• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112 
113 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
114 	.c_iflag = ICRNL | IXON,
115 	.c_oflag = OPOST | ONLCR,
116 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 		   ECHOCTL | ECHOKE | IEXTEN,
119 	.c_cc = INIT_C_CC,
120 	.c_ispeed = 38400,
121 	.c_ospeed = 38400
122 };
123 
124 EXPORT_SYMBOL(tty_std_termios);
125 
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129 
130 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
131 
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136 
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139 
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 							size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 				unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 
159 /**
160  *	alloc_tty_struct	-	allocate a tty object
161  *
162  *	Return a new empty tty structure. The data fields have not
163  *	been initialized in any way but has been zeroed
164  *
165  *	Locking: none
166  */
167 
alloc_tty_struct(void)168 struct tty_struct *alloc_tty_struct(void)
169 {
170 	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172 
173 /**
174  *	free_tty_struct		-	free a disused tty
175  *	@tty: tty struct to free
176  *
177  *	Free the write buffers, tty queue and tty memory itself.
178  *
179  *	Locking: none. Must be called after tty is definitely unused
180  */
181 
free_tty_struct(struct tty_struct * tty)182 void free_tty_struct(struct tty_struct *tty)
183 {
184 	if (!tty)
185 		return;
186 	if (tty->dev)
187 		put_device(tty->dev);
188 	kfree(tty->write_buf);
189 	tty->magic = 0xDEADDEAD;
190 	kfree(tty);
191 }
192 
file_tty(struct file * file)193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 	return ((struct tty_file_private *)file->private_data)->tty;
196 }
197 
tty_alloc_file(struct file * file)198 int tty_alloc_file(struct file *file)
199 {
200 	struct tty_file_private *priv;
201 
202 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 	if (!priv)
204 		return -ENOMEM;
205 
206 	file->private_data = priv;
207 
208 	return 0;
209 }
210 
211 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 	struct tty_file_private *priv = file->private_data;
215 
216 	priv->tty = tty;
217 	priv->file = file;
218 
219 	spin_lock(&tty_files_lock);
220 	list_add(&priv->list, &tty->tty_files);
221 	spin_unlock(&tty_files_lock);
222 }
223 
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
tty_free_file(struct file * file)230 void tty_free_file(struct file *file)
231 {
232 	struct tty_file_private *priv = file->private_data;
233 
234 	file->private_data = NULL;
235 	kfree(priv);
236 }
237 
238 /* Delete file from its tty */
tty_del_file(struct file * file)239 static void tty_del_file(struct file *file)
240 {
241 	struct tty_file_private *priv = file->private_data;
242 
243 	spin_lock(&tty_files_lock);
244 	list_del(&priv->list);
245 	spin_unlock(&tty_files_lock);
246 	tty_free_file(file);
247 }
248 
249 
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251 
252 /**
253  *	tty_name	-	return tty naming
254  *	@tty: tty structure
255  *	@buf: buffer for output
256  *
257  *	Convert a tty structure into a name. The name reflects the kernel
258  *	naming policy and if udev is in use may not reflect user space
259  *
260  *	Locking: none
261  */
262 
tty_name(struct tty_struct * tty,char * buf)263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266 		strcpy(buf, "NULL tty");
267 	else
268 		strcpy(buf, tty->name);
269 	return buf;
270 }
271 
272 EXPORT_SYMBOL(tty_name);
273 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 			      const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 	if (!tty) {
279 		printk(KERN_WARNING
280 			"null TTY for (%d:%d) in %s\n",
281 			imajor(inode), iminor(inode), routine);
282 		return 1;
283 	}
284 	if (tty->magic != TTY_MAGIC) {
285 		printk(KERN_WARNING
286 			"bad magic number for tty struct (%d:%d) in %s\n",
287 			imajor(inode), iminor(inode), routine);
288 		return 1;
289 	}
290 #endif
291 	return 0;
292 }
293 
check_tty_count(struct tty_struct * tty,const char * routine)294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 	struct list_head *p;
298 	int count = 0;
299 
300 	spin_lock(&tty_files_lock);
301 	list_for_each(p, &tty->tty_files) {
302 		count++;
303 	}
304 	spin_unlock(&tty_files_lock);
305 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
307 	    tty->link && tty->link->count)
308 		count++;
309 	if (tty->count != count) {
310 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 				    "!= #fd's(%d) in %s\n",
312 		       tty->name, tty->count, count, routine);
313 		return count;
314 	}
315 #endif
316 	return 0;
317 }
318 
319 /**
320  *	get_tty_driver		-	find device of a tty
321  *	@dev_t: device identifier
322  *	@index: returns the index of the tty
323  *
324  *	This routine returns a tty driver structure, given a device number
325  *	and also passes back the index number.
326  *
327  *	Locking: caller must hold tty_mutex
328  */
329 
get_tty_driver(dev_t device,int * index)330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 	struct tty_driver *p;
333 
334 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 		dev_t base = MKDEV(p->major, p->minor_start);
336 		if (device < base || device >= base + p->num)
337 			continue;
338 		*index = device - base;
339 		return tty_driver_kref_get(p);
340 	}
341 	return NULL;
342 }
343 
344 #ifdef CONFIG_CONSOLE_POLL
345 
346 /**
347  *	tty_find_polling_driver	-	find device of a polled tty
348  *	@name: name string to match
349  *	@line: pointer to resulting tty line nr
350  *
351  *	This routine returns a tty driver structure, given a name
352  *	and the condition that the tty driver is capable of polled
353  *	operation.
354  */
tty_find_polling_driver(char * name,int * line)355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 	struct tty_driver *p, *res = NULL;
358 	int tty_line = 0;
359 	int len;
360 	char *str, *stp;
361 
362 	for (str = name; *str; str++)
363 		if ((*str >= '0' && *str <= '9') || *str == ',')
364 			break;
365 	if (!*str)
366 		return NULL;
367 
368 	len = str - name;
369 	tty_line = simple_strtoul(str, &str, 10);
370 
371 	mutex_lock(&tty_mutex);
372 	/* Search through the tty devices to look for a match */
373 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 		if (strncmp(name, p->name, len) != 0)
375 			continue;
376 		stp = str;
377 		if (*stp == ',')
378 			stp++;
379 		if (*stp == '\0')
380 			stp = NULL;
381 
382 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 			res = tty_driver_kref_get(p);
385 			*line = tty_line;
386 			break;
387 		}
388 	}
389 	mutex_unlock(&tty_mutex);
390 
391 	return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395 
396 /**
397  *	tty_check_change	-	check for POSIX terminal changes
398  *	@tty: tty to check
399  *
400  *	If we try to write to, or set the state of, a terminal and we're
401  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *	Locking: ctrl_lock
405  */
406 
tty_check_change(struct tty_struct * tty)407 int tty_check_change(struct tty_struct *tty)
408 {
409 	unsigned long flags;
410 	int ret = 0;
411 
412 	if (current->signal->tty != tty)
413 		return 0;
414 
415 	spin_lock_irqsave(&tty->ctrl_lock, flags);
416 
417 	if (!tty->pgrp) {
418 		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 		goto out_unlock;
420 	}
421 	if (task_pgrp(current) == tty->pgrp)
422 		goto out_unlock;
423 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 	if (is_ignored(SIGTTOU))
425 		goto out;
426 	if (is_current_pgrp_orphaned()) {
427 		ret = -EIO;
428 		goto out;
429 	}
430 	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 	set_thread_flag(TIF_SIGPENDING);
432 	ret = -ERESTARTSYS;
433 out:
434 	return ret;
435 out_unlock:
436 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 	return ret;
438 }
439 
440 EXPORT_SYMBOL(tty_check_change);
441 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 				size_t count, loff_t *ppos)
444 {
445 	return 0;
446 }
447 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 				 size_t count, loff_t *ppos)
450 {
451 	return -EIO;
452 }
453 
454 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 		unsigned long arg)
462 {
463 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)466 static long hung_up_tty_compat_ioctl(struct file *file,
467 				     unsigned int cmd, unsigned long arg)
468 {
469 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471 
472 static const struct file_operations tty_fops = {
473 	.llseek		= no_llseek,
474 	.read		= tty_read,
475 	.write		= tty_write,
476 	.poll		= tty_poll,
477 	.unlocked_ioctl	= tty_ioctl,
478 	.compat_ioctl	= tty_compat_ioctl,
479 	.open		= tty_open,
480 	.release	= tty_release,
481 	.fasync		= tty_fasync,
482 };
483 
484 static const struct file_operations console_fops = {
485 	.llseek		= no_llseek,
486 	.read		= tty_read,
487 	.write		= redirected_tty_write,
488 	.poll		= tty_poll,
489 	.unlocked_ioctl	= tty_ioctl,
490 	.compat_ioctl	= tty_compat_ioctl,
491 	.open		= tty_open,
492 	.release	= tty_release,
493 	.fasync		= tty_fasync,
494 };
495 
496 static const struct file_operations hung_up_tty_fops = {
497 	.llseek		= no_llseek,
498 	.read		= hung_up_tty_read,
499 	.write		= hung_up_tty_write,
500 	.poll		= hung_up_tty_poll,
501 	.unlocked_ioctl	= hung_up_tty_ioctl,
502 	.compat_ioctl	= hung_up_tty_compat_ioctl,
503 	.release	= tty_release,
504 };
505 
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508 
509 /**
510  *	tty_wakeup	-	request more data
511  *	@tty: terminal
512  *
513  *	Internal and external helper for wakeups of tty. This function
514  *	informs the line discipline if present that the driver is ready
515  *	to receive more output data.
516  */
517 
tty_wakeup(struct tty_struct * tty)518 void tty_wakeup(struct tty_struct *tty)
519 {
520 	struct tty_ldisc *ld;
521 
522 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 		ld = tty_ldisc_ref(tty);
524 		if (ld) {
525 			if (ld->ops->write_wakeup)
526 				ld->ops->write_wakeup(tty);
527 			tty_ldisc_deref(ld);
528 		}
529 	}
530 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532 
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534 
535 /**
536  *	tty_signal_session_leader	- sends SIGHUP to session leader
537  *	@tty		controlling tty
538  *	@exit_session	if non-zero, signal all foreground group processes
539  *
540  *	Send SIGHUP and SIGCONT to the session leader and its process group.
541  *	Optionally, signal all processes in the foreground process group.
542  *
543  *	Returns the number of processes in the session with this tty
544  *	as their controlling terminal. This value is used to drop
545  *	tty references for those processes.
546  */
tty_signal_session_leader(struct tty_struct * tty,int exit_session)547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 	struct task_struct *p;
550 	int refs = 0;
551 	struct pid *tty_pgrp = NULL;
552 
553 	read_lock(&tasklist_lock);
554 	if (tty->session) {
555 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 			spin_lock_irq(&p->sighand->siglock);
557 			if (p->signal->tty == tty) {
558 				p->signal->tty = NULL;
559 				/* We defer the dereferences outside fo
560 				   the tasklist lock */
561 				refs++;
562 			}
563 			if (!p->signal->leader) {
564 				spin_unlock_irq(&p->sighand->siglock);
565 				continue;
566 			}
567 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
570 			spin_lock(&tty->ctrl_lock);
571 			tty_pgrp = get_pid(tty->pgrp);
572 			if (tty->pgrp)
573 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 			spin_unlock(&tty->ctrl_lock);
575 			spin_unlock_irq(&p->sighand->siglock);
576 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 	}
578 	read_unlock(&tasklist_lock);
579 
580 	if (tty_pgrp) {
581 		if (exit_session)
582 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 		put_pid(tty_pgrp);
584 	}
585 
586 	return refs;
587 }
588 
589 /**
590  *	__tty_hangup		-	actual handler for hangup events
591  *	@work: tty device
592  *
593  *	This can be called by a "kworker" kernel thread.  That is process
594  *	synchronous but doesn't hold any locks, so we need to make sure we
595  *	have the appropriate locks for what we're doing.
596  *
597  *	The hangup event clears any pending redirections onto the hung up
598  *	device. It ensures future writes will error and it does the needed
599  *	line discipline hangup and signal delivery. The tty object itself
600  *	remains intact.
601  *
602  *	Locking:
603  *		BTM
604  *		  redirect lock for undoing redirection
605  *		  file list lock for manipulating list of ttys
606  *		  tty_ldisc_lock from called functions
607  *		  termios_mutex resetting termios data
608  *		  tasklist_lock to walk task list for hangup event
609  *		    ->siglock to protect ->signal/->sighand
610  */
__tty_hangup(struct tty_struct * tty,int exit_session)611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 	struct file *cons_filp = NULL;
614 	struct file *filp, *f = NULL;
615 	struct tty_file_private *priv;
616 	int    closecount = 0, n;
617 	int refs;
618 
619 	if (!tty)
620 		return;
621 
622 
623 	spin_lock(&redirect_lock);
624 	if (redirect && file_tty(redirect) == tty) {
625 		f = redirect;
626 		redirect = NULL;
627 	}
628 	spin_unlock(&redirect_lock);
629 
630 	tty_lock(tty);
631 
632 	/* some functions below drop BTM, so we need this bit */
633 	set_bit(TTY_HUPPING, &tty->flags);
634 
635 	/* inuse_filps is protected by the single tty lock,
636 	   this really needs to change if we want to flush the
637 	   workqueue with the lock held */
638 	check_tty_count(tty, "tty_hangup");
639 
640 	spin_lock(&tty_files_lock);
641 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
642 	list_for_each_entry(priv, &tty->tty_files, list) {
643 		filp = priv->file;
644 		if (filp->f_op->write == redirected_tty_write)
645 			cons_filp = filp;
646 		if (filp->f_op->write != tty_write)
647 			continue;
648 		closecount++;
649 		__tty_fasync(-1, filp, 0);	/* can't block */
650 		filp->f_op = &hung_up_tty_fops;
651 	}
652 	spin_unlock(&tty_files_lock);
653 
654 	refs = tty_signal_session_leader(tty, exit_session);
655 	/* Account for the p->signal references we killed */
656 	while (refs--)
657 		tty_kref_put(tty);
658 
659 	/*
660 	 * it drops BTM and thus races with reopen
661 	 * we protect the race by TTY_HUPPING
662 	 */
663 	tty_ldisc_hangup(tty);
664 
665 	spin_lock_irq(&tty->ctrl_lock);
666 	clear_bit(TTY_THROTTLED, &tty->flags);
667 	clear_bit(TTY_PUSH, &tty->flags);
668 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669 	put_pid(tty->session);
670 	put_pid(tty->pgrp);
671 	tty->session = NULL;
672 	tty->pgrp = NULL;
673 	tty->ctrl_status = 0;
674 	spin_unlock_irq(&tty->ctrl_lock);
675 
676 	/*
677 	 * If one of the devices matches a console pointer, we
678 	 * cannot just call hangup() because that will cause
679 	 * tty->count and state->count to go out of sync.
680 	 * So we just call close() the right number of times.
681 	 */
682 	if (cons_filp) {
683 		if (tty->ops->close)
684 			for (n = 0; n < closecount; n++)
685 				tty->ops->close(tty, cons_filp);
686 	} else if (tty->ops->hangup)
687 		(tty->ops->hangup)(tty);
688 	/*
689 	 * We don't want to have driver/ldisc interactions beyond
690 	 * the ones we did here. The driver layer expects no
691 	 * calls after ->hangup() from the ldisc side. However we
692 	 * can't yet guarantee all that.
693 	 */
694 	set_bit(TTY_HUPPED, &tty->flags);
695 	clear_bit(TTY_HUPPING, &tty->flags);
696 
697 	tty_unlock(tty);
698 
699 	if (f)
700 		fput(f);
701 }
702 
do_tty_hangup(struct work_struct * work)703 static void do_tty_hangup(struct work_struct *work)
704 {
705 	struct tty_struct *tty =
706 		container_of(work, struct tty_struct, hangup_work);
707 
708 	__tty_hangup(tty, 0);
709 }
710 
711 /**
712  *	tty_hangup		-	trigger a hangup event
713  *	@tty: tty to hangup
714  *
715  *	A carrier loss (virtual or otherwise) has occurred on this like
716  *	schedule a hangup sequence to run after this event.
717  */
718 
tty_hangup(struct tty_struct * tty)719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722 	char	buf[64];
723 	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725 	schedule_work(&tty->hangup_work);
726 }
727 
728 EXPORT_SYMBOL(tty_hangup);
729 
730 /**
731  *	tty_vhangup		-	process vhangup
732  *	@tty: tty to hangup
733  *
734  *	The user has asked via system call for the terminal to be hung up.
735  *	We do this synchronously so that when the syscall returns the process
736  *	is complete. That guarantee is necessary for security reasons.
737  */
738 
tty_vhangup(struct tty_struct * tty)739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742 	char	buf[64];
743 
744 	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746 	__tty_hangup(tty, 0);
747 }
748 
749 EXPORT_SYMBOL(tty_vhangup);
750 
751 
752 /**
753  *	tty_vhangup_self	-	process vhangup for own ctty
754  *
755  *	Perform a vhangup on the current controlling tty
756  */
757 
tty_vhangup_self(void)758 void tty_vhangup_self(void)
759 {
760 	struct tty_struct *tty;
761 
762 	tty = get_current_tty();
763 	if (tty) {
764 		tty_vhangup(tty);
765 		tty_kref_put(tty);
766 	}
767 }
768 
769 /**
770  *	tty_vhangup_session		-	hangup session leader exit
771  *	@tty: tty to hangup
772  *
773  *	The session leader is exiting and hanging up its controlling terminal.
774  *	Every process in the foreground process group is signalled SIGHUP.
775  *
776  *	We do this synchronously so that when the syscall returns the process
777  *	is complete. That guarantee is necessary for security reasons.
778  */
779 
tty_vhangup_session(struct tty_struct * tty)780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783 	char	buf[64];
784 
785 	printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787 	__tty_hangup(tty, 1);
788 }
789 
790 /**
791  *	tty_hung_up_p		-	was tty hung up
792  *	@filp: file pointer of tty
793  *
794  *	Return true if the tty has been subject to a vhangup or a carrier
795  *	loss
796  */
797 
tty_hung_up_p(struct file * filp)798 int tty_hung_up_p(struct file *filp)
799 {
800 	return (filp->f_op == &hung_up_tty_fops);
801 }
802 
803 EXPORT_SYMBOL(tty_hung_up_p);
804 
session_clear_tty(struct pid * session)805 static void session_clear_tty(struct pid *session)
806 {
807 	struct task_struct *p;
808 	do_each_pid_task(session, PIDTYPE_SID, p) {
809 		proc_clear_tty(p);
810 	} while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812 
813 /**
814  *	disassociate_ctty	-	disconnect controlling tty
815  *	@on_exit: true if exiting so need to "hang up" the session
816  *
817  *	This function is typically called only by the session leader, when
818  *	it wants to disassociate itself from its controlling tty.
819  *
820  *	It performs the following functions:
821  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  * 	(2)  Clears the tty from being controlling the session
823  * 	(3)  Clears the controlling tty for all processes in the
824  * 		session group.
825  *
826  *	The argument on_exit is set to 1 if called when a process is
827  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *	Locking:
830  *		BTM is taken for hysterical raisins, and held when
831  *		  called from no_tty().
832  *		  tty_mutex is taken to protect tty
833  *		  ->siglock is taken to protect ->signal/->sighand
834  *		  tasklist_lock is taken to walk process list for sessions
835  *		    ->siglock is taken to protect ->signal/->sighand
836  */
837 
disassociate_ctty(int on_exit)838 void disassociate_ctty(int on_exit)
839 {
840 	struct tty_struct *tty;
841 
842 	if (!current->signal->leader)
843 		return;
844 
845 	tty = get_current_tty();
846 	if (tty) {
847 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848 			tty_vhangup_session(tty);
849 		} else {
850 			struct pid *tty_pgrp = tty_get_pgrp(tty);
851 			if (tty_pgrp) {
852 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853 				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854 				put_pid(tty_pgrp);
855 			}
856 		}
857 		tty_kref_put(tty);
858 
859 	} else if (on_exit) {
860 		struct pid *old_pgrp;
861 		spin_lock_irq(&current->sighand->siglock);
862 		old_pgrp = current->signal->tty_old_pgrp;
863 		current->signal->tty_old_pgrp = NULL;
864 		spin_unlock_irq(&current->sighand->siglock);
865 		if (old_pgrp) {
866 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
867 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
868 			put_pid(old_pgrp);
869 		}
870 		return;
871 	}
872 
873 	spin_lock_irq(&current->sighand->siglock);
874 	put_pid(current->signal->tty_old_pgrp);
875 	current->signal->tty_old_pgrp = NULL;
876 	spin_unlock_irq(&current->sighand->siglock);
877 
878 	tty = get_current_tty();
879 	if (tty) {
880 		unsigned long flags;
881 		spin_lock_irqsave(&tty->ctrl_lock, flags);
882 		put_pid(tty->session);
883 		put_pid(tty->pgrp);
884 		tty->session = NULL;
885 		tty->pgrp = NULL;
886 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887 		tty_kref_put(tty);
888 	} else {
889 #ifdef TTY_DEBUG_HANGUP
890 		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891 		       " = NULL", tty);
892 #endif
893 	}
894 
895 	/* Now clear signal->tty under the lock */
896 	read_lock(&tasklist_lock);
897 	session_clear_tty(task_session(current));
898 	read_unlock(&tasklist_lock);
899 }
900 
901 /**
902  *
903  *	no_tty	- Ensure the current process does not have a controlling tty
904  */
no_tty(void)905 void no_tty(void)
906 {
907 	/* FIXME: Review locking here. The tty_lock never covered any race
908 	   between a new association and proc_clear_tty but possible we need
909 	   to protect against this anyway */
910 	struct task_struct *tsk = current;
911 	disassociate_ctty(0);
912 	proc_clear_tty(tsk);
913 }
914 
915 
916 /**
917  *	stop_tty	-	propagate flow control
918  *	@tty: tty to stop
919  *
920  *	Perform flow control to the driver. For PTY/TTY pairs we
921  *	must also propagate the TIOCKPKT status. May be called
922  *	on an already stopped device and will not re-call the driver
923  *	method.
924  *
925  *	This functionality is used by both the line disciplines for
926  *	halting incoming flow and by the driver. It may therefore be
927  *	called from any context, may be under the tty atomic_write_lock
928  *	but not always.
929  *
930  *	Locking:
931  *		Uses the tty control lock internally
932  */
933 
stop_tty(struct tty_struct * tty)934 void stop_tty(struct tty_struct *tty)
935 {
936 	unsigned long flags;
937 	spin_lock_irqsave(&tty->ctrl_lock, flags);
938 	if (tty->stopped) {
939 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 		return;
941 	}
942 	tty->stopped = 1;
943 	if (tty->link && tty->link->packet) {
944 		tty->ctrl_status &= ~TIOCPKT_START;
945 		tty->ctrl_status |= TIOCPKT_STOP;
946 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947 	}
948 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949 	if (tty->ops->stop)
950 		(tty->ops->stop)(tty);
951 }
952 
953 EXPORT_SYMBOL(stop_tty);
954 
955 /**
956  *	start_tty	-	propagate flow control
957  *	@tty: tty to start
958  *
959  *	Start a tty that has been stopped if at all possible. Perform
960  *	any necessary wakeups and propagate the TIOCPKT status. If this
961  *	is the tty was previous stopped and is being started then the
962  *	driver start method is invoked and the line discipline woken.
963  *
964  *	Locking:
965  *		ctrl_lock
966  */
967 
start_tty(struct tty_struct * tty)968 void start_tty(struct tty_struct *tty)
969 {
970 	unsigned long flags;
971 	spin_lock_irqsave(&tty->ctrl_lock, flags);
972 	if (!tty->stopped || tty->flow_stopped) {
973 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974 		return;
975 	}
976 	tty->stopped = 0;
977 	if (tty->link && tty->link->packet) {
978 		tty->ctrl_status &= ~TIOCPKT_STOP;
979 		tty->ctrl_status |= TIOCPKT_START;
980 		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981 	}
982 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983 	if (tty->ops->start)
984 		(tty->ops->start)(tty);
985 	/* If we have a running line discipline it may need kicking */
986 	tty_wakeup(tty);
987 }
988 
989 EXPORT_SYMBOL(start_tty);
990 
991 /* We limit tty time update visibility to every 8 seconds or so. */
tty_update_time(struct timespec * time)992 static void tty_update_time(struct timespec *time)
993 {
994 	unsigned long sec = get_seconds() & ~7;
995 	if ((long)(sec - time->tv_sec) > 0)
996 		time->tv_sec = sec;
997 }
998 
999 /**
1000  *	tty_read	-	read method for tty device files
1001  *	@file: pointer to tty file
1002  *	@buf: user buffer
1003  *	@count: size of user buffer
1004  *	@ppos: unused
1005  *
1006  *	Perform the read system call function on this terminal device. Checks
1007  *	for hung up devices before calling the line discipline method.
1008  *
1009  *	Locking:
1010  *		Locks the line discipline internally while needed. Multiple
1011  *	read calls may be outstanding in parallel.
1012  */
1013 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1014 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1015 			loff_t *ppos)
1016 {
1017 	int i;
1018 	struct inode *inode = file_inode(file);
1019 	struct tty_struct *tty = file_tty(file);
1020 	struct tty_ldisc *ld;
1021 
1022 	if (tty_paranoia_check(tty, inode, "tty_read"))
1023 		return -EIO;
1024 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1025 		return -EIO;
1026 
1027 	/* We want to wait for the line discipline to sort out in this
1028 	   situation */
1029 	ld = tty_ldisc_ref_wait(tty);
1030 	if (ld->ops->read)
1031 		i = (ld->ops->read)(tty, file, buf, count);
1032 	else
1033 		i = -EIO;
1034 	tty_ldisc_deref(ld);
1035 
1036 	if (i > 0)
1037 		tty_update_time(&inode->i_atime);
1038 
1039 	return i;
1040 }
1041 
tty_write_unlock(struct tty_struct * tty)1042 void tty_write_unlock(struct tty_struct *tty)
1043 	__releases(&tty->atomic_write_lock)
1044 {
1045 	mutex_unlock(&tty->atomic_write_lock);
1046 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1047 }
1048 
tty_write_lock(struct tty_struct * tty,int ndelay)1049 int tty_write_lock(struct tty_struct *tty, int ndelay)
1050 	__acquires(&tty->atomic_write_lock)
1051 {
1052 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1053 		if (ndelay)
1054 			return -EAGAIN;
1055 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1056 			return -ERESTARTSYS;
1057 	}
1058 	return 0;
1059 }
1060 
1061 /*
1062  * Split writes up in sane blocksizes to avoid
1063  * denial-of-service type attacks
1064  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)1065 static inline ssize_t do_tty_write(
1066 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1067 	struct tty_struct *tty,
1068 	struct file *file,
1069 	const char __user *buf,
1070 	size_t count)
1071 {
1072 	ssize_t ret, written = 0;
1073 	unsigned int chunk;
1074 
1075 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1076 	if (ret < 0)
1077 		return ret;
1078 
1079 	/*
1080 	 * We chunk up writes into a temporary buffer. This
1081 	 * simplifies low-level drivers immensely, since they
1082 	 * don't have locking issues and user mode accesses.
1083 	 *
1084 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1085 	 * big chunk-size..
1086 	 *
1087 	 * The default chunk-size is 2kB, because the NTTY
1088 	 * layer has problems with bigger chunks. It will
1089 	 * claim to be able to handle more characters than
1090 	 * it actually does.
1091 	 *
1092 	 * FIXME: This can probably go away now except that 64K chunks
1093 	 * are too likely to fail unless switched to vmalloc...
1094 	 */
1095 	chunk = 2048;
1096 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1097 		chunk = 65536;
1098 	if (count < chunk)
1099 		chunk = count;
1100 
1101 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1102 	if (tty->write_cnt < chunk) {
1103 		unsigned char *buf_chunk;
1104 
1105 		if (chunk < 1024)
1106 			chunk = 1024;
1107 
1108 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1109 		if (!buf_chunk) {
1110 			ret = -ENOMEM;
1111 			goto out;
1112 		}
1113 		kfree(tty->write_buf);
1114 		tty->write_cnt = chunk;
1115 		tty->write_buf = buf_chunk;
1116 	}
1117 
1118 	/* Do the write .. */
1119 	for (;;) {
1120 		size_t size = count;
1121 		if (size > chunk)
1122 			size = chunk;
1123 		ret = -EFAULT;
1124 		if (copy_from_user(tty->write_buf, buf, size))
1125 			break;
1126 		ret = write(tty, file, tty->write_buf, size);
1127 		if (ret <= 0)
1128 			break;
1129 		written += ret;
1130 		buf += ret;
1131 		count -= ret;
1132 		if (!count)
1133 			break;
1134 		ret = -ERESTARTSYS;
1135 		if (signal_pending(current))
1136 			break;
1137 		cond_resched();
1138 	}
1139 	if (written) {
1140 		tty_update_time(&file_inode(file)->i_mtime);
1141 		ret = written;
1142 	}
1143 out:
1144 	tty_write_unlock(tty);
1145 	return ret;
1146 }
1147 
1148 /**
1149  * tty_write_message - write a message to a certain tty, not just the console.
1150  * @tty: the destination tty_struct
1151  * @msg: the message to write
1152  *
1153  * This is used for messages that need to be redirected to a specific tty.
1154  * We don't put it into the syslog queue right now maybe in the future if
1155  * really needed.
1156  *
1157  * We must still hold the BTM and test the CLOSING flag for the moment.
1158  */
1159 
tty_write_message(struct tty_struct * tty,char * msg)1160 void tty_write_message(struct tty_struct *tty, char *msg)
1161 {
1162 	if (tty) {
1163 		mutex_lock(&tty->atomic_write_lock);
1164 		tty_lock(tty);
1165 		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1166 			tty_unlock(tty);
1167 			tty->ops->write(tty, msg, strlen(msg));
1168 		} else
1169 			tty_unlock(tty);
1170 		tty_write_unlock(tty);
1171 	}
1172 	return;
1173 }
1174 
1175 
1176 /**
1177  *	tty_write		-	write method for tty device file
1178  *	@file: tty file pointer
1179  *	@buf: user data to write
1180  *	@count: bytes to write
1181  *	@ppos: unused
1182  *
1183  *	Write data to a tty device via the line discipline.
1184  *
1185  *	Locking:
1186  *		Locks the line discipline as required
1187  *		Writes to the tty driver are serialized by the atomic_write_lock
1188  *	and are then processed in chunks to the device. The line discipline
1189  *	write method will not be invoked in parallel for each device.
1190  */
1191 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1192 static ssize_t tty_write(struct file *file, const char __user *buf,
1193 						size_t count, loff_t *ppos)
1194 {
1195 	struct tty_struct *tty = file_tty(file);
1196  	struct tty_ldisc *ld;
1197 	ssize_t ret;
1198 
1199 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1200 		return -EIO;
1201 	if (!tty || !tty->ops->write ||
1202 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1203 			return -EIO;
1204 	/* Short term debug to catch buggy drivers */
1205 	if (tty->ops->write_room == NULL)
1206 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1207 			tty->driver->name);
1208 	ld = tty_ldisc_ref_wait(tty);
1209 	if (!ld->ops->write)
1210 		ret = -EIO;
1211 	else
1212 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1213 	tty_ldisc_deref(ld);
1214 	return ret;
1215 }
1216 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1217 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1218 						size_t count, loff_t *ppos)
1219 {
1220 	struct file *p = NULL;
1221 
1222 	spin_lock(&redirect_lock);
1223 	if (redirect)
1224 		p = get_file(redirect);
1225 	spin_unlock(&redirect_lock);
1226 
1227 	if (p) {
1228 		ssize_t res;
1229 		res = vfs_write(p, buf, count, &p->f_pos);
1230 		fput(p);
1231 		return res;
1232 	}
1233 	return tty_write(file, buf, count, ppos);
1234 }
1235 
1236 static char ptychar[] = "pqrstuvwxyzabcde";
1237 
1238 /**
1239  *	pty_line_name	-	generate name for a pty
1240  *	@driver: the tty driver in use
1241  *	@index: the minor number
1242  *	@p: output buffer of at least 6 bytes
1243  *
1244  *	Generate a name from a driver reference and write it to the output
1245  *	buffer.
1246  *
1247  *	Locking: None
1248  */
pty_line_name(struct tty_driver * driver,int index,char * p)1249 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1250 {
1251 	int i = index + driver->name_base;
1252 	/* ->name is initialized to "ttyp", but "tty" is expected */
1253 	sprintf(p, "%s%c%x",
1254 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1255 		ptychar[i >> 4 & 0xf], i & 0xf);
1256 }
1257 
1258 /**
1259  *	tty_line_name	-	generate name for a tty
1260  *	@driver: the tty driver in use
1261  *	@index: the minor number
1262  *	@p: output buffer of at least 7 bytes
1263  *
1264  *	Generate a name from a driver reference and write it to the output
1265  *	buffer.
1266  *
1267  *	Locking: None
1268  */
tty_line_name(struct tty_driver * driver,int index,char * p)1269 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1270 {
1271 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1272 		strcpy(p, driver->name);
1273 	else
1274 		sprintf(p, "%s%d", driver->name, index + driver->name_base);
1275 }
1276 
1277 /**
1278  *	tty_driver_lookup_tty() - find an existing tty, if any
1279  *	@driver: the driver for the tty
1280  *	@idx:	 the minor number
1281  *
1282  *	Return the tty, if found or ERR_PTR() otherwise.
1283  *
1284  *	Locking: tty_mutex must be held. If tty is found, the mutex must
1285  *	be held until the 'fast-open' is also done. Will change once we
1286  *	have refcounting in the driver and per driver locking
1287  */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1288 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1289 		struct inode *inode, int idx)
1290 {
1291 	if (driver->ops->lookup)
1292 		return driver->ops->lookup(driver, inode, idx);
1293 
1294 	return driver->ttys[idx];
1295 }
1296 
1297 /**
1298  *	tty_init_termios	-  helper for termios setup
1299  *	@tty: the tty to set up
1300  *
1301  *	Initialise the termios structures for this tty. Thus runs under
1302  *	the tty_mutex currently so we can be relaxed about ordering.
1303  */
1304 
tty_init_termios(struct tty_struct * tty)1305 int tty_init_termios(struct tty_struct *tty)
1306 {
1307 	struct ktermios *tp;
1308 	int idx = tty->index;
1309 
1310 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1311 		tty->termios = tty->driver->init_termios;
1312 	else {
1313 		/* Check for lazy saved data */
1314 		tp = tty->driver->termios[idx];
1315 		if (tp != NULL)
1316 			tty->termios = *tp;
1317 		else
1318 			tty->termios = tty->driver->init_termios;
1319 	}
1320 	/* Compatibility until drivers always set this */
1321 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1322 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(tty_init_termios);
1326 
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1327 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1328 {
1329 	int ret = tty_init_termios(tty);
1330 	if (ret)
1331 		return ret;
1332 
1333 	tty_driver_kref_get(driver);
1334 	tty->count++;
1335 	driver->ttys[tty->index] = tty;
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(tty_standard_install);
1339 
1340 /**
1341  *	tty_driver_install_tty() - install a tty entry in the driver
1342  *	@driver: the driver for the tty
1343  *	@tty: the tty
1344  *
1345  *	Install a tty object into the driver tables. The tty->index field
1346  *	will be set by the time this is called. This method is responsible
1347  *	for ensuring any need additional structures are allocated and
1348  *	configured.
1349  *
1350  *	Locking: tty_mutex for now
1351  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1352 static int tty_driver_install_tty(struct tty_driver *driver,
1353 						struct tty_struct *tty)
1354 {
1355 	return driver->ops->install ? driver->ops->install(driver, tty) :
1356 		tty_standard_install(driver, tty);
1357 }
1358 
1359 /**
1360  *	tty_driver_remove_tty() - remove a tty from the driver tables
1361  *	@driver: the driver for the tty
1362  *	@idx:	 the minor number
1363  *
1364  *	Remvoe a tty object from the driver tables. The tty->index field
1365  *	will be set by the time this is called.
1366  *
1367  *	Locking: tty_mutex for now
1368  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1369 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1370 {
1371 	if (driver->ops->remove)
1372 		driver->ops->remove(driver, tty);
1373 	else
1374 		driver->ttys[tty->index] = NULL;
1375 }
1376 
1377 /*
1378  * 	tty_reopen()	- fast re-open of an open tty
1379  * 	@tty	- the tty to open
1380  *
1381  *	Return 0 on success, -errno on error.
1382  *
1383  *	Locking: tty_mutex must be held from the time the tty was found
1384  *		 till this open completes.
1385  */
tty_reopen(struct tty_struct * tty)1386 static int tty_reopen(struct tty_struct *tty)
1387 {
1388 	struct tty_driver *driver = tty->driver;
1389 
1390 	if (test_bit(TTY_CLOSING, &tty->flags) ||
1391 			test_bit(TTY_HUPPING, &tty->flags) ||
1392 			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1393 		return -EIO;
1394 
1395 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1396 	    driver->subtype == PTY_TYPE_MASTER) {
1397 		/*
1398 		 * special case for PTY masters: only one open permitted,
1399 		 * and the slave side open count is incremented as well.
1400 		 */
1401 		if (tty->count)
1402 			return -EIO;
1403 
1404 		tty->link->count++;
1405 	}
1406 	tty->count++;
1407 
1408 	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	tty_init_dev		-	initialise a tty device
1415  *	@driver: tty driver we are opening a device on
1416  *	@idx: device index
1417  *	@ret_tty: returned tty structure
1418  *
1419  *	Prepare a tty device. This may not be a "new" clean device but
1420  *	could also be an active device. The pty drivers require special
1421  *	handling because of this.
1422  *
1423  *	Locking:
1424  *		The function is called under the tty_mutex, which
1425  *	protects us from the tty struct or driver itself going away.
1426  *
1427  *	On exit the tty device has the line discipline attached and
1428  *	a reference count of 1. If a pair was created for pty/tty use
1429  *	and the other was a pty master then it too has a reference count of 1.
1430  *
1431  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1432  * failed open.  The new code protects the open with a mutex, so it's
1433  * really quite straightforward.  The mutex locking can probably be
1434  * relaxed for the (most common) case of reopening a tty.
1435  */
1436 
tty_init_dev(struct tty_driver * driver,int idx)1437 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1438 {
1439 	struct tty_struct *tty;
1440 	int retval;
1441 
1442 	/*
1443 	 * First time open is complex, especially for PTY devices.
1444 	 * This code guarantees that either everything succeeds and the
1445 	 * TTY is ready for operation, or else the table slots are vacated
1446 	 * and the allocated memory released.  (Except that the termios
1447 	 * and locked termios may be retained.)
1448 	 */
1449 
1450 	if (!try_module_get(driver->owner))
1451 		return ERR_PTR(-ENODEV);
1452 
1453 	tty = alloc_tty_struct();
1454 	if (!tty) {
1455 		retval = -ENOMEM;
1456 		goto err_module_put;
1457 	}
1458 	initialize_tty_struct(tty, driver, idx);
1459 
1460 	tty_lock(tty);
1461 	retval = tty_driver_install_tty(driver, tty);
1462 	if (retval < 0)
1463 		goto err_deinit_tty;
1464 
1465 	if (!tty->port)
1466 		tty->port = driver->ports[idx];
1467 
1468 	WARN_RATELIMIT(!tty->port,
1469 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1470 			__func__, tty->driver->name);
1471 
1472 	tty->port->itty = tty;
1473 
1474 	/*
1475 	 * Structures all installed ... call the ldisc open routines.
1476 	 * If we fail here just call release_tty to clean up.  No need
1477 	 * to decrement the use counts, as release_tty doesn't care.
1478 	 */
1479 	retval = tty_ldisc_setup(tty, tty->link);
1480 	if (retval)
1481 		goto err_release_tty;
1482 	/* Return the tty locked so that it cannot vanish under the caller */
1483 	return tty;
1484 
1485 err_deinit_tty:
1486 	tty_unlock(tty);
1487 	deinitialize_tty_struct(tty);
1488 	free_tty_struct(tty);
1489 err_module_put:
1490 	module_put(driver->owner);
1491 	return ERR_PTR(retval);
1492 
1493 	/* call the tty release_tty routine to clean out this slot */
1494 err_release_tty:
1495 	tty_unlock(tty);
1496 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1497 				 "clearing slot %d\n", idx);
1498 	release_tty(tty, idx);
1499 	return ERR_PTR(retval);
1500 }
1501 
tty_free_termios(struct tty_struct * tty)1502 void tty_free_termios(struct tty_struct *tty)
1503 {
1504 	struct ktermios *tp;
1505 	int idx = tty->index;
1506 
1507 	/* If the port is going to reset then it has no termios to save */
1508 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1509 		return;
1510 
1511 	/* Stash the termios data */
1512 	tp = tty->driver->termios[idx];
1513 	if (tp == NULL) {
1514 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1515 		if (tp == NULL) {
1516 			pr_warn("tty: no memory to save termios state.\n");
1517 			return;
1518 		}
1519 		tty->driver->termios[idx] = tp;
1520 	}
1521 	*tp = tty->termios;
1522 }
1523 EXPORT_SYMBOL(tty_free_termios);
1524 
1525 /**
1526  *	tty_flush_works		-	flush all works of a tty
1527  *	@tty: tty device to flush works for
1528  *
1529  *	Sync flush all works belonging to @tty.
1530  */
tty_flush_works(struct tty_struct * tty)1531 static void tty_flush_works(struct tty_struct *tty)
1532 {
1533 	flush_work(&tty->SAK_work);
1534 	flush_work(&tty->hangup_work);
1535 }
1536 
1537 /**
1538  *	release_one_tty		-	release tty structure memory
1539  *	@kref: kref of tty we are obliterating
1540  *
1541  *	Releases memory associated with a tty structure, and clears out the
1542  *	driver table slots. This function is called when a device is no longer
1543  *	in use. It also gets called when setup of a device fails.
1544  *
1545  *	Locking:
1546  *		takes the file list lock internally when working on the list
1547  *	of ttys that the driver keeps.
1548  *
1549  *	This method gets called from a work queue so that the driver private
1550  *	cleanup ops can sleep (needed for USB at least)
1551  */
release_one_tty(struct work_struct * work)1552 static void release_one_tty(struct work_struct *work)
1553 {
1554 	struct tty_struct *tty =
1555 		container_of(work, struct tty_struct, hangup_work);
1556 	struct tty_driver *driver = tty->driver;
1557 
1558 	if (tty->ops->cleanup)
1559 		tty->ops->cleanup(tty);
1560 
1561 	tty->magic = 0;
1562 	tty_driver_kref_put(driver);
1563 	module_put(driver->owner);
1564 
1565 	spin_lock(&tty_files_lock);
1566 	list_del_init(&tty->tty_files);
1567 	spin_unlock(&tty_files_lock);
1568 
1569 	put_pid(tty->pgrp);
1570 	put_pid(tty->session);
1571 	free_tty_struct(tty);
1572 }
1573 
queue_release_one_tty(struct kref * kref)1574 static void queue_release_one_tty(struct kref *kref)
1575 {
1576 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1577 
1578 	/* The hangup queue is now free so we can reuse it rather than
1579 	   waste a chunk of memory for each port */
1580 	INIT_WORK(&tty->hangup_work, release_one_tty);
1581 	schedule_work(&tty->hangup_work);
1582 }
1583 
1584 /**
1585  *	tty_kref_put		-	release a tty kref
1586  *	@tty: tty device
1587  *
1588  *	Release a reference to a tty device and if need be let the kref
1589  *	layer destruct the object for us
1590  */
1591 
tty_kref_put(struct tty_struct * tty)1592 void tty_kref_put(struct tty_struct *tty)
1593 {
1594 	if (tty)
1595 		kref_put(&tty->kref, queue_release_one_tty);
1596 }
1597 EXPORT_SYMBOL(tty_kref_put);
1598 
1599 /**
1600  *	release_tty		-	release tty structure memory
1601  *
1602  *	Release both @tty and a possible linked partner (think pty pair),
1603  *	and decrement the refcount of the backing module.
1604  *
1605  *	Locking:
1606  *		tty_mutex
1607  *		takes the file list lock internally when working on the list
1608  *	of ttys that the driver keeps.
1609  *
1610  */
release_tty(struct tty_struct * tty,int idx)1611 static void release_tty(struct tty_struct *tty, int idx)
1612 {
1613 	/* This should always be true but check for the moment */
1614 	WARN_ON(tty->index != idx);
1615 	WARN_ON(!mutex_is_locked(&tty_mutex));
1616 	if (tty->ops->shutdown)
1617 		tty->ops->shutdown(tty);
1618 	tty_free_termios(tty);
1619 	tty_driver_remove_tty(tty->driver, tty);
1620 	tty->port->itty = NULL;
1621 	cancel_work_sync(&tty->port->buf.work);
1622 
1623 	if (tty->link)
1624 		tty_kref_put(tty->link);
1625 	tty_kref_put(tty);
1626 }
1627 
1628 /**
1629  *	tty_release_checks - check a tty before real release
1630  *	@tty: tty to check
1631  *	@o_tty: link of @tty (if any)
1632  *	@idx: index of the tty
1633  *
1634  *	Performs some paranoid checking before true release of the @tty.
1635  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1636  */
tty_release_checks(struct tty_struct * tty,struct tty_struct * o_tty,int idx)1637 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1638 		int idx)
1639 {
1640 #ifdef TTY_PARANOIA_CHECK
1641 	if (idx < 0 || idx >= tty->driver->num) {
1642 		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1643 				__func__, tty->name);
1644 		return -1;
1645 	}
1646 
1647 	/* not much to check for devpts */
1648 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1649 		return 0;
1650 
1651 	if (tty != tty->driver->ttys[idx]) {
1652 		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1653 				__func__, idx, tty->name);
1654 		return -1;
1655 	}
1656 	if (tty->driver->other) {
1657 		if (o_tty != tty->driver->other->ttys[idx]) {
1658 			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1659 					__func__, idx, tty->name);
1660 			return -1;
1661 		}
1662 		if (o_tty->link != tty) {
1663 			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1664 			return -1;
1665 		}
1666 	}
1667 #endif
1668 	return 0;
1669 }
1670 
1671 /**
1672  *	tty_release		-	vfs callback for close
1673  *	@inode: inode of tty
1674  *	@filp: file pointer for handle to tty
1675  *
1676  *	Called the last time each file handle is closed that references
1677  *	this tty. There may however be several such references.
1678  *
1679  *	Locking:
1680  *		Takes bkl. See tty_release_dev
1681  *
1682  * Even releasing the tty structures is a tricky business.. We have
1683  * to be very careful that the structures are all released at the
1684  * same time, as interrupts might otherwise get the wrong pointers.
1685  *
1686  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1687  * lead to double frees or releasing memory still in use.
1688  */
1689 
tty_release(struct inode * inode,struct file * filp)1690 int tty_release(struct inode *inode, struct file *filp)
1691 {
1692 	struct tty_struct *tty = file_tty(filp);
1693 	struct tty_struct *o_tty;
1694 	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1695 	int	idx;
1696 	char	buf[64];
1697 
1698 	if (tty_paranoia_check(tty, inode, __func__))
1699 		return 0;
1700 
1701 	tty_lock(tty);
1702 	check_tty_count(tty, __func__);
1703 
1704 	__tty_fasync(-1, filp, 0);
1705 
1706 	idx = tty->index;
1707 	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1708 		      tty->driver->subtype == PTY_TYPE_MASTER);
1709 	/* Review: parallel close */
1710 	o_tty = tty->link;
1711 
1712 	if (tty_release_checks(tty, o_tty, idx)) {
1713 		tty_unlock(tty);
1714 		return 0;
1715 	}
1716 
1717 #ifdef TTY_DEBUG_HANGUP
1718 	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1719 			tty_name(tty, buf), tty->count);
1720 #endif
1721 
1722 	if (tty->ops->close)
1723 		tty->ops->close(tty, filp);
1724 
1725 	tty_unlock(tty);
1726 	/*
1727 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1728 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1729 	 * wait queues and kick everyone out _before_ actually starting to
1730 	 * close.  This ensures that we won't block while releasing the tty
1731 	 * structure.
1732 	 *
1733 	 * The test for the o_tty closing is necessary, since the master and
1734 	 * slave sides may close in any order.  If the slave side closes out
1735 	 * first, its count will be one, since the master side holds an open.
1736 	 * Thus this test wouldn't be triggered at the time the slave closes,
1737 	 * so we do it now.
1738 	 *
1739 	 * Note that it's possible for the tty to be opened again while we're
1740 	 * flushing out waiters.  By recalculating the closing flags before
1741 	 * each iteration we avoid any problems.
1742 	 */
1743 	while (1) {
1744 		/* Guard against races with tty->count changes elsewhere and
1745 		   opens on /dev/tty */
1746 
1747 		mutex_lock(&tty_mutex);
1748 		tty_lock_pair(tty, o_tty);
1749 		tty_closing = tty->count <= 1;
1750 		o_tty_closing = o_tty &&
1751 			(o_tty->count <= (pty_master ? 1 : 0));
1752 		do_sleep = 0;
1753 
1754 		if (tty_closing) {
1755 			if (waitqueue_active(&tty->read_wait)) {
1756 				wake_up_poll(&tty->read_wait, POLLIN);
1757 				do_sleep++;
1758 			}
1759 			if (waitqueue_active(&tty->write_wait)) {
1760 				wake_up_poll(&tty->write_wait, POLLOUT);
1761 				do_sleep++;
1762 			}
1763 		}
1764 		if (o_tty_closing) {
1765 			if (waitqueue_active(&o_tty->read_wait)) {
1766 				wake_up_poll(&o_tty->read_wait, POLLIN);
1767 				do_sleep++;
1768 			}
1769 			if (waitqueue_active(&o_tty->write_wait)) {
1770 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1771 				do_sleep++;
1772 			}
1773 		}
1774 		if (!do_sleep)
1775 			break;
1776 
1777 		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1778 				__func__, tty_name(tty, buf));
1779 		tty_unlock_pair(tty, o_tty);
1780 		mutex_unlock(&tty_mutex);
1781 		schedule();
1782 	}
1783 
1784 	/*
1785 	 * The closing flags are now consistent with the open counts on
1786 	 * both sides, and we've completed the last operation that could
1787 	 * block, so it's safe to proceed with closing.
1788 	 *
1789 	 * We must *not* drop the tty_mutex until we ensure that a further
1790 	 * entry into tty_open can not pick up this tty.
1791 	 */
1792 	if (pty_master) {
1793 		if (--o_tty->count < 0) {
1794 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1795 				__func__, o_tty->count, tty_name(o_tty, buf));
1796 			o_tty->count = 0;
1797 		}
1798 	}
1799 	if (--tty->count < 0) {
1800 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1801 				__func__, tty->count, tty_name(tty, buf));
1802 		tty->count = 0;
1803 	}
1804 
1805 	/*
1806 	 * We've decremented tty->count, so we need to remove this file
1807 	 * descriptor off the tty->tty_files list; this serves two
1808 	 * purposes:
1809 	 *  - check_tty_count sees the correct number of file descriptors
1810 	 *    associated with this tty.
1811 	 *  - do_tty_hangup no longer sees this file descriptor as
1812 	 *    something that needs to be handled for hangups.
1813 	 */
1814 	tty_del_file(filp);
1815 
1816 	/*
1817 	 * Perform some housekeeping before deciding whether to return.
1818 	 *
1819 	 * Set the TTY_CLOSING flag if this was the last open.  In the
1820 	 * case of a pty we may have to wait around for the other side
1821 	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1822 	 */
1823 	if (tty_closing)
1824 		set_bit(TTY_CLOSING, &tty->flags);
1825 	if (o_tty_closing)
1826 		set_bit(TTY_CLOSING, &o_tty->flags);
1827 
1828 	/*
1829 	 * If _either_ side is closing, make sure there aren't any
1830 	 * processes that still think tty or o_tty is their controlling
1831 	 * tty.
1832 	 */
1833 	if (tty_closing || o_tty_closing) {
1834 		read_lock(&tasklist_lock);
1835 		session_clear_tty(tty->session);
1836 		if (o_tty)
1837 			session_clear_tty(o_tty->session);
1838 		read_unlock(&tasklist_lock);
1839 	}
1840 
1841 	mutex_unlock(&tty_mutex);
1842 	tty_unlock_pair(tty, o_tty);
1843 	/* At this point the TTY_CLOSING flag should ensure a dead tty
1844 	   cannot be re-opened by a racing opener */
1845 
1846 	/* check whether both sides are closing ... */
1847 	if (!tty_closing || (o_tty && !o_tty_closing))
1848 		return 0;
1849 
1850 #ifdef TTY_DEBUG_HANGUP
1851 	printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1852 #endif
1853 	/*
1854 	 * Ask the line discipline code to release its structures
1855 	 */
1856 	tty_ldisc_release(tty, o_tty);
1857 
1858 	/* Wait for pending work before tty destruction commmences */
1859 	tty_flush_works(tty);
1860 	if (o_tty)
1861 		tty_flush_works(o_tty);
1862 
1863 #ifdef TTY_DEBUG_HANGUP
1864 	printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1865 #endif
1866 	/*
1867 	 * The release_tty function takes care of the details of clearing
1868 	 * the slots and preserving the termios structure. The tty_unlock_pair
1869 	 * should be safe as we keep a kref while the tty is locked (so the
1870 	 * unlock never unlocks a freed tty).
1871 	 */
1872 	mutex_lock(&tty_mutex);
1873 	release_tty(tty, idx);
1874 	mutex_unlock(&tty_mutex);
1875 
1876 	return 0;
1877 }
1878 
1879 /**
1880  *	tty_open_current_tty - get tty of current task for open
1881  *	@device: device number
1882  *	@filp: file pointer to tty
1883  *	@return: tty of the current task iff @device is /dev/tty
1884  *
1885  *	We cannot return driver and index like for the other nodes because
1886  *	devpts will not work then. It expects inodes to be from devpts FS.
1887  *
1888  *	We need to move to returning a refcounted object from all the lookup
1889  *	paths including this one.
1890  */
tty_open_current_tty(dev_t device,struct file * filp)1891 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1892 {
1893 	struct tty_struct *tty;
1894 
1895 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1896 		return NULL;
1897 
1898 	tty = get_current_tty();
1899 	if (!tty)
1900 		return ERR_PTR(-ENXIO);
1901 
1902 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1903 	/* noctty = 1; */
1904 	tty_kref_put(tty);
1905 	/* FIXME: we put a reference and return a TTY! */
1906 	/* This is only safe because the caller holds tty_mutex */
1907 	return tty;
1908 }
1909 
1910 /**
1911  *	tty_lookup_driver - lookup a tty driver for a given device file
1912  *	@device: device number
1913  *	@filp: file pointer to tty
1914  *	@noctty: set if the device should not become a controlling tty
1915  *	@index: index for the device in the @return driver
1916  *	@return: driver for this inode (with increased refcount)
1917  *
1918  * 	If @return is not erroneous, the caller is responsible to decrement the
1919  * 	refcount by tty_driver_kref_put.
1920  *
1921  *	Locking: tty_mutex protects get_tty_driver
1922  */
tty_lookup_driver(dev_t device,struct file * filp,int * noctty,int * index)1923 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1924 		int *noctty, int *index)
1925 {
1926 	struct tty_driver *driver;
1927 
1928 	switch (device) {
1929 #ifdef CONFIG_VT
1930 	case MKDEV(TTY_MAJOR, 0): {
1931 		extern struct tty_driver *console_driver;
1932 		driver = tty_driver_kref_get(console_driver);
1933 		*index = fg_console;
1934 		*noctty = 1;
1935 		break;
1936 	}
1937 #endif
1938 	case MKDEV(TTYAUX_MAJOR, 1): {
1939 		struct tty_driver *console_driver = console_device(index);
1940 		if (console_driver) {
1941 			driver = tty_driver_kref_get(console_driver);
1942 			if (driver) {
1943 				/* Don't let /dev/console block */
1944 				filp->f_flags |= O_NONBLOCK;
1945 				*noctty = 1;
1946 				break;
1947 			}
1948 		}
1949 		return ERR_PTR(-ENODEV);
1950 	}
1951 	default:
1952 		driver = get_tty_driver(device, index);
1953 		if (!driver)
1954 			return ERR_PTR(-ENODEV);
1955 		break;
1956 	}
1957 	return driver;
1958 }
1959 
1960 /**
1961  *	tty_open		-	open a tty device
1962  *	@inode: inode of device file
1963  *	@filp: file pointer to tty
1964  *
1965  *	tty_open and tty_release keep up the tty count that contains the
1966  *	number of opens done on a tty. We cannot use the inode-count, as
1967  *	different inodes might point to the same tty.
1968  *
1969  *	Open-counting is needed for pty masters, as well as for keeping
1970  *	track of serial lines: DTR is dropped when the last close happens.
1971  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1972  *
1973  *	The termios state of a pty is reset on first open so that
1974  *	settings don't persist across reuse.
1975  *
1976  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1977  *		 tty->count should protect the rest.
1978  *		 ->siglock protects ->signal/->sighand
1979  *
1980  *	Note: the tty_unlock/lock cases without a ref are only safe due to
1981  *	tty_mutex
1982  */
1983 
tty_open(struct inode * inode,struct file * filp)1984 static int tty_open(struct inode *inode, struct file *filp)
1985 {
1986 	struct tty_struct *tty;
1987 	int noctty, retval;
1988 	struct tty_driver *driver = NULL;
1989 	int index;
1990 	dev_t device = inode->i_rdev;
1991 	unsigned saved_flags = filp->f_flags;
1992 
1993 	nonseekable_open(inode, filp);
1994 
1995 retry_open:
1996 	retval = tty_alloc_file(filp);
1997 	if (retval)
1998 		return -ENOMEM;
1999 
2000 	noctty = filp->f_flags & O_NOCTTY;
2001 	index  = -1;
2002 	retval = 0;
2003 
2004 	mutex_lock(&tty_mutex);
2005 	/* This is protected by the tty_mutex */
2006 	tty = tty_open_current_tty(device, filp);
2007 	if (IS_ERR(tty)) {
2008 		retval = PTR_ERR(tty);
2009 		goto err_unlock;
2010 	} else if (!tty) {
2011 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2012 		if (IS_ERR(driver)) {
2013 			retval = PTR_ERR(driver);
2014 			goto err_unlock;
2015 		}
2016 
2017 		/* check whether we're reopening an existing tty */
2018 		tty = tty_driver_lookup_tty(driver, inode, index);
2019 		if (IS_ERR(tty)) {
2020 			retval = PTR_ERR(tty);
2021 			goto err_unlock;
2022 		}
2023 	}
2024 
2025 	if (tty) {
2026 		tty_lock(tty);
2027 		retval = tty_reopen(tty);
2028 		if (retval < 0) {
2029 			tty_unlock(tty);
2030 			tty = ERR_PTR(retval);
2031 		}
2032 	} else	/* Returns with the tty_lock held for now */
2033 		tty = tty_init_dev(driver, index);
2034 
2035 	mutex_unlock(&tty_mutex);
2036 	if (driver)
2037 		tty_driver_kref_put(driver);
2038 	if (IS_ERR(tty)) {
2039 		retval = PTR_ERR(tty);
2040 		goto err_file;
2041 	}
2042 
2043 	tty_add_file(tty, filp);
2044 
2045 	check_tty_count(tty, __func__);
2046 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2047 	    tty->driver->subtype == PTY_TYPE_MASTER)
2048 		noctty = 1;
2049 #ifdef TTY_DEBUG_HANGUP
2050 	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2051 #endif
2052 	if (tty->ops->open)
2053 		retval = tty->ops->open(tty, filp);
2054 	else
2055 		retval = -ENODEV;
2056 	filp->f_flags = saved_flags;
2057 
2058 	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2059 						!capable(CAP_SYS_ADMIN))
2060 		retval = -EBUSY;
2061 
2062 	if (retval) {
2063 #ifdef TTY_DEBUG_HANGUP
2064 		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2065 				retval, tty->name);
2066 #endif
2067 		tty_unlock(tty); /* need to call tty_release without BTM */
2068 		tty_release(inode, filp);
2069 		if (retval != -ERESTARTSYS)
2070 			return retval;
2071 
2072 		if (signal_pending(current))
2073 			return retval;
2074 
2075 		schedule();
2076 		/*
2077 		 * Need to reset f_op in case a hangup happened.
2078 		 */
2079 		if (filp->f_op == &hung_up_tty_fops)
2080 			filp->f_op = &tty_fops;
2081 		goto retry_open;
2082 	}
2083 	tty_unlock(tty);
2084 
2085 
2086 	mutex_lock(&tty_mutex);
2087 	tty_lock(tty);
2088 	spin_lock_irq(&current->sighand->siglock);
2089 	if (!noctty &&
2090 	    current->signal->leader &&
2091 	    !current->signal->tty &&
2092 	    tty->session == NULL)
2093 		__proc_set_tty(current, tty);
2094 	spin_unlock_irq(&current->sighand->siglock);
2095 	tty_unlock(tty);
2096 	mutex_unlock(&tty_mutex);
2097 	return 0;
2098 err_unlock:
2099 	mutex_unlock(&tty_mutex);
2100 	/* after locks to avoid deadlock */
2101 	if (!IS_ERR_OR_NULL(driver))
2102 		tty_driver_kref_put(driver);
2103 err_file:
2104 	tty_free_file(filp);
2105 	return retval;
2106 }
2107 
2108 
2109 
2110 /**
2111  *	tty_poll	-	check tty status
2112  *	@filp: file being polled
2113  *	@wait: poll wait structures to update
2114  *
2115  *	Call the line discipline polling method to obtain the poll
2116  *	status of the device.
2117  *
2118  *	Locking: locks called line discipline but ldisc poll method
2119  *	may be re-entered freely by other callers.
2120  */
2121 
tty_poll(struct file * filp,poll_table * wait)2122 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2123 {
2124 	struct tty_struct *tty = file_tty(filp);
2125 	struct tty_ldisc *ld;
2126 	int ret = 0;
2127 
2128 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2129 		return 0;
2130 
2131 	ld = tty_ldisc_ref_wait(tty);
2132 	if (ld->ops->poll)
2133 		ret = (ld->ops->poll)(tty, filp, wait);
2134 	tty_ldisc_deref(ld);
2135 	return ret;
2136 }
2137 
__tty_fasync(int fd,struct file * filp,int on)2138 static int __tty_fasync(int fd, struct file *filp, int on)
2139 {
2140 	struct tty_struct *tty = file_tty(filp);
2141 	unsigned long flags;
2142 	int retval = 0;
2143 
2144 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2145 		goto out;
2146 
2147 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2148 	if (retval <= 0)
2149 		goto out;
2150 
2151 	if (on) {
2152 		enum pid_type type;
2153 		struct pid *pid;
2154 		if (!waitqueue_active(&tty->read_wait))
2155 			tty->minimum_to_wake = 1;
2156 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2157 		if (tty->pgrp) {
2158 			pid = tty->pgrp;
2159 			type = PIDTYPE_PGID;
2160 		} else {
2161 			pid = task_pid(current);
2162 			type = PIDTYPE_PID;
2163 		}
2164 		get_pid(pid);
2165 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2166 		retval = __f_setown(filp, pid, type, 0);
2167 		put_pid(pid);
2168 		if (retval)
2169 			goto out;
2170 	} else {
2171 		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2172 			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2173 	}
2174 	retval = 0;
2175 out:
2176 	return retval;
2177 }
2178 
tty_fasync(int fd,struct file * filp,int on)2179 static int tty_fasync(int fd, struct file *filp, int on)
2180 {
2181 	struct tty_struct *tty = file_tty(filp);
2182 	int retval;
2183 
2184 	tty_lock(tty);
2185 	retval = __tty_fasync(fd, filp, on);
2186 	tty_unlock(tty);
2187 
2188 	return retval;
2189 }
2190 
2191 /**
2192  *	tiocsti			-	fake input character
2193  *	@tty: tty to fake input into
2194  *	@p: pointer to character
2195  *
2196  *	Fake input to a tty device. Does the necessary locking and
2197  *	input management.
2198  *
2199  *	FIXME: does not honour flow control ??
2200  *
2201  *	Locking:
2202  *		Called functions take tty_ldisc_lock
2203  *		current->signal->tty check is safe without locks
2204  *
2205  *	FIXME: may race normal receive processing
2206  */
2207 
tiocsti(struct tty_struct * tty,char __user * p)2208 static int tiocsti(struct tty_struct *tty, char __user *p)
2209 {
2210 	char ch, mbz = 0;
2211 	struct tty_ldisc *ld;
2212 
2213 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2214 		return -EPERM;
2215 	if (get_user(ch, p))
2216 		return -EFAULT;
2217 	tty_audit_tiocsti(tty, ch);
2218 	ld = tty_ldisc_ref_wait(tty);
2219 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2220 	tty_ldisc_deref(ld);
2221 	return 0;
2222 }
2223 
2224 /**
2225  *	tiocgwinsz		-	implement window query ioctl
2226  *	@tty; tty
2227  *	@arg: user buffer for result
2228  *
2229  *	Copies the kernel idea of the window size into the user buffer.
2230  *
2231  *	Locking: tty->termios_mutex is taken to ensure the winsize data
2232  *		is consistent.
2233  */
2234 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2235 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2236 {
2237 	int err;
2238 
2239 	mutex_lock(&tty->termios_mutex);
2240 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2241 	mutex_unlock(&tty->termios_mutex);
2242 
2243 	return err ? -EFAULT: 0;
2244 }
2245 
2246 /**
2247  *	tty_do_resize		-	resize event
2248  *	@tty: tty being resized
2249  *	@rows: rows (character)
2250  *	@cols: cols (character)
2251  *
2252  *	Update the termios variables and send the necessary signals to
2253  *	peform a terminal resize correctly
2254  */
2255 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2256 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2257 {
2258 	struct pid *pgrp;
2259 	unsigned long flags;
2260 
2261 	/* Lock the tty */
2262 	mutex_lock(&tty->termios_mutex);
2263 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2264 		goto done;
2265 	/* Get the PID values and reference them so we can
2266 	   avoid holding the tty ctrl lock while sending signals */
2267 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2268 	pgrp = get_pid(tty->pgrp);
2269 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2270 
2271 	if (pgrp)
2272 		kill_pgrp(pgrp, SIGWINCH, 1);
2273 	put_pid(pgrp);
2274 
2275 	tty->winsize = *ws;
2276 done:
2277 	mutex_unlock(&tty->termios_mutex);
2278 	return 0;
2279 }
2280 EXPORT_SYMBOL(tty_do_resize);
2281 
2282 /**
2283  *	tiocswinsz		-	implement window size set ioctl
2284  *	@tty; tty side of tty
2285  *	@arg: user buffer for result
2286  *
2287  *	Copies the user idea of the window size to the kernel. Traditionally
2288  *	this is just advisory information but for the Linux console it
2289  *	actually has driver level meaning and triggers a VC resize.
2290  *
2291  *	Locking:
2292  *		Driver dependent. The default do_resize method takes the
2293  *	tty termios mutex and ctrl_lock. The console takes its own lock
2294  *	then calls into the default method.
2295  */
2296 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2297 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2298 {
2299 	struct winsize tmp_ws;
2300 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2301 		return -EFAULT;
2302 
2303 	if (tty->ops->resize)
2304 		return tty->ops->resize(tty, &tmp_ws);
2305 	else
2306 		return tty_do_resize(tty, &tmp_ws);
2307 }
2308 
2309 /**
2310  *	tioccons	-	allow admin to move logical console
2311  *	@file: the file to become console
2312  *
2313  *	Allow the administrator to move the redirected console device
2314  *
2315  *	Locking: uses redirect_lock to guard the redirect information
2316  */
2317 
tioccons(struct file * file)2318 static int tioccons(struct file *file)
2319 {
2320 	if (!capable(CAP_SYS_ADMIN))
2321 		return -EPERM;
2322 	if (file->f_op->write == redirected_tty_write) {
2323 		struct file *f;
2324 		spin_lock(&redirect_lock);
2325 		f = redirect;
2326 		redirect = NULL;
2327 		spin_unlock(&redirect_lock);
2328 		if (f)
2329 			fput(f);
2330 		return 0;
2331 	}
2332 	spin_lock(&redirect_lock);
2333 	if (redirect) {
2334 		spin_unlock(&redirect_lock);
2335 		return -EBUSY;
2336 	}
2337 	redirect = get_file(file);
2338 	spin_unlock(&redirect_lock);
2339 	return 0;
2340 }
2341 
2342 /**
2343  *	fionbio		-	non blocking ioctl
2344  *	@file: file to set blocking value
2345  *	@p: user parameter
2346  *
2347  *	Historical tty interfaces had a blocking control ioctl before
2348  *	the generic functionality existed. This piece of history is preserved
2349  *	in the expected tty API of posix OS's.
2350  *
2351  *	Locking: none, the open file handle ensures it won't go away.
2352  */
2353 
fionbio(struct file * file,int __user * p)2354 static int fionbio(struct file *file, int __user *p)
2355 {
2356 	int nonblock;
2357 
2358 	if (get_user(nonblock, p))
2359 		return -EFAULT;
2360 
2361 	spin_lock(&file->f_lock);
2362 	if (nonblock)
2363 		file->f_flags |= O_NONBLOCK;
2364 	else
2365 		file->f_flags &= ~O_NONBLOCK;
2366 	spin_unlock(&file->f_lock);
2367 	return 0;
2368 }
2369 
2370 /**
2371  *	tiocsctty	-	set controlling tty
2372  *	@tty: tty structure
2373  *	@arg: user argument
2374  *
2375  *	This ioctl is used to manage job control. It permits a session
2376  *	leader to set this tty as the controlling tty for the session.
2377  *
2378  *	Locking:
2379  *		Takes tty_mutex() to protect tty instance
2380  *		Takes tasklist_lock internally to walk sessions
2381  *		Takes ->siglock() when updating signal->tty
2382  */
2383 
tiocsctty(struct tty_struct * tty,int arg)2384 static int tiocsctty(struct tty_struct *tty, int arg)
2385 {
2386 	int ret = 0;
2387 	if (current->signal->leader && (task_session(current) == tty->session))
2388 		return ret;
2389 
2390 	mutex_lock(&tty_mutex);
2391 	/*
2392 	 * The process must be a session leader and
2393 	 * not have a controlling tty already.
2394 	 */
2395 	if (!current->signal->leader || current->signal->tty) {
2396 		ret = -EPERM;
2397 		goto unlock;
2398 	}
2399 
2400 	if (tty->session) {
2401 		/*
2402 		 * This tty is already the controlling
2403 		 * tty for another session group!
2404 		 */
2405 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2406 			/*
2407 			 * Steal it away
2408 			 */
2409 			read_lock(&tasklist_lock);
2410 			session_clear_tty(tty->session);
2411 			read_unlock(&tasklist_lock);
2412 		} else {
2413 			ret = -EPERM;
2414 			goto unlock;
2415 		}
2416 	}
2417 	proc_set_tty(current, tty);
2418 unlock:
2419 	mutex_unlock(&tty_mutex);
2420 	return ret;
2421 }
2422 
2423 /**
2424  *	tty_get_pgrp	-	return a ref counted pgrp pid
2425  *	@tty: tty to read
2426  *
2427  *	Returns a refcounted instance of the pid struct for the process
2428  *	group controlling the tty.
2429  */
2430 
tty_get_pgrp(struct tty_struct * tty)2431 struct pid *tty_get_pgrp(struct tty_struct *tty)
2432 {
2433 	unsigned long flags;
2434 	struct pid *pgrp;
2435 
2436 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2437 	pgrp = get_pid(tty->pgrp);
2438 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2439 
2440 	return pgrp;
2441 }
2442 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2443 
2444 /**
2445  *	tiocgpgrp		-	get process group
2446  *	@tty: tty passed by user
2447  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2448  *	@p: returned pid
2449  *
2450  *	Obtain the process group of the tty. If there is no process group
2451  *	return an error.
2452  *
2453  *	Locking: none. Reference to current->signal->tty is safe.
2454  */
2455 
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2456 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2457 {
2458 	struct pid *pid;
2459 	int ret;
2460 	/*
2461 	 * (tty == real_tty) is a cheap way of
2462 	 * testing if the tty is NOT a master pty.
2463 	 */
2464 	if (tty == real_tty && current->signal->tty != real_tty)
2465 		return -ENOTTY;
2466 	pid = tty_get_pgrp(real_tty);
2467 	ret =  put_user(pid_vnr(pid), p);
2468 	put_pid(pid);
2469 	return ret;
2470 }
2471 
2472 /**
2473  *	tiocspgrp		-	attempt to set process group
2474  *	@tty: tty passed by user
2475  *	@real_tty: tty side device matching tty passed by user
2476  *	@p: pid pointer
2477  *
2478  *	Set the process group of the tty to the session passed. Only
2479  *	permitted where the tty session is our session.
2480  *
2481  *	Locking: RCU, ctrl lock
2482  */
2483 
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2484 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2485 {
2486 	struct pid *pgrp;
2487 	pid_t pgrp_nr;
2488 	int retval = tty_check_change(real_tty);
2489 	unsigned long flags;
2490 
2491 	if (retval == -EIO)
2492 		return -ENOTTY;
2493 	if (retval)
2494 		return retval;
2495 	if (!current->signal->tty ||
2496 	    (current->signal->tty != real_tty) ||
2497 	    (real_tty->session != task_session(current)))
2498 		return -ENOTTY;
2499 	if (get_user(pgrp_nr, p))
2500 		return -EFAULT;
2501 	if (pgrp_nr < 0)
2502 		return -EINVAL;
2503 	rcu_read_lock();
2504 	pgrp = find_vpid(pgrp_nr);
2505 	retval = -ESRCH;
2506 	if (!pgrp)
2507 		goto out_unlock;
2508 	retval = -EPERM;
2509 	if (session_of_pgrp(pgrp) != task_session(current))
2510 		goto out_unlock;
2511 	retval = 0;
2512 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2513 	put_pid(real_tty->pgrp);
2514 	real_tty->pgrp = get_pid(pgrp);
2515 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2516 out_unlock:
2517 	rcu_read_unlock();
2518 	return retval;
2519 }
2520 
2521 /**
2522  *	tiocgsid		-	get session id
2523  *	@tty: tty passed by user
2524  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2525  *	@p: pointer to returned session id
2526  *
2527  *	Obtain the session id of the tty. If there is no session
2528  *	return an error.
2529  *
2530  *	Locking: none. Reference to current->signal->tty is safe.
2531  */
2532 
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2533 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2534 {
2535 	/*
2536 	 * (tty == real_tty) is a cheap way of
2537 	 * testing if the tty is NOT a master pty.
2538 	*/
2539 	if (tty == real_tty && current->signal->tty != real_tty)
2540 		return -ENOTTY;
2541 	if (!real_tty->session)
2542 		return -ENOTTY;
2543 	return put_user(pid_vnr(real_tty->session), p);
2544 }
2545 
2546 /**
2547  *	tiocsetd	-	set line discipline
2548  *	@tty: tty device
2549  *	@p: pointer to user data
2550  *
2551  *	Set the line discipline according to user request.
2552  *
2553  *	Locking: see tty_set_ldisc, this function is just a helper
2554  */
2555 
tiocsetd(struct tty_struct * tty,int __user * p)2556 static int tiocsetd(struct tty_struct *tty, int __user *p)
2557 {
2558 	int ldisc;
2559 	int ret;
2560 
2561 	if (get_user(ldisc, p))
2562 		return -EFAULT;
2563 
2564 	ret = tty_set_ldisc(tty, ldisc);
2565 
2566 	return ret;
2567 }
2568 
2569 /**
2570  *	tiocgetd	-	get line discipline
2571  *	@tty: tty device
2572  *	@p: pointer to user data
2573  *
2574  *	Retrieves the line discipline id directly from the ldisc.
2575  *
2576  *	Locking: waits for ldisc reference (in case the line discipline
2577  *		is changing or the tty is being hungup)
2578  */
2579 
tiocgetd(struct tty_struct * tty,int __user * p)2580 static int tiocgetd(struct tty_struct *tty, int __user *p)
2581 {
2582 	struct tty_ldisc *ld;
2583 	int ret;
2584 
2585 	ld = tty_ldisc_ref_wait(tty);
2586 	ret = put_user(ld->ops->num, p);
2587 	tty_ldisc_deref(ld);
2588 	return ret;
2589 }
2590 
2591 /**
2592  *	send_break	-	performed time break
2593  *	@tty: device to break on
2594  *	@duration: timeout in mS
2595  *
2596  *	Perform a timed break on hardware that lacks its own driver level
2597  *	timed break functionality.
2598  *
2599  *	Locking:
2600  *		atomic_write_lock serializes
2601  *
2602  */
2603 
send_break(struct tty_struct * tty,unsigned int duration)2604 static int send_break(struct tty_struct *tty, unsigned int duration)
2605 {
2606 	int retval;
2607 
2608 	if (tty->ops->break_ctl == NULL)
2609 		return 0;
2610 
2611 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2612 		retval = tty->ops->break_ctl(tty, duration);
2613 	else {
2614 		/* Do the work ourselves */
2615 		if (tty_write_lock(tty, 0) < 0)
2616 			return -EINTR;
2617 		retval = tty->ops->break_ctl(tty, -1);
2618 		if (retval)
2619 			goto out;
2620 		if (!signal_pending(current))
2621 			msleep_interruptible(duration);
2622 		retval = tty->ops->break_ctl(tty, 0);
2623 out:
2624 		tty_write_unlock(tty);
2625 		if (signal_pending(current))
2626 			retval = -EINTR;
2627 	}
2628 	return retval;
2629 }
2630 
2631 /**
2632  *	tty_tiocmget		-	get modem status
2633  *	@tty: tty device
2634  *	@file: user file pointer
2635  *	@p: pointer to result
2636  *
2637  *	Obtain the modem status bits from the tty driver if the feature
2638  *	is supported. Return -EINVAL if it is not available.
2639  *
2640  *	Locking: none (up to the driver)
2641  */
2642 
tty_tiocmget(struct tty_struct * tty,int __user * p)2643 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2644 {
2645 	int retval = -EINVAL;
2646 
2647 	if (tty->ops->tiocmget) {
2648 		retval = tty->ops->tiocmget(tty);
2649 
2650 		if (retval >= 0)
2651 			retval = put_user(retval, p);
2652 	}
2653 	return retval;
2654 }
2655 
2656 /**
2657  *	tty_tiocmset		-	set modem status
2658  *	@tty: tty device
2659  *	@cmd: command - clear bits, set bits or set all
2660  *	@p: pointer to desired bits
2661  *
2662  *	Set the modem status bits from the tty driver if the feature
2663  *	is supported. Return -EINVAL if it is not available.
2664  *
2665  *	Locking: none (up to the driver)
2666  */
2667 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2668 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2669 	     unsigned __user *p)
2670 {
2671 	int retval;
2672 	unsigned int set, clear, val;
2673 
2674 	if (tty->ops->tiocmset == NULL)
2675 		return -EINVAL;
2676 
2677 	retval = get_user(val, p);
2678 	if (retval)
2679 		return retval;
2680 	set = clear = 0;
2681 	switch (cmd) {
2682 	case TIOCMBIS:
2683 		set = val;
2684 		break;
2685 	case TIOCMBIC:
2686 		clear = val;
2687 		break;
2688 	case TIOCMSET:
2689 		set = val;
2690 		clear = ~val;
2691 		break;
2692 	}
2693 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2694 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2695 	return tty->ops->tiocmset(tty, set, clear);
2696 }
2697 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2698 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2699 {
2700 	int retval = -EINVAL;
2701 	struct serial_icounter_struct icount;
2702 	memset(&icount, 0, sizeof(icount));
2703 	if (tty->ops->get_icount)
2704 		retval = tty->ops->get_icount(tty, &icount);
2705 	if (retval != 0)
2706 		return retval;
2707 	if (copy_to_user(arg, &icount, sizeof(icount)))
2708 		return -EFAULT;
2709 	return 0;
2710 }
2711 
tty_pair_get_tty(struct tty_struct * tty)2712 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2713 {
2714 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2715 	    tty->driver->subtype == PTY_TYPE_MASTER)
2716 		tty = tty->link;
2717 	return tty;
2718 }
2719 EXPORT_SYMBOL(tty_pair_get_tty);
2720 
tty_pair_get_pty(struct tty_struct * tty)2721 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2722 {
2723 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2724 	    tty->driver->subtype == PTY_TYPE_MASTER)
2725 	    return tty;
2726 	return tty->link;
2727 }
2728 EXPORT_SYMBOL(tty_pair_get_pty);
2729 
2730 /*
2731  * Split this up, as gcc can choke on it otherwise..
2732  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2733 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2734 {
2735 	struct tty_struct *tty = file_tty(file);
2736 	struct tty_struct *real_tty;
2737 	void __user *p = (void __user *)arg;
2738 	int retval;
2739 	struct tty_ldisc *ld;
2740 
2741 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2742 		return -EINVAL;
2743 
2744 	real_tty = tty_pair_get_tty(tty);
2745 
2746 	/*
2747 	 * Factor out some common prep work
2748 	 */
2749 	switch (cmd) {
2750 	case TIOCSETD:
2751 	case TIOCSBRK:
2752 	case TIOCCBRK:
2753 	case TCSBRK:
2754 	case TCSBRKP:
2755 		retval = tty_check_change(tty);
2756 		if (retval)
2757 			return retval;
2758 		if (cmd != TIOCCBRK) {
2759 			tty_wait_until_sent(tty, 0);
2760 			if (signal_pending(current))
2761 				return -EINTR;
2762 		}
2763 		break;
2764 	}
2765 
2766 	/*
2767 	 *	Now do the stuff.
2768 	 */
2769 	switch (cmd) {
2770 	case TIOCSTI:
2771 		return tiocsti(tty, p);
2772 	case TIOCGWINSZ:
2773 		return tiocgwinsz(real_tty, p);
2774 	case TIOCSWINSZ:
2775 		return tiocswinsz(real_tty, p);
2776 	case TIOCCONS:
2777 		return real_tty != tty ? -EINVAL : tioccons(file);
2778 	case FIONBIO:
2779 		return fionbio(file, p);
2780 	case TIOCEXCL:
2781 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2782 		return 0;
2783 	case TIOCNXCL:
2784 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2785 		return 0;
2786 	case TIOCGEXCL:
2787 	{
2788 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2789 		return put_user(excl, (int __user *)p);
2790 	}
2791 	case TIOCNOTTY:
2792 		if (current->signal->tty != tty)
2793 			return -ENOTTY;
2794 		no_tty();
2795 		return 0;
2796 	case TIOCSCTTY:
2797 		return tiocsctty(tty, arg);
2798 	case TIOCGPGRP:
2799 		return tiocgpgrp(tty, real_tty, p);
2800 	case TIOCSPGRP:
2801 		return tiocspgrp(tty, real_tty, p);
2802 	case TIOCGSID:
2803 		return tiocgsid(tty, real_tty, p);
2804 	case TIOCGETD:
2805 		return tiocgetd(tty, p);
2806 	case TIOCSETD:
2807 		return tiocsetd(tty, p);
2808 	case TIOCVHANGUP:
2809 		if (!capable(CAP_SYS_ADMIN))
2810 			return -EPERM;
2811 		tty_vhangup(tty);
2812 		return 0;
2813 	case TIOCGDEV:
2814 	{
2815 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2816 		return put_user(ret, (unsigned int __user *)p);
2817 	}
2818 	/*
2819 	 * Break handling
2820 	 */
2821 	case TIOCSBRK:	/* Turn break on, unconditionally */
2822 		if (tty->ops->break_ctl)
2823 			return tty->ops->break_ctl(tty, -1);
2824 		return 0;
2825 	case TIOCCBRK:	/* Turn break off, unconditionally */
2826 		if (tty->ops->break_ctl)
2827 			return tty->ops->break_ctl(tty, 0);
2828 		return 0;
2829 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2830 		/* non-zero arg means wait for all output data
2831 		 * to be sent (performed above) but don't send break.
2832 		 * This is used by the tcdrain() termios function.
2833 		 */
2834 		if (!arg)
2835 			return send_break(tty, 250);
2836 		return 0;
2837 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2838 		return send_break(tty, arg ? arg*100 : 250);
2839 
2840 	case TIOCMGET:
2841 		return tty_tiocmget(tty, p);
2842 	case TIOCMSET:
2843 	case TIOCMBIC:
2844 	case TIOCMBIS:
2845 		return tty_tiocmset(tty, cmd, p);
2846 	case TIOCGICOUNT:
2847 		retval = tty_tiocgicount(tty, p);
2848 		/* For the moment allow fall through to the old method */
2849         	if (retval != -EINVAL)
2850 			return retval;
2851 		break;
2852 	case TCFLSH:
2853 		switch (arg) {
2854 		case TCIFLUSH:
2855 		case TCIOFLUSH:
2856 		/* flush tty buffer and allow ldisc to process ioctl */
2857 			tty_buffer_flush(tty);
2858 			break;
2859 		}
2860 		break;
2861 	}
2862 	if (tty->ops->ioctl) {
2863 		retval = (tty->ops->ioctl)(tty, cmd, arg);
2864 		if (retval != -ENOIOCTLCMD)
2865 			return retval;
2866 	}
2867 	ld = tty_ldisc_ref_wait(tty);
2868 	retval = -EINVAL;
2869 	if (ld->ops->ioctl) {
2870 		retval = ld->ops->ioctl(tty, file, cmd, arg);
2871 		if (retval == -ENOIOCTLCMD)
2872 			retval = -ENOTTY;
2873 	}
2874 	tty_ldisc_deref(ld);
2875 	return retval;
2876 }
2877 
2878 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2879 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2880 				unsigned long arg)
2881 {
2882 	struct tty_struct *tty = file_tty(file);
2883 	struct tty_ldisc *ld;
2884 	int retval = -ENOIOCTLCMD;
2885 
2886 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2887 		return -EINVAL;
2888 
2889 	if (tty->ops->compat_ioctl) {
2890 		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2891 		if (retval != -ENOIOCTLCMD)
2892 			return retval;
2893 	}
2894 
2895 	ld = tty_ldisc_ref_wait(tty);
2896 	if (ld->ops->compat_ioctl)
2897 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2898 	else
2899 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2900 	tty_ldisc_deref(ld);
2901 
2902 	return retval;
2903 }
2904 #endif
2905 
this_tty(const void * t,struct file * file,unsigned fd)2906 static int this_tty(const void *t, struct file *file, unsigned fd)
2907 {
2908 	if (likely(file->f_op->read != tty_read))
2909 		return 0;
2910 	return file_tty(file) != t ? 0 : fd + 1;
2911 }
2912 
2913 /*
2914  * This implements the "Secure Attention Key" ---  the idea is to
2915  * prevent trojan horses by killing all processes associated with this
2916  * tty when the user hits the "Secure Attention Key".  Required for
2917  * super-paranoid applications --- see the Orange Book for more details.
2918  *
2919  * This code could be nicer; ideally it should send a HUP, wait a few
2920  * seconds, then send a INT, and then a KILL signal.  But you then
2921  * have to coordinate with the init process, since all processes associated
2922  * with the current tty must be dead before the new getty is allowed
2923  * to spawn.
2924  *
2925  * Now, if it would be correct ;-/ The current code has a nasty hole -
2926  * it doesn't catch files in flight. We may send the descriptor to ourselves
2927  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2928  *
2929  * Nasty bug: do_SAK is being called in interrupt context.  This can
2930  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2931  */
__do_SAK(struct tty_struct * tty)2932 void __do_SAK(struct tty_struct *tty)
2933 {
2934 #ifdef TTY_SOFT_SAK
2935 	tty_hangup(tty);
2936 #else
2937 	struct task_struct *g, *p;
2938 	struct pid *session;
2939 	int		i;
2940 
2941 	if (!tty)
2942 		return;
2943 	session = tty->session;
2944 
2945 	tty_ldisc_flush(tty);
2946 
2947 	tty_driver_flush_buffer(tty);
2948 
2949 	read_lock(&tasklist_lock);
2950 	/* Kill the entire session */
2951 	do_each_pid_task(session, PIDTYPE_SID, p) {
2952 		printk(KERN_NOTICE "SAK: killed process %d"
2953 			" (%s): task_session(p)==tty->session\n",
2954 			task_pid_nr(p), p->comm);
2955 		send_sig(SIGKILL, p, 1);
2956 	} while_each_pid_task(session, PIDTYPE_SID, p);
2957 	/* Now kill any processes that happen to have the
2958 	 * tty open.
2959 	 */
2960 	do_each_thread(g, p) {
2961 		if (p->signal->tty == tty) {
2962 			printk(KERN_NOTICE "SAK: killed process %d"
2963 			    " (%s): task_session(p)==tty->session\n",
2964 			    task_pid_nr(p), p->comm);
2965 			send_sig(SIGKILL, p, 1);
2966 			continue;
2967 		}
2968 		task_lock(p);
2969 		i = iterate_fd(p->files, 0, this_tty, tty);
2970 		if (i != 0) {
2971 			printk(KERN_NOTICE "SAK: killed process %d"
2972 			    " (%s): fd#%d opened to the tty\n",
2973 				    task_pid_nr(p), p->comm, i - 1);
2974 			force_sig(SIGKILL, p);
2975 		}
2976 		task_unlock(p);
2977 	} while_each_thread(g, p);
2978 	read_unlock(&tasklist_lock);
2979 #endif
2980 }
2981 
do_SAK_work(struct work_struct * work)2982 static void do_SAK_work(struct work_struct *work)
2983 {
2984 	struct tty_struct *tty =
2985 		container_of(work, struct tty_struct, SAK_work);
2986 	__do_SAK(tty);
2987 }
2988 
2989 /*
2990  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2991  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2992  * the values which we write to it will be identical to the values which it
2993  * already has. --akpm
2994  */
do_SAK(struct tty_struct * tty)2995 void do_SAK(struct tty_struct *tty)
2996 {
2997 	if (!tty)
2998 		return;
2999 	schedule_work(&tty->SAK_work);
3000 }
3001 
3002 EXPORT_SYMBOL(do_SAK);
3003 
dev_match_devt(struct device * dev,const void * data)3004 static int dev_match_devt(struct device *dev, const void *data)
3005 {
3006 	const dev_t *devt = data;
3007 	return dev->devt == *devt;
3008 }
3009 
3010 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3011 static struct device *tty_get_device(struct tty_struct *tty)
3012 {
3013 	dev_t devt = tty_devnum(tty);
3014 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3015 }
3016 
3017 
3018 /**
3019  *	initialize_tty_struct
3020  *	@tty: tty to initialize
3021  *
3022  *	This subroutine initializes a tty structure that has been newly
3023  *	allocated.
3024  *
3025  *	Locking: none - tty in question must not be exposed at this point
3026  */
3027 
initialize_tty_struct(struct tty_struct * tty,struct tty_driver * driver,int idx)3028 void initialize_tty_struct(struct tty_struct *tty,
3029 		struct tty_driver *driver, int idx)
3030 {
3031 	memset(tty, 0, sizeof(struct tty_struct));
3032 	kref_init(&tty->kref);
3033 	tty->magic = TTY_MAGIC;
3034 	tty_ldisc_init(tty);
3035 	tty->session = NULL;
3036 	tty->pgrp = NULL;
3037 	mutex_init(&tty->legacy_mutex);
3038 	mutex_init(&tty->termios_mutex);
3039 	mutex_init(&tty->ldisc_mutex);
3040 	init_waitqueue_head(&tty->write_wait);
3041 	init_waitqueue_head(&tty->read_wait);
3042 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3043 	mutex_init(&tty->atomic_write_lock);
3044 	spin_lock_init(&tty->ctrl_lock);
3045 	INIT_LIST_HEAD(&tty->tty_files);
3046 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3047 
3048 	tty->driver = driver;
3049 	tty->ops = driver->ops;
3050 	tty->index = idx;
3051 	tty_line_name(driver, idx, tty->name);
3052 	tty->dev = tty_get_device(tty);
3053 }
3054 
3055 /**
3056  *	deinitialize_tty_struct
3057  *	@tty: tty to deinitialize
3058  *
3059  *	This subroutine deinitializes a tty structure that has been newly
3060  *	allocated but tty_release cannot be called on that yet.
3061  *
3062  *	Locking: none - tty in question must not be exposed at this point
3063  */
deinitialize_tty_struct(struct tty_struct * tty)3064 void deinitialize_tty_struct(struct tty_struct *tty)
3065 {
3066 	tty_ldisc_deinit(tty);
3067 }
3068 
3069 /**
3070  *	tty_put_char	-	write one character to a tty
3071  *	@tty: tty
3072  *	@ch: character
3073  *
3074  *	Write one byte to the tty using the provided put_char method
3075  *	if present. Returns the number of characters successfully output.
3076  *
3077  *	Note: the specific put_char operation in the driver layer may go
3078  *	away soon. Don't call it directly, use this method
3079  */
3080 
tty_put_char(struct tty_struct * tty,unsigned char ch)3081 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3082 {
3083 	if (tty->ops->put_char)
3084 		return tty->ops->put_char(tty, ch);
3085 	return tty->ops->write(tty, &ch, 1);
3086 }
3087 EXPORT_SYMBOL_GPL(tty_put_char);
3088 
3089 struct class *tty_class;
3090 
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3091 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3092 		unsigned int index, unsigned int count)
3093 {
3094 	/* init here, since reused cdevs cause crashes */
3095 	cdev_init(&driver->cdevs[index], &tty_fops);
3096 	driver->cdevs[index].owner = driver->owner;
3097 	return cdev_add(&driver->cdevs[index], dev, count);
3098 }
3099 
3100 /**
3101  *	tty_register_device - register a tty device
3102  *	@driver: the tty driver that describes the tty device
3103  *	@index: the index in the tty driver for this tty device
3104  *	@device: a struct device that is associated with this tty device.
3105  *		This field is optional, if there is no known struct device
3106  *		for this tty device it can be set to NULL safely.
3107  *
3108  *	Returns a pointer to the struct device for this tty device
3109  *	(or ERR_PTR(-EFOO) on error).
3110  *
3111  *	This call is required to be made to register an individual tty device
3112  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3113  *	that bit is not set, this function should not be called by a tty
3114  *	driver.
3115  *
3116  *	Locking: ??
3117  */
3118 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3119 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3120 				   struct device *device)
3121 {
3122 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3123 }
3124 EXPORT_SYMBOL(tty_register_device);
3125 
tty_device_create_release(struct device * dev)3126 static void tty_device_create_release(struct device *dev)
3127 {
3128 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3129 	kfree(dev);
3130 }
3131 
3132 /**
3133  *	tty_register_device_attr - register a tty device
3134  *	@driver: the tty driver that describes the tty device
3135  *	@index: the index in the tty driver for this tty device
3136  *	@device: a struct device that is associated with this tty device.
3137  *		This field is optional, if there is no known struct device
3138  *		for this tty device it can be set to NULL safely.
3139  *	@drvdata: Driver data to be set to device.
3140  *	@attr_grp: Attribute group to be set on device.
3141  *
3142  *	Returns a pointer to the struct device for this tty device
3143  *	(or ERR_PTR(-EFOO) on error).
3144  *
3145  *	This call is required to be made to register an individual tty device
3146  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3147  *	that bit is not set, this function should not be called by a tty
3148  *	driver.
3149  *
3150  *	Locking: ??
3151  */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3152 struct device *tty_register_device_attr(struct tty_driver *driver,
3153 				   unsigned index, struct device *device,
3154 				   void *drvdata,
3155 				   const struct attribute_group **attr_grp)
3156 {
3157 	char name[64];
3158 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3159 	struct device *dev = NULL;
3160 	int retval = -ENODEV;
3161 	bool cdev = false;
3162 
3163 	if (index >= driver->num) {
3164 		printk(KERN_ERR "Attempt to register invalid tty line number "
3165 		       " (%d).\n", index);
3166 		return ERR_PTR(-EINVAL);
3167 	}
3168 
3169 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3170 		pty_line_name(driver, index, name);
3171 	else
3172 		tty_line_name(driver, index, name);
3173 
3174 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3175 		retval = tty_cdev_add(driver, devt, index, 1);
3176 		if (retval)
3177 			goto error;
3178 		cdev = true;
3179 	}
3180 
3181 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3182 	if (!dev) {
3183 		retval = -ENOMEM;
3184 		goto error;
3185 	}
3186 
3187 	dev->devt = devt;
3188 	dev->class = tty_class;
3189 	dev->parent = device;
3190 	dev->release = tty_device_create_release;
3191 	dev_set_name(dev, "%s", name);
3192 	dev->groups = attr_grp;
3193 	dev_set_drvdata(dev, drvdata);
3194 
3195 	retval = device_register(dev);
3196 	if (retval)
3197 		goto error;
3198 
3199 	return dev;
3200 
3201 error:
3202 	put_device(dev);
3203 	if (cdev)
3204 		cdev_del(&driver->cdevs[index]);
3205 	return ERR_PTR(retval);
3206 }
3207 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3208 
3209 /**
3210  * 	tty_unregister_device - unregister a tty device
3211  * 	@driver: the tty driver that describes the tty device
3212  * 	@index: the index in the tty driver for this tty device
3213  *
3214  * 	If a tty device is registered with a call to tty_register_device() then
3215  *	this function must be called when the tty device is gone.
3216  *
3217  *	Locking: ??
3218  */
3219 
tty_unregister_device(struct tty_driver * driver,unsigned index)3220 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3221 {
3222 	device_destroy(tty_class,
3223 		MKDEV(driver->major, driver->minor_start) + index);
3224 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3225 		cdev_del(&driver->cdevs[index]);
3226 }
3227 EXPORT_SYMBOL(tty_unregister_device);
3228 
3229 /**
3230  * __tty_alloc_driver -- allocate tty driver
3231  * @lines: count of lines this driver can handle at most
3232  * @owner: module which is repsonsible for this driver
3233  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3234  *
3235  * This should not be called directly, some of the provided macros should be
3236  * used instead. Use IS_ERR and friends on @retval.
3237  */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3238 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3239 		unsigned long flags)
3240 {
3241 	struct tty_driver *driver;
3242 	unsigned int cdevs = 1;
3243 	int err;
3244 
3245 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3246 		return ERR_PTR(-EINVAL);
3247 
3248 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3249 	if (!driver)
3250 		return ERR_PTR(-ENOMEM);
3251 
3252 	kref_init(&driver->kref);
3253 	driver->magic = TTY_DRIVER_MAGIC;
3254 	driver->num = lines;
3255 	driver->owner = owner;
3256 	driver->flags = flags;
3257 
3258 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3259 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3260 				GFP_KERNEL);
3261 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3262 				GFP_KERNEL);
3263 		if (!driver->ttys || !driver->termios) {
3264 			err = -ENOMEM;
3265 			goto err_free_all;
3266 		}
3267 	}
3268 
3269 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3270 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3271 				GFP_KERNEL);
3272 		if (!driver->ports) {
3273 			err = -ENOMEM;
3274 			goto err_free_all;
3275 		}
3276 		cdevs = lines;
3277 	}
3278 
3279 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3280 	if (!driver->cdevs) {
3281 		err = -ENOMEM;
3282 		goto err_free_all;
3283 	}
3284 
3285 	return driver;
3286 err_free_all:
3287 	kfree(driver->ports);
3288 	kfree(driver->ttys);
3289 	kfree(driver->termios);
3290 	kfree(driver);
3291 	return ERR_PTR(err);
3292 }
3293 EXPORT_SYMBOL(__tty_alloc_driver);
3294 
destruct_tty_driver(struct kref * kref)3295 static void destruct_tty_driver(struct kref *kref)
3296 {
3297 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3298 	int i;
3299 	struct ktermios *tp;
3300 
3301 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3302 		/*
3303 		 * Free the termios and termios_locked structures because
3304 		 * we don't want to get memory leaks when modular tty
3305 		 * drivers are removed from the kernel.
3306 		 */
3307 		for (i = 0; i < driver->num; i++) {
3308 			tp = driver->termios[i];
3309 			if (tp) {
3310 				driver->termios[i] = NULL;
3311 				kfree(tp);
3312 			}
3313 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3314 				tty_unregister_device(driver, i);
3315 		}
3316 		proc_tty_unregister_driver(driver);
3317 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3318 			cdev_del(&driver->cdevs[0]);
3319 	}
3320 	kfree(driver->cdevs);
3321 	kfree(driver->ports);
3322 	kfree(driver->termios);
3323 	kfree(driver->ttys);
3324 	kfree(driver);
3325 }
3326 
tty_driver_kref_put(struct tty_driver * driver)3327 void tty_driver_kref_put(struct tty_driver *driver)
3328 {
3329 	kref_put(&driver->kref, destruct_tty_driver);
3330 }
3331 EXPORT_SYMBOL(tty_driver_kref_put);
3332 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3333 void tty_set_operations(struct tty_driver *driver,
3334 			const struct tty_operations *op)
3335 {
3336 	driver->ops = op;
3337 };
3338 EXPORT_SYMBOL(tty_set_operations);
3339 
put_tty_driver(struct tty_driver * d)3340 void put_tty_driver(struct tty_driver *d)
3341 {
3342 	tty_driver_kref_put(d);
3343 }
3344 EXPORT_SYMBOL(put_tty_driver);
3345 
3346 /*
3347  * Called by a tty driver to register itself.
3348  */
tty_register_driver(struct tty_driver * driver)3349 int tty_register_driver(struct tty_driver *driver)
3350 {
3351 	int error;
3352 	int i;
3353 	dev_t dev;
3354 	struct device *d;
3355 
3356 	if (!driver->major) {
3357 		error = alloc_chrdev_region(&dev, driver->minor_start,
3358 						driver->num, driver->name);
3359 		if (!error) {
3360 			driver->major = MAJOR(dev);
3361 			driver->minor_start = MINOR(dev);
3362 		}
3363 	} else {
3364 		dev = MKDEV(driver->major, driver->minor_start);
3365 		error = register_chrdev_region(dev, driver->num, driver->name);
3366 	}
3367 	if (error < 0)
3368 		goto err;
3369 
3370 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3371 		error = tty_cdev_add(driver, dev, 0, driver->num);
3372 		if (error)
3373 			goto err_unreg_char;
3374 	}
3375 
3376 	mutex_lock(&tty_mutex);
3377 	list_add(&driver->tty_drivers, &tty_drivers);
3378 	mutex_unlock(&tty_mutex);
3379 
3380 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3381 		for (i = 0; i < driver->num; i++) {
3382 			d = tty_register_device(driver, i, NULL);
3383 			if (IS_ERR(d)) {
3384 				error = PTR_ERR(d);
3385 				goto err_unreg_devs;
3386 			}
3387 		}
3388 	}
3389 	proc_tty_register_driver(driver);
3390 	driver->flags |= TTY_DRIVER_INSTALLED;
3391 	return 0;
3392 
3393 err_unreg_devs:
3394 	for (i--; i >= 0; i--)
3395 		tty_unregister_device(driver, i);
3396 
3397 	mutex_lock(&tty_mutex);
3398 	list_del(&driver->tty_drivers);
3399 	mutex_unlock(&tty_mutex);
3400 
3401 err_unreg_char:
3402 	unregister_chrdev_region(dev, driver->num);
3403 err:
3404 	return error;
3405 }
3406 EXPORT_SYMBOL(tty_register_driver);
3407 
3408 /*
3409  * Called by a tty driver to unregister itself.
3410  */
tty_unregister_driver(struct tty_driver * driver)3411 int tty_unregister_driver(struct tty_driver *driver)
3412 {
3413 #if 0
3414 	/* FIXME */
3415 	if (driver->refcount)
3416 		return -EBUSY;
3417 #endif
3418 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3419 				driver->num);
3420 	mutex_lock(&tty_mutex);
3421 	list_del(&driver->tty_drivers);
3422 	mutex_unlock(&tty_mutex);
3423 	return 0;
3424 }
3425 
3426 EXPORT_SYMBOL(tty_unregister_driver);
3427 
tty_devnum(struct tty_struct * tty)3428 dev_t tty_devnum(struct tty_struct *tty)
3429 {
3430 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3431 }
3432 EXPORT_SYMBOL(tty_devnum);
3433 
proc_clear_tty(struct task_struct * p)3434 void proc_clear_tty(struct task_struct *p)
3435 {
3436 	unsigned long flags;
3437 	struct tty_struct *tty;
3438 	spin_lock_irqsave(&p->sighand->siglock, flags);
3439 	tty = p->signal->tty;
3440 	p->signal->tty = NULL;
3441 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3442 	tty_kref_put(tty);
3443 }
3444 
3445 /* Called under the sighand lock */
3446 
__proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3447 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3448 {
3449 	if (tty) {
3450 		unsigned long flags;
3451 		/* We should not have a session or pgrp to put here but.... */
3452 		spin_lock_irqsave(&tty->ctrl_lock, flags);
3453 		put_pid(tty->session);
3454 		put_pid(tty->pgrp);
3455 		tty->pgrp = get_pid(task_pgrp(tsk));
3456 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3457 		tty->session = get_pid(task_session(tsk));
3458 		if (tsk->signal->tty) {
3459 			printk(KERN_DEBUG "tty not NULL!!\n");
3460 			tty_kref_put(tsk->signal->tty);
3461 		}
3462 	}
3463 	put_pid(tsk->signal->tty_old_pgrp);
3464 	tsk->signal->tty = tty_kref_get(tty);
3465 	tsk->signal->tty_old_pgrp = NULL;
3466 }
3467 
proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3468 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3469 {
3470 	spin_lock_irq(&tsk->sighand->siglock);
3471 	__proc_set_tty(tsk, tty);
3472 	spin_unlock_irq(&tsk->sighand->siglock);
3473 }
3474 
get_current_tty(void)3475 struct tty_struct *get_current_tty(void)
3476 {
3477 	struct tty_struct *tty;
3478 	unsigned long flags;
3479 
3480 	spin_lock_irqsave(&current->sighand->siglock, flags);
3481 	tty = tty_kref_get(current->signal->tty);
3482 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3483 	return tty;
3484 }
3485 EXPORT_SYMBOL_GPL(get_current_tty);
3486 
tty_default_fops(struct file_operations * fops)3487 void tty_default_fops(struct file_operations *fops)
3488 {
3489 	*fops = tty_fops;
3490 }
3491 
3492 /*
3493  * Initialize the console device. This is called *early*, so
3494  * we can't necessarily depend on lots of kernel help here.
3495  * Just do some early initializations, and do the complex setup
3496  * later.
3497  */
console_init(void)3498 void __init console_init(void)
3499 {
3500 	initcall_t *call;
3501 
3502 	/* Setup the default TTY line discipline. */
3503 	tty_ldisc_begin();
3504 
3505 	/*
3506 	 * set up the console device so that later boot sequences can
3507 	 * inform about problems etc..
3508 	 */
3509 	call = __con_initcall_start;
3510 	while (call < __con_initcall_end) {
3511 		(*call)();
3512 		call++;
3513 	}
3514 }
3515 
tty_devnode(struct device * dev,umode_t * mode)3516 static char *tty_devnode(struct device *dev, umode_t *mode)
3517 {
3518 	if (!mode)
3519 		return NULL;
3520 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3521 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3522 		*mode = 0666;
3523 	return NULL;
3524 }
3525 
tty_class_init(void)3526 static int __init tty_class_init(void)
3527 {
3528 	tty_class = class_create(THIS_MODULE, "tty");
3529 	if (IS_ERR(tty_class))
3530 		return PTR_ERR(tty_class);
3531 	tty_class->devnode = tty_devnode;
3532 	return 0;
3533 }
3534 
3535 postcore_initcall(tty_class_init);
3536 
3537 /* 3/2004 jmc: why do these devices exist? */
3538 static struct cdev tty_cdev, console_cdev;
3539 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3540 static ssize_t show_cons_active(struct device *dev,
3541 				struct device_attribute *attr, char *buf)
3542 {
3543 	struct console *cs[16];
3544 	int i = 0;
3545 	struct console *c;
3546 	ssize_t count = 0;
3547 
3548 	console_lock();
3549 	for_each_console(c) {
3550 		if (!c->device)
3551 			continue;
3552 		if (!c->write)
3553 			continue;
3554 		if ((c->flags & CON_ENABLED) == 0)
3555 			continue;
3556 		cs[i++] = c;
3557 		if (i >= ARRAY_SIZE(cs))
3558 			break;
3559 	}
3560 	while (i--)
3561 		count += sprintf(buf + count, "%s%d%c",
3562 				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3563 	console_unlock();
3564 
3565 	return count;
3566 }
3567 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3568 
3569 static struct device *consdev;
3570 
console_sysfs_notify(void)3571 void console_sysfs_notify(void)
3572 {
3573 	if (consdev)
3574 		sysfs_notify(&consdev->kobj, NULL, "active");
3575 }
3576 
3577 /*
3578  * Ok, now we can initialize the rest of the tty devices and can count
3579  * on memory allocations, interrupts etc..
3580  */
tty_init(void)3581 int __init tty_init(void)
3582 {
3583 	cdev_init(&tty_cdev, &tty_fops);
3584 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3585 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3586 		panic("Couldn't register /dev/tty driver\n");
3587 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3588 
3589 	cdev_init(&console_cdev, &console_fops);
3590 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3591 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3592 		panic("Couldn't register /dev/console driver\n");
3593 	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3594 			      "console");
3595 	if (IS_ERR(consdev))
3596 		consdev = NULL;
3597 	else
3598 		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3599 
3600 #ifdef CONFIG_VT
3601 	vty_init(&console_fops);
3602 #endif
3603 	return 0;
3604 }
3605 
3606