• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
sock_alloc_inode(struct super_block * sb)240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
sock_destroy_inode(struct inode * inode)266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
init_once(void * foo)277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
init_inodecache(void)284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
sockfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
sock_alloc_file(struct socket * sock,int flags,const char * dname)349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 
355 	if (dname) {
356 		name.name = dname;
357 		name.len = strlen(name.name);
358 	} else if (sock->sk) {
359 		name.name = sock->sk->sk_prot_creator->name;
360 		name.len = strlen(name.name);
361 	}
362 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 	if (unlikely(!path.dentry))
364 		return ERR_PTR(-ENOMEM);
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(IS_ERR(file))) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		return file;
377 	}
378 
379 	sock->file = file;
380 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 	file->private_data = sock;
382 	return file;
383 }
384 EXPORT_SYMBOL(sock_alloc_file);
385 
sock_map_fd(struct socket * sock,int flags)386 static int sock_map_fd(struct socket *sock, int flags)
387 {
388 	struct file *newfile;
389 	int fd = get_unused_fd_flags(flags);
390 	if (unlikely(fd < 0))
391 		return fd;
392 
393 	newfile = sock_alloc_file(sock, flags, NULL);
394 	if (likely(!IS_ERR(newfile))) {
395 		fd_install(fd, newfile);
396 		return fd;
397 	}
398 
399 	put_unused_fd(fd);
400 	return PTR_ERR(newfile);
401 }
402 
sock_from_file(struct file * file,int * err)403 struct socket *sock_from_file(struct file *file, int *err)
404 {
405 	if (file->f_op == &socket_file_ops)
406 		return file->private_data;	/* set in sock_map_fd */
407 
408 	*err = -ENOTSOCK;
409 	return NULL;
410 }
411 EXPORT_SYMBOL(sock_from_file);
412 
413 /**
414  *	sockfd_lookup - Go from a file number to its socket slot
415  *	@fd: file handle
416  *	@err: pointer to an error code return
417  *
418  *	The file handle passed in is locked and the socket it is bound
419  *	too is returned. If an error occurs the err pointer is overwritten
420  *	with a negative errno code and NULL is returned. The function checks
421  *	for both invalid handles and passing a handle which is not a socket.
422  *
423  *	On a success the socket object pointer is returned.
424  */
425 
sockfd_lookup(int fd,int * err)426 struct socket *sockfd_lookup(int fd, int *err)
427 {
428 	struct file *file;
429 	struct socket *sock;
430 
431 	file = fget(fd);
432 	if (!file) {
433 		*err = -EBADF;
434 		return NULL;
435 	}
436 
437 	sock = sock_from_file(file, err);
438 	if (!sock)
439 		fput(file);
440 	return sock;
441 }
442 EXPORT_SYMBOL(sockfd_lookup);
443 
sockfd_lookup_light(int fd,int * err,int * fput_needed)444 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
445 {
446 	struct file *file;
447 	struct socket *sock;
448 
449 	*err = -EBADF;
450 	file = fget_light(fd, fput_needed);
451 	if (file) {
452 		sock = sock_from_file(file, err);
453 		if (sock)
454 			return sock;
455 		fput_light(file, *fput_needed);
456 	}
457 	return NULL;
458 }
459 
460 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
461 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
462 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
sockfs_getxattr(struct dentry * dentry,const char * name,void * value,size_t size)463 static ssize_t sockfs_getxattr(struct dentry *dentry,
464 			       const char *name, void *value, size_t size)
465 {
466 	const char *proto_name;
467 	size_t proto_size;
468 	int error;
469 
470 	error = -ENODATA;
471 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
472 		proto_name = dentry->d_name.name;
473 		proto_size = strlen(proto_name);
474 
475 		if (value) {
476 			error = -ERANGE;
477 			if (proto_size + 1 > size)
478 				goto out;
479 
480 			strncpy(value, proto_name, proto_size + 1);
481 		}
482 		error = proto_size + 1;
483 	}
484 
485 out:
486 	return error;
487 }
488 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)489 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
490 				size_t size)
491 {
492 	ssize_t len;
493 	ssize_t used = 0;
494 
495 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
496 	if (len < 0)
497 		return len;
498 	used += len;
499 	if (buffer) {
500 		if (size < used)
501 			return -ERANGE;
502 		buffer += len;
503 	}
504 
505 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
511 		buffer += len;
512 	}
513 
514 	return used;
515 }
516 
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)517 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
518 {
519 	int err = simple_setattr(dentry, iattr);
520 
521 	if (!err && (iattr->ia_valid & ATTR_UID)) {
522 		struct socket *sock = SOCKET_I(dentry->d_inode);
523 
524 		sock->sk->sk_uid = iattr->ia_uid;
525 	}
526 
527 	return err;
528 }
529 
530 static const struct inode_operations sockfs_inode_ops = {
531 	.getxattr = sockfs_getxattr,
532 	.listxattr = sockfs_listxattr,
533 	.setattr = sockfs_setattr,
534 };
535 
536 /**
537  *	sock_alloc	-	allocate a socket
538  *
539  *	Allocate a new inode and socket object. The two are bound together
540  *	and initialised. The socket is then returned. If we are out of inodes
541  *	NULL is returned.
542  */
543 
sock_alloc(void)544 static struct socket *sock_alloc(void)
545 {
546 	struct inode *inode;
547 	struct socket *sock;
548 
549 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
550 	if (!inode)
551 		return NULL;
552 
553 	sock = SOCKET_I(inode);
554 
555 	kmemcheck_annotate_bitfield(sock, type);
556 	inode->i_ino = get_next_ino();
557 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
558 	inode->i_uid = current_fsuid();
559 	inode->i_gid = current_fsgid();
560 	inode->i_op = &sockfs_inode_ops;
561 
562 	this_cpu_add(sockets_in_use, 1);
563 	return sock;
564 }
565 
566 /*
567  *	In theory you can't get an open on this inode, but /proc provides
568  *	a back door. Remember to keep it shut otherwise you'll let the
569  *	creepy crawlies in.
570  */
571 
sock_no_open(struct inode * irrelevant,struct file * dontcare)572 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
573 {
574 	return -ENXIO;
575 }
576 
577 const struct file_operations bad_sock_fops = {
578 	.owner = THIS_MODULE,
579 	.open = sock_no_open,
580 	.llseek = noop_llseek,
581 };
582 
583 /**
584  *	sock_release	-	close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
sock_release(struct socket * sock)592 void sock_release(struct socket *sock)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		sock->ops->release(sock);
598 		sock->ops = NULL;
599 		module_put(owner);
600 	}
601 
602 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
604 
605 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
606 		return;
607 
608 	this_cpu_sub(sockets_in_use, 1);
609 	if (!sock->file) {
610 		iput(SOCK_INODE(sock));
611 		return;
612 	}
613 	sock->file = NULL;
614 }
615 EXPORT_SYMBOL(sock_release);
616 
sock_tx_timestamp(struct sock * sk,__u8 * tx_flags)617 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
618 {
619 	*tx_flags = 0;
620 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
621 		*tx_flags |= SKBTX_HW_TSTAMP;
622 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
623 		*tx_flags |= SKBTX_SW_TSTAMP;
624 	if (sock_flag(sk, SOCK_WIFI_STATUS))
625 		*tx_flags |= SKBTX_WIFI_STATUS;
626 }
627 EXPORT_SYMBOL(sock_tx_timestamp);
628 
__sock_sendmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)629 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
630 				       struct msghdr *msg, size_t size)
631 {
632 	struct sock_iocb *si = kiocb_to_siocb(iocb);
633 
634 	si->sock = sock;
635 	si->scm = NULL;
636 	si->msg = msg;
637 	si->size = size;
638 
639 	return sock->ops->sendmsg(iocb, sock, msg, size);
640 }
641 
__sock_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)642 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
643 				 struct msghdr *msg, size_t size)
644 {
645 	int err = security_socket_sendmsg(sock, msg, size);
646 
647 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
648 }
649 
sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)650 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
651 {
652 	struct kiocb iocb;
653 	struct sock_iocb siocb;
654 	int ret;
655 
656 	init_sync_kiocb(&iocb, NULL);
657 	iocb.private = &siocb;
658 	ret = __sock_sendmsg(&iocb, sock, msg, size);
659 	if (-EIOCBQUEUED == ret)
660 		ret = wait_on_sync_kiocb(&iocb);
661 	return ret;
662 }
663 EXPORT_SYMBOL(sock_sendmsg);
664 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size)665 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
666 {
667 	struct kiocb iocb;
668 	struct sock_iocb siocb;
669 	int ret;
670 
671 	init_sync_kiocb(&iocb, NULL);
672 	iocb.private = &siocb;
673 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
674 	if (-EIOCBQUEUED == ret)
675 		ret = wait_on_sync_kiocb(&iocb);
676 	return ret;
677 }
678 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)679 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
680 		   struct kvec *vec, size_t num, size_t size)
681 {
682 	mm_segment_t oldfs = get_fs();
683 	int result;
684 
685 	set_fs(KERNEL_DS);
686 	/*
687 	 * the following is safe, since for compiler definitions of kvec and
688 	 * iovec are identical, yielding the same in-core layout and alignment
689 	 */
690 	msg->msg_iov = (struct iovec *)vec;
691 	msg->msg_iovlen = num;
692 	result = sock_sendmsg(sock, msg, size);
693 	set_fs(oldfs);
694 	return result;
695 }
696 EXPORT_SYMBOL(kernel_sendmsg);
697 
698 /*
699  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
700  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)701 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
702 	struct sk_buff *skb)
703 {
704 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
705 	struct timespec ts[3];
706 	int empty = 1;
707 	struct skb_shared_hwtstamps *shhwtstamps =
708 		skb_hwtstamps(skb);
709 
710 	/* Race occurred between timestamp enabling and packet
711 	   receiving.  Fill in the current time for now. */
712 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
713 		__net_timestamp(skb);
714 
715 	if (need_software_tstamp) {
716 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
717 			struct timeval tv;
718 			skb_get_timestamp(skb, &tv);
719 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
720 				 sizeof(tv), &tv);
721 		} else {
722 			skb_get_timestampns(skb, &ts[0]);
723 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
724 				 sizeof(ts[0]), &ts[0]);
725 		}
726 	}
727 
728 
729 	memset(ts, 0, sizeof(ts));
730 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
731 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
732 		empty = 0;
733 	if (shhwtstamps) {
734 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
735 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
736 			empty = 0;
737 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
738 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
739 			empty = 0;
740 	}
741 	if (!empty)
742 		put_cmsg(msg, SOL_SOCKET,
743 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
744 }
745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
746 
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
748 	struct sk_buff *skb)
749 {
750 	int ack;
751 
752 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
753 		return;
754 	if (!skb->wifi_acked_valid)
755 		return;
756 
757 	ack = skb->wifi_acked;
758 
759 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
760 }
761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
762 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
764 				   struct sk_buff *skb)
765 {
766 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
767 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
768 			sizeof(__u32), &skb->dropcount);
769 }
770 
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
772 	struct sk_buff *skb)
773 {
774 	sock_recv_timestamp(msg, sk, skb);
775 	sock_recv_drops(msg, sk, skb);
776 }
777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
778 
__sock_recvmsg_nosec(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
780 				       struct msghdr *msg, size_t size, int flags)
781 {
782 	struct sock_iocb *si = kiocb_to_siocb(iocb);
783 
784 	si->sock = sock;
785 	si->scm = NULL;
786 	si->msg = msg;
787 	si->size = size;
788 	si->flags = flags;
789 
790 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
791 }
792 
__sock_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
794 				 struct msghdr *msg, size_t size, int flags)
795 {
796 	int err = security_socket_recvmsg(sock, msg, size, flags);
797 
798 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
799 }
800 
sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)801 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
802 		 size_t size, int flags)
803 {
804 	struct kiocb iocb;
805 	struct sock_iocb siocb;
806 	int ret;
807 
808 	init_sync_kiocb(&iocb, NULL);
809 	iocb.private = &siocb;
810 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
811 	if (-EIOCBQUEUED == ret)
812 		ret = wait_on_sync_kiocb(&iocb);
813 	return ret;
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,size_t size,int flags)817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
818 			      size_t size, int flags)
819 {
820 	struct kiocb iocb;
821 	struct sock_iocb siocb;
822 	int ret;
823 
824 	init_sync_kiocb(&iocb, NULL);
825 	iocb.private = &siocb;
826 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
827 	if (-EIOCBQUEUED == ret)
828 		ret = wait_on_sync_kiocb(&iocb);
829 	return ret;
830 }
831 
832 /**
833  * kernel_recvmsg - Receive a message from a socket (kernel space)
834  * @sock:       The socket to receive the message from
835  * @msg:        Received message
836  * @vec:        Input s/g array for message data
837  * @num:        Size of input s/g array
838  * @size:       Number of bytes to read
839  * @flags:      Message flags (MSG_DONTWAIT, etc...)
840  *
841  * On return the msg structure contains the scatter/gather array passed in the
842  * vec argument. The array is modified so that it consists of the unfilled
843  * portion of the original array.
844  *
845  * The returned value is the total number of bytes received, or an error.
846  */
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
848 		   struct kvec *vec, size_t num, size_t size, int flags)
849 {
850 	mm_segment_t oldfs = get_fs();
851 	int result;
852 
853 	set_fs(KERNEL_DS);
854 	/*
855 	 * the following is safe, since for compiler definitions of kvec and
856 	 * iovec are identical, yielding the same in-core layout and alignment
857 	 */
858 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
859 	result = sock_recvmsg(sock, msg, size, flags);
860 	set_fs(oldfs);
861 	return result;
862 }
863 EXPORT_SYMBOL(kernel_recvmsg);
864 
sock_aio_dtor(struct kiocb * iocb)865 static void sock_aio_dtor(struct kiocb *iocb)
866 {
867 	kfree(iocb->private);
868 }
869 
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)870 static ssize_t sock_sendpage(struct file *file, struct page *page,
871 			     int offset, size_t size, loff_t *ppos, int more)
872 {
873 	struct socket *sock;
874 	int flags;
875 
876 	sock = file->private_data;
877 
878 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
879 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
880 	flags |= more;
881 
882 	return kernel_sendpage(sock, page, offset, size, flags);
883 }
884 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)885 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
886 				struct pipe_inode_info *pipe, size_t len,
887 				unsigned int flags)
888 {
889 	struct socket *sock = file->private_data;
890 
891 	if (unlikely(!sock->ops->splice_read))
892 		return -EINVAL;
893 
894 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
895 }
896 
alloc_sock_iocb(struct kiocb * iocb,struct sock_iocb * siocb)897 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
898 					 struct sock_iocb *siocb)
899 {
900 	if (!is_sync_kiocb(iocb)) {
901 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
902 		if (!siocb)
903 			return NULL;
904 		iocb->ki_dtor = sock_aio_dtor;
905 	}
906 
907 	siocb->kiocb = iocb;
908 	iocb->private = siocb;
909 	return siocb;
910 }
911 
do_sock_read(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)912 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
913 		struct file *file, const struct iovec *iov,
914 		unsigned long nr_segs)
915 {
916 	struct socket *sock = file->private_data;
917 	size_t size = 0;
918 	int i;
919 
920 	for (i = 0; i < nr_segs; i++)
921 		size += iov[i].iov_len;
922 
923 	msg->msg_name = NULL;
924 	msg->msg_namelen = 0;
925 	msg->msg_control = NULL;
926 	msg->msg_controllen = 0;
927 	msg->msg_iov = (struct iovec *)iov;
928 	msg->msg_iovlen = nr_segs;
929 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
930 
931 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
932 }
933 
sock_aio_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)934 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
935 				unsigned long nr_segs, loff_t pos)
936 {
937 	struct sock_iocb siocb, *x;
938 
939 	if (pos != 0)
940 		return -ESPIPE;
941 
942 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
943 		return 0;
944 
945 
946 	x = alloc_sock_iocb(iocb, &siocb);
947 	if (!x)
948 		return -ENOMEM;
949 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
950 }
951 
do_sock_write(struct msghdr * msg,struct kiocb * iocb,struct file * file,const struct iovec * iov,unsigned long nr_segs)952 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
953 			struct file *file, const struct iovec *iov,
954 			unsigned long nr_segs)
955 {
956 	struct socket *sock = file->private_data;
957 	size_t size = 0;
958 	int i;
959 
960 	for (i = 0; i < nr_segs; i++)
961 		size += iov[i].iov_len;
962 
963 	msg->msg_name = NULL;
964 	msg->msg_namelen = 0;
965 	msg->msg_control = NULL;
966 	msg->msg_controllen = 0;
967 	msg->msg_iov = (struct iovec *)iov;
968 	msg->msg_iovlen = nr_segs;
969 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
970 	if (sock->type == SOCK_SEQPACKET)
971 		msg->msg_flags |= MSG_EOR;
972 
973 	return __sock_sendmsg(iocb, sock, msg, size);
974 }
975 
sock_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)976 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
977 			  unsigned long nr_segs, loff_t pos)
978 {
979 	struct sock_iocb siocb, *x;
980 
981 	if (pos != 0)
982 		return -ESPIPE;
983 
984 	x = alloc_sock_iocb(iocb, &siocb);
985 	if (!x)
986 		return -ENOMEM;
987 
988 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
989 }
990 
991 /*
992  * Atomic setting of ioctl hooks to avoid race
993  * with module unload.
994  */
995 
996 static DEFINE_MUTEX(br_ioctl_mutex);
997 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
998 
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))999 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1000 {
1001 	mutex_lock(&br_ioctl_mutex);
1002 	br_ioctl_hook = hook;
1003 	mutex_unlock(&br_ioctl_mutex);
1004 }
1005 EXPORT_SYMBOL(brioctl_set);
1006 
1007 static DEFINE_MUTEX(vlan_ioctl_mutex);
1008 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1009 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1010 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1011 {
1012 	mutex_lock(&vlan_ioctl_mutex);
1013 	vlan_ioctl_hook = hook;
1014 	mutex_unlock(&vlan_ioctl_mutex);
1015 }
1016 EXPORT_SYMBOL(vlan_ioctl_set);
1017 
1018 static DEFINE_MUTEX(dlci_ioctl_mutex);
1019 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1020 
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1021 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1022 {
1023 	mutex_lock(&dlci_ioctl_mutex);
1024 	dlci_ioctl_hook = hook;
1025 	mutex_unlock(&dlci_ioctl_mutex);
1026 }
1027 EXPORT_SYMBOL(dlci_ioctl_set);
1028 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1029 static long sock_do_ioctl(struct net *net, struct socket *sock,
1030 				 unsigned int cmd, unsigned long arg)
1031 {
1032 	int err;
1033 	void __user *argp = (void __user *)arg;
1034 
1035 	err = sock->ops->ioctl(sock, cmd, arg);
1036 
1037 	/*
1038 	 * If this ioctl is unknown try to hand it down
1039 	 * to the NIC driver.
1040 	 */
1041 	if (err == -ENOIOCTLCMD)
1042 		err = dev_ioctl(net, cmd, argp);
1043 
1044 	return err;
1045 }
1046 
1047 /*
1048  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1049  *	what to do with it - that's up to the protocol still.
1050  */
1051 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1052 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1053 {
1054 	struct socket *sock;
1055 	struct sock *sk;
1056 	void __user *argp = (void __user *)arg;
1057 	int pid, err;
1058 	struct net *net;
1059 
1060 	sock = file->private_data;
1061 	sk = sock->sk;
1062 	net = sock_net(sk);
1063 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1064 		err = dev_ioctl(net, cmd, argp);
1065 	} else
1066 #ifdef CONFIG_WEXT_CORE
1067 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1068 		err = dev_ioctl(net, cmd, argp);
1069 	} else
1070 #endif
1071 		switch (cmd) {
1072 		case FIOSETOWN:
1073 		case SIOCSPGRP:
1074 			err = -EFAULT;
1075 			if (get_user(pid, (int __user *)argp))
1076 				break;
1077 			err = f_setown(sock->file, pid, 1);
1078 			break;
1079 		case FIOGETOWN:
1080 		case SIOCGPGRP:
1081 			err = put_user(f_getown(sock->file),
1082 				       (int __user *)argp);
1083 			break;
1084 		case SIOCGIFBR:
1085 		case SIOCSIFBR:
1086 		case SIOCBRADDBR:
1087 		case SIOCBRDELBR:
1088 			err = -ENOPKG;
1089 			if (!br_ioctl_hook)
1090 				request_module("bridge");
1091 
1092 			mutex_lock(&br_ioctl_mutex);
1093 			if (br_ioctl_hook)
1094 				err = br_ioctl_hook(net, cmd, argp);
1095 			mutex_unlock(&br_ioctl_mutex);
1096 			break;
1097 		case SIOCGIFVLAN:
1098 		case SIOCSIFVLAN:
1099 			err = -ENOPKG;
1100 			if (!vlan_ioctl_hook)
1101 				request_module("8021q");
1102 
1103 			mutex_lock(&vlan_ioctl_mutex);
1104 			if (vlan_ioctl_hook)
1105 				err = vlan_ioctl_hook(net, argp);
1106 			mutex_unlock(&vlan_ioctl_mutex);
1107 			break;
1108 		case SIOCADDDLCI:
1109 		case SIOCDELDLCI:
1110 			err = -ENOPKG;
1111 			if (!dlci_ioctl_hook)
1112 				request_module("dlci");
1113 
1114 			mutex_lock(&dlci_ioctl_mutex);
1115 			if (dlci_ioctl_hook)
1116 				err = dlci_ioctl_hook(cmd, argp);
1117 			mutex_unlock(&dlci_ioctl_mutex);
1118 			break;
1119 		default:
1120 			err = sock_do_ioctl(net, sock, cmd, arg);
1121 			break;
1122 		}
1123 	return err;
1124 }
1125 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1126 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1127 {
1128 	int err;
1129 	struct socket *sock = NULL;
1130 
1131 	err = security_socket_create(family, type, protocol, 1);
1132 	if (err)
1133 		goto out;
1134 
1135 	sock = sock_alloc();
1136 	if (!sock) {
1137 		err = -ENOMEM;
1138 		goto out;
1139 	}
1140 
1141 	sock->type = type;
1142 	err = security_socket_post_create(sock, family, type, protocol, 1);
1143 	if (err)
1144 		goto out_release;
1145 
1146 out:
1147 	*res = sock;
1148 	return err;
1149 out_release:
1150 	sock_release(sock);
1151 	sock = NULL;
1152 	goto out;
1153 }
1154 EXPORT_SYMBOL(sock_create_lite);
1155 
1156 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1157 static unsigned int sock_poll(struct file *file, poll_table *wait)
1158 {
1159 	struct socket *sock;
1160 
1161 	/*
1162 	 *      We can't return errors to poll, so it's either yes or no.
1163 	 */
1164 	sock = file->private_data;
1165 	return sock->ops->poll(file, sock, wait);
1166 }
1167 
sock_mmap(struct file * file,struct vm_area_struct * vma)1168 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1169 {
1170 	struct socket *sock = file->private_data;
1171 
1172 	return sock->ops->mmap(file, sock, vma);
1173 }
1174 
sock_close(struct inode * inode,struct file * filp)1175 static int sock_close(struct inode *inode, struct file *filp)
1176 {
1177 	sock_release(SOCKET_I(inode));
1178 	return 0;
1179 }
1180 
1181 /*
1182  *	Update the socket async list
1183  *
1184  *	Fasync_list locking strategy.
1185  *
1186  *	1. fasync_list is modified only under process context socket lock
1187  *	   i.e. under semaphore.
1188  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1189  *	   or under socket lock
1190  */
1191 
sock_fasync(int fd,struct file * filp,int on)1192 static int sock_fasync(int fd, struct file *filp, int on)
1193 {
1194 	struct socket *sock = filp->private_data;
1195 	struct sock *sk = sock->sk;
1196 	struct socket_wq *wq;
1197 
1198 	if (sk == NULL)
1199 		return -EINVAL;
1200 
1201 	lock_sock(sk);
1202 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1203 	fasync_helper(fd, filp, on, &wq->fasync_list);
1204 
1205 	if (!wq->fasync_list)
1206 		sock_reset_flag(sk, SOCK_FASYNC);
1207 	else
1208 		sock_set_flag(sk, SOCK_FASYNC);
1209 
1210 	release_sock(sk);
1211 	return 0;
1212 }
1213 
1214 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1215 
sock_wake_async(struct socket * sock,int how,int band)1216 int sock_wake_async(struct socket *sock, int how, int band)
1217 {
1218 	struct socket_wq *wq;
1219 
1220 	if (!sock)
1221 		return -1;
1222 	rcu_read_lock();
1223 	wq = rcu_dereference(sock->wq);
1224 	if (!wq || !wq->fasync_list) {
1225 		rcu_read_unlock();
1226 		return -1;
1227 	}
1228 	switch (how) {
1229 	case SOCK_WAKE_WAITD:
1230 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1231 			break;
1232 		goto call_kill;
1233 	case SOCK_WAKE_SPACE:
1234 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1235 			break;
1236 		/* fall through */
1237 	case SOCK_WAKE_IO:
1238 call_kill:
1239 		kill_fasync(&wq->fasync_list, SIGIO, band);
1240 		break;
1241 	case SOCK_WAKE_URG:
1242 		kill_fasync(&wq->fasync_list, SIGURG, band);
1243 	}
1244 	rcu_read_unlock();
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL(sock_wake_async);
1248 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1249 int __sock_create(struct net *net, int family, int type, int protocol,
1250 			 struct socket **res, int kern)
1251 {
1252 	int err;
1253 	struct socket *sock;
1254 	const struct net_proto_family *pf;
1255 
1256 	/*
1257 	 *      Check protocol is in range
1258 	 */
1259 	if (family < 0 || family >= NPROTO)
1260 		return -EAFNOSUPPORT;
1261 	if (type < 0 || type >= SOCK_MAX)
1262 		return -EINVAL;
1263 
1264 	/* Compatibility.
1265 
1266 	   This uglymoron is moved from INET layer to here to avoid
1267 	   deadlock in module load.
1268 	 */
1269 	if (family == PF_INET && type == SOCK_PACKET) {
1270 		static int warned;
1271 		if (!warned) {
1272 			warned = 1;
1273 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1274 			       current->comm);
1275 		}
1276 		family = PF_PACKET;
1277 	}
1278 
1279 	err = security_socket_create(family, type, protocol, kern);
1280 	if (err)
1281 		return err;
1282 
1283 	/*
1284 	 *	Allocate the socket and allow the family to set things up. if
1285 	 *	the protocol is 0, the family is instructed to select an appropriate
1286 	 *	default.
1287 	 */
1288 	sock = sock_alloc();
1289 	if (!sock) {
1290 		net_warn_ratelimited("socket: no more sockets\n");
1291 		return -ENFILE;	/* Not exactly a match, but its the
1292 				   closest posix thing */
1293 	}
1294 
1295 	sock->type = type;
1296 
1297 #ifdef CONFIG_MODULES
1298 	/* Attempt to load a protocol module if the find failed.
1299 	 *
1300 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1301 	 * requested real, full-featured networking support upon configuration.
1302 	 * Otherwise module support will break!
1303 	 */
1304 	if (rcu_access_pointer(net_families[family]) == NULL)
1305 		request_module("net-pf-%d", family);
1306 #endif
1307 
1308 	rcu_read_lock();
1309 	pf = rcu_dereference(net_families[family]);
1310 	err = -EAFNOSUPPORT;
1311 	if (!pf)
1312 		goto out_release;
1313 
1314 	/*
1315 	 * We will call the ->create function, that possibly is in a loadable
1316 	 * module, so we have to bump that loadable module refcnt first.
1317 	 */
1318 	if (!try_module_get(pf->owner))
1319 		goto out_release;
1320 
1321 	/* Now protected by module ref count */
1322 	rcu_read_unlock();
1323 
1324 	err = pf->create(net, sock, protocol, kern);
1325 	if (err < 0)
1326 		goto out_module_put;
1327 
1328 	/*
1329 	 * Now to bump the refcnt of the [loadable] module that owns this
1330 	 * socket at sock_release time we decrement its refcnt.
1331 	 */
1332 	if (!try_module_get(sock->ops->owner))
1333 		goto out_module_busy;
1334 
1335 	/*
1336 	 * Now that we're done with the ->create function, the [loadable]
1337 	 * module can have its refcnt decremented
1338 	 */
1339 	module_put(pf->owner);
1340 	err = security_socket_post_create(sock, family, type, protocol, kern);
1341 	if (err)
1342 		goto out_sock_release;
1343 	*res = sock;
1344 
1345 	return 0;
1346 
1347 out_module_busy:
1348 	err = -EAFNOSUPPORT;
1349 out_module_put:
1350 	sock->ops = NULL;
1351 	module_put(pf->owner);
1352 out_sock_release:
1353 	sock_release(sock);
1354 	return err;
1355 
1356 out_release:
1357 	rcu_read_unlock();
1358 	goto out_sock_release;
1359 }
1360 EXPORT_SYMBOL(__sock_create);
1361 
sock_create(int family,int type,int protocol,struct socket ** res)1362 int sock_create(int family, int type, int protocol, struct socket **res)
1363 {
1364 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1365 }
1366 EXPORT_SYMBOL(sock_create);
1367 
sock_create_kern(int family,int type,int protocol,struct socket ** res)1368 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1369 {
1370 	return __sock_create(&init_net, family, type, protocol, res, 1);
1371 }
1372 EXPORT_SYMBOL(sock_create_kern);
1373 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1374 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1375 {
1376 	int retval;
1377 	struct socket *sock;
1378 	int flags;
1379 
1380 	/* Check the SOCK_* constants for consistency.  */
1381 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1382 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1383 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1384 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1385 
1386 	flags = type & ~SOCK_TYPE_MASK;
1387 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1388 		return -EINVAL;
1389 	type &= SOCK_TYPE_MASK;
1390 
1391 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1392 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1393 
1394 	retval = sock_create(family, type, protocol, &sock);
1395 	if (retval < 0)
1396 		goto out;
1397 
1398 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1399 	if (retval < 0)
1400 		goto out_release;
1401 
1402 out:
1403 	/* It may be already another descriptor 8) Not kernel problem. */
1404 	return retval;
1405 
1406 out_release:
1407 	sock_release(sock);
1408 	return retval;
1409 }
1410 
1411 /*
1412  *	Create a pair of connected sockets.
1413  */
1414 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1415 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1416 		int __user *, usockvec)
1417 {
1418 	struct socket *sock1, *sock2;
1419 	int fd1, fd2, err;
1420 	struct file *newfile1, *newfile2;
1421 	int flags;
1422 
1423 	flags = type & ~SOCK_TYPE_MASK;
1424 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1425 		return -EINVAL;
1426 	type &= SOCK_TYPE_MASK;
1427 
1428 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1429 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1430 
1431 	/*
1432 	 * Obtain the first socket and check if the underlying protocol
1433 	 * supports the socketpair call.
1434 	 */
1435 
1436 	err = sock_create(family, type, protocol, &sock1);
1437 	if (err < 0)
1438 		goto out;
1439 
1440 	err = sock_create(family, type, protocol, &sock2);
1441 	if (err < 0)
1442 		goto out_release_1;
1443 
1444 	err = sock1->ops->socketpair(sock1, sock2);
1445 	if (err < 0)
1446 		goto out_release_both;
1447 
1448 	fd1 = get_unused_fd_flags(flags);
1449 	if (unlikely(fd1 < 0)) {
1450 		err = fd1;
1451 		goto out_release_both;
1452 	}
1453 	fd2 = get_unused_fd_flags(flags);
1454 	if (unlikely(fd2 < 0)) {
1455 		err = fd2;
1456 		put_unused_fd(fd1);
1457 		goto out_release_both;
1458 	}
1459 
1460 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1461 	if (unlikely(IS_ERR(newfile1))) {
1462 		err = PTR_ERR(newfile1);
1463 		put_unused_fd(fd1);
1464 		put_unused_fd(fd2);
1465 		goto out_release_both;
1466 	}
1467 
1468 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1469 	if (IS_ERR(newfile2)) {
1470 		err = PTR_ERR(newfile2);
1471 		fput(newfile1);
1472 		put_unused_fd(fd1);
1473 		put_unused_fd(fd2);
1474 		sock_release(sock2);
1475 		goto out;
1476 	}
1477 
1478 	audit_fd_pair(fd1, fd2);
1479 	fd_install(fd1, newfile1);
1480 	fd_install(fd2, newfile2);
1481 	/* fd1 and fd2 may be already another descriptors.
1482 	 * Not kernel problem.
1483 	 */
1484 
1485 	err = put_user(fd1, &usockvec[0]);
1486 	if (!err)
1487 		err = put_user(fd2, &usockvec[1]);
1488 	if (!err)
1489 		return 0;
1490 
1491 	sys_close(fd2);
1492 	sys_close(fd1);
1493 	return err;
1494 
1495 out_release_both:
1496 	sock_release(sock2);
1497 out_release_1:
1498 	sock_release(sock1);
1499 out:
1500 	return err;
1501 }
1502 
1503 /*
1504  *	Bind a name to a socket. Nothing much to do here since it's
1505  *	the protocol's responsibility to handle the local address.
1506  *
1507  *	We move the socket address to kernel space before we call
1508  *	the protocol layer (having also checked the address is ok).
1509  */
1510 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1511 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1512 {
1513 	struct socket *sock;
1514 	struct sockaddr_storage address;
1515 	int err, fput_needed;
1516 
1517 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1518 	if (sock) {
1519 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1520 		if (err >= 0) {
1521 			err = security_socket_bind(sock,
1522 						   (struct sockaddr *)&address,
1523 						   addrlen);
1524 			if (!err)
1525 				err = sock->ops->bind(sock,
1526 						      (struct sockaddr *)
1527 						      &address, addrlen);
1528 		}
1529 		fput_light(sock->file, fput_needed);
1530 	}
1531 	return err;
1532 }
1533 
1534 /*
1535  *	Perform a listen. Basically, we allow the protocol to do anything
1536  *	necessary for a listen, and if that works, we mark the socket as
1537  *	ready for listening.
1538  */
1539 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1540 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1541 {
1542 	struct socket *sock;
1543 	int err, fput_needed;
1544 	int somaxconn;
1545 
1546 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1547 	if (sock) {
1548 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1549 		if ((unsigned int)backlog > somaxconn)
1550 			backlog = somaxconn;
1551 
1552 		err = security_socket_listen(sock, backlog);
1553 		if (!err)
1554 			err = sock->ops->listen(sock, backlog);
1555 
1556 		fput_light(sock->file, fput_needed);
1557 	}
1558 	return err;
1559 }
1560 
1561 /*
1562  *	For accept, we attempt to create a new socket, set up the link
1563  *	with the client, wake up the client, then return the new
1564  *	connected fd. We collect the address of the connector in kernel
1565  *	space and move it to user at the very end. This is unclean because
1566  *	we open the socket then return an error.
1567  *
1568  *	1003.1g adds the ability to recvmsg() to query connection pending
1569  *	status to recvmsg. We need to add that support in a way thats
1570  *	clean when we restucture accept also.
1571  */
1572 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1573 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1574 		int __user *, upeer_addrlen, int, flags)
1575 {
1576 	struct socket *sock, *newsock;
1577 	struct file *newfile;
1578 	int err, len, newfd, fput_needed;
1579 	struct sockaddr_storage address;
1580 
1581 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1582 		return -EINVAL;
1583 
1584 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1585 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1586 
1587 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588 	if (!sock)
1589 		goto out;
1590 
1591 	err = -ENFILE;
1592 	newsock = sock_alloc();
1593 	if (!newsock)
1594 		goto out_put;
1595 
1596 	newsock->type = sock->type;
1597 	newsock->ops = sock->ops;
1598 
1599 	/*
1600 	 * We don't need try_module_get here, as the listening socket (sock)
1601 	 * has the protocol module (sock->ops->owner) held.
1602 	 */
1603 	__module_get(newsock->ops->owner);
1604 
1605 	newfd = get_unused_fd_flags(flags);
1606 	if (unlikely(newfd < 0)) {
1607 		err = newfd;
1608 		sock_release(newsock);
1609 		goto out_put;
1610 	}
1611 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1612 	if (unlikely(IS_ERR(newfile))) {
1613 		err = PTR_ERR(newfile);
1614 		put_unused_fd(newfd);
1615 		sock_release(newsock);
1616 		goto out_put;
1617 	}
1618 
1619 	err = security_socket_accept(sock, newsock);
1620 	if (err)
1621 		goto out_fd;
1622 
1623 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1624 	if (err < 0)
1625 		goto out_fd;
1626 
1627 	if (upeer_sockaddr) {
1628 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1629 					  &len, 2) < 0) {
1630 			err = -ECONNABORTED;
1631 			goto out_fd;
1632 		}
1633 		err = move_addr_to_user(&address,
1634 					len, upeer_sockaddr, upeer_addrlen);
1635 		if (err < 0)
1636 			goto out_fd;
1637 	}
1638 
1639 	/* File flags are not inherited via accept() unlike another OSes. */
1640 
1641 	fd_install(newfd, newfile);
1642 	err = newfd;
1643 
1644 out_put:
1645 	fput_light(sock->file, fput_needed);
1646 out:
1647 	return err;
1648 out_fd:
1649 	fput(newfile);
1650 	put_unused_fd(newfd);
1651 	goto out_put;
1652 }
1653 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1654 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1655 		int __user *, upeer_addrlen)
1656 {
1657 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1658 }
1659 
1660 /*
1661  *	Attempt to connect to a socket with the server address.  The address
1662  *	is in user space so we verify it is OK and move it to kernel space.
1663  *
1664  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1665  *	break bindings
1666  *
1667  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1668  *	other SEQPACKET protocols that take time to connect() as it doesn't
1669  *	include the -EINPROGRESS status for such sockets.
1670  */
1671 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1673 		int, addrlen)
1674 {
1675 	struct socket *sock;
1676 	struct sockaddr_storage address;
1677 	int err, fput_needed;
1678 
1679 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 	if (!sock)
1681 		goto out;
1682 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1683 	if (err < 0)
1684 		goto out_put;
1685 
1686 	err =
1687 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1688 	if (err)
1689 		goto out_put;
1690 
1691 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1692 				 sock->file->f_flags);
1693 out_put:
1694 	fput_light(sock->file, fput_needed);
1695 out:
1696 	return err;
1697 }
1698 
1699 /*
1700  *	Get the local address ('name') of a socket object. Move the obtained
1701  *	name to user space.
1702  */
1703 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1704 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1705 		int __user *, usockaddr_len)
1706 {
1707 	struct socket *sock;
1708 	struct sockaddr_storage address;
1709 	int len, err, fput_needed;
1710 
1711 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1712 	if (!sock)
1713 		goto out;
1714 
1715 	err = security_socket_getsockname(sock);
1716 	if (err)
1717 		goto out_put;
1718 
1719 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1720 	if (err)
1721 		goto out_put;
1722 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1723 
1724 out_put:
1725 	fput_light(sock->file, fput_needed);
1726 out:
1727 	return err;
1728 }
1729 
1730 /*
1731  *	Get the remote address ('name') of a socket object. Move the obtained
1732  *	name to user space.
1733  */
1734 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1735 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1736 		int __user *, usockaddr_len)
1737 {
1738 	struct socket *sock;
1739 	struct sockaddr_storage address;
1740 	int len, err, fput_needed;
1741 
1742 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1743 	if (sock != NULL) {
1744 		err = security_socket_getpeername(sock);
1745 		if (err) {
1746 			fput_light(sock->file, fput_needed);
1747 			return err;
1748 		}
1749 
1750 		err =
1751 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1752 				       1);
1753 		if (!err)
1754 			err = move_addr_to_user(&address, len, usockaddr,
1755 						usockaddr_len);
1756 		fput_light(sock->file, fput_needed);
1757 	}
1758 	return err;
1759 }
1760 
1761 /*
1762  *	Send a datagram to a given address. We move the address into kernel
1763  *	space and check the user space data area is readable before invoking
1764  *	the protocol.
1765  */
1766 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1767 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1768 		unsigned int, flags, struct sockaddr __user *, addr,
1769 		int, addr_len)
1770 {
1771 	struct socket *sock;
1772 	struct sockaddr_storage address;
1773 	int err;
1774 	struct msghdr msg;
1775 	struct iovec iov;
1776 	int fput_needed;
1777 
1778 	if (len > INT_MAX)
1779 		len = INT_MAX;
1780 	if (unlikely(!access_ok(VERIFY_READ, buff, len)))
1781 		return -EFAULT;
1782 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1783 	if (!sock)
1784 		goto out;
1785 
1786 	iov.iov_base = buff;
1787 	iov.iov_len = len;
1788 	msg.msg_name = NULL;
1789 	msg.msg_iov = &iov;
1790 	msg.msg_iovlen = 1;
1791 	msg.msg_control = NULL;
1792 	msg.msg_controllen = 0;
1793 	msg.msg_namelen = 0;
1794 	if (addr) {
1795 		err = move_addr_to_kernel(addr, addr_len, &address);
1796 		if (err < 0)
1797 			goto out_put;
1798 		msg.msg_name = (struct sockaddr *)&address;
1799 		msg.msg_namelen = addr_len;
1800 	}
1801 	if (sock->file->f_flags & O_NONBLOCK)
1802 		flags |= MSG_DONTWAIT;
1803 	msg.msg_flags = flags;
1804 	err = sock_sendmsg(sock, &msg, len);
1805 
1806 out_put:
1807 	fput_light(sock->file, fput_needed);
1808 out:
1809 	return err;
1810 }
1811 
1812 /*
1813  *	Send a datagram down a socket.
1814  */
1815 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1816 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1817 		unsigned int, flags)
1818 {
1819 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1820 }
1821 
1822 /*
1823  *	Receive a frame from the socket and optionally record the address of the
1824  *	sender. We verify the buffers are writable and if needed move the
1825  *	sender address from kernel to user space.
1826  */
1827 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)1828 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1829 		unsigned int, flags, struct sockaddr __user *, addr,
1830 		int __user *, addr_len)
1831 {
1832 	struct socket *sock;
1833 	struct iovec iov;
1834 	struct msghdr msg;
1835 	struct sockaddr_storage address;
1836 	int err, err2;
1837 	int fput_needed;
1838 
1839 	if (size > INT_MAX)
1840 		size = INT_MAX;
1841 	if (unlikely(!access_ok(VERIFY_WRITE, ubuf, size)))
1842 		return -EFAULT;
1843 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1844 	if (!sock)
1845 		goto out;
1846 
1847 	msg.msg_control = NULL;
1848 	msg.msg_controllen = 0;
1849 	msg.msg_iovlen = 1;
1850 	msg.msg_iov = &iov;
1851 	iov.iov_len = size;
1852 	iov.iov_base = ubuf;
1853 	msg.msg_name = (struct sockaddr *)&address;
1854 	msg.msg_namelen = sizeof(address);
1855 	if (sock->file->f_flags & O_NONBLOCK)
1856 		flags |= MSG_DONTWAIT;
1857 	err = sock_recvmsg(sock, &msg, size, flags);
1858 
1859 	if (err >= 0 && addr != NULL) {
1860 		err2 = move_addr_to_user(&address,
1861 					 msg.msg_namelen, addr, addr_len);
1862 		if (err2 < 0)
1863 			err = err2;
1864 	}
1865 
1866 	fput_light(sock->file, fput_needed);
1867 out:
1868 	return err;
1869 }
1870 
1871 /*
1872  *	Receive a datagram from a socket.
1873  */
1874 
sys_recv(int fd,void __user * ubuf,size_t size,unsigned int flags)1875 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1876 			 unsigned int flags)
1877 {
1878 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1879 }
1880 
1881 /*
1882  *	Set a socket option. Because we don't know the option lengths we have
1883  *	to pass the user mode parameter for the protocols to sort out.
1884  */
1885 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)1886 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1887 		char __user *, optval, int, optlen)
1888 {
1889 	int err, fput_needed;
1890 	struct socket *sock;
1891 
1892 	if (optlen < 0)
1893 		return -EINVAL;
1894 
1895 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1896 	if (sock != NULL) {
1897 		err = security_socket_setsockopt(sock, level, optname);
1898 		if (err)
1899 			goto out_put;
1900 
1901 		if (level == SOL_SOCKET)
1902 			err =
1903 			    sock_setsockopt(sock, level, optname, optval,
1904 					    optlen);
1905 		else
1906 			err =
1907 			    sock->ops->setsockopt(sock, level, optname, optval,
1908 						  optlen);
1909 out_put:
1910 		fput_light(sock->file, fput_needed);
1911 	}
1912 	return err;
1913 }
1914 
1915 /*
1916  *	Get a socket option. Because we don't know the option lengths we have
1917  *	to pass a user mode parameter for the protocols to sort out.
1918  */
1919 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)1920 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1921 		char __user *, optval, int __user *, optlen)
1922 {
1923 	int err, fput_needed;
1924 	struct socket *sock;
1925 
1926 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1927 	if (sock != NULL) {
1928 		err = security_socket_getsockopt(sock, level, optname);
1929 		if (err)
1930 			goto out_put;
1931 
1932 		if (level == SOL_SOCKET)
1933 			err =
1934 			    sock_getsockopt(sock, level, optname, optval,
1935 					    optlen);
1936 		else
1937 			err =
1938 			    sock->ops->getsockopt(sock, level, optname, optval,
1939 						  optlen);
1940 out_put:
1941 		fput_light(sock->file, fput_needed);
1942 	}
1943 	return err;
1944 }
1945 
1946 /*
1947  *	Shutdown a socket.
1948  */
1949 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)1950 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1951 {
1952 	int err, fput_needed;
1953 	struct socket *sock;
1954 
1955 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1956 	if (sock != NULL) {
1957 		err = security_socket_shutdown(sock, how);
1958 		if (!err)
1959 			err = sock->ops->shutdown(sock, how);
1960 		fput_light(sock->file, fput_needed);
1961 	}
1962 	return err;
1963 }
1964 
1965 /* A couple of helpful macros for getting the address of the 32/64 bit
1966  * fields which are the same type (int / unsigned) on our platforms.
1967  */
1968 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1969 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1970 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1971 
1972 struct used_address {
1973 	struct sockaddr_storage name;
1974 	unsigned int name_len;
1975 };
1976 
___sys_sendmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address)1977 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1978 			 struct msghdr *msg_sys, unsigned int flags,
1979 			 struct used_address *used_address)
1980 {
1981 	struct compat_msghdr __user *msg_compat =
1982 	    (struct compat_msghdr __user *)msg;
1983 	struct sockaddr_storage address;
1984 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1985 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1986 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1987 	/* 20 is size of ipv6_pktinfo */
1988 	unsigned char *ctl_buf = ctl;
1989 	int err, ctl_len, total_len;
1990 
1991 	err = -EFAULT;
1992 	if (MSG_CMSG_COMPAT & flags) {
1993 		if (get_compat_msghdr(msg_sys, msg_compat))
1994 			return -EFAULT;
1995 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1996 		return -EFAULT;
1997 
1998 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1999 		err = -EMSGSIZE;
2000 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2001 			goto out;
2002 		err = -ENOMEM;
2003 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2004 			      GFP_KERNEL);
2005 		if (!iov)
2006 			goto out;
2007 	}
2008 
2009 	/* This will also move the address data into kernel space */
2010 	if (MSG_CMSG_COMPAT & flags) {
2011 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2012 	} else
2013 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2014 	if (err < 0)
2015 		goto out_freeiov;
2016 	total_len = err;
2017 
2018 	err = -ENOBUFS;
2019 
2020 	if (msg_sys->msg_controllen > INT_MAX)
2021 		goto out_freeiov;
2022 	ctl_len = msg_sys->msg_controllen;
2023 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2024 		err =
2025 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2026 						     sizeof(ctl));
2027 		if (err)
2028 			goto out_freeiov;
2029 		ctl_buf = msg_sys->msg_control;
2030 		ctl_len = msg_sys->msg_controllen;
2031 	} else if (ctl_len) {
2032 		if (ctl_len > sizeof(ctl)) {
2033 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2034 			if (ctl_buf == NULL)
2035 				goto out_freeiov;
2036 		}
2037 		err = -EFAULT;
2038 		/*
2039 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2040 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2041 		 * checking falls down on this.
2042 		 */
2043 		if (copy_from_user(ctl_buf,
2044 				   (void __user __force *)msg_sys->msg_control,
2045 				   ctl_len))
2046 			goto out_freectl;
2047 		msg_sys->msg_control = ctl_buf;
2048 	}
2049 	msg_sys->msg_flags = flags;
2050 
2051 	if (sock->file->f_flags & O_NONBLOCK)
2052 		msg_sys->msg_flags |= MSG_DONTWAIT;
2053 	/*
2054 	 * If this is sendmmsg() and current destination address is same as
2055 	 * previously succeeded address, omit asking LSM's decision.
2056 	 * used_address->name_len is initialized to UINT_MAX so that the first
2057 	 * destination address never matches.
2058 	 */
2059 	if (used_address && msg_sys->msg_name &&
2060 	    used_address->name_len == msg_sys->msg_namelen &&
2061 	    !memcmp(&used_address->name, msg_sys->msg_name,
2062 		    used_address->name_len)) {
2063 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2064 		goto out_freectl;
2065 	}
2066 	err = sock_sendmsg(sock, msg_sys, total_len);
2067 	/*
2068 	 * If this is sendmmsg() and sending to current destination address was
2069 	 * successful, remember it.
2070 	 */
2071 	if (used_address && err >= 0) {
2072 		used_address->name_len = msg_sys->msg_namelen;
2073 		if (msg_sys->msg_name)
2074 			memcpy(&used_address->name, msg_sys->msg_name,
2075 			       used_address->name_len);
2076 	}
2077 
2078 out_freectl:
2079 	if (ctl_buf != ctl)
2080 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2081 out_freeiov:
2082 	if (iov != iovstack)
2083 		kfree(iov);
2084 out:
2085 	return err;
2086 }
2087 
2088 /*
2089  *	BSD sendmsg interface
2090  */
2091 
__sys_sendmsg(int fd,struct msghdr __user * msg,unsigned flags)2092 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2093 {
2094 	int fput_needed, err;
2095 	struct msghdr msg_sys;
2096 	struct socket *sock;
2097 
2098 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2099 	if (!sock)
2100 		goto out;
2101 
2102 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2103 
2104 	fput_light(sock->file, fput_needed);
2105 out:
2106 	return err;
2107 }
2108 
SYSCALL_DEFINE3(sendmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2109 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2110 {
2111 	if (flags & MSG_CMSG_COMPAT)
2112 		return -EINVAL;
2113 	return __sys_sendmsg(fd, msg, flags);
2114 }
2115 
2116 /*
2117  *	Linux sendmmsg interface
2118  */
2119 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags)2120 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2121 		   unsigned int flags)
2122 {
2123 	int fput_needed, err, datagrams;
2124 	struct socket *sock;
2125 	struct mmsghdr __user *entry;
2126 	struct compat_mmsghdr __user *compat_entry;
2127 	struct msghdr msg_sys;
2128 	struct used_address used_address;
2129 
2130 	if (vlen > UIO_MAXIOV)
2131 		vlen = UIO_MAXIOV;
2132 
2133 	datagrams = 0;
2134 
2135 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 	if (!sock)
2137 		return err;
2138 
2139 	used_address.name_len = UINT_MAX;
2140 	entry = mmsg;
2141 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2142 	err = 0;
2143 
2144 	while (datagrams < vlen) {
2145 		if (MSG_CMSG_COMPAT & flags) {
2146 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2147 					     &msg_sys, flags, &used_address);
2148 			if (err < 0)
2149 				break;
2150 			err = __put_user(err, &compat_entry->msg_len);
2151 			++compat_entry;
2152 		} else {
2153 			err = ___sys_sendmsg(sock,
2154 					     (struct msghdr __user *)entry,
2155 					     &msg_sys, flags, &used_address);
2156 			if (err < 0)
2157 				break;
2158 			err = put_user(err, &entry->msg_len);
2159 			++entry;
2160 		}
2161 
2162 		if (err)
2163 			break;
2164 		++datagrams;
2165 	}
2166 
2167 	fput_light(sock->file, fput_needed);
2168 
2169 	/* We only return an error if no datagrams were able to be sent */
2170 	if (datagrams != 0)
2171 		return datagrams;
2172 
2173 	return err;
2174 }
2175 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2176 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2177 		unsigned int, vlen, unsigned int, flags)
2178 {
2179 	if (flags & MSG_CMSG_COMPAT)
2180 		return -EINVAL;
2181 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2182 }
2183 
___sys_recvmsg(struct socket * sock,struct msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2184 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2185 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2186 {
2187 	struct compat_msghdr __user *msg_compat =
2188 	    (struct compat_msghdr __user *)msg;
2189 	struct iovec iovstack[UIO_FASTIOV];
2190 	struct iovec *iov = iovstack;
2191 	unsigned long cmsg_ptr;
2192 	int err, total_len, len;
2193 
2194 	/* kernel mode address */
2195 	struct sockaddr_storage addr;
2196 
2197 	/* user mode address pointers */
2198 	struct sockaddr __user *uaddr;
2199 	int __user *uaddr_len;
2200 
2201 	if (MSG_CMSG_COMPAT & flags) {
2202 		if (get_compat_msghdr(msg_sys, msg_compat))
2203 			return -EFAULT;
2204 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2205 		return -EFAULT;
2206 
2207 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2208 		err = -EMSGSIZE;
2209 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2210 			goto out;
2211 		err = -ENOMEM;
2212 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2213 			      GFP_KERNEL);
2214 		if (!iov)
2215 			goto out;
2216 	}
2217 
2218 	/*
2219 	 *      Save the user-mode address (verify_iovec will change the
2220 	 *      kernel msghdr to use the kernel address space)
2221 	 */
2222 
2223 	uaddr = (__force void __user *)msg_sys->msg_name;
2224 	uaddr_len = COMPAT_NAMELEN(msg);
2225 	if (MSG_CMSG_COMPAT & flags) {
2226 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2227 	} else
2228 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2229 	if (err < 0)
2230 		goto out_freeiov;
2231 	total_len = err;
2232 
2233 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2234 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2235 
2236 	if (sock->file->f_flags & O_NONBLOCK)
2237 		flags |= MSG_DONTWAIT;
2238 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2239 							  total_len, flags);
2240 	if (err < 0)
2241 		goto out_freeiov;
2242 	len = err;
2243 
2244 	if (uaddr != NULL) {
2245 		err = move_addr_to_user(&addr,
2246 					msg_sys->msg_namelen, uaddr,
2247 					uaddr_len);
2248 		if (err < 0)
2249 			goto out_freeiov;
2250 	}
2251 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2252 			 COMPAT_FLAGS(msg));
2253 	if (err)
2254 		goto out_freeiov;
2255 	if (MSG_CMSG_COMPAT & flags)
2256 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2257 				 &msg_compat->msg_controllen);
2258 	else
2259 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2260 				 &msg->msg_controllen);
2261 	if (err)
2262 		goto out_freeiov;
2263 	err = len;
2264 
2265 out_freeiov:
2266 	if (iov != iovstack)
2267 		kfree(iov);
2268 out:
2269 	return err;
2270 }
2271 
2272 /*
2273  *	BSD recvmsg interface
2274  */
2275 
__sys_recvmsg(int fd,struct msghdr __user * msg,unsigned flags)2276 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2277 {
2278 	int fput_needed, err;
2279 	struct msghdr msg_sys;
2280 	struct socket *sock;
2281 
2282 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2283 	if (!sock)
2284 		goto out;
2285 
2286 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2287 
2288 	fput_light(sock->file, fput_needed);
2289 out:
2290 	return err;
2291 }
2292 
SYSCALL_DEFINE3(recvmsg,int,fd,struct msghdr __user *,msg,unsigned int,flags)2293 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2294 		unsigned int, flags)
2295 {
2296 	if (flags & MSG_CMSG_COMPAT)
2297 		return -EINVAL;
2298 	return __sys_recvmsg(fd, msg, flags);
2299 }
2300 
2301 /*
2302  *     Linux recvmmsg interface
2303  */
2304 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec * timeout)2305 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2306 		   unsigned int flags, struct timespec *timeout)
2307 {
2308 	int fput_needed, err, datagrams;
2309 	struct socket *sock;
2310 	struct mmsghdr __user *entry;
2311 	struct compat_mmsghdr __user *compat_entry;
2312 	struct msghdr msg_sys;
2313 	struct timespec end_time;
2314 
2315 	if (timeout &&
2316 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2317 				    timeout->tv_nsec))
2318 		return -EINVAL;
2319 
2320 	datagrams = 0;
2321 
2322 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2323 	if (!sock)
2324 		return err;
2325 
2326 	err = sock_error(sock->sk);
2327 	if (err)
2328 		goto out_put;
2329 
2330 	entry = mmsg;
2331 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2332 
2333 	while (datagrams < vlen) {
2334 		/*
2335 		 * No need to ask LSM for more than the first datagram.
2336 		 */
2337 		if (MSG_CMSG_COMPAT & flags) {
2338 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2339 					     &msg_sys, flags & ~MSG_WAITFORONE,
2340 					     datagrams);
2341 			if (err < 0)
2342 				break;
2343 			err = __put_user(err, &compat_entry->msg_len);
2344 			++compat_entry;
2345 		} else {
2346 			err = ___sys_recvmsg(sock,
2347 					     (struct msghdr __user *)entry,
2348 					     &msg_sys, flags & ~MSG_WAITFORONE,
2349 					     datagrams);
2350 			if (err < 0)
2351 				break;
2352 			err = put_user(err, &entry->msg_len);
2353 			++entry;
2354 		}
2355 
2356 		if (err)
2357 			break;
2358 		++datagrams;
2359 
2360 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2361 		if (flags & MSG_WAITFORONE)
2362 			flags |= MSG_DONTWAIT;
2363 
2364 		if (timeout) {
2365 			ktime_get_ts(timeout);
2366 			*timeout = timespec_sub(end_time, *timeout);
2367 			if (timeout->tv_sec < 0) {
2368 				timeout->tv_sec = timeout->tv_nsec = 0;
2369 				break;
2370 			}
2371 
2372 			/* Timeout, return less than vlen datagrams */
2373 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2374 				break;
2375 		}
2376 
2377 		/* Out of band data, return right away */
2378 		if (msg_sys.msg_flags & MSG_OOB)
2379 			break;
2380 	}
2381 
2382 	if (err == 0)
2383 		goto out_put;
2384 
2385 	if (datagrams == 0) {
2386 		datagrams = err;
2387 		goto out_put;
2388 	}
2389 
2390 	/*
2391 	 * We may return less entries than requested (vlen) if the
2392 	 * sock is non block and there aren't enough datagrams...
2393 	 */
2394 	if (err != -EAGAIN) {
2395 		/*
2396 		 * ... or  if recvmsg returns an error after we
2397 		 * received some datagrams, where we record the
2398 		 * error to return on the next call or if the
2399 		 * app asks about it using getsockopt(SO_ERROR).
2400 		 */
2401 		sock->sk->sk_err = -err;
2402 	}
2403 out_put:
2404 	fput_light(sock->file, fput_needed);
2405 
2406 	return datagrams;
2407 }
2408 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct timespec __user *,timeout)2409 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2410 		unsigned int, vlen, unsigned int, flags,
2411 		struct timespec __user *, timeout)
2412 {
2413 	int datagrams;
2414 	struct timespec timeout_sys;
2415 
2416 	if (flags & MSG_CMSG_COMPAT)
2417 		return -EINVAL;
2418 
2419 	if (!timeout)
2420 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2421 
2422 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2423 		return -EFAULT;
2424 
2425 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2426 
2427 	if (datagrams > 0 &&
2428 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2429 		datagrams = -EFAULT;
2430 
2431 	return datagrams;
2432 }
2433 
2434 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2435 /* Argument list sizes for sys_socketcall */
2436 #define AL(x) ((x) * sizeof(unsigned long))
2437 static const unsigned char nargs[21] = {
2438 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2439 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2440 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2441 	AL(4), AL(5), AL(4)
2442 };
2443 
2444 #undef AL
2445 
2446 /*
2447  *	System call vectors.
2448  *
2449  *	Argument checking cleaned up. Saved 20% in size.
2450  *  This function doesn't need to set the kernel lock because
2451  *  it is set by the callees.
2452  */
2453 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2454 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2455 {
2456 	unsigned long a[AUDITSC_ARGS];
2457 	unsigned long a0, a1;
2458 	int err;
2459 	unsigned int len;
2460 
2461 	if (call < 1 || call > SYS_SENDMMSG)
2462 		return -EINVAL;
2463 
2464 	len = nargs[call];
2465 	if (len > sizeof(a))
2466 		return -EINVAL;
2467 
2468 	/* copy_from_user should be SMP safe. */
2469 	if (copy_from_user(a, args, len))
2470 		return -EFAULT;
2471 
2472 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2473 	if (err)
2474 		return err;
2475 
2476 	a0 = a[0];
2477 	a1 = a[1];
2478 
2479 	switch (call) {
2480 	case SYS_SOCKET:
2481 		err = sys_socket(a0, a1, a[2]);
2482 		break;
2483 	case SYS_BIND:
2484 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2485 		break;
2486 	case SYS_CONNECT:
2487 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2488 		break;
2489 	case SYS_LISTEN:
2490 		err = sys_listen(a0, a1);
2491 		break;
2492 	case SYS_ACCEPT:
2493 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2494 				  (int __user *)a[2], 0);
2495 		break;
2496 	case SYS_GETSOCKNAME:
2497 		err =
2498 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2499 				    (int __user *)a[2]);
2500 		break;
2501 	case SYS_GETPEERNAME:
2502 		err =
2503 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2504 				    (int __user *)a[2]);
2505 		break;
2506 	case SYS_SOCKETPAIR:
2507 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2508 		break;
2509 	case SYS_SEND:
2510 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2511 		break;
2512 	case SYS_SENDTO:
2513 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2514 				 (struct sockaddr __user *)a[4], a[5]);
2515 		break;
2516 	case SYS_RECV:
2517 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2518 		break;
2519 	case SYS_RECVFROM:
2520 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2521 				   (struct sockaddr __user *)a[4],
2522 				   (int __user *)a[5]);
2523 		break;
2524 	case SYS_SHUTDOWN:
2525 		err = sys_shutdown(a0, a1);
2526 		break;
2527 	case SYS_SETSOCKOPT:
2528 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2529 		break;
2530 	case SYS_GETSOCKOPT:
2531 		err =
2532 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2533 				   (int __user *)a[4]);
2534 		break;
2535 	case SYS_SENDMSG:
2536 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2537 		break;
2538 	case SYS_SENDMMSG:
2539 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2540 		break;
2541 	case SYS_RECVMSG:
2542 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2543 		break;
2544 	case SYS_RECVMMSG:
2545 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2546 				   (struct timespec __user *)a[4]);
2547 		break;
2548 	case SYS_ACCEPT4:
2549 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2550 				  (int __user *)a[2], a[3]);
2551 		break;
2552 	default:
2553 		err = -EINVAL;
2554 		break;
2555 	}
2556 	return err;
2557 }
2558 
2559 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2560 
2561 /**
2562  *	sock_register - add a socket protocol handler
2563  *	@ops: description of protocol
2564  *
2565  *	This function is called by a protocol handler that wants to
2566  *	advertise its address family, and have it linked into the
2567  *	socket interface. The value ops->family coresponds to the
2568  *	socket system call protocol family.
2569  */
sock_register(const struct net_proto_family * ops)2570 int sock_register(const struct net_proto_family *ops)
2571 {
2572 	int err;
2573 
2574 	if (ops->family >= NPROTO) {
2575 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2576 		       NPROTO);
2577 		return -ENOBUFS;
2578 	}
2579 
2580 	spin_lock(&net_family_lock);
2581 	if (rcu_dereference_protected(net_families[ops->family],
2582 				      lockdep_is_held(&net_family_lock)))
2583 		err = -EEXIST;
2584 	else {
2585 		rcu_assign_pointer(net_families[ops->family], ops);
2586 		err = 0;
2587 	}
2588 	spin_unlock(&net_family_lock);
2589 
2590 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2591 	return err;
2592 }
2593 EXPORT_SYMBOL(sock_register);
2594 
2595 /**
2596  *	sock_unregister - remove a protocol handler
2597  *	@family: protocol family to remove
2598  *
2599  *	This function is called by a protocol handler that wants to
2600  *	remove its address family, and have it unlinked from the
2601  *	new socket creation.
2602  *
2603  *	If protocol handler is a module, then it can use module reference
2604  *	counts to protect against new references. If protocol handler is not
2605  *	a module then it needs to provide its own protection in
2606  *	the ops->create routine.
2607  */
sock_unregister(int family)2608 void sock_unregister(int family)
2609 {
2610 	BUG_ON(family < 0 || family >= NPROTO);
2611 
2612 	spin_lock(&net_family_lock);
2613 	RCU_INIT_POINTER(net_families[family], NULL);
2614 	spin_unlock(&net_family_lock);
2615 
2616 	synchronize_rcu();
2617 
2618 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2619 }
2620 EXPORT_SYMBOL(sock_unregister);
2621 
sock_init(void)2622 static int __init sock_init(void)
2623 {
2624 	int err;
2625 	/*
2626 	 *      Initialize the network sysctl infrastructure.
2627 	 */
2628 	err = net_sysctl_init();
2629 	if (err)
2630 		goto out;
2631 
2632 	/*
2633 	 *      Initialize skbuff SLAB cache
2634 	 */
2635 	skb_init();
2636 
2637 	/*
2638 	 *      Initialize the protocols module.
2639 	 */
2640 
2641 	init_inodecache();
2642 
2643 	err = register_filesystem(&sock_fs_type);
2644 	if (err)
2645 		goto out_fs;
2646 	sock_mnt = kern_mount(&sock_fs_type);
2647 	if (IS_ERR(sock_mnt)) {
2648 		err = PTR_ERR(sock_mnt);
2649 		goto out_mount;
2650 	}
2651 
2652 	/* The real protocol initialization is performed in later initcalls.
2653 	 */
2654 
2655 #ifdef CONFIG_NETFILTER
2656 	netfilter_init();
2657 #endif
2658 
2659 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2660 	skb_timestamping_init();
2661 #endif
2662 
2663 out:
2664 	return err;
2665 
2666 out_mount:
2667 	unregister_filesystem(&sock_fs_type);
2668 out_fs:
2669 	goto out;
2670 }
2671 
2672 core_initcall(sock_init);	/* early initcall */
2673 
2674 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)2675 void socket_seq_show(struct seq_file *seq)
2676 {
2677 	int cpu;
2678 	int counter = 0;
2679 
2680 	for_each_possible_cpu(cpu)
2681 	    counter += per_cpu(sockets_in_use, cpu);
2682 
2683 	/* It can be negative, by the way. 8) */
2684 	if (counter < 0)
2685 		counter = 0;
2686 
2687 	seq_printf(seq, "sockets: used %d\n", counter);
2688 }
2689 #endif				/* CONFIG_PROC_FS */
2690 
2691 #ifdef CONFIG_COMPAT
do_siocgstamp(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2692 static int do_siocgstamp(struct net *net, struct socket *sock,
2693 			 unsigned int cmd, void __user *up)
2694 {
2695 	mm_segment_t old_fs = get_fs();
2696 	struct timeval ktv;
2697 	int err;
2698 
2699 	set_fs(KERNEL_DS);
2700 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2701 	set_fs(old_fs);
2702 	if (!err)
2703 		err = compat_put_timeval(&ktv, up);
2704 
2705 	return err;
2706 }
2707 
do_siocgstampns(struct net * net,struct socket * sock,unsigned int cmd,void __user * up)2708 static int do_siocgstampns(struct net *net, struct socket *sock,
2709 			   unsigned int cmd, void __user *up)
2710 {
2711 	mm_segment_t old_fs = get_fs();
2712 	struct timespec kts;
2713 	int err;
2714 
2715 	set_fs(KERNEL_DS);
2716 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2717 	set_fs(old_fs);
2718 	if (!err)
2719 		err = compat_put_timespec(&kts, up);
2720 
2721 	return err;
2722 }
2723 
dev_ifname32(struct net * net,struct compat_ifreq __user * uifr32)2724 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2725 {
2726 	struct ifreq __user *uifr;
2727 	int err;
2728 
2729 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2730 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2731 		return -EFAULT;
2732 
2733 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2734 	if (err)
2735 		return err;
2736 
2737 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2738 		return -EFAULT;
2739 
2740 	return 0;
2741 }
2742 
dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)2743 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2744 {
2745 	struct compat_ifconf ifc32;
2746 	struct ifconf ifc;
2747 	struct ifconf __user *uifc;
2748 	struct compat_ifreq __user *ifr32;
2749 	struct ifreq __user *ifr;
2750 	unsigned int i, j;
2751 	int err;
2752 
2753 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2754 		return -EFAULT;
2755 
2756 	memset(&ifc, 0, sizeof(ifc));
2757 	if (ifc32.ifcbuf == 0) {
2758 		ifc32.ifc_len = 0;
2759 		ifc.ifc_len = 0;
2760 		ifc.ifc_req = NULL;
2761 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2762 	} else {
2763 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2764 			sizeof(struct ifreq);
2765 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2766 		ifc.ifc_len = len;
2767 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2768 		ifr32 = compat_ptr(ifc32.ifcbuf);
2769 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2770 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2771 				return -EFAULT;
2772 			ifr++;
2773 			ifr32++;
2774 		}
2775 	}
2776 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2777 		return -EFAULT;
2778 
2779 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2780 	if (err)
2781 		return err;
2782 
2783 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2784 		return -EFAULT;
2785 
2786 	ifr = ifc.ifc_req;
2787 	ifr32 = compat_ptr(ifc32.ifcbuf);
2788 	for (i = 0, j = 0;
2789 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2790 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2791 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2792 			return -EFAULT;
2793 		ifr32++;
2794 		ifr++;
2795 	}
2796 
2797 	if (ifc32.ifcbuf == 0) {
2798 		/* Translate from 64-bit structure multiple to
2799 		 * a 32-bit one.
2800 		 */
2801 		i = ifc.ifc_len;
2802 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2803 		ifc32.ifc_len = i;
2804 	} else {
2805 		ifc32.ifc_len = i;
2806 	}
2807 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2808 		return -EFAULT;
2809 
2810 	return 0;
2811 }
2812 
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)2813 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2814 {
2815 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2816 	bool convert_in = false, convert_out = false;
2817 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2818 	struct ethtool_rxnfc __user *rxnfc;
2819 	struct ifreq __user *ifr;
2820 	u32 rule_cnt = 0, actual_rule_cnt;
2821 	u32 ethcmd;
2822 	u32 data;
2823 	int ret;
2824 
2825 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2826 		return -EFAULT;
2827 
2828 	compat_rxnfc = compat_ptr(data);
2829 
2830 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2831 		return -EFAULT;
2832 
2833 	/* Most ethtool structures are defined without padding.
2834 	 * Unfortunately struct ethtool_rxnfc is an exception.
2835 	 */
2836 	switch (ethcmd) {
2837 	default:
2838 		break;
2839 	case ETHTOOL_GRXCLSRLALL:
2840 		/* Buffer size is variable */
2841 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2842 			return -EFAULT;
2843 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2844 			return -ENOMEM;
2845 		buf_size += rule_cnt * sizeof(u32);
2846 		/* fall through */
2847 	case ETHTOOL_GRXRINGS:
2848 	case ETHTOOL_GRXCLSRLCNT:
2849 	case ETHTOOL_GRXCLSRULE:
2850 	case ETHTOOL_SRXCLSRLINS:
2851 		convert_out = true;
2852 		/* fall through */
2853 	case ETHTOOL_SRXCLSRLDEL:
2854 		buf_size += sizeof(struct ethtool_rxnfc);
2855 		convert_in = true;
2856 		break;
2857 	}
2858 
2859 	ifr = compat_alloc_user_space(buf_size);
2860 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2861 
2862 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2863 		return -EFAULT;
2864 
2865 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2866 		     &ifr->ifr_ifru.ifru_data))
2867 		return -EFAULT;
2868 
2869 	if (convert_in) {
2870 		/* We expect there to be holes between fs.m_ext and
2871 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2872 		 */
2873 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2874 			     sizeof(compat_rxnfc->fs.m_ext) !=
2875 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2876 			     sizeof(rxnfc->fs.m_ext));
2877 		BUILD_BUG_ON(
2878 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2879 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2880 			offsetof(struct ethtool_rxnfc, fs.location) -
2881 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2882 
2883 		if (copy_in_user(rxnfc, compat_rxnfc,
2884 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2885 				 (void __user *)rxnfc) ||
2886 		    copy_in_user(&rxnfc->fs.ring_cookie,
2887 				 &compat_rxnfc->fs.ring_cookie,
2888 				 (void __user *)(&rxnfc->fs.location + 1) -
2889 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2890 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2891 				 sizeof(rxnfc->rule_cnt)))
2892 			return -EFAULT;
2893 	}
2894 
2895 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2896 	if (ret)
2897 		return ret;
2898 
2899 	if (convert_out) {
2900 		if (copy_in_user(compat_rxnfc, rxnfc,
2901 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2902 				 (const void __user *)rxnfc) ||
2903 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2904 				 &rxnfc->fs.ring_cookie,
2905 				 (const void __user *)(&rxnfc->fs.location + 1) -
2906 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2907 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2908 				 sizeof(rxnfc->rule_cnt)))
2909 			return -EFAULT;
2910 
2911 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2912 			/* As an optimisation, we only copy the actual
2913 			 * number of rules that the underlying
2914 			 * function returned.  Since Mallory might
2915 			 * change the rule count in user memory, we
2916 			 * check that it is less than the rule count
2917 			 * originally given (as the user buffer size),
2918 			 * which has been range-checked.
2919 			 */
2920 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2921 				return -EFAULT;
2922 			if (actual_rule_cnt < rule_cnt)
2923 				rule_cnt = actual_rule_cnt;
2924 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2925 					 &rxnfc->rule_locs[0],
2926 					 rule_cnt * sizeof(u32)))
2927 				return -EFAULT;
2928 		}
2929 	}
2930 
2931 	return 0;
2932 }
2933 
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)2934 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2935 {
2936 	void __user *uptr;
2937 	compat_uptr_t uptr32;
2938 	struct ifreq __user *uifr;
2939 
2940 	uifr = compat_alloc_user_space(sizeof(*uifr));
2941 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2942 		return -EFAULT;
2943 
2944 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2945 		return -EFAULT;
2946 
2947 	uptr = compat_ptr(uptr32);
2948 
2949 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2950 		return -EFAULT;
2951 
2952 	return dev_ioctl(net, SIOCWANDEV, uifr);
2953 }
2954 
bond_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * ifr32)2955 static int bond_ioctl(struct net *net, unsigned int cmd,
2956 			 struct compat_ifreq __user *ifr32)
2957 {
2958 	struct ifreq kifr;
2959 	struct ifreq __user *uifr;
2960 	mm_segment_t old_fs;
2961 	int err;
2962 	u32 data;
2963 	void __user *datap;
2964 
2965 	switch (cmd) {
2966 	case SIOCBONDENSLAVE:
2967 	case SIOCBONDRELEASE:
2968 	case SIOCBONDSETHWADDR:
2969 	case SIOCBONDCHANGEACTIVE:
2970 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2971 			return -EFAULT;
2972 
2973 		old_fs = get_fs();
2974 		set_fs(KERNEL_DS);
2975 		err = dev_ioctl(net, cmd,
2976 				(struct ifreq __user __force *) &kifr);
2977 		set_fs(old_fs);
2978 
2979 		return err;
2980 	case SIOCBONDSLAVEINFOQUERY:
2981 	case SIOCBONDINFOQUERY:
2982 		uifr = compat_alloc_user_space(sizeof(*uifr));
2983 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2984 			return -EFAULT;
2985 
2986 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2987 			return -EFAULT;
2988 
2989 		datap = compat_ptr(data);
2990 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2991 			return -EFAULT;
2992 
2993 		return dev_ioctl(net, cmd, uifr);
2994 	default:
2995 		return -ENOIOCTLCMD;
2996 	}
2997 }
2998 
siocdevprivate_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)2999 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3000 				 struct compat_ifreq __user *u_ifreq32)
3001 {
3002 	struct ifreq __user *u_ifreq64;
3003 	char tmp_buf[IFNAMSIZ];
3004 	void __user *data64;
3005 	u32 data32;
3006 
3007 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3008 			   IFNAMSIZ))
3009 		return -EFAULT;
3010 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3011 		return -EFAULT;
3012 	data64 = compat_ptr(data32);
3013 
3014 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3015 
3016 	/* Don't check these user accesses, just let that get trapped
3017 	 * in the ioctl handler instead.
3018 	 */
3019 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3020 			 IFNAMSIZ))
3021 		return -EFAULT;
3022 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3023 		return -EFAULT;
3024 
3025 	return dev_ioctl(net, cmd, u_ifreq64);
3026 }
3027 
dev_ifsioc(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3028 static int dev_ifsioc(struct net *net, struct socket *sock,
3029 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3030 {
3031 	struct ifreq __user *uifr;
3032 	int err;
3033 
3034 	uifr = compat_alloc_user_space(sizeof(*uifr));
3035 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3036 		return -EFAULT;
3037 
3038 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3039 
3040 	if (!err) {
3041 		switch (cmd) {
3042 		case SIOCGIFFLAGS:
3043 		case SIOCGIFMETRIC:
3044 		case SIOCGIFMTU:
3045 		case SIOCGIFMEM:
3046 		case SIOCGIFHWADDR:
3047 		case SIOCGIFINDEX:
3048 		case SIOCGIFADDR:
3049 		case SIOCGIFBRDADDR:
3050 		case SIOCGIFDSTADDR:
3051 		case SIOCGIFNETMASK:
3052 		case SIOCGIFPFLAGS:
3053 		case SIOCGIFTXQLEN:
3054 		case SIOCGMIIPHY:
3055 		case SIOCGMIIREG:
3056 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3057 				err = -EFAULT;
3058 			break;
3059 		}
3060 	}
3061 	return err;
3062 }
3063 
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3064 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3065 			struct compat_ifreq __user *uifr32)
3066 {
3067 	struct ifreq ifr;
3068 	struct compat_ifmap __user *uifmap32;
3069 	mm_segment_t old_fs;
3070 	int err;
3071 
3072 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3073 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3074 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3075 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3076 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3077 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3078 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3079 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3080 	if (err)
3081 		return -EFAULT;
3082 
3083 	old_fs = get_fs();
3084 	set_fs(KERNEL_DS);
3085 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3086 	set_fs(old_fs);
3087 
3088 	if (cmd == SIOCGIFMAP && !err) {
3089 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3090 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3091 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3092 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3093 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3094 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3095 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3096 		if (err)
3097 			err = -EFAULT;
3098 	}
3099 	return err;
3100 }
3101 
compat_siocshwtstamp(struct net * net,struct compat_ifreq __user * uifr32)3102 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3103 {
3104 	void __user *uptr;
3105 	compat_uptr_t uptr32;
3106 	struct ifreq __user *uifr;
3107 
3108 	uifr = compat_alloc_user_space(sizeof(*uifr));
3109 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3110 		return -EFAULT;
3111 
3112 	if (get_user(uptr32, &uifr32->ifr_data))
3113 		return -EFAULT;
3114 
3115 	uptr = compat_ptr(uptr32);
3116 
3117 	if (put_user(uptr, &uifr->ifr_data))
3118 		return -EFAULT;
3119 
3120 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3121 }
3122 
3123 struct rtentry32 {
3124 	u32		rt_pad1;
3125 	struct sockaddr rt_dst;         /* target address               */
3126 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3127 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3128 	unsigned short	rt_flags;
3129 	short		rt_pad2;
3130 	u32		rt_pad3;
3131 	unsigned char	rt_tos;
3132 	unsigned char	rt_class;
3133 	short		rt_pad4;
3134 	short		rt_metric;      /* +1 for binary compatibility! */
3135 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3136 	u32		rt_mtu;         /* per route MTU/Window         */
3137 	u32		rt_window;      /* Window clamping              */
3138 	unsigned short  rt_irtt;        /* Initial RTT                  */
3139 };
3140 
3141 struct in6_rtmsg32 {
3142 	struct in6_addr		rtmsg_dst;
3143 	struct in6_addr		rtmsg_src;
3144 	struct in6_addr		rtmsg_gateway;
3145 	u32			rtmsg_type;
3146 	u16			rtmsg_dst_len;
3147 	u16			rtmsg_src_len;
3148 	u32			rtmsg_metric;
3149 	u32			rtmsg_info;
3150 	u32			rtmsg_flags;
3151 	s32			rtmsg_ifindex;
3152 };
3153 
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3154 static int routing_ioctl(struct net *net, struct socket *sock,
3155 			 unsigned int cmd, void __user *argp)
3156 {
3157 	int ret;
3158 	void *r = NULL;
3159 	struct in6_rtmsg r6;
3160 	struct rtentry r4;
3161 	char devname[16];
3162 	u32 rtdev;
3163 	mm_segment_t old_fs = get_fs();
3164 
3165 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3166 		struct in6_rtmsg32 __user *ur6 = argp;
3167 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3168 			3 * sizeof(struct in6_addr));
3169 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3170 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3171 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3172 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3173 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3174 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3175 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3176 
3177 		r = (void *) &r6;
3178 	} else { /* ipv4 */
3179 		struct rtentry32 __user *ur4 = argp;
3180 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3181 					3 * sizeof(struct sockaddr));
3182 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3183 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3184 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3185 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3186 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3187 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3188 		if (rtdev) {
3189 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3190 			r4.rt_dev = (char __user __force *)devname;
3191 			devname[15] = 0;
3192 		} else
3193 			r4.rt_dev = NULL;
3194 
3195 		r = (void *) &r4;
3196 	}
3197 
3198 	if (ret) {
3199 		ret = -EFAULT;
3200 		goto out;
3201 	}
3202 
3203 	set_fs(KERNEL_DS);
3204 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3205 	set_fs(old_fs);
3206 
3207 out:
3208 	return ret;
3209 }
3210 
3211 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3212  * for some operations; this forces use of the newer bridge-utils that
3213  * use compatible ioctls
3214  */
old_bridge_ioctl(compat_ulong_t __user * argp)3215 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3216 {
3217 	compat_ulong_t tmp;
3218 
3219 	if (get_user(tmp, argp))
3220 		return -EFAULT;
3221 	if (tmp == BRCTL_GET_VERSION)
3222 		return BRCTL_VERSION + 1;
3223 	return -EINVAL;
3224 }
3225 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3226 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3227 			 unsigned int cmd, unsigned long arg)
3228 {
3229 	void __user *argp = compat_ptr(arg);
3230 	struct sock *sk = sock->sk;
3231 	struct net *net = sock_net(sk);
3232 
3233 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3234 		return siocdevprivate_ioctl(net, cmd, argp);
3235 
3236 	switch (cmd) {
3237 	case SIOCSIFBR:
3238 	case SIOCGIFBR:
3239 		return old_bridge_ioctl(argp);
3240 	case SIOCGIFNAME:
3241 		return dev_ifname32(net, argp);
3242 	case SIOCGIFCONF:
3243 		return dev_ifconf(net, argp);
3244 	case SIOCETHTOOL:
3245 		return ethtool_ioctl(net, argp);
3246 	case SIOCWANDEV:
3247 		return compat_siocwandev(net, argp);
3248 	case SIOCGIFMAP:
3249 	case SIOCSIFMAP:
3250 		return compat_sioc_ifmap(net, cmd, argp);
3251 	case SIOCBONDENSLAVE:
3252 	case SIOCBONDRELEASE:
3253 	case SIOCBONDSETHWADDR:
3254 	case SIOCBONDSLAVEINFOQUERY:
3255 	case SIOCBONDINFOQUERY:
3256 	case SIOCBONDCHANGEACTIVE:
3257 		return bond_ioctl(net, cmd, argp);
3258 	case SIOCADDRT:
3259 	case SIOCDELRT:
3260 		return routing_ioctl(net, sock, cmd, argp);
3261 	case SIOCGSTAMP:
3262 		return do_siocgstamp(net, sock, cmd, argp);
3263 	case SIOCGSTAMPNS:
3264 		return do_siocgstampns(net, sock, cmd, argp);
3265 	case SIOCSHWTSTAMP:
3266 		return compat_siocshwtstamp(net, argp);
3267 
3268 	case FIOSETOWN:
3269 	case SIOCSPGRP:
3270 	case FIOGETOWN:
3271 	case SIOCGPGRP:
3272 	case SIOCBRADDBR:
3273 	case SIOCBRDELBR:
3274 	case SIOCGIFVLAN:
3275 	case SIOCSIFVLAN:
3276 	case SIOCADDDLCI:
3277 	case SIOCDELDLCI:
3278 		return sock_ioctl(file, cmd, arg);
3279 
3280 	case SIOCGIFFLAGS:
3281 	case SIOCSIFFLAGS:
3282 	case SIOCGIFMETRIC:
3283 	case SIOCSIFMETRIC:
3284 	case SIOCGIFMTU:
3285 	case SIOCSIFMTU:
3286 	case SIOCGIFMEM:
3287 	case SIOCSIFMEM:
3288 	case SIOCGIFHWADDR:
3289 	case SIOCSIFHWADDR:
3290 	case SIOCADDMULTI:
3291 	case SIOCDELMULTI:
3292 	case SIOCGIFINDEX:
3293 	case SIOCGIFADDR:
3294 	case SIOCSIFADDR:
3295 	case SIOCSIFHWBROADCAST:
3296 	case SIOCDIFADDR:
3297 	case SIOCGIFBRDADDR:
3298 	case SIOCSIFBRDADDR:
3299 	case SIOCGIFDSTADDR:
3300 	case SIOCSIFDSTADDR:
3301 	case SIOCGIFNETMASK:
3302 	case SIOCSIFNETMASK:
3303 	case SIOCSIFPFLAGS:
3304 	case SIOCGIFPFLAGS:
3305 	case SIOCGIFTXQLEN:
3306 	case SIOCSIFTXQLEN:
3307 	case SIOCBRADDIF:
3308 	case SIOCBRDELIF:
3309 	case SIOCSIFNAME:
3310 	case SIOCGMIIPHY:
3311 	case SIOCGMIIREG:
3312 	case SIOCSMIIREG:
3313 		return dev_ifsioc(net, sock, cmd, argp);
3314 
3315 	case SIOCSARP:
3316 	case SIOCGARP:
3317 	case SIOCDARP:
3318 	case SIOCATMARK:
3319 		return sock_do_ioctl(net, sock, cmd, arg);
3320 	}
3321 
3322 	return -ENOIOCTLCMD;
3323 }
3324 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3325 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3326 			      unsigned long arg)
3327 {
3328 	struct socket *sock = file->private_data;
3329 	int ret = -ENOIOCTLCMD;
3330 	struct sock *sk;
3331 	struct net *net;
3332 
3333 	sk = sock->sk;
3334 	net = sock_net(sk);
3335 
3336 	if (sock->ops->compat_ioctl)
3337 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3338 
3339 	if (ret == -ENOIOCTLCMD &&
3340 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3341 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3342 
3343 	if (ret == -ENOIOCTLCMD)
3344 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3345 
3346 	return ret;
3347 }
3348 #endif
3349 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3350 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3351 {
3352 	return sock->ops->bind(sock, addr, addrlen);
3353 }
3354 EXPORT_SYMBOL(kernel_bind);
3355 
kernel_listen(struct socket * sock,int backlog)3356 int kernel_listen(struct socket *sock, int backlog)
3357 {
3358 	return sock->ops->listen(sock, backlog);
3359 }
3360 EXPORT_SYMBOL(kernel_listen);
3361 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3362 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3363 {
3364 	struct sock *sk = sock->sk;
3365 	int err;
3366 
3367 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3368 			       newsock);
3369 	if (err < 0)
3370 		goto done;
3371 
3372 	err = sock->ops->accept(sock, *newsock, flags);
3373 	if (err < 0) {
3374 		sock_release(*newsock);
3375 		*newsock = NULL;
3376 		goto done;
3377 	}
3378 
3379 	(*newsock)->ops = sock->ops;
3380 	__module_get((*newsock)->ops->owner);
3381 
3382 done:
3383 	return err;
3384 }
3385 EXPORT_SYMBOL(kernel_accept);
3386 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3387 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3388 		   int flags)
3389 {
3390 	return sock->ops->connect(sock, addr, addrlen, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_connect);
3393 
kernel_getsockname(struct socket * sock,struct sockaddr * addr,int * addrlen)3394 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3395 			 int *addrlen)
3396 {
3397 	return sock->ops->getname(sock, addr, addrlen, 0);
3398 }
3399 EXPORT_SYMBOL(kernel_getsockname);
3400 
kernel_getpeername(struct socket * sock,struct sockaddr * addr,int * addrlen)3401 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3402 			 int *addrlen)
3403 {
3404 	return sock->ops->getname(sock, addr, addrlen, 1);
3405 }
3406 EXPORT_SYMBOL(kernel_getpeername);
3407 
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3408 int kernel_getsockopt(struct socket *sock, int level, int optname,
3409 			char *optval, int *optlen)
3410 {
3411 	mm_segment_t oldfs = get_fs();
3412 	char __user *uoptval;
3413 	int __user *uoptlen;
3414 	int err;
3415 
3416 	uoptval = (char __user __force *) optval;
3417 	uoptlen = (int __user __force *) optlen;
3418 
3419 	set_fs(KERNEL_DS);
3420 	if (level == SOL_SOCKET)
3421 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3422 	else
3423 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3424 					    uoptlen);
3425 	set_fs(oldfs);
3426 	return err;
3427 }
3428 EXPORT_SYMBOL(kernel_getsockopt);
3429 
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3430 int kernel_setsockopt(struct socket *sock, int level, int optname,
3431 			char *optval, unsigned int optlen)
3432 {
3433 	mm_segment_t oldfs = get_fs();
3434 	char __user *uoptval;
3435 	int err;
3436 
3437 	uoptval = (char __user __force *) optval;
3438 
3439 	set_fs(KERNEL_DS);
3440 	if (level == SOL_SOCKET)
3441 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3442 	else
3443 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3444 					    optlen);
3445 	set_fs(oldfs);
3446 	return err;
3447 }
3448 EXPORT_SYMBOL(kernel_setsockopt);
3449 
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3450 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3451 		    size_t size, int flags)
3452 {
3453 	if (sock->ops->sendpage)
3454 		return sock->ops->sendpage(sock, page, offset, size, flags);
3455 
3456 	return sock_no_sendpage(sock, page, offset, size, flags);
3457 }
3458 EXPORT_SYMBOL(kernel_sendpage);
3459 
kernel_sock_ioctl(struct socket * sock,int cmd,unsigned long arg)3460 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3461 {
3462 	mm_segment_t oldfs = get_fs();
3463 	int err;
3464 
3465 	set_fs(KERNEL_DS);
3466 	err = sock->ops->ioctl(sock, cmd, arg);
3467 	set_fs(oldfs);
3468 
3469 	return err;
3470 }
3471 EXPORT_SYMBOL(kernel_sock_ioctl);
3472 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3473 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3474 {
3475 	return sock->ops->shutdown(sock, how);
3476 }
3477 EXPORT_SYMBOL(kernel_sock_shutdown);
3478