk);
2293 	sk->sk_lock.owned = 1;
2294 	spin_unlock(&sk->sk_lock.slock);
2295 	/*
2296 	 * The sk_lock has mutex_lock() semantics here:
2297 	 */
2298 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2299 	local_bh_enable();
2300 }
2301 EXPORT_SYMBOL(lock_sock_nested);
2302 
release_sock(struct sock * sk)2303 void release_sock(struct sock *sk)
2304 {
2305 	/*
2306 	 * The sk_lock has mutex_unlock() semantics:
2307 	 */
2308 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2309 
2310 	spin_lock_bh(&sk->sk_lock.slock);
2311 	if (sk->sk_backlog.tail)
2312 		__release_sock(sk);
2313 
2314 	if (sk->sk_prot->release_cb)
2315 		sk->sk_prot->release_cb(sk);
2316 
2317 	sk->sk_lock.owned = 0;
2318 	if (waitqueue_active(&sk->sk_lock.wq))
2319 		wake_up(&sk->sk_lock.wq);
2320 	spin_unlock_bh(&sk->sk_lock.slock);
2321 }
2322 EXPORT_SYMBOL(release_sock);
2323 
2324 /**
2325  * lock_sock_fast - fast version of lock_sock
2326  * @sk: socket
2327  *
2328  * This version should be used for very small section, where process wont block
2329  * return false if fast path is taken
2330  *   sk_lock.slock locked, owned = 0, BH disabled
2331  * return true if slow path is taken
2332  *   sk_lock.slock unlocked, owned = 1, BH enabled
2333  */
lock_sock_fast(struct sock * sk)2334 bool lock_sock_fast(struct sock *sk)
2335 {
2336 	might_sleep();
2337 	spin_lock_bh(&sk->sk_lock.slock);
2338 
2339 	if (!sk->sk_lock.owned)
2340 		/*
2341 		 * Note : We must disable BH
2342 		 */
2343 		return false;
2344 
2345 	__lock_sock(sk);
2346 	sk->sk_lock.owned = 1;
2347 	spin_unlock(&sk->sk_lock.slock);
2348 	/*
2349 	 * The sk_lock has mutex_lock() semantics here:
2350 	 */
2351 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2352 	local_bh_enable();
2353 	return true;
2354 }
2355 EXPORT_SYMBOL(lock_sock_fast);
2356 
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2357 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2358 {
2359 	struct timeval tv;
2360 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2361 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2362 	tv = ktime_to_timeval(sk->sk_stamp);
2363 	if (tv.tv_sec == -1)
2364 		return -ENOENT;
2365 	if (tv.tv_sec == 0) {
2366 		sk->sk_stamp = ktime_get_real();
2367 		tv = ktime_to_timeval(sk->sk_stamp);
2368 	}
2369 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2370 }
2371 EXPORT_SYMBOL(sock_get_timestamp);
2372 
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2373 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2374 {
2375 	struct timespec ts;
2376 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2377 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2378 	ts = ktime_to_timespec(sk->sk_stamp);
2379 	if (ts.tv_sec == -1)
2380 		return -ENOENT;
2381 	if (ts.tv_sec == 0) {
2382 		sk->sk_stamp = ktime_get_real();
2383 		ts = ktime_to_timespec(sk->sk_stamp);
2384 	}
2385 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2386 }
2387 EXPORT_SYMBOL(sock_get_timestampns);
2388 
sock_enable_timestamp(struct sock * sk,int flag)2389 void sock_enable_timestamp(struct sock *sk, int flag)
2390 {
2391 	if (!sock_flag(sk, flag)) {
2392 		unsigned long previous_flags = sk->sk_flags;
2393 
2394 		sock_set_flag(sk, flag);
2395 		/*
2396 		 * we just set one of the two flags which require net
2397 		 * time stamping, but time stamping might have been on
2398 		 * already because of the other one
2399 		 */
2400 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2401 			net_enable_timestamp();
2402 	}
2403 }
2404 
2405 /*
2406  *	Get a socket option on an socket.
2407  *
2408  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2409  *	asynchronous errors should be reported by getsockopt. We assume
2410  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2411  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2412 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2413 			   char __user *optval, int __user *optlen)
2414 {
2415 	struct sock *sk = sock->sk;
2416 
2417 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2418 }
2419 EXPORT_SYMBOL(sock_common_getsockopt);
2420 
2421 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2422 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2423 				  char __user *optval, int __user *optlen)
2424 {
2425 	struct sock *sk = sock->sk;
2426 
2427 	if (sk->sk_prot->compat_getsockopt != NULL)
2428 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2429 						      optval, optlen);
2430 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2431 }
2432 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2433 #endif
2434 
sock_common_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)2435 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2436 			struct msghdr *msg, size_t size, int flags)
2437 {
2438 	struct sock *sk = sock->sk;
2439 	int addr_len = 0;
2440 	int err;
2441 
2442 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2443 				   flags & ~MSG_DONTWAIT, &addr_len);
2444 	if (err >= 0)
2445 		msg->msg_namelen = addr_len;
2446 	return err;
2447 }
2448 EXPORT_SYMBOL(sock_common_recvmsg);
2449 
2450 /*
2451  *	Set socket options on an inet socket.
2452  */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2453 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2454 			   char __user *optval, unsigned int optlen)
2455 {
2456 	struct sock *sk = sock->sk;
2457 
2458 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2459 }
2460 EXPORT_SYMBOL(sock_common_setsockopt);
2461 
2462 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2463 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2464 				  char __user *optval, unsigned int optlen)
2465 {
2466 	struct sock *sk = sock->sk;
2467 
2468 	if (sk->sk_prot->compat_setsockopt != NULL)
2469 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2470 						      optval, optlen);
2471 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2472 }
2473 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2474 #endif
2475 
sk_common_release(struct sock * sk)2476 void sk_common_release(struct sock *sk)
2477 {
2478 	if (sk->sk_prot->destroy)
2479 		sk->sk_prot->destroy(sk);
2480 
2481 	/*
2482 	 * Observation: when sock_common_release is called, processes have
2483 	 * no access to socket. But net still has.
2484 	 * Step one, detach it from networking:
2485 	 *
2486 	 * A. Remove from hash tables.
2487 	 */
2488 
2489 	sk->sk_prot->unhash(sk);
2490 
2491 	/*
2492 	 * In this point socket cannot receive new packets, but it is possible
2493 	 * that some packets are in flight because some CPU runs receiver and
2494 	 * did hash table lookup before we unhashed socket. They will achieve
2495 	 * receive queue and will be purged by socket destructor.
2496 	 *
2497 	 * Also we still have packets pending on receive queue and probably,
2498 	 * our own packets waiting in device queues. sock_destroy will drain
2499 	 * receive queue, but transmitted packets will delay socket destruction
2500 	 * until the last reference will be released.
2501 	 */
2502 
2503 	sock_orphan(sk);
2504 
2505 	xfrm_sk_free_policy(sk);
2506 
2507 	sk_refcnt_debug_release(sk);
2508 
2509 	if (sk->sk_frag.page) {
2510 		put_page(sk->sk_frag.page);
2511 		sk->sk_frag.page = NULL;
2512 	}
2513 
2514 	sock_put(sk);
2515 }
2516 EXPORT_SYMBOL(sk_common_release);
2517 
2518 #ifdef CONFIG_PROC_FS
2519 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2520 struct prot_inuse {
2521 	int val[PROTO_INUSE_NR];
2522 };
2523 
2524 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2525 
2526 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2527 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2528 {
2529 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2530 }
2531 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2532 
sock_prot_inuse_get(struct net * net,struct proto * prot)2533 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2534 {
2535 	int cpu, idx = prot->inuse_idx;
2536 	int res = 0;
2537 
2538 	for_each_possible_cpu(cpu)
2539 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2540 
2541 	return res >= 0 ? res : 0;
2542 }
2543 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2544 
sock_inuse_init_net(struct net * net)2545 static int __net_init sock_inuse_init_net(struct net *net)
2546 {
2547 	net->core.inuse = alloc_percpu(struct prot_inuse);
2548 	return net->core.inuse ? 0 : -ENOMEM;
2549 }
2550 
sock_inuse_exit_net(struct net * net)2551 static void __net_exit sock_inuse_exit_net(struct net *net)
2552 {
2553 	free_percpu(net->core.inuse);
2554 }
2555 
2556 static struct pernet_operations net_inuse_ops = {
2557 	.init = sock_inuse_init_net,
2558 	.exit = sock_inuse_exit_net,
2559 };
2560 
net_inuse_init(void)2561 static __init int net_inuse_init(void)
2562 {
2563 	if (register_pernet_subsys(&net_inuse_ops))
2564 		panic("Cannot initialize net inuse counters");
2565 
2566 	return 0;
2567 }
2568 
2569 core_initcall(net_inuse_init);
2570 #else
2571 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2572 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2573 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2574 {
2575 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2576 }
2577 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2578 
sock_prot_inuse_get(struct net * net,struct proto * prot)2579 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2580 {
2581 	int cpu, idx = prot->inuse_idx;
2582 	int res = 0;
2583 
2584 	for_each_possible_cpu(cpu)
2585 		res += per_cpu(prot_inuse, cpu).val[idx];
2586 
2587 	return res >= 0 ? res : 0;
2588 }
2589 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2590 #endif
2591 
assign_proto_idx(struct proto * prot)2592 static void assign_proto_idx(struct proto *prot)
2593 {
2594 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2595 
2596 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2597 		pr_err("PROTO_INUSE_NR exhausted\n");
2598 		return;
2599 	}
2600 
2601 	set_bit(prot->inuse_idx, proto_inuse_idx);
2602 }
2603 
release_proto_idx(struct proto * prot)2604 static void release_proto_idx(struct proto *prot)
2605 {
2606 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2607 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2608 }
2609 #else
assign_proto_idx(struct proto * prot)2610 static inline void assign_proto_idx(struct proto *prot)
2611 {
2612 }
2613 
release_proto_idx(struct proto * prot)2614 static inline void release_proto_idx(struct proto *prot)
2615 {
2616 }
2617 #endif
2618 
proto_register(struct proto * prot,int alloc_slab)2619 int proto_register(struct proto *prot, int alloc_slab)
2620 {
2621 	if (alloc_slab) {
2622 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2623 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2624 					NULL);
2625 
2626 		if (prot->slab == NULL) {
2627 			pr_crit("%s: Can't create sock SLAB cache!\n",
2628 				prot->name);
2629 			goto out;
2630 		}
2631 
2632 		if (prot->rsk_prot != NULL) {
2633 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2634 			if (prot->rsk_prot->slab_name == NULL)
2635 				goto out_free_sock_slab;
2636 
2637 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2638 								 prot->rsk_prot->obj_size, 0,
2639 								 SLAB_HWCACHE_ALIGN, NULL);
2640 
2641 			if (prot->rsk_prot->slab == NULL) {
2642 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2643 					prot->name);
2644 				goto out_free_request_sock_slab_name;
2645 			}
2646 		}
2647 
2648 		if (prot->twsk_prot != NULL) {
2649 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2650 
2651 			if (prot->twsk_prot->twsk_slab_name == NULL)
2652 				goto out_free_request_sock_slab;
2653 
2654 			prot->twsk_prot->twsk_slab =
2655 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2656 						  prot->twsk_prot->twsk_obj_size,
2657 						  0,
2658 						  SLAB_HWCACHE_ALIGN |
2659 							prot->slab_flags,
2660 						  NULL);
2661 			if (prot->twsk_prot->twsk_slab == NULL)
2662 				goto out_free_timewait_sock_slab_name;
2663 		}
2664 	}
2665 
2666 	mutex_lock(&proto_list_mutex);
2667 	list_add(&prot->node, &proto_list);
2668 	assign_proto_idx(prot);
2669 	mutex_unlock(&proto_list_mutex);
2670 	return 0;
2671 
2672 out_free_timewait_sock_slab_name:
2673 	kfree(prot->twsk_prot->twsk_slab_name);
2674 out_free_request_sock_slab:
2675 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2676 		kmem_cache_destroy(prot->rsk_prot->slab);
2677 		prot->rsk_prot->slab = NULL;
2678 	}
2679 out_free_request_sock_slab_name:
2680 	if (prot->rsk_prot)
2681 		kfree(prot->rsk_prot->slab_name);
2682 out_free_sock_slab:
2683 	kmem_cache_destroy(prot->slab);
2684 	prot->slab = NULL;
2685 out:
2686 	return -ENOBUFS;
2687 }
2688 EXPORT_SYMBOL(proto_register);
2689 
proto_unregister(struct proto * prot)2690 void proto_unregister(struct proto *prot)
2691 {
2692 	mutex_lock(&proto_list_mutex);
2693 	release_proto_idx(prot);
2694 	list_del(&prot->node);
2695 	mutex_unlock(&proto_list_mutex);
2696 
2697 	if (prot->slab != NULL) {
2698 		kmem_cache_destroy(prot->slab);
2699 		prot->slab = NULL;
2700 	}
2701 
2702 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2703 		kmem_cache_destroy(prot->rsk_prot->slab);
2704 		kfree(prot->rsk_prot->slab_name);
2705 		prot->rsk_prot->slab = NULL;
2706 	}
2707 
2708 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2709 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2710 		kfree(prot->twsk_prot->twsk_slab_name);
2711 		prot->twsk_prot->twsk_slab = NULL;
2712 	}
2713 }
2714 EXPORT_SYMBOL(proto_unregister);
2715 
2716 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2717 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2718 	__acquires(proto_list_mutex)
2719 {
2720 	mutex_lock(&proto_list_mutex);
2721 	return seq_list_start_head(&proto_list, *pos);
2722 }
2723 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2724 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2725 {
2726 	return seq_list_next(v, &proto_list, pos);
2727 }
2728 
proto_seq_stop(struct seq_file * seq,void * v)2729 static void proto_seq_stop(struct seq_file *seq, void *v)
2730 	__releases(proto_list_mutex)
2731 {
2732 	mutex_unlock(&proto_list_mutex);
2733 }
2734 
proto_method_implemented(const void * method)2735 static char proto_method_implemented(const void *method)
2736 {
2737 	return method == NULL ? 'n' : 'y';
2738 }
sock_prot_memory_allocated(struct proto * proto)2739 static long sock_prot_memory_allocated(struct proto *proto)
2740 {
2741 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2742 }
2743 
sock_prot_memory_pressure(struct proto * proto)2744 static char *sock_prot_memory_pressure(struct proto *proto)
2745 {
2746 	return proto->memory_pressure != NULL ?
2747 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2748 }
2749 
proto_seq_printf(struct seq_file * seq,struct proto * proto)2750 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2751 {
2752 
2753 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2754 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2755 		   proto->name,
2756 		   proto->obj_size,
2757 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2758 		   sock_prot_memory_allocated(proto),
2759 		   sock_prot_memory_pressure(proto),
2760 		   proto->max_header,
2761 		   proto->slab == NULL ? "no" : "yes",
2762 		   module_name(proto->owner),
2763 		   proto_method_implemented(proto->close),
2764 		   proto_method_implemented(proto->connect),
2765 		   proto_method_implemented(proto->disconnect),
2766 		   proto_method_implemented(proto->accept),
2767 		   proto_method_implemented(proto->ioctl),
2768 		   proto_method_implemented(proto->init),
2769 		   proto_method_implemented(proto->destroy),
2770 		   proto_method_implemented(proto->shutdown),
2771 		   proto_method_implemented(proto->setsockopt),
2772 		   proto_method_implemented(proto->getsockopt),
2773 		   proto_method_implemented(proto->sendmsg),
2774 		   proto_method_implemented(proto->recvmsg),
2775 		   proto_method_implemented(proto->sendpage),
2776 		   proto_method_implemented(proto->bind),
2777 		   proto_method_implemented(proto->backlog_rcv),
2778 		   proto_method_implemented(proto->hash),
2779 		   proto_method_implemented(proto->unhash),
2780 		   proto_method_implemented(proto->get_port),
2781 		   proto_method_implemented(proto->enter_memory_pressure));
2782 }
2783 
proto_seq_show(struct seq_file * seq,void * v)2784 static int proto_seq_show(struct seq_file *seq, void *v)
2785 {
2786 	if (v == &proto_list)
2787 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2788 			   "protocol",
2789 			   "size",
2790 			   "sockets",
2791 			   "memory",
2792 			   "press",
2793 			   "maxhdr",
2794 			   "slab",
2795 			   "module",
2796 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2797 	else
2798 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2799 	return 0;
2800 }
2801 
2802 static const struct seq_operations proto_seq_ops = {
2803 	.start  = proto_seq_start,
2804 	.next   = proto_seq_next,
2805 	.stop   = proto_seq_stop,
2806 	.show   = proto_seq_show,
2807 };
2808 
proto_seq_open(struct inode * inode,struct file * file)2809 static int proto_seq_open(struct inode *inode, struct file *file)
2810 {
2811 	return seq_open_net(inode, file, &proto_seq_ops,
2812 			    sizeof(struct seq_net_private));
2813 }
2814 
2815 static const struct file_operations proto_seq_fops = {
2816 	.owner		= THIS_MODULE,
2817 	.open		= proto_seq_open,
2818 	.read		= seq_read,
2819 	.llseek		= seq_lseek,
2820 	.release	= seq_release_net,
2821 };
2822 
proto_init_net(struct net * net)2823 static __net_init int proto_init_net(struct net *net)
2824 {
2825 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2826 		return -ENOMEM;
2827 
2828 	return 0;
2829 }
2830 
proto_exit_net(struct net * net)2831 static __net_exit void proto_exit_net(struct net *net)
2832 {
2833 	remove_proc_entry("protocols", net->proc_net);
2834 }
2835 
2836 
2837 static __net_initdata struct pernet_operations proto_net_ops = {
2838 	.init = proto_init_net,
2839 	.exit = proto_exit_net,
2840 };
2841 
proto_init(void)2842 static int __init proto_init(void)
2843 {
2844 	return register_pernet_subsys(&proto_net_ops);
2845 }
2846 
2847 subsys_initcall(proto_init);
2848 
2849 #endif /* PROC_FS */
2850