1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
alloc_tty_struct(void)168 struct tty_struct *alloc_tty_struct(void)
169 {
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
free_tty_struct(struct tty_struct * tty)182 void free_tty_struct(struct tty_struct *tty)
183 {
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
191 }
192
file_tty(struct file * file)193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195 return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
tty_alloc_file(struct file * file)198 int tty_alloc_file(struct file *file)
199 {
200 struct tty_file_private *priv;
201
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
205
206 file->private_data = priv;
207
208 return 0;
209 }
210
211 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214 struct tty_file_private *priv = file->private_data;
215
216 priv->tty = tty;
217 priv->file = file;
218
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
222 }
223
224 /**
225 * tty_free_file - free file->private_data
226 *
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
229 */
tty_free_file(struct file * file)230 void tty_free_file(struct file *file)
231 {
232 struct tty_file_private *priv = file->private_data;
233
234 file->private_data = NULL;
235 kfree(priv);
236 }
237
238 /* Delete file from its tty */
tty_del_file(struct file * file)239 static void tty_del_file(struct file *file)
240 {
241 struct tty_file_private *priv = file->private_data;
242
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
256 *
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
259 *
260 * Locking: none
261 */
262
tty_name(struct tty_struct * tty,char * buf)263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
283 }
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
289 }
290 #endif
291 return 0;
292 }
293
check_tty_count(struct tty_struct * tty,const char * routine)294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
299
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
303 }
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
314 }
315 #endif
316 return 0;
317 }
318
319 /**
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
323 *
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
326 *
327 * Locking: caller must hold tty_mutex
328 */
329
get_tty_driver(dev_t device,int * index)330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332 struct tty_driver *p;
333
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
340 }
341 return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
350 *
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
354 */
tty_find_polling_driver(char * name,int * line)355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
361
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
367
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
370
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
381
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
387 }
388 }
389 mutex_unlock(&tty_mutex);
390
391 return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
399 *
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
403 *
404 * Locking: ctrl_lock
405 */
406
tty_check_change(struct tty_struct * tty)407 int tty_check_change(struct tty_struct *tty)
408 {
409 unsigned long flags;
410 int ret = 0;
411
412 if (current->signal->tty != tty)
413 return 0;
414
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
420 }
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
429 }
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
444 {
445 return 0;
446 }
447
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
450 {
451 return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
462 {
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
468 {
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510 * tty_wakeup - request more data
511 * @tty: terminal
512 *
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
516 */
517
tty_wakeup(struct tty_struct * tty)518 void tty_wakeup(struct tty_struct *tty)
519 {
520 struct tty_ldisc *ld;
521
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
528 }
529 }
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
539 *
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
542 *
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
546 */
tty_signal_session_leader(struct tty_struct * tty,int exit_session)547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
552
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
562 }
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
566 }
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577 }
578 read_unlock(&tasklist_lock);
579
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
584 }
585
586 return refs;
587 }
588
589 /**
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
592 *
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
596 *
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
601 *
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldisc_lock from called functions
607 * termios_mutex resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
610 */
__tty_hangup(struct tty_struct * tty,int exit_session)611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
618
619 if (!tty)
620 return;
621
622
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
627 }
628 spin_unlock(&redirect_lock);
629
630 tty_lock(tty);
631
632 /* some functions below drop BTM, so we need this bit */
633 set_bit(TTY_HUPPING, &tty->flags);
634
635 /* inuse_filps is protected by the single tty lock,
636 this really needs to change if we want to flush the
637 workqueue with the lock held */
638 check_tty_count(tty, "tty_hangup");
639
640 spin_lock(&tty_files_lock);
641 /* This breaks for file handles being sent over AF_UNIX sockets ? */
642 list_for_each_entry(priv, &tty->tty_files, list) {
643 filp = priv->file;
644 if (filp->f_op->write == redirected_tty_write)
645 cons_filp = filp;
646 if (filp->f_op->write != tty_write)
647 continue;
648 closecount++;
649 __tty_fasync(-1, filp, 0); /* can't block */
650 filp->f_op = &hung_up_tty_fops;
651 }
652 spin_unlock(&tty_files_lock);
653
654 refs = tty_signal_session_leader(tty, exit_session);
655 /* Account for the p->signal references we killed */
656 while (refs--)
657 tty_kref_put(tty);
658
659 /*
660 * it drops BTM and thus races with reopen
661 * we protect the race by TTY_HUPPING
662 */
663 tty_ldisc_hangup(tty);
664
665 spin_lock_irq(&tty->ctrl_lock);
666 clear_bit(TTY_THROTTLED, &tty->flags);
667 clear_bit(TTY_PUSH, &tty->flags);
668 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669 put_pid(tty->session);
670 put_pid(tty->pgrp);
671 tty->session = NULL;
672 tty->pgrp = NULL;
673 tty->ctrl_status = 0;
674 spin_unlock_irq(&tty->ctrl_lock);
675
676 /*
677 * If one of the devices matches a console pointer, we
678 * cannot just call hangup() because that will cause
679 * tty->count and state->count to go out of sync.
680 * So we just call close() the right number of times.
681 */
682 if (cons_filp) {
683 if (tty->ops->close)
684 for (n = 0; n < closecount; n++)
685 tty->ops->close(tty, cons_filp);
686 } else if (tty->ops->hangup)
687 (tty->ops->hangup)(tty);
688 /*
689 * We don't want to have driver/ldisc interactions beyond
690 * the ones we did here. The driver layer expects no
691 * calls after ->hangup() from the ldisc side. However we
692 * can't yet guarantee all that.
693 */
694 set_bit(TTY_HUPPED, &tty->flags);
695 clear_bit(TTY_HUPPING, &tty->flags);
696
697 tty_unlock(tty);
698
699 if (f)
700 fput(f);
701 }
702
do_tty_hangup(struct work_struct * work)703 static void do_tty_hangup(struct work_struct *work)
704 {
705 struct tty_struct *tty =
706 container_of(work, struct tty_struct, hangup_work);
707
708 __tty_hangup(tty, 0);
709 }
710
711 /**
712 * tty_hangup - trigger a hangup event
713 * @tty: tty to hangup
714 *
715 * A carrier loss (virtual or otherwise) has occurred on this like
716 * schedule a hangup sequence to run after this event.
717 */
718
tty_hangup(struct tty_struct * tty)719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722 char buf[64];
723 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725 schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731 * tty_vhangup - process vhangup
732 * @tty: tty to hangup
733 *
734 * The user has asked via system call for the terminal to be hung up.
735 * We do this synchronously so that when the syscall returns the process
736 * is complete. That guarantee is necessary for security reasons.
737 */
738
tty_vhangup(struct tty_struct * tty)739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742 char buf[64];
743
744 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746 __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753 * tty_vhangup_self - process vhangup for own ctty
754 *
755 * Perform a vhangup on the current controlling tty
756 */
757
tty_vhangup_self(void)758 void tty_vhangup_self(void)
759 {
760 struct tty_struct *tty;
761
762 tty = get_current_tty();
763 if (tty) {
764 tty_vhangup(tty);
765 tty_kref_put(tty);
766 }
767 }
768
769 /**
770 * tty_vhangup_session - hangup session leader exit
771 * @tty: tty to hangup
772 *
773 * The session leader is exiting and hanging up its controlling terminal.
774 * Every process in the foreground process group is signalled SIGHUP.
775 *
776 * We do this synchronously so that when the syscall returns the process
777 * is complete. That guarantee is necessary for security reasons.
778 */
779
tty_vhangup_session(struct tty_struct * tty)780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783 char buf[64];
784
785 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787 __tty_hangup(tty, 1);
788 }
789
790 /**
791 * tty_hung_up_p - was tty hung up
792 * @filp: file pointer of tty
793 *
794 * Return true if the tty has been subject to a vhangup or a carrier
795 * loss
796 */
797
tty_hung_up_p(struct file * filp)798 int tty_hung_up_p(struct file *filp)
799 {
800 return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
session_clear_tty(struct pid * session)805 static void session_clear_tty(struct pid *session)
806 {
807 struct task_struct *p;
808 do_each_pid_task(session, PIDTYPE_SID, p) {
809 proc_clear_tty(p);
810 } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814 * disassociate_ctty - disconnect controlling tty
815 * @on_exit: true if exiting so need to "hang up" the session
816 *
817 * This function is typically called only by the session leader, when
818 * it wants to disassociate itself from its controlling tty.
819 *
820 * It performs the following functions:
821 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
822 * (2) Clears the tty from being controlling the session
823 * (3) Clears the controlling tty for all processes in the
824 * session group.
825 *
826 * The argument on_exit is set to 1 if called when a process is
827 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
828 *
829 * Locking:
830 * BTM is taken for hysterical raisins, and held when
831 * called from no_tty().
832 * tty_mutex is taken to protect tty
833 * ->siglock is taken to protect ->signal/->sighand
834 * tasklist_lock is taken to walk process list for sessions
835 * ->siglock is taken to protect ->signal/->sighand
836 */
837
disassociate_ctty(int on_exit)838 void disassociate_ctty(int on_exit)
839 {
840 struct tty_struct *tty;
841
842 if (!current->signal->leader)
843 return;
844
845 tty = get_current_tty();
846 if (tty) {
847 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848 tty_vhangup_session(tty);
849 } else {
850 struct pid *tty_pgrp = tty_get_pgrp(tty);
851 if (tty_pgrp) {
852 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854 put_pid(tty_pgrp);
855 }
856 }
857 tty_kref_put(tty);
858
859 } else if (on_exit) {
860 struct pid *old_pgrp;
861 spin_lock_irq(¤t->sighand->siglock);
862 old_pgrp = current->signal->tty_old_pgrp;
863 current->signal->tty_old_pgrp = NULL;
864 spin_unlock_irq(¤t->sighand->siglock);
865 if (old_pgrp) {
866 kill_pgrp(old_pgrp, SIGHUP, on_exit);
867 kill_pgrp(old_pgrp, SIGCONT, on_exit);
868 put_pid(old_pgrp);
869 }
870 return;
871 }
872
873 spin_lock_irq(¤t->sighand->siglock);
874 put_pid(current->signal->tty_old_pgrp);
875 current->signal->tty_old_pgrp = NULL;
876 spin_unlock_irq(¤t->sighand->siglock);
877
878 tty = get_current_tty();
879 if (tty) {
880 unsigned long flags;
881 spin_lock_irqsave(&tty->ctrl_lock, flags);
882 put_pid(tty->session);
883 put_pid(tty->pgrp);
884 tty->session = NULL;
885 tty->pgrp = NULL;
886 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887 tty_kref_put(tty);
888 } else {
889 #ifdef TTY_DEBUG_HANGUP
890 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891 " = NULL", tty);
892 #endif
893 }
894
895 /* Now clear signal->tty under the lock */
896 read_lock(&tasklist_lock);
897 session_clear_tty(task_session(current));
898 read_unlock(&tasklist_lock);
899 }
900
901 /**
902 *
903 * no_tty - Ensure the current process does not have a controlling tty
904 */
no_tty(void)905 void no_tty(void)
906 {
907 /* FIXME: Review locking here. The tty_lock never covered any race
908 between a new association and proc_clear_tty but possible we need
909 to protect against this anyway */
910 struct task_struct *tsk = current;
911 disassociate_ctty(0);
912 proc_clear_tty(tsk);
913 }
914
915
916 /**
917 * stop_tty - propagate flow control
918 * @tty: tty to stop
919 *
920 * Perform flow control to the driver. For PTY/TTY pairs we
921 * must also propagate the TIOCKPKT status. May be called
922 * on an already stopped device and will not re-call the driver
923 * method.
924 *
925 * This functionality is used by both the line disciplines for
926 * halting incoming flow and by the driver. It may therefore be
927 * called from any context, may be under the tty atomic_write_lock
928 * but not always.
929 *
930 * Locking:
931 * Uses the tty control lock internally
932 */
933
stop_tty(struct tty_struct * tty)934 void stop_tty(struct tty_struct *tty)
935 {
936 unsigned long flags;
937 spin_lock_irqsave(&tty->ctrl_lock, flags);
938 if (tty->stopped) {
939 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 return;
941 }
942 tty->stopped = 1;
943 if (tty->link && tty->link->packet) {
944 tty->ctrl_status &= ~TIOCPKT_START;
945 tty->ctrl_status |= TIOCPKT_STOP;
946 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947 }
948 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949 if (tty->ops->stop)
950 (tty->ops->stop)(tty);
951 }
952
953 EXPORT_SYMBOL(stop_tty);
954
955 /**
956 * start_tty - propagate flow control
957 * @tty: tty to start
958 *
959 * Start a tty that has been stopped if at all possible. Perform
960 * any necessary wakeups and propagate the TIOCPKT status. If this
961 * is the tty was previous stopped and is being started then the
962 * driver start method is invoked and the line discipline woken.
963 *
964 * Locking:
965 * ctrl_lock
966 */
967
start_tty(struct tty_struct * tty)968 void start_tty(struct tty_struct *tty)
969 {
970 unsigned long flags;
971 spin_lock_irqsave(&tty->ctrl_lock, flags);
972 if (!tty->stopped || tty->flow_stopped) {
973 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974 return;
975 }
976 tty->stopped = 0;
977 if (tty->link && tty->link->packet) {
978 tty->ctrl_status &= ~TIOCPKT_STOP;
979 tty->ctrl_status |= TIOCPKT_START;
980 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981 }
982 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983 if (tty->ops->start)
984 (tty->ops->start)(tty);
985 /* If we have a running line discipline it may need kicking */
986 tty_wakeup(tty);
987 }
988
989 EXPORT_SYMBOL(start_tty);
990
991 /* We limit tty time update visibility to every 8 seconds or so. */
tty_update_time(struct timespec * time)992 static void tty_update_time(struct timespec *time)
993 {
994 unsigned long sec = get_seconds() & ~7;
995 if ((long)(sec - time->tv_sec) > 0)
996 time->tv_sec = sec;
997 }
998
999 /**
1000 * tty_read - read method for tty device files
1001 * @file: pointer to tty file
1002 * @buf: user buffer
1003 * @count: size of user buffer
1004 * @ppos: unused
1005 *
1006 * Perform the read system call function on this terminal device. Checks
1007 * for hung up devices before calling the line discipline method.
1008 *
1009 * Locking:
1010 * Locks the line discipline internally while needed. Multiple
1011 * read calls may be outstanding in parallel.
1012 */
1013
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1014 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1015 loff_t *ppos)
1016 {
1017 int i;
1018 struct inode *inode = file_inode(file);
1019 struct tty_struct *tty = file_tty(file);
1020 struct tty_ldisc *ld;
1021
1022 if (tty_paranoia_check(tty, inode, "tty_read"))
1023 return -EIO;
1024 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1025 return -EIO;
1026
1027 /* We want to wait for the line discipline to sort out in this
1028 situation */
1029 ld = tty_ldisc_ref_wait(tty);
1030 if (ld->ops->read)
1031 i = (ld->ops->read)(tty, file, buf, count);
1032 else
1033 i = -EIO;
1034 tty_ldisc_deref(ld);
1035
1036 if (i > 0)
1037 tty_update_time(&inode->i_atime);
1038
1039 return i;
1040 }
1041
tty_write_unlock(struct tty_struct * tty)1042 void tty_write_unlock(struct tty_struct *tty)
1043 __releases(&tty->atomic_write_lock)
1044 {
1045 mutex_unlock(&tty->atomic_write_lock);
1046 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1047 }
1048
tty_write_lock(struct tty_struct * tty,int ndelay)1049 int tty_write_lock(struct tty_struct *tty, int ndelay)
1050 __acquires(&tty->atomic_write_lock)
1051 {
1052 if (!mutex_trylock(&tty->atomic_write_lock)) {
1053 if (ndelay)
1054 return -EAGAIN;
1055 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1056 return -ERESTARTSYS;
1057 }
1058 return 0;
1059 }
1060
1061 /*
1062 * Split writes up in sane blocksizes to avoid
1063 * denial-of-service type attacks
1064 */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)1065 static inline ssize_t do_tty_write(
1066 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1067 struct tty_struct *tty,
1068 struct file *file,
1069 const char __user *buf,
1070 size_t count)
1071 {
1072 ssize_t ret, written = 0;
1073 unsigned int chunk;
1074
1075 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1076 if (ret < 0)
1077 return ret;
1078
1079 /*
1080 * We chunk up writes into a temporary buffer. This
1081 * simplifies low-level drivers immensely, since they
1082 * don't have locking issues and user mode accesses.
1083 *
1084 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1085 * big chunk-size..
1086 *
1087 * The default chunk-size is 2kB, because the NTTY
1088 * layer has problems with bigger chunks. It will
1089 * claim to be able to handle more characters than
1090 * it actually does.
1091 *
1092 * FIXME: This can probably go away now except that 64K chunks
1093 * are too likely to fail unless switched to vmalloc...
1094 */
1095 chunk = 2048;
1096 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1097 chunk = 65536;
1098 if (count < chunk)
1099 chunk = count;
1100
1101 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1102 if (tty->write_cnt < chunk) {
1103 unsigned char *buf_chunk;
1104
1105 if (chunk < 1024)
1106 chunk = 1024;
1107
1108 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1109 if (!buf_chunk) {
1110 ret = -ENOMEM;
1111 goto out;
1112 }
1113 kfree(tty->write_buf);
1114 tty->write_cnt = chunk;
1115 tty->write_buf = buf_chunk;
1116 }
1117
1118 /* Do the write .. */
1119 for (;;) {
1120 size_t size = count;
1121 if (size > chunk)
1122 size = chunk;
1123 ret = -EFAULT;
1124 if (copy_from_user(tty->write_buf, buf, size))
1125 break;
1126 ret = write(tty, file, tty->write_buf, size);
1127 if (ret <= 0)
1128 break;
1129 written += ret;
1130 buf += ret;
1131 count -= ret;
1132 if (!count)
1133 break;
1134 ret = -ERESTARTSYS;
1135 if (signal_pending(current))
1136 break;
1137 cond_resched();
1138 }
1139 if (written) {
1140 tty_update_time(&file_inode(file)->i_mtime);
1141 ret = written;
1142 }
1143 out:
1144 tty_write_unlock(tty);
1145 return ret;
1146 }
1147
1148 /**
1149 * tty_write_message - write a message to a certain tty, not just the console.
1150 * @tty: the destination tty_struct
1151 * @msg: the message to write
1152 *
1153 * This is used for messages that need to be redirected to a specific tty.
1154 * We don't put it into the syslog queue right now maybe in the future if
1155 * really needed.
1156 *
1157 * We must still hold the BTM and test the CLOSING flag for the moment.
1158 */
1159
tty_write_message(struct tty_struct * tty,char * msg)1160 void tty_write_message(struct tty_struct *tty, char *msg)
1161 {
1162 if (tty) {
1163 mutex_lock(&tty->atomic_write_lock);
1164 tty_lock(tty);
1165 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1166 tty_unlock(tty);
1167 tty->ops->write(tty, msg, strlen(msg));
1168 } else
1169 tty_unlock(tty);
1170 tty_write_unlock(tty);
1171 }
1172 return;
1173 }
1174
1175
1176 /**
1177 * tty_write - write method for tty device file
1178 * @file: tty file pointer
1179 * @buf: user data to write
1180 * @count: bytes to write
1181 * @ppos: unused
1182 *
1183 * Write data to a tty device via the line discipline.
1184 *
1185 * Locking:
1186 * Locks the line discipline as required
1187 * Writes to the tty driver are serialized by the atomic_write_lock
1188 * and are then processed in chunks to the device. The line discipline
1189 * write method will not be invoked in parallel for each device.
1190 */
1191
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1192 static ssize_t tty_write(struct file *file, const char __user *buf,
1193 size_t count, loff_t *ppos)
1194 {
1195 struct tty_struct *tty = file_tty(file);
1196 struct tty_ldisc *ld;
1197 ssize_t ret;
1198
1199 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1200 return -EIO;
1201 if (!tty || !tty->ops->write ||
1202 (test_bit(TTY_IO_ERROR, &tty->flags)))
1203 return -EIO;
1204 /* Short term debug to catch buggy drivers */
1205 if (tty->ops->write_room == NULL)
1206 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1207 tty->driver->name);
1208 ld = tty_ldisc_ref_wait(tty);
1209 if (!ld->ops->write)
1210 ret = -EIO;
1211 else
1212 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1213 tty_ldisc_deref(ld);
1214 return ret;
1215 }
1216
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1217 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1218 size_t count, loff_t *ppos)
1219 {
1220 struct file *p = NULL;
1221
1222 spin_lock(&redirect_lock);
1223 if (redirect)
1224 p = get_file(redirect);
1225 spin_unlock(&redirect_lock);
1226
1227 if (p) {
1228 ssize_t res;
1229 res = vfs_write(p, buf, count, &p->f_pos);
1230 fput(p);
1231 return res;
1232 }
1233 return tty_write(file, buf, count, ppos);
1234 }
1235
1236 static char ptychar[] = "pqrstuvwxyzabcde";
1237
1238 /**
1239 * pty_line_name - generate name for a pty
1240 * @driver: the tty driver in use
1241 * @index: the minor number
1242 * @p: output buffer of at least 6 bytes
1243 *
1244 * Generate a name from a driver reference and write it to the output
1245 * buffer.
1246 *
1247 * Locking: None
1248 */
pty_line_name(struct tty_driver * driver,int index,char * p)1249 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1250 {
1251 int i = index + driver->name_base;
1252 /* ->name is initialized to "ttyp", but "tty" is expected */
1253 sprintf(p, "%s%c%x",
1254 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1255 ptychar[i >> 4 & 0xf], i & 0xf);
1256 }
1257
1258 /**
1259 * tty_line_name - generate name for a tty
1260 * @driver: the tty driver in use
1261 * @index: the minor number
1262 * @p: output buffer of at least 7 bytes
1263 *
1264 * Generate a name from a driver reference and write it to the output
1265 * buffer.
1266 *
1267 * Locking: None
1268 */
tty_line_name(struct tty_driver * driver,int index,char * p)1269 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1270 {
1271 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1272 strcpy(p, driver->name);
1273 else
1274 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1275 }
1276
1277 /**
1278 * tty_driver_lookup_tty() - find an existing tty, if any
1279 * @driver: the driver for the tty
1280 * @idx: the minor number
1281 *
1282 * Return the tty, if found or ERR_PTR() otherwise.
1283 *
1284 * Locking: tty_mutex must be held. If tty is found, the mutex must
1285 * be held until the 'fast-open' is also done. Will change once we
1286 * have refcounting in the driver and per driver locking
1287 */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1288 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1289 struct inode *inode, int idx)
1290 {
1291 if (driver->ops->lookup)
1292 return driver->ops->lookup(driver, inode, idx);
1293
1294 return driver->ttys[idx];
1295 }
1296
1297 /**
1298 * tty_init_termios - helper for termios setup
1299 * @tty: the tty to set up
1300 *
1301 * Initialise the termios structures for this tty. Thus runs under
1302 * the tty_mutex currently so we can be relaxed about ordering.
1303 */
1304
tty_init_termios(struct tty_struct * tty)1305 int tty_init_termios(struct tty_struct *tty)
1306 {
1307 struct ktermios *tp;
1308 int idx = tty->index;
1309
1310 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1311 tty->termios = tty->driver->init_termios;
1312 else {
1313 /* Check for lazy saved data */
1314 tp = tty->driver->termios[idx];
1315 if (tp != NULL)
1316 tty->termios = *tp;
1317 else
1318 tty->termios = tty->driver->init_termios;
1319 }
1320 /* Compatibility until drivers always set this */
1321 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1322 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(tty_init_termios);
1326
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1327 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1328 {
1329 int ret = tty_init_termios(tty);
1330 if (ret)
1331 return ret;
1332
1333 tty_driver_kref_get(driver);
1334 tty->count++;
1335 driver->ttys[tty->index] = tty;
1336 return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(tty_standard_install);
1339
1340 /**
1341 * tty_driver_install_tty() - install a tty entry in the driver
1342 * @driver: the driver for the tty
1343 * @tty: the tty
1344 *
1345 * Install a tty object into the driver tables. The tty->index field
1346 * will be set by the time this is called. This method is responsible
1347 * for ensuring any need additional structures are allocated and
1348 * configured.
1349 *
1350 * Locking: tty_mutex for now
1351 */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1352 static int tty_driver_install_tty(struct tty_driver *driver,
1353 struct tty_struct *tty)
1354 {
1355 return driver->ops->install ? driver->ops->install(driver, tty) :
1356 tty_standard_install(driver, tty);
1357 }
1358
1359 /**
1360 * tty_driver_remove_tty() - remove a tty from the driver tables
1361 * @driver: the driver for the tty
1362 * @idx: the minor number
1363 *
1364 * Remvoe a tty object from the driver tables. The tty->index field
1365 * will be set by the time this is called.
1366 *
1367 * Locking: tty_mutex for now
1368 */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1369 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1370 {
1371 if (driver->ops->remove)
1372 driver->ops->remove(driver, tty);
1373 else
1374 driver->ttys[tty->index] = NULL;
1375 }
1376
1377 /*
1378 * tty_reopen() - fast re-open of an open tty
1379 * @tty - the tty to open
1380 *
1381 * Return 0 on success, -errno on error.
1382 *
1383 * Locking: tty_mutex must be held from the time the tty was found
1384 * till this open completes.
1385 */
tty_reopen(struct tty_struct * tty)1386 static int tty_reopen(struct tty_struct *tty)
1387 {
1388 struct tty_driver *driver = tty->driver;
1389
1390 if (test_bit(TTY_CLOSING, &tty->flags) ||
1391 test_bit(TTY_HUPPING, &tty->flags) ||
1392 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1393 return -EIO;
1394
1395 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1396 driver->subtype == PTY_TYPE_MASTER) {
1397 /*
1398 * special case for PTY masters: only one open permitted,
1399 * and the slave side open count is incremented as well.
1400 */
1401 if (tty->count)
1402 return -EIO;
1403
1404 tty->link->count++;
1405 }
1406 tty->count++;
1407
1408 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1409
1410 return 0;
1411 }
1412
1413 /**
1414 * tty_init_dev - initialise a tty device
1415 * @driver: tty driver we are opening a device on
1416 * @idx: device index
1417 * @ret_tty: returned tty structure
1418 *
1419 * Prepare a tty device. This may not be a "new" clean device but
1420 * could also be an active device. The pty drivers require special
1421 * handling because of this.
1422 *
1423 * Locking:
1424 * The function is called under the tty_mutex, which
1425 * protects us from the tty struct or driver itself going away.
1426 *
1427 * On exit the tty device has the line discipline attached and
1428 * a reference count of 1. If a pair was created for pty/tty use
1429 * and the other was a pty master then it too has a reference count of 1.
1430 *
1431 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1432 * failed open. The new code protects the open with a mutex, so it's
1433 * really quite straightforward. The mutex locking can probably be
1434 * relaxed for the (most common) case of reopening a tty.
1435 */
1436
tty_init_dev(struct tty_driver * driver,int idx)1437 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1438 {
1439 struct tty_struct *tty;
1440 int retval;
1441
1442 /*
1443 * First time open is complex, especially for PTY devices.
1444 * This code guarantees that either everything succeeds and the
1445 * TTY is ready for operation, or else the table slots are vacated
1446 * and the allocated memory released. (Except that the termios
1447 * and locked termios may be retained.)
1448 */
1449
1450 if (!try_module_get(driver->owner))
1451 return ERR_PTR(-ENODEV);
1452
1453 tty = alloc_tty_struct();
1454 if (!tty) {
1455 retval = -ENOMEM;
1456 goto err_module_put;
1457 }
1458 initialize_tty_struct(tty, driver, idx);
1459
1460 tty_lock(tty);
1461 retval = tty_driver_install_tty(driver, tty);
1462 if (retval < 0)
1463 goto err_deinit_tty;
1464
1465 if (!tty->port)
1466 tty->port = driver->ports[idx];
1467
1468 WARN_RATELIMIT(!tty->port,
1469 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1470 __func__, tty->driver->name);
1471
1472 tty->port->itty = tty;
1473
1474 /*
1475 * Structures all installed ... call the ldisc open routines.
1476 * If we fail here just call release_tty to clean up. No need
1477 * to decrement the use counts, as release_tty doesn't care.
1478 */
1479 retval = tty_ldisc_setup(tty, tty->link);
1480 if (retval)
1481 goto err_release_tty;
1482 /* Return the tty locked so that it cannot vanish under the caller */
1483 return tty;
1484
1485 err_deinit_tty:
1486 tty_unlock(tty);
1487 deinitialize_tty_struct(tty);
1488 free_tty_struct(tty);
1489 err_module_put:
1490 module_put(driver->owner);
1491 return ERR_PTR(retval);
1492
1493 /* call the tty release_tty routine to clean out this slot */
1494 err_release_tty:
1495 tty_unlock(tty);
1496 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1497 "clearing slot %d\n", idx);
1498 release_tty(tty, idx);
1499 return ERR_PTR(retval);
1500 }
1501
tty_free_termios(struct tty_struct * tty)1502 void tty_free_termios(struct tty_struct *tty)
1503 {
1504 struct ktermios *tp;
1505 int idx = tty->index;
1506
1507 /* If the port is going to reset then it has no termios to save */
1508 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1509 return;
1510
1511 /* Stash the termios data */
1512 tp = tty->driver->termios[idx];
1513 if (tp == NULL) {
1514 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1515 if (tp == NULL) {
1516 pr_warn("tty: no memory to save termios state.\n");
1517 return;
1518 }
1519 tty->driver->termios[idx] = tp;
1520 }
1521 *tp = tty->termios;
1522 }
1523 EXPORT_SYMBOL(tty_free_termios);
1524
1525 /**
1526 * tty_flush_works - flush all works of a tty
1527 * @tty: tty device to flush works for
1528 *
1529 * Sync flush all works belonging to @tty.
1530 */
tty_flush_works(struct tty_struct * tty)1531 static void tty_flush_works(struct tty_struct *tty)
1532 {
1533 flush_work(&tty->SAK_work);
1534 flush_work(&tty->hangup_work);
1535 }
1536
1537 /**
1538 * release_one_tty - release tty structure memory
1539 * @kref: kref of tty we are obliterating
1540 *
1541 * Releases memory associated with a tty structure, and clears out the
1542 * driver table slots. This function is called when a device is no longer
1543 * in use. It also gets called when setup of a device fails.
1544 *
1545 * Locking:
1546 * takes the file list lock internally when working on the list
1547 * of ttys that the driver keeps.
1548 *
1549 * This method gets called from a work queue so that the driver private
1550 * cleanup ops can sleep (needed for USB at least)
1551 */
release_one_tty(struct work_struct * work)1552 static void release_one_tty(struct work_struct *work)
1553 {
1554 struct tty_struct *tty =
1555 container_of(work, struct tty_struct, hangup_work);
1556 struct tty_driver *driver = tty->driver;
1557
1558 if (tty->ops->cleanup)
1559 tty->ops->cleanup(tty);
1560
1561 tty->magic = 0;
1562 tty_driver_kref_put(driver);
1563 module_put(driver->owner);
1564
1565 spin_lock(&tty_files_lock);
1566 list_del_init(&tty->tty_files);
1567 spin_unlock(&tty_files_lock);
1568
1569 put_pid(tty->pgrp);
1570 put_pid(tty->session);
1571 free_tty_struct(tty);
1572 }
1573
queue_release_one_tty(struct kref * kref)1574 static void queue_release_one_tty(struct kref *kref)
1575 {
1576 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1577
1578 /* The hangup queue is now free so we can reuse it rather than
1579 waste a chunk of memory for each port */
1580 INIT_WORK(&tty->hangup_work, release_one_tty);
1581 schedule_work(&tty->hangup_work);
1582 }
1583
1584 /**
1585 * tty_kref_put - release a tty kref
1586 * @tty: tty device
1587 *
1588 * Release a reference to a tty device and if need be let the kref
1589 * layer destruct the object for us
1590 */
1591
tty_kref_put(struct tty_struct * tty)1592 void tty_kref_put(struct tty_struct *tty)
1593 {
1594 if (tty)
1595 kref_put(&tty->kref, queue_release_one_tty);
1596 }
1597 EXPORT_SYMBOL(tty_kref_put);
1598
1599 /**
1600 * release_tty - release tty structure memory
1601 *
1602 * Release both @tty and a possible linked partner (think pty pair),
1603 * and decrement the refcount of the backing module.
1604 *
1605 * Locking:
1606 * tty_mutex
1607 * takes the file list lock internally when working on the list
1608 * of ttys that the driver keeps.
1609 *
1610 */
release_tty(struct tty_struct * tty,int idx)1611 static void release_tty(struct tty_struct *tty, int idx)
1612 {
1613 /* This should always be true but check for the moment */
1614 WARN_ON(tty->index != idx);
1615 WARN_ON(!mutex_is_locked(&tty_mutex));
1616 if (tty->ops->shutdown)
1617 tty->ops->shutdown(tty);
1618 tty_free_termios(tty);
1619 tty_driver_remove_tty(tty->driver, tty);
1620 tty->port->itty = NULL;
1621 cancel_work_sync(&tty->port->buf.work);
1622
1623 if (tty->link)
1624 tty_kref_put(tty->link);
1625 tty_kref_put(tty);
1626 }
1627
1628 /**
1629 * tty_release_checks - check a tty before real release
1630 * @tty: tty to check
1631 * @o_tty: link of @tty (if any)
1632 * @idx: index of the tty
1633 *
1634 * Performs some paranoid checking before true release of the @tty.
1635 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1636 */
tty_release_checks(struct tty_struct * tty,struct tty_struct * o_tty,int idx)1637 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1638 int idx)
1639 {
1640 #ifdef TTY_PARANOIA_CHECK
1641 if (idx < 0 || idx >= tty->driver->num) {
1642 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1643 __func__, tty->name);
1644 return -1;
1645 }
1646
1647 /* not much to check for devpts */
1648 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1649 return 0;
1650
1651 if (tty != tty->driver->ttys[idx]) {
1652 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1653 __func__, idx, tty->name);
1654 return -1;
1655 }
1656 if (tty->driver->other) {
1657 if (o_tty != tty->driver->other->ttys[idx]) {
1658 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1659 __func__, idx, tty->name);
1660 return -1;
1661 }
1662 if (o_tty->link != tty) {
1663 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1664 return -1;
1665 }
1666 }
1667 #endif
1668 return 0;
1669 }
1670
1671 /**
1672 * tty_release - vfs callback for close
1673 * @inode: inode of tty
1674 * @filp: file pointer for handle to tty
1675 *
1676 * Called the last time each file handle is closed that references
1677 * this tty. There may however be several such references.
1678 *
1679 * Locking:
1680 * Takes bkl. See tty_release_dev
1681 *
1682 * Even releasing the tty structures is a tricky business.. We have
1683 * to be very careful that the structures are all released at the
1684 * same time, as interrupts might otherwise get the wrong pointers.
1685 *
1686 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1687 * lead to double frees or releasing memory still in use.
1688 */
1689
tty_release(struct inode * inode,struct file * filp)1690 int tty_release(struct inode *inode, struct file *filp)
1691 {
1692 struct tty_struct *tty = file_tty(filp);
1693 struct tty_struct *o_tty;
1694 int pty_master, tty_closing, o_tty_closing, do_sleep;
1695 int idx;
1696 char buf[64];
1697
1698 if (tty_paranoia_check(tty, inode, __func__))
1699 return 0;
1700
1701 tty_lock(tty);
1702 check_tty_count(tty, __func__);
1703
1704 __tty_fasync(-1, filp, 0);
1705
1706 idx = tty->index;
1707 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1708 tty->driver->subtype == PTY_TYPE_MASTER);
1709 /* Review: parallel close */
1710 o_tty = tty->link;
1711
1712 if (tty_release_checks(tty, o_tty, idx)) {
1713 tty_unlock(tty);
1714 return 0;
1715 }
1716
1717 #ifdef TTY_DEBUG_HANGUP
1718 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1719 tty_name(tty, buf), tty->count);
1720 #endif
1721
1722 if (tty->ops->close)
1723 tty->ops->close(tty, filp);
1724
1725 tty_unlock(tty);
1726 /*
1727 * Sanity check: if tty->count is going to zero, there shouldn't be
1728 * any waiters on tty->read_wait or tty->write_wait. We test the
1729 * wait queues and kick everyone out _before_ actually starting to
1730 * close. This ensures that we won't block while releasing the tty
1731 * structure.
1732 *
1733 * The test for the o_tty closing is necessary, since the master and
1734 * slave sides may close in any order. If the slave side closes out
1735 * first, its count will be one, since the master side holds an open.
1736 * Thus this test wouldn't be triggered at the time the slave closes,
1737 * so we do it now.
1738 *
1739 * Note that it's possible for the tty to be opened again while we're
1740 * flushing out waiters. By recalculating the closing flags before
1741 * each iteration we avoid any problems.
1742 */
1743 while (1) {
1744 /* Guard against races with tty->count changes elsewhere and
1745 opens on /dev/tty */
1746
1747 mutex_lock(&tty_mutex);
1748 tty_lock_pair(tty, o_tty);
1749 tty_closing = tty->count <= 1;
1750 o_tty_closing = o_tty &&
1751 (o_tty->count <= (pty_master ? 1 : 0));
1752 do_sleep = 0;
1753
1754 if (tty_closing) {
1755 if (waitqueue_active(&tty->read_wait)) {
1756 wake_up_poll(&tty->read_wait, POLLIN);
1757 do_sleep++;
1758 }
1759 if (waitqueue_active(&tty->write_wait)) {
1760 wake_up_poll(&tty->write_wait, POLLOUT);
1761 do_sleep++;
1762 }
1763 }
1764 if (o_tty_closing) {
1765 if (waitqueue_active(&o_tty->read_wait)) {
1766 wake_up_poll(&o_tty->read_wait, POLLIN);
1767 do_sleep++;
1768 }
1769 if (waitqueue_active(&o_tty->write_wait)) {
1770 wake_up_poll(&o_tty->write_wait, POLLOUT);
1771 do_sleep++;
1772 }
1773 }
1774 if (!do_sleep)
1775 break;
1776
1777 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1778 __func__, tty_name(tty, buf));
1779 tty_unlock_pair(tty, o_tty);
1780 mutex_unlock(&tty_mutex);
1781 schedule();
1782 }
1783
1784 /*
1785 * The closing flags are now consistent with the open counts on
1786 * both sides, and we've completed the last operation that could
1787 * block, so it's safe to proceed with closing.
1788 *
1789 * We must *not* drop the tty_mutex until we ensure that a further
1790 * entry into tty_open can not pick up this tty.
1791 */
1792 if (pty_master) {
1793 if (--o_tty->count < 0) {
1794 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1795 __func__, o_tty->count, tty_name(o_tty, buf));
1796 o_tty->count = 0;
1797 }
1798 }
1799 if (--tty->count < 0) {
1800 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1801 __func__, tty->count, tty_name(tty, buf));
1802 tty->count = 0;
1803 }
1804
1805 /*
1806 * We've decremented tty->count, so we need to remove this file
1807 * descriptor off the tty->tty_files list; this serves two
1808 * purposes:
1809 * - check_tty_count sees the correct number of file descriptors
1810 * associated with this tty.
1811 * - do_tty_hangup no longer sees this file descriptor as
1812 * something that needs to be handled for hangups.
1813 */
1814 tty_del_file(filp);
1815
1816 /*
1817 * Perform some housekeeping before deciding whether to return.
1818 *
1819 * Set the TTY_CLOSING flag if this was the last open. In the
1820 * case of a pty we may have to wait around for the other side
1821 * to close, and TTY_CLOSING makes sure we can't be reopened.
1822 */
1823 if (tty_closing)
1824 set_bit(TTY_CLOSING, &tty->flags);
1825 if (o_tty_closing)
1826 set_bit(TTY_CLOSING, &o_tty->flags);
1827
1828 /*
1829 * If _either_ side is closing, make sure there aren't any
1830 * processes that still think tty or o_tty is their controlling
1831 * tty.
1832 */
1833 if (tty_closing || o_tty_closing) {
1834 read_lock(&tasklist_lock);
1835 session_clear_tty(tty->session);
1836 if (o_tty)
1837 session_clear_tty(o_tty->session);
1838 read_unlock(&tasklist_lock);
1839 }
1840
1841 mutex_unlock(&tty_mutex);
1842 tty_unlock_pair(tty, o_tty);
1843 /* At this point the TTY_CLOSING flag should ensure a dead tty
1844 cannot be re-opened by a racing opener */
1845
1846 /* check whether both sides are closing ... */
1847 if (!tty_closing || (o_tty && !o_tty_closing))
1848 return 0;
1849
1850 #ifdef TTY_DEBUG_HANGUP
1851 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1852 #endif
1853 /*
1854 * Ask the line discipline code to release its structures
1855 */
1856 tty_ldisc_release(tty, o_tty);
1857
1858 /* Wait for pending work before tty destruction commmences */
1859 tty_flush_works(tty);
1860 if (o_tty)
1861 tty_flush_works(o_tty);
1862
1863 #ifdef TTY_DEBUG_HANGUP
1864 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1865 #endif
1866 /*
1867 * The release_tty function takes care of the details of clearing
1868 * the slots and preserving the termios structure. The tty_unlock_pair
1869 * should be safe as we keep a kref while the tty is locked (so the
1870 * unlock never unlocks a freed tty).
1871 */
1872 mutex_lock(&tty_mutex);
1873 release_tty(tty, idx);
1874 mutex_unlock(&tty_mutex);
1875
1876 return 0;
1877 }
1878
1879 /**
1880 * tty_open_current_tty - get tty of current task for open
1881 * @device: device number
1882 * @filp: file pointer to tty
1883 * @return: tty of the current task iff @device is /dev/tty
1884 *
1885 * We cannot return driver and index like for the other nodes because
1886 * devpts will not work then. It expects inodes to be from devpts FS.
1887 *
1888 * We need to move to returning a refcounted object from all the lookup
1889 * paths including this one.
1890 */
tty_open_current_tty(dev_t device,struct file * filp)1891 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1892 {
1893 struct tty_struct *tty;
1894
1895 if (device != MKDEV(TTYAUX_MAJOR, 0))
1896 return NULL;
1897
1898 tty = get_current_tty();
1899 if (!tty)
1900 return ERR_PTR(-ENXIO);
1901
1902 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1903 /* noctty = 1; */
1904 tty_kref_put(tty);
1905 /* FIXME: we put a reference and return a TTY! */
1906 /* This is only safe because the caller holds tty_mutex */
1907 return tty;
1908 }
1909
1910 /**
1911 * tty_lookup_driver - lookup a tty driver for a given device file
1912 * @device: device number
1913 * @filp: file pointer to tty
1914 * @noctty: set if the device should not become a controlling tty
1915 * @index: index for the device in the @return driver
1916 * @return: driver for this inode (with increased refcount)
1917 *
1918 * If @return is not erroneous, the caller is responsible to decrement the
1919 * refcount by tty_driver_kref_put.
1920 *
1921 * Locking: tty_mutex protects get_tty_driver
1922 */
tty_lookup_driver(dev_t device,struct file * filp,int * noctty,int * index)1923 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1924 int *noctty, int *index)
1925 {
1926 struct tty_driver *driver;
1927
1928 switch (device) {
1929 #ifdef CONFIG_VT
1930 case MKDEV(TTY_MAJOR, 0): {
1931 extern struct tty_driver *console_driver;
1932 driver = tty_driver_kref_get(console_driver);
1933 *index = fg_console;
1934 *noctty = 1;
1935 break;
1936 }
1937 #endif
1938 case MKDEV(TTYAUX_MAJOR, 1): {
1939 struct tty_driver *console_driver = console_device(index);
1940 if (console_driver) {
1941 driver = tty_driver_kref_get(console_driver);
1942 if (driver) {
1943 /* Don't let /dev/console block */
1944 filp->f_flags |= O_NONBLOCK;
1945 *noctty = 1;
1946 break;
1947 }
1948 }
1949 return ERR_PTR(-ENODEV);
1950 }
1951 default:
1952 driver = get_tty_driver(device, index);
1953 if (!driver)
1954 return ERR_PTR(-ENODEV);
1955 break;
1956 }
1957 return driver;
1958 }
1959
1960 /**
1961 * tty_open - open a tty device
1962 * @inode: inode of device file
1963 * @filp: file pointer to tty
1964 *
1965 * tty_open and tty_release keep up the tty count that contains the
1966 * number of opens done on a tty. We cannot use the inode-count, as
1967 * different inodes might point to the same tty.
1968 *
1969 * Open-counting is needed for pty masters, as well as for keeping
1970 * track of serial lines: DTR is dropped when the last close happens.
1971 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1972 *
1973 * The termios state of a pty is reset on first open so that
1974 * settings don't persist across reuse.
1975 *
1976 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1977 * tty->count should protect the rest.
1978 * ->siglock protects ->signal/->sighand
1979 *
1980 * Note: the tty_unlock/lock cases without a ref are only safe due to
1981 * tty_mutex
1982 */
1983
tty_open(struct inode * inode,struct file * filp)1984 static int tty_open(struct inode *inode, struct file *filp)
1985 {
1986 struct tty_struct *tty;
1987 int noctty, retval;
1988 struct tty_driver *driver = NULL;
1989 int index;
1990 dev_t device = inode->i_rdev;
1991 unsigned saved_flags = filp->f_flags;
1992
1993 nonseekable_open(inode, filp);
1994
1995 retry_open:
1996 retval = tty_alloc_file(filp);
1997 if (retval)
1998 return -ENOMEM;
1999
2000 noctty = filp->f_flags & O_NOCTTY;
2001 index = -1;
2002 retval = 0;
2003
2004 mutex_lock(&tty_mutex);
2005 /* This is protected by the tty_mutex */
2006 tty = tty_open_current_tty(device, filp);
2007 if (IS_ERR(tty)) {
2008 retval = PTR_ERR(tty);
2009 goto err_unlock;
2010 } else if (!tty) {
2011 driver = tty_lookup_driver(device, filp, &noctty, &index);
2012 if (IS_ERR(driver)) {
2013 retval = PTR_ERR(driver);
2014 goto err_unlock;
2015 }
2016
2017 /* check whether we're reopening an existing tty */
2018 tty = tty_driver_lookup_tty(driver, inode, index);
2019 if (IS_ERR(tty)) {
2020 retval = PTR_ERR(tty);
2021 goto err_unlock;
2022 }
2023 }
2024
2025 if (tty) {
2026 tty_lock(tty);
2027 retval = tty_reopen(tty);
2028 if (retval < 0) {
2029 tty_unlock(tty);
2030 tty = ERR_PTR(retval);
2031 }
2032 } else /* Returns with the tty_lock held for now */
2033 tty = tty_init_dev(driver, index);
2034
2035 mutex_unlock(&tty_mutex);
2036 if (driver)
2037 tty_driver_kref_put(driver);
2038 if (IS_ERR(tty)) {
2039 retval = PTR_ERR(tty);
2040 goto err_file;
2041 }
2042
2043 tty_add_file(tty, filp);
2044
2045 check_tty_count(tty, __func__);
2046 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2047 tty->driver->subtype == PTY_TYPE_MASTER)
2048 noctty = 1;
2049 #ifdef TTY_DEBUG_HANGUP
2050 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2051 #endif
2052 if (tty->ops->open)
2053 retval = tty->ops->open(tty, filp);
2054 else
2055 retval = -ENODEV;
2056 filp->f_flags = saved_flags;
2057
2058 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2059 !capable(CAP_SYS_ADMIN))
2060 retval = -EBUSY;
2061
2062 if (retval) {
2063 #ifdef TTY_DEBUG_HANGUP
2064 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2065 retval, tty->name);
2066 #endif
2067 tty_unlock(tty); /* need to call tty_release without BTM */
2068 tty_release(inode, filp);
2069 if (retval != -ERESTARTSYS)
2070 return retval;
2071
2072 if (signal_pending(current))
2073 return retval;
2074
2075 schedule();
2076 /*
2077 * Need to reset f_op in case a hangup happened.
2078 */
2079 if (filp->f_op == &hung_up_tty_fops)
2080 filp->f_op = &tty_fops;
2081 goto retry_open;
2082 }
2083 tty_unlock(tty);
2084
2085
2086 mutex_lock(&tty_mutex);
2087 tty_lock(tty);
2088 spin_lock_irq(¤t->sighand->siglock);
2089 if (!noctty &&
2090 current->signal->leader &&
2091 !current->signal->tty &&
2092 tty->session == NULL)
2093 __proc_set_tty(current, tty);
2094 spin_unlock_irq(¤t->sighand->siglock);
2095 tty_unlock(tty);
2096 mutex_unlock(&tty_mutex);
2097 return 0;
2098 err_unlock:
2099 mutex_unlock(&tty_mutex);
2100 /* after locks to avoid deadlock */
2101 if (!IS_ERR_OR_NULL(driver))
2102 tty_driver_kref_put(driver);
2103 err_file:
2104 tty_free_file(filp);
2105 return retval;
2106 }
2107
2108
2109
2110 /**
2111 * tty_poll - check tty status
2112 * @filp: file being polled
2113 * @wait: poll wait structures to update
2114 *
2115 * Call the line discipline polling method to obtain the poll
2116 * status of the device.
2117 *
2118 * Locking: locks called line discipline but ldisc poll method
2119 * may be re-entered freely by other callers.
2120 */
2121
tty_poll(struct file * filp,poll_table * wait)2122 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2123 {
2124 struct tty_struct *tty = file_tty(filp);
2125 struct tty_ldisc *ld;
2126 int ret = 0;
2127
2128 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2129 return 0;
2130
2131 ld = tty_ldisc_ref_wait(tty);
2132 if (ld->ops->poll)
2133 ret = (ld->ops->poll)(tty, filp, wait);
2134 tty_ldisc_deref(ld);
2135 return ret;
2136 }
2137
__tty_fasync(int fd,struct file * filp,int on)2138 static int __tty_fasync(int fd, struct file *filp, int on)
2139 {
2140 struct tty_struct *tty = file_tty(filp);
2141 unsigned long flags;
2142 int retval = 0;
2143
2144 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2145 goto out;
2146
2147 retval = fasync_helper(fd, filp, on, &tty->fasync);
2148 if (retval <= 0)
2149 goto out;
2150
2151 if (on) {
2152 enum pid_type type;
2153 struct pid *pid;
2154 if (!waitqueue_active(&tty->read_wait))
2155 tty->minimum_to_wake = 1;
2156 spin_lock_irqsave(&tty->ctrl_lock, flags);
2157 if (tty->pgrp) {
2158 pid = tty->pgrp;
2159 type = PIDTYPE_PGID;
2160 } else {
2161 pid = task_pid(current);
2162 type = PIDTYPE_PID;
2163 }
2164 get_pid(pid);
2165 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2166 retval = __f_setown(filp, pid, type, 0);
2167 put_pid(pid);
2168 if (retval)
2169 goto out;
2170 } else {
2171 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2172 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2173 }
2174 retval = 0;
2175 out:
2176 return retval;
2177 }
2178
tty_fasync(int fd,struct file * filp,int on)2179 static int tty_fasync(int fd, struct file *filp, int on)
2180 {
2181 struct tty_struct *tty = file_tty(filp);
2182 int retval;
2183
2184 tty_lock(tty);
2185 retval = __tty_fasync(fd, filp, on);
2186 tty_unlock(tty);
2187
2188 return retval;
2189 }
2190
2191 /**
2192 * tiocsti - fake input character
2193 * @tty: tty to fake input into
2194 * @p: pointer to character
2195 *
2196 * Fake input to a tty device. Does the necessary locking and
2197 * input management.
2198 *
2199 * FIXME: does not honour flow control ??
2200 *
2201 * Locking:
2202 * Called functions take tty_ldisc_lock
2203 * current->signal->tty check is safe without locks
2204 *
2205 * FIXME: may race normal receive processing
2206 */
2207
tiocsti(struct tty_struct * tty,char __user * p)2208 static int tiocsti(struct tty_struct *tty, char __user *p)
2209 {
2210 char ch, mbz = 0;
2211 struct tty_ldisc *ld;
2212
2213 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2214 return -EPERM;
2215 if (get_user(ch, p))
2216 return -EFAULT;
2217 tty_audit_tiocsti(tty, ch);
2218 ld = tty_ldisc_ref_wait(tty);
2219 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2220 tty_ldisc_deref(ld);
2221 return 0;
2222 }
2223
2224 /**
2225 * tiocgwinsz - implement window query ioctl
2226 * @tty; tty
2227 * @arg: user buffer for result
2228 *
2229 * Copies the kernel idea of the window size into the user buffer.
2230 *
2231 * Locking: tty->termios_mutex is taken to ensure the winsize data
2232 * is consistent.
2233 */
2234
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2235 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2236 {
2237 int err;
2238
2239 mutex_lock(&tty->termios_mutex);
2240 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2241 mutex_unlock(&tty->termios_mutex);
2242
2243 return err ? -EFAULT: 0;
2244 }
2245
2246 /**
2247 * tty_do_resize - resize event
2248 * @tty: tty being resized
2249 * @rows: rows (character)
2250 * @cols: cols (character)
2251 *
2252 * Update the termios variables and send the necessary signals to
2253 * peform a terminal resize correctly
2254 */
2255
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2256 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2257 {
2258 struct pid *pgrp;
2259 unsigned long flags;
2260
2261 /* Lock the tty */
2262 mutex_lock(&tty->termios_mutex);
2263 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2264 goto done;
2265 /* Get the PID values and reference them so we can
2266 avoid holding the tty ctrl lock while sending signals */
2267 spin_lock_irqsave(&tty->ctrl_lock, flags);
2268 pgrp = get_pid(tty->pgrp);
2269 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2270
2271 if (pgrp)
2272 kill_pgrp(pgrp, SIGWINCH, 1);
2273 put_pid(pgrp);
2274
2275 tty->winsize = *ws;
2276 done:
2277 mutex_unlock(&tty->termios_mutex);
2278 return 0;
2279 }
2280 EXPORT_SYMBOL(tty_do_resize);
2281
2282 /**
2283 * tiocswinsz - implement window size set ioctl
2284 * @tty; tty side of tty
2285 * @arg: user buffer for result
2286 *
2287 * Copies the user idea of the window size to the kernel. Traditionally
2288 * this is just advisory information but for the Linux console it
2289 * actually has driver level meaning and triggers a VC resize.
2290 *
2291 * Locking:
2292 * Driver dependent. The default do_resize method takes the
2293 * tty termios mutex and ctrl_lock. The console takes its own lock
2294 * then calls into the default method.
2295 */
2296
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2297 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2298 {
2299 struct winsize tmp_ws;
2300 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2301 return -EFAULT;
2302
2303 if (tty->ops->resize)
2304 return tty->ops->resize(tty, &tmp_ws);
2305 else
2306 return tty_do_resize(tty, &tmp_ws);
2307 }
2308
2309 /**
2310 * tioccons - allow admin to move logical console
2311 * @file: the file to become console
2312 *
2313 * Allow the administrator to move the redirected console device
2314 *
2315 * Locking: uses redirect_lock to guard the redirect information
2316 */
2317
tioccons(struct file * file)2318 static int tioccons(struct file *file)
2319 {
2320 if (!capable(CAP_SYS_ADMIN))
2321 return -EPERM;
2322 if (file->f_op->write == redirected_tty_write) {
2323 struct file *f;
2324 spin_lock(&redirect_lock);
2325 f = redirect;
2326 redirect = NULL;
2327 spin_unlock(&redirect_lock);
2328 if (f)
2329 fput(f);
2330 return 0;
2331 }
2332 spin_lock(&redirect_lock);
2333 if (redirect) {
2334 spin_unlock(&redirect_lock);
2335 return -EBUSY;
2336 }
2337 redirect = get_file(file);
2338 spin_unlock(&redirect_lock);
2339 return 0;
2340 }
2341
2342 /**
2343 * fionbio - non blocking ioctl
2344 * @file: file to set blocking value
2345 * @p: user parameter
2346 *
2347 * Historical tty interfaces had a blocking control ioctl before
2348 * the generic functionality existed. This piece of history is preserved
2349 * in the expected tty API of posix OS's.
2350 *
2351 * Locking: none, the open file handle ensures it won't go away.
2352 */
2353
fionbio(struct file * file,int __user * p)2354 static int fionbio(struct file *file, int __user *p)
2355 {
2356 int nonblock;
2357
2358 if (get_user(nonblock, p))
2359 return -EFAULT;
2360
2361 spin_lock(&file->f_lock);
2362 if (nonblock)
2363 file->f_flags |= O_NONBLOCK;
2364 else
2365 file->f_flags &= ~O_NONBLOCK;
2366 spin_unlock(&file->f_lock);
2367 return 0;
2368 }
2369
2370 /**
2371 * tiocsctty - set controlling tty
2372 * @tty: tty structure
2373 * @arg: user argument
2374 *
2375 * This ioctl is used to manage job control. It permits a session
2376 * leader to set this tty as the controlling tty for the session.
2377 *
2378 * Locking:
2379 * Takes tty_mutex() to protect tty instance
2380 * Takes tasklist_lock internally to walk sessions
2381 * Takes ->siglock() when updating signal->tty
2382 */
2383
tiocsctty(struct tty_struct * tty,int arg)2384 static int tiocsctty(struct tty_struct *tty, int arg)
2385 {
2386 int ret = 0;
2387 if (current->signal->leader && (task_session(current) == tty->session))
2388 return ret;
2389
2390 mutex_lock(&tty_mutex);
2391 /*
2392 * The process must be a session leader and
2393 * not have a controlling tty already.
2394 */
2395 if (!current->signal->leader || current->signal->tty) {
2396 ret = -EPERM;
2397 goto unlock;
2398 }
2399
2400 if (tty->session) {
2401 /*
2402 * This tty is already the controlling
2403 * tty for another session group!
2404 */
2405 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2406 /*
2407 * Steal it away
2408 */
2409 read_lock(&tasklist_lock);
2410 session_clear_tty(tty->session);
2411 read_unlock(&tasklist_lock);
2412 } else {
2413 ret = -EPERM;
2414 goto unlock;
2415 }
2416 }
2417 proc_set_tty(current, tty);
2418 unlock:
2419 mutex_unlock(&tty_mutex);
2420 return ret;
2421 }
2422
2423 /**
2424 * tty_get_pgrp - return a ref counted pgrp pid
2425 * @tty: tty to read
2426 *
2427 * Returns a refcounted instance of the pid struct for the process
2428 * group controlling the tty.
2429 */
2430
tty_get_pgrp(struct tty_struct * tty)2431 struct pid *tty_get_pgrp(struct tty_struct *tty)
2432 {
2433 unsigned long flags;
2434 struct pid *pgrp;
2435
2436 spin_lock_irqsave(&tty->ctrl_lock, flags);
2437 pgrp = get_pid(tty->pgrp);
2438 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2439
2440 return pgrp;
2441 }
2442 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2443
2444 /**
2445 * tiocgpgrp - get process group
2446 * @tty: tty passed by user
2447 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2448 * @p: returned pid
2449 *
2450 * Obtain the process group of the tty. If there is no process group
2451 * return an error.
2452 *
2453 * Locking: none. Reference to current->signal->tty is safe.
2454 */
2455
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2456 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2457 {
2458 struct pid *pid;
2459 int ret;
2460 /*
2461 * (tty == real_tty) is a cheap way of
2462 * testing if the tty is NOT a master pty.
2463 */
2464 if (tty == real_tty && current->signal->tty != real_tty)
2465 return -ENOTTY;
2466 pid = tty_get_pgrp(real_tty);
2467 ret = put_user(pid_vnr(pid), p);
2468 put_pid(pid);
2469 return ret;
2470 }
2471
2472 /**
2473 * tiocspgrp - attempt to set process group
2474 * @tty: tty passed by user
2475 * @real_tty: tty side device matching tty passed by user
2476 * @p: pid pointer
2477 *
2478 * Set the process group of the tty to the session passed. Only
2479 * permitted where the tty session is our session.
2480 *
2481 * Locking: RCU, ctrl lock
2482 */
2483
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2484 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2485 {
2486 struct pid *pgrp;
2487 pid_t pgrp_nr;
2488 int retval = tty_check_change(real_tty);
2489 unsigned long flags;
2490
2491 if (retval == -EIO)
2492 return -ENOTTY;
2493 if (retval)
2494 return retval;
2495 if (!current->signal->tty ||
2496 (current->signal->tty != real_tty) ||
2497 (real_tty->session != task_session(current)))
2498 return -ENOTTY;
2499 if (get_user(pgrp_nr, p))
2500 return -EFAULT;
2501 if (pgrp_nr < 0)
2502 return -EINVAL;
2503 rcu_read_lock();
2504 pgrp = find_vpid(pgrp_nr);
2505 retval = -ESRCH;
2506 if (!pgrp)
2507 goto out_unlock;
2508 retval = -EPERM;
2509 if (session_of_pgrp(pgrp) != task_session(current))
2510 goto out_unlock;
2511 retval = 0;
2512 spin_lock_irqsave(&tty->ctrl_lock, flags);
2513 put_pid(real_tty->pgrp);
2514 real_tty->pgrp = get_pid(pgrp);
2515 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2516 out_unlock:
2517 rcu_read_unlock();
2518 return retval;
2519 }
2520
2521 /**
2522 * tiocgsid - get session id
2523 * @tty: tty passed by user
2524 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2525 * @p: pointer to returned session id
2526 *
2527 * Obtain the session id of the tty. If there is no session
2528 * return an error.
2529 *
2530 * Locking: none. Reference to current->signal->tty is safe.
2531 */
2532
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2533 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2534 {
2535 /*
2536 * (tty == real_tty) is a cheap way of
2537 * testing if the tty is NOT a master pty.
2538 */
2539 if (tty == real_tty && current->signal->tty != real_tty)
2540 return -ENOTTY;
2541 if (!real_tty->session)
2542 return -ENOTTY;
2543 return put_user(pid_vnr(real_tty->session), p);
2544 }
2545
2546 /**
2547 * tiocsetd - set line discipline
2548 * @tty: tty device
2549 * @p: pointer to user data
2550 *
2551 * Set the line discipline according to user request.
2552 *
2553 * Locking: see tty_set_ldisc, this function is just a helper
2554 */
2555
tiocsetd(struct tty_struct * tty,int __user * p)2556 static int tiocsetd(struct tty_struct *tty, int __user *p)
2557 {
2558 int ldisc;
2559 int ret;
2560
2561 if (get_user(ldisc, p))
2562 return -EFAULT;
2563
2564 ret = tty_set_ldisc(tty, ldisc);
2565
2566 return ret;
2567 }
2568
2569 /**
2570 * tiocgetd - get line discipline
2571 * @tty: tty device
2572 * @p: pointer to user data
2573 *
2574 * Retrieves the line discipline id directly from the ldisc.
2575 *
2576 * Locking: waits for ldisc reference (in case the line discipline
2577 * is changing or the tty is being hungup)
2578 */
2579
tiocgetd(struct tty_struct * tty,int __user * p)2580 static int tiocgetd(struct tty_struct *tty, int __user *p)
2581 {
2582 struct tty_ldisc *ld;
2583 int ret;
2584
2585 ld = tty_ldisc_ref_wait(tty);
2586 ret = put_user(ld->ops->num, p);
2587 tty_ldisc_deref(ld);
2588 return ret;
2589 }
2590
2591 /**
2592 * send_break - performed time break
2593 * @tty: device to break on
2594 * @duration: timeout in mS
2595 *
2596 * Perform a timed break on hardware that lacks its own driver level
2597 * timed break functionality.
2598 *
2599 * Locking:
2600 * atomic_write_lock serializes
2601 *
2602 */
2603
send_break(struct tty_struct * tty,unsigned int duration)2604 static int send_break(struct tty_struct *tty, unsigned int duration)
2605 {
2606 int retval;
2607
2608 if (tty->ops->break_ctl == NULL)
2609 return 0;
2610
2611 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2612 retval = tty->ops->break_ctl(tty, duration);
2613 else {
2614 /* Do the work ourselves */
2615 if (tty_write_lock(tty, 0) < 0)
2616 return -EINTR;
2617 retval = tty->ops->break_ctl(tty, -1);
2618 if (retval)
2619 goto out;
2620 if (!signal_pending(current))
2621 msleep_interruptible(duration);
2622 retval = tty->ops->break_ctl(tty, 0);
2623 out:
2624 tty_write_unlock(tty);
2625 if (signal_pending(current))
2626 retval = -EINTR;
2627 }
2628 return retval;
2629 }
2630
2631 /**
2632 * tty_tiocmget - get modem status
2633 * @tty: tty device
2634 * @file: user file pointer
2635 * @p: pointer to result
2636 *
2637 * Obtain the modem status bits from the tty driver if the feature
2638 * is supported. Return -EINVAL if it is not available.
2639 *
2640 * Locking: none (up to the driver)
2641 */
2642
tty_tiocmget(struct tty_struct * tty,int __user * p)2643 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2644 {
2645 int retval = -EINVAL;
2646
2647 if (tty->ops->tiocmget) {
2648 retval = tty->ops->tiocmget(tty);
2649
2650 if (retval >= 0)
2651 retval = put_user(retval, p);
2652 }
2653 return retval;
2654 }
2655
2656 /**
2657 * tty_tiocmset - set modem status
2658 * @tty: tty device
2659 * @cmd: command - clear bits, set bits or set all
2660 * @p: pointer to desired bits
2661 *
2662 * Set the modem status bits from the tty driver if the feature
2663 * is supported. Return -EINVAL if it is not available.
2664 *
2665 * Locking: none (up to the driver)
2666 */
2667
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2668 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2669 unsigned __user *p)
2670 {
2671 int retval;
2672 unsigned int set, clear, val;
2673
2674 if (tty->ops->tiocmset == NULL)
2675 return -EINVAL;
2676
2677 retval = get_user(val, p);
2678 if (retval)
2679 return retval;
2680 set = clear = 0;
2681 switch (cmd) {
2682 case TIOCMBIS:
2683 set = val;
2684 break;
2685 case TIOCMBIC:
2686 clear = val;
2687 break;
2688 case TIOCMSET:
2689 set = val;
2690 clear = ~val;
2691 break;
2692 }
2693 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2694 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2695 return tty->ops->tiocmset(tty, set, clear);
2696 }
2697
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2698 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2699 {
2700 int retval = -EINVAL;
2701 struct serial_icounter_struct icount;
2702 memset(&icount, 0, sizeof(icount));
2703 if (tty->ops->get_icount)
2704 retval = tty->ops->get_icount(tty, &icount);
2705 if (retval != 0)
2706 return retval;
2707 if (copy_to_user(arg, &icount, sizeof(icount)))
2708 return -EFAULT;
2709 return 0;
2710 }
2711
tty_pair_get_tty(struct tty_struct * tty)2712 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2713 {
2714 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2715 tty->driver->subtype == PTY_TYPE_MASTER)
2716 tty = tty->link;
2717 return tty;
2718 }
2719 EXPORT_SYMBOL(tty_pair_get_tty);
2720
tty_pair_get_pty(struct tty_struct * tty)2721 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2722 {
2723 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2724 tty->driver->subtype == PTY_TYPE_MASTER)
2725 return tty;
2726 return tty->link;
2727 }
2728 EXPORT_SYMBOL(tty_pair_get_pty);
2729
2730 /*
2731 * Split this up, as gcc can choke on it otherwise..
2732 */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2733 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2734 {
2735 struct tty_struct *tty = file_tty(file);
2736 struct tty_struct *real_tty;
2737 void __user *p = (void __user *)arg;
2738 int retval;
2739 struct tty_ldisc *ld;
2740
2741 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2742 return -EINVAL;
2743
2744 real_tty = tty_pair_get_tty(tty);
2745
2746 /*
2747 * Factor out some common prep work
2748 */
2749 switch (cmd) {
2750 case TIOCSETD:
2751 case TIOCSBRK:
2752 case TIOCCBRK:
2753 case TCSBRK:
2754 case TCSBRKP:
2755 retval = tty_check_change(tty);
2756 if (retval)
2757 return retval;
2758 if (cmd != TIOCCBRK) {
2759 tty_wait_until_sent(tty, 0);
2760 if (signal_pending(current))
2761 return -EINTR;
2762 }
2763 break;
2764 }
2765
2766 /*
2767 * Now do the stuff.
2768 */
2769 switch (cmd) {
2770 case TIOCSTI:
2771 return tiocsti(tty, p);
2772 case TIOCGWINSZ:
2773 return tiocgwinsz(real_tty, p);
2774 case TIOCSWINSZ:
2775 return tiocswinsz(real_tty, p);
2776 case TIOCCONS:
2777 return real_tty != tty ? -EINVAL : tioccons(file);
2778 case FIONBIO:
2779 return fionbio(file, p);
2780 case TIOCEXCL:
2781 set_bit(TTY_EXCLUSIVE, &tty->flags);
2782 return 0;
2783 case TIOCNXCL:
2784 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2785 return 0;
2786 case TIOCGEXCL:
2787 {
2788 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2789 return put_user(excl, (int __user *)p);
2790 }
2791 case TIOCNOTTY:
2792 if (current->signal->tty != tty)
2793 return -ENOTTY;
2794 no_tty();
2795 return 0;
2796 case TIOCSCTTY:
2797 return tiocsctty(tty, arg);
2798 case TIOCGPGRP:
2799 return tiocgpgrp(tty, real_tty, p);
2800 case TIOCSPGRP:
2801 return tiocspgrp(tty, real_tty, p);
2802 case TIOCGSID:
2803 return tiocgsid(tty, real_tty, p);
2804 case TIOCGETD:
2805 return tiocgetd(tty, p);
2806 case TIOCSETD:
2807 return tiocsetd(tty, p);
2808 case TIOCVHANGUP:
2809 if (!capable(CAP_SYS_ADMIN))
2810 return -EPERM;
2811 tty_vhangup(tty);
2812 return 0;
2813 case TIOCGDEV:
2814 {
2815 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2816 return put_user(ret, (unsigned int __user *)p);
2817 }
2818 /*
2819 * Break handling
2820 */
2821 case TIOCSBRK: /* Turn break on, unconditionally */
2822 if (tty->ops->break_ctl)
2823 return tty->ops->break_ctl(tty, -1);
2824 return 0;
2825 case TIOCCBRK: /* Turn break off, unconditionally */
2826 if (tty->ops->break_ctl)
2827 return tty->ops->break_ctl(tty, 0);
2828 return 0;
2829 case TCSBRK: /* SVID version: non-zero arg --> no break */
2830 /* non-zero arg means wait for all output data
2831 * to be sent (performed above) but don't send break.
2832 * This is used by the tcdrain() termios function.
2833 */
2834 if (!arg)
2835 return send_break(tty, 250);
2836 return 0;
2837 case TCSBRKP: /* support for POSIX tcsendbreak() */
2838 return send_break(tty, arg ? arg*100 : 250);
2839
2840 case TIOCMGET:
2841 return tty_tiocmget(tty, p);
2842 case TIOCMSET:
2843 case TIOCMBIC:
2844 case TIOCMBIS:
2845 return tty_tiocmset(tty, cmd, p);
2846 case TIOCGICOUNT:
2847 retval = tty_tiocgicount(tty, p);
2848 /* For the moment allow fall through to the old method */
2849 if (retval != -EINVAL)
2850 return retval;
2851 break;
2852 case TCFLSH:
2853 switch (arg) {
2854 case TCIFLUSH:
2855 case TCIOFLUSH:
2856 /* flush tty buffer and allow ldisc to process ioctl */
2857 tty_buffer_flush(tty);
2858 break;
2859 }
2860 break;
2861 }
2862 if (tty->ops->ioctl) {
2863 retval = (tty->ops->ioctl)(tty, cmd, arg);
2864 if (retval != -ENOIOCTLCMD)
2865 return retval;
2866 }
2867 ld = tty_ldisc_ref_wait(tty);
2868 retval = -EINVAL;
2869 if (ld->ops->ioctl) {
2870 retval = ld->ops->ioctl(tty, file, cmd, arg);
2871 if (retval == -ENOIOCTLCMD)
2872 retval = -ENOTTY;
2873 }
2874 tty_ldisc_deref(ld);
2875 return retval;
2876 }
2877
2878 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2879 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2880 unsigned long arg)
2881 {
2882 struct tty_struct *tty = file_tty(file);
2883 struct tty_ldisc *ld;
2884 int retval = -ENOIOCTLCMD;
2885
2886 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2887 return -EINVAL;
2888
2889 if (tty->ops->compat_ioctl) {
2890 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2891 if (retval != -ENOIOCTLCMD)
2892 return retval;
2893 }
2894
2895 ld = tty_ldisc_ref_wait(tty);
2896 if (ld->ops->compat_ioctl)
2897 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2898 else
2899 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2900 tty_ldisc_deref(ld);
2901
2902 return retval;
2903 }
2904 #endif
2905
this_tty(const void * t,struct file * file,unsigned fd)2906 static int this_tty(const void *t, struct file *file, unsigned fd)
2907 {
2908 if (likely(file->f_op->read != tty_read))
2909 return 0;
2910 return file_tty(file) != t ? 0 : fd + 1;
2911 }
2912
2913 /*
2914 * This implements the "Secure Attention Key" --- the idea is to
2915 * prevent trojan horses by killing all processes associated with this
2916 * tty when the user hits the "Secure Attention Key". Required for
2917 * super-paranoid applications --- see the Orange Book for more details.
2918 *
2919 * This code could be nicer; ideally it should send a HUP, wait a few
2920 * seconds, then send a INT, and then a KILL signal. But you then
2921 * have to coordinate with the init process, since all processes associated
2922 * with the current tty must be dead before the new getty is allowed
2923 * to spawn.
2924 *
2925 * Now, if it would be correct ;-/ The current code has a nasty hole -
2926 * it doesn't catch files in flight. We may send the descriptor to ourselves
2927 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2928 *
2929 * Nasty bug: do_SAK is being called in interrupt context. This can
2930 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2931 */
__do_SAK(struct tty_struct * tty)2932 void __do_SAK(struct tty_struct *tty)
2933 {
2934 #ifdef TTY_SOFT_SAK
2935 tty_hangup(tty);
2936 #else
2937 struct task_struct *g, *p;
2938 struct pid *session;
2939 int i;
2940
2941 if (!tty)
2942 return;
2943 session = tty->session;
2944
2945 tty_ldisc_flush(tty);
2946
2947 tty_driver_flush_buffer(tty);
2948
2949 read_lock(&tasklist_lock);
2950 /* Kill the entire session */
2951 do_each_pid_task(session, PIDTYPE_SID, p) {
2952 printk(KERN_NOTICE "SAK: killed process %d"
2953 " (%s): task_session(p)==tty->session\n",
2954 task_pid_nr(p), p->comm);
2955 send_sig(SIGKILL, p, 1);
2956 } while_each_pid_task(session, PIDTYPE_SID, p);
2957 /* Now kill any processes that happen to have the
2958 * tty open.
2959 */
2960 do_each_thread(g, p) {
2961 if (p->signal->tty == tty) {
2962 printk(KERN_NOTICE "SAK: killed process %d"
2963 " (%s): task_session(p)==tty->session\n",
2964 task_pid_nr(p), p->comm);
2965 send_sig(SIGKILL, p, 1);
2966 continue;
2967 }
2968 task_lock(p);
2969 i = iterate_fd(p->files, 0, this_tty, tty);
2970 if (i != 0) {
2971 printk(KERN_NOTICE "SAK: killed process %d"
2972 " (%s): fd#%d opened to the tty\n",
2973 task_pid_nr(p), p->comm, i - 1);
2974 force_sig(SIGKILL, p);
2975 }
2976 task_unlock(p);
2977 } while_each_thread(g, p);
2978 read_unlock(&tasklist_lock);
2979 #endif
2980 }
2981
do_SAK_work(struct work_struct * work)2982 static void do_SAK_work(struct work_struct *work)
2983 {
2984 struct tty_struct *tty =
2985 container_of(work, struct tty_struct, SAK_work);
2986 __do_SAK(tty);
2987 }
2988
2989 /*
2990 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2991 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2992 * the values which we write to it will be identical to the values which it
2993 * already has. --akpm
2994 */
do_SAK(struct tty_struct * tty)2995 void do_SAK(struct tty_struct *tty)
2996 {
2997 if (!tty)
2998 return;
2999 schedule_work(&tty->SAK_work);
3000 }
3001
3002 EXPORT_SYMBOL(do_SAK);
3003
dev_match_devt(struct device * dev,const void * data)3004 static int dev_match_devt(struct device *dev, const void *data)
3005 {
3006 const dev_t *devt = data;
3007 return dev->devt == *devt;
3008 }
3009
3010 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3011 static struct device *tty_get_device(struct tty_struct *tty)
3012 {
3013 dev_t devt = tty_devnum(tty);
3014 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3015 }
3016
3017
3018 /**
3019 * initialize_tty_struct
3020 * @tty: tty to initialize
3021 *
3022 * This subroutine initializes a tty structure that has been newly
3023 * allocated.
3024 *
3025 * Locking: none - tty in question must not be exposed at this point
3026 */
3027
initialize_tty_struct(struct tty_struct * tty,struct tty_driver * driver,int idx)3028 void initialize_tty_struct(struct tty_struct *tty,
3029 struct tty_driver *driver, int idx)
3030 {
3031 memset(tty, 0, sizeof(struct tty_struct));
3032 kref_init(&tty->kref);
3033 tty->magic = TTY_MAGIC;
3034 tty_ldisc_init(tty);
3035 tty->session = NULL;
3036 tty->pgrp = NULL;
3037 mutex_init(&tty->legacy_mutex);
3038 mutex_init(&tty->termios_mutex);
3039 mutex_init(&tty->ldisc_mutex);
3040 init_waitqueue_head(&tty->write_wait);
3041 init_waitqueue_head(&tty->read_wait);
3042 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3043 mutex_init(&tty->atomic_write_lock);
3044 spin_lock_init(&tty->ctrl_lock);
3045 INIT_LIST_HEAD(&tty->tty_files);
3046 INIT_WORK(&tty->SAK_work, do_SAK_work);
3047
3048 tty->driver = driver;
3049 tty->ops = driver->ops;
3050 tty->index = idx;
3051 tty_line_name(driver, idx, tty->name);
3052 tty->dev = tty_get_device(tty);
3053 }
3054
3055 /**
3056 * deinitialize_tty_struct
3057 * @tty: tty to deinitialize
3058 *
3059 * This subroutine deinitializes a tty structure that has been newly
3060 * allocated but tty_release cannot be called on that yet.
3061 *
3062 * Locking: none - tty in question must not be exposed at this point
3063 */
deinitialize_tty_struct(struct tty_struct * tty)3064 void deinitialize_tty_struct(struct tty_struct *tty)
3065 {
3066 tty_ldisc_deinit(tty);
3067 }
3068
3069 /**
3070 * tty_put_char - write one character to a tty
3071 * @tty: tty
3072 * @ch: character
3073 *
3074 * Write one byte to the tty using the provided put_char method
3075 * if present. Returns the number of characters successfully output.
3076 *
3077 * Note: the specific put_char operation in the driver layer may go
3078 * away soon. Don't call it directly, use this method
3079 */
3080
tty_put_char(struct tty_struct * tty,unsigned char ch)3081 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3082 {
3083 if (tty->ops->put_char)
3084 return tty->ops->put_char(tty, ch);
3085 return tty->ops->write(tty, &ch, 1);
3086 }
3087 EXPORT_SYMBOL_GPL(tty_put_char);
3088
3089 struct class *tty_class;
3090
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3091 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3092 unsigned int index, unsigned int count)
3093 {
3094 /* init here, since reused cdevs cause crashes */
3095 cdev_init(&driver->cdevs[index], &tty_fops);
3096 driver->cdevs[index].owner = driver->owner;
3097 return cdev_add(&driver->cdevs[index], dev, count);
3098 }
3099
3100 /**
3101 * tty_register_device - register a tty device
3102 * @driver: the tty driver that describes the tty device
3103 * @index: the index in the tty driver for this tty device
3104 * @device: a struct device that is associated with this tty device.
3105 * This field is optional, if there is no known struct device
3106 * for this tty device it can be set to NULL safely.
3107 *
3108 * Returns a pointer to the struct device for this tty device
3109 * (or ERR_PTR(-EFOO) on error).
3110 *
3111 * This call is required to be made to register an individual tty device
3112 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3113 * that bit is not set, this function should not be called by a tty
3114 * driver.
3115 *
3116 * Locking: ??
3117 */
3118
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3119 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3120 struct device *device)
3121 {
3122 return tty_register_device_attr(driver, index, device, NULL, NULL);
3123 }
3124 EXPORT_SYMBOL(tty_register_device);
3125
tty_device_create_release(struct device * dev)3126 static void tty_device_create_release(struct device *dev)
3127 {
3128 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3129 kfree(dev);
3130 }
3131
3132 /**
3133 * tty_register_device_attr - register a tty device
3134 * @driver: the tty driver that describes the tty device
3135 * @index: the index in the tty driver for this tty device
3136 * @device: a struct device that is associated with this tty device.
3137 * This field is optional, if there is no known struct device
3138 * for this tty device it can be set to NULL safely.
3139 * @drvdata: Driver data to be set to device.
3140 * @attr_grp: Attribute group to be set on device.
3141 *
3142 * Returns a pointer to the struct device for this tty device
3143 * (or ERR_PTR(-EFOO) on error).
3144 *
3145 * This call is required to be made to register an individual tty device
3146 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3147 * that bit is not set, this function should not be called by a tty
3148 * driver.
3149 *
3150 * Locking: ??
3151 */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3152 struct device *tty_register_device_attr(struct tty_driver *driver,
3153 unsigned index, struct device *device,
3154 void *drvdata,
3155 const struct attribute_group **attr_grp)
3156 {
3157 char name[64];
3158 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3159 struct device *dev = NULL;
3160 int retval = -ENODEV;
3161 bool cdev = false;
3162
3163 if (index >= driver->num) {
3164 printk(KERN_ERR "Attempt to register invalid tty line number "
3165 " (%d).\n", index);
3166 return ERR_PTR(-EINVAL);
3167 }
3168
3169 if (driver->type == TTY_DRIVER_TYPE_PTY)
3170 pty_line_name(driver, index, name);
3171 else
3172 tty_line_name(driver, index, name);
3173
3174 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3175 retval = tty_cdev_add(driver, devt, index, 1);
3176 if (retval)
3177 goto error;
3178 cdev = true;
3179 }
3180
3181 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3182 if (!dev) {
3183 retval = -ENOMEM;
3184 goto error;
3185 }
3186
3187 dev->devt = devt;
3188 dev->class = tty_class;
3189 dev->parent = device;
3190 dev->release = tty_device_create_release;
3191 dev_set_name(dev, "%s", name);
3192 dev->groups = attr_grp;
3193 dev_set_drvdata(dev, drvdata);
3194
3195 retval = device_register(dev);
3196 if (retval)
3197 goto error;
3198
3199 return dev;
3200
3201 error:
3202 put_device(dev);
3203 if (cdev)
3204 cdev_del(&driver->cdevs[index]);
3205 return ERR_PTR(retval);
3206 }
3207 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3208
3209 /**
3210 * tty_unregister_device - unregister a tty device
3211 * @driver: the tty driver that describes the tty device
3212 * @index: the index in the tty driver for this tty device
3213 *
3214 * If a tty device is registered with a call to tty_register_device() then
3215 * this function must be called when the tty device is gone.
3216 *
3217 * Locking: ??
3218 */
3219
tty_unregister_device(struct tty_driver * driver,unsigned index)3220 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3221 {
3222 device_destroy(tty_class,
3223 MKDEV(driver->major, driver->minor_start) + index);
3224 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3225 cdev_del(&driver->cdevs[index]);
3226 }
3227 EXPORT_SYMBOL(tty_unregister_device);
3228
3229 /**
3230 * __tty_alloc_driver -- allocate tty driver
3231 * @lines: count of lines this driver can handle at most
3232 * @owner: module which is repsonsible for this driver
3233 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3234 *
3235 * This should not be called directly, some of the provided macros should be
3236 * used instead. Use IS_ERR and friends on @retval.
3237 */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3238 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3239 unsigned long flags)
3240 {
3241 struct tty_driver *driver;
3242 unsigned int cdevs = 1;
3243 int err;
3244
3245 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3246 return ERR_PTR(-EINVAL);
3247
3248 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3249 if (!driver)
3250 return ERR_PTR(-ENOMEM);
3251
3252 kref_init(&driver->kref);
3253 driver->magic = TTY_DRIVER_MAGIC;
3254 driver->num = lines;
3255 driver->owner = owner;
3256 driver->flags = flags;
3257
3258 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3259 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3260 GFP_KERNEL);
3261 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3262 GFP_KERNEL);
3263 if (!driver->ttys || !driver->termios) {
3264 err = -ENOMEM;
3265 goto err_free_all;
3266 }
3267 }
3268
3269 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3270 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3271 GFP_KERNEL);
3272 if (!driver->ports) {
3273 err = -ENOMEM;
3274 goto err_free_all;
3275 }
3276 cdevs = lines;
3277 }
3278
3279 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3280 if (!driver->cdevs) {
3281 err = -ENOMEM;
3282 goto err_free_all;
3283 }
3284
3285 return driver;
3286 err_free_all:
3287 kfree(driver->ports);
3288 kfree(driver->ttys);
3289 kfree(driver->termios);
3290 kfree(driver);
3291 return ERR_PTR(err);
3292 }
3293 EXPORT_SYMBOL(__tty_alloc_driver);
3294
destruct_tty_driver(struct kref * kref)3295 static void destruct_tty_driver(struct kref *kref)
3296 {
3297 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3298 int i;
3299 struct ktermios *tp;
3300
3301 if (driver->flags & TTY_DRIVER_INSTALLED) {
3302 /*
3303 * Free the termios and termios_locked structures because
3304 * we don't want to get memory leaks when modular tty
3305 * drivers are removed from the kernel.
3306 */
3307 for (i = 0; i < driver->num; i++) {
3308 tp = driver->termios[i];
3309 if (tp) {
3310 driver->termios[i] = NULL;
3311 kfree(tp);
3312 }
3313 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3314 tty_unregister_device(driver, i);
3315 }
3316 proc_tty_unregister_driver(driver);
3317 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3318 cdev_del(&driver->cdevs[0]);
3319 }
3320 kfree(driver->cdevs);
3321 kfree(driver->ports);
3322 kfree(driver->termios);
3323 kfree(driver->ttys);
3324 kfree(driver);
3325 }
3326
tty_driver_kref_put(struct tty_driver * driver)3327 void tty_driver_kref_put(struct tty_driver *driver)
3328 {
3329 kref_put(&driver->kref, destruct_tty_driver);
3330 }
3331 EXPORT_SYMBOL(tty_driver_kref_put);
3332
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3333 void tty_set_operations(struct tty_driver *driver,
3334 const struct tty_operations *op)
3335 {
3336 driver->ops = op;
3337 };
3338 EXPORT_SYMBOL(tty_set_operations);
3339
put_tty_driver(struct tty_driver * d)3340 void put_tty_driver(struct tty_driver *d)
3341 {
3342 tty_driver_kref_put(d);
3343 }
3344 EXPORT_SYMBOL(put_tty_driver);
3345
3346 /*
3347 * Called by a tty driver to register itself.
3348 */
tty_register_driver(struct tty_driver * driver)3349 int tty_register_driver(struct tty_driver *driver)
3350 {
3351 int error;
3352 int i;
3353 dev_t dev;
3354 struct device *d;
3355
3356 if (!driver->major) {
3357 error = alloc_chrdev_region(&dev, driver->minor_start,
3358 driver->num, driver->name);
3359 if (!error) {
3360 driver->major = MAJOR(dev);
3361 driver->minor_start = MINOR(dev);
3362 }
3363 } else {
3364 dev = MKDEV(driver->major, driver->minor_start);
3365 error = register_chrdev_region(dev, driver->num, driver->name);
3366 }
3367 if (error < 0)
3368 goto err;
3369
3370 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3371 error = tty_cdev_add(driver, dev, 0, driver->num);
3372 if (error)
3373 goto err_unreg_char;
3374 }
3375
3376 mutex_lock(&tty_mutex);
3377 list_add(&driver->tty_drivers, &tty_drivers);
3378 mutex_unlock(&tty_mutex);
3379
3380 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3381 for (i = 0; i < driver->num; i++) {
3382 d = tty_register_device(driver, i, NULL);
3383 if (IS_ERR(d)) {
3384 error = PTR_ERR(d);
3385 goto err_unreg_devs;
3386 }
3387 }
3388 }
3389 proc_tty_register_driver(driver);
3390 driver->flags |= TTY_DRIVER_INSTALLED;
3391 return 0;
3392
3393 err_unreg_devs:
3394 for (i--; i >= 0; i--)
3395 tty_unregister_device(driver, i);
3396
3397 mutex_lock(&tty_mutex);
3398 list_del(&driver->tty_drivers);
3399 mutex_unlock(&tty_mutex);
3400
3401 err_unreg_char:
3402 unregister_chrdev_region(dev, driver->num);
3403 err:
3404 return error;
3405 }
3406 EXPORT_SYMBOL(tty_register_driver);
3407
3408 /*
3409 * Called by a tty driver to unregister itself.
3410 */
tty_unregister_driver(struct tty_driver * driver)3411 int tty_unregister_driver(struct tty_driver *driver)
3412 {
3413 #if 0
3414 /* FIXME */
3415 if (driver->refcount)
3416 return -EBUSY;
3417 #endif
3418 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3419 driver->num);
3420 mutex_lock(&tty_mutex);
3421 list_del(&driver->tty_drivers);
3422 mutex_unlock(&tty_mutex);
3423 return 0;
3424 }
3425
3426 EXPORT_SYMBOL(tty_unregister_driver);
3427
tty_devnum(struct tty_struct * tty)3428 dev_t tty_devnum(struct tty_struct *tty)
3429 {
3430 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3431 }
3432 EXPORT_SYMBOL(tty_devnum);
3433
proc_clear_tty(struct task_struct * p)3434 void proc_clear_tty(struct task_struct *p)
3435 {
3436 unsigned long flags;
3437 struct tty_struct *tty;
3438 spin_lock_irqsave(&p->sighand->siglock, flags);
3439 tty = p->signal->tty;
3440 p->signal->tty = NULL;
3441 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3442 tty_kref_put(tty);
3443 }
3444
3445 /* Called under the sighand lock */
3446
__proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3447 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3448 {
3449 if (tty) {
3450 unsigned long flags;
3451 /* We should not have a session or pgrp to put here but.... */
3452 spin_lock_irqsave(&tty->ctrl_lock, flags);
3453 put_pid(tty->session);
3454 put_pid(tty->pgrp);
3455 tty->pgrp = get_pid(task_pgrp(tsk));
3456 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3457 tty->session = get_pid(task_session(tsk));
3458 if (tsk->signal->tty) {
3459 printk(KERN_DEBUG "tty not NULL!!\n");
3460 tty_kref_put(tsk->signal->tty);
3461 }
3462 }
3463 put_pid(tsk->signal->tty_old_pgrp);
3464 tsk->signal->tty = tty_kref_get(tty);
3465 tsk->signal->tty_old_pgrp = NULL;
3466 }
3467
proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3468 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3469 {
3470 spin_lock_irq(&tsk->sighand->siglock);
3471 __proc_set_tty(tsk, tty);
3472 spin_unlock_irq(&tsk->sighand->siglock);
3473 }
3474
get_current_tty(void)3475 struct tty_struct *get_current_tty(void)
3476 {
3477 struct tty_struct *tty;
3478 unsigned long flags;
3479
3480 spin_lock_irqsave(¤t->sighand->siglock, flags);
3481 tty = tty_kref_get(current->signal->tty);
3482 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3483 return tty;
3484 }
3485 EXPORT_SYMBOL_GPL(get_current_tty);
3486
tty_default_fops(struct file_operations * fops)3487 void tty_default_fops(struct file_operations *fops)
3488 {
3489 *fops = tty_fops;
3490 }
3491
3492 /*
3493 * Initialize the console device. This is called *early*, so
3494 * we can't necessarily depend on lots of kernel help here.
3495 * Just do some early initializations, and do the complex setup
3496 * later.
3497 */
console_init(void)3498 void __init console_init(void)
3499 {
3500 initcall_t *call;
3501
3502 /* Setup the default TTY line discipline. */
3503 tty_ldisc_begin();
3504
3505 /*
3506 * set up the console device so that later boot sequences can
3507 * inform about problems etc..
3508 */
3509 call = __con_initcall_start;
3510 while (call < __con_initcall_end) {
3511 (*call)();
3512 call++;
3513 }
3514 }
3515
tty_devnode(struct device * dev,umode_t * mode)3516 static char *tty_devnode(struct device *dev, umode_t *mode)
3517 {
3518 if (!mode)
3519 return NULL;
3520 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3521 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3522 *mode = 0666;
3523 return NULL;
3524 }
3525
tty_class_init(void)3526 static int __init tty_class_init(void)
3527 {
3528 tty_class = class_create(THIS_MODULE, "tty");
3529 if (IS_ERR(tty_class))
3530 return PTR_ERR(tty_class);
3531 tty_class->devnode = tty_devnode;
3532 return 0;
3533 }
3534
3535 postcore_initcall(tty_class_init);
3536
3537 /* 3/2004 jmc: why do these devices exist? */
3538 static struct cdev tty_cdev, console_cdev;
3539
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3540 static ssize_t show_cons_active(struct device *dev,
3541 struct device_attribute *attr, char *buf)
3542 {
3543 struct console *cs[16];
3544 int i = 0;
3545 struct console *c;
3546 ssize_t count = 0;
3547
3548 console_lock();
3549 for_each_console(c) {
3550 if (!c->device)
3551 continue;
3552 if (!c->write)
3553 continue;
3554 if ((c->flags & CON_ENABLED) == 0)
3555 continue;
3556 cs[i++] = c;
3557 if (i >= ARRAY_SIZE(cs))
3558 break;
3559 }
3560 while (i--)
3561 count += sprintf(buf + count, "%s%d%c",
3562 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3563 console_unlock();
3564
3565 return count;
3566 }
3567 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3568
3569 static struct device *consdev;
3570
console_sysfs_notify(void)3571 void console_sysfs_notify(void)
3572 {
3573 if (consdev)
3574 sysfs_notify(&consdev->kobj, NULL, "active");
3575 }
3576
3577 /*
3578 * Ok, now we can initialize the rest of the tty devices and can count
3579 * on memory allocations, interrupts etc..
3580 */
tty_init(void)3581 int __init tty_init(void)
3582 {
3583 cdev_init(&tty_cdev, &tty_fops);
3584 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3585 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3586 panic("Couldn't register /dev/tty driver\n");
3587 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3588
3589 cdev_init(&console_cdev, &console_fops);
3590 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3591 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3592 panic("Couldn't register /dev/console driver\n");
3593 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3594 "console");
3595 if (IS_ERR(consdev))
3596 consdev = NULL;
3597 else
3598 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3599
3600 #ifdef CONFIG_VT
3601 vty_init(&console_fops);
3602 #endif
3603 return 0;
3604 }
3605
3606