• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *	   Carl Love <carll@us.ibm.com>
9  *	   Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/cell-regs.h>
38 
39 #include "../platforms/cell/interrupt.h"
40 #include "cell/pr_util.h"
41 
42 #define PPU_PROFILING            0
43 #define SPU_PROFILING_CYCLES     1
44 #define SPU_PROFILING_EVENTS     2
45 
46 #define SPU_EVENT_NUM_START      4100
47 #define SPU_EVENT_NUM_STOP       4399
48 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
50 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
51 
52 #define NUM_SPUS_PER_NODE    8
53 #define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
54 
55 #define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
56 #define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
57 				 * PPU_CYCLES event
58 				 */
59 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
60 
61 #define NUM_THREADS 2         /* number of physical threads in
62 			       * physical processor
63 			       */
64 #define NUM_DEBUG_BUS_WORDS 4
65 #define NUM_INPUT_BUS_WORDS 2
66 
67 #define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
68 
69 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
70  * To configure counter to send value every N cycles set counter to
71  * 2^32 - 1 - N.
72  */
73 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
74 
75 /*
76  * spu_cycle_reset is the number of cycles between samples.
77  * This variable is used for SPU profiling and should ONLY be set
78  * at the beginning of cell_reg_setup; otherwise, it's read-only.
79  */
80 static unsigned int spu_cycle_reset;
81 static unsigned int profiling_mode;
82 static int spu_evnt_phys_spu_indx;
83 
84 struct pmc_cntrl_data {
85 	unsigned long vcntr;
86 	unsigned long evnts;
87 	unsigned long masks;
88 	unsigned long enabled;
89 };
90 
91 /*
92  * ibm,cbe-perftools rtas parameters
93  */
94 struct pm_signal {
95 	u16 cpu;		/* Processor to modify */
96 	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
97 	short int signal_group; /* Signal Group to Enable/Disable */
98 	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
99 				 * Bus Word(s) (bitmask)
100 				 */
101 	u8 bit;			/* Trigger/Event bit (if applicable) */
102 };
103 
104 /*
105  * rtas call arguments
106  */
107 enum {
108 	SUBFUNC_RESET = 1,
109 	SUBFUNC_ACTIVATE = 2,
110 	SUBFUNC_DEACTIVATE = 3,
111 
112 	PASSTHRU_IGNORE = 0,
113 	PASSTHRU_ENABLE = 1,
114 	PASSTHRU_DISABLE = 2,
115 };
116 
117 struct pm_cntrl {
118 	u16 enable;
119 	u16 stop_at_max;
120 	u16 trace_mode;
121 	u16 freeze;
122 	u16 count_mode;
123 	u16 spu_addr_trace;
124 	u8  trace_buf_ovflw;
125 };
126 
127 static struct {
128 	u32 group_control;
129 	u32 debug_bus_control;
130 	struct pm_cntrl pm_cntrl;
131 	u32 pm07_cntrl[NR_PHYS_CTRS];
132 } pm_regs;
133 
134 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
135 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
136 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
137 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
138 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
139 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
140 
141 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
142 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
143 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
144 
145 /*
146  * The CELL profiling code makes rtas calls to setup the debug bus to
147  * route the performance signals.  Additionally, SPU profiling requires
148  * a second rtas call to setup the hardware to capture the SPU PCs.
149  * The EIO error value is returned if the token lookups or the rtas
150  * call fail.  The EIO error number is the best choice of the existing
151  * error numbers.  The probability of rtas related error is very low.  But
152  * by returning EIO and printing additional information to dmsg the user
153  * will know that OProfile did not start and dmesg will tell them why.
154  * OProfile does not support returning errors on Stop.	Not a huge issue
155  * since failure to reset the debug bus or stop the SPU PC collection is
156  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
157  * either.
158  */
159 
160 /*
161  * Interpetation of hdw_thread:
162  * 0 - even virtual cpus 0, 2, 4,...
163  * 1 - odd virtual cpus 1, 3, 5, ...
164  *
165  * FIXME: this is strictly wrong, we need to clean this up in a number
166  * of places. It works for now. -arnd
167  */
168 static u32 hdw_thread;
169 
170 static u32 virt_cntr_inter_mask;
171 static struct timer_list timer_virt_cntr;
172 static struct timer_list timer_spu_event_swap;
173 
174 /*
175  * pm_signal needs to be global since it is initialized in
176  * cell_reg_setup at the time when the necessary information
177  * is available.
178  */
179 static struct pm_signal pm_signal[NR_PHYS_CTRS];
180 static int pm_rtas_token;    /* token for debug bus setup call */
181 static int spu_rtas_token;   /* token for SPU cycle profiling */
182 
183 static u32 reset_value[NR_PHYS_CTRS];
184 static int num_counters;
185 static int oprofile_running;
186 static DEFINE_SPINLOCK(cntr_lock);
187 
188 static u32 ctr_enabled;
189 
190 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
191 
192 /*
193  * Firmware interface functions
194  */
195 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)196 rtas_ibm_cbe_perftools(int subfunc, int passthru,
197 		       void *address, unsigned long length)
198 {
199 	u64 paddr = __pa(address);
200 
201 	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
202 			 passthru, paddr >> 32, paddr & 0xffffffff, length);
203 }
204 
pm_rtas_reset_signals(u32 node)205 static void pm_rtas_reset_signals(u32 node)
206 {
207 	int ret;
208 	struct pm_signal pm_signal_local;
209 
210 	/*
211 	 * The debug bus is being set to the passthru disable state.
212 	 * However, the FW still expects atleast one legal signal routing
213 	 * entry or it will return an error on the arguments.	If we don't
214 	 * supply a valid entry, we must ignore all return values.  Ignoring
215 	 * all return values means we might miss an error we should be
216 	 * concerned about.
217 	 */
218 
219 	/*  fw expects physical cpu #. */
220 	pm_signal_local.cpu = node;
221 	pm_signal_local.signal_group = 21;
222 	pm_signal_local.bus_word = 1;
223 	pm_signal_local.sub_unit = 0;
224 	pm_signal_local.bit = 0;
225 
226 	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
227 				     &pm_signal_local,
228 				     sizeof(struct pm_signal));
229 
230 	if (unlikely(ret))
231 		/*
232 		 * Not a fatal error. For Oprofile stop, the oprofile
233 		 * functions do not support returning an error for
234 		 * failure to stop OProfile.
235 		 */
236 		printk(KERN_WARNING "%s: rtas returned: %d\n",
237 		       __func__, ret);
238 }
239 
pm_rtas_activate_signals(u32 node,u32 count)240 static int pm_rtas_activate_signals(u32 node, u32 count)
241 {
242 	int ret;
243 	int i, j;
244 	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
245 
246 	/*
247 	 * There is no debug setup required for the cycles event.
248 	 * Note that only events in the same group can be used.
249 	 * Otherwise, there will be conflicts in correctly routing
250 	 * the signals on the debug bus.  It is the responsibility
251 	 * of the OProfile user tool to check the events are in
252 	 * the same group.
253 	 */
254 	i = 0;
255 	for (j = 0; j < count; j++) {
256 		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
257 
258 			/* fw expects physical cpu # */
259 			pm_signal_local[i].cpu = node;
260 			pm_signal_local[i].signal_group
261 				= pm_signal[j].signal_group;
262 			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
263 			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
264 			pm_signal_local[i].bit = pm_signal[j].bit;
265 			i++;
266 		}
267 	}
268 
269 	if (i != 0) {
270 		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
271 					     pm_signal_local,
272 					     i * sizeof(struct pm_signal));
273 
274 		if (unlikely(ret)) {
275 			printk(KERN_WARNING "%s: rtas returned: %d\n",
276 			       __func__, ret);
277 			return -EIO;
278 		}
279 	}
280 
281 	return 0;
282 }
283 
284 /*
285  * PM Signal functions
286  */
set_pm_event(u32 ctr,int event,u32 unit_mask)287 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
288 {
289 	struct pm_signal *p;
290 	u32 signal_bit;
291 	u32 bus_word, bus_type, count_cycles, polarity, input_control;
292 	int j, i;
293 
294 	if (event == PPU_CYCLES_EVENT_NUM) {
295 		/* Special Event: Count all cpu cycles */
296 		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
297 		p = &(pm_signal[ctr]);
298 		p->signal_group = PPU_CYCLES_GRP_NUM;
299 		p->bus_word = 1;
300 		p->sub_unit = 0;
301 		p->bit = 0;
302 		goto out;
303 	} else {
304 		pm_regs.pm07_cntrl[ctr] = 0;
305 	}
306 
307 	bus_word = GET_BUS_WORD(unit_mask);
308 	bus_type = GET_BUS_TYPE(unit_mask);
309 	count_cycles = GET_COUNT_CYCLES(unit_mask);
310 	polarity = GET_POLARITY(unit_mask);
311 	input_control = GET_INPUT_CONTROL(unit_mask);
312 	signal_bit = (event % 100);
313 
314 	p = &(pm_signal[ctr]);
315 
316 	p->signal_group = event / 100;
317 	p->bus_word = bus_word;
318 	p->sub_unit = GET_SUB_UNIT(unit_mask);
319 
320 	pm_regs.pm07_cntrl[ctr] = 0;
321 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
322 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
323 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
324 
325 	/*
326 	 * Some of the islands signal selection is based on 64 bit words.
327 	 * The debug bus words are 32 bits, the input words to the performance
328 	 * counters are defined as 32 bits.  Need to convert the 64 bit island
329 	 * specification to the appropriate 32 input bit and bus word for the
330 	 * performance counter event selection.	 See the CELL Performance
331 	 * monitoring signals manual and the Perf cntr hardware descriptions
332 	 * for the details.
333 	 */
334 	if (input_control == 0) {
335 		if (signal_bit > 31) {
336 			signal_bit -= 32;
337 			if (bus_word == 0x3)
338 				bus_word = 0x2;
339 			else if (bus_word == 0xc)
340 				bus_word = 0x8;
341 		}
342 
343 		if ((bus_type == 0) && p->signal_group >= 60)
344 			bus_type = 2;
345 		if ((bus_type == 1) && p->signal_group >= 50)
346 			bus_type = 0;
347 
348 		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
349 	} else {
350 		pm_regs.pm07_cntrl[ctr] = 0;
351 		p->bit = signal_bit;
352 	}
353 
354 	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
355 		if (bus_word & (1 << i)) {
356 			pm_regs.debug_bus_control |=
357 				(bus_type << (30 - (2 * i)));
358 
359 			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
360 				if (input_bus[j] == 0xff) {
361 					input_bus[j] = i;
362 					pm_regs.group_control |=
363 						(i << (30 - (2 * j)));
364 
365 					break;
366 				}
367 			}
368 		}
369 	}
370 out:
371 	;
372 }
373 
write_pm_cntrl(int cpu)374 static void write_pm_cntrl(int cpu)
375 {
376 	/*
377 	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
378 	 * pmregs.pm_cntrl is a global
379 	 */
380 
381 	u32 val = 0;
382 	if (pm_regs.pm_cntrl.enable == 1)
383 		val |= CBE_PM_ENABLE_PERF_MON;
384 
385 	if (pm_regs.pm_cntrl.stop_at_max == 1)
386 		val |= CBE_PM_STOP_AT_MAX;
387 
388 	if (pm_regs.pm_cntrl.trace_mode != 0)
389 		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
390 
391 	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
392 		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
393 	if (pm_regs.pm_cntrl.freeze == 1)
394 		val |= CBE_PM_FREEZE_ALL_CTRS;
395 
396 	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
397 
398 	/*
399 	 * Routine set_count_mode must be called previously to set
400 	 * the count mode based on the user selection of user and kernel.
401 	 */
402 	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
403 	cbe_write_pm(cpu, pm_control, val);
404 }
405 
406 static inline void
set_count_mode(u32 kernel,u32 user)407 set_count_mode(u32 kernel, u32 user)
408 {
409 	/*
410 	 * The user must specify user and kernel if they want them. If
411 	 *  neither is specified, OProfile will count in hypervisor mode.
412 	 *  pm_regs.pm_cntrl is a global
413 	 */
414 	if (kernel) {
415 		if (user)
416 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
417 		else
418 			pm_regs.pm_cntrl.count_mode =
419 				CBE_COUNT_SUPERVISOR_MODE;
420 	} else {
421 		if (user)
422 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
423 		else
424 			pm_regs.pm_cntrl.count_mode =
425 				CBE_COUNT_HYPERVISOR_MODE;
426 	}
427 }
428 
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)429 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
430 {
431 
432 	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
433 	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
434 }
435 
436 /*
437  * Oprofile is expected to collect data on all CPUs simultaneously.
438  * However, there is one set of performance counters per node.	There are
439  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
440  * multiplex in time the performance counter collection on the two virtual
441  * CPUs.  The multiplexing of the performance counters is done by this
442  * virtual counter routine.
443  *
444  * The pmc_values used below is defined as 'per-cpu' but its use is
445  * more akin to 'per-node'.  We need to store two sets of counter
446  * values per node -- one for the previous run and one for the next.
447  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
448  * pair of per-cpu arrays is used for storing the previous and next
449  * pmc values for a given node.
450  * NOTE: We use the per-cpu variable to improve cache performance.
451  *
452  * This routine will alternate loading the virtual counters for
453  * virtual CPUs
454  */
cell_virtual_cntr(unsigned long data)455 static void cell_virtual_cntr(unsigned long data)
456 {
457 	int i, prev_hdw_thread, next_hdw_thread;
458 	u32 cpu;
459 	unsigned long flags;
460 
461 	/*
462 	 * Make sure that the interrupt_hander and the virt counter are
463 	 * not both playing with the counters on the same node.
464 	 */
465 
466 	spin_lock_irqsave(&cntr_lock, flags);
467 
468 	prev_hdw_thread = hdw_thread;
469 
470 	/* switch the cpu handling the interrupts */
471 	hdw_thread = 1 ^ hdw_thread;
472 	next_hdw_thread = hdw_thread;
473 
474 	pm_regs.group_control = 0;
475 	pm_regs.debug_bus_control = 0;
476 
477 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
478 		input_bus[i] = 0xff;
479 
480 	/*
481 	 * There are some per thread events.  Must do the
482 	 * set event, for the thread that is being started
483 	 */
484 	for (i = 0; i < num_counters; i++)
485 		set_pm_event(i,
486 			pmc_cntrl[next_hdw_thread][i].evnts,
487 			pmc_cntrl[next_hdw_thread][i].masks);
488 
489 	/*
490 	 * The following is done only once per each node, but
491 	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
492 	 */
493 	for_each_online_cpu(cpu) {
494 		if (cbe_get_hw_thread_id(cpu))
495 			continue;
496 
497 		/*
498 		 * stop counters, save counter values, restore counts
499 		 * for previous thread
500 		 */
501 		cbe_disable_pm(cpu);
502 		cbe_disable_pm_interrupts(cpu);
503 		for (i = 0; i < num_counters; i++) {
504 			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
505 				= cbe_read_ctr(cpu, i);
506 
507 			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
508 			    == 0xFFFFFFFF)
509 				/* If the cntr value is 0xffffffff, we must
510 				 * reset that to 0xfffffff0 when the current
511 				 * thread is restarted.	 This will generate a
512 				 * new interrupt and make sure that we never
513 				 * restore the counters to the max value.  If
514 				 * the counters were restored to the max value,
515 				 * they do not increment and no interrupts are
516 				 * generated.  Hence no more samples will be
517 				 * collected on that cpu.
518 				 */
519 				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
520 			else
521 				cbe_write_ctr(cpu, i,
522 					      per_cpu(pmc_values,
523 						      cpu +
524 						      next_hdw_thread)[i]);
525 		}
526 
527 		/*
528 		 * Switch to the other thread. Change the interrupt
529 		 * and control regs to be scheduled on the CPU
530 		 * corresponding to the thread to execute.
531 		 */
532 		for (i = 0; i < num_counters; i++) {
533 			if (pmc_cntrl[next_hdw_thread][i].enabled) {
534 				/*
535 				 * There are some per thread events.
536 				 * Must do the set event, enable_cntr
537 				 * for each cpu.
538 				 */
539 				enable_ctr(cpu, i,
540 					   pm_regs.pm07_cntrl);
541 			} else {
542 				cbe_write_pm07_control(cpu, i, 0);
543 			}
544 		}
545 
546 		/* Enable interrupts on the CPU thread that is starting */
547 		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
548 					 virt_cntr_inter_mask);
549 		cbe_enable_pm(cpu);
550 	}
551 
552 	spin_unlock_irqrestore(&cntr_lock, flags);
553 
554 	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
555 }
556 
start_virt_cntrs(void)557 static void start_virt_cntrs(void)
558 {
559 	init_timer(&timer_virt_cntr);
560 	timer_virt_cntr.function = cell_virtual_cntr;
561 	timer_virt_cntr.data = 0UL;
562 	timer_virt_cntr.expires = jiffies + HZ / 10;
563 	add_timer(&timer_virt_cntr);
564 }
565 
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)566 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
567 			struct op_system_config *sys, int num_ctrs)
568 {
569 	spu_cycle_reset = ctr[0].count;
570 
571 	/*
572 	 * Each node will need to make the rtas call to start
573 	 * and stop SPU profiling.  Get the token once and store it.
574 	 */
575 	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
576 
577 	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
578 		printk(KERN_ERR
579 		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
580 		       __func__);
581 		return -EIO;
582 	}
583 	return 0;
584 }
585 
586 /* Unfortunately, the hardware will only support event profiling
587  * on one SPU per node at a time.  Therefore, we must time slice
588  * the profiling across all SPUs in the node.  Note, we do this
589  * in parallel for each node.  The following routine is called
590  * periodically based on kernel timer to switch which SPU is
591  * being monitored in a round robbin fashion.
592  */
spu_evnt_swap(unsigned long data)593 static void spu_evnt_swap(unsigned long data)
594 {
595 	int node;
596 	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
597 	unsigned long flags;
598 	int cpu;
599 	int ret;
600 	u32 interrupt_mask;
601 
602 
603 	/* enable interrupts on cntr 0 */
604 	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
605 
606 	hdw_thread = 0;
607 
608 	/* Make sure spu event interrupt handler and spu event swap
609 	 * don't access the counters simultaneously.
610 	 */
611 	spin_lock_irqsave(&cntr_lock, flags);
612 
613 	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
614 
615 	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
616 		spu_evnt_phys_spu_indx = 0;
617 
618 	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
619 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
620 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
621 
622 	/* switch the SPU being profiled on each node */
623 	for_each_online_cpu(cpu) {
624 		if (cbe_get_hw_thread_id(cpu))
625 			continue;
626 
627 		node = cbe_cpu_to_node(cpu);
628 		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
629 			+ cur_spu_evnt_phys_spu_indx;
630 		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
631 			+ spu_evnt_phys_spu_indx;
632 
633 		/*
634 		 * stop counters, save counter values, restore counts
635 		 * for previous physical SPU
636 		 */
637 		cbe_disable_pm(cpu);
638 		cbe_disable_pm_interrupts(cpu);
639 
640 		spu_pm_cnt[cur_phys_spu]
641 			= cbe_read_ctr(cpu, 0);
642 
643 		/* restore previous count for the next spu to sample */
644 		/* NOTE, hardware issue, counter will not start if the
645 		 * counter value is at max (0xFFFFFFFF).
646 		 */
647 		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
648 			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
649 		 else
650 			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
651 
652 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
653 
654 		/* setup the debug bus measure the one event and
655 		 * the two events to route the next SPU's PC on
656 		 * the debug bus
657 		 */
658 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
659 		if (ret)
660 			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
661 			       "SPU event swap\n", __func__);
662 
663 		/* clear the trace buffer, don't want to take PC for
664 		 * previous SPU*/
665 		cbe_write_pm(cpu, trace_address, 0);
666 
667 		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
668 
669 		/* Enable interrupts on the CPU thread that is starting */
670 		cbe_enable_pm_interrupts(cpu, hdw_thread,
671 					 interrupt_mask);
672 		cbe_enable_pm(cpu);
673 	}
674 
675 	spin_unlock_irqrestore(&cntr_lock, flags);
676 
677 	/* swap approximately every 0.1 seconds */
678 	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
679 }
680 
start_spu_event_swap(void)681 static void start_spu_event_swap(void)
682 {
683 	init_timer(&timer_spu_event_swap);
684 	timer_spu_event_swap.function = spu_evnt_swap;
685 	timer_spu_event_swap.data = 0UL;
686 	timer_spu_event_swap.expires = jiffies + HZ / 25;
687 	add_timer(&timer_spu_event_swap);
688 }
689 
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)690 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
691 			struct op_system_config *sys, int num_ctrs)
692 {
693 	int i;
694 
695 	/* routine is called once for all nodes */
696 
697 	spu_evnt_phys_spu_indx = 0;
698 	/*
699 	 * For all events except PPU CYCLEs, each node will need to make
700 	 * the rtas cbe-perftools call to setup and reset the debug bus.
701 	 * Make the token lookup call once and store it in the global
702 	 * variable pm_rtas_token.
703 	 */
704 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
705 
706 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
707 		printk(KERN_ERR
708 		       "%s: rtas token ibm,cbe-perftools unknown\n",
709 		       __func__);
710 		return -EIO;
711 	}
712 
713 	/* setup the pm_control register settings,
714 	 * settings will be written per node by the
715 	 * cell_cpu_setup() function.
716 	 */
717 	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
718 
719 	/* Use the occurrence trace mode to have SPU PC saved
720 	 * to the trace buffer.  Occurrence data in trace buffer
721 	 * is not used.  Bit 2 must be set to store SPU addresses.
722 	 */
723 	pm_regs.pm_cntrl.trace_mode = 2;
724 
725 	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
726 						   event 2 & 3 */
727 
728 	/* setup the debug bus event array with the SPU PC routing events.
729 	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
730 	*/
731 	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
732 	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
733 	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
734 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
735 
736 	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
737 	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
738 	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
739 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
740 
741 	/* Set the user selected spu event to profile on,
742 	 * note, only one SPU profiling event is supported
743 	 */
744 	num_counters = 1;  /* Only support one SPU event at a time */
745 	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
746 
747 	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
748 
749 	/* global, used by cell_cpu_setup */
750 	ctr_enabled |= 1;
751 
752 	/* Initialize the count for each SPU to the reset value */
753 	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
754 		spu_pm_cnt[i] = reset_value[0];
755 
756 	return 0;
757 }
758 
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)759 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
760 			struct op_system_config *sys, int num_ctrs)
761 {
762 	/* routine is called once for all nodes */
763 	int i, j, cpu;
764 
765 	num_counters = num_ctrs;
766 
767 	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
768 		printk(KERN_ERR
769 		       "%s: Oprofile, number of specified events " \
770 		       "exceeds number of physical counters\n",
771 		       __func__);
772 		return -EIO;
773 	}
774 
775 	set_count_mode(sys->enable_kernel, sys->enable_user);
776 
777 	/* Setup the thread 0 events */
778 	for (i = 0; i < num_ctrs; ++i) {
779 
780 		pmc_cntrl[0][i].evnts = ctr[i].event;
781 		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
782 		pmc_cntrl[0][i].enabled = ctr[i].enabled;
783 		pmc_cntrl[0][i].vcntr = i;
784 
785 		for_each_possible_cpu(j)
786 			per_cpu(pmc_values, j)[i] = 0;
787 	}
788 
789 	/*
790 	 * Setup the thread 1 events, map the thread 0 event to the
791 	 * equivalent thread 1 event.
792 	 */
793 	for (i = 0; i < num_ctrs; ++i) {
794 		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
795 			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
796 		else if (ctr[i].event == 2203)
797 			pmc_cntrl[1][i].evnts = ctr[i].event;
798 		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
799 			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
800 		else
801 			pmc_cntrl[1][i].evnts = ctr[i].event;
802 
803 		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
804 		pmc_cntrl[1][i].enabled = ctr[i].enabled;
805 		pmc_cntrl[1][i].vcntr = i;
806 	}
807 
808 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
809 		input_bus[i] = 0xff;
810 
811 	/*
812 	 * Our counters count up, and "count" refers to
813 	 * how much before the next interrupt, and we interrupt
814 	 * on overflow.	 So we calculate the starting value
815 	 * which will give us "count" until overflow.
816 	 * Then we set the events on the enabled counters.
817 	 */
818 	for (i = 0; i < num_counters; ++i) {
819 		/* start with virtual counter set 0 */
820 		if (pmc_cntrl[0][i].enabled) {
821 			/* Using 32bit counters, reset max - count */
822 			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
823 			set_pm_event(i,
824 				     pmc_cntrl[0][i].evnts,
825 				     pmc_cntrl[0][i].masks);
826 
827 			/* global, used by cell_cpu_setup */
828 			ctr_enabled |= (1 << i);
829 		}
830 	}
831 
832 	/* initialize the previous counts for the virtual cntrs */
833 	for_each_online_cpu(cpu)
834 		for (i = 0; i < num_counters; ++i) {
835 			per_cpu(pmc_values, cpu)[i] = reset_value[i];
836 		}
837 
838 	return 0;
839 }
840 
841 
842 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)843 static int cell_reg_setup(struct op_counter_config *ctr,
844 			struct op_system_config *sys, int num_ctrs)
845 {
846 	int ret=0;
847 	spu_cycle_reset = 0;
848 
849 	/* initialize the spu_arr_trace value, will be reset if
850 	 * doing spu event profiling.
851 	 */
852 	pm_regs.group_control = 0;
853 	pm_regs.debug_bus_control = 0;
854 	pm_regs.pm_cntrl.stop_at_max = 1;
855 	pm_regs.pm_cntrl.trace_mode = 0;
856 	pm_regs.pm_cntrl.freeze = 1;
857 	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
858 	pm_regs.pm_cntrl.spu_addr_trace = 0;
859 
860 	/*
861 	 * For all events except PPU CYCLEs, each node will need to make
862 	 * the rtas cbe-perftools call to setup and reset the debug bus.
863 	 * Make the token lookup call once and store it in the global
864 	 * variable pm_rtas_token.
865 	 */
866 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
867 
868 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
869 		printk(KERN_ERR
870 		       "%s: rtas token ibm,cbe-perftools unknown\n",
871 		       __func__);
872 		return -EIO;
873 	}
874 
875 	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
876 		profiling_mode = SPU_PROFILING_CYCLES;
877 		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
878 	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
879 		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
880 		profiling_mode = SPU_PROFILING_EVENTS;
881 		spu_cycle_reset = ctr[0].count;
882 
883 		/* for SPU event profiling, need to setup the
884 		 * pm_signal array with the events to route the
885 		 * SPU PC before making the FW call.  Note, only
886 		 * one SPU event for profiling can be specified
887 		 * at a time.
888 		 */
889 		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
890 	} else {
891 		profiling_mode = PPU_PROFILING;
892 		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
893 	}
894 
895 	return ret;
896 }
897 
898 
899 
900 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)901 static int cell_cpu_setup(struct op_counter_config *cntr)
902 {
903 	u32 cpu = smp_processor_id();
904 	u32 num_enabled = 0;
905 	int i;
906 	int ret;
907 
908 	/* Cycle based SPU profiling does not use the performance
909 	 * counters.  The trace array is configured to collect
910 	 * the data.
911 	 */
912 	if (profiling_mode == SPU_PROFILING_CYCLES)
913 		return 0;
914 
915 	/* There is one performance monitor per processor chip (i.e. node),
916 	 * so we only need to perform this function once per node.
917 	 */
918 	if (cbe_get_hw_thread_id(cpu))
919 		return 0;
920 
921 	/* Stop all counters */
922 	cbe_disable_pm(cpu);
923 	cbe_disable_pm_interrupts(cpu);
924 
925 	cbe_write_pm(cpu, pm_start_stop, 0);
926 	cbe_write_pm(cpu, group_control, pm_regs.group_control);
927 	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
928 	write_pm_cntrl(cpu);
929 
930 	for (i = 0; i < num_counters; ++i) {
931 		if (ctr_enabled & (1 << i)) {
932 			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
933 			num_enabled++;
934 		}
935 	}
936 
937 	/*
938 	 * The pm_rtas_activate_signals will return -EIO if the FW
939 	 * call failed.
940 	 */
941 	if (profiling_mode == SPU_PROFILING_EVENTS) {
942 		/* For SPU event profiling also need to setup the
943 		 * pm interval timer
944 		 */
945 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
946 					       num_enabled+2);
947 		/* store PC from debug bus to Trace buffer as often
948 		 * as possible (every 10 cycles)
949 		 */
950 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
951 		return ret;
952 	} else
953 		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
954 						num_enabled);
955 }
956 
957 #define ENTRIES	 303
958 #define MAXLFSR	 0xFFFFFF
959 
960 /* precomputed table of 24 bit LFSR values */
961 static int initial_lfsr[] = {
962  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
963  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
964  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
965  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
966  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
967  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
968  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
969  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
970  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
971  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
972  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
973  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
974  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
975  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
976  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
977  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
978  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
979  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
980  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
981  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
982  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
983  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
984  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
985  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
986  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
987  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
988  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
989  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
990  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
991  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
992  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
993  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
994  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
995  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
996  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
997  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
998  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
999  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1000 };
1001 
1002 /*
1003  * The hardware uses an LFSR counting sequence to determine when to capture
1004  * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
1005  * where each number occurs once in the sequence but the sequence is not in
1006  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1007  * the last value in the sequence.  Hence the user specified value N
1008  * corresponds to the LFSR number that is N from the end of the sequence.
1009  *
1010  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1011  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1012  * values is adjusted in each range so the error between the user specifed
1013  * number (N) of events between samples and the actual number of events based
1014  * on the precomputed value will be les then about 6.2%.  Note, if the user
1015  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1016  * This is to prevent the loss of samples because the trace buffer is full.
1017  *
1018  *	   User specified N		     Step between	   Index in
1019  *					 precomputed values	 precomputed
1020  *								    table
1021  * 0		    to	2^16-1			----		      0
1022  * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
1023  * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
1024  * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
1025  *
1026  *
1027  * For example, the LFSR values in the second range are computed for 2^16,
1028  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1029  * 1, 2,..., 127, 128.
1030  *
1031  * The 24 bit LFSR value for the nth number in the sequence can be
1032  * calculated using the following code:
1033  *
1034  * #define size 24
1035  * int calculate_lfsr(int n)
1036  * {
1037  *	int i;
1038  *	unsigned int newlfsr0;
1039  *	unsigned int lfsr = 0xFFFFFF;
1040  *	unsigned int howmany = n;
1041  *
1042  *	for (i = 2; i < howmany + 2; i++) {
1043  *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1044  *		((lfsr >> (size - 1 - 1)) & 1) ^
1045  *		(((lfsr >> (size - 1 - 6)) & 1) ^
1046  *		((lfsr >> (size - 1 - 23)) & 1)));
1047  *
1048  *		lfsr >>= 1;
1049  *		lfsr = lfsr | (newlfsr0 << (size - 1));
1050  *	}
1051  *	return lfsr;
1052  * }
1053  */
1054 
1055 #define V2_16  (0x1 << 16)
1056 #define V2_19  (0x1 << 19)
1057 #define V2_22  (0x1 << 22)
1058 
calculate_lfsr(int n)1059 static int calculate_lfsr(int n)
1060 {
1061 	/*
1062 	 * The ranges and steps are in powers of 2 so the calculations
1063 	 * can be done using shifts rather then divide.
1064 	 */
1065 	int index;
1066 
1067 	if ((n >> 16) == 0)
1068 		index = 0;
1069 	else if (((n - V2_16) >> 19) == 0)
1070 		index = ((n - V2_16) >> 12) + 1;
1071 	else if (((n - V2_16 - V2_19) >> 22) == 0)
1072 		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1073 	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1074 		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1075 	else
1076 		index = ENTRIES-1;
1077 
1078 	/* make sure index is valid */
1079 	if ((index >= ENTRIES) || (index < 0))
1080 		index = ENTRIES-1;
1081 
1082 	return initial_lfsr[index];
1083 }
1084 
pm_rtas_activate_spu_profiling(u32 node)1085 static int pm_rtas_activate_spu_profiling(u32 node)
1086 {
1087 	int ret, i;
1088 	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1089 
1090 	/*
1091 	 * Set up the rtas call to configure the debug bus to
1092 	 * route the SPU PCs.  Setup the pm_signal for each SPU
1093 	 */
1094 	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1095 		pm_signal_local[i].cpu = node;
1096 		pm_signal_local[i].signal_group = 41;
1097 		/* spu i on word (i/2) */
1098 		pm_signal_local[i].bus_word = 1 << i / 2;
1099 		/* spu i */
1100 		pm_signal_local[i].sub_unit = i;
1101 		pm_signal_local[i].bit = 63;
1102 	}
1103 
1104 	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1105 				     PASSTHRU_ENABLE, pm_signal_local,
1106 				     (ARRAY_SIZE(pm_signal_local)
1107 				      * sizeof(struct pm_signal)));
1108 
1109 	if (unlikely(ret)) {
1110 		printk(KERN_WARNING "%s: rtas returned: %d\n",
1111 		       __func__, ret);
1112 		return -EIO;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 #ifdef CONFIG_CPU_FREQ
1119 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1120 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1121 {
1122 	int ret = 0;
1123 	struct cpufreq_freqs *frq = data;
1124 	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1125 	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1126 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1127 		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1128 	return ret;
1129 }
1130 
1131 static struct notifier_block cpu_freq_notifier_block = {
1132 	.notifier_call	= oprof_cpufreq_notify
1133 };
1134 #endif
1135 
1136 /*
1137  * Note the generic OProfile stop calls do not support returning
1138  * an error on stop.  Hence, will not return an error if the FW
1139  * calls fail on stop.	Failure to reset the debug bus is not an issue.
1140  * Failure to disable the SPU profiling is not an issue.  The FW calls
1141  * to enable the performance counters and debug bus will work even if
1142  * the hardware was not cleanly reset.
1143  */
cell_global_stop_spu_cycles(void)1144 static void cell_global_stop_spu_cycles(void)
1145 {
1146 	int subfunc, rtn_value;
1147 	unsigned int lfsr_value;
1148 	int cpu;
1149 
1150 	oprofile_running = 0;
1151 	smp_wmb();
1152 
1153 #ifdef CONFIG_CPU_FREQ
1154 	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1155 				    CPUFREQ_TRANSITION_NOTIFIER);
1156 #endif
1157 
1158 	for_each_online_cpu(cpu) {
1159 		if (cbe_get_hw_thread_id(cpu))
1160 			continue;
1161 
1162 		subfunc = 3;	/*
1163 				 * 2 - activate SPU tracing,
1164 				 * 3 - deactivate
1165 				 */
1166 		lfsr_value = 0x8f100000;
1167 
1168 		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1169 				      subfunc, cbe_cpu_to_node(cpu),
1170 				      lfsr_value);
1171 
1172 		if (unlikely(rtn_value != 0)) {
1173 			printk(KERN_ERR
1174 			       "%s: rtas call ibm,cbe-spu-perftools " \
1175 			       "failed, return = %d\n",
1176 			       __func__, rtn_value);
1177 		}
1178 
1179 		/* Deactivate the signals */
1180 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1181 	}
1182 
1183 	stop_spu_profiling_cycles();
1184 }
1185 
cell_global_stop_spu_events(void)1186 static void cell_global_stop_spu_events(void)
1187 {
1188 	int cpu;
1189 	oprofile_running = 0;
1190 
1191 	stop_spu_profiling_events();
1192 	smp_wmb();
1193 
1194 	for_each_online_cpu(cpu) {
1195 		if (cbe_get_hw_thread_id(cpu))
1196 			continue;
1197 
1198 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1199 		/* Stop the counters */
1200 		cbe_disable_pm(cpu);
1201 		cbe_write_pm07_control(cpu, 0, 0);
1202 
1203 		/* Deactivate the signals */
1204 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1205 
1206 		/* Deactivate interrupts */
1207 		cbe_disable_pm_interrupts(cpu);
1208 	}
1209 	del_timer_sync(&timer_spu_event_swap);
1210 }
1211 
cell_global_stop_ppu(void)1212 static void cell_global_stop_ppu(void)
1213 {
1214 	int cpu;
1215 
1216 	/*
1217 	 * This routine will be called once for the system.
1218 	 * There is one performance monitor per node, so we
1219 	 * only need to perform this function once per node.
1220 	 */
1221 	del_timer_sync(&timer_virt_cntr);
1222 	oprofile_running = 0;
1223 	smp_wmb();
1224 
1225 	for_each_online_cpu(cpu) {
1226 		if (cbe_get_hw_thread_id(cpu))
1227 			continue;
1228 
1229 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1230 		/* Stop the counters */
1231 		cbe_disable_pm(cpu);
1232 
1233 		/* Deactivate the signals */
1234 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1235 
1236 		/* Deactivate interrupts */
1237 		cbe_disable_pm_interrupts(cpu);
1238 	}
1239 }
1240 
cell_global_stop(void)1241 static void cell_global_stop(void)
1242 {
1243 	if (profiling_mode == PPU_PROFILING)
1244 		cell_global_stop_ppu();
1245 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1246 		cell_global_stop_spu_events();
1247 	else
1248 		cell_global_stop_spu_cycles();
1249 }
1250 
cell_global_start_spu_cycles(struct op_counter_config * ctr)1251 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1252 {
1253 	int subfunc;
1254 	unsigned int lfsr_value;
1255 	int cpu;
1256 	int ret;
1257 	int rtas_error;
1258 	unsigned int cpu_khzfreq = 0;
1259 
1260 	/* The SPU profiling uses time-based profiling based on
1261 	 * cpu frequency, so if configured with the CPU_FREQ
1262 	 * option, we should detect frequency changes and react
1263 	 * accordingly.
1264 	 */
1265 #ifdef CONFIG_CPU_FREQ
1266 	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1267 					CPUFREQ_TRANSITION_NOTIFIER);
1268 	if (ret < 0)
1269 		/* this is not a fatal error */
1270 		printk(KERN_ERR "CPU freq change registration failed: %d\n",
1271 		       ret);
1272 
1273 	else
1274 		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1275 #endif
1276 
1277 	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1278 
1279 	for_each_online_cpu(cpu) {
1280 		if (cbe_get_hw_thread_id(cpu))
1281 			continue;
1282 
1283 		/*
1284 		 * Setup SPU cycle-based profiling.
1285 		 * Set perf_mon_control bit 0 to a zero before
1286 		 * enabling spu collection hardware.
1287 		 */
1288 		cbe_write_pm(cpu, pm_control, 0);
1289 
1290 		if (spu_cycle_reset > MAX_SPU_COUNT)
1291 			/* use largest possible value */
1292 			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1293 		else
1294 			lfsr_value = calculate_lfsr(spu_cycle_reset);
1295 
1296 		/* must use a non zero value. Zero disables data collection. */
1297 		if (lfsr_value == 0)
1298 			lfsr_value = calculate_lfsr(1);
1299 
1300 		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1301 						* register location
1302 						*/
1303 
1304 		/* debug bus setup */
1305 		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1306 
1307 		if (unlikely(ret)) {
1308 			rtas_error = ret;
1309 			goto out;
1310 		}
1311 
1312 
1313 		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
1314 
1315 		/* start profiling */
1316 		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1317 				cbe_cpu_to_node(cpu), lfsr_value);
1318 
1319 		if (unlikely(ret != 0)) {
1320 			printk(KERN_ERR
1321 			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
1322 			       "return = %d\n", __func__, ret);
1323 			rtas_error = -EIO;
1324 			goto out;
1325 		}
1326 	}
1327 
1328 	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1329 	if (rtas_error)
1330 		goto out_stop;
1331 
1332 	oprofile_running = 1;
1333 	return 0;
1334 
1335 out_stop:
1336 	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
1337 out:
1338 	return rtas_error;
1339 }
1340 
cell_global_start_spu_events(struct op_counter_config * ctr)1341 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1342 {
1343 	int cpu;
1344 	u32 interrupt_mask = 0;
1345 	int rtn = 0;
1346 
1347 	hdw_thread = 0;
1348 
1349 	/* spu event profiling, uses the performance counters to generate
1350 	 * an interrupt.  The hardware is setup to store the SPU program
1351 	 * counter into the trace array.  The occurrence mode is used to
1352 	 * enable storing data to the trace buffer.  The bits are set
1353 	 * to send/store the SPU address in the trace buffer.  The debug
1354 	 * bus must be setup to route the SPU program counter onto the
1355 	 * debug bus.  The occurrence data in the trace buffer is not used.
1356 	 */
1357 
1358 	/* This routine gets called once for the system.
1359 	 * There is one performance monitor per node, so we
1360 	 * only need to perform this function once per node.
1361 	 */
1362 
1363 	for_each_online_cpu(cpu) {
1364 		if (cbe_get_hw_thread_id(cpu))
1365 			continue;
1366 
1367 		/*
1368 		 * Setup SPU event-based profiling.
1369 		 * Set perf_mon_control bit 0 to a zero before
1370 		 * enabling spu collection hardware.
1371 		 *
1372 		 * Only support one SPU event on one SPU per node.
1373 		 */
1374 		if (ctr_enabled & 1) {
1375 			cbe_write_ctr(cpu, 0, reset_value[0]);
1376 			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1377 			interrupt_mask |=
1378 				CBE_PM_CTR_OVERFLOW_INTR(0);
1379 		} else {
1380 			/* Disable counter */
1381 			cbe_write_pm07_control(cpu, 0, 0);
1382 		}
1383 
1384 		cbe_get_and_clear_pm_interrupts(cpu);
1385 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1386 		cbe_enable_pm(cpu);
1387 
1388 		/* clear the trace buffer */
1389 		cbe_write_pm(cpu, trace_address, 0);
1390 	}
1391 
1392 	/* Start the timer to time slice collecting the event profile
1393 	 * on each of the SPUs.  Note, can collect profile on one SPU
1394 	 * per node at a time.
1395 	 */
1396 	start_spu_event_swap();
1397 	start_spu_profiling_events();
1398 	oprofile_running = 1;
1399 	smp_wmb();
1400 
1401 	return rtn;
1402 }
1403 
cell_global_start_ppu(struct op_counter_config * ctr)1404 static int cell_global_start_ppu(struct op_counter_config *ctr)
1405 {
1406 	u32 cpu, i;
1407 	u32 interrupt_mask = 0;
1408 
1409 	/* This routine gets called once for the system.
1410 	 * There is one performance monitor per node, so we
1411 	 * only need to perform this function once per node.
1412 	 */
1413 	for_each_online_cpu(cpu) {
1414 		if (cbe_get_hw_thread_id(cpu))
1415 			continue;
1416 
1417 		interrupt_mask = 0;
1418 
1419 		for (i = 0; i < num_counters; ++i) {
1420 			if (ctr_enabled & (1 << i)) {
1421 				cbe_write_ctr(cpu, i, reset_value[i]);
1422 				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1423 				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1424 			} else {
1425 				/* Disable counter */
1426 				cbe_write_pm07_control(cpu, i, 0);
1427 			}
1428 		}
1429 
1430 		cbe_get_and_clear_pm_interrupts(cpu);
1431 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1432 		cbe_enable_pm(cpu);
1433 	}
1434 
1435 	virt_cntr_inter_mask = interrupt_mask;
1436 	oprofile_running = 1;
1437 	smp_wmb();
1438 
1439 	/*
1440 	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1441 	 * executed which manipulates the PMU.	We start the "virtual counter"
1442 	 * here so that we do not need to synchronize access to the PMU in
1443 	 * the above for-loop.
1444 	 */
1445 	start_virt_cntrs();
1446 
1447 	return 0;
1448 }
1449 
cell_global_start(struct op_counter_config * ctr)1450 static int cell_global_start(struct op_counter_config *ctr)
1451 {
1452 	if (profiling_mode == SPU_PROFILING_CYCLES)
1453 		return cell_global_start_spu_cycles(ctr);
1454 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1455 		return cell_global_start_spu_events(ctr);
1456 	else
1457 		return cell_global_start_ppu(ctr);
1458 }
1459 
1460 
1461 /* The SPU interrupt handler
1462  *
1463  * SPU event profiling works as follows:
1464  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1465  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1466  * pm_signal[2] contain the necessary events to route the SPU program
1467  * counter for the selected SPU onto the debug bus using words 2 and 3.
1468  * The pm_interval register is setup to write the SPU PC value into the
1469  * trace buffer at the maximum rate possible.  The trace buffer is configured
1470  * to store the PCs, wrapping when it is full.  The performance counter is
1471  * initialized to the max hardware count minus the number of events, N, between
1472  * samples.  Once the N events have occurred, a HW counter overflow occurs
1473  * causing the generation of a HW counter interrupt which also stops the
1474  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1475  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1476  * we have to read from the beginning of the trace buffer to get to the
1477  * last value written.  We just hope the PPU has nothing better to do then
1478  * service this interrupt. The PC for the specific SPU being profiled is
1479  * extracted from the trace buffer processed and stored.  The trace buffer
1480  * is cleared, interrupts are cleared, the counter is reset to max - N.
1481  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1482  * to switch to the next physical SPU in the node to profile in round robbin
1483  * order.  This way data is collected for all SPUs on the node. It does mean
1484  * that we need to use a relatively small value of N to ensure enough samples
1485  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1486  * It may also be necessary to use a longer sample collection period.
1487  */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1488 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1489 				      struct op_counter_config *ctr)
1490 {
1491 	u32 cpu, cpu_tmp;
1492 	u64 trace_entry;
1493 	u32 interrupt_mask;
1494 	u64 trace_buffer[2];
1495 	u64 last_trace_buffer;
1496 	u32 sample;
1497 	u32 trace_addr;
1498 	unsigned long sample_array_lock_flags;
1499 	int spu_num;
1500 	unsigned long flags;
1501 
1502 	/* Make sure spu event interrupt handler and spu event swap
1503 	 * don't access the counters simultaneously.
1504 	 */
1505 	cpu = smp_processor_id();
1506 	spin_lock_irqsave(&cntr_lock, flags);
1507 
1508 	cpu_tmp = cpu;
1509 	cbe_disable_pm(cpu);
1510 
1511 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1512 
1513 	sample = 0xABCDEF;
1514 	trace_entry = 0xfedcba;
1515 	last_trace_buffer = 0xdeadbeaf;
1516 
1517 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1518 		/* disable writes to trace buff */
1519 		cbe_write_pm(cpu, pm_interval, 0);
1520 
1521 		/* only have one perf cntr being used, cntr 0 */
1522 		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1523 		    && ctr[0].enabled)
1524 			/* The SPU PC values will be read
1525 			 * from the trace buffer, reset counter
1526 			 */
1527 
1528 			cbe_write_ctr(cpu, 0, reset_value[0]);
1529 
1530 		trace_addr = cbe_read_pm(cpu, trace_address);
1531 
1532 		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1533 			/* There is data in the trace buffer to process
1534 			 * Read the buffer until you get to the last
1535 			 * entry.  This is the value we want.
1536 			 */
1537 
1538 			cbe_read_trace_buffer(cpu, trace_buffer);
1539 			trace_addr = cbe_read_pm(cpu, trace_address);
1540 		}
1541 
1542 		/* SPU Address 16 bit count format for 128 bit
1543 		 * HW trace buffer is used for the SPU PC storage
1544 		 *    HDR bits          0:15
1545 		 *    SPU Addr 0 bits   16:31
1546 		 *    SPU Addr 1 bits   32:47
1547 		 *    unused bits       48:127
1548 		 *
1549 		 * HDR: bit4 = 1 SPU Address 0 valid
1550 		 * HDR: bit5 = 1 SPU Address 1 valid
1551 		 *  - unfortunately, the valid bits don't seem to work
1552 		 *
1553 		 * Note trace_buffer[0] holds bits 0:63 of the HW
1554 		 * trace buffer, trace_buffer[1] holds bits 64:127
1555 		 */
1556 
1557 		trace_entry = trace_buffer[0]
1558 			& 0x00000000FFFF0000;
1559 
1560 		/* only top 16 of the 18 bit SPU PC address
1561 		 * is stored in trace buffer, hence shift right
1562 		 * by 16 -2 bits */
1563 		sample = trace_entry >> 14;
1564 		last_trace_buffer = trace_buffer[0];
1565 
1566 		spu_num = spu_evnt_phys_spu_indx
1567 			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1568 
1569 		/* make sure only one process at a time is calling
1570 		 * spu_sync_buffer()
1571 		 */
1572 		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1573 				  sample_array_lock_flags);
1574 		spu_sync_buffer(spu_num, &sample, 1);
1575 		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1576 				       sample_array_lock_flags);
1577 
1578 		smp_wmb();    /* insure spu event buffer updates are written
1579 			       * don't want events intermingled... */
1580 
1581 		/* The counters were frozen by the interrupt.
1582 		 * Reenable the interrupt and restart the counters.
1583 		 */
1584 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1585 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1586 					 virt_cntr_inter_mask);
1587 
1588 		/* clear the trace buffer, re-enable writes to trace buff */
1589 		cbe_write_pm(cpu, trace_address, 0);
1590 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1591 
1592 		/* The writes to the various performance counters only writes
1593 		 * to a latch.  The new values (interrupt setting bits, reset
1594 		 * counter value etc.) are not copied to the actual registers
1595 		 * until the performance monitor is enabled.  In order to get
1596 		 * this to work as desired, the performance monitor needs to
1597 		 * be disabled while writing to the latches.  This is a
1598 		 * HW design issue.
1599 		 */
1600 		write_pm_cntrl(cpu);
1601 		cbe_enable_pm(cpu);
1602 	}
1603 	spin_unlock_irqrestore(&cntr_lock, flags);
1604 }
1605 
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1606 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1607 				      struct op_counter_config *ctr)
1608 {
1609 	u32 cpu;
1610 	u64 pc;
1611 	int is_kernel;
1612 	unsigned long flags = 0;
1613 	u32 interrupt_mask;
1614 	int i;
1615 
1616 	cpu = smp_processor_id();
1617 
1618 	/*
1619 	 * Need to make sure the interrupt handler and the virt counter
1620 	 * routine are not running at the same time. See the
1621 	 * cell_virtual_cntr() routine for additional comments.
1622 	 */
1623 	spin_lock_irqsave(&cntr_lock, flags);
1624 
1625 	/*
1626 	 * Need to disable and reenable the performance counters
1627 	 * to get the desired behavior from the hardware.  This
1628 	 * is hardware specific.
1629 	 */
1630 
1631 	cbe_disable_pm(cpu);
1632 
1633 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1634 
1635 	/*
1636 	 * If the interrupt mask has been cleared, then the virt cntr
1637 	 * has cleared the interrupt.  When the thread that generated
1638 	 * the interrupt is restored, the data count will be restored to
1639 	 * 0xffffff0 to cause the interrupt to be regenerated.
1640 	 */
1641 
1642 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1643 		pc = regs->nip;
1644 		is_kernel = is_kernel_addr(pc);
1645 
1646 		for (i = 0; i < num_counters; ++i) {
1647 			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1648 			    && ctr[i].enabled) {
1649 				oprofile_add_ext_sample(pc, regs, i, is_kernel);
1650 				cbe_write_ctr(cpu, i, reset_value[i]);
1651 			}
1652 		}
1653 
1654 		/*
1655 		 * The counters were frozen by the interrupt.
1656 		 * Reenable the interrupt and restart the counters.
1657 		 * If there was a race between the interrupt handler and
1658 		 * the virtual counter routine.	 The virtual counter
1659 		 * routine may have cleared the interrupts.  Hence must
1660 		 * use the virt_cntr_inter_mask to re-enable the interrupts.
1661 		 */
1662 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1663 					 virt_cntr_inter_mask);
1664 
1665 		/*
1666 		 * The writes to the various performance counters only writes
1667 		 * to a latch.	The new values (interrupt setting bits, reset
1668 		 * counter value etc.) are not copied to the actual registers
1669 		 * until the performance monitor is enabled.  In order to get
1670 		 * this to work as desired, the performance monitor needs to
1671 		 * be disabled while writing to the latches.  This is a
1672 		 * HW design issue.
1673 		 */
1674 		cbe_enable_pm(cpu);
1675 	}
1676 	spin_unlock_irqrestore(&cntr_lock, flags);
1677 }
1678 
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1679 static void cell_handle_interrupt(struct pt_regs *regs,
1680 				  struct op_counter_config *ctr)
1681 {
1682 	if (profiling_mode == PPU_PROFILING)
1683 		cell_handle_interrupt_ppu(regs, ctr);
1684 	else
1685 		cell_handle_interrupt_spu(regs, ctr);
1686 }
1687 
1688 /*
1689  * This function is called from the generic OProfile
1690  * driver.  When profiling PPUs, we need to do the
1691  * generic sync start; otherwise, do spu_sync_start.
1692  */
cell_sync_start(void)1693 static int cell_sync_start(void)
1694 {
1695 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1696 	    (profiling_mode == SPU_PROFILING_EVENTS))
1697 		return spu_sync_start();
1698 	else
1699 		return DO_GENERIC_SYNC;
1700 }
1701 
cell_sync_stop(void)1702 static int cell_sync_stop(void)
1703 {
1704 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1705 	    (profiling_mode == SPU_PROFILING_EVENTS))
1706 		return spu_sync_stop();
1707 	else
1708 		return 1;
1709 }
1710 
1711 struct op_powerpc_model op_model_cell = {
1712 	.reg_setup = cell_reg_setup,
1713 	.cpu_setup = cell_cpu_setup,
1714 	.global_start = cell_global_start,
1715 	.global_stop = cell_global_stop,
1716 	.sync_start = cell_sync_start,
1717 	.sync_stop = cell_sync_stop,
1718 	.handle_interrupt = cell_handle_interrupt,
1719 };
1720