1 /*
2 * linux/kernel/power/swap.c
3 *
4 * This file provides functions for reading the suspend image from
5 * and writing it to a swap partition.
6 *
7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10 *
11 * This file is released under the GPLv2.
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33
34 #include "power.h"
35
36 #define HIBERNATE_SIG "S1SUSPEND"
37
38 /*
39 * The swap map is a data structure used for keeping track of each page
40 * written to a swap partition. It consists of many swap_map_page
41 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42 * These structures are stored on the swap and linked together with the
43 * help of the .next_swap member.
44 *
45 * The swap map is created during suspend. The swap map pages are
46 * allocated and populated one at a time, so we only need one memory
47 * page to set up the entire structure.
48 *
49 * During resume we pick up all swap_map_page structures into a list.
50 */
51
52 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
53
54 /*
55 * Number of free pages that are not high.
56 */
low_free_pages(void)57 static inline unsigned long low_free_pages(void)
58 {
59 return nr_free_pages() - nr_free_highpages();
60 }
61
62 /*
63 * Number of pages required to be kept free while writing the image. Always
64 * half of all available low pages before the writing starts.
65 */
reqd_free_pages(void)66 static inline unsigned long reqd_free_pages(void)
67 {
68 return low_free_pages() / 2;
69 }
70
71 struct swap_map_page {
72 sector_t entries[MAP_PAGE_ENTRIES];
73 sector_t next_swap;
74 };
75
76 struct swap_map_page_list {
77 struct swap_map_page *map;
78 struct swap_map_page_list *next;
79 };
80
81 /**
82 * The swap_map_handle structure is used for handling swap in
83 * a file-alike way
84 */
85
86 struct swap_map_handle {
87 struct swap_map_page *cur;
88 struct swap_map_page_list *maps;
89 sector_t cur_swap;
90 sector_t first_sector;
91 unsigned int k;
92 unsigned long reqd_free_pages;
93 u32 crc32;
94 };
95
96 struct swsusp_header {
97 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
98 sizeof(u32)];
99 u32 crc32;
100 sector_t image;
101 unsigned int flags; /* Flags to pass to the "boot" kernel */
102 char orig_sig[10];
103 char sig[10];
104 } __attribute__((packed));
105
106 static struct swsusp_header *swsusp_header;
107
108 /**
109 * The following functions are used for tracing the allocated
110 * swap pages, so that they can be freed in case of an error.
111 */
112
113 struct swsusp_extent {
114 struct rb_node node;
115 unsigned long start;
116 unsigned long end;
117 };
118
119 static struct rb_root swsusp_extents = RB_ROOT;
120
swsusp_extents_insert(unsigned long swap_offset)121 static int swsusp_extents_insert(unsigned long swap_offset)
122 {
123 struct rb_node **new = &(swsusp_extents.rb_node);
124 struct rb_node *parent = NULL;
125 struct swsusp_extent *ext;
126
127 /* Figure out where to put the new node */
128 while (*new) {
129 ext = rb_entry(*new, struct swsusp_extent, node);
130 parent = *new;
131 if (swap_offset < ext->start) {
132 /* Try to merge */
133 if (swap_offset == ext->start - 1) {
134 ext->start--;
135 return 0;
136 }
137 new = &((*new)->rb_left);
138 } else if (swap_offset > ext->end) {
139 /* Try to merge */
140 if (swap_offset == ext->end + 1) {
141 ext->end++;
142 return 0;
143 }
144 new = &((*new)->rb_right);
145 } else {
146 /* It already is in the tree */
147 return -EINVAL;
148 }
149 }
150 /* Add the new node and rebalance the tree. */
151 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
152 if (!ext)
153 return -ENOMEM;
154
155 ext->start = swap_offset;
156 ext->end = swap_offset;
157 rb_link_node(&ext->node, parent, new);
158 rb_insert_color(&ext->node, &swsusp_extents);
159 return 0;
160 }
161
162 /**
163 * alloc_swapdev_block - allocate a swap page and register that it has
164 * been allocated, so that it can be freed in case of an error.
165 */
166
alloc_swapdev_block(int swap)167 sector_t alloc_swapdev_block(int swap)
168 {
169 unsigned long offset;
170
171 offset = swp_offset(get_swap_page_of_type(swap));
172 if (offset) {
173 if (swsusp_extents_insert(offset))
174 swap_free(swp_entry(swap, offset));
175 else
176 return swapdev_block(swap, offset);
177 }
178 return 0;
179 }
180
181 /**
182 * free_all_swap_pages - free swap pages allocated for saving image data.
183 * It also frees the extents used to register which swap entries had been
184 * allocated.
185 */
186
free_all_swap_pages(int swap)187 void free_all_swap_pages(int swap)
188 {
189 struct rb_node *node;
190
191 while ((node = swsusp_extents.rb_node)) {
192 struct swsusp_extent *ext;
193 unsigned long offset;
194
195 ext = container_of(node, struct swsusp_extent, node);
196 rb_erase(node, &swsusp_extents);
197 for (offset = ext->start; offset <= ext->end; offset++)
198 swap_free(swp_entry(swap, offset));
199
200 kfree(ext);
201 }
202 }
203
swsusp_swap_in_use(void)204 int swsusp_swap_in_use(void)
205 {
206 return (swsusp_extents.rb_node != NULL);
207 }
208
209 /*
210 * General things
211 */
212
213 static unsigned short root_swap = 0xffff;
214 struct block_device *hib_resume_bdev;
215
216 /*
217 * Saving part
218 */
219
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)220 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
221 {
222 int error;
223
224 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
225 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
226 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
227 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
228 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
229 swsusp_header->image = handle->first_sector;
230 swsusp_header->flags = flags;
231 if (flags & SF_CRC32_MODE)
232 swsusp_header->crc32 = handle->crc32;
233 error = hib_bio_write_page(swsusp_resume_block,
234 swsusp_header, NULL);
235 } else {
236 printk(KERN_ERR "PM: Swap header not found!\n");
237 error = -ENODEV;
238 }
239 return error;
240 }
241
242 /**
243 * swsusp_swap_check - check if the resume device is a swap device
244 * and get its index (if so)
245 *
246 * This is called before saving image
247 */
swsusp_swap_check(void)248 static int swsusp_swap_check(void)
249 {
250 int res;
251
252 res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
253 &hib_resume_bdev);
254 if (res < 0)
255 return res;
256
257 root_swap = res;
258 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
259 if (res)
260 return res;
261
262 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
263 if (res < 0)
264 blkdev_put(hib_resume_bdev, FMODE_WRITE);
265
266 return res;
267 }
268
269 /**
270 * write_page - Write one page to given swap location.
271 * @buf: Address we're writing.
272 * @offset: Offset of the swap page we're writing to.
273 * @bio_chain: Link the next write BIO here
274 */
275
write_page(void * buf,sector_t offset,struct bio ** bio_chain)276 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
277 {
278 void *src;
279 int ret;
280
281 if (!offset)
282 return -ENOSPC;
283
284 if (bio_chain) {
285 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
286 __GFP_NORETRY);
287 if (src) {
288 copy_page(src, buf);
289 } else {
290 ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
291 if (ret)
292 return ret;
293 src = (void *)__get_free_page(__GFP_WAIT |
294 __GFP_NOWARN |
295 __GFP_NORETRY);
296 if (src) {
297 copy_page(src, buf);
298 } else {
299 WARN_ON_ONCE(1);
300 bio_chain = NULL; /* Go synchronous */
301 src = buf;
302 }
303 }
304 } else {
305 src = buf;
306 }
307 return hib_bio_write_page(offset, src, bio_chain);
308 }
309
release_swap_writer(struct swap_map_handle * handle)310 static void release_swap_writer(struct swap_map_handle *handle)
311 {
312 if (handle->cur)
313 free_page((unsigned long)handle->cur);
314 handle->cur = NULL;
315 }
316
get_swap_writer(struct swap_map_handle * handle)317 static int get_swap_writer(struct swap_map_handle *handle)
318 {
319 int ret;
320
321 ret = swsusp_swap_check();
322 if (ret) {
323 if (ret != -ENOSPC)
324 printk(KERN_ERR "PM: Cannot find swap device, try "
325 "swapon -a.\n");
326 return ret;
327 }
328 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
329 if (!handle->cur) {
330 ret = -ENOMEM;
331 goto err_close;
332 }
333 handle->cur_swap = alloc_swapdev_block(root_swap);
334 if (!handle->cur_swap) {
335 ret = -ENOSPC;
336 goto err_rel;
337 }
338 handle->k = 0;
339 handle->reqd_free_pages = reqd_free_pages();
340 handle->first_sector = handle->cur_swap;
341 return 0;
342 err_rel:
343 release_swap_writer(handle);
344 err_close:
345 swsusp_close(FMODE_WRITE);
346 return ret;
347 }
348
swap_write_page(struct swap_map_handle * handle,void * buf,struct bio ** bio_chain)349 static int swap_write_page(struct swap_map_handle *handle, void *buf,
350 struct bio **bio_chain)
351 {
352 int error = 0;
353 sector_t offset;
354
355 if (!handle->cur)
356 return -EINVAL;
357 offset = alloc_swapdev_block(root_swap);
358 error = write_page(buf, offset, bio_chain);
359 if (error)
360 return error;
361 handle->cur->entries[handle->k++] = offset;
362 if (handle->k >= MAP_PAGE_ENTRIES) {
363 offset = alloc_swapdev_block(root_swap);
364 if (!offset)
365 return -ENOSPC;
366 handle->cur->next_swap = offset;
367 error = write_page(handle->cur, handle->cur_swap, bio_chain);
368 if (error)
369 goto out;
370 clear_page(handle->cur);
371 handle->cur_swap = offset;
372 handle->k = 0;
373
374 if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
375 error = hib_wait_on_bio_chain(bio_chain);
376 if (error)
377 goto out;
378 /*
379 * Recalculate the number of required free pages, to
380 * make sure we never take more than half.
381 */
382 handle->reqd_free_pages = reqd_free_pages();
383 }
384 }
385 out:
386 return error;
387 }
388
flush_swap_writer(struct swap_map_handle * handle)389 static int flush_swap_writer(struct swap_map_handle *handle)
390 {
391 if (handle->cur && handle->cur_swap)
392 return write_page(handle->cur, handle->cur_swap, NULL);
393 else
394 return -EINVAL;
395 }
396
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)397 static int swap_writer_finish(struct swap_map_handle *handle,
398 unsigned int flags, int error)
399 {
400 if (!error) {
401 flush_swap_writer(handle);
402 printk(KERN_INFO "PM: S");
403 error = mark_swapfiles(handle, flags);
404 printk("|\n");
405 }
406
407 if (error)
408 free_all_swap_pages(root_swap);
409 release_swap_writer(handle);
410 swsusp_close(FMODE_WRITE);
411
412 return error;
413 }
414
415 /* We need to remember how much compressed data we need to read. */
416 #define LZO_HEADER sizeof(size_t)
417
418 /* Number of pages/bytes we'll compress at one time. */
419 #define LZO_UNC_PAGES 32
420 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
421
422 /* Number of pages/bytes we need for compressed data (worst case). */
423 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
424 LZO_HEADER, PAGE_SIZE)
425 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
426
427 /* Maximum number of threads for compression/decompression. */
428 #define LZO_THREADS 3
429
430 /* Minimum/maximum number of pages for read buffering. */
431 #define LZO_MIN_RD_PAGES 1024
432 #define LZO_MAX_RD_PAGES 8192
433
434
435 /**
436 * save_image - save the suspend image data
437 */
438
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)439 static int save_image(struct swap_map_handle *handle,
440 struct snapshot_handle *snapshot,
441 unsigned int nr_to_write)
442 {
443 unsigned int m;
444 int ret;
445 int nr_pages;
446 int err2;
447 struct bio *bio;
448 struct timeval start;
449 struct timeval stop;
450
451 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
452 nr_to_write);
453 m = nr_to_write / 10;
454 if (!m)
455 m = 1;
456 nr_pages = 0;
457 bio = NULL;
458 do_gettimeofday(&start);
459 while (1) {
460 ret = snapshot_read_next(snapshot);
461 if (ret <= 0)
462 break;
463 ret = swap_write_page(handle, data_of(*snapshot), &bio);
464 if (ret)
465 break;
466 if (!(nr_pages % m))
467 printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
468 nr_pages / m * 10);
469 nr_pages++;
470 }
471 err2 = hib_wait_on_bio_chain(&bio);
472 do_gettimeofday(&stop);
473 if (!ret)
474 ret = err2;
475 if (!ret)
476 printk(KERN_INFO "PM: Image saving done.\n");
477 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
478 return ret;
479 }
480
481 /**
482 * Structure used for CRC32.
483 */
484 struct crc_data {
485 struct task_struct *thr; /* thread */
486 atomic_t ready; /* ready to start flag */
487 atomic_t stop; /* ready to stop flag */
488 unsigned run_threads; /* nr current threads */
489 wait_queue_head_t go; /* start crc update */
490 wait_queue_head_t done; /* crc update done */
491 u32 *crc32; /* points to handle's crc32 */
492 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
493 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
494 };
495
496 /**
497 * CRC32 update function that runs in its own thread.
498 */
crc32_threadfn(void * data)499 static int crc32_threadfn(void *data)
500 {
501 struct crc_data *d = data;
502 unsigned i;
503
504 while (1) {
505 wait_event(d->go, atomic_read(&d->ready) ||
506 kthread_should_stop());
507 if (kthread_should_stop()) {
508 d->thr = NULL;
509 atomic_set(&d->stop, 1);
510 wake_up(&d->done);
511 break;
512 }
513 atomic_set(&d->ready, 0);
514
515 for (i = 0; i < d->run_threads; i++)
516 *d->crc32 = crc32_le(*d->crc32,
517 d->unc[i], *d->unc_len[i]);
518 atomic_set(&d->stop, 1);
519 wake_up(&d->done);
520 }
521 return 0;
522 }
523 /**
524 * Structure used for LZO data compression.
525 */
526 struct cmp_data {
527 struct task_struct *thr; /* thread */
528 atomic_t ready; /* ready to start flag */
529 atomic_t stop; /* ready to stop flag */
530 int ret; /* return code */
531 wait_queue_head_t go; /* start compression */
532 wait_queue_head_t done; /* compression done */
533 size_t unc_len; /* uncompressed length */
534 size_t cmp_len; /* compressed length */
535 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
536 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
537 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
538 };
539
540 /**
541 * Compression function that runs in its own thread.
542 */
lzo_compress_threadfn(void * data)543 static int lzo_compress_threadfn(void *data)
544 {
545 struct cmp_data *d = data;
546
547 while (1) {
548 wait_event(d->go, atomic_read(&d->ready) ||
549 kthread_should_stop());
550 if (kthread_should_stop()) {
551 d->thr = NULL;
552 d->ret = -1;
553 atomic_set(&d->stop, 1);
554 wake_up(&d->done);
555 break;
556 }
557 atomic_set(&d->ready, 0);
558
559 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
560 d->cmp + LZO_HEADER, &d->cmp_len,
561 d->wrk);
562 atomic_set(&d->stop, 1);
563 wake_up(&d->done);
564 }
565 return 0;
566 }
567
568 /**
569 * save_image_lzo - Save the suspend image data compressed with LZO.
570 * @handle: Swap mam handle to use for saving the image.
571 * @snapshot: Image to read data from.
572 * @nr_to_write: Number of pages to save.
573 */
save_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)574 static int save_image_lzo(struct swap_map_handle *handle,
575 struct snapshot_handle *snapshot,
576 unsigned int nr_to_write)
577 {
578 unsigned int m;
579 int ret = 0;
580 int nr_pages;
581 int err2;
582 struct bio *bio;
583 struct timeval start;
584 struct timeval stop;
585 size_t off;
586 unsigned thr, run_threads, nr_threads;
587 unsigned char *page = NULL;
588 struct cmp_data *data = NULL;
589 struct crc_data *crc = NULL;
590
591 /*
592 * We'll limit the number of threads for compression to limit memory
593 * footprint.
594 */
595 nr_threads = num_online_cpus() - 1;
596 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
597
598 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
599 if (!page) {
600 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
601 ret = -ENOMEM;
602 goto out_clean;
603 }
604
605 data = vmalloc(sizeof(*data) * nr_threads);
606 if (!data) {
607 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
608 ret = -ENOMEM;
609 goto out_clean;
610 }
611 for (thr = 0; thr < nr_threads; thr++)
612 memset(&data[thr], 0, offsetof(struct cmp_data, go));
613
614 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
615 if (!crc) {
616 printk(KERN_ERR "PM: Failed to allocate crc\n");
617 ret = -ENOMEM;
618 goto out_clean;
619 }
620 memset(crc, 0, offsetof(struct crc_data, go));
621
622 /*
623 * Start the compression threads.
624 */
625 for (thr = 0; thr < nr_threads; thr++) {
626 init_waitqueue_head(&data[thr].go);
627 init_waitqueue_head(&data[thr].done);
628
629 data[thr].thr = kthread_run(lzo_compress_threadfn,
630 &data[thr],
631 "image_compress/%u", thr);
632 if (IS_ERR(data[thr].thr)) {
633 data[thr].thr = NULL;
634 printk(KERN_ERR
635 "PM: Cannot start compression threads\n");
636 ret = -ENOMEM;
637 goto out_clean;
638 }
639 }
640
641 /*
642 * Start the CRC32 thread.
643 */
644 init_waitqueue_head(&crc->go);
645 init_waitqueue_head(&crc->done);
646
647 handle->crc32 = 0;
648 crc->crc32 = &handle->crc32;
649 for (thr = 0; thr < nr_threads; thr++) {
650 crc->unc[thr] = data[thr].unc;
651 crc->unc_len[thr] = &data[thr].unc_len;
652 }
653
654 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
655 if (IS_ERR(crc->thr)) {
656 crc->thr = NULL;
657 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
658 ret = -ENOMEM;
659 goto out_clean;
660 }
661
662 /*
663 * Adjust the number of required free pages after all allocations have
664 * been done. We don't want to run out of pages when writing.
665 */
666 handle->reqd_free_pages = reqd_free_pages();
667
668 printk(KERN_INFO
669 "PM: Using %u thread(s) for compression.\n"
670 "PM: Compressing and saving image data (%u pages)...\n",
671 nr_threads, nr_to_write);
672 m = nr_to_write / 10;
673 if (!m)
674 m = 1;
675 nr_pages = 0;
676 bio = NULL;
677 do_gettimeofday(&start);
678 for (;;) {
679 for (thr = 0; thr < nr_threads; thr++) {
680 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
681 ret = snapshot_read_next(snapshot);
682 if (ret < 0)
683 goto out_finish;
684
685 if (!ret)
686 break;
687
688 memcpy(data[thr].unc + off,
689 data_of(*snapshot), PAGE_SIZE);
690
691 if (!(nr_pages % m))
692 printk(KERN_INFO
693 "PM: Image saving progress: "
694 "%3d%%\n",
695 nr_pages / m * 10);
696 nr_pages++;
697 }
698 if (!off)
699 break;
700
701 data[thr].unc_len = off;
702
703 atomic_set(&data[thr].ready, 1);
704 wake_up(&data[thr].go);
705 }
706
707 if (!thr)
708 break;
709
710 crc->run_threads = thr;
711 atomic_set(&crc->ready, 1);
712 wake_up(&crc->go);
713
714 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
715 wait_event(data[thr].done,
716 atomic_read(&data[thr].stop));
717 atomic_set(&data[thr].stop, 0);
718
719 ret = data[thr].ret;
720
721 if (ret < 0) {
722 printk(KERN_ERR "PM: LZO compression failed\n");
723 goto out_finish;
724 }
725
726 if (unlikely(!data[thr].cmp_len ||
727 data[thr].cmp_len >
728 lzo1x_worst_compress(data[thr].unc_len))) {
729 printk(KERN_ERR
730 "PM: Invalid LZO compressed length\n");
731 ret = -1;
732 goto out_finish;
733 }
734
735 *(size_t *)data[thr].cmp = data[thr].cmp_len;
736
737 /*
738 * Given we are writing one page at a time to disk, we
739 * copy that much from the buffer, although the last
740 * bit will likely be smaller than full page. This is
741 * OK - we saved the length of the compressed data, so
742 * any garbage at the end will be discarded when we
743 * read it.
744 */
745 for (off = 0;
746 off < LZO_HEADER + data[thr].cmp_len;
747 off += PAGE_SIZE) {
748 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
749
750 ret = swap_write_page(handle, page, &bio);
751 if (ret)
752 goto out_finish;
753 }
754 }
755
756 wait_event(crc->done, atomic_read(&crc->stop));
757 atomic_set(&crc->stop, 0);
758 }
759
760 out_finish:
761 err2 = hib_wait_on_bio_chain(&bio);
762 do_gettimeofday(&stop);
763 if (!ret)
764 ret = err2;
765 if (!ret)
766 printk(KERN_INFO "PM: Image saving done.\n");
767 swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
768 out_clean:
769 if (crc) {
770 if (crc->thr)
771 kthread_stop(crc->thr);
772 kfree(crc);
773 }
774 if (data) {
775 for (thr = 0; thr < nr_threads; thr++)
776 if (data[thr].thr)
777 kthread_stop(data[thr].thr);
778 vfree(data);
779 }
780 if (page) free_page((unsigned long)page);
781
782 return ret;
783 }
784
785 /**
786 * enough_swap - Make sure we have enough swap to save the image.
787 *
788 * Returns TRUE or FALSE after checking the total amount of swap
789 * space avaiable from the resume partition.
790 */
791
enough_swap(unsigned int nr_pages,unsigned int flags)792 static int enough_swap(unsigned int nr_pages, unsigned int flags)
793 {
794 unsigned int free_swap = count_swap_pages(root_swap, 1);
795 unsigned int required;
796
797 pr_debug("PM: Free swap pages: %u\n", free_swap);
798
799 required = PAGES_FOR_IO + nr_pages;
800 return free_swap > required;
801 }
802
803 /**
804 * swsusp_write - Write entire image and metadata.
805 * @flags: flags to pass to the "boot" kernel in the image header
806 *
807 * It is important _NOT_ to umount filesystems at this point. We want
808 * them synced (in case something goes wrong) but we DO not want to mark
809 * filesystem clean: it is not. (And it does not matter, if we resume
810 * correctly, we'll mark system clean, anyway.)
811 */
812
swsusp_write(unsigned int flags)813 int swsusp_write(unsigned int flags)
814 {
815 struct swap_map_handle handle;
816 struct snapshot_handle snapshot;
817 struct swsusp_info *header;
818 unsigned long pages;
819 int error;
820
821 pages = snapshot_get_image_size();
822 error = get_swap_writer(&handle);
823 if (error) {
824 printk(KERN_ERR "PM: Cannot get swap writer\n");
825 return error;
826 }
827 if (flags & SF_NOCOMPRESS_MODE) {
828 if (!enough_swap(pages, flags)) {
829 printk(KERN_ERR "PM: Not enough free swap\n");
830 error = -ENOSPC;
831 goto out_finish;
832 }
833 }
834 memset(&snapshot, 0, sizeof(struct snapshot_handle));
835 error = snapshot_read_next(&snapshot);
836 if (error < PAGE_SIZE) {
837 if (error >= 0)
838 error = -EFAULT;
839
840 goto out_finish;
841 }
842 header = (struct swsusp_info *)data_of(snapshot);
843 error = swap_write_page(&handle, header, NULL);
844 if (!error) {
845 error = (flags & SF_NOCOMPRESS_MODE) ?
846 save_image(&handle, &snapshot, pages - 1) :
847 save_image_lzo(&handle, &snapshot, pages - 1);
848 }
849 out_finish:
850 error = swap_writer_finish(&handle, flags, error);
851 return error;
852 }
853
854 /**
855 * The following functions allow us to read data using a swap map
856 * in a file-alike way
857 */
858
release_swap_reader(struct swap_map_handle * handle)859 static void release_swap_reader(struct swap_map_handle *handle)
860 {
861 struct swap_map_page_list *tmp;
862
863 while (handle->maps) {
864 if (handle->maps->map)
865 free_page((unsigned long)handle->maps->map);
866 tmp = handle->maps;
867 handle->maps = handle->maps->next;
868 kfree(tmp);
869 }
870 handle->cur = NULL;
871 }
872
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)873 static int get_swap_reader(struct swap_map_handle *handle,
874 unsigned int *flags_p)
875 {
876 int error;
877 struct swap_map_page_list *tmp, *last;
878 sector_t offset;
879
880 *flags_p = swsusp_header->flags;
881
882 if (!swsusp_header->image) /* how can this happen? */
883 return -EINVAL;
884
885 handle->cur = NULL;
886 last = handle->maps = NULL;
887 offset = swsusp_header->image;
888 while (offset) {
889 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
890 if (!tmp) {
891 release_swap_reader(handle);
892 return -ENOMEM;
893 }
894 memset(tmp, 0, sizeof(*tmp));
895 if (!handle->maps)
896 handle->maps = tmp;
897 if (last)
898 last->next = tmp;
899 last = tmp;
900
901 tmp->map = (struct swap_map_page *)
902 __get_free_page(__GFP_WAIT | __GFP_HIGH);
903 if (!tmp->map) {
904 release_swap_reader(handle);
905 return -ENOMEM;
906 }
907
908 error = hib_bio_read_page(offset, tmp->map, NULL);
909 if (error) {
910 release_swap_reader(handle);
911 return error;
912 }
913 offset = tmp->map->next_swap;
914 }
915 handle->k = 0;
916 handle->cur = handle->maps->map;
917 return 0;
918 }
919
swap_read_page(struct swap_map_handle * handle,void * buf,struct bio ** bio_chain)920 static int swap_read_page(struct swap_map_handle *handle, void *buf,
921 struct bio **bio_chain)
922 {
923 sector_t offset;
924 int error;
925 struct swap_map_page_list *tmp;
926
927 if (!handle->cur)
928 return -EINVAL;
929 offset = handle->cur->entries[handle->k];
930 if (!offset)
931 return -EFAULT;
932 error = hib_bio_read_page(offset, buf, bio_chain);
933 if (error)
934 return error;
935 if (++handle->k >= MAP_PAGE_ENTRIES) {
936 handle->k = 0;
937 free_page((unsigned long)handle->maps->map);
938 tmp = handle->maps;
939 handle->maps = handle->maps->next;
940 kfree(tmp);
941 if (!handle->maps)
942 release_swap_reader(handle);
943 else
944 handle->cur = handle->maps->map;
945 }
946 return error;
947 }
948
swap_reader_finish(struct swap_map_handle * handle)949 static int swap_reader_finish(struct swap_map_handle *handle)
950 {
951 release_swap_reader(handle);
952
953 return 0;
954 }
955
956 /**
957 * load_image - load the image using the swap map handle
958 * @handle and the snapshot handle @snapshot
959 * (assume there are @nr_pages pages to load)
960 */
961
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)962 static int load_image(struct swap_map_handle *handle,
963 struct snapshot_handle *snapshot,
964 unsigned int nr_to_read)
965 {
966 unsigned int m;
967 int ret = 0;
968 struct timeval start;
969 struct timeval stop;
970 struct bio *bio;
971 int err2;
972 unsigned nr_pages;
973
974 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
975 nr_to_read);
976 m = nr_to_read / 10;
977 if (!m)
978 m = 1;
979 nr_pages = 0;
980 bio = NULL;
981 do_gettimeofday(&start);
982 for ( ; ; ) {
983 ret = snapshot_write_next(snapshot);
984 if (ret <= 0)
985 break;
986 ret = swap_read_page(handle, data_of(*snapshot), &bio);
987 if (ret)
988 break;
989 if (snapshot->sync_read)
990 ret = hib_wait_on_bio_chain(&bio);
991 if (ret)
992 break;
993 if (!(nr_pages % m))
994 printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
995 nr_pages / m * 10);
996 nr_pages++;
997 }
998 err2 = hib_wait_on_bio_chain(&bio);
999 do_gettimeofday(&stop);
1000 if (!ret)
1001 ret = err2;
1002 if (!ret) {
1003 printk(KERN_INFO "PM: Image loading done.\n");
1004 snapshot_write_finalize(snapshot);
1005 if (!snapshot_image_loaded(snapshot))
1006 ret = -ENODATA;
1007 }
1008 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1009 return ret;
1010 }
1011
1012 /**
1013 * Structure used for LZO data decompression.
1014 */
1015 struct dec_data {
1016 struct task_struct *thr; /* thread */
1017 atomic_t ready; /* ready to start flag */
1018 atomic_t stop; /* ready to stop flag */
1019 int ret; /* return code */
1020 wait_queue_head_t go; /* start decompression */
1021 wait_queue_head_t done; /* decompression done */
1022 size_t unc_len; /* uncompressed length */
1023 size_t cmp_len; /* compressed length */
1024 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1025 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1026 };
1027
1028 /**
1029 * Deompression function that runs in its own thread.
1030 */
lzo_decompress_threadfn(void * data)1031 static int lzo_decompress_threadfn(void *data)
1032 {
1033 struct dec_data *d = data;
1034
1035 while (1) {
1036 wait_event(d->go, atomic_read(&d->ready) ||
1037 kthread_should_stop());
1038 if (kthread_should_stop()) {
1039 d->thr = NULL;
1040 d->ret = -1;
1041 atomic_set(&d->stop, 1);
1042 wake_up(&d->done);
1043 break;
1044 }
1045 atomic_set(&d->ready, 0);
1046
1047 d->unc_len = LZO_UNC_SIZE;
1048 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1049 d->unc, &d->unc_len);
1050 atomic_set(&d->stop, 1);
1051 wake_up(&d->done);
1052 }
1053 return 0;
1054 }
1055
1056 /**
1057 * load_image_lzo - Load compressed image data and decompress them with LZO.
1058 * @handle: Swap map handle to use for loading data.
1059 * @snapshot: Image to copy uncompressed data into.
1060 * @nr_to_read: Number of pages to load.
1061 */
load_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1062 static int load_image_lzo(struct swap_map_handle *handle,
1063 struct snapshot_handle *snapshot,
1064 unsigned int nr_to_read)
1065 {
1066 unsigned int m;
1067 int ret = 0;
1068 int eof = 0;
1069 struct bio *bio;
1070 struct timeval start;
1071 struct timeval stop;
1072 unsigned nr_pages;
1073 size_t off;
1074 unsigned i, thr, run_threads, nr_threads;
1075 unsigned ring = 0, pg = 0, ring_size = 0,
1076 have = 0, want, need, asked = 0;
1077 unsigned long read_pages = 0;
1078 unsigned char **page = NULL;
1079 struct dec_data *data = NULL;
1080 struct crc_data *crc = NULL;
1081
1082 /*
1083 * We'll limit the number of threads for decompression to limit memory
1084 * footprint.
1085 */
1086 nr_threads = num_online_cpus() - 1;
1087 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1088
1089 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1090 if (!page) {
1091 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1092 ret = -ENOMEM;
1093 goto out_clean;
1094 }
1095
1096 data = vmalloc(sizeof(*data) * nr_threads);
1097 if (!data) {
1098 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1099 ret = -ENOMEM;
1100 goto out_clean;
1101 }
1102 for (thr = 0; thr < nr_threads; thr++)
1103 memset(&data[thr], 0, offsetof(struct dec_data, go));
1104
1105 crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1106 if (!crc) {
1107 printk(KERN_ERR "PM: Failed to allocate crc\n");
1108 ret = -ENOMEM;
1109 goto out_clean;
1110 }
1111 memset(crc, 0, offsetof(struct crc_data, go));
1112
1113 /*
1114 * Start the decompression threads.
1115 */
1116 for (thr = 0; thr < nr_threads; thr++) {
1117 init_waitqueue_head(&data[thr].go);
1118 init_waitqueue_head(&data[thr].done);
1119
1120 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1121 &data[thr],
1122 "image_decompress/%u", thr);
1123 if (IS_ERR(data[thr].thr)) {
1124 data[thr].thr = NULL;
1125 printk(KERN_ERR
1126 "PM: Cannot start decompression threads\n");
1127 ret = -ENOMEM;
1128 goto out_clean;
1129 }
1130 }
1131
1132 /*
1133 * Start the CRC32 thread.
1134 */
1135 init_waitqueue_head(&crc->go);
1136 init_waitqueue_head(&crc->done);
1137
1138 handle->crc32 = 0;
1139 crc->crc32 = &handle->crc32;
1140 for (thr = 0; thr < nr_threads; thr++) {
1141 crc->unc[thr] = data[thr].unc;
1142 crc->unc_len[thr] = &data[thr].unc_len;
1143 }
1144
1145 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1146 if (IS_ERR(crc->thr)) {
1147 crc->thr = NULL;
1148 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1149 ret = -ENOMEM;
1150 goto out_clean;
1151 }
1152
1153 /*
1154 * Set the number of pages for read buffering.
1155 * This is complete guesswork, because we'll only know the real
1156 * picture once prepare_image() is called, which is much later on
1157 * during the image load phase. We'll assume the worst case and
1158 * say that none of the image pages are from high memory.
1159 */
1160 if (low_free_pages() > snapshot_get_image_size())
1161 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1162 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1163
1164 for (i = 0; i < read_pages; i++) {
1165 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1166 __GFP_WAIT | __GFP_HIGH :
1167 __GFP_WAIT | __GFP_NOWARN |
1168 __GFP_NORETRY);
1169
1170 if (!page[i]) {
1171 if (i < LZO_CMP_PAGES) {
1172 ring_size = i;
1173 printk(KERN_ERR
1174 "PM: Failed to allocate LZO pages\n");
1175 ret = -ENOMEM;
1176 goto out_clean;
1177 } else {
1178 break;
1179 }
1180 }
1181 }
1182 want = ring_size = i;
1183
1184 printk(KERN_INFO
1185 "PM: Using %u thread(s) for decompression.\n"
1186 "PM: Loading and decompressing image data (%u pages)...\n",
1187 nr_threads, nr_to_read);
1188 m = nr_to_read / 10;
1189 if (!m)
1190 m = 1;
1191 nr_pages = 0;
1192 bio = NULL;
1193 do_gettimeofday(&start);
1194
1195 ret = snapshot_write_next(snapshot);
1196 if (ret <= 0)
1197 goto out_finish;
1198
1199 for(;;) {
1200 for (i = 0; !eof && i < want; i++) {
1201 ret = swap_read_page(handle, page[ring], &bio);
1202 if (ret) {
1203 /*
1204 * On real read error, finish. On end of data,
1205 * set EOF flag and just exit the read loop.
1206 */
1207 if (handle->cur &&
1208 handle->cur->entries[handle->k]) {
1209 goto out_finish;
1210 } else {
1211 eof = 1;
1212 break;
1213 }
1214 }
1215 if (++ring >= ring_size)
1216 ring = 0;
1217 }
1218 asked += i;
1219 want -= i;
1220
1221 /*
1222 * We are out of data, wait for some more.
1223 */
1224 if (!have) {
1225 if (!asked)
1226 break;
1227
1228 ret = hib_wait_on_bio_chain(&bio);
1229 if (ret)
1230 goto out_finish;
1231 have += asked;
1232 asked = 0;
1233 if (eof)
1234 eof = 2;
1235 }
1236
1237 if (crc->run_threads) {
1238 wait_event(crc->done, atomic_read(&crc->stop));
1239 atomic_set(&crc->stop, 0);
1240 crc->run_threads = 0;
1241 }
1242
1243 for (thr = 0; have && thr < nr_threads; thr++) {
1244 data[thr].cmp_len = *(size_t *)page[pg];
1245 if (unlikely(!data[thr].cmp_len ||
1246 data[thr].cmp_len >
1247 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1248 printk(KERN_ERR
1249 "PM: Invalid LZO compressed length\n");
1250 ret = -1;
1251 goto out_finish;
1252 }
1253
1254 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1255 PAGE_SIZE);
1256 if (need > have) {
1257 if (eof > 1) {
1258 ret = -1;
1259 goto out_finish;
1260 }
1261 break;
1262 }
1263
1264 for (off = 0;
1265 off < LZO_HEADER + data[thr].cmp_len;
1266 off += PAGE_SIZE) {
1267 memcpy(data[thr].cmp + off,
1268 page[pg], PAGE_SIZE);
1269 have--;
1270 want++;
1271 if (++pg >= ring_size)
1272 pg = 0;
1273 }
1274
1275 atomic_set(&data[thr].ready, 1);
1276 wake_up(&data[thr].go);
1277 }
1278
1279 /*
1280 * Wait for more data while we are decompressing.
1281 */
1282 if (have < LZO_CMP_PAGES && asked) {
1283 ret = hib_wait_on_bio_chain(&bio);
1284 if (ret)
1285 goto out_finish;
1286 have += asked;
1287 asked = 0;
1288 if (eof)
1289 eof = 2;
1290 }
1291
1292 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1293 wait_event(data[thr].done,
1294 atomic_read(&data[thr].stop));
1295 atomic_set(&data[thr].stop, 0);
1296
1297 ret = data[thr].ret;
1298
1299 if (ret < 0) {
1300 printk(KERN_ERR
1301 "PM: LZO decompression failed\n");
1302 goto out_finish;
1303 }
1304
1305 if (unlikely(!data[thr].unc_len ||
1306 data[thr].unc_len > LZO_UNC_SIZE ||
1307 data[thr].unc_len & (PAGE_SIZE - 1))) {
1308 printk(KERN_ERR
1309 "PM: Invalid LZO uncompressed length\n");
1310 ret = -1;
1311 goto out_finish;
1312 }
1313
1314 for (off = 0;
1315 off < data[thr].unc_len; off += PAGE_SIZE) {
1316 memcpy(data_of(*snapshot),
1317 data[thr].unc + off, PAGE_SIZE);
1318
1319 if (!(nr_pages % m))
1320 printk(KERN_INFO
1321 "PM: Image loading progress: "
1322 "%3d%%\n",
1323 nr_pages / m * 10);
1324 nr_pages++;
1325
1326 ret = snapshot_write_next(snapshot);
1327 if (ret <= 0) {
1328 crc->run_threads = thr + 1;
1329 atomic_set(&crc->ready, 1);
1330 wake_up(&crc->go);
1331 goto out_finish;
1332 }
1333 }
1334 }
1335
1336 crc->run_threads = thr;
1337 atomic_set(&crc->ready, 1);
1338 wake_up(&crc->go);
1339 }
1340
1341 out_finish:
1342 if (crc->run_threads) {
1343 wait_event(crc->done, atomic_read(&crc->stop));
1344 atomic_set(&crc->stop, 0);
1345 }
1346 do_gettimeofday(&stop);
1347 if (!ret) {
1348 printk(KERN_INFO "PM: Image loading done.\n");
1349 snapshot_write_finalize(snapshot);
1350 if (!snapshot_image_loaded(snapshot))
1351 ret = -ENODATA;
1352 if (!ret) {
1353 if (swsusp_header->flags & SF_CRC32_MODE) {
1354 if(handle->crc32 != swsusp_header->crc32) {
1355 printk(KERN_ERR
1356 "PM: Invalid image CRC32!\n");
1357 ret = -ENODATA;
1358 }
1359 }
1360 }
1361 }
1362 swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363 out_clean:
1364 for (i = 0; i < ring_size; i++)
1365 free_page((unsigned long)page[i]);
1366 if (crc) {
1367 if (crc->thr)
1368 kthread_stop(crc->thr);
1369 kfree(crc);
1370 }
1371 if (data) {
1372 for (thr = 0; thr < nr_threads; thr++)
1373 if (data[thr].thr)
1374 kthread_stop(data[thr].thr);
1375 vfree(data);
1376 }
1377 if (page) vfree(page);
1378
1379 return ret;
1380 }
1381
1382 /**
1383 * swsusp_read - read the hibernation image.
1384 * @flags_p: flags passed by the "frozen" kernel in the image header should
1385 * be written into this memory location
1386 */
1387
swsusp_read(unsigned int * flags_p)1388 int swsusp_read(unsigned int *flags_p)
1389 {
1390 int error;
1391 struct swap_map_handle handle;
1392 struct snapshot_handle snapshot;
1393 struct swsusp_info *header;
1394
1395 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396 error = snapshot_write_next(&snapshot);
1397 if (error < PAGE_SIZE)
1398 return error < 0 ? error : -EFAULT;
1399 header = (struct swsusp_info *)data_of(snapshot);
1400 error = get_swap_reader(&handle, flags_p);
1401 if (error)
1402 goto end;
1403 if (!error)
1404 error = swap_read_page(&handle, header, NULL);
1405 if (!error) {
1406 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407 load_image(&handle, &snapshot, header->pages - 1) :
1408 load_image_lzo(&handle, &snapshot, header->pages - 1);
1409 }
1410 swap_reader_finish(&handle);
1411 end:
1412 if (!error)
1413 pr_debug("PM: Image successfully loaded\n");
1414 else
1415 pr_debug("PM: Error %d resuming\n", error);
1416 return error;
1417 }
1418
1419 /**
1420 * swsusp_check - Check for swsusp signature in the resume device
1421 */
1422
swsusp_check(void)1423 int swsusp_check(void)
1424 {
1425 int error;
1426
1427 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428 FMODE_READ, NULL);
1429 if (!IS_ERR(hib_resume_bdev)) {
1430 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431 clear_page(swsusp_header);
1432 error = hib_bio_read_page(swsusp_resume_block,
1433 swsusp_header, NULL);
1434 if (error)
1435 goto put;
1436
1437 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439 /* Reset swap signature now */
1440 error = hib_bio_write_page(swsusp_resume_block,
1441 swsusp_header, NULL);
1442 } else {
1443 error = -EINVAL;
1444 }
1445
1446 put:
1447 if (error)
1448 blkdev_put(hib_resume_bdev, FMODE_READ);
1449 else
1450 pr_debug("PM: Image signature found, resuming\n");
1451 } else {
1452 error = PTR_ERR(hib_resume_bdev);
1453 }
1454
1455 if (error)
1456 pr_debug("PM: Image not found (code %d)\n", error);
1457
1458 return error;
1459 }
1460
1461 /**
1462 * swsusp_close - close swap device.
1463 */
1464
swsusp_close(fmode_t mode)1465 void swsusp_close(fmode_t mode)
1466 {
1467 if (IS_ERR(hib_resume_bdev)) {
1468 pr_debug("PM: Image device not initialised\n");
1469 return;
1470 }
1471
1472 blkdev_put(hib_resume_bdev, mode);
1473 }
1474
1475 /**
1476 * swsusp_unmark - Unmark swsusp signature in the resume device
1477 */
1478
1479 #ifdef CONFIG_SUSPEND
swsusp_unmark(void)1480 int swsusp_unmark(void)
1481 {
1482 int error;
1483
1484 hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
1485 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1486 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1487 error = hib_bio_write_page(swsusp_resume_block,
1488 swsusp_header, NULL);
1489 } else {
1490 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1491 error = -ENODEV;
1492 }
1493
1494 /*
1495 * We just returned from suspend, we don't need the image any more.
1496 */
1497 free_all_swap_pages(root_swap);
1498
1499 return error;
1500 }
1501 #endif
1502
swsusp_header_init(void)1503 static int swsusp_header_init(void)
1504 {
1505 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1506 if (!swsusp_header)
1507 panic("Could not allocate memory for swsusp_header\n");
1508 return 0;
1509 }
1510
1511 core_initcall(swsusp_header_init);
1512