1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 /*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
get_update_sysctl_factor(void)125 static int get_update_sysctl_factor(void)
126 {
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144 }
145
update_sysctl(void)146 static void update_sysctl(void)
147 {
148 unsigned int factor = get_update_sysctl_factor();
149
150 #define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155 #undef SET_SYSCTL
156 }
157
sched_init_granularity(void)158 void sched_init_granularity(void)
159 {
160 update_sysctl();
161 }
162
163 #if BITS_PER_LONG == 32
164 # define WMULT_CONST (~0UL)
165 #else
166 # define WMULT_CONST (1UL << 32)
167 #endif
168
169 #define WMULT_SHIFT 32
170
171 /*
172 * Shift right and round:
173 */
174 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176 /*
177 * delta *= weight / lw
178 */
179 static unsigned long
calc_delta_mine(unsigned long delta_exec,unsigned long weight,struct load_weight * lw)180 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182 {
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216 }
217
218
219 const struct sched_class fair_sched_class;
220
221 /**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
225 #ifdef CONFIG_FAIR_GROUP_SCHED
226
227 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)228 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229 {
230 return cfs_rq->rq;
231 }
232
233 /* An entity is a task if it doesn't "own" a runqueue */
234 #define entity_is_task(se) (!se->my_q)
235
task_of(struct sched_entity * se)236 static inline struct task_struct *task_of(struct sched_entity *se)
237 {
238 #ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240 #endif
241 return container_of(se, struct task_struct, se);
242 }
243
244 /* Walk up scheduling entities hierarchy */
245 #define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
task_cfs_rq(struct task_struct * p)248 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249 {
250 return p->se.cfs_rq;
251 }
252
253 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)254 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255 {
256 return se->cfs_rq;
257 }
258
259 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)260 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261 {
262 return grp->my_q;
263 }
264
265 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
267
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)268 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269 {
270 if (!cfs_rq->on_list) {
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
284 }
285
286 cfs_rq->on_list = 1;
287 /* We should have no load, but we need to update last_decay. */
288 update_cfs_rq_blocked_load(cfs_rq, 0);
289 }
290 }
291
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)292 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298 }
299
300 /* Iterate thr' all leaf cfs_rq's on a runqueue */
301 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304 /* Do the two (enqueued) entities belong to the same group ? */
305 static inline int
is_same_group(struct sched_entity * se,struct sched_entity * pse)306 is_same_group(struct sched_entity *se, struct sched_entity *pse)
307 {
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312 }
313
parent_entity(struct sched_entity * se)314 static inline struct sched_entity *parent_entity(struct sched_entity *se)
315 {
316 return se->parent;
317 }
318
319 /* return depth at which a sched entity is present in the hierarchy */
depth_se(struct sched_entity * se)320 static inline int depth_se(struct sched_entity *se)
321 {
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328 }
329
330 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)331 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332 {
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360 }
361
362 #else /* !CONFIG_FAIR_GROUP_SCHED */
363
task_of(struct sched_entity * se)364 static inline struct task_struct *task_of(struct sched_entity *se)
365 {
366 return container_of(se, struct task_struct, se);
367 }
368
rq_of(struct cfs_rq * cfs_rq)369 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370 {
371 return container_of(cfs_rq, struct rq, cfs);
372 }
373
374 #define entity_is_task(se) 1
375
376 #define for_each_sched_entity(se) \
377 for (; se; se = NULL)
378
task_cfs_rq(struct task_struct * p)379 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
380 {
381 return &task_rq(p)->cfs;
382 }
383
cfs_rq_of(struct sched_entity * se)384 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385 {
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390 }
391
392 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)393 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394 {
395 return NULL;
396 }
397
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)398 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 }
401
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)402 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403 {
404 }
405
406 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409 static inline int
is_same_group(struct sched_entity * se,struct sched_entity * pse)410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 return 1;
413 }
414
parent_entity(struct sched_entity * se)415 static inline struct sched_entity *parent_entity(struct sched_entity *se)
416 {
417 return NULL;
418 }
419
420 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)421 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422 {
423 }
424
425 #endif /* CONFIG_FAIR_GROUP_SCHED */
426
427 static __always_inline
428 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
429
430 /**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
max_vruntime(u64 max_vruntime,u64 vruntime)434 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
435 {
436 s64 delta = (s64)(vruntime - max_vruntime);
437 if (delta > 0)
438 max_vruntime = vruntime;
439
440 return max_vruntime;
441 }
442
min_vruntime(u64 min_vruntime,u64 vruntime)443 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
444 {
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450 }
451
entity_before(struct sched_entity * a,struct sched_entity * b)452 static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454 {
455 return (s64)(a->vruntime - b->vruntime) < 0;
456 }
457
update_min_vruntime(struct cfs_rq * cfs_rq)458 static void update_min_vruntime(struct cfs_rq *cfs_rq)
459 {
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
470 if (!cfs_rq->curr)
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 /* ensure we never gain time by being placed backwards. */
477 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
478 #ifndef CONFIG_64BIT
479 smp_wmb();
480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481 #endif
482 }
483
484 /*
485 * Enqueue an entity into the rb-tree:
486 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)487 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490 struct rb_node *parent = NULL;
491 struct sched_entity *entry;
492 int leftmost = 1;
493
494 /*
495 * Find the right place in the rbtree:
496 */
497 while (*link) {
498 parent = *link;
499 entry = rb_entry(parent, struct sched_entity, run_node);
500 /*
501 * We dont care about collisions. Nodes with
502 * the same key stay together.
503 */
504 if (entity_before(se, entry)) {
505 link = &parent->rb_left;
506 } else {
507 link = &parent->rb_right;
508 leftmost = 0;
509 }
510 }
511
512 /*
513 * Maintain a cache of leftmost tree entries (it is frequently
514 * used):
515 */
516 if (leftmost)
517 cfs_rq->rb_leftmost = &se->run_node;
518
519 rb_link_node(&se->run_node, parent, link);
520 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
521 }
522
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)523 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 if (cfs_rq->rb_leftmost == &se->run_node) {
526 struct rb_node *next_node;
527
528 next_node = rb_next(&se->run_node);
529 cfs_rq->rb_leftmost = next_node;
530 }
531
532 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
533 }
534
__pick_first_entity(struct cfs_rq * cfs_rq)535 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
536 {
537 struct rb_node *left = cfs_rq->rb_leftmost;
538
539 if (!left)
540 return NULL;
541
542 return rb_entry(left, struct sched_entity, run_node);
543 }
544
__pick_next_entity(struct sched_entity * se)545 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546 {
547 struct rb_node *next = rb_next(&se->run_node);
548
549 if (!next)
550 return NULL;
551
552 return rb_entry(next, struct sched_entity, run_node);
553 }
554
555 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)556 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
557 {
558 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
559
560 if (!last)
561 return NULL;
562
563 return rb_entry(last, struct sched_entity, run_node);
564 }
565
566 /**************************************************************
567 * Scheduling class statistics methods:
568 */
569
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)570 int sched_proc_update_handler(struct ctl_table *table, int write,
571 void __user *buffer, size_t *lenp,
572 loff_t *ppos)
573 {
574 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
575 int factor = get_update_sysctl_factor();
576
577 if (ret || !write)
578 return ret;
579
580 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581 sysctl_sched_min_granularity);
582
583 #define WRT_SYSCTL(name) \
584 (normalized_sysctl_##name = sysctl_##name / (factor))
585 WRT_SYSCTL(sched_min_granularity);
586 WRT_SYSCTL(sched_latency);
587 WRT_SYSCTL(sched_wakeup_granularity);
588 #undef WRT_SYSCTL
589
590 return 0;
591 }
592 #endif
593
594 /*
595 * delta /= w
596 */
597 static inline unsigned long
calc_delta_fair(unsigned long delta,struct sched_entity * se)598 calc_delta_fair(unsigned long delta, struct sched_entity *se)
599 {
600 if (unlikely(se->load.weight != NICE_0_LOAD))
601 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
602
603 return delta;
604 }
605
606 /*
607 * The idea is to set a period in which each task runs once.
608 *
609 * When there are too many tasks (sched_nr_latency) we have to stretch
610 * this period because otherwise the slices get too small.
611 *
612 * p = (nr <= nl) ? l : l*nr/nl
613 */
__sched_period(unsigned long nr_running)614 static u64 __sched_period(unsigned long nr_running)
615 {
616 u64 period = sysctl_sched_latency;
617 unsigned long nr_latency = sched_nr_latency;
618
619 if (unlikely(nr_running > nr_latency)) {
620 period = sysctl_sched_min_granularity;
621 period *= nr_running;
622 }
623
624 return period;
625 }
626
627 /*
628 * We calculate the wall-time slice from the period by taking a part
629 * proportional to the weight.
630 *
631 * s = p*P[w/rw]
632 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)633 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
636
637 for_each_sched_entity(se) {
638 struct load_weight *load;
639 struct load_weight lw;
640
641 cfs_rq = cfs_rq_of(se);
642 load = &cfs_rq->load;
643
644 if (unlikely(!se->on_rq)) {
645 lw = cfs_rq->load;
646
647 update_load_add(&lw, se->load.weight);
648 load = &lw;
649 }
650 slice = calc_delta_mine(slice, se->load.weight, load);
651 }
652 return slice;
653 }
654
655 /*
656 * We calculate the vruntime slice of a to-be-inserted task.
657 *
658 * vs = s/w
659 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)660 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
661 {
662 return calc_delta_fair(sched_slice(cfs_rq, se), se);
663 }
664
665 /*
666 * Update the current task's runtime statistics. Skip current tasks that
667 * are not in our scheduling class.
668 */
669 static inline void
__update_curr(struct cfs_rq * cfs_rq,struct sched_entity * curr,unsigned long delta_exec)670 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671 unsigned long delta_exec)
672 {
673 unsigned long delta_exec_weighted;
674
675 schedstat_set(curr->statistics.exec_max,
676 max((u64)delta_exec, curr->statistics.exec_max));
677
678 curr->sum_exec_runtime += delta_exec;
679 schedstat_add(cfs_rq, exec_clock, delta_exec);
680 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
681
682 curr->vruntime += delta_exec_weighted;
683 update_min_vruntime(cfs_rq);
684 }
685
update_curr(struct cfs_rq * cfs_rq)686 static void update_curr(struct cfs_rq *cfs_rq)
687 {
688 struct sched_entity *curr = cfs_rq->curr;
689 u64 now = rq_of(cfs_rq)->clock_task;
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
700 delta_exec = (unsigned long)(now - curr->exec_start);
701 if (!delta_exec)
702 return;
703
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
711 cpuacct_charge(curtask, delta_exec);
712 account_group_exec_runtime(curtask, delta_exec);
713 }
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
716 }
717
718 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)719 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
720 {
721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
722 }
723
724 /*
725 * Task is being enqueued - update stats:
726 */
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)727 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
728 {
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
733 if (se != cfs_rq->curr)
734 update_stats_wait_start(cfs_rq, se);
735 }
736
737 static void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)738 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 #ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
749 }
750 #endif
751 schedstat_set(se->statistics.wait_start, 0);
752 }
753
754 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)755 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
761 if (se != cfs_rq->curr)
762 update_stats_wait_end(cfs_rq, se);
763 }
764
765 /*
766 * We are picking a new current task - update its stats:
767 */
768 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)769 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 {
771 /*
772 * We are starting a new run period:
773 */
774 se->exec_start = rq_of(cfs_rq)->clock_task;
775 }
776
777 /**************************************************
778 * Scheduling class queueing methods:
779 */
780
781 #ifdef CONFIG_NUMA_BALANCING
782 /*
783 * numa task sample period in ms
784 */
785 unsigned int sysctl_numa_balancing_scan_period_min = 100;
786 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
788
789 /* Portion of address space to scan in MB */
790 unsigned int sysctl_numa_balancing_scan_size = 256;
791
792 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793 unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
task_numa_placement(struct task_struct * p)795 static void task_numa_placement(struct task_struct *p)
796 {
797 int seq;
798
799 if (!p->mm) /* for example, ksmd faulting in a user's mm */
800 return;
801 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
802 if (p->numa_scan_seq == seq)
803 return;
804 p->numa_scan_seq = seq;
805
806 /* FIXME: Scheduling placement policy hints go here */
807 }
808
809 /*
810 * Got a PROT_NONE fault for a page on @node.
811 */
task_numa_fault(int node,int pages,bool migrated)812 void task_numa_fault(int node, int pages, bool migrated)
813 {
814 struct task_struct *p = current;
815
816 if (!sched_feat_numa(NUMA))
817 return;
818
819 /* FIXME: Allocate task-specific structure for placement policy here */
820
821 /*
822 * If pages are properly placed (did not migrate) then scan slower.
823 * This is reset periodically in case of phase changes
824 */
825 if (!migrated)
826 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827 p->numa_scan_period + jiffies_to_msecs(10));
828
829 task_numa_placement(p);
830 }
831
reset_ptenuma_scan(struct task_struct * p)832 static void reset_ptenuma_scan(struct task_struct *p)
833 {
834 ACCESS_ONCE(p->mm->numa_scan_seq)++;
835 p->mm->numa_scan_offset = 0;
836 }
837
838 /*
839 * The expensive part of numa migration is done from task_work context.
840 * Triggered from task_tick_numa().
841 */
task_numa_work(struct callback_head * work)842 void task_numa_work(struct callback_head *work)
843 {
844 unsigned long migrate, next_scan, now = jiffies;
845 struct task_struct *p = current;
846 struct mm_struct *mm = p->mm;
847 struct vm_area_struct *vma;
848 unsigned long start, end;
849 long pages;
850
851 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853 work->next = work; /* protect against double add */
854 /*
855 * Who cares about NUMA placement when they're dying.
856 *
857 * NOTE: make sure not to dereference p->mm before this check,
858 * exit_task_work() happens _after_ exit_mm() so we could be called
859 * without p->mm even though we still had it when we enqueued this
860 * work.
861 */
862 if (p->flags & PF_EXITING)
863 return;
864
865 /*
866 * We do not care about task placement until a task runs on a node
867 * other than the first one used by the address space. This is
868 * largely because migrations are driven by what CPU the task
869 * is running on. If it's never scheduled on another node, it'll
870 * not migrate so why bother trapping the fault.
871 */
872 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873 mm->first_nid = numa_node_id();
874 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875 /* Are we running on a new node yet? */
876 if (numa_node_id() == mm->first_nid &&
877 !sched_feat_numa(NUMA_FORCE))
878 return;
879
880 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881 }
882
883 /*
884 * Reset the scan period if enough time has gone by. Objective is that
885 * scanning will be reduced if pages are properly placed. As tasks
886 * can enter different phases this needs to be re-examined. Lacking
887 * proper tracking of reference behaviour, this blunt hammer is used.
888 */
889 migrate = mm->numa_next_reset;
890 if (time_after(now, migrate)) {
891 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893 xchg(&mm->numa_next_reset, next_scan);
894 }
895
896 /*
897 * Enforce maximal scan/migration frequency..
898 */
899 migrate = mm->numa_next_scan;
900 if (time_before(now, migrate))
901 return;
902
903 if (p->numa_scan_period == 0)
904 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
906 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
907 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908 return;
909
910 /*
911 * Do not set pte_numa if the current running node is rate-limited.
912 * This loses statistics on the fault but if we are unwilling to
913 * migrate to this node, it is less likely we can do useful work
914 */
915 if (migrate_ratelimited(numa_node_id()))
916 return;
917
918 start = mm->numa_scan_offset;
919 pages = sysctl_numa_balancing_scan_size;
920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921 if (!pages)
922 return;
923
924 down_read(&mm->mmap_sem);
925 vma = find_vma(mm, start);
926 if (!vma) {
927 reset_ptenuma_scan(p);
928 start = 0;
929 vma = mm->mmap;
930 }
931 for (; vma; vma = vma->vm_next) {
932 if (!vma_migratable(vma))
933 continue;
934
935 /* Skip small VMAs. They are not likely to be of relevance */
936 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
937 continue;
938
939 do {
940 start = max(start, vma->vm_start);
941 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
942 end = min(end, vma->vm_end);
943 pages -= change_prot_numa(vma, start, end);
944
945 start = end;
946 if (pages <= 0)
947 goto out;
948 } while (end != vma->vm_end);
949 }
950
951 out:
952 /*
953 * It is possible to reach the end of the VMA list but the last few VMAs are
954 * not guaranteed to the vma_migratable. If they are not, we would find the
955 * !migratable VMA on the next scan but not reset the scanner to the start
956 * so check it now.
957 */
958 if (vma)
959 mm->numa_scan_offset = start;
960 else
961 reset_ptenuma_scan(p);
962 up_read(&mm->mmap_sem);
963 }
964
965 /*
966 * Drive the periodic memory faults..
967 */
task_tick_numa(struct rq * rq,struct task_struct * curr)968 void task_tick_numa(struct rq *rq, struct task_struct *curr)
969 {
970 struct callback_head *work = &curr->numa_work;
971 u64 period, now;
972
973 /*
974 * We don't care about NUMA placement if we don't have memory.
975 */
976 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
977 return;
978
979 /*
980 * Using runtime rather than walltime has the dual advantage that
981 * we (mostly) drive the selection from busy threads and that the
982 * task needs to have done some actual work before we bother with
983 * NUMA placement.
984 */
985 now = curr->se.sum_exec_runtime;
986 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
987
988 if (now - curr->node_stamp > period) {
989 if (!curr->node_stamp)
990 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
991 curr->node_stamp = now;
992
993 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
994 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
995 task_work_add(curr, work, true);
996 }
997 }
998 }
999 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)1000 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001 {
1002 }
1003 #endif /* CONFIG_NUMA_BALANCING */
1004
1005 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)1006 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007 {
1008 update_load_add(&cfs_rq->load, se->load.weight);
1009 if (!parent_entity(se))
1010 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1011 #ifdef CONFIG_SMP
1012 if (entity_is_task(se))
1013 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1014 #endif
1015 cfs_rq->nr_running++;
1016 }
1017
1018 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)1019 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 update_load_sub(&cfs_rq->load, se->load.weight);
1022 if (!parent_entity(se))
1023 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1024 if (entity_is_task(se))
1025 list_del_init(&se->group_node);
1026 cfs_rq->nr_running--;
1027 }
1028
1029 #ifdef CONFIG_FAIR_GROUP_SCHED
1030 # ifdef CONFIG_SMP
calc_tg_weight(struct task_group * tg,struct cfs_rq * cfs_rq)1031 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032 {
1033 long tg_weight;
1034
1035 /*
1036 * Use this CPU's actual weight instead of the last load_contribution
1037 * to gain a more accurate current total weight. See
1038 * update_cfs_rq_load_contribution().
1039 */
1040 tg_weight = atomic64_read(&tg->load_avg);
1041 tg_weight -= cfs_rq->tg_load_contrib;
1042 tg_weight += cfs_rq->load.weight;
1043
1044 return tg_weight;
1045 }
1046
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)1047 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1048 {
1049 long tg_weight, load, shares;
1050
1051 tg_weight = calc_tg_weight(tg, cfs_rq);
1052 load = cfs_rq->load.weight;
1053
1054 shares = (tg->shares * load);
1055 if (tg_weight)
1056 shares /= tg_weight;
1057
1058 if (shares < MIN_SHARES)
1059 shares = MIN_SHARES;
1060 if (shares > tg->shares)
1061 shares = tg->shares;
1062
1063 return shares;
1064 }
1065 # else /* CONFIG_SMP */
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)1066 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1067 {
1068 return tg->shares;
1069 }
1070 # endif /* CONFIG_SMP */
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)1071 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072 unsigned long weight)
1073 {
1074 if (se->on_rq) {
1075 /* commit outstanding execution time */
1076 if (cfs_rq->curr == se)
1077 update_curr(cfs_rq);
1078 account_entity_dequeue(cfs_rq, se);
1079 }
1080
1081 update_load_set(&se->load, weight);
1082
1083 if (se->on_rq)
1084 account_entity_enqueue(cfs_rq, se);
1085 }
1086
1087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
update_cfs_shares(struct cfs_rq * cfs_rq)1089 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1090 {
1091 struct task_group *tg;
1092 struct sched_entity *se;
1093 long shares;
1094
1095 tg = cfs_rq->tg;
1096 se = tg->se[cpu_of(rq_of(cfs_rq))];
1097 if (!se || throttled_hierarchy(cfs_rq))
1098 return;
1099 #ifndef CONFIG_SMP
1100 if (likely(se->load.weight == tg->shares))
1101 return;
1102 #endif
1103 shares = calc_cfs_shares(cfs_rq, tg);
1104
1105 reweight_entity(cfs_rq_of(se), se, shares);
1106 }
1107 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_shares(struct cfs_rq * cfs_rq)1108 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1109 {
1110 }
1111 #endif /* CONFIG_FAIR_GROUP_SCHED */
1112
1113 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1115 /*
1116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119 #define LOAD_AVG_PERIOD 32
1120 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1124 static const u32 runnable_avg_yN_inv[] = {
1125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130 0x85aac367, 0x82cd8698,
1131 };
1132
1133 /*
1134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137 static const u32 runnable_avg_yN_sum[] = {
1138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141 };
1142
1143 /*
1144 * Approximate:
1145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1146 */
decay_load(u64 val,u64 n)1147 static __always_inline u64 decay_load(u64 val, u64 n)
1148 {
1149 unsigned int local_n;
1150
1151 if (!n)
1152 return val;
1153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154 return 0;
1155
1156 /* after bounds checking we can collapse to 32-bit */
1157 local_n = n;
1158
1159 /*
1160 * As y^PERIOD = 1/2, we can combine
1161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162 * With a look-up table which covers k^n (n<PERIOD)
1163 *
1164 * To achieve constant time decay_load.
1165 */
1166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167 val >>= local_n / LOAD_AVG_PERIOD;
1168 local_n %= LOAD_AVG_PERIOD;
1169 }
1170
1171 val *= runnable_avg_yN_inv[local_n];
1172 /* We don't use SRR here since we always want to round down. */
1173 return val >> 32;
1174 }
1175
1176 /*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1182 */
__compute_runnable_contrib(u64 n)1183 static u32 __compute_runnable_contrib(u64 n)
1184 {
1185 u32 contrib = 0;
1186
1187 if (likely(n <= LOAD_AVG_PERIOD))
1188 return runnable_avg_yN_sum[n];
1189 else if (unlikely(n >= LOAD_AVG_MAX_N))
1190 return LOAD_AVG_MAX;
1191
1192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193 do {
1194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197 n -= LOAD_AVG_PERIOD;
1198 } while (n > LOAD_AVG_PERIOD);
1199
1200 contrib = decay_load(contrib, n);
1201 return contrib + runnable_avg_yN_sum[n];
1202 }
1203
1204 /*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series. To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 * p0 p1 p2
1212 * (now) (~1ms ago) (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 * y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
__update_entity_runnable_avg(u64 now,struct sched_avg * sa,int runnable)1232 static __always_inline int __update_entity_runnable_avg(u64 now,
1233 struct sched_avg *sa,
1234 int runnable)
1235 {
1236 u64 delta, periods;
1237 u32 runnable_contrib;
1238 int delta_w, decayed = 0;
1239
1240 delta = now - sa->last_runnable_update;
1241 /*
1242 * This should only happen when time goes backwards, which it
1243 * unfortunately does during sched clock init when we swap over to TSC.
1244 */
1245 if ((s64)delta < 0) {
1246 sa->last_runnable_update = now;
1247 return 0;
1248 }
1249
1250 /*
1251 * Use 1024ns as the unit of measurement since it's a reasonable
1252 * approximation of 1us and fast to compute.
1253 */
1254 delta >>= 10;
1255 if (!delta)
1256 return 0;
1257 sa->last_runnable_update = now;
1258
1259 /* delta_w is the amount already accumulated against our next period */
1260 delta_w = sa->runnable_avg_period % 1024;
1261 if (delta + delta_w >= 1024) {
1262 /* period roll-over */
1263 decayed = 1;
1264
1265 /*
1266 * Now that we know we're crossing a period boundary, figure
1267 * out how much from delta we need to complete the current
1268 * period and accrue it.
1269 */
1270 delta_w = 1024 - delta_w;
1271 if (runnable)
1272 sa->runnable_avg_sum += delta_w;
1273 sa->runnable_avg_period += delta_w;
1274
1275 delta -= delta_w;
1276
1277 /* Figure out how many additional periods this update spans */
1278 periods = delta / 1024;
1279 delta %= 1024;
1280
1281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282 periods + 1);
1283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284 periods + 1);
1285
1286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287 runnable_contrib = __compute_runnable_contrib(periods);
1288 if (runnable)
1289 sa->runnable_avg_sum += runnable_contrib;
1290 sa->runnable_avg_period += runnable_contrib;
1291 }
1292
1293 /* Remainder of delta accrued against u_0` */
1294 if (runnable)
1295 sa->runnable_avg_sum += delta;
1296 sa->runnable_avg_period += delta;
1297
1298 return decayed;
1299 }
1300
1301 /* Synchronize an entity's decay with its parenting cfs_rq.*/
__synchronize_entity_decay(struct sched_entity * se)1302 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1303 {
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307 decays -= se->avg.decay_count;
1308 if (!decays)
1309 return 0;
1310
1311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312 se->avg.decay_count = 0;
1313
1314 return decays;
1315 }
1316
1317 #ifdef CONFIG_FAIR_GROUP_SCHED
__update_cfs_rq_tg_load_contrib(struct cfs_rq * cfs_rq,int force_update)1318 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319 int force_update)
1320 {
1321 struct task_group *tg = cfs_rq->tg;
1322 s64 tg_contrib;
1323
1324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325 tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328 atomic64_add(tg_contrib, &tg->load_avg);
1329 cfs_rq->tg_load_contrib += tg_contrib;
1330 }
1331 }
1332
1333 /*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
__update_tg_runnable_avg(struct sched_avg * sa,struct cfs_rq * cfs_rq)1337 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338 struct cfs_rq *cfs_rq)
1339 {
1340 struct task_group *tg = cfs_rq->tg;
1341 long contrib;
1342
1343 /* The fraction of a cpu used by this cfs_rq */
1344 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345 sa->runnable_avg_period + 1);
1346 contrib -= cfs_rq->tg_runnable_contrib;
1347
1348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349 atomic_add(contrib, &tg->runnable_avg);
1350 cfs_rq->tg_runnable_contrib += contrib;
1351 }
1352 }
1353
__update_group_entity_contrib(struct sched_entity * se)1354 static inline void __update_group_entity_contrib(struct sched_entity *se)
1355 {
1356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357 struct task_group *tg = cfs_rq->tg;
1358 int runnable_avg;
1359
1360 u64 contrib;
1361
1362 contrib = cfs_rq->tg_load_contrib * tg->shares;
1363 se->avg.load_avg_contrib = div64_u64(contrib,
1364 atomic64_read(&tg->load_avg) + 1);
1365
1366 /*
1367 * For group entities we need to compute a correction term in the case
1368 * that they are consuming <1 cpu so that we would contribute the same
1369 * load as a task of equal weight.
1370 *
1371 * Explicitly co-ordinating this measurement would be expensive, but
1372 * fortunately the sum of each cpus contribution forms a usable
1373 * lower-bound on the true value.
1374 *
1375 * Consider the aggregate of 2 contributions. Either they are disjoint
1376 * (and the sum represents true value) or they are disjoint and we are
1377 * understating by the aggregate of their overlap.
1378 *
1379 * Extending this to N cpus, for a given overlap, the maximum amount we
1380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381 * cpus that overlap for this interval and w_i is the interval width.
1382 *
1383 * On a small machine; the first term is well-bounded which bounds the
1384 * total error since w_i is a subset of the period. Whereas on a
1385 * larger machine, while this first term can be larger, if w_i is the
1386 * of consequential size guaranteed to see n_i*w_i quickly converge to
1387 * our upper bound of 1-cpu.
1388 */
1389 runnable_avg = atomic_read(&tg->runnable_avg);
1390 if (runnable_avg < NICE_0_LOAD) {
1391 se->avg.load_avg_contrib *= runnable_avg;
1392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393 }
1394 }
1395 #else
__update_cfs_rq_tg_load_contrib(struct cfs_rq * cfs_rq,int force_update)1396 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397 int force_update) {}
__update_tg_runnable_avg(struct sched_avg * sa,struct cfs_rq * cfs_rq)1398 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399 struct cfs_rq *cfs_rq) {}
__update_group_entity_contrib(struct sched_entity * se)1400 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1401 #endif
1402
__update_task_entity_contrib(struct sched_entity * se)1403 static inline void __update_task_entity_contrib(struct sched_entity *se)
1404 {
1405 u32 contrib;
1406
1407 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409 contrib /= (se->avg.runnable_avg_period + 1);
1410 se->avg.load_avg_contrib = scale_load(contrib);
1411 }
1412
1413 /* Compute the current contribution to load_avg by se, return any delta */
__update_entity_load_avg_contrib(struct sched_entity * se)1414 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415 {
1416 long old_contrib = se->avg.load_avg_contrib;
1417
1418 if (entity_is_task(se)) {
1419 __update_task_entity_contrib(se);
1420 } else {
1421 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1422 __update_group_entity_contrib(se);
1423 }
1424
1425 return se->avg.load_avg_contrib - old_contrib;
1426 }
1427
subtract_blocked_load_contrib(struct cfs_rq * cfs_rq,long load_contrib)1428 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429 long load_contrib)
1430 {
1431 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432 cfs_rq->blocked_load_avg -= load_contrib;
1433 else
1434 cfs_rq->blocked_load_avg = 0;
1435 }
1436
1437 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
1439 /* Update a sched_entity's runnable average */
update_entity_load_avg(struct sched_entity * se,int update_cfs_rq)1440 static inline void update_entity_load_avg(struct sched_entity *se,
1441 int update_cfs_rq)
1442 {
1443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444 long contrib_delta;
1445 u64 now;
1446
1447 /*
1448 * For a group entity we need to use their owned cfs_rq_clock_task() in
1449 * case they are the parent of a throttled hierarchy.
1450 */
1451 if (entity_is_task(se))
1452 now = cfs_rq_clock_task(cfs_rq);
1453 else
1454 now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1457 return;
1458
1459 contrib_delta = __update_entity_load_avg_contrib(se);
1460
1461 if (!update_cfs_rq)
1462 return;
1463
1464 if (se->on_rq)
1465 cfs_rq->runnable_load_avg += contrib_delta;
1466 else
1467 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468 }
1469
1470 /*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
update_cfs_rq_blocked_load(struct cfs_rq * cfs_rq,int force_update)1474 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1475 {
1476 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1477 u64 decays;
1478
1479 decays = now - cfs_rq->last_decay;
1480 if (!decays && !force_update)
1481 return;
1482
1483 if (atomic64_read(&cfs_rq->removed_load)) {
1484 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485 subtract_blocked_load_contrib(cfs_rq, removed_load);
1486 }
1487
1488 if (decays) {
1489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490 decays);
1491 atomic64_add(decays, &cfs_rq->decay_counter);
1492 cfs_rq->last_decay = now;
1493 }
1494
1495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1496 }
1497
update_rq_runnable_avg(struct rq * rq,int runnable)1498 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499 {
1500 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1502 }
1503
1504 /* Add the load generated by se into cfs_rq's child load-average */
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int wakeup)1505 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1506 struct sched_entity *se,
1507 int wakeup)
1508 {
1509 /*
1510 * We track migrations using entity decay_count <= 0, on a wake-up
1511 * migration we use a negative decay count to track the remote decays
1512 * accumulated while sleeping.
1513 */
1514 if (unlikely(se->avg.decay_count <= 0)) {
1515 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1516 if (se->avg.decay_count) {
1517 /*
1518 * In a wake-up migration we have to approximate the
1519 * time sleeping. This is because we can't synchronize
1520 * clock_task between the two cpus, and it is not
1521 * guaranteed to be read-safe. Instead, we can
1522 * approximate this using our carried decays, which are
1523 * explicitly atomically readable.
1524 */
1525 se->avg.last_runnable_update -= (-se->avg.decay_count)
1526 << 20;
1527 update_entity_load_avg(se, 0);
1528 /* Indicate that we're now synchronized and on-rq */
1529 se->avg.decay_count = 0;
1530 }
1531 wakeup = 0;
1532 } else {
1533 __synchronize_entity_decay(se);
1534 }
1535
1536 /* migrated tasks did not contribute to our blocked load */
1537 if (wakeup) {
1538 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1539 update_entity_load_avg(se, 0);
1540 }
1541
1542 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1543 /* we force update consideration on load-balancer moves */
1544 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1545 }
1546
1547 /*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int sleep)1552 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1553 struct sched_entity *se,
1554 int sleep)
1555 {
1556 update_entity_load_avg(se, 1);
1557 /* we force update consideration on load-balancer moves */
1558 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1559
1560 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1561 if (sleep) {
1562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1565 }
1566
1567 /*
1568 * Update the rq's load with the elapsed running time before entering
1569 * idle. if the last scheduled task is not a CFS task, idle_enter will
1570 * be the only way to update the runnable statistic.
1571 */
idle_enter_fair(struct rq * this_rq)1572 void idle_enter_fair(struct rq *this_rq)
1573 {
1574 update_rq_runnable_avg(this_rq, 1);
1575 }
1576
1577 /*
1578 * Update the rq's load with the elapsed idle time before a task is
1579 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1580 * be the only way to update the runnable statistic.
1581 */
idle_exit_fair(struct rq * this_rq)1582 void idle_exit_fair(struct rq *this_rq)
1583 {
1584 update_rq_runnable_avg(this_rq, 0);
1585 }
1586
1587 #else
update_entity_load_avg(struct sched_entity * se,int update_cfs_rq)1588 static inline void update_entity_load_avg(struct sched_entity *se,
1589 int update_cfs_rq) {}
update_rq_runnable_avg(struct rq * rq,int runnable)1590 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int wakeup)1591 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1592 struct sched_entity *se,
1593 int wakeup) {}
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int sleep)1594 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1595 struct sched_entity *se,
1596 int sleep) {}
update_cfs_rq_blocked_load(struct cfs_rq * cfs_rq,int force_update)1597 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1598 int force_update) {}
1599 #endif
1600
enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)1601 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1602 {
1603 #ifdef CONFIG_SCHEDSTATS
1604 struct task_struct *tsk = NULL;
1605
1606 if (entity_is_task(se))
1607 tsk = task_of(se);
1608
1609 if (se->statistics.sleep_start) {
1610 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1611
1612 if ((s64)delta < 0)
1613 delta = 0;
1614
1615 if (unlikely(delta > se->statistics.sleep_max))
1616 se->statistics.sleep_max = delta;
1617
1618 se->statistics.sleep_start = 0;
1619 se->statistics.sum_sleep_runtime += delta;
1620
1621 if (tsk) {
1622 account_scheduler_latency(tsk, delta >> 10, 1);
1623 trace_sched_stat_sleep(tsk, delta);
1624 }
1625 }
1626 if (se->statistics.block_start) {
1627 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1628
1629 if ((s64)delta < 0)
1630 delta = 0;
1631
1632 if (unlikely(delta > se->statistics.block_max))
1633 se->statistics.block_max = delta;
1634
1635 se->statistics.block_start = 0;
1636 se->statistics.sum_sleep_runtime += delta;
1637
1638 if (tsk) {
1639 if (tsk->in_iowait) {
1640 se->statistics.iowait_sum += delta;
1641 se->statistics.iowait_count++;
1642 trace_sched_stat_iowait(tsk, delta);
1643 }
1644
1645 trace_sched_stat_blocked(tsk, delta);
1646 trace_sched_blocked_reason(tsk);
1647
1648 /*
1649 * Blocking time is in units of nanosecs, so shift by
1650 * 20 to get a milliseconds-range estimation of the
1651 * amount of time that the task spent sleeping:
1652 */
1653 if (unlikely(prof_on == SLEEP_PROFILING)) {
1654 profile_hits(SLEEP_PROFILING,
1655 (void *)get_wchan(tsk),
1656 delta >> 20);
1657 }
1658 account_scheduler_latency(tsk, delta >> 10, 0);
1659 }
1660 }
1661 #endif
1662 }
1663
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)1664 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1665 {
1666 #ifdef CONFIG_SCHED_DEBUG
1667 s64 d = se->vruntime - cfs_rq->min_vruntime;
1668
1669 if (d < 0)
1670 d = -d;
1671
1672 if (d > 3*sysctl_sched_latency)
1673 schedstat_inc(cfs_rq, nr_spread_over);
1674 #endif
1675 }
1676
1677 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)1678 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1679 {
1680 u64 vruntime = cfs_rq->min_vruntime;
1681
1682 /*
1683 * The 'current' period is already promised to the current tasks,
1684 * however the extra weight of the new task will slow them down a
1685 * little, place the new task so that it fits in the slot that
1686 * stays open at the end.
1687 */
1688 if (initial && sched_feat(START_DEBIT))
1689 vruntime += sched_vslice(cfs_rq, se);
1690
1691 /* sleeps up to a single latency don't count. */
1692 if (!initial) {
1693 unsigned long thresh = sysctl_sched_latency;
1694
1695 /*
1696 * Halve their sleep time's effect, to allow
1697 * for a gentler effect of sleepers:
1698 */
1699 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1700 thresh >>= 1;
1701
1702 vruntime -= thresh;
1703 }
1704
1705 /* ensure we never gain time by being placed backwards. */
1706 se->vruntime = max_vruntime(se->vruntime, vruntime);
1707 }
1708
1709 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1710
1711 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1712 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1713 {
1714 /*
1715 * Update the normalized vruntime before updating min_vruntime
1716 * through callig update_curr().
1717 */
1718 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1719 se->vruntime += cfs_rq->min_vruntime;
1720
1721 /*
1722 * Update run-time statistics of the 'current'.
1723 */
1724 update_curr(cfs_rq);
1725 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1726 account_entity_enqueue(cfs_rq, se);
1727 update_cfs_shares(cfs_rq);
1728
1729 if (flags & ENQUEUE_WAKEUP) {
1730 place_entity(cfs_rq, se, 0);
1731 enqueue_sleeper(cfs_rq, se);
1732 }
1733
1734 update_stats_enqueue(cfs_rq, se);
1735 check_spread(cfs_rq, se);
1736 if (se != cfs_rq->curr)
1737 __enqueue_entity(cfs_rq, se);
1738 se->on_rq = 1;
1739
1740 if (cfs_rq->nr_running == 1) {
1741 list_add_leaf_cfs_rq(cfs_rq);
1742 check_enqueue_throttle(cfs_rq);
1743 }
1744 }
1745
__clear_buddies_last(struct sched_entity * se)1746 static void __clear_buddies_last(struct sched_entity *se)
1747 {
1748 for_each_sched_entity(se) {
1749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1750 if (cfs_rq->last == se)
1751 cfs_rq->last = NULL;
1752 else
1753 break;
1754 }
1755 }
1756
__clear_buddies_next(struct sched_entity * se)1757 static void __clear_buddies_next(struct sched_entity *se)
1758 {
1759 for_each_sched_entity(se) {
1760 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1761 if (cfs_rq->next == se)
1762 cfs_rq->next = NULL;
1763 else
1764 break;
1765 }
1766 }
1767
__clear_buddies_skip(struct sched_entity * se)1768 static void __clear_buddies_skip(struct sched_entity *se)
1769 {
1770 for_each_sched_entity(se) {
1771 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1772 if (cfs_rq->skip == se)
1773 cfs_rq->skip = NULL;
1774 else
1775 break;
1776 }
1777 }
1778
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)1779 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1780 {
1781 if (cfs_rq->last == se)
1782 __clear_buddies_last(se);
1783
1784 if (cfs_rq->next == se)
1785 __clear_buddies_next(se);
1786
1787 if (cfs_rq->skip == se)
1788 __clear_buddies_skip(se);
1789 }
1790
1791 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1792
1793 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1794 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1795 {
1796 /*
1797 * Update run-time statistics of the 'current'.
1798 */
1799 update_curr(cfs_rq);
1800 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1801
1802 update_stats_dequeue(cfs_rq, se);
1803 if (flags & DEQUEUE_SLEEP) {
1804 #ifdef CONFIG_SCHEDSTATS
1805 if (entity_is_task(se)) {
1806 struct task_struct *tsk = task_of(se);
1807
1808 if (tsk->state & TASK_INTERRUPTIBLE)
1809 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1810 if (tsk->state & TASK_UNINTERRUPTIBLE)
1811 se->statistics.block_start = rq_of(cfs_rq)->clock;
1812 }
1813 #endif
1814 }
1815
1816 clear_buddies(cfs_rq, se);
1817
1818 if (se != cfs_rq->curr)
1819 __dequeue_entity(cfs_rq, se);
1820 se->on_rq = 0;
1821 account_entity_dequeue(cfs_rq, se);
1822
1823 /*
1824 * Normalize the entity after updating the min_vruntime because the
1825 * update can refer to the ->curr item and we need to reflect this
1826 * movement in our normalized position.
1827 */
1828 if (!(flags & DEQUEUE_SLEEP))
1829 se->vruntime -= cfs_rq->min_vruntime;
1830
1831 /* return excess runtime on last dequeue */
1832 return_cfs_rq_runtime(cfs_rq);
1833
1834 update_min_vruntime(cfs_rq);
1835 update_cfs_shares(cfs_rq);
1836 }
1837
1838 /*
1839 * Preempt the current task with a newly woken task if needed:
1840 */
1841 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)1842 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1843 {
1844 unsigned long ideal_runtime, delta_exec;
1845 struct sched_entity *se;
1846 s64 delta;
1847
1848 ideal_runtime = sched_slice(cfs_rq, curr);
1849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1850 if (delta_exec > ideal_runtime) {
1851 resched_task(rq_of(cfs_rq)->curr);
1852 /*
1853 * The current task ran long enough, ensure it doesn't get
1854 * re-elected due to buddy favours.
1855 */
1856 clear_buddies(cfs_rq, curr);
1857 return;
1858 }
1859
1860 /*
1861 * Ensure that a task that missed wakeup preemption by a
1862 * narrow margin doesn't have to wait for a full slice.
1863 * This also mitigates buddy induced latencies under load.
1864 */
1865 if (delta_exec < sysctl_sched_min_granularity)
1866 return;
1867
1868 se = __pick_first_entity(cfs_rq);
1869 delta = curr->vruntime - se->vruntime;
1870
1871 if (delta < 0)
1872 return;
1873
1874 if (delta > ideal_runtime)
1875 resched_task(rq_of(cfs_rq)->curr);
1876 }
1877
1878 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)1879 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1880 {
1881 /* 'current' is not kept within the tree. */
1882 if (se->on_rq) {
1883 /*
1884 * Any task has to be enqueued before it get to execute on
1885 * a CPU. So account for the time it spent waiting on the
1886 * runqueue.
1887 */
1888 update_stats_wait_end(cfs_rq, se);
1889 __dequeue_entity(cfs_rq, se);
1890 }
1891
1892 update_stats_curr_start(cfs_rq, se);
1893 cfs_rq->curr = se;
1894 #ifdef CONFIG_SCHEDSTATS
1895 /*
1896 * Track our maximum slice length, if the CPU's load is at
1897 * least twice that of our own weight (i.e. dont track it
1898 * when there are only lesser-weight tasks around):
1899 */
1900 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1901 se->statistics.slice_max = max(se->statistics.slice_max,
1902 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1903 }
1904 #endif
1905 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1906 }
1907
1908 static int
1909 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1910
1911 /*
1912 * Pick the next process, keeping these things in mind, in this order:
1913 * 1) keep things fair between processes/task groups
1914 * 2) pick the "next" process, since someone really wants that to run
1915 * 3) pick the "last" process, for cache locality
1916 * 4) do not run the "skip" process, if something else is available
1917 */
pick_next_entity(struct cfs_rq * cfs_rq)1918 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1919 {
1920 struct sched_entity *se = __pick_first_entity(cfs_rq);
1921 struct sched_entity *left = se;
1922
1923 /*
1924 * Avoid running the skip buddy, if running something else can
1925 * be done without getting too unfair.
1926 */
1927 if (cfs_rq->skip == se) {
1928 struct sched_entity *second = __pick_next_entity(se);
1929 if (second && wakeup_preempt_entity(second, left) < 1)
1930 se = second;
1931 }
1932
1933 /*
1934 * Prefer last buddy, try to return the CPU to a preempted task.
1935 */
1936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1937 se = cfs_rq->last;
1938
1939 /*
1940 * Someone really wants this to run. If it's not unfair, run it.
1941 */
1942 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1943 se = cfs_rq->next;
1944
1945 clear_buddies(cfs_rq, se);
1946
1947 return se;
1948 }
1949
1950 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1951
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)1952 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1953 {
1954 /*
1955 * If still on the runqueue then deactivate_task()
1956 * was not called and update_curr() has to be done:
1957 */
1958 if (prev->on_rq)
1959 update_curr(cfs_rq);
1960
1961 /* throttle cfs_rqs exceeding runtime */
1962 check_cfs_rq_runtime(cfs_rq);
1963
1964 check_spread(cfs_rq, prev);
1965 if (prev->on_rq) {
1966 update_stats_wait_start(cfs_rq, prev);
1967 /* Put 'current' back into the tree. */
1968 __enqueue_entity(cfs_rq, prev);
1969 /* in !on_rq case, update occurred at dequeue */
1970 update_entity_load_avg(prev, 1);
1971 }
1972 cfs_rq->curr = NULL;
1973 }
1974
1975 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)1976 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1977 {
1978 /*
1979 * Update run-time statistics of the 'current'.
1980 */
1981 update_curr(cfs_rq);
1982
1983 /*
1984 * Ensure that runnable average is periodically updated.
1985 */
1986 update_entity_load_avg(curr, 1);
1987 update_cfs_rq_blocked_load(cfs_rq, 1);
1988
1989 #ifdef CONFIG_SCHED_HRTICK
1990 /*
1991 * queued ticks are scheduled to match the slice, so don't bother
1992 * validating it and just reschedule.
1993 */
1994 if (queued) {
1995 resched_task(rq_of(cfs_rq)->curr);
1996 return;
1997 }
1998 /*
1999 * don't let the period tick interfere with the hrtick preemption
2000 */
2001 if (!sched_feat(DOUBLE_TICK) &&
2002 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2003 return;
2004 #endif
2005
2006 if (cfs_rq->nr_running > 1)
2007 check_preempt_tick(cfs_rq, curr);
2008 }
2009
2010
2011 /**************************************************
2012 * CFS bandwidth control machinery
2013 */
2014
2015 #ifdef CONFIG_CFS_BANDWIDTH
2016
2017 #ifdef HAVE_JUMP_LABEL
2018 static struct static_key __cfs_bandwidth_used;
2019
cfs_bandwidth_used(void)2020 static inline bool cfs_bandwidth_used(void)
2021 {
2022 return static_key_false(&__cfs_bandwidth_used);
2023 }
2024
account_cfs_bandwidth_used(int enabled,int was_enabled)2025 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2026 {
2027 /* only need to count groups transitioning between enabled/!enabled */
2028 if (enabled && !was_enabled)
2029 static_key_slow_inc(&__cfs_bandwidth_used);
2030 else if (!enabled && was_enabled)
2031 static_key_slow_dec(&__cfs_bandwidth_used);
2032 }
2033 #else /* HAVE_JUMP_LABEL */
cfs_bandwidth_used(void)2034 static bool cfs_bandwidth_used(void)
2035 {
2036 return true;
2037 }
2038
account_cfs_bandwidth_used(int enabled,int was_enabled)2039 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2040 #endif /* HAVE_JUMP_LABEL */
2041
2042 /*
2043 * default period for cfs group bandwidth.
2044 * default: 0.1s, units: nanoseconds
2045 */
default_cfs_period(void)2046 static inline u64 default_cfs_period(void)
2047 {
2048 return 100000000ULL;
2049 }
2050
sched_cfs_bandwidth_slice(void)2051 static inline u64 sched_cfs_bandwidth_slice(void)
2052 {
2053 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2054 }
2055
2056 /*
2057 * Replenish runtime according to assigned quota and update expiration time.
2058 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2059 * additional synchronization around rq->lock.
2060 *
2061 * requires cfs_b->lock
2062 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)2063 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2064 {
2065 u64 now;
2066
2067 if (cfs_b->quota == RUNTIME_INF)
2068 return;
2069
2070 now = sched_clock_cpu(smp_processor_id());
2071 cfs_b->runtime = cfs_b->quota;
2072 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2073 }
2074
tg_cfs_bandwidth(struct task_group * tg)2075 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2076 {
2077 return &tg->cfs_bandwidth;
2078 }
2079
2080 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)2081 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2082 {
2083 if (unlikely(cfs_rq->throttle_count))
2084 return cfs_rq->throttled_clock_task;
2085
2086 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2087 }
2088
2089 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)2090 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2091 {
2092 struct task_group *tg = cfs_rq->tg;
2093 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2094 u64 amount = 0, min_amount, expires;
2095
2096 /* note: this is a positive sum as runtime_remaining <= 0 */
2097 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2098
2099 raw_spin_lock(&cfs_b->lock);
2100 if (cfs_b->quota == RUNTIME_INF)
2101 amount = min_amount;
2102 else {
2103 /*
2104 * If the bandwidth pool has become inactive, then at least one
2105 * period must have elapsed since the last consumption.
2106 * Refresh the global state and ensure bandwidth timer becomes
2107 * active.
2108 */
2109 if (!cfs_b->timer_active) {
2110 __refill_cfs_bandwidth_runtime(cfs_b);
2111 __start_cfs_bandwidth(cfs_b);
2112 }
2113
2114 if (cfs_b->runtime > 0) {
2115 amount = min(cfs_b->runtime, min_amount);
2116 cfs_b->runtime -= amount;
2117 cfs_b->idle = 0;
2118 }
2119 }
2120 expires = cfs_b->runtime_expires;
2121 raw_spin_unlock(&cfs_b->lock);
2122
2123 cfs_rq->runtime_remaining += amount;
2124 /*
2125 * we may have advanced our local expiration to account for allowed
2126 * spread between our sched_clock and the one on which runtime was
2127 * issued.
2128 */
2129 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2130 cfs_rq->runtime_expires = expires;
2131
2132 return cfs_rq->runtime_remaining > 0;
2133 }
2134
2135 /*
2136 * Note: This depends on the synchronization provided by sched_clock and the
2137 * fact that rq->clock snapshots this value.
2138 */
expire_cfs_rq_runtime(struct cfs_rq * cfs_rq)2139 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2140 {
2141 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2142 struct rq *rq = rq_of(cfs_rq);
2143
2144 /* if the deadline is ahead of our clock, nothing to do */
2145 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2146 return;
2147
2148 if (cfs_rq->runtime_remaining < 0)
2149 return;
2150
2151 /*
2152 * If the local deadline has passed we have to consider the
2153 * possibility that our sched_clock is 'fast' and the global deadline
2154 * has not truly expired.
2155 *
2156 * Fortunately we can check determine whether this the case by checking
2157 * whether the global deadline has advanced.
2158 */
2159
2160 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2161 /* extend local deadline, drift is bounded above by 2 ticks */
2162 cfs_rq->runtime_expires += TICK_NSEC;
2163 } else {
2164 /* global deadline is ahead, expiration has passed */
2165 cfs_rq->runtime_remaining = 0;
2166 }
2167 }
2168
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,unsigned long delta_exec)2169 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2170 unsigned long delta_exec)
2171 {
2172 /* dock delta_exec before expiring quota (as it could span periods) */
2173 cfs_rq->runtime_remaining -= delta_exec;
2174 expire_cfs_rq_runtime(cfs_rq);
2175
2176 if (likely(cfs_rq->runtime_remaining > 0))
2177 return;
2178
2179 /*
2180 * if we're unable to extend our runtime we resched so that the active
2181 * hierarchy can be throttled
2182 */
2183 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2184 resched_task(rq_of(cfs_rq)->curr);
2185 }
2186
2187 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,unsigned long delta_exec)2188 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2189 {
2190 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2191 return;
2192
2193 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2194 }
2195
cfs_rq_throttled(struct cfs_rq * cfs_rq)2196 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2197 {
2198 return cfs_bandwidth_used() && cfs_rq->throttled;
2199 }
2200
2201 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)2202 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2203 {
2204 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2205 }
2206
2207 /*
2208 * Ensure that neither of the group entities corresponding to src_cpu or
2209 * dest_cpu are members of a throttled hierarchy when performing group
2210 * load-balance operations.
2211 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)2212 static inline int throttled_lb_pair(struct task_group *tg,
2213 int src_cpu, int dest_cpu)
2214 {
2215 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2216
2217 src_cfs_rq = tg->cfs_rq[src_cpu];
2218 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2219
2220 return throttled_hierarchy(src_cfs_rq) ||
2221 throttled_hierarchy(dest_cfs_rq);
2222 }
2223
2224 /* updated child weight may affect parent so we have to do this bottom up */
tg_unthrottle_up(struct task_group * tg,void * data)2225 static int tg_unthrottle_up(struct task_group *tg, void *data)
2226 {
2227 struct rq *rq = data;
2228 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2229
2230 cfs_rq->throttle_count--;
2231 #ifdef CONFIG_SMP
2232 if (!cfs_rq->throttle_count) {
2233 /* adjust cfs_rq_clock_task() */
2234 cfs_rq->throttled_clock_task_time += rq->clock_task -
2235 cfs_rq->throttled_clock_task;
2236 }
2237 #endif
2238
2239 return 0;
2240 }
2241
tg_throttle_down(struct task_group * tg,void * data)2242 static int tg_throttle_down(struct task_group *tg, void *data)
2243 {
2244 struct rq *rq = data;
2245 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2246
2247 /* group is entering throttled state, stop time */
2248 if (!cfs_rq->throttle_count)
2249 cfs_rq->throttled_clock_task = rq->clock_task;
2250 cfs_rq->throttle_count++;
2251
2252 return 0;
2253 }
2254
throttle_cfs_rq(struct cfs_rq * cfs_rq)2255 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2256 {
2257 struct rq *rq = rq_of(cfs_rq);
2258 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2259 struct sched_entity *se;
2260 long task_delta, dequeue = 1;
2261
2262 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2263
2264 /* freeze hierarchy runnable averages while throttled */
2265 rcu_read_lock();
2266 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2267 rcu_read_unlock();
2268
2269 task_delta = cfs_rq->h_nr_running;
2270 for_each_sched_entity(se) {
2271 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2272 /* throttled entity or throttle-on-deactivate */
2273 if (!se->on_rq)
2274 break;
2275
2276 if (dequeue)
2277 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2278 qcfs_rq->h_nr_running -= task_delta;
2279
2280 if (qcfs_rq->load.weight)
2281 dequeue = 0;
2282 }
2283
2284 if (!se)
2285 rq->nr_running -= task_delta;
2286
2287 cfs_rq->throttled = 1;
2288 cfs_rq->throttled_clock = rq->clock;
2289 raw_spin_lock(&cfs_b->lock);
2290 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2291 raw_spin_unlock(&cfs_b->lock);
2292 }
2293
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)2294 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2295 {
2296 struct rq *rq = rq_of(cfs_rq);
2297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2298 struct sched_entity *se;
2299 int enqueue = 1;
2300 long task_delta;
2301
2302 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2303
2304 cfs_rq->throttled = 0;
2305 raw_spin_lock(&cfs_b->lock);
2306 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2307 list_del_rcu(&cfs_rq->throttled_list);
2308 raw_spin_unlock(&cfs_b->lock);
2309
2310 update_rq_clock(rq);
2311 /* update hierarchical throttle state */
2312 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2313
2314 if (!cfs_rq->load.weight)
2315 return;
2316
2317 task_delta = cfs_rq->h_nr_running;
2318 for_each_sched_entity(se) {
2319 if (se->on_rq)
2320 enqueue = 0;
2321
2322 cfs_rq = cfs_rq_of(se);
2323 if (enqueue)
2324 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2325 cfs_rq->h_nr_running += task_delta;
2326
2327 if (cfs_rq_throttled(cfs_rq))
2328 break;
2329 }
2330
2331 if (!se)
2332 rq->nr_running += task_delta;
2333
2334 /* determine whether we need to wake up potentially idle cpu */
2335 if (rq->curr == rq->idle && rq->cfs.nr_running)
2336 resched_task(rq->curr);
2337 }
2338
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining,u64 expires)2339 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2340 u64 remaining, u64 expires)
2341 {
2342 struct cfs_rq *cfs_rq;
2343 u64 runtime = remaining;
2344
2345 rcu_read_lock();
2346 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2347 throttled_list) {
2348 struct rq *rq = rq_of(cfs_rq);
2349
2350 raw_spin_lock(&rq->lock);
2351 if (!cfs_rq_throttled(cfs_rq))
2352 goto next;
2353
2354 runtime = -cfs_rq->runtime_remaining + 1;
2355 if (runtime > remaining)
2356 runtime = remaining;
2357 remaining -= runtime;
2358
2359 cfs_rq->runtime_remaining += runtime;
2360 cfs_rq->runtime_expires = expires;
2361
2362 /* we check whether we're throttled above */
2363 if (cfs_rq->runtime_remaining > 0)
2364 unthrottle_cfs_rq(cfs_rq);
2365
2366 next:
2367 raw_spin_unlock(&rq->lock);
2368
2369 if (!remaining)
2370 break;
2371 }
2372 rcu_read_unlock();
2373
2374 return remaining;
2375 }
2376
2377 /*
2378 * Responsible for refilling a task_group's bandwidth and unthrottling its
2379 * cfs_rqs as appropriate. If there has been no activity within the last
2380 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2381 * used to track this state.
2382 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun)2383 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2384 {
2385 u64 runtime, runtime_expires;
2386 int idle = 1, throttled;
2387
2388 raw_spin_lock(&cfs_b->lock);
2389 /* no need to continue the timer with no bandwidth constraint */
2390 if (cfs_b->quota == RUNTIME_INF)
2391 goto out_unlock;
2392
2393 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2394 /* idle depends on !throttled (for the case of a large deficit) */
2395 idle = cfs_b->idle && !throttled;
2396 cfs_b->nr_periods += overrun;
2397
2398 /* if we're going inactive then everything else can be deferred */
2399 if (idle)
2400 goto out_unlock;
2401
2402 __refill_cfs_bandwidth_runtime(cfs_b);
2403
2404 if (!throttled) {
2405 /* mark as potentially idle for the upcoming period */
2406 cfs_b->idle = 1;
2407 goto out_unlock;
2408 }
2409
2410 /* account preceding periods in which throttling occurred */
2411 cfs_b->nr_throttled += overrun;
2412
2413 /*
2414 * There are throttled entities so we must first use the new bandwidth
2415 * to unthrottle them before making it generally available. This
2416 * ensures that all existing debts will be paid before a new cfs_rq is
2417 * allowed to run.
2418 */
2419 runtime = cfs_b->runtime;
2420 runtime_expires = cfs_b->runtime_expires;
2421 cfs_b->runtime = 0;
2422
2423 /*
2424 * This check is repeated as we are holding onto the new bandwidth
2425 * while we unthrottle. This can potentially race with an unthrottled
2426 * group trying to acquire new bandwidth from the global pool.
2427 */
2428 while (throttled && runtime > 0) {
2429 raw_spin_unlock(&cfs_b->lock);
2430 /* we can't nest cfs_b->lock while distributing bandwidth */
2431 runtime = distribute_cfs_runtime(cfs_b, runtime,
2432 runtime_expires);
2433 raw_spin_lock(&cfs_b->lock);
2434
2435 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2436 }
2437
2438 /* return (any) remaining runtime */
2439 cfs_b->runtime = runtime;
2440 /*
2441 * While we are ensured activity in the period following an
2442 * unthrottle, this also covers the case in which the new bandwidth is
2443 * insufficient to cover the existing bandwidth deficit. (Forcing the
2444 * timer to remain active while there are any throttled entities.)
2445 */
2446 cfs_b->idle = 0;
2447 out_unlock:
2448 if (idle)
2449 cfs_b->timer_active = 0;
2450 raw_spin_unlock(&cfs_b->lock);
2451
2452 return idle;
2453 }
2454
2455 /* a cfs_rq won't donate quota below this amount */
2456 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2457 /* minimum remaining period time to redistribute slack quota */
2458 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2459 /* how long we wait to gather additional slack before distributing */
2460 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2461
2462 /* are we near the end of the current quota period? */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)2463 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2464 {
2465 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2466 u64 remaining;
2467
2468 /* if the call-back is running a quota refresh is already occurring */
2469 if (hrtimer_callback_running(refresh_timer))
2470 return 1;
2471
2472 /* is a quota refresh about to occur? */
2473 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2474 if (remaining < min_expire)
2475 return 1;
2476
2477 return 0;
2478 }
2479
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)2480 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2481 {
2482 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2483
2484 /* if there's a quota refresh soon don't bother with slack */
2485 if (runtime_refresh_within(cfs_b, min_left))
2486 return;
2487
2488 start_bandwidth_timer(&cfs_b->slack_timer,
2489 ns_to_ktime(cfs_bandwidth_slack_period));
2490 }
2491
2492 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)2493 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2494 {
2495 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2496 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2497
2498 if (slack_runtime <= 0)
2499 return;
2500
2501 raw_spin_lock(&cfs_b->lock);
2502 if (cfs_b->quota != RUNTIME_INF &&
2503 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2504 cfs_b->runtime += slack_runtime;
2505
2506 /* we are under rq->lock, defer unthrottling using a timer */
2507 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2508 !list_empty(&cfs_b->throttled_cfs_rq))
2509 start_cfs_slack_bandwidth(cfs_b);
2510 }
2511 raw_spin_unlock(&cfs_b->lock);
2512
2513 /* even if it's not valid for return we don't want to try again */
2514 cfs_rq->runtime_remaining -= slack_runtime;
2515 }
2516
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)2517 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2518 {
2519 if (!cfs_bandwidth_used())
2520 return;
2521
2522 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2523 return;
2524
2525 __return_cfs_rq_runtime(cfs_rq);
2526 }
2527
2528 /*
2529 * This is done with a timer (instead of inline with bandwidth return) since
2530 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2531 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)2532 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2533 {
2534 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2535 u64 expires;
2536
2537 /* confirm we're still not at a refresh boundary */
2538 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2539 return;
2540
2541 raw_spin_lock(&cfs_b->lock);
2542 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2543 runtime = cfs_b->runtime;
2544 cfs_b->runtime = 0;
2545 }
2546 expires = cfs_b->runtime_expires;
2547 raw_spin_unlock(&cfs_b->lock);
2548
2549 if (!runtime)
2550 return;
2551
2552 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2553
2554 raw_spin_lock(&cfs_b->lock);
2555 if (expires == cfs_b->runtime_expires)
2556 cfs_b->runtime = runtime;
2557 raw_spin_unlock(&cfs_b->lock);
2558 }
2559
2560 /*
2561 * When a group wakes up we want to make sure that its quota is not already
2562 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2563 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2564 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)2565 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2566 {
2567 if (!cfs_bandwidth_used())
2568 return;
2569
2570 /* an active group must be handled by the update_curr()->put() path */
2571 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2572 return;
2573
2574 /* ensure the group is not already throttled */
2575 if (cfs_rq_throttled(cfs_rq))
2576 return;
2577
2578 /* update runtime allocation */
2579 account_cfs_rq_runtime(cfs_rq, 0);
2580 if (cfs_rq->runtime_remaining <= 0)
2581 throttle_cfs_rq(cfs_rq);
2582 }
2583
2584 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)2585 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2586 {
2587 if (!cfs_bandwidth_used())
2588 return;
2589
2590 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2591 return;
2592
2593 /*
2594 * it's possible for a throttled entity to be forced into a running
2595 * state (e.g. set_curr_task), in this case we're finished.
2596 */
2597 if (cfs_rq_throttled(cfs_rq))
2598 return;
2599
2600 throttle_cfs_rq(cfs_rq);
2601 }
2602
2603 static inline u64 default_cfs_period(void);
2604 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2605 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2606
sched_cfs_slack_timer(struct hrtimer * timer)2607 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2608 {
2609 struct cfs_bandwidth *cfs_b =
2610 container_of(timer, struct cfs_bandwidth, slack_timer);
2611 do_sched_cfs_slack_timer(cfs_b);
2612
2613 return HRTIMER_NORESTART;
2614 }
2615
sched_cfs_period_timer(struct hrtimer * timer)2616 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2617 {
2618 struct cfs_bandwidth *cfs_b =
2619 container_of(timer, struct cfs_bandwidth, period_timer);
2620 ktime_t now;
2621 int overrun;
2622 int idle = 0;
2623
2624 for (;;) {
2625 now = hrtimer_cb_get_time(timer);
2626 overrun = hrtimer_forward(timer, now, cfs_b->period);
2627
2628 if (!overrun)
2629 break;
2630
2631 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2632 }
2633
2634 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2635 }
2636
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)2637 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2638 {
2639 raw_spin_lock_init(&cfs_b->lock);
2640 cfs_b->runtime = 0;
2641 cfs_b->quota = RUNTIME_INF;
2642 cfs_b->period = ns_to_ktime(default_cfs_period());
2643
2644 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2645 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2646 cfs_b->period_timer.function = sched_cfs_period_timer;
2647 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2648 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2649 }
2650
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)2651 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2652 {
2653 cfs_rq->runtime_enabled = 0;
2654 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2655 }
2656
2657 /* requires cfs_b->lock, may release to reprogram timer */
__start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)2658 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2659 {
2660 /*
2661 * The timer may be active because we're trying to set a new bandwidth
2662 * period or because we're racing with the tear-down path
2663 * (timer_active==0 becomes visible before the hrtimer call-back
2664 * terminates). In either case we ensure that it's re-programmed
2665 */
2666 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2667 raw_spin_unlock(&cfs_b->lock);
2668 /* ensure cfs_b->lock is available while we wait */
2669 hrtimer_cancel(&cfs_b->period_timer);
2670
2671 raw_spin_lock(&cfs_b->lock);
2672 /* if someone else restarted the timer then we're done */
2673 if (cfs_b->timer_active)
2674 return;
2675 }
2676
2677 cfs_b->timer_active = 1;
2678 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2679 }
2680
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)2681 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2682 {
2683 hrtimer_cancel(&cfs_b->period_timer);
2684 hrtimer_cancel(&cfs_b->slack_timer);
2685 }
2686
unthrottle_offline_cfs_rqs(struct rq * rq)2687 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2688 {
2689 struct cfs_rq *cfs_rq;
2690
2691 for_each_leaf_cfs_rq(rq, cfs_rq) {
2692 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2693
2694 if (!cfs_rq->runtime_enabled)
2695 continue;
2696
2697 /*
2698 * clock_task is not advancing so we just need to make sure
2699 * there's some valid quota amount
2700 */
2701 cfs_rq->runtime_remaining = cfs_b->quota;
2702 if (cfs_rq_throttled(cfs_rq))
2703 unthrottle_cfs_rq(cfs_rq);
2704 }
2705 }
2706
2707 #else /* CONFIG_CFS_BANDWIDTH */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)2708 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2709 {
2710 return rq_of(cfs_rq)->clock_task;
2711 }
2712
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,unsigned long delta_exec)2713 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2714 unsigned long delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)2715 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
check_enqueue_throttle(struct cfs_rq * cfs_rq)2716 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)2717 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2718
cfs_rq_throttled(struct cfs_rq * cfs_rq)2719 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2720 {
2721 return 0;
2722 }
2723
throttled_hierarchy(struct cfs_rq * cfs_rq)2724 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2725 {
2726 return 0;
2727 }
2728
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)2729 static inline int throttled_lb_pair(struct task_group *tg,
2730 int src_cpu, int dest_cpu)
2731 {
2732 return 0;
2733 }
2734
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)2735 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2736
2737 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)2738 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2739 #endif
2740
tg_cfs_bandwidth(struct task_group * tg)2741 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2742 {
2743 return NULL;
2744 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)2745 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
unthrottle_offline_cfs_rqs(struct rq * rq)2746 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2747
2748 #endif /* CONFIG_CFS_BANDWIDTH */
2749
2750 /**************************************************
2751 * CFS operations on tasks:
2752 */
2753
2754 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)2755 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2756 {
2757 struct sched_entity *se = &p->se;
2758 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2759
2760 WARN_ON(task_rq(p) != rq);
2761
2762 if (cfs_rq->nr_running > 1) {
2763 u64 slice = sched_slice(cfs_rq, se);
2764 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2765 s64 delta = slice - ran;
2766
2767 if (delta < 0) {
2768 if (rq->curr == p)
2769 resched_task(p);
2770 return;
2771 }
2772
2773 /*
2774 * Don't schedule slices shorter than 10000ns, that just
2775 * doesn't make sense. Rely on vruntime for fairness.
2776 */
2777 if (rq->curr != p)
2778 delta = max_t(s64, 10000LL, delta);
2779
2780 hrtick_start(rq, delta);
2781 }
2782 }
2783
2784 /*
2785 * called from enqueue/dequeue and updates the hrtick when the
2786 * current task is from our class and nr_running is low enough
2787 * to matter.
2788 */
hrtick_update(struct rq * rq)2789 static void hrtick_update(struct rq *rq)
2790 {
2791 struct task_struct *curr = rq->curr;
2792
2793 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2794 return;
2795
2796 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2797 hrtick_start_fair(rq, curr);
2798 }
2799 #else /* !CONFIG_SCHED_HRTICK */
2800 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)2801 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2802 {
2803 }
2804
hrtick_update(struct rq * rq)2805 static inline void hrtick_update(struct rq *rq)
2806 {
2807 }
2808 #endif
2809
2810 /*
2811 * The enqueue_task method is called before nr_running is
2812 * increased. Here we update the fair scheduling stats and
2813 * then put the task into the rbtree:
2814 */
2815 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)2816 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2817 {
2818 struct cfs_rq *cfs_rq;
2819 struct sched_entity *se = &p->se;
2820
2821 for_each_sched_entity(se) {
2822 if (se->on_rq)
2823 break;
2824 cfs_rq = cfs_rq_of(se);
2825 enqueue_entity(cfs_rq, se, flags);
2826
2827 /*
2828 * end evaluation on encountering a throttled cfs_rq
2829 *
2830 * note: in the case of encountering a throttled cfs_rq we will
2831 * post the final h_nr_running increment below.
2832 */
2833 if (cfs_rq_throttled(cfs_rq))
2834 break;
2835 cfs_rq->h_nr_running++;
2836
2837 flags = ENQUEUE_WAKEUP;
2838 }
2839
2840 for_each_sched_entity(se) {
2841 cfs_rq = cfs_rq_of(se);
2842 cfs_rq->h_nr_running++;
2843
2844 if (cfs_rq_throttled(cfs_rq))
2845 break;
2846
2847 update_cfs_shares(cfs_rq);
2848 update_entity_load_avg(se, 1);
2849 }
2850
2851 if (!se) {
2852 update_rq_runnable_avg(rq, rq->nr_running);
2853 inc_nr_running(rq);
2854 }
2855 hrtick_update(rq);
2856 }
2857
2858 static void set_next_buddy(struct sched_entity *se);
2859
2860 /*
2861 * The dequeue_task method is called before nr_running is
2862 * decreased. We remove the task from the rbtree and
2863 * update the fair scheduling stats:
2864 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)2865 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2866 {
2867 struct cfs_rq *cfs_rq;
2868 struct sched_entity *se = &p->se;
2869 int task_sleep = flags & DEQUEUE_SLEEP;
2870
2871 for_each_sched_entity(se) {
2872 cfs_rq = cfs_rq_of(se);
2873 dequeue_entity(cfs_rq, se, flags);
2874
2875 /*
2876 * end evaluation on encountering a throttled cfs_rq
2877 *
2878 * note: in the case of encountering a throttled cfs_rq we will
2879 * post the final h_nr_running decrement below.
2880 */
2881 if (cfs_rq_throttled(cfs_rq))
2882 break;
2883 cfs_rq->h_nr_running--;
2884
2885 /* Don't dequeue parent if it has other entities besides us */
2886 if (cfs_rq->load.weight) {
2887 /*
2888 * Bias pick_next to pick a task from this cfs_rq, as
2889 * p is sleeping when it is within its sched_slice.
2890 */
2891 if (task_sleep && parent_entity(se))
2892 set_next_buddy(parent_entity(se));
2893
2894 /* avoid re-evaluating load for this entity */
2895 se = parent_entity(se);
2896 break;
2897 }
2898 flags |= DEQUEUE_SLEEP;
2899 }
2900
2901 for_each_sched_entity(se) {
2902 cfs_rq = cfs_rq_of(se);
2903 cfs_rq->h_nr_running--;
2904
2905 if (cfs_rq_throttled(cfs_rq))
2906 break;
2907
2908 update_cfs_shares(cfs_rq);
2909 update_entity_load_avg(se, 1);
2910 }
2911
2912 if (!se) {
2913 dec_nr_running(rq);
2914 update_rq_runnable_avg(rq, 1);
2915 }
2916 hrtick_update(rq);
2917 }
2918
2919 #ifdef CONFIG_SMP
2920 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(const int cpu)2921 static unsigned long weighted_cpuload(const int cpu)
2922 {
2923 return cpu_rq(cpu)->load.weight;
2924 }
2925
2926 /*
2927 * Return a low guess at the load of a migration-source cpu weighted
2928 * according to the scheduling class and "nice" value.
2929 *
2930 * We want to under-estimate the load of migration sources, to
2931 * balance conservatively.
2932 */
source_load(int cpu,int type)2933 static unsigned long source_load(int cpu, int type)
2934 {
2935 struct rq *rq = cpu_rq(cpu);
2936 unsigned long total = weighted_cpuload(cpu);
2937
2938 if (type == 0 || !sched_feat(LB_BIAS))
2939 return total;
2940
2941 return min(rq->cpu_load[type-1], total);
2942 }
2943
2944 /*
2945 * Return a high guess at the load of a migration-target cpu weighted
2946 * according to the scheduling class and "nice" value.
2947 */
target_load(int cpu,int type)2948 static unsigned long target_load(int cpu, int type)
2949 {
2950 struct rq *rq = cpu_rq(cpu);
2951 unsigned long total = weighted_cpuload(cpu);
2952
2953 if (type == 0 || !sched_feat(LB_BIAS))
2954 return total;
2955
2956 return max(rq->cpu_load[type-1], total);
2957 }
2958
power_of(int cpu)2959 static unsigned long power_of(int cpu)
2960 {
2961 return cpu_rq(cpu)->cpu_power;
2962 }
2963
cpu_avg_load_per_task(int cpu)2964 static unsigned long cpu_avg_load_per_task(int cpu)
2965 {
2966 struct rq *rq = cpu_rq(cpu);
2967 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2968
2969 if (nr_running)
2970 return rq->load.weight / nr_running;
2971
2972 return 0;
2973 }
2974
2975
task_waking_fair(struct task_struct * p)2976 static void task_waking_fair(struct task_struct *p)
2977 {
2978 struct sched_entity *se = &p->se;
2979 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2980 u64 min_vruntime;
2981
2982 #ifndef CONFIG_64BIT
2983 u64 min_vruntime_copy;
2984
2985 do {
2986 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2987 smp_rmb();
2988 min_vruntime = cfs_rq->min_vruntime;
2989 } while (min_vruntime != min_vruntime_copy);
2990 #else
2991 min_vruntime = cfs_rq->min_vruntime;
2992 #endif
2993
2994 se->vruntime -= min_vruntime;
2995 }
2996
2997 #ifdef CONFIG_FAIR_GROUP_SCHED
2998 /*
2999 * effective_load() calculates the load change as seen from the root_task_group
3000 *
3001 * Adding load to a group doesn't make a group heavier, but can cause movement
3002 * of group shares between cpus. Assuming the shares were perfectly aligned one
3003 * can calculate the shift in shares.
3004 *
3005 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3006 * on this @cpu and results in a total addition (subtraction) of @wg to the
3007 * total group weight.
3008 *
3009 * Given a runqueue weight distribution (rw_i) we can compute a shares
3010 * distribution (s_i) using:
3011 *
3012 * s_i = rw_i / \Sum rw_j (1)
3013 *
3014 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3015 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3016 * shares distribution (s_i):
3017 *
3018 * rw_i = { 2, 4, 1, 0 }
3019 * s_i = { 2/7, 4/7, 1/7, 0 }
3020 *
3021 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3022 * task used to run on and the CPU the waker is running on), we need to
3023 * compute the effect of waking a task on either CPU and, in case of a sync
3024 * wakeup, compute the effect of the current task going to sleep.
3025 *
3026 * So for a change of @wl to the local @cpu with an overall group weight change
3027 * of @wl we can compute the new shares distribution (s'_i) using:
3028 *
3029 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3030 *
3031 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3032 * differences in waking a task to CPU 0. The additional task changes the
3033 * weight and shares distributions like:
3034 *
3035 * rw'_i = { 3, 4, 1, 0 }
3036 * s'_i = { 3/8, 4/8, 1/8, 0 }
3037 *
3038 * We can then compute the difference in effective weight by using:
3039 *
3040 * dw_i = S * (s'_i - s_i) (3)
3041 *
3042 * Where 'S' is the group weight as seen by its parent.
3043 *
3044 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3045 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3046 * 4/7) times the weight of the group.
3047 */
effective_load(struct task_group * tg,int cpu,long wl,long wg)3048 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3049 {
3050 struct sched_entity *se = tg->se[cpu];
3051
3052 if (!tg->parent) /* the trivial, non-cgroup case */
3053 return wl;
3054
3055 for_each_sched_entity(se) {
3056 long w, W;
3057
3058 tg = se->my_q->tg;
3059
3060 /*
3061 * W = @wg + \Sum rw_j
3062 */
3063 W = wg + calc_tg_weight(tg, se->my_q);
3064
3065 /*
3066 * w = rw_i + @wl
3067 */
3068 w = se->my_q->load.weight + wl;
3069
3070 /*
3071 * wl = S * s'_i; see (2)
3072 */
3073 if (W > 0 && w < W)
3074 wl = (w * tg->shares) / W;
3075 else
3076 wl = tg->shares;
3077
3078 /*
3079 * Per the above, wl is the new se->load.weight value; since
3080 * those are clipped to [MIN_SHARES, ...) do so now. See
3081 * calc_cfs_shares().
3082 */
3083 if (wl < MIN_SHARES)
3084 wl = MIN_SHARES;
3085
3086 /*
3087 * wl = dw_i = S * (s'_i - s_i); see (3)
3088 */
3089 wl -= se->load.weight;
3090
3091 /*
3092 * Recursively apply this logic to all parent groups to compute
3093 * the final effective load change on the root group. Since
3094 * only the @tg group gets extra weight, all parent groups can
3095 * only redistribute existing shares. @wl is the shift in shares
3096 * resulting from this level per the above.
3097 */
3098 wg = 0;
3099 }
3100
3101 return wl;
3102 }
3103 #else
3104
effective_load(struct task_group * tg,int cpu,unsigned long wl,unsigned long wg)3105 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3106 unsigned long wl, unsigned long wg)
3107 {
3108 return wl;
3109 }
3110
3111 #endif
3112
wake_affine(struct sched_domain * sd,struct task_struct * p,int sync)3113 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3114 {
3115 s64 this_load, load;
3116 int idx, this_cpu, prev_cpu;
3117 unsigned long tl_per_task;
3118 struct task_group *tg;
3119 unsigned long weight;
3120 int balanced;
3121
3122 idx = sd->wake_idx;
3123 this_cpu = smp_processor_id();
3124 prev_cpu = task_cpu(p);
3125 load = source_load(prev_cpu, idx);
3126 this_load = target_load(this_cpu, idx);
3127
3128 /*
3129 * If sync wakeup then subtract the (maximum possible)
3130 * effect of the currently running task from the load
3131 * of the current CPU:
3132 */
3133 if (sync) {
3134 tg = task_group(current);
3135 weight = current->se.load.weight;
3136
3137 this_load += effective_load(tg, this_cpu, -weight, -weight);
3138 load += effective_load(tg, prev_cpu, 0, -weight);
3139 }
3140
3141 tg = task_group(p);
3142 weight = p->se.load.weight;
3143
3144 /*
3145 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3146 * due to the sync cause above having dropped this_load to 0, we'll
3147 * always have an imbalance, but there's really nothing you can do
3148 * about that, so that's good too.
3149 *
3150 * Otherwise check if either cpus are near enough in load to allow this
3151 * task to be woken on this_cpu.
3152 */
3153 if (this_load > 0) {
3154 s64 this_eff_load, prev_eff_load;
3155
3156 this_eff_load = 100;
3157 this_eff_load *= power_of(prev_cpu);
3158 this_eff_load *= this_load +
3159 effective_load(tg, this_cpu, weight, weight);
3160
3161 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3162 prev_eff_load *= power_of(this_cpu);
3163 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3164
3165 balanced = this_eff_load <= prev_eff_load;
3166 } else
3167 balanced = true;
3168
3169 /*
3170 * If the currently running task will sleep within
3171 * a reasonable amount of time then attract this newly
3172 * woken task:
3173 */
3174 if (sync && balanced)
3175 return 1;
3176
3177 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3178 tl_per_task = cpu_avg_load_per_task(this_cpu);
3179
3180 if (balanced ||
3181 (this_load <= load &&
3182 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3183 /*
3184 * This domain has SD_WAKE_AFFINE and
3185 * p is cache cold in this domain, and
3186 * there is no bad imbalance.
3187 */
3188 schedstat_inc(sd, ttwu_move_affine);
3189 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3190
3191 return 1;
3192 }
3193 return 0;
3194 }
3195
3196 /*
3197 * find_idlest_group finds and returns the least busy CPU group within the
3198 * domain.
3199 */
3200 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int load_idx)3201 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3202 int this_cpu, int load_idx)
3203 {
3204 struct sched_group *idlest = NULL, *group = sd->groups;
3205 unsigned long min_load = ULONG_MAX, this_load = 0;
3206 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3207
3208 do {
3209 unsigned long load, avg_load;
3210 int local_group;
3211 int i;
3212
3213 /* Skip over this group if it has no CPUs allowed */
3214 if (!cpumask_intersects(sched_group_cpus(group),
3215 tsk_cpus_allowed(p)))
3216 continue;
3217
3218 local_group = cpumask_test_cpu(this_cpu,
3219 sched_group_cpus(group));
3220
3221 /* Tally up the load of all CPUs in the group */
3222 avg_load = 0;
3223
3224 for_each_cpu(i, sched_group_cpus(group)) {
3225 /* Bias balancing toward cpus of our domain */
3226 if (local_group)
3227 load = source_load(i, load_idx);
3228 else
3229 load = target_load(i, load_idx);
3230
3231 avg_load += load;
3232 }
3233
3234 /* Adjust by relative CPU power of the group */
3235 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3236
3237 if (local_group) {
3238 this_load = avg_load;
3239 } else if (avg_load < min_load) {
3240 min_load = avg_load;
3241 idlest = group;
3242 }
3243 } while (group = group->next, group != sd->groups);
3244
3245 if (!idlest || 100*this_load < imbalance*min_load)
3246 return NULL;
3247 return idlest;
3248 }
3249
3250 /*
3251 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3252 */
3253 static int
find_idlest_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)3254 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3255 {
3256 unsigned long load, min_load = ULONG_MAX;
3257 int idlest = -1;
3258 int i;
3259
3260 /* Traverse only the allowed CPUs */
3261 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3262 load = weighted_cpuload(i);
3263
3264 if (load < min_load || (load == min_load && i == this_cpu)) {
3265 min_load = load;
3266 idlest = i;
3267 }
3268 }
3269
3270 return idlest;
3271 }
3272
3273 /*
3274 * Try and locate an idle CPU in the sched_domain.
3275 */
select_idle_sibling(struct task_struct * p,int target)3276 static int select_idle_sibling(struct task_struct *p, int target)
3277 {
3278 struct sched_domain *sd;
3279 struct sched_group *sg;
3280 int i = task_cpu(p);
3281
3282 if (idle_cpu(target))
3283 return target;
3284
3285 /*
3286 * If the prevous cpu is cache affine and idle, don't be stupid.
3287 */
3288 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3289 return i;
3290
3291 /*
3292 * Otherwise, iterate the domains and find an elegible idle cpu.
3293 */
3294 sd = rcu_dereference(per_cpu(sd_llc, target));
3295 for_each_lower_domain(sd) {
3296 sg = sd->groups;
3297 do {
3298 if (!cpumask_intersects(sched_group_cpus(sg),
3299 tsk_cpus_allowed(p)))
3300 goto next;
3301
3302 for_each_cpu(i, sched_group_cpus(sg)) {
3303 if (i == target || !idle_cpu(i))
3304 goto next;
3305 }
3306
3307 target = cpumask_first_and(sched_group_cpus(sg),
3308 tsk_cpus_allowed(p));
3309 goto done;
3310 next:
3311 sg = sg->next;
3312 } while (sg != sd->groups);
3313 }
3314 done:
3315 return target;
3316 }
3317
3318 /*
3319 * sched_balance_self: balance the current task (running on cpu) in domains
3320 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3321 * SD_BALANCE_EXEC.
3322 *
3323 * Balance, ie. select the least loaded group.
3324 *
3325 * Returns the target CPU number, or the same CPU if no balancing is needed.
3326 *
3327 * preempt must be disabled.
3328 */
3329 static int
select_task_rq_fair(struct task_struct * p,int sd_flag,int wake_flags)3330 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3331 {
3332 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3333 int cpu = smp_processor_id();
3334 int prev_cpu = task_cpu(p);
3335 int new_cpu = cpu;
3336 int want_affine = 0;
3337 int sync = wake_flags & WF_SYNC;
3338
3339 if (p->nr_cpus_allowed == 1)
3340 return prev_cpu;
3341
3342 if (sd_flag & SD_BALANCE_WAKE) {
3343 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3344 want_affine = 1;
3345 new_cpu = prev_cpu;
3346 }
3347
3348 rcu_read_lock();
3349 for_each_domain(cpu, tmp) {
3350 if (!(tmp->flags & SD_LOAD_BALANCE))
3351 continue;
3352
3353 /*
3354 * If both cpu and prev_cpu are part of this domain,
3355 * cpu is a valid SD_WAKE_AFFINE target.
3356 */
3357 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3358 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3359 affine_sd = tmp;
3360 break;
3361 }
3362
3363 if (tmp->flags & sd_flag)
3364 sd = tmp;
3365 }
3366
3367 if (affine_sd) {
3368 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3369 prev_cpu = cpu;
3370
3371 new_cpu = select_idle_sibling(p, prev_cpu);
3372 goto unlock;
3373 }
3374
3375 while (sd) {
3376 int load_idx = sd->forkexec_idx;
3377 struct sched_group *group;
3378 int weight;
3379
3380 if (!(sd->flags & sd_flag)) {
3381 sd = sd->child;
3382 continue;
3383 }
3384
3385 if (sd_flag & SD_BALANCE_WAKE)
3386 load_idx = sd->wake_idx;
3387
3388 group = find_idlest_group(sd, p, cpu, load_idx);
3389 if (!group) {
3390 sd = sd->child;
3391 continue;
3392 }
3393
3394 new_cpu = find_idlest_cpu(group, p, cpu);
3395 if (new_cpu == -1 || new_cpu == cpu) {
3396 /* Now try balancing at a lower domain level of cpu */
3397 sd = sd->child;
3398 continue;
3399 }
3400
3401 /* Now try balancing at a lower domain level of new_cpu */
3402 cpu = new_cpu;
3403 weight = sd->span_weight;
3404 sd = NULL;
3405 for_each_domain(cpu, tmp) {
3406 if (weight <= tmp->span_weight)
3407 break;
3408 if (tmp->flags & sd_flag)
3409 sd = tmp;
3410 }
3411 /* while loop will break here if sd == NULL */
3412 }
3413 unlock:
3414 rcu_read_unlock();
3415
3416 return new_cpu;
3417 }
3418
3419 /*
3420 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3421 * removed when useful for applications beyond shares distribution (e.g.
3422 * load-balance).
3423 */
3424 #ifdef CONFIG_FAIR_GROUP_SCHED
3425 /*
3426 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3427 * cfs_rq_of(p) references at time of call are still valid and identify the
3428 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3429 * other assumptions, including the state of rq->lock, should be made.
3430 */
3431 static void
migrate_task_rq_fair(struct task_struct * p,int next_cpu)3432 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3433 {
3434 struct sched_entity *se = &p->se;
3435 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3436
3437 /*
3438 * Load tracking: accumulate removed load so that it can be processed
3439 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3440 * to blocked load iff they have a positive decay-count. It can never
3441 * be negative here since on-rq tasks have decay-count == 0.
3442 */
3443 if (se->avg.decay_count) {
3444 se->avg.decay_count = -__synchronize_entity_decay(se);
3445 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3446 }
3447 }
3448 #endif
3449 #endif /* CONFIG_SMP */
3450
3451 static unsigned long
wakeup_gran(struct sched_entity * curr,struct sched_entity * se)3452 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3453 {
3454 unsigned long gran = sysctl_sched_wakeup_granularity;
3455
3456 /*
3457 * Since its curr running now, convert the gran from real-time
3458 * to virtual-time in his units.
3459 *
3460 * By using 'se' instead of 'curr' we penalize light tasks, so
3461 * they get preempted easier. That is, if 'se' < 'curr' then
3462 * the resulting gran will be larger, therefore penalizing the
3463 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3464 * be smaller, again penalizing the lighter task.
3465 *
3466 * This is especially important for buddies when the leftmost
3467 * task is higher priority than the buddy.
3468 */
3469 return calc_delta_fair(gran, se);
3470 }
3471
3472 /*
3473 * Should 'se' preempt 'curr'.
3474 *
3475 * |s1
3476 * |s2
3477 * |s3
3478 * g
3479 * |<--->|c
3480 *
3481 * w(c, s1) = -1
3482 * w(c, s2) = 0
3483 * w(c, s3) = 1
3484 *
3485 */
3486 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)3487 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3488 {
3489 s64 gran, vdiff = curr->vruntime - se->vruntime;
3490
3491 if (vdiff <= 0)
3492 return -1;
3493
3494 gran = wakeup_gran(curr, se);
3495 if (vdiff > gran)
3496 return 1;
3497
3498 return 0;
3499 }
3500
set_last_buddy(struct sched_entity * se)3501 static void set_last_buddy(struct sched_entity *se)
3502 {
3503 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3504 return;
3505
3506 for_each_sched_entity(se)
3507 cfs_rq_of(se)->last = se;
3508 }
3509
set_next_buddy(struct sched_entity * se)3510 static void set_next_buddy(struct sched_entity *se)
3511 {
3512 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3513 return;
3514
3515 for_each_sched_entity(se)
3516 cfs_rq_of(se)->next = se;
3517 }
3518
set_skip_buddy(struct sched_entity * se)3519 static void set_skip_buddy(struct sched_entity *se)
3520 {
3521 for_each_sched_entity(se)
3522 cfs_rq_of(se)->skip = se;
3523 }
3524
3525 /*
3526 * Preempt the current task with a newly woken task if needed:
3527 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)3528 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3529 {
3530 struct task_struct *curr = rq->curr;
3531 struct sched_entity *se = &curr->se, *pse = &p->se;
3532 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3533 int scale = cfs_rq->nr_running >= sched_nr_latency;
3534 int next_buddy_marked = 0;
3535
3536 if (unlikely(se == pse))
3537 return;
3538
3539 /*
3540 * This is possible from callers such as move_task(), in which we
3541 * unconditionally check_prempt_curr() after an enqueue (which may have
3542 * lead to a throttle). This both saves work and prevents false
3543 * next-buddy nomination below.
3544 */
3545 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3546 return;
3547
3548 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3549 set_next_buddy(pse);
3550 next_buddy_marked = 1;
3551 }
3552
3553 /*
3554 * We can come here with TIF_NEED_RESCHED already set from new task
3555 * wake up path.
3556 *
3557 * Note: this also catches the edge-case of curr being in a throttled
3558 * group (e.g. via set_curr_task), since update_curr() (in the
3559 * enqueue of curr) will have resulted in resched being set. This
3560 * prevents us from potentially nominating it as a false LAST_BUDDY
3561 * below.
3562 */
3563 if (test_tsk_need_resched(curr))
3564 return;
3565
3566 /* Idle tasks are by definition preempted by non-idle tasks. */
3567 if (unlikely(curr->policy == SCHED_IDLE) &&
3568 likely(p->policy != SCHED_IDLE))
3569 goto preempt;
3570
3571 /*
3572 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3573 * is driven by the tick):
3574 */
3575 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3576 return;
3577
3578 find_matching_se(&se, &pse);
3579 update_curr(cfs_rq_of(se));
3580 BUG_ON(!pse);
3581 if (wakeup_preempt_entity(se, pse) == 1) {
3582 /*
3583 * Bias pick_next to pick the sched entity that is
3584 * triggering this preemption.
3585 */
3586 if (!next_buddy_marked)
3587 set_next_buddy(pse);
3588 goto preempt;
3589 }
3590
3591 return;
3592
3593 preempt:
3594 resched_task(curr);
3595 /*
3596 * Only set the backward buddy when the current task is still
3597 * on the rq. This can happen when a wakeup gets interleaved
3598 * with schedule on the ->pre_schedule() or idle_balance()
3599 * point, either of which can * drop the rq lock.
3600 *
3601 * Also, during early boot the idle thread is in the fair class,
3602 * for obvious reasons its a bad idea to schedule back to it.
3603 */
3604 if (unlikely(!se->on_rq || curr == rq->idle))
3605 return;
3606
3607 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3608 set_last_buddy(se);
3609 }
3610
pick_next_task_fair(struct rq * rq)3611 static struct task_struct *pick_next_task_fair(struct rq *rq)
3612 {
3613 struct task_struct *p;
3614 struct cfs_rq *cfs_rq = &rq->cfs;
3615 struct sched_entity *se;
3616
3617 if (!cfs_rq->nr_running)
3618 return NULL;
3619
3620 do {
3621 se = pick_next_entity(cfs_rq);
3622 set_next_entity(cfs_rq, se);
3623 cfs_rq = group_cfs_rq(se);
3624 } while (cfs_rq);
3625
3626 p = task_of(se);
3627 if (hrtick_enabled(rq))
3628 hrtick_start_fair(rq, p);
3629
3630 return p;
3631 }
3632
3633 /*
3634 * Account for a descheduled task:
3635 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)3636 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3637 {
3638 struct sched_entity *se = &prev->se;
3639 struct cfs_rq *cfs_rq;
3640
3641 for_each_sched_entity(se) {
3642 cfs_rq = cfs_rq_of(se);
3643 put_prev_entity(cfs_rq, se);
3644 }
3645 }
3646
3647 /*
3648 * sched_yield() is very simple
3649 *
3650 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3651 */
yield_task_fair(struct rq * rq)3652 static void yield_task_fair(struct rq *rq)
3653 {
3654 struct task_struct *curr = rq->curr;
3655 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3656 struct sched_entity *se = &curr->se;
3657
3658 /*
3659 * Are we the only task in the tree?
3660 */
3661 if (unlikely(rq->nr_running == 1))
3662 return;
3663
3664 clear_buddies(cfs_rq, se);
3665
3666 if (curr->policy != SCHED_BATCH) {
3667 update_rq_clock(rq);
3668 /*
3669 * Update run-time statistics of the 'current'.
3670 */
3671 update_curr(cfs_rq);
3672 /*
3673 * Tell update_rq_clock() that we've just updated,
3674 * so we don't do microscopic update in schedule()
3675 * and double the fastpath cost.
3676 */
3677 rq->skip_clock_update = 1;
3678 }
3679
3680 set_skip_buddy(se);
3681 }
3682
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)3683 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3684 {
3685 struct sched_entity *se = &p->se;
3686
3687 /* throttled hierarchies are not runnable */
3688 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3689 return false;
3690
3691 /* Tell the scheduler that we'd really like pse to run next. */
3692 set_next_buddy(se);
3693
3694 yield_task_fair(rq);
3695
3696 return true;
3697 }
3698
3699 #ifdef CONFIG_SMP
3700 /**************************************************
3701 * Fair scheduling class load-balancing methods.
3702 *
3703 * BASICS
3704 *
3705 * The purpose of load-balancing is to achieve the same basic fairness the
3706 * per-cpu scheduler provides, namely provide a proportional amount of compute
3707 * time to each task. This is expressed in the following equation:
3708 *
3709 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3710 *
3711 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3712 * W_i,0 is defined as:
3713 *
3714 * W_i,0 = \Sum_j w_i,j (2)
3715 *
3716 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3717 * is derived from the nice value as per prio_to_weight[].
3718 *
3719 * The weight average is an exponential decay average of the instantaneous
3720 * weight:
3721 *
3722 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3723 *
3724 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3725 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3726 * can also include other factors [XXX].
3727 *
3728 * To achieve this balance we define a measure of imbalance which follows
3729 * directly from (1):
3730 *
3731 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3732 *
3733 * We them move tasks around to minimize the imbalance. In the continuous
3734 * function space it is obvious this converges, in the discrete case we get
3735 * a few fun cases generally called infeasible weight scenarios.
3736 *
3737 * [XXX expand on:
3738 * - infeasible weights;
3739 * - local vs global optima in the discrete case. ]
3740 *
3741 *
3742 * SCHED DOMAINS
3743 *
3744 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3745 * for all i,j solution, we create a tree of cpus that follows the hardware
3746 * topology where each level pairs two lower groups (or better). This results
3747 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3748 * tree to only the first of the previous level and we decrease the frequency
3749 * of load-balance at each level inv. proportional to the number of cpus in
3750 * the groups.
3751 *
3752 * This yields:
3753 *
3754 * log_2 n 1 n
3755 * \Sum { --- * --- * 2^i } = O(n) (5)
3756 * i = 0 2^i 2^i
3757 * `- size of each group
3758 * | | `- number of cpus doing load-balance
3759 * | `- freq
3760 * `- sum over all levels
3761 *
3762 * Coupled with a limit on how many tasks we can migrate every balance pass,
3763 * this makes (5) the runtime complexity of the balancer.
3764 *
3765 * An important property here is that each CPU is still (indirectly) connected
3766 * to every other cpu in at most O(log n) steps:
3767 *
3768 * The adjacency matrix of the resulting graph is given by:
3769 *
3770 * log_2 n
3771 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3772 * k = 0
3773 *
3774 * And you'll find that:
3775 *
3776 * A^(log_2 n)_i,j != 0 for all i,j (7)
3777 *
3778 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3779 * The task movement gives a factor of O(m), giving a convergence complexity
3780 * of:
3781 *
3782 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3783 *
3784 *
3785 * WORK CONSERVING
3786 *
3787 * In order to avoid CPUs going idle while there's still work to do, new idle
3788 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3789 * tree itself instead of relying on other CPUs to bring it work.
3790 *
3791 * This adds some complexity to both (5) and (8) but it reduces the total idle
3792 * time.
3793 *
3794 * [XXX more?]
3795 *
3796 *
3797 * CGROUPS
3798 *
3799 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3800 *
3801 * s_k,i
3802 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3803 * S_k
3804 *
3805 * Where
3806 *
3807 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3808 *
3809 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3810 *
3811 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3812 * property.
3813 *
3814 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3815 * rewrite all of this once again.]
3816 */
3817
3818 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3819
3820 #define LBF_ALL_PINNED 0x01
3821 #define LBF_NEED_BREAK 0x02
3822 #define LBF_SOME_PINNED 0x04
3823
3824 struct lb_env {
3825 struct sched_domain *sd;
3826
3827 struct rq *src_rq;
3828 int src_cpu;
3829
3830 int dst_cpu;
3831 struct rq *dst_rq;
3832
3833 struct cpumask *dst_grpmask;
3834 int new_dst_cpu;
3835 enum cpu_idle_type idle;
3836 long imbalance;
3837 /* The set of CPUs under consideration for load-balancing */
3838 struct cpumask *cpus;
3839
3840 unsigned int flags;
3841
3842 unsigned int loop;
3843 unsigned int loop_break;
3844 unsigned int loop_max;
3845 };
3846
3847 /*
3848 * move_task - move a task from one runqueue to another runqueue.
3849 * Both runqueues must be locked.
3850 */
move_task(struct task_struct * p,struct lb_env * env)3851 static void move_task(struct task_struct *p, struct lb_env *env)
3852 {
3853 deactivate_task(env->src_rq, p, 0);
3854 set_task_cpu(p, env->dst_cpu);
3855 activate_task(env->dst_rq, p, 0);
3856 check_preempt_curr(env->dst_rq, p, 0);
3857 }
3858
3859 /*
3860 * Is this task likely cache-hot:
3861 */
3862 static int
task_hot(struct task_struct * p,u64 now,struct sched_domain * sd)3863 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3864 {
3865 s64 delta;
3866
3867 if (p->sched_class != &fair_sched_class)
3868 return 0;
3869
3870 if (unlikely(p->policy == SCHED_IDLE))
3871 return 0;
3872
3873 /*
3874 * Buddy candidates are cache hot:
3875 */
3876 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3877 (&p->se == cfs_rq_of(&p->se)->next ||
3878 &p->se == cfs_rq_of(&p->se)->last))
3879 return 1;
3880
3881 if (sysctl_sched_migration_cost == -1)
3882 return 1;
3883 if (sysctl_sched_migration_cost == 0)
3884 return 0;
3885
3886 delta = now - p->se.exec_start;
3887
3888 return delta < (s64)sysctl_sched_migration_cost;
3889 }
3890
3891 /*
3892 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3893 */
3894 static
can_migrate_task(struct task_struct * p,struct lb_env * env)3895 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3896 {
3897 int tsk_cache_hot = 0;
3898 /*
3899 * We do not migrate tasks that are:
3900 * 1) throttled_lb_pair, or
3901 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3902 * 3) running (obviously), or
3903 * 4) are cache-hot on their current CPU.
3904 */
3905 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3906 return 0;
3907
3908 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3909 int cpu;
3910
3911 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3912
3913 /*
3914 * Remember if this task can be migrated to any other cpu in
3915 * our sched_group. We may want to revisit it if we couldn't
3916 * meet load balance goals by pulling other tasks on src_cpu.
3917 *
3918 * Also avoid computing new_dst_cpu if we have already computed
3919 * one in current iteration.
3920 */
3921 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3922 return 0;
3923
3924 /* Prevent to re-select dst_cpu via env's cpus */
3925 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3926 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3927 env->flags |= LBF_SOME_PINNED;
3928 env->new_dst_cpu = cpu;
3929 break;
3930 }
3931 }
3932
3933 return 0;
3934 }
3935
3936 /* Record that we found atleast one task that could run on dst_cpu */
3937 env->flags &= ~LBF_ALL_PINNED;
3938
3939 if (task_running(env->src_rq, p)) {
3940 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3941 return 0;
3942 }
3943
3944 /*
3945 * Aggressive migration if:
3946 * 1) task is cache cold, or
3947 * 2) too many balance attempts have failed.
3948 */
3949
3950 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3951 if (!tsk_cache_hot ||
3952 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3953
3954 if (tsk_cache_hot) {
3955 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3956 schedstat_inc(p, se.statistics.nr_forced_migrations);
3957 }
3958
3959 return 1;
3960 }
3961
3962 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3963 return 0;
3964 }
3965
3966 /*
3967 * move_one_task tries to move exactly one task from busiest to this_rq, as
3968 * part of active balancing operations within "domain".
3969 * Returns 1 if successful and 0 otherwise.
3970 *
3971 * Called with both runqueues locked.
3972 */
move_one_task(struct lb_env * env)3973 static int move_one_task(struct lb_env *env)
3974 {
3975 struct task_struct *p, *n;
3976
3977 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3978 if (!can_migrate_task(p, env))
3979 continue;
3980
3981 move_task(p, env);
3982 /*
3983 * Right now, this is only the second place move_task()
3984 * is called, so we can safely collect move_task()
3985 * stats here rather than inside move_task().
3986 */
3987 schedstat_inc(env->sd, lb_gained[env->idle]);
3988 return 1;
3989 }
3990 return 0;
3991 }
3992
3993 static unsigned long task_h_load(struct task_struct *p);
3994
3995 static const unsigned int sched_nr_migrate_break = 32;
3996
3997 /*
3998 * move_tasks tries to move up to imbalance weighted load from busiest to
3999 * this_rq, as part of a balancing operation within domain "sd".
4000 * Returns 1 if successful and 0 otherwise.
4001 *
4002 * Called with both runqueues locked.
4003 */
move_tasks(struct lb_env * env)4004 static int move_tasks(struct lb_env *env)
4005 {
4006 struct list_head *tasks = &env->src_rq->cfs_tasks;
4007 struct task_struct *p;
4008 unsigned long load;
4009 int pulled = 0;
4010
4011 if (env->imbalance <= 0)
4012 return 0;
4013
4014 while (!list_empty(tasks)) {
4015 p = list_first_entry(tasks, struct task_struct, se.group_node);
4016
4017 env->loop++;
4018 /* We've more or less seen every task there is, call it quits */
4019 if (env->loop > env->loop_max)
4020 break;
4021
4022 /* take a breather every nr_migrate tasks */
4023 if (env->loop > env->loop_break) {
4024 env->loop_break += sched_nr_migrate_break;
4025 env->flags |= LBF_NEED_BREAK;
4026 break;
4027 }
4028
4029 if (!can_migrate_task(p, env))
4030 goto next;
4031
4032 load = task_h_load(p);
4033
4034 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4035 goto next;
4036
4037 if ((load / 2) > env->imbalance)
4038 goto next;
4039
4040 move_task(p, env);
4041 pulled++;
4042 env->imbalance -= load;
4043
4044 #ifdef CONFIG_PREEMPT
4045 /*
4046 * NEWIDLE balancing is a source of latency, so preemptible
4047 * kernels will stop after the first task is pulled to minimize
4048 * the critical section.
4049 */
4050 if (env->idle == CPU_NEWLY_IDLE)
4051 break;
4052 #endif
4053
4054 /*
4055 * We only want to steal up to the prescribed amount of
4056 * weighted load.
4057 */
4058 if (env->imbalance <= 0)
4059 break;
4060
4061 continue;
4062 next:
4063 list_move_tail(&p->se.group_node, tasks);
4064 }
4065
4066 /*
4067 * Right now, this is one of only two places move_task() is called,
4068 * so we can safely collect move_task() stats here rather than
4069 * inside move_task().
4070 */
4071 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4072
4073 return pulled;
4074 }
4075
4076 #ifdef CONFIG_FAIR_GROUP_SCHED
4077 /*
4078 * update tg->load_weight by folding this cpu's load_avg
4079 */
__update_blocked_averages_cpu(struct task_group * tg,int cpu)4080 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4081 {
4082 struct sched_entity *se = tg->se[cpu];
4083 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4084
4085 /* throttled entities do not contribute to load */
4086 if (throttled_hierarchy(cfs_rq))
4087 return;
4088
4089 update_cfs_rq_blocked_load(cfs_rq, 1);
4090
4091 if (se) {
4092 update_entity_load_avg(se, 1);
4093 /*
4094 * We pivot on our runnable average having decayed to zero for
4095 * list removal. This generally implies that all our children
4096 * have also been removed (modulo rounding error or bandwidth
4097 * control); however, such cases are rare and we can fix these
4098 * at enqueue.
4099 *
4100 * TODO: fix up out-of-order children on enqueue.
4101 */
4102 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4103 list_del_leaf_cfs_rq(cfs_rq);
4104 } else {
4105 struct rq *rq = rq_of(cfs_rq);
4106 update_rq_runnable_avg(rq, rq->nr_running);
4107 }
4108 }
4109
update_blocked_averages(int cpu)4110 static void update_blocked_averages(int cpu)
4111 {
4112 struct rq *rq = cpu_rq(cpu);
4113 struct cfs_rq *cfs_rq;
4114 unsigned long flags;
4115
4116 raw_spin_lock_irqsave(&rq->lock, flags);
4117 update_rq_clock(rq);
4118 /*
4119 * Iterates the task_group tree in a bottom up fashion, see
4120 * list_add_leaf_cfs_rq() for details.
4121 */
4122 for_each_leaf_cfs_rq(rq, cfs_rq) {
4123 /*
4124 * Note: We may want to consider periodically releasing
4125 * rq->lock about these updates so that creating many task
4126 * groups does not result in continually extending hold time.
4127 */
4128 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4129 }
4130
4131 raw_spin_unlock_irqrestore(&rq->lock, flags);
4132 }
4133
4134 /*
4135 * Compute the cpu's hierarchical load factor for each task group.
4136 * This needs to be done in a top-down fashion because the load of a child
4137 * group is a fraction of its parents load.
4138 */
tg_load_down(struct task_group * tg,void * data)4139 static int tg_load_down(struct task_group *tg, void *data)
4140 {
4141 unsigned long load;
4142 long cpu = (long)data;
4143
4144 if (!tg->parent) {
4145 load = cpu_rq(cpu)->load.weight;
4146 } else {
4147 load = tg->parent->cfs_rq[cpu]->h_load;
4148 load *= tg->se[cpu]->load.weight;
4149 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4150 }
4151
4152 tg->cfs_rq[cpu]->h_load = load;
4153
4154 return 0;
4155 }
4156
update_h_load(long cpu)4157 static void update_h_load(long cpu)
4158 {
4159 struct rq *rq = cpu_rq(cpu);
4160 unsigned long now = jiffies;
4161
4162 if (rq->h_load_throttle == now)
4163 return;
4164
4165 rq->h_load_throttle = now;
4166
4167 rcu_read_lock();
4168 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4169 rcu_read_unlock();
4170 }
4171
task_h_load(struct task_struct * p)4172 static unsigned long task_h_load(struct task_struct *p)
4173 {
4174 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4175 unsigned long load;
4176
4177 load = p->se.load.weight;
4178 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
4179
4180 return load;
4181 }
4182 #else
update_blocked_averages(int cpu)4183 static inline void update_blocked_averages(int cpu)
4184 {
4185 }
4186
update_h_load(long cpu)4187 static inline void update_h_load(long cpu)
4188 {
4189 }
4190
task_h_load(struct task_struct * p)4191 static unsigned long task_h_load(struct task_struct *p)
4192 {
4193 return p->se.load.weight;
4194 }
4195 #endif
4196
4197 /********** Helpers for find_busiest_group ************************/
4198 /*
4199 * sd_lb_stats - Structure to store the statistics of a sched_domain
4200 * during load balancing.
4201 */
4202 struct sd_lb_stats {
4203 struct sched_group *busiest; /* Busiest group in this sd */
4204 struct sched_group *this; /* Local group in this sd */
4205 unsigned long total_load; /* Total load of all groups in sd */
4206 unsigned long total_pwr; /* Total power of all groups in sd */
4207 unsigned long avg_load; /* Average load across all groups in sd */
4208
4209 /** Statistics of this group */
4210 unsigned long this_load;
4211 unsigned long this_load_per_task;
4212 unsigned long this_nr_running;
4213 unsigned long this_has_capacity;
4214 unsigned int this_idle_cpus;
4215
4216 /* Statistics of the busiest group */
4217 unsigned int busiest_idle_cpus;
4218 unsigned long max_load;
4219 unsigned long busiest_load_per_task;
4220 unsigned long busiest_nr_running;
4221 unsigned long busiest_group_capacity;
4222 unsigned long busiest_has_capacity;
4223 unsigned int busiest_group_weight;
4224
4225 int group_imb; /* Is there imbalance in this sd */
4226 };
4227
4228 /*
4229 * sg_lb_stats - stats of a sched_group required for load_balancing
4230 */
4231 struct sg_lb_stats {
4232 unsigned long avg_load; /*Avg load across the CPUs of the group */
4233 unsigned long group_load; /* Total load over the CPUs of the group */
4234 unsigned long sum_nr_running; /* Nr tasks running in the group */
4235 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4236 unsigned long group_capacity;
4237 unsigned long idle_cpus;
4238 unsigned long group_weight;
4239 int group_imb; /* Is there an imbalance in the group ? */
4240 int group_has_capacity; /* Is there extra capacity in the group? */
4241 };
4242
4243 /**
4244 * get_sd_load_idx - Obtain the load index for a given sched domain.
4245 * @sd: The sched_domain whose load_idx is to be obtained.
4246 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4247 */
get_sd_load_idx(struct sched_domain * sd,enum cpu_idle_type idle)4248 static inline int get_sd_load_idx(struct sched_domain *sd,
4249 enum cpu_idle_type idle)
4250 {
4251 int load_idx;
4252
4253 switch (idle) {
4254 case CPU_NOT_IDLE:
4255 load_idx = sd->busy_idx;
4256 break;
4257
4258 case CPU_NEWLY_IDLE:
4259 load_idx = sd->newidle_idx;
4260 break;
4261 default:
4262 load_idx = sd->idle_idx;
4263 break;
4264 }
4265
4266 return load_idx;
4267 }
4268
default_scale_freq_power(struct sched_domain * sd,int cpu)4269 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4270 {
4271 return SCHED_POWER_SCALE;
4272 }
4273
arch_scale_freq_power(struct sched_domain * sd,int cpu)4274 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4275 {
4276 return default_scale_freq_power(sd, cpu);
4277 }
4278
default_scale_smt_power(struct sched_domain * sd,int cpu)4279 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4280 {
4281 unsigned long weight = sd->span_weight;
4282 unsigned long smt_gain = sd->smt_gain;
4283
4284 smt_gain /= weight;
4285
4286 return smt_gain;
4287 }
4288
arch_scale_smt_power(struct sched_domain * sd,int cpu)4289 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4290 {
4291 return default_scale_smt_power(sd, cpu);
4292 }
4293
scale_rt_power(int cpu)4294 static unsigned long scale_rt_power(int cpu)
4295 {
4296 struct rq *rq = cpu_rq(cpu);
4297 u64 total, available, age_stamp, avg;
4298
4299 /*
4300 * Since we're reading these variables without serialization make sure
4301 * we read them once before doing sanity checks on them.
4302 */
4303 age_stamp = ACCESS_ONCE(rq->age_stamp);
4304 avg = ACCESS_ONCE(rq->rt_avg);
4305
4306 total = sched_avg_period() + (rq->clock - age_stamp);
4307
4308 if (unlikely(total < avg)) {
4309 /* Ensures that power won't end up being negative */
4310 available = 0;
4311 } else {
4312 available = total - avg;
4313 }
4314
4315 if (unlikely((s64)total < SCHED_POWER_SCALE))
4316 total = SCHED_POWER_SCALE;
4317
4318 total >>= SCHED_POWER_SHIFT;
4319
4320 return div_u64(available, total);
4321 }
4322
update_cpu_power(struct sched_domain * sd,int cpu)4323 static void update_cpu_power(struct sched_domain *sd, int cpu)
4324 {
4325 unsigned long weight = sd->span_weight;
4326 unsigned long power = SCHED_POWER_SCALE;
4327 struct sched_group *sdg = sd->groups;
4328
4329 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4330 if (sched_feat(ARCH_POWER))
4331 power *= arch_scale_smt_power(sd, cpu);
4332 else
4333 power *= default_scale_smt_power(sd, cpu);
4334
4335 power >>= SCHED_POWER_SHIFT;
4336 }
4337
4338 sdg->sgp->power_orig = power;
4339
4340 if (sched_feat(ARCH_POWER))
4341 power *= arch_scale_freq_power(sd, cpu);
4342 else
4343 power *= default_scale_freq_power(sd, cpu);
4344
4345 power >>= SCHED_POWER_SHIFT;
4346
4347 power *= scale_rt_power(cpu);
4348 power >>= SCHED_POWER_SHIFT;
4349
4350 if (!power)
4351 power = 1;
4352
4353 cpu_rq(cpu)->cpu_power = power;
4354 sdg->sgp->power = power;
4355 }
4356
update_group_power(struct sched_domain * sd,int cpu)4357 void update_group_power(struct sched_domain *sd, int cpu)
4358 {
4359 struct sched_domain *child = sd->child;
4360 struct sched_group *group, *sdg = sd->groups;
4361 unsigned long power;
4362 unsigned long interval;
4363
4364 interval = msecs_to_jiffies(sd->balance_interval);
4365 interval = clamp(interval, 1UL, max_load_balance_interval);
4366 sdg->sgp->next_update = jiffies + interval;
4367
4368 if (!child) {
4369 update_cpu_power(sd, cpu);
4370 return;
4371 }
4372
4373 power = 0;
4374
4375 if (child->flags & SD_OVERLAP) {
4376 /*
4377 * SD_OVERLAP domains cannot assume that child groups
4378 * span the current group.
4379 */
4380
4381 for_each_cpu(cpu, sched_group_cpus(sdg))
4382 power += power_of(cpu);
4383 } else {
4384 /*
4385 * !SD_OVERLAP domains can assume that child groups
4386 * span the current group.
4387 */
4388
4389 group = child->groups;
4390 do {
4391 power += group->sgp->power;
4392 group = group->next;
4393 } while (group != child->groups);
4394 }
4395
4396 sdg->sgp->power_orig = sdg->sgp->power = power;
4397 }
4398
4399 /*
4400 * Try and fix up capacity for tiny siblings, this is needed when
4401 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4402 * which on its own isn't powerful enough.
4403 *
4404 * See update_sd_pick_busiest() and check_asym_packing().
4405 */
4406 static inline int
fix_small_capacity(struct sched_domain * sd,struct sched_group * group)4407 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4408 {
4409 /*
4410 * Only siblings can have significantly less than SCHED_POWER_SCALE
4411 */
4412 if (!(sd->flags & SD_SHARE_CPUPOWER))
4413 return 0;
4414
4415 /*
4416 * If ~90% of the cpu_power is still there, we're good.
4417 */
4418 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4419 return 1;
4420
4421 return 0;
4422 }
4423
4424 /**
4425 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4426 * @env: The load balancing environment.
4427 * @group: sched_group whose statistics are to be updated.
4428 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4429 * @local_group: Does group contain this_cpu.
4430 * @balance: Should we balance.
4431 * @sgs: variable to hold the statistics for this group.
4432 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,int load_idx,int local_group,int * balance,struct sg_lb_stats * sgs)4433 static inline void update_sg_lb_stats(struct lb_env *env,
4434 struct sched_group *group, int load_idx,
4435 int local_group, int *balance, struct sg_lb_stats *sgs)
4436 {
4437 unsigned long nr_running, max_nr_running, min_nr_running;
4438 unsigned long load, max_cpu_load, min_cpu_load;
4439 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4440 unsigned long avg_load_per_task = 0;
4441 int i;
4442
4443 if (local_group)
4444 balance_cpu = group_balance_cpu(group);
4445
4446 /* Tally up the load of all CPUs in the group */
4447 max_cpu_load = 0;
4448 min_cpu_load = ~0UL;
4449 max_nr_running = 0;
4450 min_nr_running = ~0UL;
4451
4452 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4453 struct rq *rq = cpu_rq(i);
4454
4455 nr_running = rq->nr_running;
4456
4457 /* Bias balancing toward cpus of our domain */
4458 if (local_group) {
4459 if (idle_cpu(i) && !first_idle_cpu &&
4460 cpumask_test_cpu(i, sched_group_mask(group))) {
4461 first_idle_cpu = 1;
4462 balance_cpu = i;
4463 }
4464
4465 load = target_load(i, load_idx);
4466 } else {
4467 load = source_load(i, load_idx);
4468 if (load > max_cpu_load)
4469 max_cpu_load = load;
4470 if (min_cpu_load > load)
4471 min_cpu_load = load;
4472
4473 if (nr_running > max_nr_running)
4474 max_nr_running = nr_running;
4475 if (min_nr_running > nr_running)
4476 min_nr_running = nr_running;
4477 }
4478
4479 sgs->group_load += load;
4480 sgs->sum_nr_running += nr_running;
4481 sgs->sum_weighted_load += weighted_cpuload(i);
4482 if (idle_cpu(i))
4483 sgs->idle_cpus++;
4484 }
4485
4486 /*
4487 * First idle cpu or the first cpu(busiest) in this sched group
4488 * is eligible for doing load balancing at this and above
4489 * domains. In the newly idle case, we will allow all the cpu's
4490 * to do the newly idle load balance.
4491 */
4492 if (local_group) {
4493 if (env->idle != CPU_NEWLY_IDLE) {
4494 if (balance_cpu != env->dst_cpu) {
4495 *balance = 0;
4496 return;
4497 }
4498 update_group_power(env->sd, env->dst_cpu);
4499 } else if (time_after_eq(jiffies, group->sgp->next_update))
4500 update_group_power(env->sd, env->dst_cpu);
4501 }
4502
4503 /* Adjust by relative CPU power of the group */
4504 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4505
4506 /*
4507 * Consider the group unbalanced when the imbalance is larger
4508 * than the average weight of a task.
4509 *
4510 * APZ: with cgroup the avg task weight can vary wildly and
4511 * might not be a suitable number - should we keep a
4512 * normalized nr_running number somewhere that negates
4513 * the hierarchy?
4514 */
4515 if (sgs->sum_nr_running)
4516 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4517
4518 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4519 (max_nr_running - min_nr_running) > 1)
4520 sgs->group_imb = 1;
4521
4522 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4523 SCHED_POWER_SCALE);
4524 if (!sgs->group_capacity)
4525 sgs->group_capacity = fix_small_capacity(env->sd, group);
4526 sgs->group_weight = group->group_weight;
4527
4528 if (sgs->group_capacity > sgs->sum_nr_running)
4529 sgs->group_has_capacity = 1;
4530 }
4531
4532 /**
4533 * update_sd_pick_busiest - return 1 on busiest group
4534 * @env: The load balancing environment.
4535 * @sds: sched_domain statistics
4536 * @sg: sched_group candidate to be checked for being the busiest
4537 * @sgs: sched_group statistics
4538 *
4539 * Determine if @sg is a busier group than the previously selected
4540 * busiest group.
4541 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)4542 static bool update_sd_pick_busiest(struct lb_env *env,
4543 struct sd_lb_stats *sds,
4544 struct sched_group *sg,
4545 struct sg_lb_stats *sgs)
4546 {
4547 if (sgs->avg_load <= sds->max_load)
4548 return false;
4549
4550 if (sgs->sum_nr_running > sgs->group_capacity)
4551 return true;
4552
4553 if (sgs->group_imb)
4554 return true;
4555
4556 /*
4557 * ASYM_PACKING needs to move all the work to the lowest
4558 * numbered CPUs in the group, therefore mark all groups
4559 * higher than ourself as busy.
4560 */
4561 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4562 env->dst_cpu < group_first_cpu(sg)) {
4563 if (!sds->busiest)
4564 return true;
4565
4566 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4567 return true;
4568 }
4569
4570 return false;
4571 }
4572
4573 /**
4574 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4575 * @env: The load balancing environment.
4576 * @balance: Should we balance.
4577 * @sds: variable to hold the statistics for this sched_domain.
4578 */
update_sd_lb_stats(struct lb_env * env,int * balance,struct sd_lb_stats * sds)4579 static inline void update_sd_lb_stats(struct lb_env *env,
4580 int *balance, struct sd_lb_stats *sds)
4581 {
4582 struct sched_domain *child = env->sd->child;
4583 struct sched_group *sg = env->sd->groups;
4584 struct sg_lb_stats sgs;
4585 int load_idx, prefer_sibling = 0;
4586
4587 if (child && child->flags & SD_PREFER_SIBLING)
4588 prefer_sibling = 1;
4589
4590 load_idx = get_sd_load_idx(env->sd, env->idle);
4591
4592 do {
4593 int local_group;
4594
4595 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4596 memset(&sgs, 0, sizeof(sgs));
4597 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4598
4599 if (local_group && !(*balance))
4600 return;
4601
4602 sds->total_load += sgs.group_load;
4603 sds->total_pwr += sg->sgp->power;
4604
4605 /*
4606 * In case the child domain prefers tasks go to siblings
4607 * first, lower the sg capacity to one so that we'll try
4608 * and move all the excess tasks away. We lower the capacity
4609 * of a group only if the local group has the capacity to fit
4610 * these excess tasks, i.e. nr_running < group_capacity. The
4611 * extra check prevents the case where you always pull from the
4612 * heaviest group when it is already under-utilized (possible
4613 * with a large weight task outweighs the tasks on the system).
4614 */
4615 if (prefer_sibling && !local_group && sds->this_has_capacity)
4616 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4617
4618 if (local_group) {
4619 sds->this_load = sgs.avg_load;
4620 sds->this = sg;
4621 sds->this_nr_running = sgs.sum_nr_running;
4622 sds->this_load_per_task = sgs.sum_weighted_load;
4623 sds->this_has_capacity = sgs.group_has_capacity;
4624 sds->this_idle_cpus = sgs.idle_cpus;
4625 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4626 sds->max_load = sgs.avg_load;
4627 sds->busiest = sg;
4628 sds->busiest_nr_running = sgs.sum_nr_running;
4629 sds->busiest_idle_cpus = sgs.idle_cpus;
4630 sds->busiest_group_capacity = sgs.group_capacity;
4631 sds->busiest_load_per_task = sgs.sum_weighted_load;
4632 sds->busiest_has_capacity = sgs.group_has_capacity;
4633 sds->busiest_group_weight = sgs.group_weight;
4634 sds->group_imb = sgs.group_imb;
4635 }
4636
4637 sg = sg->next;
4638 } while (sg != env->sd->groups);
4639 }
4640
4641 /**
4642 * check_asym_packing - Check to see if the group is packed into the
4643 * sched doman.
4644 *
4645 * This is primarily intended to used at the sibling level. Some
4646 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4647 * case of POWER7, it can move to lower SMT modes only when higher
4648 * threads are idle. When in lower SMT modes, the threads will
4649 * perform better since they share less core resources. Hence when we
4650 * have idle threads, we want them to be the higher ones.
4651 *
4652 * This packing function is run on idle threads. It checks to see if
4653 * the busiest CPU in this domain (core in the P7 case) has a higher
4654 * CPU number than the packing function is being run on. Here we are
4655 * assuming lower CPU number will be equivalent to lower a SMT thread
4656 * number.
4657 *
4658 * Returns 1 when packing is required and a task should be moved to
4659 * this CPU. The amount of the imbalance is returned in *imbalance.
4660 *
4661 * @env: The load balancing environment.
4662 * @sds: Statistics of the sched_domain which is to be packed
4663 */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)4664 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4665 {
4666 int busiest_cpu;
4667
4668 if (!(env->sd->flags & SD_ASYM_PACKING))
4669 return 0;
4670
4671 if (!sds->busiest)
4672 return 0;
4673
4674 busiest_cpu = group_first_cpu(sds->busiest);
4675 if (env->dst_cpu > busiest_cpu)
4676 return 0;
4677
4678 env->imbalance = DIV_ROUND_CLOSEST(
4679 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4680
4681 return 1;
4682 }
4683
4684 /**
4685 * fix_small_imbalance - Calculate the minor imbalance that exists
4686 * amongst the groups of a sched_domain, during
4687 * load balancing.
4688 * @env: The load balancing environment.
4689 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4690 */
4691 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)4692 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4693 {
4694 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4695 unsigned int imbn = 2;
4696 unsigned long scaled_busy_load_per_task;
4697
4698 if (sds->this_nr_running) {
4699 sds->this_load_per_task /= sds->this_nr_running;
4700 if (sds->busiest_load_per_task >
4701 sds->this_load_per_task)
4702 imbn = 1;
4703 } else {
4704 sds->this_load_per_task =
4705 cpu_avg_load_per_task(env->dst_cpu);
4706 }
4707
4708 scaled_busy_load_per_task = sds->busiest_load_per_task
4709 * SCHED_POWER_SCALE;
4710 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4711
4712 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4713 (scaled_busy_load_per_task * imbn)) {
4714 env->imbalance = sds->busiest_load_per_task;
4715 return;
4716 }
4717
4718 /*
4719 * OK, we don't have enough imbalance to justify moving tasks,
4720 * however we may be able to increase total CPU power used by
4721 * moving them.
4722 */
4723
4724 pwr_now += sds->busiest->sgp->power *
4725 min(sds->busiest_load_per_task, sds->max_load);
4726 pwr_now += sds->this->sgp->power *
4727 min(sds->this_load_per_task, sds->this_load);
4728 pwr_now /= SCHED_POWER_SCALE;
4729
4730 /* Amount of load we'd subtract */
4731 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4732 sds->busiest->sgp->power;
4733 if (sds->max_load > tmp)
4734 pwr_move += sds->busiest->sgp->power *
4735 min(sds->busiest_load_per_task, sds->max_load - tmp);
4736
4737 /* Amount of load we'd add */
4738 if (sds->max_load * sds->busiest->sgp->power <
4739 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4740 tmp = (sds->max_load * sds->busiest->sgp->power) /
4741 sds->this->sgp->power;
4742 else
4743 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4744 sds->this->sgp->power;
4745 pwr_move += sds->this->sgp->power *
4746 min(sds->this_load_per_task, sds->this_load + tmp);
4747 pwr_move /= SCHED_POWER_SCALE;
4748
4749 /* Move if we gain throughput */
4750 if (pwr_move > pwr_now)
4751 env->imbalance = sds->busiest_load_per_task;
4752 }
4753
4754 /**
4755 * calculate_imbalance - Calculate the amount of imbalance present within the
4756 * groups of a given sched_domain during load balance.
4757 * @env: load balance environment
4758 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4759 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)4760 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4761 {
4762 unsigned long max_pull, load_above_capacity = ~0UL;
4763
4764 sds->busiest_load_per_task /= sds->busiest_nr_running;
4765 if (sds->group_imb) {
4766 sds->busiest_load_per_task =
4767 min(sds->busiest_load_per_task, sds->avg_load);
4768 }
4769
4770 /*
4771 * In the presence of smp nice balancing, certain scenarios can have
4772 * max load less than avg load(as we skip the groups at or below
4773 * its cpu_power, while calculating max_load..)
4774 */
4775 if (sds->max_load < sds->avg_load) {
4776 env->imbalance = 0;
4777 return fix_small_imbalance(env, sds);
4778 }
4779
4780 if (!sds->group_imb) {
4781 /*
4782 * Don't want to pull so many tasks that a group would go idle.
4783 */
4784 load_above_capacity = (sds->busiest_nr_running -
4785 sds->busiest_group_capacity);
4786
4787 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4788
4789 load_above_capacity /= sds->busiest->sgp->power;
4790 }
4791
4792 /*
4793 * We're trying to get all the cpus to the average_load, so we don't
4794 * want to push ourselves above the average load, nor do we wish to
4795 * reduce the max loaded cpu below the average load. At the same time,
4796 * we also don't want to reduce the group load below the group capacity
4797 * (so that we can implement power-savings policies etc). Thus we look
4798 * for the minimum possible imbalance.
4799 * Be careful of negative numbers as they'll appear as very large values
4800 * with unsigned longs.
4801 */
4802 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4803
4804 /* How much load to actually move to equalise the imbalance */
4805 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4806 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4807 / SCHED_POWER_SCALE;
4808
4809 /*
4810 * if *imbalance is less than the average load per runnable task
4811 * there is no guarantee that any tasks will be moved so we'll have
4812 * a think about bumping its value to force at least one task to be
4813 * moved
4814 */
4815 if (env->imbalance < sds->busiest_load_per_task)
4816 return fix_small_imbalance(env, sds);
4817
4818 }
4819
4820 /******* find_busiest_group() helpers end here *********************/
4821
4822 /**
4823 * find_busiest_group - Returns the busiest group within the sched_domain
4824 * if there is an imbalance. If there isn't an imbalance, and
4825 * the user has opted for power-savings, it returns a group whose
4826 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4827 * such a group exists.
4828 *
4829 * Also calculates the amount of weighted load which should be moved
4830 * to restore balance.
4831 *
4832 * @env: The load balancing environment.
4833 * @balance: Pointer to a variable indicating if this_cpu
4834 * is the appropriate cpu to perform load balancing at this_level.
4835 *
4836 * Returns: - the busiest group if imbalance exists.
4837 * - If no imbalance and user has opted for power-savings balance,
4838 * return the least loaded group whose CPUs can be
4839 * put to idle by rebalancing its tasks onto our group.
4840 */
4841 static struct sched_group *
find_busiest_group(struct lb_env * env,int * balance)4842 find_busiest_group(struct lb_env *env, int *balance)
4843 {
4844 struct sd_lb_stats sds;
4845
4846 memset(&sds, 0, sizeof(sds));
4847
4848 /*
4849 * Compute the various statistics relavent for load balancing at
4850 * this level.
4851 */
4852 update_sd_lb_stats(env, balance, &sds);
4853
4854 /*
4855 * this_cpu is not the appropriate cpu to perform load balancing at
4856 * this level.
4857 */
4858 if (!(*balance))
4859 goto ret;
4860
4861 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4862 check_asym_packing(env, &sds))
4863 return sds.busiest;
4864
4865 /* There is no busy sibling group to pull tasks from */
4866 if (!sds.busiest || sds.busiest_nr_running == 0)
4867 goto out_balanced;
4868
4869 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4870
4871 /*
4872 * If the busiest group is imbalanced the below checks don't
4873 * work because they assumes all things are equal, which typically
4874 * isn't true due to cpus_allowed constraints and the like.
4875 */
4876 if (sds.group_imb)
4877 goto force_balance;
4878
4879 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4880 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4881 !sds.busiest_has_capacity)
4882 goto force_balance;
4883
4884 /*
4885 * If the local group is more busy than the selected busiest group
4886 * don't try and pull any tasks.
4887 */
4888 if (sds.this_load >= sds.max_load)
4889 goto out_balanced;
4890
4891 /*
4892 * Don't pull any tasks if this group is already above the domain
4893 * average load.
4894 */
4895 if (sds.this_load >= sds.avg_load)
4896 goto out_balanced;
4897
4898 if (env->idle == CPU_IDLE) {
4899 /*
4900 * This cpu is idle. If the busiest group load doesn't
4901 * have more tasks than the number of available cpu's and
4902 * there is no imbalance between this and busiest group
4903 * wrt to idle cpu's, it is balanced.
4904 */
4905 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4906 sds.busiest_nr_running <= sds.busiest_group_weight)
4907 goto out_balanced;
4908 } else {
4909 /*
4910 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4911 * imbalance_pct to be conservative.
4912 */
4913 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4914 goto out_balanced;
4915 }
4916
4917 force_balance:
4918 /* Looks like there is an imbalance. Compute it */
4919 calculate_imbalance(env, &sds);
4920 return sds.busiest;
4921
4922 out_balanced:
4923 ret:
4924 env->imbalance = 0;
4925 return NULL;
4926 }
4927
4928 /*
4929 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4930 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)4931 static struct rq *find_busiest_queue(struct lb_env *env,
4932 struct sched_group *group)
4933 {
4934 struct rq *busiest = NULL, *rq;
4935 unsigned long max_load = 0;
4936 int i;
4937
4938 for_each_cpu(i, sched_group_cpus(group)) {
4939 unsigned long power = power_of(i);
4940 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4941 SCHED_POWER_SCALE);
4942 unsigned long wl;
4943
4944 if (!capacity)
4945 capacity = fix_small_capacity(env->sd, group);
4946
4947 if (!cpumask_test_cpu(i, env->cpus))
4948 continue;
4949
4950 rq = cpu_rq(i);
4951 wl = weighted_cpuload(i);
4952
4953 /*
4954 * When comparing with imbalance, use weighted_cpuload()
4955 * which is not scaled with the cpu power.
4956 */
4957 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4958 continue;
4959
4960 /*
4961 * For the load comparisons with the other cpu's, consider
4962 * the weighted_cpuload() scaled with the cpu power, so that
4963 * the load can be moved away from the cpu that is potentially
4964 * running at a lower capacity.
4965 */
4966 wl = (wl * SCHED_POWER_SCALE) / power;
4967
4968 if (wl > max_load) {
4969 max_load = wl;
4970 busiest = rq;
4971 }
4972 }
4973
4974 return busiest;
4975 }
4976
4977 /*
4978 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4979 * so long as it is large enough.
4980 */
4981 #define MAX_PINNED_INTERVAL 512
4982
4983 /* Working cpumask for load_balance and load_balance_newidle. */
4984 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4985
need_active_balance(struct lb_env * env)4986 static int need_active_balance(struct lb_env *env)
4987 {
4988 struct sched_domain *sd = env->sd;
4989
4990 if (env->idle == CPU_NEWLY_IDLE) {
4991
4992 /*
4993 * ASYM_PACKING needs to force migrate tasks from busy but
4994 * higher numbered CPUs in order to pack all tasks in the
4995 * lowest numbered CPUs.
4996 */
4997 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4998 return 1;
4999 }
5000
5001 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5002 }
5003
5004 static int active_load_balance_cpu_stop(void *data);
5005
5006 /*
5007 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5008 * tasks if there is an imbalance.
5009 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * balance)5010 static int load_balance(int this_cpu, struct rq *this_rq,
5011 struct sched_domain *sd, enum cpu_idle_type idle,
5012 int *balance)
5013 {
5014 int ld_moved, cur_ld_moved, active_balance = 0;
5015 struct sched_group *group;
5016 struct rq *busiest;
5017 unsigned long flags;
5018 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5019
5020 struct lb_env env = {
5021 .sd = sd,
5022 .dst_cpu = this_cpu,
5023 .dst_rq = this_rq,
5024 .dst_grpmask = sched_group_cpus(sd->groups),
5025 .idle = idle,
5026 .loop_break = sched_nr_migrate_break,
5027 .cpus = cpus,
5028 };
5029
5030 /*
5031 * For NEWLY_IDLE load_balancing, we don't need to consider
5032 * other cpus in our group
5033 */
5034 if (idle == CPU_NEWLY_IDLE)
5035 env.dst_grpmask = NULL;
5036
5037 cpumask_copy(cpus, cpu_active_mask);
5038
5039 schedstat_inc(sd, lb_count[idle]);
5040
5041 redo:
5042 group = find_busiest_group(&env, balance);
5043
5044 if (*balance == 0)
5045 goto out_balanced;
5046
5047 if (!group) {
5048 schedstat_inc(sd, lb_nobusyg[idle]);
5049 goto out_balanced;
5050 }
5051
5052 busiest = find_busiest_queue(&env, group);
5053 if (!busiest) {
5054 schedstat_inc(sd, lb_nobusyq[idle]);
5055 goto out_balanced;
5056 }
5057
5058 BUG_ON(busiest == env.dst_rq);
5059
5060 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5061
5062 ld_moved = 0;
5063 if (busiest->nr_running > 1) {
5064 /*
5065 * Attempt to move tasks. If find_busiest_group has found
5066 * an imbalance but busiest->nr_running <= 1, the group is
5067 * still unbalanced. ld_moved simply stays zero, so it is
5068 * correctly treated as an imbalance.
5069 */
5070 env.flags |= LBF_ALL_PINNED;
5071 env.src_cpu = busiest->cpu;
5072 env.src_rq = busiest;
5073 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5074
5075 update_h_load(env.src_cpu);
5076 more_balance:
5077 local_irq_save(flags);
5078 double_rq_lock(env.dst_rq, busiest);
5079
5080 /*
5081 * cur_ld_moved - load moved in current iteration
5082 * ld_moved - cumulative load moved across iterations
5083 */
5084 cur_ld_moved = move_tasks(&env);
5085 ld_moved += cur_ld_moved;
5086 double_rq_unlock(env.dst_rq, busiest);
5087 local_irq_restore(flags);
5088
5089 /*
5090 * some other cpu did the load balance for us.
5091 */
5092 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5093 resched_cpu(env.dst_cpu);
5094
5095 if (env.flags & LBF_NEED_BREAK) {
5096 env.flags &= ~LBF_NEED_BREAK;
5097 goto more_balance;
5098 }
5099
5100 /*
5101 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5102 * us and move them to an alternate dst_cpu in our sched_group
5103 * where they can run. The upper limit on how many times we
5104 * iterate on same src_cpu is dependent on number of cpus in our
5105 * sched_group.
5106 *
5107 * This changes load balance semantics a bit on who can move
5108 * load to a given_cpu. In addition to the given_cpu itself
5109 * (or a ilb_cpu acting on its behalf where given_cpu is
5110 * nohz-idle), we now have balance_cpu in a position to move
5111 * load to given_cpu. In rare situations, this may cause
5112 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5113 * _independently_ and at _same_ time to move some load to
5114 * given_cpu) causing exceess load to be moved to given_cpu.
5115 * This however should not happen so much in practice and
5116 * moreover subsequent load balance cycles should correct the
5117 * excess load moved.
5118 */
5119 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5120
5121 env.dst_rq = cpu_rq(env.new_dst_cpu);
5122 env.dst_cpu = env.new_dst_cpu;
5123 env.flags &= ~LBF_SOME_PINNED;
5124 env.loop = 0;
5125 env.loop_break = sched_nr_migrate_break;
5126
5127 /* Prevent to re-select dst_cpu via env's cpus */
5128 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5129
5130 /*
5131 * Go back to "more_balance" rather than "redo" since we
5132 * need to continue with same src_cpu.
5133 */
5134 goto more_balance;
5135 }
5136
5137 /* All tasks on this runqueue were pinned by CPU affinity */
5138 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5139 cpumask_clear_cpu(cpu_of(busiest), cpus);
5140 if (!cpumask_empty(cpus)) {
5141 env.loop = 0;
5142 env.loop_break = sched_nr_migrate_break;
5143 goto redo;
5144 }
5145 goto out_balanced;
5146 }
5147 }
5148
5149 if (!ld_moved) {
5150 schedstat_inc(sd, lb_failed[idle]);
5151 /*
5152 * Increment the failure counter only on periodic balance.
5153 * We do not want newidle balance, which can be very
5154 * frequent, pollute the failure counter causing
5155 * excessive cache_hot migrations and active balances.
5156 */
5157 if (idle != CPU_NEWLY_IDLE)
5158 sd->nr_balance_failed++;
5159
5160 if (need_active_balance(&env)) {
5161 raw_spin_lock_irqsave(&busiest->lock, flags);
5162
5163 /* don't kick the active_load_balance_cpu_stop,
5164 * if the curr task on busiest cpu can't be
5165 * moved to this_cpu
5166 */
5167 if (!cpumask_test_cpu(this_cpu,
5168 tsk_cpus_allowed(busiest->curr))) {
5169 raw_spin_unlock_irqrestore(&busiest->lock,
5170 flags);
5171 env.flags |= LBF_ALL_PINNED;
5172 goto out_one_pinned;
5173 }
5174
5175 /*
5176 * ->active_balance synchronizes accesses to
5177 * ->active_balance_work. Once set, it's cleared
5178 * only after active load balance is finished.
5179 */
5180 if (!busiest->active_balance) {
5181 busiest->active_balance = 1;
5182 busiest->push_cpu = this_cpu;
5183 active_balance = 1;
5184 }
5185 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5186
5187 if (active_balance) {
5188 stop_one_cpu_nowait(cpu_of(busiest),
5189 active_load_balance_cpu_stop, busiest,
5190 &busiest->active_balance_work);
5191 }
5192
5193 /*
5194 * We've kicked active balancing, reset the failure
5195 * counter.
5196 */
5197 sd->nr_balance_failed = sd->cache_nice_tries+1;
5198 }
5199 } else
5200 sd->nr_balance_failed = 0;
5201
5202 if (likely(!active_balance)) {
5203 /* We were unbalanced, so reset the balancing interval */
5204 sd->balance_interval = sd->min_interval;
5205 } else {
5206 /*
5207 * If we've begun active balancing, start to back off. This
5208 * case may not be covered by the all_pinned logic if there
5209 * is only 1 task on the busy runqueue (because we don't call
5210 * move_tasks).
5211 */
5212 if (sd->balance_interval < sd->max_interval)
5213 sd->balance_interval *= 2;
5214 }
5215
5216 goto out;
5217
5218 out_balanced:
5219 schedstat_inc(sd, lb_balanced[idle]);
5220
5221 sd->nr_balance_failed = 0;
5222
5223 out_one_pinned:
5224 /* tune up the balancing interval */
5225 if (((env.flags & LBF_ALL_PINNED) &&
5226 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5227 (sd->balance_interval < sd->max_interval))
5228 sd->balance_interval *= 2;
5229
5230 ld_moved = 0;
5231 out:
5232 return ld_moved;
5233 }
5234
5235 /*
5236 * idle_balance is called by schedule() if this_cpu is about to become
5237 * idle. Attempts to pull tasks from other CPUs.
5238 */
idle_balance(int this_cpu,struct rq * this_rq)5239 void idle_balance(int this_cpu, struct rq *this_rq)
5240 {
5241 struct sched_domain *sd;
5242 int pulled_task = 0;
5243 unsigned long next_balance = jiffies + HZ;
5244
5245 this_rq->idle_stamp = this_rq->clock;
5246
5247 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5248 return;
5249
5250 /*
5251 * Drop the rq->lock, but keep IRQ/preempt disabled.
5252 */
5253 raw_spin_unlock(&this_rq->lock);
5254
5255 update_blocked_averages(this_cpu);
5256 rcu_read_lock();
5257 for_each_domain(this_cpu, sd) {
5258 unsigned long interval;
5259 int balance = 1;
5260
5261 if (!(sd->flags & SD_LOAD_BALANCE))
5262 continue;
5263
5264 if (sd->flags & SD_BALANCE_NEWIDLE) {
5265 /* If we've pulled tasks over stop searching: */
5266 pulled_task = load_balance(this_cpu, this_rq,
5267 sd, CPU_NEWLY_IDLE, &balance);
5268 }
5269
5270 interval = msecs_to_jiffies(sd->balance_interval);
5271 if (time_after(next_balance, sd->last_balance + interval))
5272 next_balance = sd->last_balance + interval;
5273 if (pulled_task) {
5274 this_rq->idle_stamp = 0;
5275 break;
5276 }
5277 }
5278 rcu_read_unlock();
5279
5280 raw_spin_lock(&this_rq->lock);
5281
5282 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5283 /*
5284 * We are going idle. next_balance may be set based on
5285 * a busy processor. So reset next_balance.
5286 */
5287 this_rq->next_balance = next_balance;
5288 }
5289 }
5290
5291 /*
5292 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5293 * running tasks off the busiest CPU onto idle CPUs. It requires at
5294 * least 1 task to be running on each physical CPU where possible, and
5295 * avoids physical / logical imbalances.
5296 */
active_load_balance_cpu_stop(void * data)5297 static int active_load_balance_cpu_stop(void *data)
5298 {
5299 struct rq *busiest_rq = data;
5300 int busiest_cpu = cpu_of(busiest_rq);
5301 int target_cpu = busiest_rq->push_cpu;
5302 struct rq *target_rq = cpu_rq(target_cpu);
5303 struct sched_domain *sd;
5304
5305 raw_spin_lock_irq(&busiest_rq->lock);
5306
5307 /* make sure the requested cpu hasn't gone down in the meantime */
5308 if (unlikely(busiest_cpu != smp_processor_id() ||
5309 !busiest_rq->active_balance))
5310 goto out_unlock;
5311
5312 /* Is there any task to move? */
5313 if (busiest_rq->nr_running <= 1)
5314 goto out_unlock;
5315
5316 /*
5317 * This condition is "impossible", if it occurs
5318 * we need to fix it. Originally reported by
5319 * Bjorn Helgaas on a 128-cpu setup.
5320 */
5321 BUG_ON(busiest_rq == target_rq);
5322
5323 /* move a task from busiest_rq to target_rq */
5324 double_lock_balance(busiest_rq, target_rq);
5325
5326 /* Search for an sd spanning us and the target CPU. */
5327 rcu_read_lock();
5328 for_each_domain(target_cpu, sd) {
5329 if ((sd->flags & SD_LOAD_BALANCE) &&
5330 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5331 break;
5332 }
5333
5334 if (likely(sd)) {
5335 struct lb_env env = {
5336 .sd = sd,
5337 .dst_cpu = target_cpu,
5338 .dst_rq = target_rq,
5339 .src_cpu = busiest_rq->cpu,
5340 .src_rq = busiest_rq,
5341 .idle = CPU_IDLE,
5342 };
5343
5344 schedstat_inc(sd, alb_count);
5345
5346 if (move_one_task(&env))
5347 schedstat_inc(sd, alb_pushed);
5348 else
5349 schedstat_inc(sd, alb_failed);
5350 }
5351 rcu_read_unlock();
5352 double_unlock_balance(busiest_rq, target_rq);
5353 out_unlock:
5354 busiest_rq->active_balance = 0;
5355 raw_spin_unlock_irq(&busiest_rq->lock);
5356 return 0;
5357 }
5358
5359 #ifdef CONFIG_NO_HZ_COMMON
5360 /*
5361 * idle load balancing details
5362 * - When one of the busy CPUs notice that there may be an idle rebalancing
5363 * needed, they will kick the idle load balancer, which then does idle
5364 * load balancing for all the idle CPUs.
5365 */
5366 static struct {
5367 cpumask_var_t idle_cpus_mask;
5368 atomic_t nr_cpus;
5369 unsigned long next_balance; /* in jiffy units */
5370 } nohz ____cacheline_aligned;
5371
find_new_ilb(int call_cpu)5372 static inline int find_new_ilb(int call_cpu)
5373 {
5374 int ilb = cpumask_first(nohz.idle_cpus_mask);
5375
5376 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5377 return ilb;
5378
5379 return nr_cpu_ids;
5380 }
5381
5382 /*
5383 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5384 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5385 * CPU (if there is one).
5386 */
nohz_balancer_kick(int cpu)5387 static void nohz_balancer_kick(int cpu)
5388 {
5389 int ilb_cpu;
5390
5391 nohz.next_balance++;
5392
5393 ilb_cpu = find_new_ilb(cpu);
5394
5395 if (ilb_cpu >= nr_cpu_ids)
5396 return;
5397
5398 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5399 return;
5400 /*
5401 * Use smp_send_reschedule() instead of resched_cpu().
5402 * This way we generate a sched IPI on the target cpu which
5403 * is idle. And the softirq performing nohz idle load balance
5404 * will be run before returning from the IPI.
5405 */
5406 smp_send_reschedule(ilb_cpu);
5407 return;
5408 }
5409
nohz_balance_exit_idle(int cpu)5410 static inline void nohz_balance_exit_idle(int cpu)
5411 {
5412 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5413 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5414 atomic_dec(&nohz.nr_cpus);
5415 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5416 }
5417 }
5418
set_cpu_sd_state_busy(void)5419 static inline void set_cpu_sd_state_busy(void)
5420 {
5421 struct sched_domain *sd;
5422 int cpu = smp_processor_id();
5423
5424 rcu_read_lock();
5425 sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5426
5427 if (!sd || !sd->nohz_idle)
5428 goto unlock;
5429 sd->nohz_idle = 0;
5430
5431 for (; sd; sd = sd->parent)
5432 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5433 unlock:
5434 rcu_read_unlock();
5435 }
5436
set_cpu_sd_state_idle(void)5437 void set_cpu_sd_state_idle(void)
5438 {
5439 struct sched_domain *sd;
5440 int cpu = smp_processor_id();
5441
5442 rcu_read_lock();
5443 sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
5444
5445 if (!sd || sd->nohz_idle)
5446 goto unlock;
5447 sd->nohz_idle = 1;
5448
5449 for (; sd; sd = sd->parent)
5450 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5451 unlock:
5452 rcu_read_unlock();
5453 }
5454
5455 /*
5456 * This routine will record that the cpu is going idle with tick stopped.
5457 * This info will be used in performing idle load balancing in the future.
5458 */
nohz_balance_enter_idle(int cpu)5459 void nohz_balance_enter_idle(int cpu)
5460 {
5461 /*
5462 * If this cpu is going down, then nothing needs to be done.
5463 */
5464 if (!cpu_active(cpu))
5465 return;
5466
5467 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5468 return;
5469
5470 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5471 atomic_inc(&nohz.nr_cpus);
5472 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5473 }
5474
sched_ilb_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5475 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5476 unsigned long action, void *hcpu)
5477 {
5478 switch (action & ~CPU_TASKS_FROZEN) {
5479 case CPU_DYING:
5480 nohz_balance_exit_idle(smp_processor_id());
5481 return NOTIFY_OK;
5482 default:
5483 return NOTIFY_DONE;
5484 }
5485 }
5486 #endif
5487
5488 static DEFINE_SPINLOCK(balancing);
5489
5490 /*
5491 * Scale the max load_balance interval with the number of CPUs in the system.
5492 * This trades load-balance latency on larger machines for less cross talk.
5493 */
update_max_interval(void)5494 void update_max_interval(void)
5495 {
5496 max_load_balance_interval = HZ*num_online_cpus()/10;
5497 }
5498
5499 /*
5500 * It checks each scheduling domain to see if it is due to be balanced,
5501 * and initiates a balancing operation if so.
5502 *
5503 * Balancing parameters are set up in init_sched_domains.
5504 */
rebalance_domains(int cpu,enum cpu_idle_type idle)5505 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5506 {
5507 int balance = 1;
5508 struct rq *rq = cpu_rq(cpu);
5509 unsigned long interval;
5510 struct sched_domain *sd;
5511 /* Earliest time when we have to do rebalance again */
5512 unsigned long next_balance = jiffies + 60*HZ;
5513 int update_next_balance = 0;
5514 int need_serialize;
5515
5516 update_blocked_averages(cpu);
5517
5518 rcu_read_lock();
5519 for_each_domain(cpu, sd) {
5520 if (!(sd->flags & SD_LOAD_BALANCE))
5521 continue;
5522
5523 interval = sd->balance_interval;
5524 if (idle != CPU_IDLE)
5525 interval *= sd->busy_factor;
5526
5527 /* scale ms to jiffies */
5528 interval = msecs_to_jiffies(interval);
5529 interval = clamp(interval, 1UL, max_load_balance_interval);
5530
5531 need_serialize = sd->flags & SD_SERIALIZE;
5532
5533 if (need_serialize) {
5534 if (!spin_trylock(&balancing))
5535 goto out;
5536 }
5537
5538 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5539 if (load_balance(cpu, rq, sd, idle, &balance)) {
5540 /*
5541 * The LBF_SOME_PINNED logic could have changed
5542 * env->dst_cpu, so we can't know our idle
5543 * state even if we migrated tasks. Update it.
5544 */
5545 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5546 }
5547 sd->last_balance = jiffies;
5548 }
5549 if (need_serialize)
5550 spin_unlock(&balancing);
5551 out:
5552 if (time_after(next_balance, sd->last_balance + interval)) {
5553 next_balance = sd->last_balance + interval;
5554 update_next_balance = 1;
5555 }
5556
5557 /*
5558 * Stop the load balance at this level. There is another
5559 * CPU in our sched group which is doing load balancing more
5560 * actively.
5561 */
5562 if (!balance)
5563 break;
5564 }
5565 rcu_read_unlock();
5566
5567 /*
5568 * next_balance will be updated only when there is a need.
5569 * When the cpu is attached to null domain for ex, it will not be
5570 * updated.
5571 */
5572 if (likely(update_next_balance))
5573 rq->next_balance = next_balance;
5574 }
5575
5576 #ifdef CONFIG_NO_HZ_COMMON
5577 /*
5578 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5579 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5580 */
nohz_idle_balance(int this_cpu,enum cpu_idle_type idle)5581 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5582 {
5583 struct rq *this_rq = cpu_rq(this_cpu);
5584 struct rq *rq;
5585 int balance_cpu;
5586
5587 if (idle != CPU_IDLE ||
5588 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5589 goto end;
5590
5591 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5592 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5593 continue;
5594
5595 /*
5596 * If this cpu gets work to do, stop the load balancing
5597 * work being done for other cpus. Next load
5598 * balancing owner will pick it up.
5599 */
5600 if (need_resched())
5601 break;
5602
5603 rq = cpu_rq(balance_cpu);
5604
5605 raw_spin_lock_irq(&rq->lock);
5606 update_rq_clock(rq);
5607 update_idle_cpu_load(rq);
5608 raw_spin_unlock_irq(&rq->lock);
5609
5610 rebalance_domains(balance_cpu, CPU_IDLE);
5611
5612 if (time_after(this_rq->next_balance, rq->next_balance))
5613 this_rq->next_balance = rq->next_balance;
5614 }
5615 nohz.next_balance = this_rq->next_balance;
5616 end:
5617 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5618 }
5619
5620 /*
5621 * Current heuristic for kicking the idle load balancer in the presence
5622 * of an idle cpu is the system.
5623 * - This rq has more than one task.
5624 * - At any scheduler domain level, this cpu's scheduler group has multiple
5625 * busy cpu's exceeding the group's power.
5626 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5627 * domain span are idle.
5628 */
nohz_kick_needed(struct rq * rq,int cpu)5629 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5630 {
5631 unsigned long now = jiffies;
5632 struct sched_domain *sd;
5633
5634 if (unlikely(idle_cpu(cpu)))
5635 return 0;
5636
5637 /*
5638 * We may be recently in ticked or tickless idle mode. At the first
5639 * busy tick after returning from idle, we will update the busy stats.
5640 */
5641 set_cpu_sd_state_busy();
5642 nohz_balance_exit_idle(cpu);
5643
5644 /*
5645 * None are in tickless mode and hence no need for NOHZ idle load
5646 * balancing.
5647 */
5648 if (likely(!atomic_read(&nohz.nr_cpus)))
5649 return 0;
5650
5651 if (time_before(now, nohz.next_balance))
5652 return 0;
5653
5654 if (rq->nr_running >= 2)
5655 goto need_kick;
5656
5657 rcu_read_lock();
5658 for_each_domain(cpu, sd) {
5659 struct sched_group *sg = sd->groups;
5660 struct sched_group_power *sgp = sg->sgp;
5661 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5662
5663 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5664 goto need_kick_unlock;
5665
5666 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5667 && (cpumask_first_and(nohz.idle_cpus_mask,
5668 sched_domain_span(sd)) < cpu))
5669 goto need_kick_unlock;
5670
5671 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5672 break;
5673 }
5674 rcu_read_unlock();
5675 return 0;
5676
5677 need_kick_unlock:
5678 rcu_read_unlock();
5679 need_kick:
5680 return 1;
5681 }
5682 #else
nohz_idle_balance(int this_cpu,enum cpu_idle_type idle)5683 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5684 #endif
5685
5686 /*
5687 * run_rebalance_domains is triggered when needed from the scheduler tick.
5688 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5689 */
run_rebalance_domains(struct softirq_action * h)5690 static void run_rebalance_domains(struct softirq_action *h)
5691 {
5692 int this_cpu = smp_processor_id();
5693 struct rq *this_rq = cpu_rq(this_cpu);
5694 enum cpu_idle_type idle = this_rq->idle_balance ?
5695 CPU_IDLE : CPU_NOT_IDLE;
5696
5697 rebalance_domains(this_cpu, idle);
5698
5699 /*
5700 * If this cpu has a pending nohz_balance_kick, then do the
5701 * balancing on behalf of the other idle cpus whose ticks are
5702 * stopped.
5703 */
5704 nohz_idle_balance(this_cpu, idle);
5705 }
5706
on_null_domain(int cpu)5707 static inline int on_null_domain(int cpu)
5708 {
5709 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5710 }
5711
5712 /*
5713 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5714 */
trigger_load_balance(struct rq * rq,int cpu)5715 void trigger_load_balance(struct rq *rq, int cpu)
5716 {
5717 /* Don't need to rebalance while attached to NULL domain */
5718 if (time_after_eq(jiffies, rq->next_balance) &&
5719 likely(!on_null_domain(cpu)))
5720 raise_softirq(SCHED_SOFTIRQ);
5721 #ifdef CONFIG_NO_HZ_COMMON
5722 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5723 nohz_balancer_kick(cpu);
5724 #endif
5725 }
5726
rq_online_fair(struct rq * rq)5727 static void rq_online_fair(struct rq *rq)
5728 {
5729 update_sysctl();
5730 }
5731
rq_offline_fair(struct rq * rq)5732 static void rq_offline_fair(struct rq *rq)
5733 {
5734 update_sysctl();
5735
5736 /* Ensure any throttled groups are reachable by pick_next_task */
5737 unthrottle_offline_cfs_rqs(rq);
5738 }
5739
5740 #endif /* CONFIG_SMP */
5741
5742 /*
5743 * scheduler tick hitting a task of our scheduling class:
5744 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)5745 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5746 {
5747 struct cfs_rq *cfs_rq;
5748 struct sched_entity *se = &curr->se;
5749
5750 for_each_sched_entity(se) {
5751 cfs_rq = cfs_rq_of(se);
5752 entity_tick(cfs_rq, se, queued);
5753 }
5754
5755 if (sched_feat_numa(NUMA))
5756 task_tick_numa(rq, curr);
5757
5758 update_rq_runnable_avg(rq, 1);
5759 }
5760
5761 /*
5762 * called on fork with the child task as argument from the parent's context
5763 * - child not yet on the tasklist
5764 * - preemption disabled
5765 */
task_fork_fair(struct task_struct * p)5766 static void task_fork_fair(struct task_struct *p)
5767 {
5768 struct cfs_rq *cfs_rq;
5769 struct sched_entity *se = &p->se, *curr;
5770 int this_cpu = smp_processor_id();
5771 struct rq *rq = this_rq();
5772 unsigned long flags;
5773
5774 raw_spin_lock_irqsave(&rq->lock, flags);
5775
5776 update_rq_clock(rq);
5777
5778 cfs_rq = task_cfs_rq(current);
5779 curr = cfs_rq->curr;
5780
5781 if (unlikely(task_cpu(p) != this_cpu)) {
5782 rcu_read_lock();
5783 __set_task_cpu(p, this_cpu);
5784 rcu_read_unlock();
5785 }
5786
5787 update_curr(cfs_rq);
5788
5789 if (curr)
5790 se->vruntime = curr->vruntime;
5791 place_entity(cfs_rq, se, 1);
5792
5793 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5794 /*
5795 * Upon rescheduling, sched_class::put_prev_task() will place
5796 * 'current' within the tree based on its new key value.
5797 */
5798 swap(curr->vruntime, se->vruntime);
5799 resched_task(rq->curr);
5800 }
5801
5802 se->vruntime -= cfs_rq->min_vruntime;
5803
5804 raw_spin_unlock_irqrestore(&rq->lock, flags);
5805 }
5806
5807 /*
5808 * Priority of the task has changed. Check to see if we preempt
5809 * the current task.
5810 */
5811 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)5812 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5813 {
5814 if (!p->se.on_rq)
5815 return;
5816
5817 /*
5818 * Reschedule if we are currently running on this runqueue and
5819 * our priority decreased, or if we are not currently running on
5820 * this runqueue and our priority is higher than the current's
5821 */
5822 if (rq->curr == p) {
5823 if (p->prio > oldprio)
5824 resched_task(rq->curr);
5825 } else
5826 check_preempt_curr(rq, p, 0);
5827 }
5828
switched_from_fair(struct rq * rq,struct task_struct * p)5829 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5830 {
5831 struct sched_entity *se = &p->se;
5832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5833
5834 /*
5835 * Ensure the task's vruntime is normalized, so that when its
5836 * switched back to the fair class the enqueue_entity(.flags=0) will
5837 * do the right thing.
5838 *
5839 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5840 * have normalized the vruntime, if it was !on_rq, then only when
5841 * the task is sleeping will it still have non-normalized vruntime.
5842 */
5843 if (!se->on_rq && p->state != TASK_RUNNING) {
5844 /*
5845 * Fix up our vruntime so that the current sleep doesn't
5846 * cause 'unlimited' sleep bonus.
5847 */
5848 place_entity(cfs_rq, se, 0);
5849 se->vruntime -= cfs_rq->min_vruntime;
5850 }
5851
5852 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5853 /*
5854 * Remove our load from contribution when we leave sched_fair
5855 * and ensure we don't carry in an old decay_count if we
5856 * switch back.
5857 */
5858 if (p->se.avg.decay_count) {
5859 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5860 __synchronize_entity_decay(&p->se);
5861 subtract_blocked_load_contrib(cfs_rq,
5862 p->se.avg.load_avg_contrib);
5863 }
5864 #endif
5865 }
5866
5867 /*
5868 * We switched to the sched_fair class.
5869 */
switched_to_fair(struct rq * rq,struct task_struct * p)5870 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5871 {
5872 if (!p->se.on_rq)
5873 return;
5874
5875 /*
5876 * We were most likely switched from sched_rt, so
5877 * kick off the schedule if running, otherwise just see
5878 * if we can still preempt the current task.
5879 */
5880 if (rq->curr == p)
5881 resched_task(rq->curr);
5882 else
5883 check_preempt_curr(rq, p, 0);
5884 }
5885
5886 /* Account for a task changing its policy or group.
5887 *
5888 * This routine is mostly called to set cfs_rq->curr field when a task
5889 * migrates between groups/classes.
5890 */
set_curr_task_fair(struct rq * rq)5891 static void set_curr_task_fair(struct rq *rq)
5892 {
5893 struct sched_entity *se = &rq->curr->se;
5894
5895 for_each_sched_entity(se) {
5896 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5897
5898 set_next_entity(cfs_rq, se);
5899 /* ensure bandwidth has been allocated on our new cfs_rq */
5900 account_cfs_rq_runtime(cfs_rq, 0);
5901 }
5902 }
5903
init_cfs_rq(struct cfs_rq * cfs_rq)5904 void init_cfs_rq(struct cfs_rq *cfs_rq)
5905 {
5906 cfs_rq->tasks_timeline = RB_ROOT;
5907 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5908 #ifndef CONFIG_64BIT
5909 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5910 #endif
5911 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5912 atomic64_set(&cfs_rq->decay_counter, 1);
5913 atomic64_set(&cfs_rq->removed_load, 0);
5914 #endif
5915 }
5916
5917 #ifdef CONFIG_FAIR_GROUP_SCHED
task_move_group_fair(struct task_struct * p,int on_rq)5918 static void task_move_group_fair(struct task_struct *p, int on_rq)
5919 {
5920 struct cfs_rq *cfs_rq;
5921 /*
5922 * If the task was not on the rq at the time of this cgroup movement
5923 * it must have been asleep, sleeping tasks keep their ->vruntime
5924 * absolute on their old rq until wakeup (needed for the fair sleeper
5925 * bonus in place_entity()).
5926 *
5927 * If it was on the rq, we've just 'preempted' it, which does convert
5928 * ->vruntime to a relative base.
5929 *
5930 * Make sure both cases convert their relative position when migrating
5931 * to another cgroup's rq. This does somewhat interfere with the
5932 * fair sleeper stuff for the first placement, but who cares.
5933 */
5934 /*
5935 * When !on_rq, vruntime of the task has usually NOT been normalized.
5936 * But there are some cases where it has already been normalized:
5937 *
5938 * - Moving a forked child which is waiting for being woken up by
5939 * wake_up_new_task().
5940 * - Moving a task which has been woken up by try_to_wake_up() and
5941 * waiting for actually being woken up by sched_ttwu_pending().
5942 *
5943 * To prevent boost or penalty in the new cfs_rq caused by delta
5944 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5945 */
5946 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5947 on_rq = 1;
5948
5949 if (!on_rq)
5950 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5951 set_task_rq(p, task_cpu(p));
5952 if (!on_rq) {
5953 cfs_rq = cfs_rq_of(&p->se);
5954 p->se.vruntime += cfs_rq->min_vruntime;
5955 #ifdef CONFIG_SMP
5956 /*
5957 * migrate_task_rq_fair() will have removed our previous
5958 * contribution, but we must synchronize for ongoing future
5959 * decay.
5960 */
5961 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5962 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5963 #endif
5964 }
5965 }
5966
free_fair_sched_group(struct task_group * tg)5967 void free_fair_sched_group(struct task_group *tg)
5968 {
5969 int i;
5970
5971 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5972
5973 for_each_possible_cpu(i) {
5974 if (tg->cfs_rq)
5975 kfree(tg->cfs_rq[i]);
5976 if (tg->se)
5977 kfree(tg->se[i]);
5978 }
5979
5980 kfree(tg->cfs_rq);
5981 kfree(tg->se);
5982 }
5983
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)5984 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5985 {
5986 struct cfs_rq *cfs_rq;
5987 struct sched_entity *se;
5988 int i;
5989
5990 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5991 if (!tg->cfs_rq)
5992 goto err;
5993 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5994 if (!tg->se)
5995 goto err;
5996
5997 tg->shares = NICE_0_LOAD;
5998
5999 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6000
6001 for_each_possible_cpu(i) {
6002 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6003 GFP_KERNEL, cpu_to_node(i));
6004 if (!cfs_rq)
6005 goto err;
6006
6007 se = kzalloc_node(sizeof(struct sched_entity),
6008 GFP_KERNEL, cpu_to_node(i));
6009 if (!se)
6010 goto err_free_rq;
6011
6012 init_cfs_rq(cfs_rq);
6013 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6014 }
6015
6016 return 1;
6017
6018 err_free_rq:
6019 kfree(cfs_rq);
6020 err:
6021 return 0;
6022 }
6023
unregister_fair_sched_group(struct task_group * tg,int cpu)6024 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6025 {
6026 struct rq *rq = cpu_rq(cpu);
6027 unsigned long flags;
6028
6029 /*
6030 * Only empty task groups can be destroyed; so we can speculatively
6031 * check on_list without danger of it being re-added.
6032 */
6033 if (!tg->cfs_rq[cpu]->on_list)
6034 return;
6035
6036 raw_spin_lock_irqsave(&rq->lock, flags);
6037 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6038 raw_spin_unlock_irqrestore(&rq->lock, flags);
6039 }
6040
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)6041 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6042 struct sched_entity *se, int cpu,
6043 struct sched_entity *parent)
6044 {
6045 struct rq *rq = cpu_rq(cpu);
6046
6047 cfs_rq->tg = tg;
6048 cfs_rq->rq = rq;
6049 init_cfs_rq_runtime(cfs_rq);
6050
6051 tg->cfs_rq[cpu] = cfs_rq;
6052 tg->se[cpu] = se;
6053
6054 /* se could be NULL for root_task_group */
6055 if (!se)
6056 return;
6057
6058 if (!parent)
6059 se->cfs_rq = &rq->cfs;
6060 else
6061 se->cfs_rq = parent->my_q;
6062
6063 se->my_q = cfs_rq;
6064 update_load_set(&se->load, 0);
6065 se->parent = parent;
6066 }
6067
6068 static DEFINE_MUTEX(shares_mutex);
6069
sched_group_set_shares(struct task_group * tg,unsigned long shares)6070 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6071 {
6072 int i;
6073 unsigned long flags;
6074
6075 /*
6076 * We can't change the weight of the root cgroup.
6077 */
6078 if (!tg->se[0])
6079 return -EINVAL;
6080
6081 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6082
6083 mutex_lock(&shares_mutex);
6084 if (tg->shares == shares)
6085 goto done;
6086
6087 tg->shares = shares;
6088 for_each_possible_cpu(i) {
6089 struct rq *rq = cpu_rq(i);
6090 struct sched_entity *se;
6091
6092 se = tg->se[i];
6093 /* Propagate contribution to hierarchy */
6094 raw_spin_lock_irqsave(&rq->lock, flags);
6095 for_each_sched_entity(se)
6096 update_cfs_shares(group_cfs_rq(se));
6097 raw_spin_unlock_irqrestore(&rq->lock, flags);
6098 }
6099
6100 done:
6101 mutex_unlock(&shares_mutex);
6102 return 0;
6103 }
6104 #else /* CONFIG_FAIR_GROUP_SCHED */
6105
free_fair_sched_group(struct task_group * tg)6106 void free_fair_sched_group(struct task_group *tg) { }
6107
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)6108 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6109 {
6110 return 1;
6111 }
6112
unregister_fair_sched_group(struct task_group * tg,int cpu)6113 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6114
6115 #endif /* CONFIG_FAIR_GROUP_SCHED */
6116
6117
get_rr_interval_fair(struct rq * rq,struct task_struct * task)6118 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6119 {
6120 struct sched_entity *se = &task->se;
6121 unsigned int rr_interval = 0;
6122
6123 /*
6124 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6125 * idle runqueue:
6126 */
6127 if (rq->cfs.load.weight)
6128 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6129
6130 return rr_interval;
6131 }
6132
6133 /*
6134 * All the scheduling class methods:
6135 */
6136 const struct sched_class fair_sched_class = {
6137 .next = &idle_sched_class,
6138 .enqueue_task = enqueue_task_fair,
6139 .dequeue_task = dequeue_task_fair,
6140 .yield_task = yield_task_fair,
6141 .yield_to_task = yield_to_task_fair,
6142
6143 .check_preempt_curr = check_preempt_wakeup,
6144
6145 .pick_next_task = pick_next_task_fair,
6146 .put_prev_task = put_prev_task_fair,
6147
6148 #ifdef CONFIG_SMP
6149 .select_task_rq = select_task_rq_fair,
6150 #ifdef CONFIG_FAIR_GROUP_SCHED
6151 .migrate_task_rq = migrate_task_rq_fair,
6152 #endif
6153 .rq_online = rq_online_fair,
6154 .rq_offline = rq_offline_fair,
6155
6156 .task_waking = task_waking_fair,
6157 #endif
6158
6159 .set_curr_task = set_curr_task_fair,
6160 .task_tick = task_tick_fair,
6161 .task_fork = task_fork_fair,
6162
6163 .prio_changed = prio_changed_fair,
6164 .switched_from = switched_from_fair,
6165 .switched_to = switched_to_fair,
6166
6167 .get_rr_interval = get_rr_interval_fair,
6168
6169 #ifdef CONFIG_FAIR_GROUP_SCHED
6170 .task_move_group = task_move_group_fair,
6171 #endif
6172 };
6173
6174 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)6175 void print_cfs_stats(struct seq_file *m, int cpu)
6176 {
6177 struct cfs_rq *cfs_rq;
6178
6179 rcu_read_lock();
6180 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6181 print_cfs_rq(m, cpu, cfs_rq);
6182 rcu_read_unlock();
6183 }
6184 #endif
6185
init_sched_fair_class(void)6186 __init void init_sched_fair_class(void)
6187 {
6188 #ifdef CONFIG_SMP
6189 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6190
6191 #ifdef CONFIG_NO_HZ_COMMON
6192 nohz.next_balance = jiffies;
6193 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6194 cpu_notifier(sched_ilb_notifier, 0);
6195 #endif
6196 #endif /* SMP */
6197
6198 }
6199