1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/platform_data/dma-ste-dma40.h>
23
24 #include "dmaengine.h"
25 #include "ste_dma40_ll.h"
26
27 #define D40_NAME "dma40"
28
29 #define D40_PHY_CHAN -1
30
31 /* For masking out/in 2 bit channel positions */
32 #define D40_CHAN_POS(chan) (2 * (chan / 2))
33 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
34
35 /* Maximum iterations taken before giving up suspending a channel */
36 #define D40_SUSPEND_MAX_IT 500
37
38 /* Milliseconds */
39 #define DMA40_AUTOSUSPEND_DELAY 100
40
41 /* Hardware requirement on LCLA alignment */
42 #define LCLA_ALIGNMENT 0x40000
43
44 /* Max number of links per event group */
45 #define D40_LCLA_LINK_PER_EVENT_GRP 128
46 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
47
48 /* Attempts before giving up to trying to get pages that are aligned */
49 #define MAX_LCLA_ALLOC_ATTEMPTS 256
50
51 /* Bit markings for allocation map */
52 #define D40_ALLOC_FREE (1 << 31)
53 #define D40_ALLOC_PHY (1 << 30)
54 #define D40_ALLOC_LOG_FREE 0
55
56 #define MAX(a, b) (((a) < (b)) ? (b) : (a))
57
58 /**
59 * enum 40_command - The different commands and/or statuses.
60 *
61 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
62 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
63 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
64 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
65 */
66 enum d40_command {
67 D40_DMA_STOP = 0,
68 D40_DMA_RUN = 1,
69 D40_DMA_SUSPEND_REQ = 2,
70 D40_DMA_SUSPENDED = 3
71 };
72
73 /*
74 * enum d40_events - The different Event Enables for the event lines.
75 *
76 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
77 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
78 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
79 * @D40_ROUND_EVENTLINE: Status check for event line.
80 */
81
82 enum d40_events {
83 D40_DEACTIVATE_EVENTLINE = 0,
84 D40_ACTIVATE_EVENTLINE = 1,
85 D40_SUSPEND_REQ_EVENTLINE = 2,
86 D40_ROUND_EVENTLINE = 3
87 };
88
89 /*
90 * These are the registers that has to be saved and later restored
91 * when the DMA hw is powered off.
92 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
93 */
94 static u32 d40_backup_regs[] = {
95 D40_DREG_LCPA,
96 D40_DREG_LCLA,
97 D40_DREG_PRMSE,
98 D40_DREG_PRMSO,
99 D40_DREG_PRMOE,
100 D40_DREG_PRMOO,
101 };
102
103 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
104
105 /*
106 * since 9540 and 8540 has the same HW revision
107 * use v4a for 9540 or ealier
108 * use v4b for 8540 or later
109 * HW revision:
110 * DB8500ed has revision 0
111 * DB8500v1 has revision 2
112 * DB8500v2 has revision 3
113 * AP9540v1 has revision 4
114 * DB8540v1 has revision 4
115 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
116 */
117 static u32 d40_backup_regs_v4a[] = {
118 D40_DREG_PSEG1,
119 D40_DREG_PSEG2,
120 D40_DREG_PSEG3,
121 D40_DREG_PSEG4,
122 D40_DREG_PCEG1,
123 D40_DREG_PCEG2,
124 D40_DREG_PCEG3,
125 D40_DREG_PCEG4,
126 D40_DREG_RSEG1,
127 D40_DREG_RSEG2,
128 D40_DREG_RSEG3,
129 D40_DREG_RSEG4,
130 D40_DREG_RCEG1,
131 D40_DREG_RCEG2,
132 D40_DREG_RCEG3,
133 D40_DREG_RCEG4,
134 };
135
136 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
137
138 static u32 d40_backup_regs_v4b[] = {
139 D40_DREG_CPSEG1,
140 D40_DREG_CPSEG2,
141 D40_DREG_CPSEG3,
142 D40_DREG_CPSEG4,
143 D40_DREG_CPSEG5,
144 D40_DREG_CPCEG1,
145 D40_DREG_CPCEG2,
146 D40_DREG_CPCEG3,
147 D40_DREG_CPCEG4,
148 D40_DREG_CPCEG5,
149 D40_DREG_CRSEG1,
150 D40_DREG_CRSEG2,
151 D40_DREG_CRSEG3,
152 D40_DREG_CRSEG4,
153 D40_DREG_CRSEG5,
154 D40_DREG_CRCEG1,
155 D40_DREG_CRCEG2,
156 D40_DREG_CRCEG3,
157 D40_DREG_CRCEG4,
158 D40_DREG_CRCEG5,
159 };
160
161 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
162
163 static u32 d40_backup_regs_chan[] = {
164 D40_CHAN_REG_SSCFG,
165 D40_CHAN_REG_SSELT,
166 D40_CHAN_REG_SSPTR,
167 D40_CHAN_REG_SSLNK,
168 D40_CHAN_REG_SDCFG,
169 D40_CHAN_REG_SDELT,
170 D40_CHAN_REG_SDPTR,
171 D40_CHAN_REG_SDLNK,
172 };
173
174 /**
175 * struct d40_interrupt_lookup - lookup table for interrupt handler
176 *
177 * @src: Interrupt mask register.
178 * @clr: Interrupt clear register.
179 * @is_error: true if this is an error interrupt.
180 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
181 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
182 */
183 struct d40_interrupt_lookup {
184 u32 src;
185 u32 clr;
186 bool is_error;
187 int offset;
188 };
189
190
191 static struct d40_interrupt_lookup il_v4a[] = {
192 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
193 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
194 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
195 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
196 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
197 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
198 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
199 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
200 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
201 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
202 };
203
204 static struct d40_interrupt_lookup il_v4b[] = {
205 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
206 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
207 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
208 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
209 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
210 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
211 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
212 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
213 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
214 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
215 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
216 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
217 };
218
219 /**
220 * struct d40_reg_val - simple lookup struct
221 *
222 * @reg: The register.
223 * @val: The value that belongs to the register in reg.
224 */
225 struct d40_reg_val {
226 unsigned int reg;
227 unsigned int val;
228 };
229
230 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
231 /* Clock every part of the DMA block from start */
232 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
233
234 /* Interrupts on all logical channels */
235 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
236 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
237 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
238 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
239 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
240 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
241 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
242 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
243 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
244 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
245 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
246 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
247 };
248 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
249 /* Clock every part of the DMA block from start */
250 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
251
252 /* Interrupts on all logical channels */
253 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
254 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
255 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
256 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
257 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
258 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
259 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
260 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
261 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
262 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
263 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
264 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
265 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
266 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
267 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
268 };
269
270 /**
271 * struct d40_lli_pool - Structure for keeping LLIs in memory
272 *
273 * @base: Pointer to memory area when the pre_alloc_lli's are not large
274 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
275 * pre_alloc_lli is used.
276 * @dma_addr: DMA address, if mapped
277 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
278 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
279 * one buffer to one buffer.
280 */
281 struct d40_lli_pool {
282 void *base;
283 int size;
284 dma_addr_t dma_addr;
285 /* Space for dst and src, plus an extra for padding */
286 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
287 };
288
289 /**
290 * struct d40_desc - A descriptor is one DMA job.
291 *
292 * @lli_phy: LLI settings for physical channel. Both src and dst=
293 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
294 * lli_len equals one.
295 * @lli_log: Same as above but for logical channels.
296 * @lli_pool: The pool with two entries pre-allocated.
297 * @lli_len: Number of llis of current descriptor.
298 * @lli_current: Number of transferred llis.
299 * @lcla_alloc: Number of LCLA entries allocated.
300 * @txd: DMA engine struct. Used for among other things for communication
301 * during a transfer.
302 * @node: List entry.
303 * @is_in_client_list: true if the client owns this descriptor.
304 * @cyclic: true if this is a cyclic job
305 *
306 * This descriptor is used for both logical and physical transfers.
307 */
308 struct d40_desc {
309 /* LLI physical */
310 struct d40_phy_lli_bidir lli_phy;
311 /* LLI logical */
312 struct d40_log_lli_bidir lli_log;
313
314 struct d40_lli_pool lli_pool;
315 int lli_len;
316 int lli_current;
317 int lcla_alloc;
318
319 struct dma_async_tx_descriptor txd;
320 struct list_head node;
321
322 bool is_in_client_list;
323 bool cyclic;
324 };
325
326 /**
327 * struct d40_lcla_pool - LCLA pool settings and data.
328 *
329 * @base: The virtual address of LCLA. 18 bit aligned.
330 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
331 * This pointer is only there for clean-up on error.
332 * @pages: The number of pages needed for all physical channels.
333 * Only used later for clean-up on error
334 * @lock: Lock to protect the content in this struct.
335 * @alloc_map: big map over which LCLA entry is own by which job.
336 */
337 struct d40_lcla_pool {
338 void *base;
339 dma_addr_t dma_addr;
340 void *base_unaligned;
341 int pages;
342 spinlock_t lock;
343 struct d40_desc **alloc_map;
344 };
345
346 /**
347 * struct d40_phy_res - struct for handling eventlines mapped to physical
348 * channels.
349 *
350 * @lock: A lock protection this entity.
351 * @reserved: True if used by secure world or otherwise.
352 * @num: The physical channel number of this entity.
353 * @allocated_src: Bit mapped to show which src event line's are mapped to
354 * this physical channel. Can also be free or physically allocated.
355 * @allocated_dst: Same as for src but is dst.
356 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
357 * event line number.
358 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
359 */
360 struct d40_phy_res {
361 spinlock_t lock;
362 bool reserved;
363 int num;
364 u32 allocated_src;
365 u32 allocated_dst;
366 bool use_soft_lli;
367 };
368
369 struct d40_base;
370
371 /**
372 * struct d40_chan - Struct that describes a channel.
373 *
374 * @lock: A spinlock to protect this struct.
375 * @log_num: The logical number, if any of this channel.
376 * @pending_tx: The number of pending transfers. Used between interrupt handler
377 * and tasklet.
378 * @busy: Set to true when transfer is ongoing on this channel.
379 * @phy_chan: Pointer to physical channel which this instance runs on. If this
380 * point is NULL, then the channel is not allocated.
381 * @chan: DMA engine handle.
382 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
383 * transfer and call client callback.
384 * @client: Cliented owned descriptor list.
385 * @pending_queue: Submitted jobs, to be issued by issue_pending()
386 * @active: Active descriptor.
387 * @done: Completed jobs
388 * @queue: Queued jobs.
389 * @prepare_queue: Prepared jobs.
390 * @dma_cfg: The client configuration of this dma channel.
391 * @configured: whether the dma_cfg configuration is valid
392 * @base: Pointer to the device instance struct.
393 * @src_def_cfg: Default cfg register setting for src.
394 * @dst_def_cfg: Default cfg register setting for dst.
395 * @log_def: Default logical channel settings.
396 * @lcpa: Pointer to dst and src lcpa settings.
397 * @runtime_addr: runtime configured address.
398 * @runtime_direction: runtime configured direction.
399 *
400 * This struct can either "be" a logical or a physical channel.
401 */
402 struct d40_chan {
403 spinlock_t lock;
404 int log_num;
405 int pending_tx;
406 bool busy;
407 struct d40_phy_res *phy_chan;
408 struct dma_chan chan;
409 struct tasklet_struct tasklet;
410 struct list_head client;
411 struct list_head pending_queue;
412 struct list_head active;
413 struct list_head done;
414 struct list_head queue;
415 struct list_head prepare_queue;
416 struct stedma40_chan_cfg dma_cfg;
417 bool configured;
418 struct d40_base *base;
419 /* Default register configurations */
420 u32 src_def_cfg;
421 u32 dst_def_cfg;
422 struct d40_def_lcsp log_def;
423 struct d40_log_lli_full *lcpa;
424 /* Runtime reconfiguration */
425 dma_addr_t runtime_addr;
426 enum dma_transfer_direction runtime_direction;
427 };
428
429 /**
430 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
431 * controller
432 *
433 * @backup: the pointer to the registers address array for backup
434 * @backup_size: the size of the registers address array for backup
435 * @realtime_en: the realtime enable register
436 * @realtime_clear: the realtime clear register
437 * @high_prio_en: the high priority enable register
438 * @high_prio_clear: the high priority clear register
439 * @interrupt_en: the interrupt enable register
440 * @interrupt_clear: the interrupt clear register
441 * @il: the pointer to struct d40_interrupt_lookup
442 * @il_size: the size of d40_interrupt_lookup array
443 * @init_reg: the pointer to the struct d40_reg_val
444 * @init_reg_size: the size of d40_reg_val array
445 */
446 struct d40_gen_dmac {
447 u32 *backup;
448 u32 backup_size;
449 u32 realtime_en;
450 u32 realtime_clear;
451 u32 high_prio_en;
452 u32 high_prio_clear;
453 u32 interrupt_en;
454 u32 interrupt_clear;
455 struct d40_interrupt_lookup *il;
456 u32 il_size;
457 struct d40_reg_val *init_reg;
458 u32 init_reg_size;
459 };
460
461 /**
462 * struct d40_base - The big global struct, one for each probe'd instance.
463 *
464 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
465 * @execmd_lock: Lock for execute command usage since several channels share
466 * the same physical register.
467 * @dev: The device structure.
468 * @virtbase: The virtual base address of the DMA's register.
469 * @rev: silicon revision detected.
470 * @clk: Pointer to the DMA clock structure.
471 * @phy_start: Physical memory start of the DMA registers.
472 * @phy_size: Size of the DMA register map.
473 * @irq: The IRQ number.
474 * @num_phy_chans: The number of physical channels. Read from HW. This
475 * is the number of available channels for this driver, not counting "Secure
476 * mode" allocated physical channels.
477 * @num_log_chans: The number of logical channels. Calculated from
478 * num_phy_chans.
479 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
480 * @dma_slave: dma_device channels that can do only do slave transfers.
481 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
482 * @phy_chans: Room for all possible physical channels in system.
483 * @log_chans: Room for all possible logical channels in system.
484 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
485 * to log_chans entries.
486 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
487 * to phy_chans entries.
488 * @plat_data: Pointer to provided platform_data which is the driver
489 * configuration.
490 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
491 * @phy_res: Vector containing all physical channels.
492 * @lcla_pool: lcla pool settings and data.
493 * @lcpa_base: The virtual mapped address of LCPA.
494 * @phy_lcpa: The physical address of the LCPA.
495 * @lcpa_size: The size of the LCPA area.
496 * @desc_slab: cache for descriptors.
497 * @reg_val_backup: Here the values of some hardware registers are stored
498 * before the DMA is powered off. They are restored when the power is back on.
499 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
500 * later
501 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
502 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
503 * @initialized: true if the dma has been initialized
504 * @gen_dmac: the struct for generic registers values to represent u8500/8540
505 * DMA controller
506 */
507 struct d40_base {
508 spinlock_t interrupt_lock;
509 spinlock_t execmd_lock;
510 struct device *dev;
511 void __iomem *virtbase;
512 u8 rev:4;
513 struct clk *clk;
514 phys_addr_t phy_start;
515 resource_size_t phy_size;
516 int irq;
517 int num_phy_chans;
518 int num_log_chans;
519 struct device_dma_parameters dma_parms;
520 struct dma_device dma_both;
521 struct dma_device dma_slave;
522 struct dma_device dma_memcpy;
523 struct d40_chan *phy_chans;
524 struct d40_chan *log_chans;
525 struct d40_chan **lookup_log_chans;
526 struct d40_chan **lookup_phy_chans;
527 struct stedma40_platform_data *plat_data;
528 struct regulator *lcpa_regulator;
529 /* Physical half channels */
530 struct d40_phy_res *phy_res;
531 struct d40_lcla_pool lcla_pool;
532 void *lcpa_base;
533 dma_addr_t phy_lcpa;
534 resource_size_t lcpa_size;
535 struct kmem_cache *desc_slab;
536 u32 reg_val_backup[BACKUP_REGS_SZ];
537 u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
538 u32 *reg_val_backup_chan;
539 u16 gcc_pwr_off_mask;
540 bool initialized;
541 struct d40_gen_dmac gen_dmac;
542 };
543
chan2dev(struct d40_chan * d40c)544 static struct device *chan2dev(struct d40_chan *d40c)
545 {
546 return &d40c->chan.dev->device;
547 }
548
chan_is_physical(struct d40_chan * chan)549 static bool chan_is_physical(struct d40_chan *chan)
550 {
551 return chan->log_num == D40_PHY_CHAN;
552 }
553
chan_is_logical(struct d40_chan * chan)554 static bool chan_is_logical(struct d40_chan *chan)
555 {
556 return !chan_is_physical(chan);
557 }
558
chan_base(struct d40_chan * chan)559 static void __iomem *chan_base(struct d40_chan *chan)
560 {
561 return chan->base->virtbase + D40_DREG_PCBASE +
562 chan->phy_chan->num * D40_DREG_PCDELTA;
563 }
564
565 #define d40_err(dev, format, arg...) \
566 dev_err(dev, "[%s] " format, __func__, ## arg)
567
568 #define chan_err(d40c, format, arg...) \
569 d40_err(chan2dev(d40c), format, ## arg)
570
d40_pool_lli_alloc(struct d40_chan * d40c,struct d40_desc * d40d,int lli_len)571 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
572 int lli_len)
573 {
574 bool is_log = chan_is_logical(d40c);
575 u32 align;
576 void *base;
577
578 if (is_log)
579 align = sizeof(struct d40_log_lli);
580 else
581 align = sizeof(struct d40_phy_lli);
582
583 if (lli_len == 1) {
584 base = d40d->lli_pool.pre_alloc_lli;
585 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
586 d40d->lli_pool.base = NULL;
587 } else {
588 d40d->lli_pool.size = lli_len * 2 * align;
589
590 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
591 d40d->lli_pool.base = base;
592
593 if (d40d->lli_pool.base == NULL)
594 return -ENOMEM;
595 }
596
597 if (is_log) {
598 d40d->lli_log.src = PTR_ALIGN(base, align);
599 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
600
601 d40d->lli_pool.dma_addr = 0;
602 } else {
603 d40d->lli_phy.src = PTR_ALIGN(base, align);
604 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
605
606 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
607 d40d->lli_phy.src,
608 d40d->lli_pool.size,
609 DMA_TO_DEVICE);
610
611 if (dma_mapping_error(d40c->base->dev,
612 d40d->lli_pool.dma_addr)) {
613 kfree(d40d->lli_pool.base);
614 d40d->lli_pool.base = NULL;
615 d40d->lli_pool.dma_addr = 0;
616 return -ENOMEM;
617 }
618 }
619
620 return 0;
621 }
622
d40_pool_lli_free(struct d40_chan * d40c,struct d40_desc * d40d)623 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
624 {
625 if (d40d->lli_pool.dma_addr)
626 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
627 d40d->lli_pool.size, DMA_TO_DEVICE);
628
629 kfree(d40d->lli_pool.base);
630 d40d->lli_pool.base = NULL;
631 d40d->lli_pool.size = 0;
632 d40d->lli_log.src = NULL;
633 d40d->lli_log.dst = NULL;
634 d40d->lli_phy.src = NULL;
635 d40d->lli_phy.dst = NULL;
636 }
637
d40_lcla_alloc_one(struct d40_chan * d40c,struct d40_desc * d40d)638 static int d40_lcla_alloc_one(struct d40_chan *d40c,
639 struct d40_desc *d40d)
640 {
641 unsigned long flags;
642 int i;
643 int ret = -EINVAL;
644
645 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
646
647 /*
648 * Allocate both src and dst at the same time, therefore the half
649 * start on 1 since 0 can't be used since zero is used as end marker.
650 */
651 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
652 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
653
654 if (!d40c->base->lcla_pool.alloc_map[idx]) {
655 d40c->base->lcla_pool.alloc_map[idx] = d40d;
656 d40d->lcla_alloc++;
657 ret = i;
658 break;
659 }
660 }
661
662 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
663
664 return ret;
665 }
666
d40_lcla_free_all(struct d40_chan * d40c,struct d40_desc * d40d)667 static int d40_lcla_free_all(struct d40_chan *d40c,
668 struct d40_desc *d40d)
669 {
670 unsigned long flags;
671 int i;
672 int ret = -EINVAL;
673
674 if (chan_is_physical(d40c))
675 return 0;
676
677 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
678
679 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
680 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
681
682 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
683 d40c->base->lcla_pool.alloc_map[idx] = NULL;
684 d40d->lcla_alloc--;
685 if (d40d->lcla_alloc == 0) {
686 ret = 0;
687 break;
688 }
689 }
690 }
691
692 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
693
694 return ret;
695
696 }
697
d40_desc_remove(struct d40_desc * d40d)698 static void d40_desc_remove(struct d40_desc *d40d)
699 {
700 list_del(&d40d->node);
701 }
702
d40_desc_get(struct d40_chan * d40c)703 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
704 {
705 struct d40_desc *desc = NULL;
706
707 if (!list_empty(&d40c->client)) {
708 struct d40_desc *d;
709 struct d40_desc *_d;
710
711 list_for_each_entry_safe(d, _d, &d40c->client, node) {
712 if (async_tx_test_ack(&d->txd)) {
713 d40_desc_remove(d);
714 desc = d;
715 memset(desc, 0, sizeof(*desc));
716 break;
717 }
718 }
719 }
720
721 if (!desc)
722 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
723
724 if (desc)
725 INIT_LIST_HEAD(&desc->node);
726
727 return desc;
728 }
729
d40_desc_free(struct d40_chan * d40c,struct d40_desc * d40d)730 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
731 {
732
733 d40_pool_lli_free(d40c, d40d);
734 d40_lcla_free_all(d40c, d40d);
735 kmem_cache_free(d40c->base->desc_slab, d40d);
736 }
737
d40_desc_submit(struct d40_chan * d40c,struct d40_desc * desc)738 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
739 {
740 list_add_tail(&desc->node, &d40c->active);
741 }
742
d40_phy_lli_load(struct d40_chan * chan,struct d40_desc * desc)743 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
744 {
745 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
746 struct d40_phy_lli *lli_src = desc->lli_phy.src;
747 void __iomem *base = chan_base(chan);
748
749 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
750 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
751 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
752 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
753
754 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
755 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
756 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
757 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
758 }
759
d40_desc_done(struct d40_chan * d40c,struct d40_desc * desc)760 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
761 {
762 list_add_tail(&desc->node, &d40c->done);
763 }
764
d40_log_lli_to_lcxa(struct d40_chan * chan,struct d40_desc * desc)765 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
766 {
767 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
768 struct d40_log_lli_bidir *lli = &desc->lli_log;
769 int lli_current = desc->lli_current;
770 int lli_len = desc->lli_len;
771 bool cyclic = desc->cyclic;
772 int curr_lcla = -EINVAL;
773 int first_lcla = 0;
774 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
775 bool linkback;
776
777 /*
778 * We may have partially running cyclic transfers, in case we did't get
779 * enough LCLA entries.
780 */
781 linkback = cyclic && lli_current == 0;
782
783 /*
784 * For linkback, we need one LCLA even with only one link, because we
785 * can't link back to the one in LCPA space
786 */
787 if (linkback || (lli_len - lli_current > 1)) {
788 /*
789 * If the channel is expected to use only soft_lli don't
790 * allocate a lcla. This is to avoid a HW issue that exists
791 * in some controller during a peripheral to memory transfer
792 * that uses linked lists.
793 */
794 if (!(chan->phy_chan->use_soft_lli &&
795 chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
796 curr_lcla = d40_lcla_alloc_one(chan, desc);
797
798 first_lcla = curr_lcla;
799 }
800
801 /*
802 * For linkback, we normally load the LCPA in the loop since we need to
803 * link it to the second LCLA and not the first. However, if we
804 * couldn't even get a first LCLA, then we have to run in LCPA and
805 * reload manually.
806 */
807 if (!linkback || curr_lcla == -EINVAL) {
808 unsigned int flags = 0;
809
810 if (curr_lcla == -EINVAL)
811 flags |= LLI_TERM_INT;
812
813 d40_log_lli_lcpa_write(chan->lcpa,
814 &lli->dst[lli_current],
815 &lli->src[lli_current],
816 curr_lcla,
817 flags);
818 lli_current++;
819 }
820
821 if (curr_lcla < 0)
822 goto out;
823
824 for (; lli_current < lli_len; lli_current++) {
825 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
826 8 * curr_lcla * 2;
827 struct d40_log_lli *lcla = pool->base + lcla_offset;
828 unsigned int flags = 0;
829 int next_lcla;
830
831 if (lli_current + 1 < lli_len)
832 next_lcla = d40_lcla_alloc_one(chan, desc);
833 else
834 next_lcla = linkback ? first_lcla : -EINVAL;
835
836 if (cyclic || next_lcla == -EINVAL)
837 flags |= LLI_TERM_INT;
838
839 if (linkback && curr_lcla == first_lcla) {
840 /* First link goes in both LCPA and LCLA */
841 d40_log_lli_lcpa_write(chan->lcpa,
842 &lli->dst[lli_current],
843 &lli->src[lli_current],
844 next_lcla, flags);
845 }
846
847 /*
848 * One unused LCLA in the cyclic case if the very first
849 * next_lcla fails...
850 */
851 d40_log_lli_lcla_write(lcla,
852 &lli->dst[lli_current],
853 &lli->src[lli_current],
854 next_lcla, flags);
855
856 /*
857 * Cache maintenance is not needed if lcla is
858 * mapped in esram
859 */
860 if (!use_esram_lcla) {
861 dma_sync_single_range_for_device(chan->base->dev,
862 pool->dma_addr, lcla_offset,
863 2 * sizeof(struct d40_log_lli),
864 DMA_TO_DEVICE);
865 }
866 curr_lcla = next_lcla;
867
868 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
869 lli_current++;
870 break;
871 }
872 }
873
874 out:
875 desc->lli_current = lli_current;
876 }
877
d40_desc_load(struct d40_chan * d40c,struct d40_desc * d40d)878 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
879 {
880 if (chan_is_physical(d40c)) {
881 d40_phy_lli_load(d40c, d40d);
882 d40d->lli_current = d40d->lli_len;
883 } else
884 d40_log_lli_to_lcxa(d40c, d40d);
885 }
886
d40_first_active_get(struct d40_chan * d40c)887 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
888 {
889 struct d40_desc *d;
890
891 if (list_empty(&d40c->active))
892 return NULL;
893
894 d = list_first_entry(&d40c->active,
895 struct d40_desc,
896 node);
897 return d;
898 }
899
900 /* remove desc from current queue and add it to the pending_queue */
d40_desc_queue(struct d40_chan * d40c,struct d40_desc * desc)901 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
902 {
903 d40_desc_remove(desc);
904 desc->is_in_client_list = false;
905 list_add_tail(&desc->node, &d40c->pending_queue);
906 }
907
d40_first_pending(struct d40_chan * d40c)908 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
909 {
910 struct d40_desc *d;
911
912 if (list_empty(&d40c->pending_queue))
913 return NULL;
914
915 d = list_first_entry(&d40c->pending_queue,
916 struct d40_desc,
917 node);
918 return d;
919 }
920
d40_first_queued(struct d40_chan * d40c)921 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
922 {
923 struct d40_desc *d;
924
925 if (list_empty(&d40c->queue))
926 return NULL;
927
928 d = list_first_entry(&d40c->queue,
929 struct d40_desc,
930 node);
931 return d;
932 }
933
d40_first_done(struct d40_chan * d40c)934 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
935 {
936 if (list_empty(&d40c->done))
937 return NULL;
938
939 return list_first_entry(&d40c->done, struct d40_desc, node);
940 }
941
d40_psize_2_burst_size(bool is_log,int psize)942 static int d40_psize_2_burst_size(bool is_log, int psize)
943 {
944 if (is_log) {
945 if (psize == STEDMA40_PSIZE_LOG_1)
946 return 1;
947 } else {
948 if (psize == STEDMA40_PSIZE_PHY_1)
949 return 1;
950 }
951
952 return 2 << psize;
953 }
954
955 /*
956 * The dma only supports transmitting packages up to
957 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
958 * dma elements required to send the entire sg list
959 */
d40_size_2_dmalen(int size,u32 data_width1,u32 data_width2)960 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
961 {
962 int dmalen;
963 u32 max_w = max(data_width1, data_width2);
964 u32 min_w = min(data_width1, data_width2);
965 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
966
967 if (seg_max > STEDMA40_MAX_SEG_SIZE)
968 seg_max -= (1 << max_w);
969
970 if (!IS_ALIGNED(size, 1 << max_w))
971 return -EINVAL;
972
973 if (size <= seg_max)
974 dmalen = 1;
975 else {
976 dmalen = size / seg_max;
977 if (dmalen * seg_max < size)
978 dmalen++;
979 }
980 return dmalen;
981 }
982
d40_sg_2_dmalen(struct scatterlist * sgl,int sg_len,u32 data_width1,u32 data_width2)983 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
984 u32 data_width1, u32 data_width2)
985 {
986 struct scatterlist *sg;
987 int i;
988 int len = 0;
989 int ret;
990
991 for_each_sg(sgl, sg, sg_len, i) {
992 ret = d40_size_2_dmalen(sg_dma_len(sg),
993 data_width1, data_width2);
994 if (ret < 0)
995 return ret;
996 len += ret;
997 }
998 return len;
999 }
1000
1001
1002 #ifdef CONFIG_PM
dma40_backup(void __iomem * baseaddr,u32 * backup,u32 * regaddr,int num,bool save)1003 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1004 u32 *regaddr, int num, bool save)
1005 {
1006 int i;
1007
1008 for (i = 0; i < num; i++) {
1009 void __iomem *addr = baseaddr + regaddr[i];
1010
1011 if (save)
1012 backup[i] = readl_relaxed(addr);
1013 else
1014 writel_relaxed(backup[i], addr);
1015 }
1016 }
1017
d40_save_restore_registers(struct d40_base * base,bool save)1018 static void d40_save_restore_registers(struct d40_base *base, bool save)
1019 {
1020 int i;
1021
1022 /* Save/Restore channel specific registers */
1023 for (i = 0; i < base->num_phy_chans; i++) {
1024 void __iomem *addr;
1025 int idx;
1026
1027 if (base->phy_res[i].reserved)
1028 continue;
1029
1030 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1031 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1032
1033 dma40_backup(addr, &base->reg_val_backup_chan[idx],
1034 d40_backup_regs_chan,
1035 ARRAY_SIZE(d40_backup_regs_chan),
1036 save);
1037 }
1038
1039 /* Save/Restore global registers */
1040 dma40_backup(base->virtbase, base->reg_val_backup,
1041 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1042 save);
1043
1044 /* Save/Restore registers only existing on dma40 v3 and later */
1045 if (base->gen_dmac.backup)
1046 dma40_backup(base->virtbase, base->reg_val_backup_v4,
1047 base->gen_dmac.backup,
1048 base->gen_dmac.backup_size,
1049 save);
1050 }
1051 #else
d40_save_restore_registers(struct d40_base * base,bool save)1052 static void d40_save_restore_registers(struct d40_base *base, bool save)
1053 {
1054 }
1055 #endif
1056
__d40_execute_command_phy(struct d40_chan * d40c,enum d40_command command)1057 static int __d40_execute_command_phy(struct d40_chan *d40c,
1058 enum d40_command command)
1059 {
1060 u32 status;
1061 int i;
1062 void __iomem *active_reg;
1063 int ret = 0;
1064 unsigned long flags;
1065 u32 wmask;
1066
1067 if (command == D40_DMA_STOP) {
1068 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1069 if (ret)
1070 return ret;
1071 }
1072
1073 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1074
1075 if (d40c->phy_chan->num % 2 == 0)
1076 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1077 else
1078 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1079
1080 if (command == D40_DMA_SUSPEND_REQ) {
1081 status = (readl(active_reg) &
1082 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1083 D40_CHAN_POS(d40c->phy_chan->num);
1084
1085 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1086 goto done;
1087 }
1088
1089 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1090 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1091 active_reg);
1092
1093 if (command == D40_DMA_SUSPEND_REQ) {
1094
1095 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1096 status = (readl(active_reg) &
1097 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1098 D40_CHAN_POS(d40c->phy_chan->num);
1099
1100 cpu_relax();
1101 /*
1102 * Reduce the number of bus accesses while
1103 * waiting for the DMA to suspend.
1104 */
1105 udelay(3);
1106
1107 if (status == D40_DMA_STOP ||
1108 status == D40_DMA_SUSPENDED)
1109 break;
1110 }
1111
1112 if (i == D40_SUSPEND_MAX_IT) {
1113 chan_err(d40c,
1114 "unable to suspend the chl %d (log: %d) status %x\n",
1115 d40c->phy_chan->num, d40c->log_num,
1116 status);
1117 dump_stack();
1118 ret = -EBUSY;
1119 }
1120
1121 }
1122 done:
1123 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1124 return ret;
1125 }
1126
d40_term_all(struct d40_chan * d40c)1127 static void d40_term_all(struct d40_chan *d40c)
1128 {
1129 struct d40_desc *d40d;
1130 struct d40_desc *_d;
1131
1132 /* Release completed descriptors */
1133 while ((d40d = d40_first_done(d40c))) {
1134 d40_desc_remove(d40d);
1135 d40_desc_free(d40c, d40d);
1136 }
1137
1138 /* Release active descriptors */
1139 while ((d40d = d40_first_active_get(d40c))) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1142 }
1143
1144 /* Release queued descriptors waiting for transfer */
1145 while ((d40d = d40_first_queued(d40c))) {
1146 d40_desc_remove(d40d);
1147 d40_desc_free(d40c, d40d);
1148 }
1149
1150 /* Release pending descriptors */
1151 while ((d40d = d40_first_pending(d40c))) {
1152 d40_desc_remove(d40d);
1153 d40_desc_free(d40c, d40d);
1154 }
1155
1156 /* Release client owned descriptors */
1157 if (!list_empty(&d40c->client))
1158 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1159 d40_desc_remove(d40d);
1160 d40_desc_free(d40c, d40d);
1161 }
1162
1163 /* Release descriptors in prepare queue */
1164 if (!list_empty(&d40c->prepare_queue))
1165 list_for_each_entry_safe(d40d, _d,
1166 &d40c->prepare_queue, node) {
1167 d40_desc_remove(d40d);
1168 d40_desc_free(d40c, d40d);
1169 }
1170
1171 d40c->pending_tx = 0;
1172 }
1173
__d40_config_set_event(struct d40_chan * d40c,enum d40_events event_type,u32 event,int reg)1174 static void __d40_config_set_event(struct d40_chan *d40c,
1175 enum d40_events event_type, u32 event,
1176 int reg)
1177 {
1178 void __iomem *addr = chan_base(d40c) + reg;
1179 int tries;
1180 u32 status;
1181
1182 switch (event_type) {
1183
1184 case D40_DEACTIVATE_EVENTLINE:
1185
1186 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1187 | ~D40_EVENTLINE_MASK(event), addr);
1188 break;
1189
1190 case D40_SUSPEND_REQ_EVENTLINE:
1191 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1192 D40_EVENTLINE_POS(event);
1193
1194 if (status == D40_DEACTIVATE_EVENTLINE ||
1195 status == D40_SUSPEND_REQ_EVENTLINE)
1196 break;
1197
1198 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1199 | ~D40_EVENTLINE_MASK(event), addr);
1200
1201 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1202
1203 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1204 D40_EVENTLINE_POS(event);
1205
1206 cpu_relax();
1207 /*
1208 * Reduce the number of bus accesses while
1209 * waiting for the DMA to suspend.
1210 */
1211 udelay(3);
1212
1213 if (status == D40_DEACTIVATE_EVENTLINE)
1214 break;
1215 }
1216
1217 if (tries == D40_SUSPEND_MAX_IT) {
1218 chan_err(d40c,
1219 "unable to stop the event_line chl %d (log: %d)"
1220 "status %x\n", d40c->phy_chan->num,
1221 d40c->log_num, status);
1222 }
1223 break;
1224
1225 case D40_ACTIVATE_EVENTLINE:
1226 /*
1227 * The hardware sometimes doesn't register the enable when src and dst
1228 * event lines are active on the same logical channel. Retry to ensure
1229 * it does. Usually only one retry is sufficient.
1230 */
1231 tries = 100;
1232 while (--tries) {
1233 writel((D40_ACTIVATE_EVENTLINE <<
1234 D40_EVENTLINE_POS(event)) |
1235 ~D40_EVENTLINE_MASK(event), addr);
1236
1237 if (readl(addr) & D40_EVENTLINE_MASK(event))
1238 break;
1239 }
1240
1241 if (tries != 99)
1242 dev_dbg(chan2dev(d40c),
1243 "[%s] workaround enable S%cLNK (%d tries)\n",
1244 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1245 100 - tries);
1246
1247 WARN_ON(!tries);
1248 break;
1249
1250 case D40_ROUND_EVENTLINE:
1251 BUG();
1252 break;
1253
1254 }
1255 }
1256
d40_config_set_event(struct d40_chan * d40c,enum d40_events event_type)1257 static void d40_config_set_event(struct d40_chan *d40c,
1258 enum d40_events event_type)
1259 {
1260 /* Enable event line connected to device (or memcpy) */
1261 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1262 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1263 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1264
1265 __d40_config_set_event(d40c, event_type, event,
1266 D40_CHAN_REG_SSLNK);
1267 }
1268
1269 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
1270 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1271
1272 __d40_config_set_event(d40c, event_type, event,
1273 D40_CHAN_REG_SDLNK);
1274 }
1275 }
1276
d40_chan_has_events(struct d40_chan * d40c)1277 static u32 d40_chan_has_events(struct d40_chan *d40c)
1278 {
1279 void __iomem *chanbase = chan_base(d40c);
1280 u32 val;
1281
1282 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1283 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1284
1285 return val;
1286 }
1287
1288 static int
__d40_execute_command_log(struct d40_chan * d40c,enum d40_command command)1289 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1290 {
1291 unsigned long flags;
1292 int ret = 0;
1293 u32 active_status;
1294 void __iomem *active_reg;
1295
1296 if (d40c->phy_chan->num % 2 == 0)
1297 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1298 else
1299 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1300
1301
1302 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1303
1304 switch (command) {
1305 case D40_DMA_STOP:
1306 case D40_DMA_SUSPEND_REQ:
1307
1308 active_status = (readl(active_reg) &
1309 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1310 D40_CHAN_POS(d40c->phy_chan->num);
1311
1312 if (active_status == D40_DMA_RUN)
1313 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1314 else
1315 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1316
1317 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1318 ret = __d40_execute_command_phy(d40c, command);
1319
1320 break;
1321
1322 case D40_DMA_RUN:
1323
1324 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1325 ret = __d40_execute_command_phy(d40c, command);
1326 break;
1327
1328 case D40_DMA_SUSPENDED:
1329 BUG();
1330 break;
1331 }
1332
1333 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1334 return ret;
1335 }
1336
d40_channel_execute_command(struct d40_chan * d40c,enum d40_command command)1337 static int d40_channel_execute_command(struct d40_chan *d40c,
1338 enum d40_command command)
1339 {
1340 if (chan_is_logical(d40c))
1341 return __d40_execute_command_log(d40c, command);
1342 else
1343 return __d40_execute_command_phy(d40c, command);
1344 }
1345
d40_get_prmo(struct d40_chan * d40c)1346 static u32 d40_get_prmo(struct d40_chan *d40c)
1347 {
1348 static const unsigned int phy_map[] = {
1349 [STEDMA40_PCHAN_BASIC_MODE]
1350 = D40_DREG_PRMO_PCHAN_BASIC,
1351 [STEDMA40_PCHAN_MODULO_MODE]
1352 = D40_DREG_PRMO_PCHAN_MODULO,
1353 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1354 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1355 };
1356 static const unsigned int log_map[] = {
1357 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1358 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1359 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1360 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1361 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1362 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1363 };
1364
1365 if (chan_is_physical(d40c))
1366 return phy_map[d40c->dma_cfg.mode_opt];
1367 else
1368 return log_map[d40c->dma_cfg.mode_opt];
1369 }
1370
d40_config_write(struct d40_chan * d40c)1371 static void d40_config_write(struct d40_chan *d40c)
1372 {
1373 u32 addr_base;
1374 u32 var;
1375
1376 /* Odd addresses are even addresses + 4 */
1377 addr_base = (d40c->phy_chan->num % 2) * 4;
1378 /* Setup channel mode to logical or physical */
1379 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1380 D40_CHAN_POS(d40c->phy_chan->num);
1381 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1382
1383 /* Setup operational mode option register */
1384 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1385
1386 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1387
1388 if (chan_is_logical(d40c)) {
1389 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1390 & D40_SREG_ELEM_LOG_LIDX_MASK;
1391 void __iomem *chanbase = chan_base(d40c);
1392
1393 /* Set default config for CFG reg */
1394 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1395 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1396
1397 /* Set LIDX for lcla */
1398 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1399 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1400
1401 /* Clear LNK which will be used by d40_chan_has_events() */
1402 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1403 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1404 }
1405 }
1406
d40_residue(struct d40_chan * d40c)1407 static u32 d40_residue(struct d40_chan *d40c)
1408 {
1409 u32 num_elt;
1410
1411 if (chan_is_logical(d40c))
1412 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1413 >> D40_MEM_LCSP2_ECNT_POS;
1414 else {
1415 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1416 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1417 >> D40_SREG_ELEM_PHY_ECNT_POS;
1418 }
1419
1420 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1421 }
1422
d40_tx_is_linked(struct d40_chan * d40c)1423 static bool d40_tx_is_linked(struct d40_chan *d40c)
1424 {
1425 bool is_link;
1426
1427 if (chan_is_logical(d40c))
1428 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1429 else
1430 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1431 & D40_SREG_LNK_PHYS_LNK_MASK;
1432
1433 return is_link;
1434 }
1435
d40_pause(struct d40_chan * d40c)1436 static int d40_pause(struct d40_chan *d40c)
1437 {
1438 int res = 0;
1439 unsigned long flags;
1440
1441 if (!d40c->busy)
1442 return 0;
1443
1444 pm_runtime_get_sync(d40c->base->dev);
1445 spin_lock_irqsave(&d40c->lock, flags);
1446
1447 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1448
1449 pm_runtime_mark_last_busy(d40c->base->dev);
1450 pm_runtime_put_autosuspend(d40c->base->dev);
1451 spin_unlock_irqrestore(&d40c->lock, flags);
1452 return res;
1453 }
1454
d40_resume(struct d40_chan * d40c)1455 static int d40_resume(struct d40_chan *d40c)
1456 {
1457 int res = 0;
1458 unsigned long flags;
1459
1460 if (!d40c->busy)
1461 return 0;
1462
1463 spin_lock_irqsave(&d40c->lock, flags);
1464 pm_runtime_get_sync(d40c->base->dev);
1465
1466 /* If bytes left to transfer or linked tx resume job */
1467 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1468 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1469
1470 pm_runtime_mark_last_busy(d40c->base->dev);
1471 pm_runtime_put_autosuspend(d40c->base->dev);
1472 spin_unlock_irqrestore(&d40c->lock, flags);
1473 return res;
1474 }
1475
d40_tx_submit(struct dma_async_tx_descriptor * tx)1476 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1477 {
1478 struct d40_chan *d40c = container_of(tx->chan,
1479 struct d40_chan,
1480 chan);
1481 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1482 unsigned long flags;
1483 dma_cookie_t cookie;
1484
1485 spin_lock_irqsave(&d40c->lock, flags);
1486 cookie = dma_cookie_assign(tx);
1487 d40_desc_queue(d40c, d40d);
1488 spin_unlock_irqrestore(&d40c->lock, flags);
1489
1490 return cookie;
1491 }
1492
d40_start(struct d40_chan * d40c)1493 static int d40_start(struct d40_chan *d40c)
1494 {
1495 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1496 }
1497
d40_queue_start(struct d40_chan * d40c)1498 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1499 {
1500 struct d40_desc *d40d;
1501 int err;
1502
1503 /* Start queued jobs, if any */
1504 d40d = d40_first_queued(d40c);
1505
1506 if (d40d != NULL) {
1507 if (!d40c->busy) {
1508 d40c->busy = true;
1509 pm_runtime_get_sync(d40c->base->dev);
1510 }
1511
1512 /* Remove from queue */
1513 d40_desc_remove(d40d);
1514
1515 /* Add to active queue */
1516 d40_desc_submit(d40c, d40d);
1517
1518 /* Initiate DMA job */
1519 d40_desc_load(d40c, d40d);
1520
1521 /* Start dma job */
1522 err = d40_start(d40c);
1523
1524 if (err)
1525 return NULL;
1526 }
1527
1528 return d40d;
1529 }
1530
1531 /* called from interrupt context */
dma_tc_handle(struct d40_chan * d40c)1532 static void dma_tc_handle(struct d40_chan *d40c)
1533 {
1534 struct d40_desc *d40d;
1535
1536 /* Get first active entry from list */
1537 d40d = d40_first_active_get(d40c);
1538
1539 if (d40d == NULL)
1540 return;
1541
1542 if (d40d->cyclic) {
1543 /*
1544 * If this was a paritially loaded list, we need to reloaded
1545 * it, and only when the list is completed. We need to check
1546 * for done because the interrupt will hit for every link, and
1547 * not just the last one.
1548 */
1549 if (d40d->lli_current < d40d->lli_len
1550 && !d40_tx_is_linked(d40c)
1551 && !d40_residue(d40c)) {
1552 d40_lcla_free_all(d40c, d40d);
1553 d40_desc_load(d40c, d40d);
1554 (void) d40_start(d40c);
1555
1556 if (d40d->lli_current == d40d->lli_len)
1557 d40d->lli_current = 0;
1558 }
1559 } else {
1560 d40_lcla_free_all(d40c, d40d);
1561
1562 if (d40d->lli_current < d40d->lli_len) {
1563 d40_desc_load(d40c, d40d);
1564 /* Start dma job */
1565 (void) d40_start(d40c);
1566 return;
1567 }
1568
1569 if (d40_queue_start(d40c) == NULL) {
1570 d40c->busy = false;
1571
1572 pm_runtime_mark_last_busy(d40c->base->dev);
1573 pm_runtime_put_autosuspend(d40c->base->dev);
1574 }
1575
1576 d40_desc_remove(d40d);
1577 d40_desc_done(d40c, d40d);
1578 }
1579
1580 d40c->pending_tx++;
1581 tasklet_schedule(&d40c->tasklet);
1582
1583 }
1584
dma_tasklet(unsigned long data)1585 static void dma_tasklet(unsigned long data)
1586 {
1587 struct d40_chan *d40c = (struct d40_chan *) data;
1588 struct d40_desc *d40d;
1589 unsigned long flags;
1590 dma_async_tx_callback callback;
1591 void *callback_param;
1592
1593 spin_lock_irqsave(&d40c->lock, flags);
1594
1595 /* Get first entry from the done list */
1596 d40d = d40_first_done(d40c);
1597 if (d40d == NULL) {
1598 /* Check if we have reached here for cyclic job */
1599 d40d = d40_first_active_get(d40c);
1600 if (d40d == NULL || !d40d->cyclic)
1601 goto err;
1602 }
1603
1604 if (!d40d->cyclic)
1605 dma_cookie_complete(&d40d->txd);
1606
1607 /*
1608 * If terminating a channel pending_tx is set to zero.
1609 * This prevents any finished active jobs to return to the client.
1610 */
1611 if (d40c->pending_tx == 0) {
1612 spin_unlock_irqrestore(&d40c->lock, flags);
1613 return;
1614 }
1615
1616 /* Callback to client */
1617 callback = d40d->txd.callback;
1618 callback_param = d40d->txd.callback_param;
1619
1620 if (!d40d->cyclic) {
1621 if (async_tx_test_ack(&d40d->txd)) {
1622 d40_desc_remove(d40d);
1623 d40_desc_free(d40c, d40d);
1624 } else if (!d40d->is_in_client_list) {
1625 d40_desc_remove(d40d);
1626 d40_lcla_free_all(d40c, d40d);
1627 list_add_tail(&d40d->node, &d40c->client);
1628 d40d->is_in_client_list = true;
1629 }
1630 }
1631
1632 d40c->pending_tx--;
1633
1634 if (d40c->pending_tx)
1635 tasklet_schedule(&d40c->tasklet);
1636
1637 spin_unlock_irqrestore(&d40c->lock, flags);
1638
1639 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1640 callback(callback_param);
1641
1642 return;
1643
1644 err:
1645 /* Rescue manouver if receiving double interrupts */
1646 if (d40c->pending_tx > 0)
1647 d40c->pending_tx--;
1648 spin_unlock_irqrestore(&d40c->lock, flags);
1649 }
1650
d40_handle_interrupt(int irq,void * data)1651 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1652 {
1653 int i;
1654 u32 idx;
1655 u32 row;
1656 long chan = -1;
1657 struct d40_chan *d40c;
1658 unsigned long flags;
1659 struct d40_base *base = data;
1660 u32 regs[base->gen_dmac.il_size];
1661 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1662 u32 il_size = base->gen_dmac.il_size;
1663
1664 spin_lock_irqsave(&base->interrupt_lock, flags);
1665
1666 /* Read interrupt status of both logical and physical channels */
1667 for (i = 0; i < il_size; i++)
1668 regs[i] = readl(base->virtbase + il[i].src);
1669
1670 for (;;) {
1671
1672 chan = find_next_bit((unsigned long *)regs,
1673 BITS_PER_LONG * il_size, chan + 1);
1674
1675 /* No more set bits found? */
1676 if (chan == BITS_PER_LONG * il_size)
1677 break;
1678
1679 row = chan / BITS_PER_LONG;
1680 idx = chan & (BITS_PER_LONG - 1);
1681
1682 if (il[row].offset == D40_PHY_CHAN)
1683 d40c = base->lookup_phy_chans[idx];
1684 else
1685 d40c = base->lookup_log_chans[il[row].offset + idx];
1686
1687 if (!d40c) {
1688 /*
1689 * No error because this can happen if something else
1690 * in the system is using the channel.
1691 */
1692 continue;
1693 }
1694
1695 /* ACK interrupt */
1696 writel(1 << idx, base->virtbase + il[row].clr);
1697
1698 spin_lock(&d40c->lock);
1699
1700 if (!il[row].is_error)
1701 dma_tc_handle(d40c);
1702 else
1703 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1704 chan, il[row].offset, idx);
1705
1706 spin_unlock(&d40c->lock);
1707 }
1708
1709 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1710
1711 return IRQ_HANDLED;
1712 }
1713
d40_validate_conf(struct d40_chan * d40c,struct stedma40_chan_cfg * conf)1714 static int d40_validate_conf(struct d40_chan *d40c,
1715 struct stedma40_chan_cfg *conf)
1716 {
1717 int res = 0;
1718 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1719 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1720 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1721
1722 if (!conf->dir) {
1723 chan_err(d40c, "Invalid direction.\n");
1724 res = -EINVAL;
1725 }
1726
1727 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1728 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1729 d40c->runtime_addr == 0) {
1730
1731 chan_err(d40c, "Invalid TX channel address (%d)\n",
1732 conf->dst_dev_type);
1733 res = -EINVAL;
1734 }
1735
1736 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1737 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1738 d40c->runtime_addr == 0) {
1739 chan_err(d40c, "Invalid RX channel address (%d)\n",
1740 conf->src_dev_type);
1741 res = -EINVAL;
1742 }
1743
1744 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1745 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1746 chan_err(d40c, "Invalid dst\n");
1747 res = -EINVAL;
1748 }
1749
1750 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1751 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1752 chan_err(d40c, "Invalid src\n");
1753 res = -EINVAL;
1754 }
1755
1756 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1757 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1758 chan_err(d40c, "No event line\n");
1759 res = -EINVAL;
1760 }
1761
1762 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1763 (src_event_group != dst_event_group)) {
1764 chan_err(d40c, "Invalid event group\n");
1765 res = -EINVAL;
1766 }
1767
1768 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1769 /*
1770 * DMAC HW supports it. Will be added to this driver,
1771 * in case any dma client requires it.
1772 */
1773 chan_err(d40c, "periph to periph not supported\n");
1774 res = -EINVAL;
1775 }
1776
1777 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1778 (1 << conf->src_info.data_width) !=
1779 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1780 (1 << conf->dst_info.data_width)) {
1781 /*
1782 * The DMAC hardware only supports
1783 * src (burst x width) == dst (burst x width)
1784 */
1785
1786 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1787 res = -EINVAL;
1788 }
1789
1790 return res;
1791 }
1792
d40_alloc_mask_set(struct d40_phy_res * phy,bool is_src,int log_event_line,bool is_log,bool * first_user)1793 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1794 bool is_src, int log_event_line, bool is_log,
1795 bool *first_user)
1796 {
1797 unsigned long flags;
1798 spin_lock_irqsave(&phy->lock, flags);
1799
1800 *first_user = ((phy->allocated_src | phy->allocated_dst)
1801 == D40_ALLOC_FREE);
1802
1803 if (!is_log) {
1804 /* Physical interrupts are masked per physical full channel */
1805 if (phy->allocated_src == D40_ALLOC_FREE &&
1806 phy->allocated_dst == D40_ALLOC_FREE) {
1807 phy->allocated_dst = D40_ALLOC_PHY;
1808 phy->allocated_src = D40_ALLOC_PHY;
1809 goto found;
1810 } else
1811 goto not_found;
1812 }
1813
1814 /* Logical channel */
1815 if (is_src) {
1816 if (phy->allocated_src == D40_ALLOC_PHY)
1817 goto not_found;
1818
1819 if (phy->allocated_src == D40_ALLOC_FREE)
1820 phy->allocated_src = D40_ALLOC_LOG_FREE;
1821
1822 if (!(phy->allocated_src & (1 << log_event_line))) {
1823 phy->allocated_src |= 1 << log_event_line;
1824 goto found;
1825 } else
1826 goto not_found;
1827 } else {
1828 if (phy->allocated_dst == D40_ALLOC_PHY)
1829 goto not_found;
1830
1831 if (phy->allocated_dst == D40_ALLOC_FREE)
1832 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1833
1834 if (!(phy->allocated_dst & (1 << log_event_line))) {
1835 phy->allocated_dst |= 1 << log_event_line;
1836 goto found;
1837 } else
1838 goto not_found;
1839 }
1840
1841 not_found:
1842 spin_unlock_irqrestore(&phy->lock, flags);
1843 return false;
1844 found:
1845 spin_unlock_irqrestore(&phy->lock, flags);
1846 return true;
1847 }
1848
d40_alloc_mask_free(struct d40_phy_res * phy,bool is_src,int log_event_line)1849 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1850 int log_event_line)
1851 {
1852 unsigned long flags;
1853 bool is_free = false;
1854
1855 spin_lock_irqsave(&phy->lock, flags);
1856 if (!log_event_line) {
1857 phy->allocated_dst = D40_ALLOC_FREE;
1858 phy->allocated_src = D40_ALLOC_FREE;
1859 is_free = true;
1860 goto out;
1861 }
1862
1863 /* Logical channel */
1864 if (is_src) {
1865 phy->allocated_src &= ~(1 << log_event_line);
1866 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1867 phy->allocated_src = D40_ALLOC_FREE;
1868 } else {
1869 phy->allocated_dst &= ~(1 << log_event_line);
1870 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1871 phy->allocated_dst = D40_ALLOC_FREE;
1872 }
1873
1874 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1875 D40_ALLOC_FREE);
1876
1877 out:
1878 spin_unlock_irqrestore(&phy->lock, flags);
1879
1880 return is_free;
1881 }
1882
d40_allocate_channel(struct d40_chan * d40c,bool * first_phy_user)1883 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1884 {
1885 int dev_type;
1886 int event_group;
1887 int event_line;
1888 struct d40_phy_res *phys;
1889 int i;
1890 int j;
1891 int log_num;
1892 int num_phy_chans;
1893 bool is_src;
1894 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1895
1896 phys = d40c->base->phy_res;
1897 num_phy_chans = d40c->base->num_phy_chans;
1898
1899 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1900 dev_type = d40c->dma_cfg.src_dev_type;
1901 log_num = 2 * dev_type;
1902 is_src = true;
1903 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1904 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1905 /* dst event lines are used for logical memcpy */
1906 dev_type = d40c->dma_cfg.dst_dev_type;
1907 log_num = 2 * dev_type + 1;
1908 is_src = false;
1909 } else
1910 return -EINVAL;
1911
1912 event_group = D40_TYPE_TO_GROUP(dev_type);
1913 event_line = D40_TYPE_TO_EVENT(dev_type);
1914
1915 if (!is_log) {
1916 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1917 /* Find physical half channel */
1918 if (d40c->dma_cfg.use_fixed_channel) {
1919 i = d40c->dma_cfg.phy_channel;
1920 if (d40_alloc_mask_set(&phys[i], is_src,
1921 0, is_log,
1922 first_phy_user))
1923 goto found_phy;
1924 } else {
1925 for (i = 0; i < num_phy_chans; i++) {
1926 if (d40_alloc_mask_set(&phys[i], is_src,
1927 0, is_log,
1928 first_phy_user))
1929 goto found_phy;
1930 }
1931 }
1932 } else
1933 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1934 int phy_num = j + event_group * 2;
1935 for (i = phy_num; i < phy_num + 2; i++) {
1936 if (d40_alloc_mask_set(&phys[i],
1937 is_src,
1938 0,
1939 is_log,
1940 first_phy_user))
1941 goto found_phy;
1942 }
1943 }
1944 return -EINVAL;
1945 found_phy:
1946 d40c->phy_chan = &phys[i];
1947 d40c->log_num = D40_PHY_CHAN;
1948 goto out;
1949 }
1950 if (dev_type == -1)
1951 return -EINVAL;
1952
1953 /* Find logical channel */
1954 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1955 int phy_num = j + event_group * 2;
1956
1957 if (d40c->dma_cfg.use_fixed_channel) {
1958 i = d40c->dma_cfg.phy_channel;
1959
1960 if ((i != phy_num) && (i != phy_num + 1)) {
1961 dev_err(chan2dev(d40c),
1962 "invalid fixed phy channel %d\n", i);
1963 return -EINVAL;
1964 }
1965
1966 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1967 is_log, first_phy_user))
1968 goto found_log;
1969
1970 dev_err(chan2dev(d40c),
1971 "could not allocate fixed phy channel %d\n", i);
1972 return -EINVAL;
1973 }
1974
1975 /*
1976 * Spread logical channels across all available physical rather
1977 * than pack every logical channel at the first available phy
1978 * channels.
1979 */
1980 if (is_src) {
1981 for (i = phy_num; i < phy_num + 2; i++) {
1982 if (d40_alloc_mask_set(&phys[i], is_src,
1983 event_line, is_log,
1984 first_phy_user))
1985 goto found_log;
1986 }
1987 } else {
1988 for (i = phy_num + 1; i >= phy_num; i--) {
1989 if (d40_alloc_mask_set(&phys[i], is_src,
1990 event_line, is_log,
1991 first_phy_user))
1992 goto found_log;
1993 }
1994 }
1995 }
1996 return -EINVAL;
1997
1998 found_log:
1999 d40c->phy_chan = &phys[i];
2000 d40c->log_num = log_num;
2001 out:
2002
2003 if (is_log)
2004 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2005 else
2006 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2007
2008 return 0;
2009
2010 }
2011
d40_config_memcpy(struct d40_chan * d40c)2012 static int d40_config_memcpy(struct d40_chan *d40c)
2013 {
2014 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2015
2016 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2017 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
2018 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
2019 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
2020 memcpy[d40c->chan.chan_id];
2021
2022 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
2023 dma_has_cap(DMA_SLAVE, cap)) {
2024 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
2025 } else {
2026 chan_err(d40c, "No memcpy\n");
2027 return -EINVAL;
2028 }
2029
2030 return 0;
2031 }
2032
d40_free_dma(struct d40_chan * d40c)2033 static int d40_free_dma(struct d40_chan *d40c)
2034 {
2035
2036 int res = 0;
2037 u32 event;
2038 struct d40_phy_res *phy = d40c->phy_chan;
2039 bool is_src;
2040
2041 /* Terminate all queued and active transfers */
2042 d40_term_all(d40c);
2043
2044 if (phy == NULL) {
2045 chan_err(d40c, "phy == null\n");
2046 return -EINVAL;
2047 }
2048
2049 if (phy->allocated_src == D40_ALLOC_FREE &&
2050 phy->allocated_dst == D40_ALLOC_FREE) {
2051 chan_err(d40c, "channel already free\n");
2052 return -EINVAL;
2053 }
2054
2055 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2056 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
2057 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
2058 is_src = false;
2059 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
2060 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
2061 is_src = true;
2062 } else {
2063 chan_err(d40c, "Unknown direction\n");
2064 return -EINVAL;
2065 }
2066
2067 pm_runtime_get_sync(d40c->base->dev);
2068 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2069 if (res) {
2070 chan_err(d40c, "stop failed\n");
2071 goto out;
2072 }
2073
2074 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2075
2076 if (chan_is_logical(d40c))
2077 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2078 else
2079 d40c->base->lookup_phy_chans[phy->num] = NULL;
2080
2081 if (d40c->busy) {
2082 pm_runtime_mark_last_busy(d40c->base->dev);
2083 pm_runtime_put_autosuspend(d40c->base->dev);
2084 }
2085
2086 d40c->busy = false;
2087 d40c->phy_chan = NULL;
2088 d40c->configured = false;
2089 out:
2090
2091 pm_runtime_mark_last_busy(d40c->base->dev);
2092 pm_runtime_put_autosuspend(d40c->base->dev);
2093 return res;
2094 }
2095
d40_is_paused(struct d40_chan * d40c)2096 static bool d40_is_paused(struct d40_chan *d40c)
2097 {
2098 void __iomem *chanbase = chan_base(d40c);
2099 bool is_paused = false;
2100 unsigned long flags;
2101 void __iomem *active_reg;
2102 u32 status;
2103 u32 event;
2104
2105 spin_lock_irqsave(&d40c->lock, flags);
2106
2107 if (chan_is_physical(d40c)) {
2108 if (d40c->phy_chan->num % 2 == 0)
2109 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2110 else
2111 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2112
2113 status = (readl(active_reg) &
2114 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2115 D40_CHAN_POS(d40c->phy_chan->num);
2116 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2117 is_paused = true;
2118
2119 goto _exit;
2120 }
2121
2122 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
2123 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
2124 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
2125 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2126 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
2127 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
2128 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2129 } else {
2130 chan_err(d40c, "Unknown direction\n");
2131 goto _exit;
2132 }
2133
2134 status = (status & D40_EVENTLINE_MASK(event)) >>
2135 D40_EVENTLINE_POS(event);
2136
2137 if (status != D40_DMA_RUN)
2138 is_paused = true;
2139 _exit:
2140 spin_unlock_irqrestore(&d40c->lock, flags);
2141 return is_paused;
2142
2143 }
2144
stedma40_residue(struct dma_chan * chan)2145 static u32 stedma40_residue(struct dma_chan *chan)
2146 {
2147 struct d40_chan *d40c =
2148 container_of(chan, struct d40_chan, chan);
2149 u32 bytes_left;
2150 unsigned long flags;
2151
2152 spin_lock_irqsave(&d40c->lock, flags);
2153 bytes_left = d40_residue(d40c);
2154 spin_unlock_irqrestore(&d40c->lock, flags);
2155
2156 return bytes_left;
2157 }
2158
2159 static int
d40_prep_sg_log(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)2160 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2161 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2162 unsigned int sg_len, dma_addr_t src_dev_addr,
2163 dma_addr_t dst_dev_addr)
2164 {
2165 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2166 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2167 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2168 int ret;
2169
2170 ret = d40_log_sg_to_lli(sg_src, sg_len,
2171 src_dev_addr,
2172 desc->lli_log.src,
2173 chan->log_def.lcsp1,
2174 src_info->data_width,
2175 dst_info->data_width);
2176
2177 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2178 dst_dev_addr,
2179 desc->lli_log.dst,
2180 chan->log_def.lcsp3,
2181 dst_info->data_width,
2182 src_info->data_width);
2183
2184 return ret < 0 ? ret : 0;
2185 }
2186
2187 static int
d40_prep_sg_phy(struct d40_chan * chan,struct d40_desc * desc,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,dma_addr_t src_dev_addr,dma_addr_t dst_dev_addr)2188 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2189 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2190 unsigned int sg_len, dma_addr_t src_dev_addr,
2191 dma_addr_t dst_dev_addr)
2192 {
2193 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2194 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2195 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2196 unsigned long flags = 0;
2197 int ret;
2198
2199 if (desc->cyclic)
2200 flags |= LLI_CYCLIC | LLI_TERM_INT;
2201
2202 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2203 desc->lli_phy.src,
2204 virt_to_phys(desc->lli_phy.src),
2205 chan->src_def_cfg,
2206 src_info, dst_info, flags);
2207
2208 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2209 desc->lli_phy.dst,
2210 virt_to_phys(desc->lli_phy.dst),
2211 chan->dst_def_cfg,
2212 dst_info, src_info, flags);
2213
2214 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2215 desc->lli_pool.size, DMA_TO_DEVICE);
2216
2217 return ret < 0 ? ret : 0;
2218 }
2219
2220 static struct d40_desc *
d40_prep_desc(struct d40_chan * chan,struct scatterlist * sg,unsigned int sg_len,unsigned long dma_flags)2221 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2222 unsigned int sg_len, unsigned long dma_flags)
2223 {
2224 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2225 struct d40_desc *desc;
2226 int ret;
2227
2228 desc = d40_desc_get(chan);
2229 if (!desc)
2230 return NULL;
2231
2232 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2233 cfg->dst_info.data_width);
2234 if (desc->lli_len < 0) {
2235 chan_err(chan, "Unaligned size\n");
2236 goto err;
2237 }
2238
2239 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2240 if (ret < 0) {
2241 chan_err(chan, "Could not allocate lli\n");
2242 goto err;
2243 }
2244
2245 desc->lli_current = 0;
2246 desc->txd.flags = dma_flags;
2247 desc->txd.tx_submit = d40_tx_submit;
2248
2249 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2250
2251 return desc;
2252
2253 err:
2254 d40_desc_free(chan, desc);
2255 return NULL;
2256 }
2257
2258 static dma_addr_t
d40_get_dev_addr(struct d40_chan * chan,enum dma_transfer_direction direction)2259 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2260 {
2261 struct stedma40_platform_data *plat = chan->base->plat_data;
2262 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2263 dma_addr_t addr = 0;
2264
2265 if (chan->runtime_addr)
2266 return chan->runtime_addr;
2267
2268 if (direction == DMA_DEV_TO_MEM)
2269 addr = plat->dev_rx[cfg->src_dev_type];
2270 else if (direction == DMA_MEM_TO_DEV)
2271 addr = plat->dev_tx[cfg->dst_dev_type];
2272
2273 return addr;
2274 }
2275
2276 static struct dma_async_tx_descriptor *
d40_prep_sg(struct dma_chan * dchan,struct scatterlist * sg_src,struct scatterlist * sg_dst,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags)2277 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2278 struct scatterlist *sg_dst, unsigned int sg_len,
2279 enum dma_transfer_direction direction, unsigned long dma_flags)
2280 {
2281 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2282 dma_addr_t src_dev_addr = 0;
2283 dma_addr_t dst_dev_addr = 0;
2284 struct d40_desc *desc;
2285 unsigned long flags;
2286 int ret;
2287
2288 if (!chan->phy_chan) {
2289 chan_err(chan, "Cannot prepare unallocated channel\n");
2290 return NULL;
2291 }
2292
2293 spin_lock_irqsave(&chan->lock, flags);
2294
2295 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2296 if (desc == NULL)
2297 goto err;
2298
2299 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2300 desc->cyclic = true;
2301
2302 if (direction != DMA_TRANS_NONE) {
2303 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2304
2305 if (direction == DMA_DEV_TO_MEM)
2306 src_dev_addr = dev_addr;
2307 else if (direction == DMA_MEM_TO_DEV)
2308 dst_dev_addr = dev_addr;
2309 }
2310
2311 if (chan_is_logical(chan))
2312 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2313 sg_len, src_dev_addr, dst_dev_addr);
2314 else
2315 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2316 sg_len, src_dev_addr, dst_dev_addr);
2317
2318 if (ret) {
2319 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2320 chan_is_logical(chan) ? "log" : "phy", ret);
2321 goto err;
2322 }
2323
2324 /*
2325 * add descriptor to the prepare queue in order to be able
2326 * to free them later in terminate_all
2327 */
2328 list_add_tail(&desc->node, &chan->prepare_queue);
2329
2330 spin_unlock_irqrestore(&chan->lock, flags);
2331
2332 return &desc->txd;
2333
2334 err:
2335 if (desc)
2336 d40_desc_free(chan, desc);
2337 spin_unlock_irqrestore(&chan->lock, flags);
2338 return NULL;
2339 }
2340
stedma40_filter(struct dma_chan * chan,void * data)2341 bool stedma40_filter(struct dma_chan *chan, void *data)
2342 {
2343 struct stedma40_chan_cfg *info = data;
2344 struct d40_chan *d40c =
2345 container_of(chan, struct d40_chan, chan);
2346 int err;
2347
2348 if (data) {
2349 err = d40_validate_conf(d40c, info);
2350 if (!err)
2351 d40c->dma_cfg = *info;
2352 } else
2353 err = d40_config_memcpy(d40c);
2354
2355 if (!err)
2356 d40c->configured = true;
2357
2358 return err == 0;
2359 }
2360 EXPORT_SYMBOL(stedma40_filter);
2361
__d40_set_prio_rt(struct d40_chan * d40c,int dev_type,bool src)2362 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2363 {
2364 bool realtime = d40c->dma_cfg.realtime;
2365 bool highprio = d40c->dma_cfg.high_priority;
2366 u32 rtreg;
2367 u32 event = D40_TYPE_TO_EVENT(dev_type);
2368 u32 group = D40_TYPE_TO_GROUP(dev_type);
2369 u32 bit = 1 << event;
2370 u32 prioreg;
2371 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2372
2373 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2374 /*
2375 * Due to a hardware bug, in some cases a logical channel triggered by
2376 * a high priority destination event line can generate extra packet
2377 * transactions.
2378 *
2379 * The workaround is to not set the high priority level for the
2380 * destination event lines that trigger logical channels.
2381 */
2382 if (!src && chan_is_logical(d40c))
2383 highprio = false;
2384
2385 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2386
2387 /* Destination event lines are stored in the upper halfword */
2388 if (!src)
2389 bit <<= 16;
2390
2391 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2392 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2393 }
2394
d40_set_prio_realtime(struct d40_chan * d40c)2395 static void d40_set_prio_realtime(struct d40_chan *d40c)
2396 {
2397 if (d40c->base->rev < 3)
2398 return;
2399
2400 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
2401 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2402 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2403
2404 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
2405 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2406 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2407 }
2408
2409 /* DMA ENGINE functions */
d40_alloc_chan_resources(struct dma_chan * chan)2410 static int d40_alloc_chan_resources(struct dma_chan *chan)
2411 {
2412 int err;
2413 unsigned long flags;
2414 struct d40_chan *d40c =
2415 container_of(chan, struct d40_chan, chan);
2416 bool is_free_phy;
2417 spin_lock_irqsave(&d40c->lock, flags);
2418
2419 dma_cookie_init(chan);
2420
2421 /* If no dma configuration is set use default configuration (memcpy) */
2422 if (!d40c->configured) {
2423 err = d40_config_memcpy(d40c);
2424 if (err) {
2425 chan_err(d40c, "Failed to configure memcpy channel\n");
2426 goto fail;
2427 }
2428 }
2429
2430 err = d40_allocate_channel(d40c, &is_free_phy);
2431 if (err) {
2432 chan_err(d40c, "Failed to allocate channel\n");
2433 d40c->configured = false;
2434 goto fail;
2435 }
2436
2437 pm_runtime_get_sync(d40c->base->dev);
2438 /* Fill in basic CFG register values */
2439 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2440 &d40c->dst_def_cfg, chan_is_logical(d40c));
2441
2442 d40_set_prio_realtime(d40c);
2443
2444 if (chan_is_logical(d40c)) {
2445 d40_log_cfg(&d40c->dma_cfg,
2446 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2447
2448 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2449 d40c->lcpa = d40c->base->lcpa_base +
2450 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2451 else
2452 d40c->lcpa = d40c->base->lcpa_base +
2453 d40c->dma_cfg.dst_dev_type *
2454 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2455 }
2456
2457 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2458 chan_is_logical(d40c) ? "logical" : "physical",
2459 d40c->phy_chan->num,
2460 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2461
2462
2463 /*
2464 * Only write channel configuration to the DMA if the physical
2465 * resource is free. In case of multiple logical channels
2466 * on the same physical resource, only the first write is necessary.
2467 */
2468 if (is_free_phy)
2469 d40_config_write(d40c);
2470 fail:
2471 pm_runtime_mark_last_busy(d40c->base->dev);
2472 pm_runtime_put_autosuspend(d40c->base->dev);
2473 spin_unlock_irqrestore(&d40c->lock, flags);
2474 return err;
2475 }
2476
d40_free_chan_resources(struct dma_chan * chan)2477 static void d40_free_chan_resources(struct dma_chan *chan)
2478 {
2479 struct d40_chan *d40c =
2480 container_of(chan, struct d40_chan, chan);
2481 int err;
2482 unsigned long flags;
2483
2484 if (d40c->phy_chan == NULL) {
2485 chan_err(d40c, "Cannot free unallocated channel\n");
2486 return;
2487 }
2488
2489 spin_lock_irqsave(&d40c->lock, flags);
2490
2491 err = d40_free_dma(d40c);
2492
2493 if (err)
2494 chan_err(d40c, "Failed to free channel\n");
2495 spin_unlock_irqrestore(&d40c->lock, flags);
2496 }
2497
d40_prep_memcpy(struct dma_chan * chan,dma_addr_t dst,dma_addr_t src,size_t size,unsigned long dma_flags)2498 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2499 dma_addr_t dst,
2500 dma_addr_t src,
2501 size_t size,
2502 unsigned long dma_flags)
2503 {
2504 struct scatterlist dst_sg;
2505 struct scatterlist src_sg;
2506
2507 sg_init_table(&dst_sg, 1);
2508 sg_init_table(&src_sg, 1);
2509
2510 sg_dma_address(&dst_sg) = dst;
2511 sg_dma_address(&src_sg) = src;
2512
2513 sg_dma_len(&dst_sg) = size;
2514 sg_dma_len(&src_sg) = size;
2515
2516 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2517 }
2518
2519 static struct dma_async_tx_descriptor *
d40_prep_memcpy_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long dma_flags)2520 d40_prep_memcpy_sg(struct dma_chan *chan,
2521 struct scatterlist *dst_sg, unsigned int dst_nents,
2522 struct scatterlist *src_sg, unsigned int src_nents,
2523 unsigned long dma_flags)
2524 {
2525 if (dst_nents != src_nents)
2526 return NULL;
2527
2528 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2529 }
2530
2531 static struct dma_async_tx_descriptor *
d40_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long dma_flags,void * context)2532 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2533 unsigned int sg_len, enum dma_transfer_direction direction,
2534 unsigned long dma_flags, void *context)
2535 {
2536 if (!is_slave_direction(direction))
2537 return NULL;
2538
2539 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2540 }
2541
2542 static struct dma_async_tx_descriptor *
dma40_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags,void * context)2543 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2544 size_t buf_len, size_t period_len,
2545 enum dma_transfer_direction direction, unsigned long flags,
2546 void *context)
2547 {
2548 unsigned int periods = buf_len / period_len;
2549 struct dma_async_tx_descriptor *txd;
2550 struct scatterlist *sg;
2551 int i;
2552
2553 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2554 for (i = 0; i < periods; i++) {
2555 sg_dma_address(&sg[i]) = dma_addr;
2556 sg_dma_len(&sg[i]) = period_len;
2557 dma_addr += period_len;
2558 }
2559
2560 sg[periods].offset = 0;
2561 sg_dma_len(&sg[periods]) = 0;
2562 sg[periods].page_link =
2563 ((unsigned long)sg | 0x01) & ~0x02;
2564
2565 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2566 DMA_PREP_INTERRUPT);
2567
2568 kfree(sg);
2569
2570 return txd;
2571 }
2572
d40_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)2573 static enum dma_status d40_tx_status(struct dma_chan *chan,
2574 dma_cookie_t cookie,
2575 struct dma_tx_state *txstate)
2576 {
2577 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2578 enum dma_status ret;
2579
2580 if (d40c->phy_chan == NULL) {
2581 chan_err(d40c, "Cannot read status of unallocated channel\n");
2582 return -EINVAL;
2583 }
2584
2585 ret = dma_cookie_status(chan, cookie, txstate);
2586 if (ret != DMA_SUCCESS)
2587 dma_set_residue(txstate, stedma40_residue(chan));
2588
2589 if (d40_is_paused(d40c))
2590 ret = DMA_PAUSED;
2591
2592 return ret;
2593 }
2594
d40_issue_pending(struct dma_chan * chan)2595 static void d40_issue_pending(struct dma_chan *chan)
2596 {
2597 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2598 unsigned long flags;
2599
2600 if (d40c->phy_chan == NULL) {
2601 chan_err(d40c, "Channel is not allocated!\n");
2602 return;
2603 }
2604
2605 spin_lock_irqsave(&d40c->lock, flags);
2606
2607 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2608
2609 /* Busy means that queued jobs are already being processed */
2610 if (!d40c->busy)
2611 (void) d40_queue_start(d40c);
2612
2613 spin_unlock_irqrestore(&d40c->lock, flags);
2614 }
2615
d40_terminate_all(struct dma_chan * chan)2616 static void d40_terminate_all(struct dma_chan *chan)
2617 {
2618 unsigned long flags;
2619 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2620 int ret;
2621
2622 spin_lock_irqsave(&d40c->lock, flags);
2623
2624 pm_runtime_get_sync(d40c->base->dev);
2625 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2626 if (ret)
2627 chan_err(d40c, "Failed to stop channel\n");
2628
2629 d40_term_all(d40c);
2630 pm_runtime_mark_last_busy(d40c->base->dev);
2631 pm_runtime_put_autosuspend(d40c->base->dev);
2632 if (d40c->busy) {
2633 pm_runtime_mark_last_busy(d40c->base->dev);
2634 pm_runtime_put_autosuspend(d40c->base->dev);
2635 }
2636 d40c->busy = false;
2637
2638 spin_unlock_irqrestore(&d40c->lock, flags);
2639 }
2640
2641 static int
dma40_config_to_halfchannel(struct d40_chan * d40c,struct stedma40_half_channel_info * info,enum dma_slave_buswidth width,u32 maxburst)2642 dma40_config_to_halfchannel(struct d40_chan *d40c,
2643 struct stedma40_half_channel_info *info,
2644 enum dma_slave_buswidth width,
2645 u32 maxburst)
2646 {
2647 enum stedma40_periph_data_width addr_width;
2648 int psize;
2649
2650 switch (width) {
2651 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2652 addr_width = STEDMA40_BYTE_WIDTH;
2653 break;
2654 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2655 addr_width = STEDMA40_HALFWORD_WIDTH;
2656 break;
2657 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2658 addr_width = STEDMA40_WORD_WIDTH;
2659 break;
2660 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2661 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2662 break;
2663 default:
2664 dev_err(d40c->base->dev,
2665 "illegal peripheral address width "
2666 "requested (%d)\n",
2667 width);
2668 return -EINVAL;
2669 }
2670
2671 if (chan_is_logical(d40c)) {
2672 if (maxburst >= 16)
2673 psize = STEDMA40_PSIZE_LOG_16;
2674 else if (maxburst >= 8)
2675 psize = STEDMA40_PSIZE_LOG_8;
2676 else if (maxburst >= 4)
2677 psize = STEDMA40_PSIZE_LOG_4;
2678 else
2679 psize = STEDMA40_PSIZE_LOG_1;
2680 } else {
2681 if (maxburst >= 16)
2682 psize = STEDMA40_PSIZE_PHY_16;
2683 else if (maxburst >= 8)
2684 psize = STEDMA40_PSIZE_PHY_8;
2685 else if (maxburst >= 4)
2686 psize = STEDMA40_PSIZE_PHY_4;
2687 else
2688 psize = STEDMA40_PSIZE_PHY_1;
2689 }
2690
2691 info->data_width = addr_width;
2692 info->psize = psize;
2693 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2694
2695 return 0;
2696 }
2697
2698 /* Runtime reconfiguration extension */
d40_set_runtime_config(struct dma_chan * chan,struct dma_slave_config * config)2699 static int d40_set_runtime_config(struct dma_chan *chan,
2700 struct dma_slave_config *config)
2701 {
2702 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2703 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2704 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2705 dma_addr_t config_addr;
2706 u32 src_maxburst, dst_maxburst;
2707 int ret;
2708
2709 src_addr_width = config->src_addr_width;
2710 src_maxburst = config->src_maxburst;
2711 dst_addr_width = config->dst_addr_width;
2712 dst_maxburst = config->dst_maxburst;
2713
2714 if (config->direction == DMA_DEV_TO_MEM) {
2715 dma_addr_t dev_addr_rx =
2716 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2717
2718 config_addr = config->src_addr;
2719 if (dev_addr_rx)
2720 dev_dbg(d40c->base->dev,
2721 "channel has a pre-wired RX address %08x "
2722 "overriding with %08x\n",
2723 dev_addr_rx, config_addr);
2724 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2725 dev_dbg(d40c->base->dev,
2726 "channel was not configured for peripheral "
2727 "to memory transfer (%d) overriding\n",
2728 cfg->dir);
2729 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2730
2731 /* Configure the memory side */
2732 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2733 dst_addr_width = src_addr_width;
2734 if (dst_maxburst == 0)
2735 dst_maxburst = src_maxburst;
2736
2737 } else if (config->direction == DMA_MEM_TO_DEV) {
2738 dma_addr_t dev_addr_tx =
2739 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2740
2741 config_addr = config->dst_addr;
2742 if (dev_addr_tx)
2743 dev_dbg(d40c->base->dev,
2744 "channel has a pre-wired TX address %08x "
2745 "overriding with %08x\n",
2746 dev_addr_tx, config_addr);
2747 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2748 dev_dbg(d40c->base->dev,
2749 "channel was not configured for memory "
2750 "to peripheral transfer (%d) overriding\n",
2751 cfg->dir);
2752 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2753
2754 /* Configure the memory side */
2755 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2756 src_addr_width = dst_addr_width;
2757 if (src_maxburst == 0)
2758 src_maxburst = dst_maxburst;
2759 } else {
2760 dev_err(d40c->base->dev,
2761 "unrecognized channel direction %d\n",
2762 config->direction);
2763 return -EINVAL;
2764 }
2765
2766 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2767 dev_err(d40c->base->dev,
2768 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2769 src_maxburst,
2770 src_addr_width,
2771 dst_maxburst,
2772 dst_addr_width);
2773 return -EINVAL;
2774 }
2775
2776 if (src_maxburst > 16) {
2777 src_maxburst = 16;
2778 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2779 } else if (dst_maxburst > 16) {
2780 dst_maxburst = 16;
2781 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2782 }
2783
2784 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2785 src_addr_width,
2786 src_maxburst);
2787 if (ret)
2788 return ret;
2789
2790 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2791 dst_addr_width,
2792 dst_maxburst);
2793 if (ret)
2794 return ret;
2795
2796 /* Fill in register values */
2797 if (chan_is_logical(d40c))
2798 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2799 else
2800 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2801 &d40c->dst_def_cfg, false);
2802
2803 /* These settings will take precedence later */
2804 d40c->runtime_addr = config_addr;
2805 d40c->runtime_direction = config->direction;
2806 dev_dbg(d40c->base->dev,
2807 "configured channel %s for %s, data width %d/%d, "
2808 "maxburst %d/%d elements, LE, no flow control\n",
2809 dma_chan_name(chan),
2810 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2811 src_addr_width, dst_addr_width,
2812 src_maxburst, dst_maxburst);
2813
2814 return 0;
2815 }
2816
d40_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)2817 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2818 unsigned long arg)
2819 {
2820 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2821
2822 if (d40c->phy_chan == NULL) {
2823 chan_err(d40c, "Channel is not allocated!\n");
2824 return -EINVAL;
2825 }
2826
2827 switch (cmd) {
2828 case DMA_TERMINATE_ALL:
2829 d40_terminate_all(chan);
2830 return 0;
2831 case DMA_PAUSE:
2832 return d40_pause(d40c);
2833 case DMA_RESUME:
2834 return d40_resume(d40c);
2835 case DMA_SLAVE_CONFIG:
2836 return d40_set_runtime_config(chan,
2837 (struct dma_slave_config *) arg);
2838 default:
2839 break;
2840 }
2841
2842 /* Other commands are unimplemented */
2843 return -ENXIO;
2844 }
2845
2846 /* Initialization functions */
2847
d40_chan_init(struct d40_base * base,struct dma_device * dma,struct d40_chan * chans,int offset,int num_chans)2848 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2849 struct d40_chan *chans, int offset,
2850 int num_chans)
2851 {
2852 int i = 0;
2853 struct d40_chan *d40c;
2854
2855 INIT_LIST_HEAD(&dma->channels);
2856
2857 for (i = offset; i < offset + num_chans; i++) {
2858 d40c = &chans[i];
2859 d40c->base = base;
2860 d40c->chan.device = dma;
2861
2862 spin_lock_init(&d40c->lock);
2863
2864 d40c->log_num = D40_PHY_CHAN;
2865
2866 INIT_LIST_HEAD(&d40c->done);
2867 INIT_LIST_HEAD(&d40c->active);
2868 INIT_LIST_HEAD(&d40c->queue);
2869 INIT_LIST_HEAD(&d40c->pending_queue);
2870 INIT_LIST_HEAD(&d40c->client);
2871 INIT_LIST_HEAD(&d40c->prepare_queue);
2872
2873 tasklet_init(&d40c->tasklet, dma_tasklet,
2874 (unsigned long) d40c);
2875
2876 list_add_tail(&d40c->chan.device_node,
2877 &dma->channels);
2878 }
2879 }
2880
d40_ops_init(struct d40_base * base,struct dma_device * dev)2881 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2882 {
2883 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2884 dev->device_prep_slave_sg = d40_prep_slave_sg;
2885
2886 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2887 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2888
2889 /*
2890 * This controller can only access address at even
2891 * 32bit boundaries, i.e. 2^2
2892 */
2893 dev->copy_align = 2;
2894 }
2895
2896 if (dma_has_cap(DMA_SG, dev->cap_mask))
2897 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2898
2899 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2900 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2901
2902 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2903 dev->device_free_chan_resources = d40_free_chan_resources;
2904 dev->device_issue_pending = d40_issue_pending;
2905 dev->device_tx_status = d40_tx_status;
2906 dev->device_control = d40_control;
2907 dev->dev = base->dev;
2908 }
2909
d40_dmaengine_init(struct d40_base * base,int num_reserved_chans)2910 static int __init d40_dmaengine_init(struct d40_base *base,
2911 int num_reserved_chans)
2912 {
2913 int err ;
2914
2915 d40_chan_init(base, &base->dma_slave, base->log_chans,
2916 0, base->num_log_chans);
2917
2918 dma_cap_zero(base->dma_slave.cap_mask);
2919 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2920 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2921
2922 d40_ops_init(base, &base->dma_slave);
2923
2924 err = dma_async_device_register(&base->dma_slave);
2925
2926 if (err) {
2927 d40_err(base->dev, "Failed to register slave channels\n");
2928 goto failure1;
2929 }
2930
2931 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2932 base->num_log_chans, base->plat_data->memcpy_len);
2933
2934 dma_cap_zero(base->dma_memcpy.cap_mask);
2935 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2936 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2937
2938 d40_ops_init(base, &base->dma_memcpy);
2939
2940 err = dma_async_device_register(&base->dma_memcpy);
2941
2942 if (err) {
2943 d40_err(base->dev,
2944 "Failed to regsiter memcpy only channels\n");
2945 goto failure2;
2946 }
2947
2948 d40_chan_init(base, &base->dma_both, base->phy_chans,
2949 0, num_reserved_chans);
2950
2951 dma_cap_zero(base->dma_both.cap_mask);
2952 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2953 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2954 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2955 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2956
2957 d40_ops_init(base, &base->dma_both);
2958 err = dma_async_device_register(&base->dma_both);
2959
2960 if (err) {
2961 d40_err(base->dev,
2962 "Failed to register logical and physical capable channels\n");
2963 goto failure3;
2964 }
2965 return 0;
2966 failure3:
2967 dma_async_device_unregister(&base->dma_memcpy);
2968 failure2:
2969 dma_async_device_unregister(&base->dma_slave);
2970 failure1:
2971 return err;
2972 }
2973
2974 /* Suspend resume functionality */
2975 #ifdef CONFIG_PM
dma40_pm_suspend(struct device * dev)2976 static int dma40_pm_suspend(struct device *dev)
2977 {
2978 struct platform_device *pdev = to_platform_device(dev);
2979 struct d40_base *base = platform_get_drvdata(pdev);
2980 int ret = 0;
2981
2982 if (base->lcpa_regulator)
2983 ret = regulator_disable(base->lcpa_regulator);
2984 return ret;
2985 }
2986
dma40_runtime_suspend(struct device * dev)2987 static int dma40_runtime_suspend(struct device *dev)
2988 {
2989 struct platform_device *pdev = to_platform_device(dev);
2990 struct d40_base *base = platform_get_drvdata(pdev);
2991
2992 d40_save_restore_registers(base, true);
2993
2994 /* Don't disable/enable clocks for v1 due to HW bugs */
2995 if (base->rev != 1)
2996 writel_relaxed(base->gcc_pwr_off_mask,
2997 base->virtbase + D40_DREG_GCC);
2998
2999 return 0;
3000 }
3001
dma40_runtime_resume(struct device * dev)3002 static int dma40_runtime_resume(struct device *dev)
3003 {
3004 struct platform_device *pdev = to_platform_device(dev);
3005 struct d40_base *base = platform_get_drvdata(pdev);
3006
3007 if (base->initialized)
3008 d40_save_restore_registers(base, false);
3009
3010 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3011 base->virtbase + D40_DREG_GCC);
3012 return 0;
3013 }
3014
dma40_resume(struct device * dev)3015 static int dma40_resume(struct device *dev)
3016 {
3017 struct platform_device *pdev = to_platform_device(dev);
3018 struct d40_base *base = platform_get_drvdata(pdev);
3019 int ret = 0;
3020
3021 if (base->lcpa_regulator)
3022 ret = regulator_enable(base->lcpa_regulator);
3023
3024 return ret;
3025 }
3026
3027 static const struct dev_pm_ops dma40_pm_ops = {
3028 .suspend = dma40_pm_suspend,
3029 .runtime_suspend = dma40_runtime_suspend,
3030 .runtime_resume = dma40_runtime_resume,
3031 .resume = dma40_resume,
3032 };
3033 #define DMA40_PM_OPS (&dma40_pm_ops)
3034 #else
3035 #define DMA40_PM_OPS NULL
3036 #endif
3037
3038 /* Initialization functions. */
3039
d40_phy_res_init(struct d40_base * base)3040 static int __init d40_phy_res_init(struct d40_base *base)
3041 {
3042 int i;
3043 int num_phy_chans_avail = 0;
3044 u32 val[2];
3045 int odd_even_bit = -2;
3046 int gcc = D40_DREG_GCC_ENA;
3047
3048 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3049 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3050
3051 for (i = 0; i < base->num_phy_chans; i++) {
3052 base->phy_res[i].num = i;
3053 odd_even_bit += 2 * ((i % 2) == 0);
3054 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3055 /* Mark security only channels as occupied */
3056 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3057 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3058 base->phy_res[i].reserved = true;
3059 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3060 D40_DREG_GCC_SRC);
3061 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3062 D40_DREG_GCC_DST);
3063
3064
3065 } else {
3066 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3067 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3068 base->phy_res[i].reserved = false;
3069 num_phy_chans_avail++;
3070 }
3071 spin_lock_init(&base->phy_res[i].lock);
3072 }
3073
3074 /* Mark disabled channels as occupied */
3075 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3076 int chan = base->plat_data->disabled_channels[i];
3077
3078 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3079 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3080 base->phy_res[chan].reserved = true;
3081 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3082 D40_DREG_GCC_SRC);
3083 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3084 D40_DREG_GCC_DST);
3085 num_phy_chans_avail--;
3086 }
3087
3088 /* Mark soft_lli channels */
3089 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3090 int chan = base->plat_data->soft_lli_chans[i];
3091
3092 base->phy_res[chan].use_soft_lli = true;
3093 }
3094
3095 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3096 num_phy_chans_avail, base->num_phy_chans);
3097
3098 /* Verify settings extended vs standard */
3099 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3100
3101 for (i = 0; i < base->num_phy_chans; i++) {
3102
3103 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3104 (val[0] & 0x3) != 1)
3105 dev_info(base->dev,
3106 "[%s] INFO: channel %d is misconfigured (%d)\n",
3107 __func__, i, val[0] & 0x3);
3108
3109 val[0] = val[0] >> 2;
3110 }
3111
3112 /*
3113 * To keep things simple, Enable all clocks initially.
3114 * The clocks will get managed later post channel allocation.
3115 * The clocks for the event lines on which reserved channels exists
3116 * are not managed here.
3117 */
3118 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3119 base->gcc_pwr_off_mask = gcc;
3120
3121 return num_phy_chans_avail;
3122 }
3123
d40_hw_detect_init(struct platform_device * pdev)3124 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3125 {
3126 struct stedma40_platform_data *plat_data;
3127 struct clk *clk = NULL;
3128 void __iomem *virtbase = NULL;
3129 struct resource *res = NULL;
3130 struct d40_base *base = NULL;
3131 int num_log_chans = 0;
3132 int num_phy_chans;
3133 int clk_ret = -EINVAL;
3134 int i;
3135 u32 pid;
3136 u32 cid;
3137 u8 rev;
3138
3139 clk = clk_get(&pdev->dev, NULL);
3140 if (IS_ERR(clk)) {
3141 d40_err(&pdev->dev, "No matching clock found\n");
3142 goto failure;
3143 }
3144
3145 clk_ret = clk_prepare_enable(clk);
3146 if (clk_ret) {
3147 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3148 goto failure;
3149 }
3150
3151 /* Get IO for DMAC base address */
3152 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3153 if (!res)
3154 goto failure;
3155
3156 if (request_mem_region(res->start, resource_size(res),
3157 D40_NAME " I/O base") == NULL)
3158 goto failure;
3159
3160 virtbase = ioremap(res->start, resource_size(res));
3161 if (!virtbase)
3162 goto failure;
3163
3164 /* This is just a regular AMBA PrimeCell ID actually */
3165 for (pid = 0, i = 0; i < 4; i++)
3166 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3167 & 255) << (i * 8);
3168 for (cid = 0, i = 0; i < 4; i++)
3169 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3170 & 255) << (i * 8);
3171
3172 if (cid != AMBA_CID) {
3173 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3174 goto failure;
3175 }
3176 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3177 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3178 AMBA_MANF_BITS(pid),
3179 AMBA_VENDOR_ST);
3180 goto failure;
3181 }
3182 /*
3183 * HW revision:
3184 * DB8500ed has revision 0
3185 * ? has revision 1
3186 * DB8500v1 has revision 2
3187 * DB8500v2 has revision 3
3188 * AP9540v1 has revision 4
3189 * DB8540v1 has revision 4
3190 */
3191 rev = AMBA_REV_BITS(pid);
3192
3193 plat_data = pdev->dev.platform_data;
3194
3195 /* The number of physical channels on this HW */
3196 if (plat_data->num_of_phy_chans)
3197 num_phy_chans = plat_data->num_of_phy_chans;
3198 else
3199 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3200
3201 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
3202 rev, res->start, num_phy_chans);
3203
3204 if (rev < 2) {
3205 d40_err(&pdev->dev, "hardware revision: %d is not supported",
3206 rev);
3207 goto failure;
3208 }
3209
3210 /* Count the number of logical channels in use */
3211 for (i = 0; i < plat_data->dev_len; i++)
3212 if (plat_data->dev_rx[i] != 0)
3213 num_log_chans++;
3214
3215 for (i = 0; i < plat_data->dev_len; i++)
3216 if (plat_data->dev_tx[i] != 0)
3217 num_log_chans++;
3218
3219 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3220 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
3221 sizeof(struct d40_chan), GFP_KERNEL);
3222
3223 if (base == NULL) {
3224 d40_err(&pdev->dev, "Out of memory\n");
3225 goto failure;
3226 }
3227
3228 base->rev = rev;
3229 base->clk = clk;
3230 base->num_phy_chans = num_phy_chans;
3231 base->num_log_chans = num_log_chans;
3232 base->phy_start = res->start;
3233 base->phy_size = resource_size(res);
3234 base->virtbase = virtbase;
3235 base->plat_data = plat_data;
3236 base->dev = &pdev->dev;
3237 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3238 base->log_chans = &base->phy_chans[num_phy_chans];
3239
3240 if (base->plat_data->num_of_phy_chans == 14) {
3241 base->gen_dmac.backup = d40_backup_regs_v4b;
3242 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3243 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3244 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3245 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3246 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3247 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3248 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3249 base->gen_dmac.il = il_v4b;
3250 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3251 base->gen_dmac.init_reg = dma_init_reg_v4b;
3252 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3253 } else {
3254 if (base->rev >= 3) {
3255 base->gen_dmac.backup = d40_backup_regs_v4a;
3256 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3257 }
3258 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3259 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3260 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3261 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3262 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3263 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3264 base->gen_dmac.il = il_v4a;
3265 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3266 base->gen_dmac.init_reg = dma_init_reg_v4a;
3267 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3268 }
3269
3270 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3271 GFP_KERNEL);
3272 if (!base->phy_res)
3273 goto failure;
3274
3275 base->lookup_phy_chans = kzalloc(num_phy_chans *
3276 sizeof(struct d40_chan *),
3277 GFP_KERNEL);
3278 if (!base->lookup_phy_chans)
3279 goto failure;
3280
3281 if (num_log_chans + plat_data->memcpy_len) {
3282 /*
3283 * The max number of logical channels are event lines for all
3284 * src devices and dst devices
3285 */
3286 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
3287 sizeof(struct d40_chan *),
3288 GFP_KERNEL);
3289 if (!base->lookup_log_chans)
3290 goto failure;
3291 }
3292
3293 base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3294 sizeof(d40_backup_regs_chan),
3295 GFP_KERNEL);
3296 if (!base->reg_val_backup_chan)
3297 goto failure;
3298
3299 base->lcla_pool.alloc_map =
3300 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3301 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3302 if (!base->lcla_pool.alloc_map)
3303 goto failure;
3304
3305 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3306 0, SLAB_HWCACHE_ALIGN,
3307 NULL);
3308 if (base->desc_slab == NULL)
3309 goto failure;
3310
3311 return base;
3312
3313 failure:
3314 if (!clk_ret)
3315 clk_disable_unprepare(clk);
3316 if (!IS_ERR(clk))
3317 clk_put(clk);
3318 if (virtbase)
3319 iounmap(virtbase);
3320 if (res)
3321 release_mem_region(res->start,
3322 resource_size(res));
3323 if (virtbase)
3324 iounmap(virtbase);
3325
3326 if (base) {
3327 kfree(base->lcla_pool.alloc_map);
3328 kfree(base->reg_val_backup_chan);
3329 kfree(base->lookup_log_chans);
3330 kfree(base->lookup_phy_chans);
3331 kfree(base->phy_res);
3332 kfree(base);
3333 }
3334
3335 return NULL;
3336 }
3337
d40_hw_init(struct d40_base * base)3338 static void __init d40_hw_init(struct d40_base *base)
3339 {
3340
3341 int i;
3342 u32 prmseo[2] = {0, 0};
3343 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3344 u32 pcmis = 0;
3345 u32 pcicr = 0;
3346 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3347 u32 reg_size = base->gen_dmac.init_reg_size;
3348
3349 for (i = 0; i < reg_size; i++)
3350 writel(dma_init_reg[i].val,
3351 base->virtbase + dma_init_reg[i].reg);
3352
3353 /* Configure all our dma channels to default settings */
3354 for (i = 0; i < base->num_phy_chans; i++) {
3355
3356 activeo[i % 2] = activeo[i % 2] << 2;
3357
3358 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3359 == D40_ALLOC_PHY) {
3360 activeo[i % 2] |= 3;
3361 continue;
3362 }
3363
3364 /* Enable interrupt # */
3365 pcmis = (pcmis << 1) | 1;
3366
3367 /* Clear interrupt # */
3368 pcicr = (pcicr << 1) | 1;
3369
3370 /* Set channel to physical mode */
3371 prmseo[i % 2] = prmseo[i % 2] << 2;
3372 prmseo[i % 2] |= 1;
3373
3374 }
3375
3376 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3377 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3378 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3379 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3380
3381 /* Write which interrupt to enable */
3382 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3383
3384 /* Write which interrupt to clear */
3385 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3386
3387 /* These are __initdata and cannot be accessed after init */
3388 base->gen_dmac.init_reg = NULL;
3389 base->gen_dmac.init_reg_size = 0;
3390 }
3391
d40_lcla_allocate(struct d40_base * base)3392 static int __init d40_lcla_allocate(struct d40_base *base)
3393 {
3394 struct d40_lcla_pool *pool = &base->lcla_pool;
3395 unsigned long *page_list;
3396 int i, j;
3397 int ret = 0;
3398
3399 /*
3400 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3401 * To full fill this hardware requirement without wasting 256 kb
3402 * we allocate pages until we get an aligned one.
3403 */
3404 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3405 GFP_KERNEL);
3406
3407 if (!page_list) {
3408 ret = -ENOMEM;
3409 goto failure;
3410 }
3411
3412 /* Calculating how many pages that are required */
3413 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3414
3415 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3416 page_list[i] = __get_free_pages(GFP_KERNEL,
3417 base->lcla_pool.pages);
3418 if (!page_list[i]) {
3419
3420 d40_err(base->dev, "Failed to allocate %d pages.\n",
3421 base->lcla_pool.pages);
3422
3423 for (j = 0; j < i; j++)
3424 free_pages(page_list[j], base->lcla_pool.pages);
3425 goto failure;
3426 }
3427
3428 if ((virt_to_phys((void *)page_list[i]) &
3429 (LCLA_ALIGNMENT - 1)) == 0)
3430 break;
3431 }
3432
3433 for (j = 0; j < i; j++)
3434 free_pages(page_list[j], base->lcla_pool.pages);
3435
3436 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3437 base->lcla_pool.base = (void *)page_list[i];
3438 } else {
3439 /*
3440 * After many attempts and no succees with finding the correct
3441 * alignment, try with allocating a big buffer.
3442 */
3443 dev_warn(base->dev,
3444 "[%s] Failed to get %d pages @ 18 bit align.\n",
3445 __func__, base->lcla_pool.pages);
3446 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3447 base->num_phy_chans +
3448 LCLA_ALIGNMENT,
3449 GFP_KERNEL);
3450 if (!base->lcla_pool.base_unaligned) {
3451 ret = -ENOMEM;
3452 goto failure;
3453 }
3454
3455 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3456 LCLA_ALIGNMENT);
3457 }
3458
3459 pool->dma_addr = dma_map_single(base->dev, pool->base,
3460 SZ_1K * base->num_phy_chans,
3461 DMA_TO_DEVICE);
3462 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3463 pool->dma_addr = 0;
3464 ret = -ENOMEM;
3465 goto failure;
3466 }
3467
3468 writel(virt_to_phys(base->lcla_pool.base),
3469 base->virtbase + D40_DREG_LCLA);
3470 failure:
3471 kfree(page_list);
3472 return ret;
3473 }
3474
d40_probe(struct platform_device * pdev)3475 static int __init d40_probe(struct platform_device *pdev)
3476 {
3477 int err;
3478 int ret = -ENOENT;
3479 struct d40_base *base;
3480 struct resource *res = NULL;
3481 int num_reserved_chans;
3482 u32 val;
3483
3484 base = d40_hw_detect_init(pdev);
3485
3486 if (!base)
3487 goto failure;
3488
3489 num_reserved_chans = d40_phy_res_init(base);
3490
3491 platform_set_drvdata(pdev, base);
3492
3493 spin_lock_init(&base->interrupt_lock);
3494 spin_lock_init(&base->execmd_lock);
3495
3496 /* Get IO for logical channel parameter address */
3497 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3498 if (!res) {
3499 ret = -ENOENT;
3500 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3501 goto failure;
3502 }
3503 base->lcpa_size = resource_size(res);
3504 base->phy_lcpa = res->start;
3505
3506 if (request_mem_region(res->start, resource_size(res),
3507 D40_NAME " I/O lcpa") == NULL) {
3508 ret = -EBUSY;
3509 d40_err(&pdev->dev,
3510 "Failed to request LCPA region 0x%x-0x%x\n",
3511 res->start, res->end);
3512 goto failure;
3513 }
3514
3515 /* We make use of ESRAM memory for this. */
3516 val = readl(base->virtbase + D40_DREG_LCPA);
3517 if (res->start != val && val != 0) {
3518 dev_warn(&pdev->dev,
3519 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3520 __func__, val, res->start);
3521 } else
3522 writel(res->start, base->virtbase + D40_DREG_LCPA);
3523
3524 base->lcpa_base = ioremap(res->start, resource_size(res));
3525 if (!base->lcpa_base) {
3526 ret = -ENOMEM;
3527 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3528 goto failure;
3529 }
3530 /* If lcla has to be located in ESRAM we don't need to allocate */
3531 if (base->plat_data->use_esram_lcla) {
3532 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3533 "lcla_esram");
3534 if (!res) {
3535 ret = -ENOENT;
3536 d40_err(&pdev->dev,
3537 "No \"lcla_esram\" memory resource\n");
3538 goto failure;
3539 }
3540 base->lcla_pool.base = ioremap(res->start,
3541 resource_size(res));
3542 if (!base->lcla_pool.base) {
3543 ret = -ENOMEM;
3544 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3545 goto failure;
3546 }
3547 writel(res->start, base->virtbase + D40_DREG_LCLA);
3548
3549 } else {
3550 ret = d40_lcla_allocate(base);
3551 if (ret) {
3552 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3553 goto failure;
3554 }
3555 }
3556
3557 spin_lock_init(&base->lcla_pool.lock);
3558
3559 base->irq = platform_get_irq(pdev, 0);
3560
3561 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3562 if (ret) {
3563 d40_err(&pdev->dev, "No IRQ defined\n");
3564 goto failure;
3565 }
3566
3567 pm_runtime_irq_safe(base->dev);
3568 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3569 pm_runtime_use_autosuspend(base->dev);
3570 pm_runtime_enable(base->dev);
3571 pm_runtime_resume(base->dev);
3572
3573 if (base->plat_data->use_esram_lcla) {
3574
3575 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3576 if (IS_ERR(base->lcpa_regulator)) {
3577 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3578 base->lcpa_regulator = NULL;
3579 goto failure;
3580 }
3581
3582 ret = regulator_enable(base->lcpa_regulator);
3583 if (ret) {
3584 d40_err(&pdev->dev,
3585 "Failed to enable lcpa_regulator\n");
3586 regulator_put(base->lcpa_regulator);
3587 base->lcpa_regulator = NULL;
3588 goto failure;
3589 }
3590 }
3591
3592 base->initialized = true;
3593 err = d40_dmaengine_init(base, num_reserved_chans);
3594 if (err)
3595 goto failure;
3596
3597 base->dev->dma_parms = &base->dma_parms;
3598 err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3599 if (err) {
3600 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3601 goto failure;
3602 }
3603
3604 d40_hw_init(base);
3605
3606 dev_info(base->dev, "initialized\n");
3607 return 0;
3608
3609 failure:
3610 if (base) {
3611 if (base->desc_slab)
3612 kmem_cache_destroy(base->desc_slab);
3613 if (base->virtbase)
3614 iounmap(base->virtbase);
3615
3616 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3617 iounmap(base->lcla_pool.base);
3618 base->lcla_pool.base = NULL;
3619 }
3620
3621 if (base->lcla_pool.dma_addr)
3622 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3623 SZ_1K * base->num_phy_chans,
3624 DMA_TO_DEVICE);
3625
3626 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3627 free_pages((unsigned long)base->lcla_pool.base,
3628 base->lcla_pool.pages);
3629
3630 kfree(base->lcla_pool.base_unaligned);
3631
3632 if (base->phy_lcpa)
3633 release_mem_region(base->phy_lcpa,
3634 base->lcpa_size);
3635 if (base->phy_start)
3636 release_mem_region(base->phy_start,
3637 base->phy_size);
3638 if (base->clk) {
3639 clk_disable_unprepare(base->clk);
3640 clk_put(base->clk);
3641 }
3642
3643 if (base->lcpa_regulator) {
3644 regulator_disable(base->lcpa_regulator);
3645 regulator_put(base->lcpa_regulator);
3646 }
3647
3648 kfree(base->lcla_pool.alloc_map);
3649 kfree(base->lookup_log_chans);
3650 kfree(base->lookup_phy_chans);
3651 kfree(base->phy_res);
3652 kfree(base);
3653 }
3654
3655 d40_err(&pdev->dev, "probe failed\n");
3656 return ret;
3657 }
3658
3659 static struct platform_driver d40_driver = {
3660 .driver = {
3661 .owner = THIS_MODULE,
3662 .name = D40_NAME,
3663 .pm = DMA40_PM_OPS,
3664 },
3665 };
3666
stedma40_init(void)3667 static int __init stedma40_init(void)
3668 {
3669 return platform_driver_probe(&d40_driver, d40_probe);
3670 }
3671 subsys_initcall(stedma40_init);
3672