• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _SPARC64_TSB_H
2 #define _SPARC64_TSB_H
3 
4 /* The sparc64 TSB is similar to the powerpc hashtables.  It's a
5  * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
6  * pointers into this table for 8K and 64K page sizes, and also a
7  * comparison TAG based upon the virtual address and context which
8  * faults.
9  *
10  * TLB miss trap handler software does the actual lookup via something
11  * of the form:
12  *
13  * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
14  * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
15  *	sllx		%g6, 22, %g6
16  *	srlx		%g6, 22, %g6
17  * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
18  * 	cmp		%g4, %g6
19  * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
20  * 	 mov		FAULT_CODE_{D,I}TLB, %g3
21  * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
22  * 	retry
23  *
24  *
25  * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
26  * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
27  * register which is:
28  *
29  * -------------------------------------------------
30  * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
31  * -------------------------------------------------
32  *  63 61 60      48 47 42 41                     0
33  *
34  * But actually, since we use per-mm TSB's, we zero out the CONTEXT
35  * field.
36  *
37  * Like the powerpc hashtables we need to use locking in order to
38  * synchronize while we update the entries.  PTE updates need locking
39  * as well.
40  *
41  * We need to carefully choose a lock bits for the TSB entry.  We
42  * choose to use bit 47 in the tag.  Also, since we never map anything
43  * at page zero in context zero, we use zero as an invalid tag entry.
44  * When the lock bit is set, this forces a tag comparison failure.
45  */
46 
47 #define TSB_TAG_LOCK_BIT	47
48 #define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))
49 
50 #define TSB_TAG_INVALID_BIT	46
51 #define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))
52 
53 /* Some cpus support physical address quad loads.  We want to use
54  * those if possible so we don't need to hard-lock the TSB mapping
55  * into the TLB.  We encode some instruction patching in order to
56  * support this.
57  *
58  * The kernel TSB is locked into the TLB by virtue of being in the
59  * kernel image, so we don't play these games for swapper_tsb access.
60  */
61 #ifndef __ASSEMBLY__
62 struct tsb_ldquad_phys_patch_entry {
63 	unsigned int	addr;
64 	unsigned int	sun4u_insn;
65 	unsigned int	sun4v_insn;
66 };
67 extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
68 	__tsb_ldquad_phys_patch_end;
69 
70 struct tsb_phys_patch_entry {
71 	unsigned int	addr;
72 	unsigned int	insn;
73 };
74 extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
75 #endif
76 #define TSB_LOAD_QUAD(TSB, REG)	\
77 661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
78 	.section	.tsb_ldquad_phys_patch, "ax"; \
79 	.word		661b; \
80 	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
81 	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
82 	.previous
83 
84 #define TSB_LOAD_TAG_HIGH(TSB, REG) \
85 661:	lduwa		[TSB] ASI_N, REG; \
86 	.section	.tsb_phys_patch, "ax"; \
87 	.word		661b; \
88 	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
89 	.previous
90 
91 #define TSB_LOAD_TAG(TSB, REG) \
92 661:	ldxa		[TSB] ASI_N, REG; \
93 	.section	.tsb_phys_patch, "ax"; \
94 	.word		661b; \
95 	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
96 	.previous
97 
98 #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
99 661:	casa		[TSB] ASI_N, REG1, REG2; \
100 	.section	.tsb_phys_patch, "ax"; \
101 	.word		661b; \
102 	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
103 	.previous
104 
105 #define TSB_CAS_TAG(TSB, REG1, REG2) \
106 661:	casxa		[TSB] ASI_N, REG1, REG2; \
107 	.section	.tsb_phys_patch, "ax"; \
108 	.word		661b; \
109 	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
110 	.previous
111 
112 #define TSB_STORE(ADDR, VAL) \
113 661:	stxa		VAL, [ADDR] ASI_N; \
114 	.section	.tsb_phys_patch, "ax"; \
115 	.word		661b; \
116 	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
117 	.previous
118 
119 #define TSB_LOCK_TAG(TSB, REG1, REG2)	\
120 99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
121 	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
122 	andcc	REG1, REG2, %g0;	\
123 	bne,pn	%icc, 99b;		\
124 	 nop;				\
125 	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
126 	cmp	REG1, REG2;		\
127 	bne,pn	%icc, 99b;		\
128 	 nop;				\
129 
130 #define TSB_WRITE(TSB, TTE, TAG) \
131 	add	TSB, 0x8, TSB;   \
132 	TSB_STORE(TSB, TTE);     \
133 	sub	TSB, 0x8, TSB;   \
134 	TSB_STORE(TSB, TAG);
135 
136 	/* Do a kernel page table walk.  Leaves physical PTE pointer in
137 	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
138 	 * VADDR will not be clobbered, but REG2 will.
139 	 */
140 #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
141 	sethi		%hi(swapper_pg_dir), REG1; \
142 	or		REG1, %lo(swapper_pg_dir), REG1; \
143 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
144 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
145 	andn		REG2, 0x3, REG2; \
146 	lduw		[REG1 + REG2], REG1; \
147 	brz,pn		REG1, FAIL_LABEL; \
148 	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
149 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
150 	sllx		REG1, PGD_PADDR_SHIFT, REG1; \
151 	andn		REG2, 0x3, REG2; \
152 	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
153 	brz,pn		REG1, FAIL_LABEL; \
154 	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
155 	srlx		REG2, 64 - (PAGE_SHIFT - 1), REG2; \
156 	sllx		REG1, PMD_PADDR_SHIFT, REG1; \
157 	andn		REG2, 0x7, REG2; \
158 	add		REG1, REG2, REG1;
159 
160 	/* These macros exists only to make the PMD translator below
161 	 * easier to read.  It hides the ELF section switch for the
162 	 * sun4v code patching.
163 	 */
164 #define OR_PTE_BIT_1INSN(REG, NAME)			\
165 661:	or		REG, _PAGE_##NAME##_4U, REG;	\
166 	.section	.sun4v_1insn_patch, "ax";	\
167 	.word		661b;				\
168 	or		REG, _PAGE_##NAME##_4V, REG;	\
169 	.previous;
170 
171 #define OR_PTE_BIT_2INSN(REG, TMP, NAME)		\
172 661:	sethi		%hi(_PAGE_##NAME##_4U), TMP;	\
173 	or		REG, TMP, REG;			\
174 	.section	.sun4v_2insn_patch, "ax";	\
175 	.word		661b;				\
176 	mov		-1, TMP;			\
177 	or		REG, _PAGE_##NAME##_4V, REG;	\
178 	.previous;
179 
180 	/* Load into REG the PTE value for VALID, CACHE, and SZHUGE.  */
181 #define BUILD_PTE_VALID_SZHUGE_CACHE(REG)				   \
182 661:	sethi		%uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG;		   \
183 	.section	.sun4v_1insn_patch, "ax";			   \
184 	.word		661b;						   \
185 	sethi		%uhi(_PAGE_VALID), REG;				   \
186 	.previous;							   \
187 	sllx		REG, 32, REG;					   \
188 661:	or		REG, _PAGE_CP_4U|_PAGE_CV_4U, REG;		   \
189 	.section	.sun4v_1insn_patch, "ax";			   \
190 	.word		661b;						   \
191 	or		REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
192 	.previous;
193 
194 	/* PMD has been loaded into REG1, interpret the value, seeing
195 	 * if it is a HUGE PMD or a normal one.  If it is not valid
196 	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
197 	 * translates to a valid PTE, branch to PTE_LABEL.
198 	 *
199 	 * We translate the PMD by hand, one bit at a time,
200 	 * constructing the huge PTE.
201 	 *
202 	 * So we construct the PTE in REG2 as follows:
203 	 *
204 	 * 1) Extract the PMD PFN from REG1 and place it into REG2.
205 	 *
206 	 * 2) Translate PMD protection bits in REG1 into REG2, one bit
207 	 *    at a time using andcc tests on REG1 and OR's into REG2.
208 	 *
209 	 *    Only two bits to be concerned with here, EXEC and WRITE.
210 	 *    Now REG1 is freed up and we can use it as a temporary.
211 	 *
212 	 * 3) Construct the VALID, CACHE, and page size PTE bits in
213 	 *    REG1, OR with REG2 to form final PTE.
214 	 */
215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
216 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
217 	brz,pn		REG1, FAIL_LABEL;				      \
218 	 andcc		REG1, PMD_ISHUGE, %g0;				      \
219 	be,pt		%xcc, 700f;					      \
220 	 and		REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2;	      \
221 	cmp		REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED;	      \
222 	bne,pn		%xcc, FAIL_LABEL;				      \
223 	 andn		REG1, PMD_HUGE_PROTBITS, REG2;			      \
224 	sllx		REG2, PMD_PADDR_SHIFT, REG2;			      \
225 	/* REG2 now holds PFN << PAGE_SHIFT */				      \
226 	andcc		REG1, PMD_HUGE_WRITE, %g0;			      \
227 	bne,a,pt	%xcc, 1f;					      \
228 	 OR_PTE_BIT_1INSN(REG2, W);					      \
229 1:	andcc		REG1, PMD_HUGE_EXEC, %g0;			      \
230 	be,pt		%xcc, 1f;					      \
231 	 nop;								      \
232 	OR_PTE_BIT_2INSN(REG2, REG1, EXEC);				      \
233 	/* REG1 can now be clobbered, build final PTE */		      \
234 1:	BUILD_PTE_VALID_SZHUGE_CACHE(REG1);				      \
235 	ba,pt		%xcc, PTE_LABEL;				      \
236 	 or		REG1, REG2, REG1;				      \
237 700:
238 #else
239 #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
240 	brz,pn		REG1, FAIL_LABEL; \
241 	 nop;
242 #endif
243 
244 	/* Do a user page table walk in MMU globals.  Leaves final,
245 	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
246 	 * page table walk termination or if the PTE is not valid.
247 	 *
248 	 * Physical base of page tables is in PHYS_PGD which will not
249 	 * be modified.
250 	 *
251 	 * VADDR will not be clobbered, but REG1 and REG2 will.
252 	 */
253 #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
254 	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
255 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
256 	andn		REG2, 0x3, REG2; \
257 	lduwa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
258 	brz,pn		REG1, FAIL_LABEL; \
259 	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
260 	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
261 	sllx		REG1, PGD_PADDR_SHIFT, REG1; \
262 	andn		REG2, 0x3, REG2; \
263 	lduwa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
264 	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
265 	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
266 	srlx		REG2, 64 - (PAGE_SHIFT - 1), REG2; \
267 	sllx		REG1, PMD_PADDR_SHIFT, REG1; \
268 	andn		REG2, 0x7, REG2; \
269 	add		REG1, REG2, REG1; \
270 	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
271 	brgez,pn	REG1, FAIL_LABEL; \
272 	 nop; \
273 800:
274 
275 /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
276  * If no entry is found, FAIL_LABEL will be branched to.  On success
277  * the resulting PTE value will be left in REG1.  VADDR is preserved
278  * by this routine.
279  */
280 #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
281 	sethi		%hi(prom_trans), REG1; \
282 	or		REG1, %lo(prom_trans), REG1; \
283 97:	ldx		[REG1 + 0x00], REG2; \
284 	brz,pn		REG2, FAIL_LABEL; \
285 	 nop; \
286 	ldx		[REG1 + 0x08], REG3; \
287 	add		REG2, REG3, REG3; \
288 	cmp		REG2, VADDR; \
289 	bgu,pt		%xcc, 98f; \
290 	 cmp		VADDR, REG3; \
291 	bgeu,pt		%xcc, 98f; \
292 	 ldx		[REG1 + 0x10], REG3; \
293 	sub		VADDR, REG2, REG2; \
294 	ba,pt		%xcc, 99f; \
295 	 add		REG3, REG2, REG1; \
296 98:	ba,pt		%xcc, 97b; \
297 	 add		REG1, (3 * 8), REG1; \
298 99:
299 
300 	/* We use a 32K TSB for the whole kernel, this allows to
301 	 * handle about 16MB of modules and vmalloc mappings without
302 	 * incurring many hash conflicts.
303 	 */
304 #define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
305 #define KERNEL_TSB_NENTRIES	\
306 	(KERNEL_TSB_SIZE_BYTES / 16)
307 #define KERNEL_TSB4M_NENTRIES	4096
308 
309 #define KTSB_PHYS_SHIFT		15
310 
311 	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
312 	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
313 	 * and the found TTE will be left in REG1.  REG3 and REG4 must
314 	 * be an even/odd pair of registers.
315 	 *
316 	 * VADDR and TAG will be preserved and not clobbered by this macro.
317 	 */
318 #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
319 661:	sethi		%hi(swapper_tsb), REG1;			\
320 	or		REG1, %lo(swapper_tsb), REG1; \
321 	.section	.swapper_tsb_phys_patch, "ax"; \
322 	.word		661b; \
323 	.previous; \
324 661:	nop; \
325 	.section	.tsb_ldquad_phys_patch, "ax"; \
326 	.word		661b; \
327 	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
328 	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
329 	.previous; \
330 	srlx		VADDR, PAGE_SHIFT, REG2; \
331 	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
332 	sllx		REG2, 4, REG2; \
333 	add		REG1, REG2, REG2; \
334 	TSB_LOAD_QUAD(REG2, REG3); \
335 	cmp		REG3, TAG; \
336 	be,a,pt		%xcc, OK_LABEL; \
337 	 mov		REG4, REG1;
338 
339 #ifndef CONFIG_DEBUG_PAGEALLOC
340 	/* This version uses a trick, the TAG is already (VADDR >> 22) so
341 	 * we can make use of that for the index computation.
342 	 */
343 #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
344 661:	sethi		%hi(swapper_4m_tsb), REG1;	     \
345 	or		REG1, %lo(swapper_4m_tsb), REG1; \
346 	.section	.swapper_4m_tsb_phys_patch, "ax"; \
347 	.word		661b; \
348 	.previous; \
349 661:	nop; \
350 	.section	.tsb_ldquad_phys_patch, "ax"; \
351 	.word		661b; \
352 	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
353 	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
354 	.previous; \
355 	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
356 	sllx		REG2, 4, REG2; \
357 	add		REG1, REG2, REG2; \
358 	TSB_LOAD_QUAD(REG2, REG3); \
359 	cmp		REG3, TAG; \
360 	be,a,pt		%xcc, OK_LABEL; \
361 	 mov		REG4, REG1;
362 #endif
363 
364 #endif /* !(_SPARC64_TSB_H) */
365