• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 /*
39  *	The swap map is a data structure used for keeping track of each page
40  *	written to a swap partition.  It consists of many swap_map_page
41  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42  *	These structures are stored on the swap and linked together with the
43  *	help of the .next_swap member.
44  *
45  *	The swap map is created during suspend.  The swap map pages are
46  *	allocated and populated one at a time, so we only need one memory
47  *	page to set up the entire structure.
48  *
49  *	During resume we pick up all swap_map_page structures into a list.
50  */
51 
52 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
53 
54 /*
55  * Number of free pages that are not high.
56  */
low_free_pages(void)57 static inline unsigned long low_free_pages(void)
58 {
59 	return nr_free_pages() - nr_free_highpages();
60 }
61 
62 /*
63  * Number of pages required to be kept free while writing the image. Always
64  * half of all available low pages before the writing starts.
65  */
reqd_free_pages(void)66 static inline unsigned long reqd_free_pages(void)
67 {
68 	return low_free_pages() / 2;
69 }
70 
71 struct swap_map_page {
72 	sector_t entries[MAP_PAGE_ENTRIES];
73 	sector_t next_swap;
74 };
75 
76 struct swap_map_page_list {
77 	struct swap_map_page *map;
78 	struct swap_map_page_list *next;
79 };
80 
81 /**
82  *	The swap_map_handle structure is used for handling swap in
83  *	a file-alike way
84  */
85 
86 struct swap_map_handle {
87 	struct swap_map_page *cur;
88 	struct swap_map_page_list *maps;
89 	sector_t cur_swap;
90 	sector_t first_sector;
91 	unsigned int k;
92 	unsigned long reqd_free_pages;
93 	u32 crc32;
94 };
95 
96 struct swsusp_header {
97 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
98 	              sizeof(u32)];
99 	u32	crc32;
100 	sector_t image;
101 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
102 	char	orig_sig[10];
103 	char	sig[10];
104 } __attribute__((packed));
105 
106 static struct swsusp_header *swsusp_header;
107 
108 /**
109  *	The following functions are used for tracing the allocated
110  *	swap pages, so that they can be freed in case of an error.
111  */
112 
113 struct swsusp_extent {
114 	struct rb_node node;
115 	unsigned long start;
116 	unsigned long end;
117 };
118 
119 static struct rb_root swsusp_extents = RB_ROOT;
120 
swsusp_extents_insert(unsigned long swap_offset)121 static int swsusp_extents_insert(unsigned long swap_offset)
122 {
123 	struct rb_node **new = &(swsusp_extents.rb_node);
124 	struct rb_node *parent = NULL;
125 	struct swsusp_extent *ext;
126 
127 	/* Figure out where to put the new node */
128 	while (*new) {
129 		ext = rb_entry(*new, struct swsusp_extent, node);
130 		parent = *new;
131 		if (swap_offset < ext->start) {
132 			/* Try to merge */
133 			if (swap_offset == ext->start - 1) {
134 				ext->start--;
135 				return 0;
136 			}
137 			new = &((*new)->rb_left);
138 		} else if (swap_offset > ext->end) {
139 			/* Try to merge */
140 			if (swap_offset == ext->end + 1) {
141 				ext->end++;
142 				return 0;
143 			}
144 			new = &((*new)->rb_right);
145 		} else {
146 			/* It already is in the tree */
147 			return -EINVAL;
148 		}
149 	}
150 	/* Add the new node and rebalance the tree. */
151 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
152 	if (!ext)
153 		return -ENOMEM;
154 
155 	ext->start = swap_offset;
156 	ext->end = swap_offset;
157 	rb_link_node(&ext->node, parent, new);
158 	rb_insert_color(&ext->node, &swsusp_extents);
159 	return 0;
160 }
161 
162 /**
163  *	alloc_swapdev_block - allocate a swap page and register that it has
164  *	been allocated, so that it can be freed in case of an error.
165  */
166 
alloc_swapdev_block(int swap)167 sector_t alloc_swapdev_block(int swap)
168 {
169 	unsigned long offset;
170 
171 	offset = swp_offset(get_swap_page_of_type(swap));
172 	if (offset) {
173 		if (swsusp_extents_insert(offset))
174 			swap_free(swp_entry(swap, offset));
175 		else
176 			return swapdev_block(swap, offset);
177 	}
178 	return 0;
179 }
180 
181 /**
182  *	free_all_swap_pages - free swap pages allocated for saving image data.
183  *	It also frees the extents used to register which swap entries had been
184  *	allocated.
185  */
186 
free_all_swap_pages(int swap)187 void free_all_swap_pages(int swap)
188 {
189 	struct rb_node *node;
190 
191 	while ((node = swsusp_extents.rb_node)) {
192 		struct swsusp_extent *ext;
193 		unsigned long offset;
194 
195 		ext = container_of(node, struct swsusp_extent, node);
196 		rb_erase(node, &swsusp_extents);
197 		for (offset = ext->start; offset <= ext->end; offset++)
198 			swap_free(swp_entry(swap, offset));
199 
200 		kfree(ext);
201 	}
202 }
203 
swsusp_swap_in_use(void)204 int swsusp_swap_in_use(void)
205 {
206 	return (swsusp_extents.rb_node != NULL);
207 }
208 
209 /*
210  * General things
211  */
212 
213 static unsigned short root_swap = 0xffff;
214 struct block_device *hib_resume_bdev;
215 
216 /*
217  * Saving part
218  */
219 
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)220 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
221 {
222 	int error;
223 
224 	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
225 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
226 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
227 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
228 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
229 		swsusp_header->image = handle->first_sector;
230 		swsusp_header->flags = flags;
231 		if (flags & SF_CRC32_MODE)
232 			swsusp_header->crc32 = handle->crc32;
233 		error = hib_bio_write_page(swsusp_resume_block,
234 					swsusp_header, NULL);
235 	} else {
236 		printk(KERN_ERR "PM: Swap header not found!\n");
237 		error = -ENODEV;
238 	}
239 	return error;
240 }
241 
242 /**
243  *	swsusp_swap_check - check if the resume device is a swap device
244  *	and get its index (if so)
245  *
246  *	This is called before saving image
247  */
swsusp_swap_check(void)248 static int swsusp_swap_check(void)
249 {
250 	int res;
251 
252 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
253 			&hib_resume_bdev);
254 	if (res < 0)
255 		return res;
256 
257 	root_swap = res;
258 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
259 	if (res)
260 		return res;
261 
262 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
263 	if (res < 0)
264 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
265 
266 	return res;
267 }
268 
269 /**
270  *	write_page - Write one page to given swap location.
271  *	@buf:		Address we're writing.
272  *	@offset:	Offset of the swap page we're writing to.
273  *	@bio_chain:	Link the next write BIO here
274  */
275 
write_page(void * buf,sector_t offset,struct bio ** bio_chain)276 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
277 {
278 	void *src;
279 	int ret;
280 
281 	if (!offset)
282 		return -ENOSPC;
283 
284 	if (bio_chain) {
285 		src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
286 		                              __GFP_NORETRY);
287 		if (src) {
288 			copy_page(src, buf);
289 		} else {
290 			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
291 			if (ret)
292 				return ret;
293 			src = (void *)__get_free_page(__GFP_WAIT |
294 			                              __GFP_NOWARN |
295 			                              __GFP_NORETRY);
296 			if (src) {
297 				copy_page(src, buf);
298 			} else {
299 				WARN_ON_ONCE(1);
300 				bio_chain = NULL;	/* Go synchronous */
301 				src = buf;
302 			}
303 		}
304 	} else {
305 		src = buf;
306 	}
307 	return hib_bio_write_page(offset, src, bio_chain);
308 }
309 
release_swap_writer(struct swap_map_handle * handle)310 static void release_swap_writer(struct swap_map_handle *handle)
311 {
312 	if (handle->cur)
313 		free_page((unsigned long)handle->cur);
314 	handle->cur = NULL;
315 }
316 
get_swap_writer(struct swap_map_handle * handle)317 static int get_swap_writer(struct swap_map_handle *handle)
318 {
319 	int ret;
320 
321 	ret = swsusp_swap_check();
322 	if (ret) {
323 		if (ret != -ENOSPC)
324 			printk(KERN_ERR "PM: Cannot find swap device, try "
325 					"swapon -a.\n");
326 		return ret;
327 	}
328 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
329 	if (!handle->cur) {
330 		ret = -ENOMEM;
331 		goto err_close;
332 	}
333 	handle->cur_swap = alloc_swapdev_block(root_swap);
334 	if (!handle->cur_swap) {
335 		ret = -ENOSPC;
336 		goto err_rel;
337 	}
338 	handle->k = 0;
339 	handle->reqd_free_pages = reqd_free_pages();
340 	handle->first_sector = handle->cur_swap;
341 	return 0;
342 err_rel:
343 	release_swap_writer(handle);
344 err_close:
345 	swsusp_close(FMODE_WRITE);
346 	return ret;
347 }
348 
swap_write_page(struct swap_map_handle * handle,void * buf,struct bio ** bio_chain)349 static int swap_write_page(struct swap_map_handle *handle, void *buf,
350 				struct bio **bio_chain)
351 {
352 	int error = 0;
353 	sector_t offset;
354 
355 	if (!handle->cur)
356 		return -EINVAL;
357 	offset = alloc_swapdev_block(root_swap);
358 	error = write_page(buf, offset, bio_chain);
359 	if (error)
360 		return error;
361 	handle->cur->entries[handle->k++] = offset;
362 	if (handle->k >= MAP_PAGE_ENTRIES) {
363 		offset = alloc_swapdev_block(root_swap);
364 		if (!offset)
365 			return -ENOSPC;
366 		handle->cur->next_swap = offset;
367 		error = write_page(handle->cur, handle->cur_swap, bio_chain);
368 		if (error)
369 			goto out;
370 		clear_page(handle->cur);
371 		handle->cur_swap = offset;
372 		handle->k = 0;
373 
374 		if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
375 			error = hib_wait_on_bio_chain(bio_chain);
376 			if (error)
377 				goto out;
378 			/*
379 			 * Recalculate the number of required free pages, to
380 			 * make sure we never take more than half.
381 			 */
382 			handle->reqd_free_pages = reqd_free_pages();
383 		}
384 	}
385  out:
386 	return error;
387 }
388 
flush_swap_writer(struct swap_map_handle * handle)389 static int flush_swap_writer(struct swap_map_handle *handle)
390 {
391 	if (handle->cur && handle->cur_swap)
392 		return write_page(handle->cur, handle->cur_swap, NULL);
393 	else
394 		return -EINVAL;
395 }
396 
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)397 static int swap_writer_finish(struct swap_map_handle *handle,
398 		unsigned int flags, int error)
399 {
400 	if (!error) {
401 		flush_swap_writer(handle);
402 		printk(KERN_INFO "PM: S");
403 		error = mark_swapfiles(handle, flags);
404 		printk("|\n");
405 	}
406 
407 	if (error)
408 		free_all_swap_pages(root_swap);
409 	release_swap_writer(handle);
410 	swsusp_close(FMODE_WRITE);
411 
412 	return error;
413 }
414 
415 /* We need to remember how much compressed data we need to read. */
416 #define LZO_HEADER	sizeof(size_t)
417 
418 /* Number of pages/bytes we'll compress at one time. */
419 #define LZO_UNC_PAGES	32
420 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
421 
422 /* Number of pages/bytes we need for compressed data (worst case). */
423 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
424 			             LZO_HEADER, PAGE_SIZE)
425 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
426 
427 /* Maximum number of threads for compression/decompression. */
428 #define LZO_THREADS	3
429 
430 /* Minimum/maximum number of pages for read buffering. */
431 #define LZO_MIN_RD_PAGES	1024
432 #define LZO_MAX_RD_PAGES	8192
433 
434 
435 /**
436  *	save_image - save the suspend image data
437  */
438 
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)439 static int save_image(struct swap_map_handle *handle,
440                       struct snapshot_handle *snapshot,
441                       unsigned int nr_to_write)
442 {
443 	unsigned int m;
444 	int ret;
445 	int nr_pages;
446 	int err2;
447 	struct bio *bio;
448 	struct timeval start;
449 	struct timeval stop;
450 
451 	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
452 		nr_to_write);
453 	m = nr_to_write / 10;
454 	if (!m)
455 		m = 1;
456 	nr_pages = 0;
457 	bio = NULL;
458 	do_gettimeofday(&start);
459 	while (1) {
460 		ret = snapshot_read_next(snapshot);
461 		if (ret <= 0)
462 			break;
463 		ret = swap_write_page(handle, data_of(*snapshot), &bio);
464 		if (ret)
465 			break;
466 		if (!(nr_pages % m))
467 			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
468 			       nr_pages / m * 10);
469 		nr_pages++;
470 	}
471 	err2 = hib_wait_on_bio_chain(&bio);
472 	do_gettimeofday(&stop);
473 	if (!ret)
474 		ret = err2;
475 	if (!ret)
476 		printk(KERN_INFO "PM: Image saving done.\n");
477 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
478 	return ret;
479 }
480 
481 /**
482  * Structure used for CRC32.
483  */
484 struct crc_data {
485 	struct task_struct *thr;                  /* thread */
486 	atomic_t ready;                           /* ready to start flag */
487 	atomic_t stop;                            /* ready to stop flag */
488 	unsigned run_threads;                     /* nr current threads */
489 	wait_queue_head_t go;                     /* start crc update */
490 	wait_queue_head_t done;                   /* crc update done */
491 	u32 *crc32;                               /* points to handle's crc32 */
492 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
493 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
494 };
495 
496 /**
497  * CRC32 update function that runs in its own thread.
498  */
crc32_threadfn(void * data)499 static int crc32_threadfn(void *data)
500 {
501 	struct crc_data *d = data;
502 	unsigned i;
503 
504 	while (1) {
505 		wait_event(d->go, atomic_read(&d->ready) ||
506 		                  kthread_should_stop());
507 		if (kthread_should_stop()) {
508 			d->thr = NULL;
509 			atomic_set(&d->stop, 1);
510 			wake_up(&d->done);
511 			break;
512 		}
513 		atomic_set(&d->ready, 0);
514 
515 		for (i = 0; i < d->run_threads; i++)
516 			*d->crc32 = crc32_le(*d->crc32,
517 			                     d->unc[i], *d->unc_len[i]);
518 		atomic_set(&d->stop, 1);
519 		wake_up(&d->done);
520 	}
521 	return 0;
522 }
523 /**
524  * Structure used for LZO data compression.
525  */
526 struct cmp_data {
527 	struct task_struct *thr;                  /* thread */
528 	atomic_t ready;                           /* ready to start flag */
529 	atomic_t stop;                            /* ready to stop flag */
530 	int ret;                                  /* return code */
531 	wait_queue_head_t go;                     /* start compression */
532 	wait_queue_head_t done;                   /* compression done */
533 	size_t unc_len;                           /* uncompressed length */
534 	size_t cmp_len;                           /* compressed length */
535 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
536 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
537 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
538 };
539 
540 /**
541  * Compression function that runs in its own thread.
542  */
lzo_compress_threadfn(void * data)543 static int lzo_compress_threadfn(void *data)
544 {
545 	struct cmp_data *d = data;
546 
547 	while (1) {
548 		wait_event(d->go, atomic_read(&d->ready) ||
549 		                  kthread_should_stop());
550 		if (kthread_should_stop()) {
551 			d->thr = NULL;
552 			d->ret = -1;
553 			atomic_set(&d->stop, 1);
554 			wake_up(&d->done);
555 			break;
556 		}
557 		atomic_set(&d->ready, 0);
558 
559 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
560 		                          d->cmp + LZO_HEADER, &d->cmp_len,
561 		                          d->wrk);
562 		atomic_set(&d->stop, 1);
563 		wake_up(&d->done);
564 	}
565 	return 0;
566 }
567 
568 /**
569  * save_image_lzo - Save the suspend image data compressed with LZO.
570  * @handle: Swap mam handle to use for saving the image.
571  * @snapshot: Image to read data from.
572  * @nr_to_write: Number of pages to save.
573  */
save_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)574 static int save_image_lzo(struct swap_map_handle *handle,
575                           struct snapshot_handle *snapshot,
576                           unsigned int nr_to_write)
577 {
578 	unsigned int m;
579 	int ret = 0;
580 	int nr_pages;
581 	int err2;
582 	struct bio *bio;
583 	struct timeval start;
584 	struct timeval stop;
585 	size_t off;
586 	unsigned thr, run_threads, nr_threads;
587 	unsigned char *page = NULL;
588 	struct cmp_data *data = NULL;
589 	struct crc_data *crc = NULL;
590 
591 	/*
592 	 * We'll limit the number of threads for compression to limit memory
593 	 * footprint.
594 	 */
595 	nr_threads = num_online_cpus() - 1;
596 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
597 
598 	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
599 	if (!page) {
600 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
601 		ret = -ENOMEM;
602 		goto out_clean;
603 	}
604 
605 	data = vmalloc(sizeof(*data) * nr_threads);
606 	if (!data) {
607 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
608 		ret = -ENOMEM;
609 		goto out_clean;
610 	}
611 	for (thr = 0; thr < nr_threads; thr++)
612 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
613 
614 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
615 	if (!crc) {
616 		printk(KERN_ERR "PM: Failed to allocate crc\n");
617 		ret = -ENOMEM;
618 		goto out_clean;
619 	}
620 	memset(crc, 0, offsetof(struct crc_data, go));
621 
622 	/*
623 	 * Start the compression threads.
624 	 */
625 	for (thr = 0; thr < nr_threads; thr++) {
626 		init_waitqueue_head(&data[thr].go);
627 		init_waitqueue_head(&data[thr].done);
628 
629 		data[thr].thr = kthread_run(lzo_compress_threadfn,
630 		                            &data[thr],
631 		                            "image_compress/%u", thr);
632 		if (IS_ERR(data[thr].thr)) {
633 			data[thr].thr = NULL;
634 			printk(KERN_ERR
635 			       "PM: Cannot start compression threads\n");
636 			ret = -ENOMEM;
637 			goto out_clean;
638 		}
639 	}
640 
641 	/*
642 	 * Start the CRC32 thread.
643 	 */
644 	init_waitqueue_head(&crc->go);
645 	init_waitqueue_head(&crc->done);
646 
647 	handle->crc32 = 0;
648 	crc->crc32 = &handle->crc32;
649 	for (thr = 0; thr < nr_threads; thr++) {
650 		crc->unc[thr] = data[thr].unc;
651 		crc->unc_len[thr] = &data[thr].unc_len;
652 	}
653 
654 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
655 	if (IS_ERR(crc->thr)) {
656 		crc->thr = NULL;
657 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
658 		ret = -ENOMEM;
659 		goto out_clean;
660 	}
661 
662 	/*
663 	 * Adjust the number of required free pages after all allocations have
664 	 * been done. We don't want to run out of pages when writing.
665 	 */
666 	handle->reqd_free_pages = reqd_free_pages();
667 
668 	printk(KERN_INFO
669 		"PM: Using %u thread(s) for compression.\n"
670 		"PM: Compressing and saving image data (%u pages)...\n",
671 		nr_threads, nr_to_write);
672 	m = nr_to_write / 10;
673 	if (!m)
674 		m = 1;
675 	nr_pages = 0;
676 	bio = NULL;
677 	do_gettimeofday(&start);
678 	for (;;) {
679 		for (thr = 0; thr < nr_threads; thr++) {
680 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
681 				ret = snapshot_read_next(snapshot);
682 				if (ret < 0)
683 					goto out_finish;
684 
685 				if (!ret)
686 					break;
687 
688 				memcpy(data[thr].unc + off,
689 				       data_of(*snapshot), PAGE_SIZE);
690 
691 				if (!(nr_pages % m))
692 					printk(KERN_INFO
693 					       "PM: Image saving progress: "
694 					       "%3d%%\n",
695 				               nr_pages / m * 10);
696 				nr_pages++;
697 			}
698 			if (!off)
699 				break;
700 
701 			data[thr].unc_len = off;
702 
703 			atomic_set(&data[thr].ready, 1);
704 			wake_up(&data[thr].go);
705 		}
706 
707 		if (!thr)
708 			break;
709 
710 		crc->run_threads = thr;
711 		atomic_set(&crc->ready, 1);
712 		wake_up(&crc->go);
713 
714 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
715 			wait_event(data[thr].done,
716 			           atomic_read(&data[thr].stop));
717 			atomic_set(&data[thr].stop, 0);
718 
719 			ret = data[thr].ret;
720 
721 			if (ret < 0) {
722 				printk(KERN_ERR "PM: LZO compression failed\n");
723 				goto out_finish;
724 			}
725 
726 			if (unlikely(!data[thr].cmp_len ||
727 			             data[thr].cmp_len >
728 			             lzo1x_worst_compress(data[thr].unc_len))) {
729 				printk(KERN_ERR
730 				       "PM: Invalid LZO compressed length\n");
731 				ret = -1;
732 				goto out_finish;
733 			}
734 
735 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
736 
737 			/*
738 			 * Given we are writing one page at a time to disk, we
739 			 * copy that much from the buffer, although the last
740 			 * bit will likely be smaller than full page. This is
741 			 * OK - we saved the length of the compressed data, so
742 			 * any garbage at the end will be discarded when we
743 			 * read it.
744 			 */
745 			for (off = 0;
746 			     off < LZO_HEADER + data[thr].cmp_len;
747 			     off += PAGE_SIZE) {
748 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
749 
750 				ret = swap_write_page(handle, page, &bio);
751 				if (ret)
752 					goto out_finish;
753 			}
754 		}
755 
756 		wait_event(crc->done, atomic_read(&crc->stop));
757 		atomic_set(&crc->stop, 0);
758 	}
759 
760 out_finish:
761 	err2 = hib_wait_on_bio_chain(&bio);
762 	do_gettimeofday(&stop);
763 	if (!ret)
764 		ret = err2;
765 	if (!ret)
766 		printk(KERN_INFO "PM: Image saving done.\n");
767 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
768 out_clean:
769 	if (crc) {
770 		if (crc->thr)
771 			kthread_stop(crc->thr);
772 		kfree(crc);
773 	}
774 	if (data) {
775 		for (thr = 0; thr < nr_threads; thr++)
776 			if (data[thr].thr)
777 				kthread_stop(data[thr].thr);
778 		vfree(data);
779 	}
780 	if (page) free_page((unsigned long)page);
781 
782 	return ret;
783 }
784 
785 /**
786  *	enough_swap - Make sure we have enough swap to save the image.
787  *
788  *	Returns TRUE or FALSE after checking the total amount of swap
789  *	space avaiable from the resume partition.
790  */
791 
enough_swap(unsigned int nr_pages,unsigned int flags)792 static int enough_swap(unsigned int nr_pages, unsigned int flags)
793 {
794 	unsigned int free_swap = count_swap_pages(root_swap, 1);
795 	unsigned int required;
796 
797 	pr_debug("PM: Free swap pages: %u\n", free_swap);
798 
799 	required = PAGES_FOR_IO + nr_pages;
800 	return free_swap > required;
801 }
802 
803 /**
804  *	swsusp_write - Write entire image and metadata.
805  *	@flags: flags to pass to the "boot" kernel in the image header
806  *
807  *	It is important _NOT_ to umount filesystems at this point. We want
808  *	them synced (in case something goes wrong) but we DO not want to mark
809  *	filesystem clean: it is not. (And it does not matter, if we resume
810  *	correctly, we'll mark system clean, anyway.)
811  */
812 
swsusp_write(unsigned int flags)813 int swsusp_write(unsigned int flags)
814 {
815 	struct swap_map_handle handle;
816 	struct snapshot_handle snapshot;
817 	struct swsusp_info *header;
818 	unsigned long pages;
819 	int error;
820 
821 	pages = snapshot_get_image_size();
822 	error = get_swap_writer(&handle);
823 	if (error) {
824 		printk(KERN_ERR "PM: Cannot get swap writer\n");
825 		return error;
826 	}
827 	if (flags & SF_NOCOMPRESS_MODE) {
828 		if (!enough_swap(pages, flags)) {
829 			printk(KERN_ERR "PM: Not enough free swap\n");
830 			error = -ENOSPC;
831 			goto out_finish;
832 		}
833 	}
834 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
835 	error = snapshot_read_next(&snapshot);
836 	if (error < PAGE_SIZE) {
837 		if (error >= 0)
838 			error = -EFAULT;
839 
840 		goto out_finish;
841 	}
842 	header = (struct swsusp_info *)data_of(snapshot);
843 	error = swap_write_page(&handle, header, NULL);
844 	if (!error) {
845 		error = (flags & SF_NOCOMPRESS_MODE) ?
846 			save_image(&handle, &snapshot, pages - 1) :
847 			save_image_lzo(&handle, &snapshot, pages - 1);
848 	}
849 out_finish:
850 	error = swap_writer_finish(&handle, flags, error);
851 	return error;
852 }
853 
854 /**
855  *	The following functions allow us to read data using a swap map
856  *	in a file-alike way
857  */
858 
release_swap_reader(struct swap_map_handle * handle)859 static void release_swap_reader(struct swap_map_handle *handle)
860 {
861 	struct swap_map_page_list *tmp;
862 
863 	while (handle->maps) {
864 		if (handle->maps->map)
865 			free_page((unsigned long)handle->maps->map);
866 		tmp = handle->maps;
867 		handle->maps = handle->maps->next;
868 		kfree(tmp);
869 	}
870 	handle->cur = NULL;
871 }
872 
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)873 static int get_swap_reader(struct swap_map_handle *handle,
874 		unsigned int *flags_p)
875 {
876 	int error;
877 	struct swap_map_page_list *tmp, *last;
878 	sector_t offset;
879 
880 	*flags_p = swsusp_header->flags;
881 
882 	if (!swsusp_header->image) /* how can this happen? */
883 		return -EINVAL;
884 
885 	handle->cur = NULL;
886 	last = handle->maps = NULL;
887 	offset = swsusp_header->image;
888 	while (offset) {
889 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
890 		if (!tmp) {
891 			release_swap_reader(handle);
892 			return -ENOMEM;
893 		}
894 		memset(tmp, 0, sizeof(*tmp));
895 		if (!handle->maps)
896 			handle->maps = tmp;
897 		if (last)
898 			last->next = tmp;
899 		last = tmp;
900 
901 		tmp->map = (struct swap_map_page *)
902 		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
903 		if (!tmp->map) {
904 			release_swap_reader(handle);
905 			return -ENOMEM;
906 		}
907 
908 		error = hib_bio_read_page(offset, tmp->map, NULL);
909 		if (error) {
910 			release_swap_reader(handle);
911 			return error;
912 		}
913 		offset = tmp->map->next_swap;
914 	}
915 	handle->k = 0;
916 	handle->cur = handle->maps->map;
917 	return 0;
918 }
919 
swap_read_page(struct swap_map_handle * handle,void * buf,struct bio ** bio_chain)920 static int swap_read_page(struct swap_map_handle *handle, void *buf,
921 				struct bio **bio_chain)
922 {
923 	sector_t offset;
924 	int error;
925 	struct swap_map_page_list *tmp;
926 
927 	if (!handle->cur)
928 		return -EINVAL;
929 	offset = handle->cur->entries[handle->k];
930 	if (!offset)
931 		return -EFAULT;
932 	error = hib_bio_read_page(offset, buf, bio_chain);
933 	if (error)
934 		return error;
935 	if (++handle->k >= MAP_PAGE_ENTRIES) {
936 		handle->k = 0;
937 		free_page((unsigned long)handle->maps->map);
938 		tmp = handle->maps;
939 		handle->maps = handle->maps->next;
940 		kfree(tmp);
941 		if (!handle->maps)
942 			release_swap_reader(handle);
943 		else
944 			handle->cur = handle->maps->map;
945 	}
946 	return error;
947 }
948 
swap_reader_finish(struct swap_map_handle * handle)949 static int swap_reader_finish(struct swap_map_handle *handle)
950 {
951 	release_swap_reader(handle);
952 
953 	return 0;
954 }
955 
956 /**
957  *	load_image - load the image using the swap map handle
958  *	@handle and the snapshot handle @snapshot
959  *	(assume there are @nr_pages pages to load)
960  */
961 
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)962 static int load_image(struct swap_map_handle *handle,
963                       struct snapshot_handle *snapshot,
964                       unsigned int nr_to_read)
965 {
966 	unsigned int m;
967 	int ret = 0;
968 	struct timeval start;
969 	struct timeval stop;
970 	struct bio *bio;
971 	int err2;
972 	unsigned nr_pages;
973 
974 	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
975 		nr_to_read);
976 	m = nr_to_read / 10;
977 	if (!m)
978 		m = 1;
979 	nr_pages = 0;
980 	bio = NULL;
981 	do_gettimeofday(&start);
982 	for ( ; ; ) {
983 		ret = snapshot_write_next(snapshot);
984 		if (ret <= 0)
985 			break;
986 		ret = swap_read_page(handle, data_of(*snapshot), &bio);
987 		if (ret)
988 			break;
989 		if (snapshot->sync_read)
990 			ret = hib_wait_on_bio_chain(&bio);
991 		if (ret)
992 			break;
993 		if (!(nr_pages % m))
994 			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
995 			       nr_pages / m * 10);
996 		nr_pages++;
997 	}
998 	err2 = hib_wait_on_bio_chain(&bio);
999 	do_gettimeofday(&stop);
1000 	if (!ret)
1001 		ret = err2;
1002 	if (!ret) {
1003 		printk(KERN_INFO "PM: Image loading done.\n");
1004 		snapshot_write_finalize(snapshot);
1005 		if (!snapshot_image_loaded(snapshot))
1006 			ret = -ENODATA;
1007 	}
1008 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1009 	return ret;
1010 }
1011 
1012 /**
1013  * Structure used for LZO data decompression.
1014  */
1015 struct dec_data {
1016 	struct task_struct *thr;                  /* thread */
1017 	atomic_t ready;                           /* ready to start flag */
1018 	atomic_t stop;                            /* ready to stop flag */
1019 	int ret;                                  /* return code */
1020 	wait_queue_head_t go;                     /* start decompression */
1021 	wait_queue_head_t done;                   /* decompression done */
1022 	size_t unc_len;                           /* uncompressed length */
1023 	size_t cmp_len;                           /* compressed length */
1024 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1025 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1026 };
1027 
1028 /**
1029  * Deompression function that runs in its own thread.
1030  */
lzo_decompress_threadfn(void * data)1031 static int lzo_decompress_threadfn(void *data)
1032 {
1033 	struct dec_data *d = data;
1034 
1035 	while (1) {
1036 		wait_event(d->go, atomic_read(&d->ready) ||
1037 		                  kthread_should_stop());
1038 		if (kthread_should_stop()) {
1039 			d->thr = NULL;
1040 			d->ret = -1;
1041 			atomic_set(&d->stop, 1);
1042 			wake_up(&d->done);
1043 			break;
1044 		}
1045 		atomic_set(&d->ready, 0);
1046 
1047 		d->unc_len = LZO_UNC_SIZE;
1048 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1049 		                               d->unc, &d->unc_len);
1050 		atomic_set(&d->stop, 1);
1051 		wake_up(&d->done);
1052 	}
1053 	return 0;
1054 }
1055 
1056 /**
1057  * load_image_lzo - Load compressed image data and decompress them with LZO.
1058  * @handle: Swap map handle to use for loading data.
1059  * @snapshot: Image to copy uncompressed data into.
1060  * @nr_to_read: Number of pages to load.
1061  */
load_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1062 static int load_image_lzo(struct swap_map_handle *handle,
1063                           struct snapshot_handle *snapshot,
1064                           unsigned int nr_to_read)
1065 {
1066 	unsigned int m;
1067 	int ret = 0;
1068 	int eof = 0;
1069 	struct bio *bio;
1070 	struct timeval start;
1071 	struct timeval stop;
1072 	unsigned nr_pages;
1073 	size_t off;
1074 	unsigned i, thr, run_threads, nr_threads;
1075 	unsigned ring = 0, pg = 0, ring_size = 0,
1076 	         have = 0, want, need, asked = 0;
1077 	unsigned long read_pages = 0;
1078 	unsigned char **page = NULL;
1079 	struct dec_data *data = NULL;
1080 	struct crc_data *crc = NULL;
1081 
1082 	/*
1083 	 * We'll limit the number of threads for decompression to limit memory
1084 	 * footprint.
1085 	 */
1086 	nr_threads = num_online_cpus() - 1;
1087 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1088 
1089 	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1090 	if (!page) {
1091 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1092 		ret = -ENOMEM;
1093 		goto out_clean;
1094 	}
1095 
1096 	data = vmalloc(sizeof(*data) * nr_threads);
1097 	if (!data) {
1098 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1099 		ret = -ENOMEM;
1100 		goto out_clean;
1101 	}
1102 	for (thr = 0; thr < nr_threads; thr++)
1103 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1104 
1105 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1106 	if (!crc) {
1107 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1108 		ret = -ENOMEM;
1109 		goto out_clean;
1110 	}
1111 	memset(crc, 0, offsetof(struct crc_data, go));
1112 
1113 	/*
1114 	 * Start the decompression threads.
1115 	 */
1116 	for (thr = 0; thr < nr_threads; thr++) {
1117 		init_waitqueue_head(&data[thr].go);
1118 		init_waitqueue_head(&data[thr].done);
1119 
1120 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1121 		                            &data[thr],
1122 		                            "image_decompress/%u", thr);
1123 		if (IS_ERR(data[thr].thr)) {
1124 			data[thr].thr = NULL;
1125 			printk(KERN_ERR
1126 			       "PM: Cannot start decompression threads\n");
1127 			ret = -ENOMEM;
1128 			goto out_clean;
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * Start the CRC32 thread.
1134 	 */
1135 	init_waitqueue_head(&crc->go);
1136 	init_waitqueue_head(&crc->done);
1137 
1138 	handle->crc32 = 0;
1139 	crc->crc32 = &handle->crc32;
1140 	for (thr = 0; thr < nr_threads; thr++) {
1141 		crc->unc[thr] = data[thr].unc;
1142 		crc->unc_len[thr] = &data[thr].unc_len;
1143 	}
1144 
1145 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1146 	if (IS_ERR(crc->thr)) {
1147 		crc->thr = NULL;
1148 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1149 		ret = -ENOMEM;
1150 		goto out_clean;
1151 	}
1152 
1153 	/*
1154 	 * Set the number of pages for read buffering.
1155 	 * This is complete guesswork, because we'll only know the real
1156 	 * picture once prepare_image() is called, which is much later on
1157 	 * during the image load phase. We'll assume the worst case and
1158 	 * say that none of the image pages are from high memory.
1159 	 */
1160 	if (low_free_pages() > snapshot_get_image_size())
1161 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1162 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1163 
1164 	for (i = 0; i < read_pages; i++) {
1165 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1166 		                                  __GFP_WAIT | __GFP_HIGH :
1167 		                                  __GFP_WAIT | __GFP_NOWARN |
1168 		                                  __GFP_NORETRY);
1169 
1170 		if (!page[i]) {
1171 			if (i < LZO_CMP_PAGES) {
1172 				ring_size = i;
1173 				printk(KERN_ERR
1174 				       "PM: Failed to allocate LZO pages\n");
1175 				ret = -ENOMEM;
1176 				goto out_clean;
1177 			} else {
1178 				break;
1179 			}
1180 		}
1181 	}
1182 	want = ring_size = i;
1183 
1184 	printk(KERN_INFO
1185 		"PM: Using %u thread(s) for decompression.\n"
1186 		"PM: Loading and decompressing image data (%u pages)...\n",
1187 		nr_threads, nr_to_read);
1188 	m = nr_to_read / 10;
1189 	if (!m)
1190 		m = 1;
1191 	nr_pages = 0;
1192 	bio = NULL;
1193 	do_gettimeofday(&start);
1194 
1195 	ret = snapshot_write_next(snapshot);
1196 	if (ret <= 0)
1197 		goto out_finish;
1198 
1199 	for(;;) {
1200 		for (i = 0; !eof && i < want; i++) {
1201 			ret = swap_read_page(handle, page[ring], &bio);
1202 			if (ret) {
1203 				/*
1204 				 * On real read error, finish. On end of data,
1205 				 * set EOF flag and just exit the read loop.
1206 				 */
1207 				if (handle->cur &&
1208 				    handle->cur->entries[handle->k]) {
1209 					goto out_finish;
1210 				} else {
1211 					eof = 1;
1212 					break;
1213 				}
1214 			}
1215 			if (++ring >= ring_size)
1216 				ring = 0;
1217 		}
1218 		asked += i;
1219 		want -= i;
1220 
1221 		/*
1222 		 * We are out of data, wait for some more.
1223 		 */
1224 		if (!have) {
1225 			if (!asked)
1226 				break;
1227 
1228 			ret = hib_wait_on_bio_chain(&bio);
1229 			if (ret)
1230 				goto out_finish;
1231 			have += asked;
1232 			asked = 0;
1233 			if (eof)
1234 				eof = 2;
1235 		}
1236 
1237 		if (crc->run_threads) {
1238 			wait_event(crc->done, atomic_read(&crc->stop));
1239 			atomic_set(&crc->stop, 0);
1240 			crc->run_threads = 0;
1241 		}
1242 
1243 		for (thr = 0; have && thr < nr_threads; thr++) {
1244 			data[thr].cmp_len = *(size_t *)page[pg];
1245 			if (unlikely(!data[thr].cmp_len ||
1246 			             data[thr].cmp_len >
1247 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1248 				printk(KERN_ERR
1249 				       "PM: Invalid LZO compressed length\n");
1250 				ret = -1;
1251 				goto out_finish;
1252 			}
1253 
1254 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1255 			                    PAGE_SIZE);
1256 			if (need > have) {
1257 				if (eof > 1) {
1258 					ret = -1;
1259 					goto out_finish;
1260 				}
1261 				break;
1262 			}
1263 
1264 			for (off = 0;
1265 			     off < LZO_HEADER + data[thr].cmp_len;
1266 			     off += PAGE_SIZE) {
1267 				memcpy(data[thr].cmp + off,
1268 				       page[pg], PAGE_SIZE);
1269 				have--;
1270 				want++;
1271 				if (++pg >= ring_size)
1272 					pg = 0;
1273 			}
1274 
1275 			atomic_set(&data[thr].ready, 1);
1276 			wake_up(&data[thr].go);
1277 		}
1278 
1279 		/*
1280 		 * Wait for more data while we are decompressing.
1281 		 */
1282 		if (have < LZO_CMP_PAGES && asked) {
1283 			ret = hib_wait_on_bio_chain(&bio);
1284 			if (ret)
1285 				goto out_finish;
1286 			have += asked;
1287 			asked = 0;
1288 			if (eof)
1289 				eof = 2;
1290 		}
1291 
1292 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1293 			wait_event(data[thr].done,
1294 			           atomic_read(&data[thr].stop));
1295 			atomic_set(&data[thr].stop, 0);
1296 
1297 			ret = data[thr].ret;
1298 
1299 			if (ret < 0) {
1300 				printk(KERN_ERR
1301 				       "PM: LZO decompression failed\n");
1302 				goto out_finish;
1303 			}
1304 
1305 			if (unlikely(!data[thr].unc_len ||
1306 			             data[thr].unc_len > LZO_UNC_SIZE ||
1307 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1308 				printk(KERN_ERR
1309 				       "PM: Invalid LZO uncompressed length\n");
1310 				ret = -1;
1311 				goto out_finish;
1312 			}
1313 
1314 			for (off = 0;
1315 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1316 				memcpy(data_of(*snapshot),
1317 				       data[thr].unc + off, PAGE_SIZE);
1318 
1319 				if (!(nr_pages % m))
1320 					printk(KERN_INFO
1321 					       "PM: Image loading progress: "
1322 					       "%3d%%\n",
1323 					       nr_pages / m * 10);
1324 				nr_pages++;
1325 
1326 				ret = snapshot_write_next(snapshot);
1327 				if (ret <= 0) {
1328 					crc->run_threads = thr + 1;
1329 					atomic_set(&crc->ready, 1);
1330 					wake_up(&crc->go);
1331 					goto out_finish;
1332 				}
1333 			}
1334 		}
1335 
1336 		crc->run_threads = thr;
1337 		atomic_set(&crc->ready, 1);
1338 		wake_up(&crc->go);
1339 	}
1340 
1341 out_finish:
1342 	if (crc->run_threads) {
1343 		wait_event(crc->done, atomic_read(&crc->stop));
1344 		atomic_set(&crc->stop, 0);
1345 	}
1346 	do_gettimeofday(&stop);
1347 	if (!ret) {
1348 		printk(KERN_INFO "PM: Image loading done.\n");
1349 		snapshot_write_finalize(snapshot);
1350 		if (!snapshot_image_loaded(snapshot))
1351 			ret = -ENODATA;
1352 		if (!ret) {
1353 			if (swsusp_header->flags & SF_CRC32_MODE) {
1354 				if(handle->crc32 != swsusp_header->crc32) {
1355 					printk(KERN_ERR
1356 					       "PM: Invalid image CRC32!\n");
1357 					ret = -ENODATA;
1358 				}
1359 			}
1360 		}
1361 	}
1362 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1363 out_clean:
1364 	for (i = 0; i < ring_size; i++)
1365 		free_page((unsigned long)page[i]);
1366 	if (crc) {
1367 		if (crc->thr)
1368 			kthread_stop(crc->thr);
1369 		kfree(crc);
1370 	}
1371 	if (data) {
1372 		for (thr = 0; thr < nr_threads; thr++)
1373 			if (data[thr].thr)
1374 				kthread_stop(data[thr].thr);
1375 		vfree(data);
1376 	}
1377 	if (page) vfree(page);
1378 
1379 	return ret;
1380 }
1381 
1382 /**
1383  *	swsusp_read - read the hibernation image.
1384  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1385  *		  be written into this memory location
1386  */
1387 
swsusp_read(unsigned int * flags_p)1388 int swsusp_read(unsigned int *flags_p)
1389 {
1390 	int error;
1391 	struct swap_map_handle handle;
1392 	struct snapshot_handle snapshot;
1393 	struct swsusp_info *header;
1394 
1395 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1396 	error = snapshot_write_next(&snapshot);
1397 	if (error < PAGE_SIZE)
1398 		return error < 0 ? error : -EFAULT;
1399 	header = (struct swsusp_info *)data_of(snapshot);
1400 	error = get_swap_reader(&handle, flags_p);
1401 	if (error)
1402 		goto end;
1403 	if (!error)
1404 		error = swap_read_page(&handle, header, NULL);
1405 	if (!error) {
1406 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1407 			load_image(&handle, &snapshot, header->pages - 1) :
1408 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1409 	}
1410 	swap_reader_finish(&handle);
1411 end:
1412 	if (!error)
1413 		pr_debug("PM: Image successfully loaded\n");
1414 	else
1415 		pr_debug("PM: Error %d resuming\n", error);
1416 	return error;
1417 }
1418 
1419 /**
1420  *      swsusp_check - Check for swsusp signature in the resume device
1421  */
1422 
swsusp_check(void)1423 int swsusp_check(void)
1424 {
1425 	int error;
1426 
1427 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1428 					    FMODE_READ, NULL);
1429 	if (!IS_ERR(hib_resume_bdev)) {
1430 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1431 		clear_page(swsusp_header);
1432 		error = hib_bio_read_page(swsusp_resume_block,
1433 					swsusp_header, NULL);
1434 		if (error)
1435 			goto put;
1436 
1437 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1438 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1439 			/* Reset swap signature now */
1440 			error = hib_bio_write_page(swsusp_resume_block,
1441 						swsusp_header, NULL);
1442 		} else {
1443 			error = -EINVAL;
1444 		}
1445 
1446 put:
1447 		if (error)
1448 			blkdev_put(hib_resume_bdev, FMODE_READ);
1449 		else
1450 			pr_debug("PM: Image signature found, resuming\n");
1451 	} else {
1452 		error = PTR_ERR(hib_resume_bdev);
1453 	}
1454 
1455 	if (error)
1456 		pr_debug("PM: Image not found (code %d)\n", error);
1457 
1458 	return error;
1459 }
1460 
1461 /**
1462  *	swsusp_close - close swap device.
1463  */
1464 
swsusp_close(fmode_t mode)1465 void swsusp_close(fmode_t mode)
1466 {
1467 	if (IS_ERR(hib_resume_bdev)) {
1468 		pr_debug("PM: Image device not initialised\n");
1469 		return;
1470 	}
1471 
1472 	blkdev_put(hib_resume_bdev, mode);
1473 }
1474 
1475 /**
1476  *      swsusp_unmark - Unmark swsusp signature in the resume device
1477  */
1478 
1479 #ifdef CONFIG_SUSPEND
swsusp_unmark(void)1480 int swsusp_unmark(void)
1481 {
1482 	int error;
1483 
1484 	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
1485 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1486 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1487 		error = hib_bio_write_page(swsusp_resume_block,
1488 					swsusp_header, NULL);
1489 	} else {
1490 		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1491 		error = -ENODEV;
1492 	}
1493 
1494 	/*
1495 	 * We just returned from suspend, we don't need the image any more.
1496 	 */
1497 	free_all_swap_pages(root_swap);
1498 
1499 	return error;
1500 }
1501 #endif
1502 
swsusp_header_init(void)1503 static int swsusp_header_init(void)
1504 {
1505 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1506 	if (!swsusp_header)
1507 		panic("Could not allocate memory for swsusp_header\n");
1508 	return 0;
1509 }
1510 
1511 core_initcall(swsusp_header_init);
1512