1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <asm/uaccess.h>
39
40 #include "spufs.h"
41 #include "sputrace.h"
42
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44
45 /* Simple attribute files */
46 struct spufs_attr {
47 int (*get)(void *, u64 *);
48 int (*set)(void *, u64);
49 char get_buf[24]; /* enough to store a u64 and "\n\0" */
50 char set_buf[24];
51 void *data;
52 const char *fmt; /* format for read operation */
53 struct mutex mutex; /* protects access to these buffers */
54 };
55
spufs_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 int (*get)(void *, u64 *), int (*set)(void *, u64),
58 const char *fmt)
59 {
60 struct spufs_attr *attr;
61
62 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 if (!attr)
64 return -ENOMEM;
65
66 attr->get = get;
67 attr->set = set;
68 attr->data = inode->i_private;
69 attr->fmt = fmt;
70 mutex_init(&attr->mutex);
71 file->private_data = attr;
72
73 return nonseekable_open(inode, file);
74 }
75
spufs_attr_release(struct inode * inode,struct file * file)76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78 kfree(file->private_data);
79 return 0;
80 }
81
spufs_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 size_t len, loff_t *ppos)
84 {
85 struct spufs_attr *attr;
86 size_t size;
87 ssize_t ret;
88
89 attr = file->private_data;
90 if (!attr->get)
91 return -EACCES;
92
93 ret = mutex_lock_interruptible(&attr->mutex);
94 if (ret)
95 return ret;
96
97 if (*ppos) { /* continued read */
98 size = strlen(attr->get_buf);
99 } else { /* first read */
100 u64 val;
101 ret = attr->get(attr->data, &val);
102 if (ret)
103 goto out;
104
105 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 attr->fmt, (unsigned long long)val);
107 }
108
109 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 mutex_unlock(&attr->mutex);
112 return ret;
113 }
114
spufs_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 size_t len, loff_t *ppos)
117 {
118 struct spufs_attr *attr;
119 u64 val;
120 size_t size;
121 ssize_t ret;
122
123 attr = file->private_data;
124 if (!attr->set)
125 return -EACCES;
126
127 ret = mutex_lock_interruptible(&attr->mutex);
128 if (ret)
129 return ret;
130
131 ret = -EFAULT;
132 size = min(sizeof(attr->set_buf) - 1, len);
133 if (copy_from_user(attr->set_buf, buf, size))
134 goto out;
135
136 ret = len; /* claim we got the whole input */
137 attr->set_buf[size] = '\0';
138 val = simple_strtol(attr->set_buf, NULL, 0);
139 attr->set(attr->data, val);
140 out:
141 mutex_unlock(&attr->mutex);
142 return ret;
143 }
144
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
146 static int __fops ## _open(struct inode *inode, struct file *file) \
147 { \
148 __simple_attr_check_format(__fmt, 0ull); \
149 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 } \
151 static const struct file_operations __fops = { \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
156 .llseek = generic_file_llseek, \
157 };
158
159
160 static int
spufs_mem_open(struct inode * inode,struct file * file)161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 struct spufs_inode_info *i = SPUFS_I(inode);
164 struct spu_context *ctx = i->i_ctx;
165
166 mutex_lock(&ctx->mapping_lock);
167 file->private_data = ctx;
168 if (!i->i_openers++)
169 ctx->local_store = inode->i_mapping;
170 mutex_unlock(&ctx->mapping_lock);
171 return 0;
172 }
173
174 static int
spufs_mem_release(struct inode * inode,struct file * file)175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 struct spufs_inode_info *i = SPUFS_I(inode);
178 struct spu_context *ctx = i->i_ctx;
179
180 mutex_lock(&ctx->mapping_lock);
181 if (!--i->i_openers)
182 ctx->local_store = NULL;
183 mutex_unlock(&ctx->mapping_lock);
184 return 0;
185 }
186
187 static ssize_t
__spufs_mem_read(struct spu_context * ctx,char __user * buffer,size_t size,loff_t * pos)188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 size_t size, loff_t *pos)
190 {
191 char *local_store = ctx->ops->get_ls(ctx);
192 return simple_read_from_buffer(buffer, size, pos, local_store,
193 LS_SIZE);
194 }
195
196 static ssize_t
spufs_mem_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)197 spufs_mem_read(struct file *file, char __user *buffer,
198 size_t size, loff_t *pos)
199 {
200 struct spu_context *ctx = file->private_data;
201 ssize_t ret;
202
203 ret = spu_acquire(ctx);
204 if (ret)
205 return ret;
206 ret = __spufs_mem_read(ctx, buffer, size, pos);
207 spu_release(ctx);
208
209 return ret;
210 }
211
212 static ssize_t
spufs_mem_write(struct file * file,const char __user * buffer,size_t size,loff_t * ppos)213 spufs_mem_write(struct file *file, const char __user *buffer,
214 size_t size, loff_t *ppos)
215 {
216 struct spu_context *ctx = file->private_data;
217 char *local_store;
218 loff_t pos = *ppos;
219 int ret;
220
221 if (pos > LS_SIZE)
222 return -EFBIG;
223
224 ret = spu_acquire(ctx);
225 if (ret)
226 return ret;
227
228 local_store = ctx->ops->get_ls(ctx);
229 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 spu_release(ctx);
231
232 return size;
233 }
234
235 static int
spufs_mem_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)236 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
237 {
238 struct spu_context *ctx = vma->vm_file->private_data;
239 unsigned long address = (unsigned long)vmf->virtual_address;
240 unsigned long pfn, offset;
241
242 #ifdef CONFIG_SPU_FS_64K_LS
243 struct spu_state *csa = &ctx->csa;
244 int psize;
245
246 /* Check what page size we are using */
247 psize = get_slice_psize(vma->vm_mm, address);
248
249 /* Some sanity checking */
250 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
251
252 /* Wow, 64K, cool, we need to align the address though */
253 if (csa->use_big_pages) {
254 BUG_ON(vma->vm_start & 0xffff);
255 address &= ~0xfffful;
256 }
257 #endif /* CONFIG_SPU_FS_64K_LS */
258
259 offset = vmf->pgoff << PAGE_SHIFT;
260 if (offset >= LS_SIZE)
261 return VM_FAULT_SIGBUS;
262
263 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
264 address, offset);
265
266 if (spu_acquire(ctx))
267 return VM_FAULT_NOPAGE;
268
269 if (ctx->state == SPU_STATE_SAVED) {
270 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
271 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
272 } else {
273 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
274 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
275 }
276 vm_insert_pfn(vma, address, pfn);
277
278 spu_release(ctx);
279
280 return VM_FAULT_NOPAGE;
281 }
282
spufs_mem_mmap_access(struct vm_area_struct * vma,unsigned long address,void * buf,int len,int write)283 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
284 unsigned long address,
285 void *buf, int len, int write)
286 {
287 struct spu_context *ctx = vma->vm_file->private_data;
288 unsigned long offset = address - vma->vm_start;
289 char *local_store;
290
291 if (write && !(vma->vm_flags & VM_WRITE))
292 return -EACCES;
293 if (spu_acquire(ctx))
294 return -EINTR;
295 if ((offset + len) > vma->vm_end)
296 len = vma->vm_end - offset;
297 local_store = ctx->ops->get_ls(ctx);
298 if (write)
299 memcpy_toio(local_store + offset, buf, len);
300 else
301 memcpy_fromio(buf, local_store + offset, len);
302 spu_release(ctx);
303 return len;
304 }
305
306 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
307 .fault = spufs_mem_mmap_fault,
308 .access = spufs_mem_mmap_access,
309 };
310
spufs_mem_mmap(struct file * file,struct vm_area_struct * vma)311 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
312 {
313 #ifdef CONFIG_SPU_FS_64K_LS
314 struct spu_context *ctx = file->private_data;
315 struct spu_state *csa = &ctx->csa;
316
317 /* Sanity check VMA alignment */
318 if (csa->use_big_pages) {
319 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
320 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
321 vma->vm_pgoff);
322 if (vma->vm_start & 0xffff)
323 return -EINVAL;
324 if (vma->vm_pgoff & 0xf)
325 return -EINVAL;
326 }
327 #endif /* CONFIG_SPU_FS_64K_LS */
328
329 if (!(vma->vm_flags & VM_SHARED))
330 return -EINVAL;
331
332 vma->vm_flags |= VM_IO | VM_PFNMAP;
333 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
334
335 vma->vm_ops = &spufs_mem_mmap_vmops;
336 return 0;
337 }
338
339 #ifdef CONFIG_SPU_FS_64K_LS
spufs_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)340 static unsigned long spufs_get_unmapped_area(struct file *file,
341 unsigned long addr, unsigned long len, unsigned long pgoff,
342 unsigned long flags)
343 {
344 struct spu_context *ctx = file->private_data;
345 struct spu_state *csa = &ctx->csa;
346
347 /* If not using big pages, fallback to normal MM g_u_a */
348 if (!csa->use_big_pages)
349 return current->mm->get_unmapped_area(file, addr, len,
350 pgoff, flags);
351
352 /* Else, try to obtain a 64K pages slice */
353 return slice_get_unmapped_area(addr, len, flags,
354 MMU_PAGE_64K, 1);
355 }
356 #endif /* CONFIG_SPU_FS_64K_LS */
357
358 static const struct file_operations spufs_mem_fops = {
359 .open = spufs_mem_open,
360 .release = spufs_mem_release,
361 .read = spufs_mem_read,
362 .write = spufs_mem_write,
363 .llseek = generic_file_llseek,
364 .mmap = spufs_mem_mmap,
365 #ifdef CONFIG_SPU_FS_64K_LS
366 .get_unmapped_area = spufs_get_unmapped_area,
367 #endif
368 };
369
spufs_ps_fault(struct vm_area_struct * vma,struct vm_fault * vmf,unsigned long ps_offs,unsigned long ps_size)370 static int spufs_ps_fault(struct vm_area_struct *vma,
371 struct vm_fault *vmf,
372 unsigned long ps_offs,
373 unsigned long ps_size)
374 {
375 struct spu_context *ctx = vma->vm_file->private_data;
376 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
377 int ret = 0;
378
379 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
380
381 if (offset >= ps_size)
382 return VM_FAULT_SIGBUS;
383
384 if (fatal_signal_pending(current))
385 return VM_FAULT_SIGBUS;
386
387 /*
388 * Because we release the mmap_sem, the context may be destroyed while
389 * we're in spu_wait. Grab an extra reference so it isn't destroyed
390 * in the meantime.
391 */
392 get_spu_context(ctx);
393
394 /*
395 * We have to wait for context to be loaded before we have
396 * pages to hand out to the user, but we don't want to wait
397 * with the mmap_sem held.
398 * It is possible to drop the mmap_sem here, but then we need
399 * to return VM_FAULT_NOPAGE because the mappings may have
400 * hanged.
401 */
402 if (spu_acquire(ctx))
403 goto refault;
404
405 if (ctx->state == SPU_STATE_SAVED) {
406 up_read(¤t->mm->mmap_sem);
407 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
408 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
409 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
410 down_read(¤t->mm->mmap_sem);
411 } else {
412 area = ctx->spu->problem_phys + ps_offs;
413 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
414 (area + offset) >> PAGE_SHIFT);
415 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
416 }
417
418 if (!ret)
419 spu_release(ctx);
420
421 refault:
422 put_spu_context(ctx);
423 return VM_FAULT_NOPAGE;
424 }
425
426 #if SPUFS_MMAP_4K
spufs_cntl_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)427 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
428 struct vm_fault *vmf)
429 {
430 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
431 }
432
433 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
434 .fault = spufs_cntl_mmap_fault,
435 };
436
437 /*
438 * mmap support for problem state control area [0x4000 - 0x4fff].
439 */
spufs_cntl_mmap(struct file * file,struct vm_area_struct * vma)440 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
441 {
442 if (!(vma->vm_flags & VM_SHARED))
443 return -EINVAL;
444
445 vma->vm_flags |= VM_IO | VM_PFNMAP;
446 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
447
448 vma->vm_ops = &spufs_cntl_mmap_vmops;
449 return 0;
450 }
451 #else /* SPUFS_MMAP_4K */
452 #define spufs_cntl_mmap NULL
453 #endif /* !SPUFS_MMAP_4K */
454
spufs_cntl_get(void * data,u64 * val)455 static int spufs_cntl_get(void *data, u64 *val)
456 {
457 struct spu_context *ctx = data;
458 int ret;
459
460 ret = spu_acquire(ctx);
461 if (ret)
462 return ret;
463 *val = ctx->ops->status_read(ctx);
464 spu_release(ctx);
465
466 return 0;
467 }
468
spufs_cntl_set(void * data,u64 val)469 static int spufs_cntl_set(void *data, u64 val)
470 {
471 struct spu_context *ctx = data;
472 int ret;
473
474 ret = spu_acquire(ctx);
475 if (ret)
476 return ret;
477 ctx->ops->runcntl_write(ctx, val);
478 spu_release(ctx);
479
480 return 0;
481 }
482
spufs_cntl_open(struct inode * inode,struct file * file)483 static int spufs_cntl_open(struct inode *inode, struct file *file)
484 {
485 struct spufs_inode_info *i = SPUFS_I(inode);
486 struct spu_context *ctx = i->i_ctx;
487
488 mutex_lock(&ctx->mapping_lock);
489 file->private_data = ctx;
490 if (!i->i_openers++)
491 ctx->cntl = inode->i_mapping;
492 mutex_unlock(&ctx->mapping_lock);
493 return simple_attr_open(inode, file, spufs_cntl_get,
494 spufs_cntl_set, "0x%08lx");
495 }
496
497 static int
spufs_cntl_release(struct inode * inode,struct file * file)498 spufs_cntl_release(struct inode *inode, struct file *file)
499 {
500 struct spufs_inode_info *i = SPUFS_I(inode);
501 struct spu_context *ctx = i->i_ctx;
502
503 simple_attr_release(inode, file);
504
505 mutex_lock(&ctx->mapping_lock);
506 if (!--i->i_openers)
507 ctx->cntl = NULL;
508 mutex_unlock(&ctx->mapping_lock);
509 return 0;
510 }
511
512 static const struct file_operations spufs_cntl_fops = {
513 .open = spufs_cntl_open,
514 .release = spufs_cntl_release,
515 .read = simple_attr_read,
516 .write = simple_attr_write,
517 .llseek = generic_file_llseek,
518 .mmap = spufs_cntl_mmap,
519 };
520
521 static int
spufs_regs_open(struct inode * inode,struct file * file)522 spufs_regs_open(struct inode *inode, struct file *file)
523 {
524 struct spufs_inode_info *i = SPUFS_I(inode);
525 file->private_data = i->i_ctx;
526 return 0;
527 }
528
529 static ssize_t
__spufs_regs_read(struct spu_context * ctx,char __user * buffer,size_t size,loff_t * pos)530 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
531 size_t size, loff_t *pos)
532 {
533 struct spu_lscsa *lscsa = ctx->csa.lscsa;
534 return simple_read_from_buffer(buffer, size, pos,
535 lscsa->gprs, sizeof lscsa->gprs);
536 }
537
538 static ssize_t
spufs_regs_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)539 spufs_regs_read(struct file *file, char __user *buffer,
540 size_t size, loff_t *pos)
541 {
542 int ret;
543 struct spu_context *ctx = file->private_data;
544
545 /* pre-check for file position: if we'd return EOF, there's no point
546 * causing a deschedule */
547 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
548 return 0;
549
550 ret = spu_acquire_saved(ctx);
551 if (ret)
552 return ret;
553 ret = __spufs_regs_read(ctx, buffer, size, pos);
554 spu_release_saved(ctx);
555 return ret;
556 }
557
558 static ssize_t
spufs_regs_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)559 spufs_regs_write(struct file *file, const char __user *buffer,
560 size_t size, loff_t *pos)
561 {
562 struct spu_context *ctx = file->private_data;
563 struct spu_lscsa *lscsa = ctx->csa.lscsa;
564 int ret;
565
566 if (*pos >= sizeof(lscsa->gprs))
567 return -EFBIG;
568
569 ret = spu_acquire_saved(ctx);
570 if (ret)
571 return ret;
572
573 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
574 buffer, size);
575
576 spu_release_saved(ctx);
577 return size;
578 }
579
580 static const struct file_operations spufs_regs_fops = {
581 .open = spufs_regs_open,
582 .read = spufs_regs_read,
583 .write = spufs_regs_write,
584 .llseek = generic_file_llseek,
585 };
586
587 static ssize_t
__spufs_fpcr_read(struct spu_context * ctx,char __user * buffer,size_t size,loff_t * pos)588 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
589 size_t size, loff_t * pos)
590 {
591 struct spu_lscsa *lscsa = ctx->csa.lscsa;
592 return simple_read_from_buffer(buffer, size, pos,
593 &lscsa->fpcr, sizeof(lscsa->fpcr));
594 }
595
596 static ssize_t
spufs_fpcr_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)597 spufs_fpcr_read(struct file *file, char __user * buffer,
598 size_t size, loff_t * pos)
599 {
600 int ret;
601 struct spu_context *ctx = file->private_data;
602
603 ret = spu_acquire_saved(ctx);
604 if (ret)
605 return ret;
606 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
607 spu_release_saved(ctx);
608 return ret;
609 }
610
611 static ssize_t
spufs_fpcr_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)612 spufs_fpcr_write(struct file *file, const char __user * buffer,
613 size_t size, loff_t * pos)
614 {
615 struct spu_context *ctx = file->private_data;
616 struct spu_lscsa *lscsa = ctx->csa.lscsa;
617 int ret;
618
619 if (*pos >= sizeof(lscsa->fpcr))
620 return -EFBIG;
621
622 ret = spu_acquire_saved(ctx);
623 if (ret)
624 return ret;
625
626 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
627 buffer, size);
628
629 spu_release_saved(ctx);
630 return size;
631 }
632
633 static const struct file_operations spufs_fpcr_fops = {
634 .open = spufs_regs_open,
635 .read = spufs_fpcr_read,
636 .write = spufs_fpcr_write,
637 .llseek = generic_file_llseek,
638 };
639
640 /* generic open function for all pipe-like files */
spufs_pipe_open(struct inode * inode,struct file * file)641 static int spufs_pipe_open(struct inode *inode, struct file *file)
642 {
643 struct spufs_inode_info *i = SPUFS_I(inode);
644 file->private_data = i->i_ctx;
645
646 return nonseekable_open(inode, file);
647 }
648
649 /*
650 * Read as many bytes from the mailbox as possible, until
651 * one of the conditions becomes true:
652 *
653 * - no more data available in the mailbox
654 * - end of the user provided buffer
655 * - end of the mapped area
656 */
spufs_mbox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)657 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
658 size_t len, loff_t *pos)
659 {
660 struct spu_context *ctx = file->private_data;
661 u32 mbox_data, __user *udata;
662 ssize_t count;
663
664 if (len < 4)
665 return -EINVAL;
666
667 if (!access_ok(VERIFY_WRITE, buf, len))
668 return -EFAULT;
669
670 udata = (void __user *)buf;
671
672 count = spu_acquire(ctx);
673 if (count)
674 return count;
675
676 for (count = 0; (count + 4) <= len; count += 4, udata++) {
677 int ret;
678 ret = ctx->ops->mbox_read(ctx, &mbox_data);
679 if (ret == 0)
680 break;
681
682 /*
683 * at the end of the mapped area, we can fault
684 * but still need to return the data we have
685 * read successfully so far.
686 */
687 ret = __put_user(mbox_data, udata);
688 if (ret) {
689 if (!count)
690 count = -EFAULT;
691 break;
692 }
693 }
694 spu_release(ctx);
695
696 if (!count)
697 count = -EAGAIN;
698
699 return count;
700 }
701
702 static const struct file_operations spufs_mbox_fops = {
703 .open = spufs_pipe_open,
704 .read = spufs_mbox_read,
705 .llseek = no_llseek,
706 };
707
spufs_mbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)708 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
709 size_t len, loff_t *pos)
710 {
711 struct spu_context *ctx = file->private_data;
712 ssize_t ret;
713 u32 mbox_stat;
714
715 if (len < 4)
716 return -EINVAL;
717
718 ret = spu_acquire(ctx);
719 if (ret)
720 return ret;
721
722 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
723
724 spu_release(ctx);
725
726 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
727 return -EFAULT;
728
729 return 4;
730 }
731
732 static const struct file_operations spufs_mbox_stat_fops = {
733 .open = spufs_pipe_open,
734 .read = spufs_mbox_stat_read,
735 .llseek = no_llseek,
736 };
737
738 /* low-level ibox access function */
spu_ibox_read(struct spu_context * ctx,u32 * data)739 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
740 {
741 return ctx->ops->ibox_read(ctx, data);
742 }
743
spufs_ibox_fasync(int fd,struct file * file,int on)744 static int spufs_ibox_fasync(int fd, struct file *file, int on)
745 {
746 struct spu_context *ctx = file->private_data;
747
748 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
749 }
750
751 /* interrupt-level ibox callback function. */
spufs_ibox_callback(struct spu * spu)752 void spufs_ibox_callback(struct spu *spu)
753 {
754 struct spu_context *ctx = spu->ctx;
755
756 if (!ctx)
757 return;
758
759 wake_up_all(&ctx->ibox_wq);
760 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
761 }
762
763 /*
764 * Read as many bytes from the interrupt mailbox as possible, until
765 * one of the conditions becomes true:
766 *
767 * - no more data available in the mailbox
768 * - end of the user provided buffer
769 * - end of the mapped area
770 *
771 * If the file is opened without O_NONBLOCK, we wait here until
772 * any data is available, but return when we have been able to
773 * read something.
774 */
spufs_ibox_read(struct file * file,char __user * buf,size_t len,loff_t * pos)775 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
776 size_t len, loff_t *pos)
777 {
778 struct spu_context *ctx = file->private_data;
779 u32 ibox_data, __user *udata;
780 ssize_t count;
781
782 if (len < 4)
783 return -EINVAL;
784
785 if (!access_ok(VERIFY_WRITE, buf, len))
786 return -EFAULT;
787
788 udata = (void __user *)buf;
789
790 count = spu_acquire(ctx);
791 if (count)
792 goto out;
793
794 /* wait only for the first element */
795 count = 0;
796 if (file->f_flags & O_NONBLOCK) {
797 if (!spu_ibox_read(ctx, &ibox_data)) {
798 count = -EAGAIN;
799 goto out_unlock;
800 }
801 } else {
802 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
803 if (count)
804 goto out;
805 }
806
807 /* if we can't write at all, return -EFAULT */
808 count = __put_user(ibox_data, udata);
809 if (count)
810 goto out_unlock;
811
812 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
813 int ret;
814 ret = ctx->ops->ibox_read(ctx, &ibox_data);
815 if (ret == 0)
816 break;
817 /*
818 * at the end of the mapped area, we can fault
819 * but still need to return the data we have
820 * read successfully so far.
821 */
822 ret = __put_user(ibox_data, udata);
823 if (ret)
824 break;
825 }
826
827 out_unlock:
828 spu_release(ctx);
829 out:
830 return count;
831 }
832
spufs_ibox_poll(struct file * file,poll_table * wait)833 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
834 {
835 struct spu_context *ctx = file->private_data;
836 unsigned int mask;
837
838 poll_wait(file, &ctx->ibox_wq, wait);
839
840 /*
841 * For now keep this uninterruptible and also ignore the rule
842 * that poll should not sleep. Will be fixed later.
843 */
844 mutex_lock(&ctx->state_mutex);
845 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
846 spu_release(ctx);
847
848 return mask;
849 }
850
851 static const struct file_operations spufs_ibox_fops = {
852 .open = spufs_pipe_open,
853 .read = spufs_ibox_read,
854 .poll = spufs_ibox_poll,
855 .fasync = spufs_ibox_fasync,
856 .llseek = no_llseek,
857 };
858
spufs_ibox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)859 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
860 size_t len, loff_t *pos)
861 {
862 struct spu_context *ctx = file->private_data;
863 ssize_t ret;
864 u32 ibox_stat;
865
866 if (len < 4)
867 return -EINVAL;
868
869 ret = spu_acquire(ctx);
870 if (ret)
871 return ret;
872 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
873 spu_release(ctx);
874
875 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
876 return -EFAULT;
877
878 return 4;
879 }
880
881 static const struct file_operations spufs_ibox_stat_fops = {
882 .open = spufs_pipe_open,
883 .read = spufs_ibox_stat_read,
884 .llseek = no_llseek,
885 };
886
887 /* low-level mailbox write */
spu_wbox_write(struct spu_context * ctx,u32 data)888 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
889 {
890 return ctx->ops->wbox_write(ctx, data);
891 }
892
spufs_wbox_fasync(int fd,struct file * file,int on)893 static int spufs_wbox_fasync(int fd, struct file *file, int on)
894 {
895 struct spu_context *ctx = file->private_data;
896 int ret;
897
898 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
899
900 return ret;
901 }
902
903 /* interrupt-level wbox callback function. */
spufs_wbox_callback(struct spu * spu)904 void spufs_wbox_callback(struct spu *spu)
905 {
906 struct spu_context *ctx = spu->ctx;
907
908 if (!ctx)
909 return;
910
911 wake_up_all(&ctx->wbox_wq);
912 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
913 }
914
915 /*
916 * Write as many bytes to the interrupt mailbox as possible, until
917 * one of the conditions becomes true:
918 *
919 * - the mailbox is full
920 * - end of the user provided buffer
921 * - end of the mapped area
922 *
923 * If the file is opened without O_NONBLOCK, we wait here until
924 * space is availabyl, but return when we have been able to
925 * write something.
926 */
spufs_wbox_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)927 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
928 size_t len, loff_t *pos)
929 {
930 struct spu_context *ctx = file->private_data;
931 u32 wbox_data, __user *udata;
932 ssize_t count;
933
934 if (len < 4)
935 return -EINVAL;
936
937 udata = (void __user *)buf;
938 if (!access_ok(VERIFY_READ, buf, len))
939 return -EFAULT;
940
941 if (__get_user(wbox_data, udata))
942 return -EFAULT;
943
944 count = spu_acquire(ctx);
945 if (count)
946 goto out;
947
948 /*
949 * make sure we can at least write one element, by waiting
950 * in case of !O_NONBLOCK
951 */
952 count = 0;
953 if (file->f_flags & O_NONBLOCK) {
954 if (!spu_wbox_write(ctx, wbox_data)) {
955 count = -EAGAIN;
956 goto out_unlock;
957 }
958 } else {
959 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
960 if (count)
961 goto out;
962 }
963
964
965 /* write as much as possible */
966 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
967 int ret;
968 ret = __get_user(wbox_data, udata);
969 if (ret)
970 break;
971
972 ret = spu_wbox_write(ctx, wbox_data);
973 if (ret == 0)
974 break;
975 }
976
977 out_unlock:
978 spu_release(ctx);
979 out:
980 return count;
981 }
982
spufs_wbox_poll(struct file * file,poll_table * wait)983 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
984 {
985 struct spu_context *ctx = file->private_data;
986 unsigned int mask;
987
988 poll_wait(file, &ctx->wbox_wq, wait);
989
990 /*
991 * For now keep this uninterruptible and also ignore the rule
992 * that poll should not sleep. Will be fixed later.
993 */
994 mutex_lock(&ctx->state_mutex);
995 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
996 spu_release(ctx);
997
998 return mask;
999 }
1000
1001 static const struct file_operations spufs_wbox_fops = {
1002 .open = spufs_pipe_open,
1003 .write = spufs_wbox_write,
1004 .poll = spufs_wbox_poll,
1005 .fasync = spufs_wbox_fasync,
1006 .llseek = no_llseek,
1007 };
1008
spufs_wbox_stat_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1009 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1010 size_t len, loff_t *pos)
1011 {
1012 struct spu_context *ctx = file->private_data;
1013 ssize_t ret;
1014 u32 wbox_stat;
1015
1016 if (len < 4)
1017 return -EINVAL;
1018
1019 ret = spu_acquire(ctx);
1020 if (ret)
1021 return ret;
1022 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1023 spu_release(ctx);
1024
1025 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1026 return -EFAULT;
1027
1028 return 4;
1029 }
1030
1031 static const struct file_operations spufs_wbox_stat_fops = {
1032 .open = spufs_pipe_open,
1033 .read = spufs_wbox_stat_read,
1034 .llseek = no_llseek,
1035 };
1036
spufs_signal1_open(struct inode * inode,struct file * file)1037 static int spufs_signal1_open(struct inode *inode, struct file *file)
1038 {
1039 struct spufs_inode_info *i = SPUFS_I(inode);
1040 struct spu_context *ctx = i->i_ctx;
1041
1042 mutex_lock(&ctx->mapping_lock);
1043 file->private_data = ctx;
1044 if (!i->i_openers++)
1045 ctx->signal1 = inode->i_mapping;
1046 mutex_unlock(&ctx->mapping_lock);
1047 return nonseekable_open(inode, file);
1048 }
1049
1050 static int
spufs_signal1_release(struct inode * inode,struct file * file)1051 spufs_signal1_release(struct inode *inode, struct file *file)
1052 {
1053 struct spufs_inode_info *i = SPUFS_I(inode);
1054 struct spu_context *ctx = i->i_ctx;
1055
1056 mutex_lock(&ctx->mapping_lock);
1057 if (!--i->i_openers)
1058 ctx->signal1 = NULL;
1059 mutex_unlock(&ctx->mapping_lock);
1060 return 0;
1061 }
1062
__spufs_signal1_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)1063 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1064 size_t len, loff_t *pos)
1065 {
1066 int ret = 0;
1067 u32 data;
1068
1069 if (len < 4)
1070 return -EINVAL;
1071
1072 if (ctx->csa.spu_chnlcnt_RW[3]) {
1073 data = ctx->csa.spu_chnldata_RW[3];
1074 ret = 4;
1075 }
1076
1077 if (!ret)
1078 goto out;
1079
1080 if (copy_to_user(buf, &data, 4))
1081 return -EFAULT;
1082
1083 out:
1084 return ret;
1085 }
1086
spufs_signal1_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1087 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1088 size_t len, loff_t *pos)
1089 {
1090 int ret;
1091 struct spu_context *ctx = file->private_data;
1092
1093 ret = spu_acquire_saved(ctx);
1094 if (ret)
1095 return ret;
1096 ret = __spufs_signal1_read(ctx, buf, len, pos);
1097 spu_release_saved(ctx);
1098
1099 return ret;
1100 }
1101
spufs_signal1_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)1102 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1103 size_t len, loff_t *pos)
1104 {
1105 struct spu_context *ctx;
1106 ssize_t ret;
1107 u32 data;
1108
1109 ctx = file->private_data;
1110
1111 if (len < 4)
1112 return -EINVAL;
1113
1114 if (copy_from_user(&data, buf, 4))
1115 return -EFAULT;
1116
1117 ret = spu_acquire(ctx);
1118 if (ret)
1119 return ret;
1120 ctx->ops->signal1_write(ctx, data);
1121 spu_release(ctx);
1122
1123 return 4;
1124 }
1125
1126 static int
spufs_signal1_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1127 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1128 {
1129 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1130 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1131 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1132 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1133 * signal 1 and 2 area
1134 */
1135 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1136 #else
1137 #error unsupported page size
1138 #endif
1139 }
1140
1141 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1142 .fault = spufs_signal1_mmap_fault,
1143 };
1144
spufs_signal1_mmap(struct file * file,struct vm_area_struct * vma)1145 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1146 {
1147 if (!(vma->vm_flags & VM_SHARED))
1148 return -EINVAL;
1149
1150 vma->vm_flags |= VM_IO | VM_PFNMAP;
1151 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1152
1153 vma->vm_ops = &spufs_signal1_mmap_vmops;
1154 return 0;
1155 }
1156
1157 static const struct file_operations spufs_signal1_fops = {
1158 .open = spufs_signal1_open,
1159 .release = spufs_signal1_release,
1160 .read = spufs_signal1_read,
1161 .write = spufs_signal1_write,
1162 .mmap = spufs_signal1_mmap,
1163 .llseek = no_llseek,
1164 };
1165
1166 static const struct file_operations spufs_signal1_nosched_fops = {
1167 .open = spufs_signal1_open,
1168 .release = spufs_signal1_release,
1169 .write = spufs_signal1_write,
1170 .mmap = spufs_signal1_mmap,
1171 .llseek = no_llseek,
1172 };
1173
spufs_signal2_open(struct inode * inode,struct file * file)1174 static int spufs_signal2_open(struct inode *inode, struct file *file)
1175 {
1176 struct spufs_inode_info *i = SPUFS_I(inode);
1177 struct spu_context *ctx = i->i_ctx;
1178
1179 mutex_lock(&ctx->mapping_lock);
1180 file->private_data = ctx;
1181 if (!i->i_openers++)
1182 ctx->signal2 = inode->i_mapping;
1183 mutex_unlock(&ctx->mapping_lock);
1184 return nonseekable_open(inode, file);
1185 }
1186
1187 static int
spufs_signal2_release(struct inode * inode,struct file * file)1188 spufs_signal2_release(struct inode *inode, struct file *file)
1189 {
1190 struct spufs_inode_info *i = SPUFS_I(inode);
1191 struct spu_context *ctx = i->i_ctx;
1192
1193 mutex_lock(&ctx->mapping_lock);
1194 if (!--i->i_openers)
1195 ctx->signal2 = NULL;
1196 mutex_unlock(&ctx->mapping_lock);
1197 return 0;
1198 }
1199
__spufs_signal2_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)1200 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1201 size_t len, loff_t *pos)
1202 {
1203 int ret = 0;
1204 u32 data;
1205
1206 if (len < 4)
1207 return -EINVAL;
1208
1209 if (ctx->csa.spu_chnlcnt_RW[4]) {
1210 data = ctx->csa.spu_chnldata_RW[4];
1211 ret = 4;
1212 }
1213
1214 if (!ret)
1215 goto out;
1216
1217 if (copy_to_user(buf, &data, 4))
1218 return -EFAULT;
1219
1220 out:
1221 return ret;
1222 }
1223
spufs_signal2_read(struct file * file,char __user * buf,size_t len,loff_t * pos)1224 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1225 size_t len, loff_t *pos)
1226 {
1227 struct spu_context *ctx = file->private_data;
1228 int ret;
1229
1230 ret = spu_acquire_saved(ctx);
1231 if (ret)
1232 return ret;
1233 ret = __spufs_signal2_read(ctx, buf, len, pos);
1234 spu_release_saved(ctx);
1235
1236 return ret;
1237 }
1238
spufs_signal2_write(struct file * file,const char __user * buf,size_t len,loff_t * pos)1239 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1240 size_t len, loff_t *pos)
1241 {
1242 struct spu_context *ctx;
1243 ssize_t ret;
1244 u32 data;
1245
1246 ctx = file->private_data;
1247
1248 if (len < 4)
1249 return -EINVAL;
1250
1251 if (copy_from_user(&data, buf, 4))
1252 return -EFAULT;
1253
1254 ret = spu_acquire(ctx);
1255 if (ret)
1256 return ret;
1257 ctx->ops->signal2_write(ctx, data);
1258 spu_release(ctx);
1259
1260 return 4;
1261 }
1262
1263 #if SPUFS_MMAP_4K
1264 static int
spufs_signal2_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1265 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1266 {
1267 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1268 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1269 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1270 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1271 * signal 1 and 2 area
1272 */
1273 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1274 #else
1275 #error unsupported page size
1276 #endif
1277 }
1278
1279 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1280 .fault = spufs_signal2_mmap_fault,
1281 };
1282
spufs_signal2_mmap(struct file * file,struct vm_area_struct * vma)1283 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1284 {
1285 if (!(vma->vm_flags & VM_SHARED))
1286 return -EINVAL;
1287
1288 vma->vm_flags |= VM_IO | VM_PFNMAP;
1289 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1290
1291 vma->vm_ops = &spufs_signal2_mmap_vmops;
1292 return 0;
1293 }
1294 #else /* SPUFS_MMAP_4K */
1295 #define spufs_signal2_mmap NULL
1296 #endif /* !SPUFS_MMAP_4K */
1297
1298 static const struct file_operations spufs_signal2_fops = {
1299 .open = spufs_signal2_open,
1300 .release = spufs_signal2_release,
1301 .read = spufs_signal2_read,
1302 .write = spufs_signal2_write,
1303 .mmap = spufs_signal2_mmap,
1304 .llseek = no_llseek,
1305 };
1306
1307 static const struct file_operations spufs_signal2_nosched_fops = {
1308 .open = spufs_signal2_open,
1309 .release = spufs_signal2_release,
1310 .write = spufs_signal2_write,
1311 .mmap = spufs_signal2_mmap,
1312 .llseek = no_llseek,
1313 };
1314
1315 /*
1316 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1317 * work of acquiring (or not) the SPU context before calling through
1318 * to the actual get routine. The set routine is called directly.
1319 */
1320 #define SPU_ATTR_NOACQUIRE 0
1321 #define SPU_ATTR_ACQUIRE 1
1322 #define SPU_ATTR_ACQUIRE_SAVED 2
1323
1324 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1325 static int __##__get(void *data, u64 *val) \
1326 { \
1327 struct spu_context *ctx = data; \
1328 int ret = 0; \
1329 \
1330 if (__acquire == SPU_ATTR_ACQUIRE) { \
1331 ret = spu_acquire(ctx); \
1332 if (ret) \
1333 return ret; \
1334 *val = __get(ctx); \
1335 spu_release(ctx); \
1336 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1337 ret = spu_acquire_saved(ctx); \
1338 if (ret) \
1339 return ret; \
1340 *val = __get(ctx); \
1341 spu_release_saved(ctx); \
1342 } else \
1343 *val = __get(ctx); \
1344 \
1345 return 0; \
1346 } \
1347 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1348
spufs_signal1_type_set(void * data,u64 val)1349 static int spufs_signal1_type_set(void *data, u64 val)
1350 {
1351 struct spu_context *ctx = data;
1352 int ret;
1353
1354 ret = spu_acquire(ctx);
1355 if (ret)
1356 return ret;
1357 ctx->ops->signal1_type_set(ctx, val);
1358 spu_release(ctx);
1359
1360 return 0;
1361 }
1362
spufs_signal1_type_get(struct spu_context * ctx)1363 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1364 {
1365 return ctx->ops->signal1_type_get(ctx);
1366 }
1367 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1368 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1369
1370
spufs_signal2_type_set(void * data,u64 val)1371 static int spufs_signal2_type_set(void *data, u64 val)
1372 {
1373 struct spu_context *ctx = data;
1374 int ret;
1375
1376 ret = spu_acquire(ctx);
1377 if (ret)
1378 return ret;
1379 ctx->ops->signal2_type_set(ctx, val);
1380 spu_release(ctx);
1381
1382 return 0;
1383 }
1384
spufs_signal2_type_get(struct spu_context * ctx)1385 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1386 {
1387 return ctx->ops->signal2_type_get(ctx);
1388 }
1389 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1390 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1391
1392 #if SPUFS_MMAP_4K
1393 static int
spufs_mss_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1394 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395 {
1396 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1397 }
1398
1399 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1400 .fault = spufs_mss_mmap_fault,
1401 };
1402
1403 /*
1404 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1405 */
spufs_mss_mmap(struct file * file,struct vm_area_struct * vma)1406 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1407 {
1408 if (!(vma->vm_flags & VM_SHARED))
1409 return -EINVAL;
1410
1411 vma->vm_flags |= VM_IO | VM_PFNMAP;
1412 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1413
1414 vma->vm_ops = &spufs_mss_mmap_vmops;
1415 return 0;
1416 }
1417 #else /* SPUFS_MMAP_4K */
1418 #define spufs_mss_mmap NULL
1419 #endif /* !SPUFS_MMAP_4K */
1420
spufs_mss_open(struct inode * inode,struct file * file)1421 static int spufs_mss_open(struct inode *inode, struct file *file)
1422 {
1423 struct spufs_inode_info *i = SPUFS_I(inode);
1424 struct spu_context *ctx = i->i_ctx;
1425
1426 file->private_data = i->i_ctx;
1427
1428 mutex_lock(&ctx->mapping_lock);
1429 if (!i->i_openers++)
1430 ctx->mss = inode->i_mapping;
1431 mutex_unlock(&ctx->mapping_lock);
1432 return nonseekable_open(inode, file);
1433 }
1434
1435 static int
spufs_mss_release(struct inode * inode,struct file * file)1436 spufs_mss_release(struct inode *inode, struct file *file)
1437 {
1438 struct spufs_inode_info *i = SPUFS_I(inode);
1439 struct spu_context *ctx = i->i_ctx;
1440
1441 mutex_lock(&ctx->mapping_lock);
1442 if (!--i->i_openers)
1443 ctx->mss = NULL;
1444 mutex_unlock(&ctx->mapping_lock);
1445 return 0;
1446 }
1447
1448 static const struct file_operations spufs_mss_fops = {
1449 .open = spufs_mss_open,
1450 .release = spufs_mss_release,
1451 .mmap = spufs_mss_mmap,
1452 .llseek = no_llseek,
1453 };
1454
1455 static int
spufs_psmap_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1456 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457 {
1458 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 }
1460
1461 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1462 .fault = spufs_psmap_mmap_fault,
1463 };
1464
1465 /*
1466 * mmap support for full problem state area [0x00000 - 0x1ffff].
1467 */
spufs_psmap_mmap(struct file * file,struct vm_area_struct * vma)1468 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470 if (!(vma->vm_flags & VM_SHARED))
1471 return -EINVAL;
1472
1473 vma->vm_flags |= VM_IO | VM_PFNMAP;
1474 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1475
1476 vma->vm_ops = &spufs_psmap_mmap_vmops;
1477 return 0;
1478 }
1479
spufs_psmap_open(struct inode * inode,struct file * file)1480 static int spufs_psmap_open(struct inode *inode, struct file *file)
1481 {
1482 struct spufs_inode_info *i = SPUFS_I(inode);
1483 struct spu_context *ctx = i->i_ctx;
1484
1485 mutex_lock(&ctx->mapping_lock);
1486 file->private_data = i->i_ctx;
1487 if (!i->i_openers++)
1488 ctx->psmap = inode->i_mapping;
1489 mutex_unlock(&ctx->mapping_lock);
1490 return nonseekable_open(inode, file);
1491 }
1492
1493 static int
spufs_psmap_release(struct inode * inode,struct file * file)1494 spufs_psmap_release(struct inode *inode, struct file *file)
1495 {
1496 struct spufs_inode_info *i = SPUFS_I(inode);
1497 struct spu_context *ctx = i->i_ctx;
1498
1499 mutex_lock(&ctx->mapping_lock);
1500 if (!--i->i_openers)
1501 ctx->psmap = NULL;
1502 mutex_unlock(&ctx->mapping_lock);
1503 return 0;
1504 }
1505
1506 static const struct file_operations spufs_psmap_fops = {
1507 .open = spufs_psmap_open,
1508 .release = spufs_psmap_release,
1509 .mmap = spufs_psmap_mmap,
1510 .llseek = no_llseek,
1511 };
1512
1513
1514 #if SPUFS_MMAP_4K
1515 static int
spufs_mfc_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1516 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1517 {
1518 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1519 }
1520
1521 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1522 .fault = spufs_mfc_mmap_fault,
1523 };
1524
1525 /*
1526 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1527 */
spufs_mfc_mmap(struct file * file,struct vm_area_struct * vma)1528 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1529 {
1530 if (!(vma->vm_flags & VM_SHARED))
1531 return -EINVAL;
1532
1533 vma->vm_flags |= VM_IO | VM_PFNMAP;
1534 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1535
1536 vma->vm_ops = &spufs_mfc_mmap_vmops;
1537 return 0;
1538 }
1539 #else /* SPUFS_MMAP_4K */
1540 #define spufs_mfc_mmap NULL
1541 #endif /* !SPUFS_MMAP_4K */
1542
spufs_mfc_open(struct inode * inode,struct file * file)1543 static int spufs_mfc_open(struct inode *inode, struct file *file)
1544 {
1545 struct spufs_inode_info *i = SPUFS_I(inode);
1546 struct spu_context *ctx = i->i_ctx;
1547
1548 /* we don't want to deal with DMA into other processes */
1549 if (ctx->owner != current->mm)
1550 return -EINVAL;
1551
1552 if (atomic_read(&inode->i_count) != 1)
1553 return -EBUSY;
1554
1555 mutex_lock(&ctx->mapping_lock);
1556 file->private_data = ctx;
1557 if (!i->i_openers++)
1558 ctx->mfc = inode->i_mapping;
1559 mutex_unlock(&ctx->mapping_lock);
1560 return nonseekable_open(inode, file);
1561 }
1562
1563 static int
spufs_mfc_release(struct inode * inode,struct file * file)1564 spufs_mfc_release(struct inode *inode, struct file *file)
1565 {
1566 struct spufs_inode_info *i = SPUFS_I(inode);
1567 struct spu_context *ctx = i->i_ctx;
1568
1569 mutex_lock(&ctx->mapping_lock);
1570 if (!--i->i_openers)
1571 ctx->mfc = NULL;
1572 mutex_unlock(&ctx->mapping_lock);
1573 return 0;
1574 }
1575
1576 /* interrupt-level mfc callback function. */
spufs_mfc_callback(struct spu * spu)1577 void spufs_mfc_callback(struct spu *spu)
1578 {
1579 struct spu_context *ctx = spu->ctx;
1580
1581 if (!ctx)
1582 return;
1583
1584 wake_up_all(&ctx->mfc_wq);
1585
1586 pr_debug("%s %s\n", __func__, spu->name);
1587 if (ctx->mfc_fasync) {
1588 u32 free_elements, tagstatus;
1589 unsigned int mask;
1590
1591 /* no need for spu_acquire in interrupt context */
1592 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1593 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1594
1595 mask = 0;
1596 if (free_elements & 0xffff)
1597 mask |= POLLOUT;
1598 if (tagstatus & ctx->tagwait)
1599 mask |= POLLIN;
1600
1601 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1602 }
1603 }
1604
spufs_read_mfc_tagstatus(struct spu_context * ctx,u32 * status)1605 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1606 {
1607 /* See if there is one tag group is complete */
1608 /* FIXME we need locking around tagwait */
1609 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1610 ctx->tagwait &= ~*status;
1611 if (*status)
1612 return 1;
1613
1614 /* enable interrupt waiting for any tag group,
1615 may silently fail if interrupts are already enabled */
1616 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1617 return 0;
1618 }
1619
spufs_mfc_read(struct file * file,char __user * buffer,size_t size,loff_t * pos)1620 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1621 size_t size, loff_t *pos)
1622 {
1623 struct spu_context *ctx = file->private_data;
1624 int ret = -EINVAL;
1625 u32 status;
1626
1627 if (size != 4)
1628 goto out;
1629
1630 ret = spu_acquire(ctx);
1631 if (ret)
1632 return ret;
1633
1634 ret = -EINVAL;
1635 if (file->f_flags & O_NONBLOCK) {
1636 status = ctx->ops->read_mfc_tagstatus(ctx);
1637 if (!(status & ctx->tagwait))
1638 ret = -EAGAIN;
1639 else
1640 /* XXX(hch): shouldn't we clear ret here? */
1641 ctx->tagwait &= ~status;
1642 } else {
1643 ret = spufs_wait(ctx->mfc_wq,
1644 spufs_read_mfc_tagstatus(ctx, &status));
1645 if (ret)
1646 goto out;
1647 }
1648 spu_release(ctx);
1649
1650 ret = 4;
1651 if (copy_to_user(buffer, &status, 4))
1652 ret = -EFAULT;
1653
1654 out:
1655 return ret;
1656 }
1657
spufs_check_valid_dma(struct mfc_dma_command * cmd)1658 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1659 {
1660 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1661 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1662
1663 switch (cmd->cmd) {
1664 case MFC_PUT_CMD:
1665 case MFC_PUTF_CMD:
1666 case MFC_PUTB_CMD:
1667 case MFC_GET_CMD:
1668 case MFC_GETF_CMD:
1669 case MFC_GETB_CMD:
1670 break;
1671 default:
1672 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1673 return -EIO;
1674 }
1675
1676 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1677 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1678 cmd->ea, cmd->lsa);
1679 return -EIO;
1680 }
1681
1682 switch (cmd->size & 0xf) {
1683 case 1:
1684 break;
1685 case 2:
1686 if (cmd->lsa & 1)
1687 goto error;
1688 break;
1689 case 4:
1690 if (cmd->lsa & 3)
1691 goto error;
1692 break;
1693 case 8:
1694 if (cmd->lsa & 7)
1695 goto error;
1696 break;
1697 case 0:
1698 if (cmd->lsa & 15)
1699 goto error;
1700 break;
1701 error:
1702 default:
1703 pr_debug("invalid DMA alignment %x for size %x\n",
1704 cmd->lsa & 0xf, cmd->size);
1705 return -EIO;
1706 }
1707
1708 if (cmd->size > 16 * 1024) {
1709 pr_debug("invalid DMA size %x\n", cmd->size);
1710 return -EIO;
1711 }
1712
1713 if (cmd->tag & 0xfff0) {
1714 /* we reserve the higher tag numbers for kernel use */
1715 pr_debug("invalid DMA tag\n");
1716 return -EIO;
1717 }
1718
1719 if (cmd->class) {
1720 /* not supported in this version */
1721 pr_debug("invalid DMA class\n");
1722 return -EIO;
1723 }
1724
1725 return 0;
1726 }
1727
spu_send_mfc_command(struct spu_context * ctx,struct mfc_dma_command cmd,int * error)1728 static int spu_send_mfc_command(struct spu_context *ctx,
1729 struct mfc_dma_command cmd,
1730 int *error)
1731 {
1732 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1733 if (*error == -EAGAIN) {
1734 /* wait for any tag group to complete
1735 so we have space for the new command */
1736 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1737 /* try again, because the queue might be
1738 empty again */
1739 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1740 if (*error == -EAGAIN)
1741 return 0;
1742 }
1743 return 1;
1744 }
1745
spufs_mfc_write(struct file * file,const char __user * buffer,size_t size,loff_t * pos)1746 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1747 size_t size, loff_t *pos)
1748 {
1749 struct spu_context *ctx = file->private_data;
1750 struct mfc_dma_command cmd;
1751 int ret = -EINVAL;
1752
1753 if (size != sizeof cmd)
1754 goto out;
1755
1756 ret = -EFAULT;
1757 if (copy_from_user(&cmd, buffer, sizeof cmd))
1758 goto out;
1759
1760 ret = spufs_check_valid_dma(&cmd);
1761 if (ret)
1762 goto out;
1763
1764 ret = spu_acquire(ctx);
1765 if (ret)
1766 goto out;
1767
1768 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1769 if (ret)
1770 goto out;
1771
1772 if (file->f_flags & O_NONBLOCK) {
1773 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1774 } else {
1775 int status;
1776 ret = spufs_wait(ctx->mfc_wq,
1777 spu_send_mfc_command(ctx, cmd, &status));
1778 if (ret)
1779 goto out;
1780 if (status)
1781 ret = status;
1782 }
1783
1784 if (ret)
1785 goto out_unlock;
1786
1787 ctx->tagwait |= 1 << cmd.tag;
1788 ret = size;
1789
1790 out_unlock:
1791 spu_release(ctx);
1792 out:
1793 return ret;
1794 }
1795
spufs_mfc_poll(struct file * file,poll_table * wait)1796 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1797 {
1798 struct spu_context *ctx = file->private_data;
1799 u32 free_elements, tagstatus;
1800 unsigned int mask;
1801
1802 poll_wait(file, &ctx->mfc_wq, wait);
1803
1804 /*
1805 * For now keep this uninterruptible and also ignore the rule
1806 * that poll should not sleep. Will be fixed later.
1807 */
1808 mutex_lock(&ctx->state_mutex);
1809 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1810 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1811 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1812 spu_release(ctx);
1813
1814 mask = 0;
1815 if (free_elements & 0xffff)
1816 mask |= POLLOUT | POLLWRNORM;
1817 if (tagstatus & ctx->tagwait)
1818 mask |= POLLIN | POLLRDNORM;
1819
1820 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1821 free_elements, tagstatus, ctx->tagwait);
1822
1823 return mask;
1824 }
1825
spufs_mfc_flush(struct file * file,fl_owner_t id)1826 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1827 {
1828 struct spu_context *ctx = file->private_data;
1829 int ret;
1830
1831 ret = spu_acquire(ctx);
1832 if (ret)
1833 goto out;
1834 #if 0
1835 /* this currently hangs */
1836 ret = spufs_wait(ctx->mfc_wq,
1837 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1838 if (ret)
1839 goto out;
1840 ret = spufs_wait(ctx->mfc_wq,
1841 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1842 if (ret)
1843 goto out;
1844 #else
1845 ret = 0;
1846 #endif
1847 spu_release(ctx);
1848 out:
1849 return ret;
1850 }
1851
spufs_mfc_fsync(struct file * file,loff_t start,loff_t end,int datasync)1852 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1853 {
1854 struct inode *inode = file_inode(file);
1855 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1856 if (!err) {
1857 mutex_lock(&inode->i_mutex);
1858 err = spufs_mfc_flush(file, NULL);
1859 mutex_unlock(&inode->i_mutex);
1860 }
1861 return err;
1862 }
1863
spufs_mfc_fasync(int fd,struct file * file,int on)1864 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1865 {
1866 struct spu_context *ctx = file->private_data;
1867
1868 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1869 }
1870
1871 static const struct file_operations spufs_mfc_fops = {
1872 .open = spufs_mfc_open,
1873 .release = spufs_mfc_release,
1874 .read = spufs_mfc_read,
1875 .write = spufs_mfc_write,
1876 .poll = spufs_mfc_poll,
1877 .flush = spufs_mfc_flush,
1878 .fsync = spufs_mfc_fsync,
1879 .fasync = spufs_mfc_fasync,
1880 .mmap = spufs_mfc_mmap,
1881 .llseek = no_llseek,
1882 };
1883
spufs_npc_set(void * data,u64 val)1884 static int spufs_npc_set(void *data, u64 val)
1885 {
1886 struct spu_context *ctx = data;
1887 int ret;
1888
1889 ret = spu_acquire(ctx);
1890 if (ret)
1891 return ret;
1892 ctx->ops->npc_write(ctx, val);
1893 spu_release(ctx);
1894
1895 return 0;
1896 }
1897
spufs_npc_get(struct spu_context * ctx)1898 static u64 spufs_npc_get(struct spu_context *ctx)
1899 {
1900 return ctx->ops->npc_read(ctx);
1901 }
1902 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1903 "0x%llx\n", SPU_ATTR_ACQUIRE);
1904
spufs_decr_set(void * data,u64 val)1905 static int spufs_decr_set(void *data, u64 val)
1906 {
1907 struct spu_context *ctx = data;
1908 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1909 int ret;
1910
1911 ret = spu_acquire_saved(ctx);
1912 if (ret)
1913 return ret;
1914 lscsa->decr.slot[0] = (u32) val;
1915 spu_release_saved(ctx);
1916
1917 return 0;
1918 }
1919
spufs_decr_get(struct spu_context * ctx)1920 static u64 spufs_decr_get(struct spu_context *ctx)
1921 {
1922 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1923 return lscsa->decr.slot[0];
1924 }
1925 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1926 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1927
spufs_decr_status_set(void * data,u64 val)1928 static int spufs_decr_status_set(void *data, u64 val)
1929 {
1930 struct spu_context *ctx = data;
1931 int ret;
1932
1933 ret = spu_acquire_saved(ctx);
1934 if (ret)
1935 return ret;
1936 if (val)
1937 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1938 else
1939 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1940 spu_release_saved(ctx);
1941
1942 return 0;
1943 }
1944
spufs_decr_status_get(struct spu_context * ctx)1945 static u64 spufs_decr_status_get(struct spu_context *ctx)
1946 {
1947 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1948 return SPU_DECR_STATUS_RUNNING;
1949 else
1950 return 0;
1951 }
1952 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1953 spufs_decr_status_set, "0x%llx\n",
1954 SPU_ATTR_ACQUIRE_SAVED);
1955
spufs_event_mask_set(void * data,u64 val)1956 static int spufs_event_mask_set(void *data, u64 val)
1957 {
1958 struct spu_context *ctx = data;
1959 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1960 int ret;
1961
1962 ret = spu_acquire_saved(ctx);
1963 if (ret)
1964 return ret;
1965 lscsa->event_mask.slot[0] = (u32) val;
1966 spu_release_saved(ctx);
1967
1968 return 0;
1969 }
1970
spufs_event_mask_get(struct spu_context * ctx)1971 static u64 spufs_event_mask_get(struct spu_context *ctx)
1972 {
1973 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1974 return lscsa->event_mask.slot[0];
1975 }
1976
1977 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1978 spufs_event_mask_set, "0x%llx\n",
1979 SPU_ATTR_ACQUIRE_SAVED);
1980
spufs_event_status_get(struct spu_context * ctx)1981 static u64 spufs_event_status_get(struct spu_context *ctx)
1982 {
1983 struct spu_state *state = &ctx->csa;
1984 u64 stat;
1985 stat = state->spu_chnlcnt_RW[0];
1986 if (stat)
1987 return state->spu_chnldata_RW[0];
1988 return 0;
1989 }
1990 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1991 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1992
spufs_srr0_set(void * data,u64 val)1993 static int spufs_srr0_set(void *data, u64 val)
1994 {
1995 struct spu_context *ctx = data;
1996 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1997 int ret;
1998
1999 ret = spu_acquire_saved(ctx);
2000 if (ret)
2001 return ret;
2002 lscsa->srr0.slot[0] = (u32) val;
2003 spu_release_saved(ctx);
2004
2005 return 0;
2006 }
2007
spufs_srr0_get(struct spu_context * ctx)2008 static u64 spufs_srr0_get(struct spu_context *ctx)
2009 {
2010 struct spu_lscsa *lscsa = ctx->csa.lscsa;
2011 return lscsa->srr0.slot[0];
2012 }
2013 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2014 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2015
spufs_id_get(struct spu_context * ctx)2016 static u64 spufs_id_get(struct spu_context *ctx)
2017 {
2018 u64 num;
2019
2020 if (ctx->state == SPU_STATE_RUNNABLE)
2021 num = ctx->spu->number;
2022 else
2023 num = (unsigned int)-1;
2024
2025 return num;
2026 }
2027 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2028 SPU_ATTR_ACQUIRE)
2029
spufs_object_id_get(struct spu_context * ctx)2030 static u64 spufs_object_id_get(struct spu_context *ctx)
2031 {
2032 /* FIXME: Should there really be no locking here? */
2033 return ctx->object_id;
2034 }
2035
spufs_object_id_set(void * data,u64 id)2036 static int spufs_object_id_set(void *data, u64 id)
2037 {
2038 struct spu_context *ctx = data;
2039 ctx->object_id = id;
2040
2041 return 0;
2042 }
2043
2044 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2045 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2046
spufs_lslr_get(struct spu_context * ctx)2047 static u64 spufs_lslr_get(struct spu_context *ctx)
2048 {
2049 return ctx->csa.priv2.spu_lslr_RW;
2050 }
2051 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2052 SPU_ATTR_ACQUIRE_SAVED);
2053
spufs_info_open(struct inode * inode,struct file * file)2054 static int spufs_info_open(struct inode *inode, struct file *file)
2055 {
2056 struct spufs_inode_info *i = SPUFS_I(inode);
2057 struct spu_context *ctx = i->i_ctx;
2058 file->private_data = ctx;
2059 return 0;
2060 }
2061
spufs_caps_show(struct seq_file * s,void * private)2062 static int spufs_caps_show(struct seq_file *s, void *private)
2063 {
2064 struct spu_context *ctx = s->private;
2065
2066 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2067 seq_puts(s, "sched\n");
2068 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2069 seq_puts(s, "step\n");
2070 return 0;
2071 }
2072
spufs_caps_open(struct inode * inode,struct file * file)2073 static int spufs_caps_open(struct inode *inode, struct file *file)
2074 {
2075 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2076 }
2077
2078 static const struct file_operations spufs_caps_fops = {
2079 .open = spufs_caps_open,
2080 .read = seq_read,
2081 .llseek = seq_lseek,
2082 .release = single_release,
2083 };
2084
__spufs_mbox_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2085 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2086 char __user *buf, size_t len, loff_t *pos)
2087 {
2088 u32 data;
2089
2090 /* EOF if there's no entry in the mbox */
2091 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2092 return 0;
2093
2094 data = ctx->csa.prob.pu_mb_R;
2095
2096 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2097 }
2098
spufs_mbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2099 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2100 size_t len, loff_t *pos)
2101 {
2102 int ret;
2103 struct spu_context *ctx = file->private_data;
2104
2105 if (!access_ok(VERIFY_WRITE, buf, len))
2106 return -EFAULT;
2107
2108 ret = spu_acquire_saved(ctx);
2109 if (ret)
2110 return ret;
2111 spin_lock(&ctx->csa.register_lock);
2112 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2113 spin_unlock(&ctx->csa.register_lock);
2114 spu_release_saved(ctx);
2115
2116 return ret;
2117 }
2118
2119 static const struct file_operations spufs_mbox_info_fops = {
2120 .open = spufs_info_open,
2121 .read = spufs_mbox_info_read,
2122 .llseek = generic_file_llseek,
2123 };
2124
__spufs_ibox_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2125 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2126 char __user *buf, size_t len, loff_t *pos)
2127 {
2128 u32 data;
2129
2130 /* EOF if there's no entry in the ibox */
2131 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2132 return 0;
2133
2134 data = ctx->csa.priv2.puint_mb_R;
2135
2136 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2137 }
2138
spufs_ibox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2139 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2140 size_t len, loff_t *pos)
2141 {
2142 struct spu_context *ctx = file->private_data;
2143 int ret;
2144
2145 if (!access_ok(VERIFY_WRITE, buf, len))
2146 return -EFAULT;
2147
2148 ret = spu_acquire_saved(ctx);
2149 if (ret)
2150 return ret;
2151 spin_lock(&ctx->csa.register_lock);
2152 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2153 spin_unlock(&ctx->csa.register_lock);
2154 spu_release_saved(ctx);
2155
2156 return ret;
2157 }
2158
2159 static const struct file_operations spufs_ibox_info_fops = {
2160 .open = spufs_info_open,
2161 .read = spufs_ibox_info_read,
2162 .llseek = generic_file_llseek,
2163 };
2164
__spufs_wbox_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2165 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2166 char __user *buf, size_t len, loff_t *pos)
2167 {
2168 int i, cnt;
2169 u32 data[4];
2170 u32 wbox_stat;
2171
2172 wbox_stat = ctx->csa.prob.mb_stat_R;
2173 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2174 for (i = 0; i < cnt; i++) {
2175 data[i] = ctx->csa.spu_mailbox_data[i];
2176 }
2177
2178 return simple_read_from_buffer(buf, len, pos, &data,
2179 cnt * sizeof(u32));
2180 }
2181
spufs_wbox_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2182 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2183 size_t len, loff_t *pos)
2184 {
2185 struct spu_context *ctx = file->private_data;
2186 int ret;
2187
2188 if (!access_ok(VERIFY_WRITE, buf, len))
2189 return -EFAULT;
2190
2191 ret = spu_acquire_saved(ctx);
2192 if (ret)
2193 return ret;
2194 spin_lock(&ctx->csa.register_lock);
2195 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2196 spin_unlock(&ctx->csa.register_lock);
2197 spu_release_saved(ctx);
2198
2199 return ret;
2200 }
2201
2202 static const struct file_operations spufs_wbox_info_fops = {
2203 .open = spufs_info_open,
2204 .read = spufs_wbox_info_read,
2205 .llseek = generic_file_llseek,
2206 };
2207
__spufs_dma_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2208 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2209 char __user *buf, size_t len, loff_t *pos)
2210 {
2211 struct spu_dma_info info;
2212 struct mfc_cq_sr *qp, *spuqp;
2213 int i;
2214
2215 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2216 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2217 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2218 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2219 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2220 for (i = 0; i < 16; i++) {
2221 qp = &info.dma_info_command_data[i];
2222 spuqp = &ctx->csa.priv2.spuq[i];
2223
2224 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2225 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2226 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2227 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2228 }
2229
2230 return simple_read_from_buffer(buf, len, pos, &info,
2231 sizeof info);
2232 }
2233
spufs_dma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2234 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2235 size_t len, loff_t *pos)
2236 {
2237 struct spu_context *ctx = file->private_data;
2238 int ret;
2239
2240 if (!access_ok(VERIFY_WRITE, buf, len))
2241 return -EFAULT;
2242
2243 ret = spu_acquire_saved(ctx);
2244 if (ret)
2245 return ret;
2246 spin_lock(&ctx->csa.register_lock);
2247 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2248 spin_unlock(&ctx->csa.register_lock);
2249 spu_release_saved(ctx);
2250
2251 return ret;
2252 }
2253
2254 static const struct file_operations spufs_dma_info_fops = {
2255 .open = spufs_info_open,
2256 .read = spufs_dma_info_read,
2257 .llseek = no_llseek,
2258 };
2259
__spufs_proxydma_info_read(struct spu_context * ctx,char __user * buf,size_t len,loff_t * pos)2260 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2261 char __user *buf, size_t len, loff_t *pos)
2262 {
2263 struct spu_proxydma_info info;
2264 struct mfc_cq_sr *qp, *puqp;
2265 int ret = sizeof info;
2266 int i;
2267
2268 if (len < ret)
2269 return -EINVAL;
2270
2271 if (!access_ok(VERIFY_WRITE, buf, len))
2272 return -EFAULT;
2273
2274 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2275 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2276 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2277 for (i = 0; i < 8; i++) {
2278 qp = &info.proxydma_info_command_data[i];
2279 puqp = &ctx->csa.priv2.puq[i];
2280
2281 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2282 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2283 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2284 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2285 }
2286
2287 return simple_read_from_buffer(buf, len, pos, &info,
2288 sizeof info);
2289 }
2290
spufs_proxydma_info_read(struct file * file,char __user * buf,size_t len,loff_t * pos)2291 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2292 size_t len, loff_t *pos)
2293 {
2294 struct spu_context *ctx = file->private_data;
2295 int ret;
2296
2297 ret = spu_acquire_saved(ctx);
2298 if (ret)
2299 return ret;
2300 spin_lock(&ctx->csa.register_lock);
2301 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2302 spin_unlock(&ctx->csa.register_lock);
2303 spu_release_saved(ctx);
2304
2305 return ret;
2306 }
2307
2308 static const struct file_operations spufs_proxydma_info_fops = {
2309 .open = spufs_info_open,
2310 .read = spufs_proxydma_info_read,
2311 .llseek = no_llseek,
2312 };
2313
spufs_show_tid(struct seq_file * s,void * private)2314 static int spufs_show_tid(struct seq_file *s, void *private)
2315 {
2316 struct spu_context *ctx = s->private;
2317
2318 seq_printf(s, "%d\n", ctx->tid);
2319 return 0;
2320 }
2321
spufs_tid_open(struct inode * inode,struct file * file)2322 static int spufs_tid_open(struct inode *inode, struct file *file)
2323 {
2324 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2325 }
2326
2327 static const struct file_operations spufs_tid_fops = {
2328 .open = spufs_tid_open,
2329 .read = seq_read,
2330 .llseek = seq_lseek,
2331 .release = single_release,
2332 };
2333
2334 static const char *ctx_state_names[] = {
2335 "user", "system", "iowait", "loaded"
2336 };
2337
spufs_acct_time(struct spu_context * ctx,enum spu_utilization_state state)2338 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2339 enum spu_utilization_state state)
2340 {
2341 struct timespec ts;
2342 unsigned long long time = ctx->stats.times[state];
2343
2344 /*
2345 * In general, utilization statistics are updated by the controlling
2346 * thread as the spu context moves through various well defined
2347 * state transitions, but if the context is lazily loaded its
2348 * utilization statistics are not updated as the controlling thread
2349 * is not tightly coupled with the execution of the spu context. We
2350 * calculate and apply the time delta from the last recorded state
2351 * of the spu context.
2352 */
2353 if (ctx->spu && ctx->stats.util_state == state) {
2354 ktime_get_ts(&ts);
2355 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2356 }
2357
2358 return time / NSEC_PER_MSEC;
2359 }
2360
spufs_slb_flts(struct spu_context * ctx)2361 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2362 {
2363 unsigned long long slb_flts = ctx->stats.slb_flt;
2364
2365 if (ctx->state == SPU_STATE_RUNNABLE) {
2366 slb_flts += (ctx->spu->stats.slb_flt -
2367 ctx->stats.slb_flt_base);
2368 }
2369
2370 return slb_flts;
2371 }
2372
spufs_class2_intrs(struct spu_context * ctx)2373 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2374 {
2375 unsigned long long class2_intrs = ctx->stats.class2_intr;
2376
2377 if (ctx->state == SPU_STATE_RUNNABLE) {
2378 class2_intrs += (ctx->spu->stats.class2_intr -
2379 ctx->stats.class2_intr_base);
2380 }
2381
2382 return class2_intrs;
2383 }
2384
2385
spufs_show_stat(struct seq_file * s,void * private)2386 static int spufs_show_stat(struct seq_file *s, void *private)
2387 {
2388 struct spu_context *ctx = s->private;
2389 int ret;
2390
2391 ret = spu_acquire(ctx);
2392 if (ret)
2393 return ret;
2394
2395 seq_printf(s, "%s %llu %llu %llu %llu "
2396 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2397 ctx_state_names[ctx->stats.util_state],
2398 spufs_acct_time(ctx, SPU_UTIL_USER),
2399 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2400 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2401 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2402 ctx->stats.vol_ctx_switch,
2403 ctx->stats.invol_ctx_switch,
2404 spufs_slb_flts(ctx),
2405 ctx->stats.hash_flt,
2406 ctx->stats.min_flt,
2407 ctx->stats.maj_flt,
2408 spufs_class2_intrs(ctx),
2409 ctx->stats.libassist);
2410 spu_release(ctx);
2411 return 0;
2412 }
2413
spufs_stat_open(struct inode * inode,struct file * file)2414 static int spufs_stat_open(struct inode *inode, struct file *file)
2415 {
2416 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2417 }
2418
2419 static const struct file_operations spufs_stat_fops = {
2420 .open = spufs_stat_open,
2421 .read = seq_read,
2422 .llseek = seq_lseek,
2423 .release = single_release,
2424 };
2425
spufs_switch_log_used(struct spu_context * ctx)2426 static inline int spufs_switch_log_used(struct spu_context *ctx)
2427 {
2428 return (ctx->switch_log->head - ctx->switch_log->tail) %
2429 SWITCH_LOG_BUFSIZE;
2430 }
2431
spufs_switch_log_avail(struct spu_context * ctx)2432 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2433 {
2434 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2435 }
2436
spufs_switch_log_open(struct inode * inode,struct file * file)2437 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2438 {
2439 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2440 int rc;
2441
2442 rc = spu_acquire(ctx);
2443 if (rc)
2444 return rc;
2445
2446 if (ctx->switch_log) {
2447 rc = -EBUSY;
2448 goto out;
2449 }
2450
2451 ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2452 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2453 GFP_KERNEL);
2454
2455 if (!ctx->switch_log) {
2456 rc = -ENOMEM;
2457 goto out;
2458 }
2459
2460 ctx->switch_log->head = ctx->switch_log->tail = 0;
2461 init_waitqueue_head(&ctx->switch_log->wait);
2462 rc = 0;
2463
2464 out:
2465 spu_release(ctx);
2466 return rc;
2467 }
2468
spufs_switch_log_release(struct inode * inode,struct file * file)2469 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2470 {
2471 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2472 int rc;
2473
2474 rc = spu_acquire(ctx);
2475 if (rc)
2476 return rc;
2477
2478 kfree(ctx->switch_log);
2479 ctx->switch_log = NULL;
2480 spu_release(ctx);
2481
2482 return 0;
2483 }
2484
switch_log_sprint(struct spu_context * ctx,char * tbuf,int n)2485 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2486 {
2487 struct switch_log_entry *p;
2488
2489 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2490
2491 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2492 (unsigned int) p->tstamp.tv_sec,
2493 (unsigned int) p->tstamp.tv_nsec,
2494 p->spu_id,
2495 (unsigned int) p->type,
2496 (unsigned int) p->val,
2497 (unsigned long long) p->timebase);
2498 }
2499
spufs_switch_log_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2500 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2501 size_t len, loff_t *ppos)
2502 {
2503 struct inode *inode = file_inode(file);
2504 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2505 int error = 0, cnt = 0;
2506
2507 if (!buf)
2508 return -EINVAL;
2509
2510 error = spu_acquire(ctx);
2511 if (error)
2512 return error;
2513
2514 while (cnt < len) {
2515 char tbuf[128];
2516 int width;
2517
2518 if (spufs_switch_log_used(ctx) == 0) {
2519 if (cnt > 0) {
2520 /* If there's data ready to go, we can
2521 * just return straight away */
2522 break;
2523
2524 } else if (file->f_flags & O_NONBLOCK) {
2525 error = -EAGAIN;
2526 break;
2527
2528 } else {
2529 /* spufs_wait will drop the mutex and
2530 * re-acquire, but since we're in read(), the
2531 * file cannot be _released (and so
2532 * ctx->switch_log is stable).
2533 */
2534 error = spufs_wait(ctx->switch_log->wait,
2535 spufs_switch_log_used(ctx) > 0);
2536
2537 /* On error, spufs_wait returns without the
2538 * state mutex held */
2539 if (error)
2540 return error;
2541
2542 /* We may have had entries read from underneath
2543 * us while we dropped the mutex in spufs_wait,
2544 * so re-check */
2545 if (spufs_switch_log_used(ctx) == 0)
2546 continue;
2547 }
2548 }
2549
2550 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2551 if (width < len)
2552 ctx->switch_log->tail =
2553 (ctx->switch_log->tail + 1) %
2554 SWITCH_LOG_BUFSIZE;
2555 else
2556 /* If the record is greater than space available return
2557 * partial buffer (so far) */
2558 break;
2559
2560 error = copy_to_user(buf + cnt, tbuf, width);
2561 if (error)
2562 break;
2563 cnt += width;
2564 }
2565
2566 spu_release(ctx);
2567
2568 return cnt == 0 ? error : cnt;
2569 }
2570
spufs_switch_log_poll(struct file * file,poll_table * wait)2571 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2572 {
2573 struct inode *inode = file_inode(file);
2574 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2575 unsigned int mask = 0;
2576 int rc;
2577
2578 poll_wait(file, &ctx->switch_log->wait, wait);
2579
2580 rc = spu_acquire(ctx);
2581 if (rc)
2582 return rc;
2583
2584 if (spufs_switch_log_used(ctx) > 0)
2585 mask |= POLLIN;
2586
2587 spu_release(ctx);
2588
2589 return mask;
2590 }
2591
2592 static const struct file_operations spufs_switch_log_fops = {
2593 .open = spufs_switch_log_open,
2594 .read = spufs_switch_log_read,
2595 .poll = spufs_switch_log_poll,
2596 .release = spufs_switch_log_release,
2597 .llseek = no_llseek,
2598 };
2599
2600 /**
2601 * Log a context switch event to a switch log reader.
2602 *
2603 * Must be called with ctx->state_mutex held.
2604 */
spu_switch_log_notify(struct spu * spu,struct spu_context * ctx,u32 type,u32 val)2605 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2606 u32 type, u32 val)
2607 {
2608 if (!ctx->switch_log)
2609 return;
2610
2611 if (spufs_switch_log_avail(ctx) > 1) {
2612 struct switch_log_entry *p;
2613
2614 p = ctx->switch_log->log + ctx->switch_log->head;
2615 ktime_get_ts(&p->tstamp);
2616 p->timebase = get_tb();
2617 p->spu_id = spu ? spu->number : -1;
2618 p->type = type;
2619 p->val = val;
2620
2621 ctx->switch_log->head =
2622 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2623 }
2624
2625 wake_up(&ctx->switch_log->wait);
2626 }
2627
spufs_show_ctx(struct seq_file * s,void * private)2628 static int spufs_show_ctx(struct seq_file *s, void *private)
2629 {
2630 struct spu_context *ctx = s->private;
2631 u64 mfc_control_RW;
2632
2633 mutex_lock(&ctx->state_mutex);
2634 if (ctx->spu) {
2635 struct spu *spu = ctx->spu;
2636 struct spu_priv2 __iomem *priv2 = spu->priv2;
2637
2638 spin_lock_irq(&spu->register_lock);
2639 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2640 spin_unlock_irq(&spu->register_lock);
2641 } else {
2642 struct spu_state *csa = &ctx->csa;
2643
2644 mfc_control_RW = csa->priv2.mfc_control_RW;
2645 }
2646
2647 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2648 " %c %llx %llx %llx %llx %x %x\n",
2649 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2650 ctx->flags,
2651 ctx->sched_flags,
2652 ctx->prio,
2653 ctx->time_slice,
2654 ctx->spu ? ctx->spu->number : -1,
2655 !list_empty(&ctx->rq) ? 'q' : ' ',
2656 ctx->csa.class_0_pending,
2657 ctx->csa.class_0_dar,
2658 ctx->csa.class_1_dsisr,
2659 mfc_control_RW,
2660 ctx->ops->runcntl_read(ctx),
2661 ctx->ops->status_read(ctx));
2662
2663 mutex_unlock(&ctx->state_mutex);
2664
2665 return 0;
2666 }
2667
spufs_ctx_open(struct inode * inode,struct file * file)2668 static int spufs_ctx_open(struct inode *inode, struct file *file)
2669 {
2670 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2671 }
2672
2673 static const struct file_operations spufs_ctx_fops = {
2674 .open = spufs_ctx_open,
2675 .read = seq_read,
2676 .llseek = seq_lseek,
2677 .release = single_release,
2678 };
2679
2680 const struct spufs_tree_descr spufs_dir_contents[] = {
2681 { "capabilities", &spufs_caps_fops, 0444, },
2682 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2683 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2684 { "mbox", &spufs_mbox_fops, 0444, },
2685 { "ibox", &spufs_ibox_fops, 0444, },
2686 { "wbox", &spufs_wbox_fops, 0222, },
2687 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2688 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2689 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2690 { "signal1", &spufs_signal1_fops, 0666, },
2691 { "signal2", &spufs_signal2_fops, 0666, },
2692 { "signal1_type", &spufs_signal1_type, 0666, },
2693 { "signal2_type", &spufs_signal2_type, 0666, },
2694 { "cntl", &spufs_cntl_fops, 0666, },
2695 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2696 { "lslr", &spufs_lslr_ops, 0444, },
2697 { "mfc", &spufs_mfc_fops, 0666, },
2698 { "mss", &spufs_mss_fops, 0666, },
2699 { "npc", &spufs_npc_ops, 0666, },
2700 { "srr0", &spufs_srr0_ops, 0666, },
2701 { "decr", &spufs_decr_ops, 0666, },
2702 { "decr_status", &spufs_decr_status_ops, 0666, },
2703 { "event_mask", &spufs_event_mask_ops, 0666, },
2704 { "event_status", &spufs_event_status_ops, 0444, },
2705 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2706 { "phys-id", &spufs_id_ops, 0666, },
2707 { "object-id", &spufs_object_id_ops, 0666, },
2708 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2709 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2710 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2711 { "dma_info", &spufs_dma_info_fops, 0444,
2712 sizeof(struct spu_dma_info), },
2713 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2714 sizeof(struct spu_proxydma_info)},
2715 { "tid", &spufs_tid_fops, 0444, },
2716 { "stat", &spufs_stat_fops, 0444, },
2717 { "switch_log", &spufs_switch_log_fops, 0444 },
2718 {},
2719 };
2720
2721 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2722 { "capabilities", &spufs_caps_fops, 0444, },
2723 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2724 { "mbox", &spufs_mbox_fops, 0444, },
2725 { "ibox", &spufs_ibox_fops, 0444, },
2726 { "wbox", &spufs_wbox_fops, 0222, },
2727 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2728 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2729 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2730 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2731 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2732 { "signal1_type", &spufs_signal1_type, 0666, },
2733 { "signal2_type", &spufs_signal2_type, 0666, },
2734 { "mss", &spufs_mss_fops, 0666, },
2735 { "mfc", &spufs_mfc_fops, 0666, },
2736 { "cntl", &spufs_cntl_fops, 0666, },
2737 { "npc", &spufs_npc_ops, 0666, },
2738 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2739 { "phys-id", &spufs_id_ops, 0666, },
2740 { "object-id", &spufs_object_id_ops, 0666, },
2741 { "tid", &spufs_tid_fops, 0444, },
2742 { "stat", &spufs_stat_fops, 0444, },
2743 {},
2744 };
2745
2746 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2747 { ".ctx", &spufs_ctx_fops, 0444, },
2748 {},
2749 };
2750
2751 const struct spufs_coredump_reader spufs_coredump_read[] = {
2752 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2753 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2754 { "lslr", NULL, spufs_lslr_get, 19 },
2755 { "decr", NULL, spufs_decr_get, 19 },
2756 { "decr_status", NULL, spufs_decr_status_get, 19 },
2757 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2758 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2759 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2760 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2761 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2762 { "event_mask", NULL, spufs_event_mask_get, 19 },
2763 { "event_status", NULL, spufs_event_status_get, 19 },
2764 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2765 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2766 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2767 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2768 { "proxydma_info", __spufs_proxydma_info_read,
2769 NULL, sizeof(struct spu_proxydma_info)},
2770 { "object-id", NULL, spufs_object_id_get, 19 },
2771 { "npc", NULL, spufs_npc_get, 19 },
2772 { NULL },
2773 };
2774