• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * UBI attaching sub-system.
23  *
24  * This sub-system is responsible for attaching MTD devices and it also
25  * implements flash media scanning.
26  *
27  * The attaching information is represented by a &struct ubi_attach_info'
28  * object. Information about volumes is represented by &struct ubi_ainf_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33  * objects are kept in per-volume RB-trees with the root at the corresponding
34  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35  * per-volume objects and each of these objects is the root of RB-tree of
36  * per-LEB objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  *
42  * About corruptions
43  * ~~~~~~~~~~~~~~~~~
44  *
45  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46  * whether the headers are corrupted or not. Sometimes UBI also protects the
47  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48  * when it moves the contents of a PEB for wear-leveling purposes.
49  *
50  * UBI tries to distinguish between 2 types of corruptions.
51  *
52  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53  * tries to handle them gracefully, without printing too many warnings and
54  * error messages. The idea is that we do not lose important data in these
55  * cases - we may lose only the data which were being written to the media just
56  * before the power cut happened, and the upper layers (e.g., UBIFS) are
57  * supposed to handle such data losses (e.g., by using the FS journal).
58  *
59  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61  * PEBs in the @erase list are scheduled for erasure later.
62  *
63  * 2. Unexpected corruptions which are not caused by power cuts. During
64  * attaching, such PEBs are put to the @corr list and UBI preserves them.
65  * Obviously, this lessens the amount of available PEBs, and if at some  point
66  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67  * about such PEBs every time the MTD device is attached.
68  *
69  * However, it is difficult to reliably distinguish between these types of
70  * corruptions and UBI's strategy is as follows (in case of attaching by
71  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72  * the data area does not contain all 0xFFs, and there were no bit-flips or
73  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75  * are as follows.
76  *   o If the data area contains only 0xFFs, there are no data, and it is safe
77  *     to just erase this PEB - this is corruption type 1.
78  *   o If the data area has bit-flips or data integrity errors (ECC errors on
79  *     NAND), it is probably a PEB which was being erased when power cut
80  *     happened, so this is corruption type 1. However, this is just a guess,
81  *     which might be wrong.
82  *   o Otherwise this is corruption type 2.
83  */
84 
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
91 
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 
94 /* Temporary variables used during scanning */
95 static struct ubi_ec_hdr *ech;
96 static struct ubi_vid_hdr *vidh;
97 
98 /**
99  * add_to_list - add physical eraseblock to a list.
100  * @ai: attaching information
101  * @pnum: physical eraseblock number to add
102  * @vol_id: the last used volume id for the PEB
103  * @lnum: the last used LEB number for the PEB
104  * @ec: erase counter of the physical eraseblock
105  * @to_head: if not zero, add to the head of the list
106  * @list: the list to add to
107  *
108  * This function allocates a 'struct ubi_ainf_peb' object for physical
109  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110  * It stores the @lnum and @vol_id alongside, which can both be
111  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112  * If @to_head is not zero, PEB will be added to the head of the list, which
113  * basically means it will be processed first later. E.g., we add corrupted
114  * PEBs (corrupted due to power cuts) to the head of the erase list to make
115  * sure we erase them first and get rid of corruptions ASAP. This function
116  * returns zero in case of success and a negative error code in case of
117  * failure.
118  */
add_to_list(struct ubi_attach_info * ai,int pnum,int vol_id,int lnum,int ec,int to_head,struct list_head * list)119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 		       int lnum, int ec, int to_head, struct list_head *list)
121 {
122 	struct ubi_ainf_peb *aeb;
123 
124 	if (list == &ai->free) {
125 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126 	} else if (list == &ai->erase) {
127 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128 	} else if (list == &ai->alien) {
129 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130 		ai->alien_peb_count += 1;
131 	} else
132 		BUG();
133 
134 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135 	if (!aeb)
136 		return -ENOMEM;
137 
138 	aeb->pnum = pnum;
139 	aeb->vol_id = vol_id;
140 	aeb->lnum = lnum;
141 	aeb->ec = ec;
142 	if (to_head)
143 		list_add(&aeb->u.list, list);
144 	else
145 		list_add_tail(&aeb->u.list, list);
146 	return 0;
147 }
148 
149 /**
150  * add_corrupted - add a corrupted physical eraseblock.
151  * @ai: attaching information
152  * @pnum: physical eraseblock number to add
153  * @ec: erase counter of the physical eraseblock
154  *
155  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
157  * was presumably not caused by a power cut. Returns zero in case of success
158  * and a negative error code in case of failure.
159  */
add_corrupted(struct ubi_attach_info * ai,int pnum,int ec)160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161 {
162 	struct ubi_ainf_peb *aeb;
163 
164 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165 
166 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167 	if (!aeb)
168 		return -ENOMEM;
169 
170 	ai->corr_peb_count += 1;
171 	aeb->pnum = pnum;
172 	aeb->ec = ec;
173 	list_add(&aeb->u.list, &ai->corr);
174 	return 0;
175 }
176 
177 /**
178  * validate_vid_hdr - check volume identifier header.
179  * @vid_hdr: the volume identifier header to check
180  * @av: information about the volume this logical eraseblock belongs to
181  * @pnum: physical eraseblock number the VID header came from
182  *
183  * This function checks that data stored in @vid_hdr is consistent. Returns
184  * non-zero if an inconsistency was found and zero if not.
185  *
186  * Note, UBI does sanity check of everything it reads from the flash media.
187  * Most of the checks are done in the I/O sub-system. Here we check that the
188  * information in the VID header is consistent to the information in other VID
189  * headers of the same volume.
190  */
validate_vid_hdr(const struct ubi_vid_hdr * vid_hdr,const struct ubi_ainf_volume * av,int pnum)191 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
192 			    const struct ubi_ainf_volume *av, int pnum)
193 {
194 	int vol_type = vid_hdr->vol_type;
195 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
198 
199 	if (av->leb_count != 0) {
200 		int av_vol_type;
201 
202 		/*
203 		 * This is not the first logical eraseblock belonging to this
204 		 * volume. Ensure that the data in its VID header is consistent
205 		 * to the data in previous logical eraseblock headers.
206 		 */
207 
208 		if (vol_id != av->vol_id) {
209 			ubi_err("inconsistent vol_id");
210 			goto bad;
211 		}
212 
213 		if (av->vol_type == UBI_STATIC_VOLUME)
214 			av_vol_type = UBI_VID_STATIC;
215 		else
216 			av_vol_type = UBI_VID_DYNAMIC;
217 
218 		if (vol_type != av_vol_type) {
219 			ubi_err("inconsistent vol_type");
220 			goto bad;
221 		}
222 
223 		if (used_ebs != av->used_ebs) {
224 			ubi_err("inconsistent used_ebs");
225 			goto bad;
226 		}
227 
228 		if (data_pad != av->data_pad) {
229 			ubi_err("inconsistent data_pad");
230 			goto bad;
231 		}
232 	}
233 
234 	return 0;
235 
236 bad:
237 	ubi_err("inconsistent VID header at PEB %d", pnum);
238 	ubi_dump_vid_hdr(vid_hdr);
239 	ubi_dump_av(av);
240 	return -EINVAL;
241 }
242 
243 /**
244  * add_volume - add volume to the attaching information.
245  * @ai: attaching information
246  * @vol_id: ID of the volume to add
247  * @pnum: physical eraseblock number
248  * @vid_hdr: volume identifier header
249  *
250  * If the volume corresponding to the @vid_hdr logical eraseblock is already
251  * present in the attaching information, this function does nothing. Otherwise
252  * it adds corresponding volume to the attaching information. Returns a pointer
253  * to the allocated "av" object in case of success and a negative error code in
254  * case of failure.
255  */
add_volume(struct ubi_attach_info * ai,int vol_id,int pnum,const struct ubi_vid_hdr * vid_hdr)256 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
257 					  int vol_id, int pnum,
258 					  const struct ubi_vid_hdr *vid_hdr)
259 {
260 	struct ubi_ainf_volume *av;
261 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
262 
263 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
264 
265 	/* Walk the volume RB-tree to look if this volume is already present */
266 	while (*p) {
267 		parent = *p;
268 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
269 
270 		if (vol_id == av->vol_id)
271 			return av;
272 
273 		if (vol_id > av->vol_id)
274 			p = &(*p)->rb_left;
275 		else
276 			p = &(*p)->rb_right;
277 	}
278 
279 	/* The volume is absent - add it */
280 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 	if (!av)
282 		return ERR_PTR(-ENOMEM);
283 
284 	av->highest_lnum = av->leb_count = 0;
285 	av->vol_id = vol_id;
286 	av->root = RB_ROOT;
287 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 	av->compat = vid_hdr->compat;
290 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
291 							    : UBI_STATIC_VOLUME;
292 	if (vol_id > ai->highest_vol_id)
293 		ai->highest_vol_id = vol_id;
294 
295 	rb_link_node(&av->rb, parent, p);
296 	rb_insert_color(&av->rb, &ai->volumes);
297 	ai->vols_found += 1;
298 	dbg_bld("added volume %d", vol_id);
299 	return av;
300 }
301 
302 /**
303  * ubi_compare_lebs - find out which logical eraseblock is newer.
304  * @ubi: UBI device description object
305  * @aeb: first logical eraseblock to compare
306  * @pnum: physical eraseblock number of the second logical eraseblock to
307  * compare
308  * @vid_hdr: volume identifier header of the second logical eraseblock
309  *
310  * This function compares 2 copies of a LEB and informs which one is newer. In
311  * case of success this function returns a positive value, in case of failure, a
312  * negative error code is returned. The success return codes use the following
313  * bits:
314  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
315  *       second PEB (described by @pnum and @vid_hdr);
316  *     o bit 0 is set: the second PEB is newer;
317  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318  *     o bit 1 is set: bit-flips were detected in the newer LEB;
319  *     o bit 2 is cleared: the older LEB is not corrupted;
320  *     o bit 2 is set: the older LEB is corrupted.
321  */
ubi_compare_lebs(struct ubi_device * ubi,const struct ubi_ainf_peb * aeb,int pnum,const struct ubi_vid_hdr * vid_hdr)322 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
323 			int pnum, const struct ubi_vid_hdr *vid_hdr)
324 {
325 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
326 	uint32_t data_crc, crc;
327 	struct ubi_vid_hdr *vh = NULL;
328 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
329 
330 	if (sqnum2 == aeb->sqnum) {
331 		/*
332 		 * This must be a really ancient UBI image which has been
333 		 * created before sequence numbers support has been added. At
334 		 * that times we used 32-bit LEB versions stored in logical
335 		 * eraseblocks. That was before UBI got into mainline. We do not
336 		 * support these images anymore. Well, those images still work,
337 		 * but only if no unclean reboots happened.
338 		 */
339 		ubi_err("unsupported on-flash UBI format");
340 		return -EINVAL;
341 	}
342 
343 	/* Obviously the LEB with lower sequence counter is older */
344 	second_is_newer = (sqnum2 > aeb->sqnum);
345 
346 	/*
347 	 * Now we know which copy is newer. If the copy flag of the PEB with
348 	 * newer version is not set, then we just return, otherwise we have to
349 	 * check data CRC. For the second PEB we already have the VID header,
350 	 * for the first one - we'll need to re-read it from flash.
351 	 *
352 	 * Note: this may be optimized so that we wouldn't read twice.
353 	 */
354 
355 	if (second_is_newer) {
356 		if (!vid_hdr->copy_flag) {
357 			/* It is not a copy, so it is newer */
358 			dbg_bld("second PEB %d is newer, copy_flag is unset",
359 				pnum);
360 			return 1;
361 		}
362 	} else {
363 		if (!aeb->copy_flag) {
364 			/* It is not a copy, so it is newer */
365 			dbg_bld("first PEB %d is newer, copy_flag is unset",
366 				pnum);
367 			return bitflips << 1;
368 		}
369 
370 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
371 		if (!vh)
372 			return -ENOMEM;
373 
374 		pnum = aeb->pnum;
375 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
376 		if (err) {
377 			if (err == UBI_IO_BITFLIPS)
378 				bitflips = 1;
379 			else {
380 				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
381 					pnum, err);
382 				if (err > 0)
383 					err = -EIO;
384 
385 				goto out_free_vidh;
386 			}
387 		}
388 
389 		vid_hdr = vh;
390 	}
391 
392 	/* Read the data of the copy and check the CRC */
393 
394 	len = be32_to_cpu(vid_hdr->data_size);
395 
396 	mutex_lock(&ubi->buf_mutex);
397 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
398 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
399 		goto out_unlock;
400 
401 	data_crc = be32_to_cpu(vid_hdr->data_crc);
402 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
403 	if (crc != data_crc) {
404 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
405 			pnum, crc, data_crc);
406 		corrupted = 1;
407 		bitflips = 0;
408 		second_is_newer = !second_is_newer;
409 	} else {
410 		dbg_bld("PEB %d CRC is OK", pnum);
411 		bitflips = !!err;
412 	}
413 	mutex_unlock(&ubi->buf_mutex);
414 
415 	ubi_free_vid_hdr(ubi, vh);
416 
417 	if (second_is_newer)
418 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
419 	else
420 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
421 
422 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
423 
424 out_unlock:
425 	mutex_unlock(&ubi->buf_mutex);
426 out_free_vidh:
427 	ubi_free_vid_hdr(ubi, vh);
428 	return err;
429 }
430 
431 /**
432  * ubi_add_to_av - add used physical eraseblock to the attaching information.
433  * @ubi: UBI device description object
434  * @ai: attaching information
435  * @pnum: the physical eraseblock number
436  * @ec: erase counter
437  * @vid_hdr: the volume identifier header
438  * @bitflips: if bit-flips were detected when this physical eraseblock was read
439  *
440  * This function adds information about a used physical eraseblock to the
441  * 'used' tree of the corresponding volume. The function is rather complex
442  * because it has to handle cases when this is not the first physical
443  * eraseblock belonging to the same logical eraseblock, and the newer one has
444  * to be picked, while the older one has to be dropped. This function returns
445  * zero in case of success and a negative error code in case of failure.
446  */
ubi_add_to_av(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int ec,const struct ubi_vid_hdr * vid_hdr,int bitflips)447 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
448 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
449 {
450 	int err, vol_id, lnum;
451 	unsigned long long sqnum;
452 	struct ubi_ainf_volume *av;
453 	struct ubi_ainf_peb *aeb;
454 	struct rb_node **p, *parent = NULL;
455 
456 	vol_id = be32_to_cpu(vid_hdr->vol_id);
457 	lnum = be32_to_cpu(vid_hdr->lnum);
458 	sqnum = be64_to_cpu(vid_hdr->sqnum);
459 
460 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
461 		pnum, vol_id, lnum, ec, sqnum, bitflips);
462 
463 	av = add_volume(ai, vol_id, pnum, vid_hdr);
464 	if (IS_ERR(av))
465 		return PTR_ERR(av);
466 
467 	if (ai->max_sqnum < sqnum)
468 		ai->max_sqnum = sqnum;
469 
470 	/*
471 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
472 	 * if this is the first instance of this logical eraseblock or not.
473 	 */
474 	p = &av->root.rb_node;
475 	while (*p) {
476 		int cmp_res;
477 
478 		parent = *p;
479 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
480 		if (lnum != aeb->lnum) {
481 			if (lnum < aeb->lnum)
482 				p = &(*p)->rb_left;
483 			else
484 				p = &(*p)->rb_right;
485 			continue;
486 		}
487 
488 		/*
489 		 * There is already a physical eraseblock describing the same
490 		 * logical eraseblock present.
491 		 */
492 
493 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
494 			aeb->pnum, aeb->sqnum, aeb->ec);
495 
496 		/*
497 		 * Make sure that the logical eraseblocks have different
498 		 * sequence numbers. Otherwise the image is bad.
499 		 *
500 		 * However, if the sequence number is zero, we assume it must
501 		 * be an ancient UBI image from the era when UBI did not have
502 		 * sequence numbers. We still can attach these images, unless
503 		 * there is a need to distinguish between old and new
504 		 * eraseblocks, in which case we'll refuse the image in
505 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
506 		 * images, but refuse attaching old images with duplicated
507 		 * logical eraseblocks because there was an unclean reboot.
508 		 */
509 		if (aeb->sqnum == sqnum && sqnum != 0) {
510 			ubi_err("two LEBs with same sequence number %llu",
511 				sqnum);
512 			ubi_dump_aeb(aeb, 0);
513 			ubi_dump_vid_hdr(vid_hdr);
514 			return -EINVAL;
515 		}
516 
517 		/*
518 		 * Now we have to drop the older one and preserve the newer
519 		 * one.
520 		 */
521 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
522 		if (cmp_res < 0)
523 			return cmp_res;
524 
525 		if (cmp_res & 1) {
526 			/*
527 			 * This logical eraseblock is newer than the one
528 			 * found earlier.
529 			 */
530 			err = validate_vid_hdr(vid_hdr, av, pnum);
531 			if (err)
532 				return err;
533 
534 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
535 					  aeb->lnum, aeb->ec, cmp_res & 4,
536 					  &ai->erase);
537 			if (err)
538 				return err;
539 
540 			aeb->ec = ec;
541 			aeb->pnum = pnum;
542 			aeb->vol_id = vol_id;
543 			aeb->lnum = lnum;
544 			aeb->scrub = ((cmp_res & 2) || bitflips);
545 			aeb->copy_flag = vid_hdr->copy_flag;
546 			aeb->sqnum = sqnum;
547 
548 			if (av->highest_lnum == lnum)
549 				av->last_data_size =
550 					be32_to_cpu(vid_hdr->data_size);
551 
552 			return 0;
553 		} else {
554 			/*
555 			 * This logical eraseblock is older than the one found
556 			 * previously.
557 			 */
558 			return add_to_list(ai, pnum, vol_id, lnum, ec,
559 					   cmp_res & 4, &ai->erase);
560 		}
561 	}
562 
563 	/*
564 	 * We've met this logical eraseblock for the first time, add it to the
565 	 * attaching information.
566 	 */
567 
568 	err = validate_vid_hdr(vid_hdr, av, pnum);
569 	if (err)
570 		return err;
571 
572 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
573 	if (!aeb)
574 		return -ENOMEM;
575 
576 	aeb->ec = ec;
577 	aeb->pnum = pnum;
578 	aeb->vol_id = vol_id;
579 	aeb->lnum = lnum;
580 	aeb->scrub = bitflips;
581 	aeb->copy_flag = vid_hdr->copy_flag;
582 	aeb->sqnum = sqnum;
583 
584 	if (av->highest_lnum <= lnum) {
585 		av->highest_lnum = lnum;
586 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
587 	}
588 
589 	av->leb_count += 1;
590 	rb_link_node(&aeb->u.rb, parent, p);
591 	rb_insert_color(&aeb->u.rb, &av->root);
592 	return 0;
593 }
594 
595 /**
596  * ubi_find_av - find volume in the attaching information.
597  * @ai: attaching information
598  * @vol_id: the requested volume ID
599  *
600  * This function returns a pointer to the volume description or %NULL if there
601  * are no data about this volume in the attaching information.
602  */
ubi_find_av(const struct ubi_attach_info * ai,int vol_id)603 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
604 				    int vol_id)
605 {
606 	struct ubi_ainf_volume *av;
607 	struct rb_node *p = ai->volumes.rb_node;
608 
609 	while (p) {
610 		av = rb_entry(p, struct ubi_ainf_volume, rb);
611 
612 		if (vol_id == av->vol_id)
613 			return av;
614 
615 		if (vol_id > av->vol_id)
616 			p = p->rb_left;
617 		else
618 			p = p->rb_right;
619 	}
620 
621 	return NULL;
622 }
623 
624 /**
625  * ubi_remove_av - delete attaching information about a volume.
626  * @ai: attaching information
627  * @av: the volume attaching information to delete
628  */
ubi_remove_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)629 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
630 {
631 	struct rb_node *rb;
632 	struct ubi_ainf_peb *aeb;
633 
634 	dbg_bld("remove attaching information about volume %d", av->vol_id);
635 
636 	while ((rb = rb_first(&av->root))) {
637 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
638 		rb_erase(&aeb->u.rb, &av->root);
639 		list_add_tail(&aeb->u.list, &ai->erase);
640 	}
641 
642 	rb_erase(&av->rb, &ai->volumes);
643 	kfree(av);
644 	ai->vols_found -= 1;
645 }
646 
647 /**
648  * early_erase_peb - erase a physical eraseblock.
649  * @ubi: UBI device description object
650  * @ai: attaching information
651  * @pnum: physical eraseblock number to erase;
652  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
653  *
654  * This function erases physical eraseblock 'pnum', and writes the erase
655  * counter header to it. This function should only be used on UBI device
656  * initialization stages, when the EBA sub-system had not been yet initialized.
657  * This function returns zero in case of success and a negative error code in
658  * case of failure.
659  */
early_erase_peb(struct ubi_device * ubi,const struct ubi_attach_info * ai,int pnum,int ec)660 static int early_erase_peb(struct ubi_device *ubi,
661 			   const struct ubi_attach_info *ai, int pnum, int ec)
662 {
663 	int err;
664 	struct ubi_ec_hdr *ec_hdr;
665 
666 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
667 		/*
668 		 * Erase counter overflow. Upgrade UBI and use 64-bit
669 		 * erase counters internally.
670 		 */
671 		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
672 		return -EINVAL;
673 	}
674 
675 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
676 	if (!ec_hdr)
677 		return -ENOMEM;
678 
679 	ec_hdr->ec = cpu_to_be64(ec);
680 
681 	err = ubi_io_sync_erase(ubi, pnum, 0);
682 	if (err < 0)
683 		goto out_free;
684 
685 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
686 
687 out_free:
688 	kfree(ec_hdr);
689 	return err;
690 }
691 
692 /**
693  * ubi_early_get_peb - get a free physical eraseblock.
694  * @ubi: UBI device description object
695  * @ai: attaching information
696  *
697  * This function returns a free physical eraseblock. It is supposed to be
698  * called on the UBI initialization stages when the wear-leveling sub-system is
699  * not initialized yet. This function picks a physical eraseblocks from one of
700  * the lists, writes the EC header if it is needed, and removes it from the
701  * list.
702  *
703  * This function returns a pointer to the "aeb" of the found free PEB in case
704  * of success and an error code in case of failure.
705  */
ubi_early_get_peb(struct ubi_device * ubi,struct ubi_attach_info * ai)706 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
707 				       struct ubi_attach_info *ai)
708 {
709 	int err = 0;
710 	struct ubi_ainf_peb *aeb, *tmp_aeb;
711 
712 	if (!list_empty(&ai->free)) {
713 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
714 		list_del(&aeb->u.list);
715 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
716 		return aeb;
717 	}
718 
719 	/*
720 	 * We try to erase the first physical eraseblock from the erase list
721 	 * and pick it if we succeed, or try to erase the next one if not. And
722 	 * so forth. We don't want to take care about bad eraseblocks here -
723 	 * they'll be handled later.
724 	 */
725 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
726 		if (aeb->ec == UBI_UNKNOWN)
727 			aeb->ec = ai->mean_ec;
728 
729 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
730 		if (err)
731 			continue;
732 
733 		aeb->ec += 1;
734 		list_del(&aeb->u.list);
735 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
736 		return aeb;
737 	}
738 
739 	ubi_err("no free eraseblocks");
740 	return ERR_PTR(-ENOSPC);
741 }
742 
743 /**
744  * check_corruption - check the data area of PEB.
745  * @ubi: UBI device description object
746  * @vid_hdr: the (corrupted) VID header of this PEB
747  * @pnum: the physical eraseblock number to check
748  *
749  * This is a helper function which is used to distinguish between VID header
750  * corruptions caused by power cuts and other reasons. If the PEB contains only
751  * 0xFF bytes in the data area, the VID header is most probably corrupted
752  * because of a power cut (%0 is returned in this case). Otherwise, it was
753  * probably corrupted for some other reasons (%1 is returned in this case). A
754  * negative error code is returned if a read error occurred.
755  *
756  * If the corruption reason was a power cut, UBI can safely erase this PEB.
757  * Otherwise, it should preserve it to avoid possibly destroying important
758  * information.
759  */
check_corruption(struct ubi_device * ubi,struct ubi_vid_hdr * vid_hdr,int pnum)760 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
761 			    int pnum)
762 {
763 	int err;
764 
765 	mutex_lock(&ubi->buf_mutex);
766 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
767 
768 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
769 			  ubi->leb_size);
770 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
771 		/*
772 		 * Bit-flips or integrity errors while reading the data area.
773 		 * It is difficult to say for sure what type of corruption is
774 		 * this, but presumably a power cut happened while this PEB was
775 		 * erased, so it became unstable and corrupted, and should be
776 		 * erased.
777 		 */
778 		err = 0;
779 		goto out_unlock;
780 	}
781 
782 	if (err)
783 		goto out_unlock;
784 
785 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
786 		goto out_unlock;
787 
788 	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
789 		pnum);
790 	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
791 	ubi_dump_vid_hdr(vid_hdr);
792 	pr_err("hexdump of PEB %d offset %d, length %d",
793 	       pnum, ubi->leb_start, ubi->leb_size);
794 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
795 			       ubi->peb_buf, ubi->leb_size, 1);
796 	err = 1;
797 
798 out_unlock:
799 	mutex_unlock(&ubi->buf_mutex);
800 	return err;
801 }
802 
803 /**
804  * scan_peb - scan and process UBI headers of a PEB.
805  * @ubi: UBI device description object
806  * @ai: attaching information
807  * @pnum: the physical eraseblock number
808  * @vid: The volume ID of the found volume will be stored in this pointer
809  * @sqnum: The sqnum of the found volume will be stored in this pointer
810  *
811  * This function reads UBI headers of PEB @pnum, checks them, and adds
812  * information about this PEB to the corresponding list or RB-tree in the
813  * "attaching info" structure. Returns zero if the physical eraseblock was
814  * successfully handled and a negative error code in case of failure.
815  */
scan_peb(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int * vid,unsigned long long * sqnum)816 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
817 		    int pnum, int *vid, unsigned long long *sqnum)
818 {
819 	long long uninitialized_var(ec);
820 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
821 
822 	dbg_bld("scan PEB %d", pnum);
823 
824 	/* Skip bad physical eraseblocks */
825 	err = ubi_io_is_bad(ubi, pnum);
826 	if (err < 0)
827 		return err;
828 	else if (err) {
829 		ai->bad_peb_count += 1;
830 		return 0;
831 	}
832 
833 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
834 	if (err < 0)
835 		return err;
836 	switch (err) {
837 	case 0:
838 		break;
839 	case UBI_IO_BITFLIPS:
840 		bitflips = 1;
841 		break;
842 	case UBI_IO_FF:
843 		ai->empty_peb_count += 1;
844 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
845 				   UBI_UNKNOWN, 0, &ai->erase);
846 	case UBI_IO_FF_BITFLIPS:
847 		ai->empty_peb_count += 1;
848 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
849 				   UBI_UNKNOWN, 1, &ai->erase);
850 	case UBI_IO_BAD_HDR_EBADMSG:
851 	case UBI_IO_BAD_HDR:
852 		/*
853 		 * We have to also look at the VID header, possibly it is not
854 		 * corrupted. Set %bitflips flag in order to make this PEB be
855 		 * moved and EC be re-created.
856 		 */
857 		ec_err = err;
858 		ec = UBI_UNKNOWN;
859 		bitflips = 1;
860 		break;
861 	default:
862 		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
863 		return -EINVAL;
864 	}
865 
866 	if (!ec_err) {
867 		int image_seq;
868 
869 		/* Make sure UBI version is OK */
870 		if (ech->version != UBI_VERSION) {
871 			ubi_err("this UBI version is %d, image version is %d",
872 				UBI_VERSION, (int)ech->version);
873 			return -EINVAL;
874 		}
875 
876 		ec = be64_to_cpu(ech->ec);
877 		if (ec > UBI_MAX_ERASECOUNTER) {
878 			/*
879 			 * Erase counter overflow. The EC headers have 64 bits
880 			 * reserved, but we anyway make use of only 31 bit
881 			 * values, as this seems to be enough for any existing
882 			 * flash. Upgrade UBI and use 64-bit erase counters
883 			 * internally.
884 			 */
885 			ubi_err("erase counter overflow, max is %d",
886 				UBI_MAX_ERASECOUNTER);
887 			ubi_dump_ec_hdr(ech);
888 			return -EINVAL;
889 		}
890 
891 		/*
892 		 * Make sure that all PEBs have the same image sequence number.
893 		 * This allows us to detect situations when users flash UBI
894 		 * images incorrectly, so that the flash has the new UBI image
895 		 * and leftovers from the old one. This feature was added
896 		 * relatively recently, and the sequence number was always
897 		 * zero, because old UBI implementations always set it to zero.
898 		 * For this reasons, we do not panic if some PEBs have zero
899 		 * sequence number, while other PEBs have non-zero sequence
900 		 * number.
901 		 */
902 		image_seq = be32_to_cpu(ech->image_seq);
903 		if (!ubi->image_seq && image_seq)
904 			ubi->image_seq = image_seq;
905 		if (ubi->image_seq && image_seq &&
906 		    ubi->image_seq != image_seq) {
907 			ubi_err("bad image sequence number %d in PEB %d, expected %d",
908 				image_seq, pnum, ubi->image_seq);
909 			ubi_dump_ec_hdr(ech);
910 			return -EINVAL;
911 		}
912 	}
913 
914 	/* OK, we've done with the EC header, let's look at the VID header */
915 
916 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
917 	if (err < 0)
918 		return err;
919 	switch (err) {
920 	case 0:
921 		break;
922 	case UBI_IO_BITFLIPS:
923 		bitflips = 1;
924 		break;
925 	case UBI_IO_BAD_HDR_EBADMSG:
926 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
927 			/*
928 			 * Both EC and VID headers are corrupted and were read
929 			 * with data integrity error, probably this is a bad
930 			 * PEB, bit it is not marked as bad yet. This may also
931 			 * be a result of power cut during erasure.
932 			 */
933 			ai->maybe_bad_peb_count += 1;
934 	case UBI_IO_BAD_HDR:
935 		if (ec_err)
936 			/*
937 			 * Both headers are corrupted. There is a possibility
938 			 * that this a valid UBI PEB which has corresponding
939 			 * LEB, but the headers are corrupted. However, it is
940 			 * impossible to distinguish it from a PEB which just
941 			 * contains garbage because of a power cut during erase
942 			 * operation. So we just schedule this PEB for erasure.
943 			 *
944 			 * Besides, in case of NOR flash, we deliberately
945 			 * corrupt both headers because NOR flash erasure is
946 			 * slow and can start from the end.
947 			 */
948 			err = 0;
949 		else
950 			/*
951 			 * The EC was OK, but the VID header is corrupted. We
952 			 * have to check what is in the data area.
953 			 */
954 			err = check_corruption(ubi, vidh, pnum);
955 
956 		if (err < 0)
957 			return err;
958 		else if (!err)
959 			/* This corruption is caused by a power cut */
960 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
961 					  UBI_UNKNOWN, ec, 1, &ai->erase);
962 		else
963 			/* This is an unexpected corruption */
964 			err = add_corrupted(ai, pnum, ec);
965 		if (err)
966 			return err;
967 		goto adjust_mean_ec;
968 	case UBI_IO_FF_BITFLIPS:
969 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
970 				  ec, 1, &ai->erase);
971 		if (err)
972 			return err;
973 		goto adjust_mean_ec;
974 	case UBI_IO_FF:
975 		if (ec_err || bitflips)
976 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
977 					  UBI_UNKNOWN, ec, 1, &ai->erase);
978 		else
979 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
980 					  UBI_UNKNOWN, ec, 0, &ai->free);
981 		if (err)
982 			return err;
983 		goto adjust_mean_ec;
984 	default:
985 		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
986 			err);
987 		return -EINVAL;
988 	}
989 
990 	vol_id = be32_to_cpu(vidh->vol_id);
991 	if (vid)
992 		*vid = vol_id;
993 	if (sqnum)
994 		*sqnum = be64_to_cpu(vidh->sqnum);
995 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
996 		int lnum = be32_to_cpu(vidh->lnum);
997 
998 		/* Unsupported internal volume */
999 		switch (vidh->compat) {
1000 		case UBI_COMPAT_DELETE:
1001 			if (vol_id != UBI_FM_SB_VOLUME_ID
1002 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1003 				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1004 					vol_id, lnum);
1005 			}
1006 			err = add_to_list(ai, pnum, vol_id, lnum,
1007 					  ec, 1, &ai->erase);
1008 			if (err)
1009 				return err;
1010 			return 0;
1011 
1012 		case UBI_COMPAT_RO:
1013 			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1014 				vol_id, lnum);
1015 			ubi->ro_mode = 1;
1016 			break;
1017 
1018 		case UBI_COMPAT_PRESERVE:
1019 			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1020 				vol_id, lnum);
1021 			err = add_to_list(ai, pnum, vol_id, lnum,
1022 					  ec, 0, &ai->alien);
1023 			if (err)
1024 				return err;
1025 			return 0;
1026 
1027 		case UBI_COMPAT_REJECT:
1028 			ubi_err("incompatible internal volume %d:%d found",
1029 				vol_id, lnum);
1030 			return -EINVAL;
1031 		}
1032 	}
1033 
1034 	if (ec_err)
1035 		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1036 			 pnum);
1037 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1038 	if (err)
1039 		return err;
1040 
1041 adjust_mean_ec:
1042 	if (!ec_err) {
1043 		ai->ec_sum += ec;
1044 		ai->ec_count += 1;
1045 		if (ec > ai->max_ec)
1046 			ai->max_ec = ec;
1047 		if (ec < ai->min_ec)
1048 			ai->min_ec = ec;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /**
1055  * late_analysis - analyze the overall situation with PEB.
1056  * @ubi: UBI device description object
1057  * @ai: attaching information
1058  *
1059  * This is a helper function which takes a look what PEBs we have after we
1060  * gather information about all of them ("ai" is compete). It decides whether
1061  * the flash is empty and should be formatted of whether there are too many
1062  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1063  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1064  */
late_analysis(struct ubi_device * ubi,struct ubi_attach_info * ai)1065 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1066 {
1067 	struct ubi_ainf_peb *aeb;
1068 	int max_corr, peb_count;
1069 
1070 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1071 	max_corr = peb_count / 20 ?: 8;
1072 
1073 	/*
1074 	 * Few corrupted PEBs is not a problem and may be just a result of
1075 	 * unclean reboots. However, many of them may indicate some problems
1076 	 * with the flash HW or driver.
1077 	 */
1078 	if (ai->corr_peb_count) {
1079 		ubi_err("%d PEBs are corrupted and preserved",
1080 			ai->corr_peb_count);
1081 		pr_err("Corrupted PEBs are:");
1082 		list_for_each_entry(aeb, &ai->corr, u.list)
1083 			pr_cont(" %d", aeb->pnum);
1084 		pr_cont("\n");
1085 
1086 		/*
1087 		 * If too many PEBs are corrupted, we refuse attaching,
1088 		 * otherwise, only print a warning.
1089 		 */
1090 		if (ai->corr_peb_count >= max_corr) {
1091 			ubi_err("too many corrupted PEBs, refusing");
1092 			return -EINVAL;
1093 		}
1094 	}
1095 
1096 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1097 		/*
1098 		 * All PEBs are empty, or almost all - a couple PEBs look like
1099 		 * they may be bad PEBs which were not marked as bad yet.
1100 		 *
1101 		 * This piece of code basically tries to distinguish between
1102 		 * the following situations:
1103 		 *
1104 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1105 		 *    marked as bad so far, and which were read with error. We
1106 		 *    want to go ahead and format this flash. While formatting,
1107 		 *    the faulty PEBs will probably be marked as bad.
1108 		 *
1109 		 * 2. Flash contains non-UBI data and we do not want to format
1110 		 *    it and destroy possibly important information.
1111 		 */
1112 		if (ai->maybe_bad_peb_count <= 2) {
1113 			ai->is_empty = 1;
1114 			ubi_msg("empty MTD device detected");
1115 			get_random_bytes(&ubi->image_seq,
1116 					 sizeof(ubi->image_seq));
1117 		} else {
1118 			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1119 			return -EINVAL;
1120 		}
1121 
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 /**
1128  * destroy_av - free volume attaching information.
1129  * @av: volume attaching information
1130  * @ai: attaching information
1131  *
1132  * This function destroys the volume attaching information.
1133  */
destroy_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)1134 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1135 {
1136 	struct ubi_ainf_peb *aeb;
1137 	struct rb_node *this = av->root.rb_node;
1138 
1139 	while (this) {
1140 		if (this->rb_left)
1141 			this = this->rb_left;
1142 		else if (this->rb_right)
1143 			this = this->rb_right;
1144 		else {
1145 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1146 			this = rb_parent(this);
1147 			if (this) {
1148 				if (this->rb_left == &aeb->u.rb)
1149 					this->rb_left = NULL;
1150 				else
1151 					this->rb_right = NULL;
1152 			}
1153 
1154 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1155 		}
1156 	}
1157 	kfree(av);
1158 }
1159 
1160 /**
1161  * destroy_ai - destroy attaching information.
1162  * @ai: attaching information
1163  */
destroy_ai(struct ubi_attach_info * ai)1164 static void destroy_ai(struct ubi_attach_info *ai)
1165 {
1166 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1167 	struct ubi_ainf_volume *av;
1168 	struct rb_node *rb;
1169 
1170 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1171 		list_del(&aeb->u.list);
1172 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1173 	}
1174 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1175 		list_del(&aeb->u.list);
1176 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1177 	}
1178 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1179 		list_del(&aeb->u.list);
1180 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1181 	}
1182 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1183 		list_del(&aeb->u.list);
1184 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1185 	}
1186 
1187 	/* Destroy the volume RB-tree */
1188 	rb = ai->volumes.rb_node;
1189 	while (rb) {
1190 		if (rb->rb_left)
1191 			rb = rb->rb_left;
1192 		else if (rb->rb_right)
1193 			rb = rb->rb_right;
1194 		else {
1195 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1196 
1197 			rb = rb_parent(rb);
1198 			if (rb) {
1199 				if (rb->rb_left == &av->rb)
1200 					rb->rb_left = NULL;
1201 				else
1202 					rb->rb_right = NULL;
1203 			}
1204 
1205 			destroy_av(ai, av);
1206 		}
1207 	}
1208 
1209 	if (ai->aeb_slab_cache)
1210 		kmem_cache_destroy(ai->aeb_slab_cache);
1211 
1212 	kfree(ai);
1213 }
1214 
1215 /**
1216  * scan_all - scan entire MTD device.
1217  * @ubi: UBI device description object
1218  * @ai: attach info object
1219  * @start: start scanning at this PEB
1220  *
1221  * This function does full scanning of an MTD device and returns complete
1222  * information about it in form of a "struct ubi_attach_info" object. In case
1223  * of failure, an error code is returned.
1224  */
scan_all(struct ubi_device * ubi,struct ubi_attach_info * ai,int start)1225 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1226 		    int start)
1227 {
1228 	int err, pnum;
1229 	struct rb_node *rb1, *rb2;
1230 	struct ubi_ainf_volume *av;
1231 	struct ubi_ainf_peb *aeb;
1232 
1233 	err = -ENOMEM;
1234 
1235 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1236 	if (!ech)
1237 		return err;
1238 
1239 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1240 	if (!vidh)
1241 		goto out_ech;
1242 
1243 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1244 		cond_resched();
1245 
1246 		dbg_gen("process PEB %d", pnum);
1247 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1248 		if (err < 0)
1249 			goto out_vidh;
1250 	}
1251 
1252 	ubi_msg("scanning is finished");
1253 
1254 	/* Calculate mean erase counter */
1255 	if (ai->ec_count)
1256 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1257 
1258 	err = late_analysis(ubi, ai);
1259 	if (err)
1260 		goto out_vidh;
1261 
1262 	/*
1263 	 * In case of unknown erase counter we use the mean erase counter
1264 	 * value.
1265 	 */
1266 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1267 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1268 			if (aeb->ec == UBI_UNKNOWN)
1269 				aeb->ec = ai->mean_ec;
1270 	}
1271 
1272 	list_for_each_entry(aeb, &ai->free, u.list) {
1273 		if (aeb->ec == UBI_UNKNOWN)
1274 			aeb->ec = ai->mean_ec;
1275 	}
1276 
1277 	list_for_each_entry(aeb, &ai->corr, u.list)
1278 		if (aeb->ec == UBI_UNKNOWN)
1279 			aeb->ec = ai->mean_ec;
1280 
1281 	list_for_each_entry(aeb, &ai->erase, u.list)
1282 		if (aeb->ec == UBI_UNKNOWN)
1283 			aeb->ec = ai->mean_ec;
1284 
1285 	err = self_check_ai(ubi, ai);
1286 	if (err)
1287 		goto out_vidh;
1288 
1289 	ubi_free_vid_hdr(ubi, vidh);
1290 	kfree(ech);
1291 
1292 	return 0;
1293 
1294 out_vidh:
1295 	ubi_free_vid_hdr(ubi, vidh);
1296 out_ech:
1297 	kfree(ech);
1298 	return err;
1299 }
1300 
1301 #ifdef CONFIG_MTD_UBI_FASTMAP
1302 
1303 /**
1304  * scan_fastmap - try to find a fastmap and attach from it.
1305  * @ubi: UBI device description object
1306  * @ai: attach info object
1307  *
1308  * Returns 0 on success, negative return values indicate an internal
1309  * error.
1310  * UBI_NO_FASTMAP denotes that no fastmap was found.
1311  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1312  */
scan_fast(struct ubi_device * ubi,struct ubi_attach_info * ai)1313 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1314 {
1315 	int err, pnum, fm_anchor = -1;
1316 	unsigned long long max_sqnum = 0;
1317 
1318 	err = -ENOMEM;
1319 
1320 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1321 	if (!ech)
1322 		goto out;
1323 
1324 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1325 	if (!vidh)
1326 		goto out_ech;
1327 
1328 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1329 		int vol_id = -1;
1330 		unsigned long long sqnum = -1;
1331 		cond_resched();
1332 
1333 		dbg_gen("process PEB %d", pnum);
1334 		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1335 		if (err < 0)
1336 			goto out_vidh;
1337 
1338 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1339 			max_sqnum = sqnum;
1340 			fm_anchor = pnum;
1341 		}
1342 	}
1343 
1344 	ubi_free_vid_hdr(ubi, vidh);
1345 	kfree(ech);
1346 
1347 	if (fm_anchor < 0)
1348 		return UBI_NO_FASTMAP;
1349 
1350 	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1351 
1352 out_vidh:
1353 	ubi_free_vid_hdr(ubi, vidh);
1354 out_ech:
1355 	kfree(ech);
1356 out:
1357 	return err;
1358 }
1359 
1360 #endif
1361 
alloc_ai(const char * slab_name)1362 static struct ubi_attach_info *alloc_ai(const char *slab_name)
1363 {
1364 	struct ubi_attach_info *ai;
1365 
1366 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1367 	if (!ai)
1368 		return ai;
1369 
1370 	INIT_LIST_HEAD(&ai->corr);
1371 	INIT_LIST_HEAD(&ai->free);
1372 	INIT_LIST_HEAD(&ai->erase);
1373 	INIT_LIST_HEAD(&ai->alien);
1374 	ai->volumes = RB_ROOT;
1375 	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1376 					       sizeof(struct ubi_ainf_peb),
1377 					       0, 0, NULL);
1378 	if (!ai->aeb_slab_cache) {
1379 		kfree(ai);
1380 		ai = NULL;
1381 	}
1382 
1383 	return ai;
1384 }
1385 
1386 /**
1387  * ubi_attach - attach an MTD device.
1388  * @ubi: UBI device descriptor
1389  * @force_scan: if set to non-zero attach by scanning
1390  *
1391  * This function returns zero in case of success and a negative error code in
1392  * case of failure.
1393  */
ubi_attach(struct ubi_device * ubi,int force_scan)1394 int ubi_attach(struct ubi_device *ubi, int force_scan)
1395 {
1396 	int err;
1397 	struct ubi_attach_info *ai;
1398 
1399 	ai = alloc_ai("ubi_aeb_slab_cache");
1400 	if (!ai)
1401 		return -ENOMEM;
1402 
1403 #ifdef CONFIG_MTD_UBI_FASTMAP
1404 	/* On small flash devices we disable fastmap in any case. */
1405 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1406 		ubi->fm_disabled = 1;
1407 		force_scan = 1;
1408 	}
1409 
1410 	if (force_scan)
1411 		err = scan_all(ubi, ai, 0);
1412 	else {
1413 		err = scan_fast(ubi, ai);
1414 		if (err > 0) {
1415 			if (err != UBI_NO_FASTMAP) {
1416 				destroy_ai(ai);
1417 				ai = alloc_ai("ubi_aeb_slab_cache2");
1418 				if (!ai)
1419 					return -ENOMEM;
1420 			}
1421 
1422 			err = scan_all(ubi, ai, UBI_FM_MAX_START);
1423 		}
1424 	}
1425 #else
1426 	err = scan_all(ubi, ai, 0);
1427 #endif
1428 	if (err)
1429 		goto out_ai;
1430 
1431 	ubi->bad_peb_count = ai->bad_peb_count;
1432 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1433 	ubi->corr_peb_count = ai->corr_peb_count;
1434 	ubi->max_ec = ai->max_ec;
1435 	ubi->mean_ec = ai->mean_ec;
1436 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1437 
1438 	err = ubi_read_volume_table(ubi, ai);
1439 	if (err)
1440 		goto out_ai;
1441 
1442 	err = ubi_wl_init(ubi, ai);
1443 	if (err)
1444 		goto out_vtbl;
1445 
1446 	err = ubi_eba_init(ubi, ai);
1447 	if (err)
1448 		goto out_wl;
1449 
1450 #ifdef CONFIG_MTD_UBI_FASTMAP
1451 	if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1452 		struct ubi_attach_info *scan_ai;
1453 
1454 		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1455 		if (!scan_ai)
1456 			goto out_wl;
1457 
1458 		err = scan_all(ubi, scan_ai, 0);
1459 		if (err) {
1460 			destroy_ai(scan_ai);
1461 			goto out_wl;
1462 		}
1463 
1464 		err = self_check_eba(ubi, ai, scan_ai);
1465 		destroy_ai(scan_ai);
1466 
1467 		if (err)
1468 			goto out_wl;
1469 	}
1470 #endif
1471 
1472 	destroy_ai(ai);
1473 	return 0;
1474 
1475 out_wl:
1476 	ubi_wl_close(ubi);
1477 out_vtbl:
1478 	ubi_free_internal_volumes(ubi);
1479 	vfree(ubi->vtbl);
1480 out_ai:
1481 	destroy_ai(ai);
1482 	return err;
1483 }
1484 
1485 /**
1486  * self_check_ai - check the attaching information.
1487  * @ubi: UBI device description object
1488  * @ai: attaching information
1489  *
1490  * This function returns zero if the attaching information is all right, and a
1491  * negative error code if not or if an error occurred.
1492  */
self_check_ai(struct ubi_device * ubi,struct ubi_attach_info * ai)1493 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1494 {
1495 	int pnum, err, vols_found = 0;
1496 	struct rb_node *rb1, *rb2;
1497 	struct ubi_ainf_volume *av;
1498 	struct ubi_ainf_peb *aeb, *last_aeb;
1499 	uint8_t *buf;
1500 
1501 	if (!ubi_dbg_chk_gen(ubi))
1502 		return 0;
1503 
1504 	/*
1505 	 * At first, check that attaching information is OK.
1506 	 */
1507 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1508 		int leb_count = 0;
1509 
1510 		cond_resched();
1511 
1512 		vols_found += 1;
1513 
1514 		if (ai->is_empty) {
1515 			ubi_err("bad is_empty flag");
1516 			goto bad_av;
1517 		}
1518 
1519 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1520 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1521 		    av->data_pad < 0 || av->last_data_size < 0) {
1522 			ubi_err("negative values");
1523 			goto bad_av;
1524 		}
1525 
1526 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1527 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1528 			ubi_err("bad vol_id");
1529 			goto bad_av;
1530 		}
1531 
1532 		if (av->vol_id > ai->highest_vol_id) {
1533 			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1534 				ai->highest_vol_id, av->vol_id);
1535 			goto out;
1536 		}
1537 
1538 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1539 		    av->vol_type != UBI_STATIC_VOLUME) {
1540 			ubi_err("bad vol_type");
1541 			goto bad_av;
1542 		}
1543 
1544 		if (av->data_pad > ubi->leb_size / 2) {
1545 			ubi_err("bad data_pad");
1546 			goto bad_av;
1547 		}
1548 
1549 		last_aeb = NULL;
1550 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1551 			cond_resched();
1552 
1553 			last_aeb = aeb;
1554 			leb_count += 1;
1555 
1556 			if (aeb->pnum < 0 || aeb->ec < 0) {
1557 				ubi_err("negative values");
1558 				goto bad_aeb;
1559 			}
1560 
1561 			if (aeb->ec < ai->min_ec) {
1562 				ubi_err("bad ai->min_ec (%d), %d found",
1563 					ai->min_ec, aeb->ec);
1564 				goto bad_aeb;
1565 			}
1566 
1567 			if (aeb->ec > ai->max_ec) {
1568 				ubi_err("bad ai->max_ec (%d), %d found",
1569 					ai->max_ec, aeb->ec);
1570 				goto bad_aeb;
1571 			}
1572 
1573 			if (aeb->pnum >= ubi->peb_count) {
1574 				ubi_err("too high PEB number %d, total PEBs %d",
1575 					aeb->pnum, ubi->peb_count);
1576 				goto bad_aeb;
1577 			}
1578 
1579 			if (av->vol_type == UBI_STATIC_VOLUME) {
1580 				if (aeb->lnum >= av->used_ebs) {
1581 					ubi_err("bad lnum or used_ebs");
1582 					goto bad_aeb;
1583 				}
1584 			} else {
1585 				if (av->used_ebs != 0) {
1586 					ubi_err("non-zero used_ebs");
1587 					goto bad_aeb;
1588 				}
1589 			}
1590 
1591 			if (aeb->lnum > av->highest_lnum) {
1592 				ubi_err("incorrect highest_lnum or lnum");
1593 				goto bad_aeb;
1594 			}
1595 		}
1596 
1597 		if (av->leb_count != leb_count) {
1598 			ubi_err("bad leb_count, %d objects in the tree",
1599 				leb_count);
1600 			goto bad_av;
1601 		}
1602 
1603 		if (!last_aeb)
1604 			continue;
1605 
1606 		aeb = last_aeb;
1607 
1608 		if (aeb->lnum != av->highest_lnum) {
1609 			ubi_err("bad highest_lnum");
1610 			goto bad_aeb;
1611 		}
1612 	}
1613 
1614 	if (vols_found != ai->vols_found) {
1615 		ubi_err("bad ai->vols_found %d, should be %d",
1616 			ai->vols_found, vols_found);
1617 		goto out;
1618 	}
1619 
1620 	/* Check that attaching information is correct */
1621 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1622 		last_aeb = NULL;
1623 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1624 			int vol_type;
1625 
1626 			cond_resched();
1627 
1628 			last_aeb = aeb;
1629 
1630 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1631 			if (err && err != UBI_IO_BITFLIPS) {
1632 				ubi_err("VID header is not OK (%d)", err);
1633 				if (err > 0)
1634 					err = -EIO;
1635 				return err;
1636 			}
1637 
1638 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1639 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1640 			if (av->vol_type != vol_type) {
1641 				ubi_err("bad vol_type");
1642 				goto bad_vid_hdr;
1643 			}
1644 
1645 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1646 				ubi_err("bad sqnum %llu", aeb->sqnum);
1647 				goto bad_vid_hdr;
1648 			}
1649 
1650 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1651 				ubi_err("bad vol_id %d", av->vol_id);
1652 				goto bad_vid_hdr;
1653 			}
1654 
1655 			if (av->compat != vidh->compat) {
1656 				ubi_err("bad compat %d", vidh->compat);
1657 				goto bad_vid_hdr;
1658 			}
1659 
1660 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1661 				ubi_err("bad lnum %d", aeb->lnum);
1662 				goto bad_vid_hdr;
1663 			}
1664 
1665 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1666 				ubi_err("bad used_ebs %d", av->used_ebs);
1667 				goto bad_vid_hdr;
1668 			}
1669 
1670 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1671 				ubi_err("bad data_pad %d", av->data_pad);
1672 				goto bad_vid_hdr;
1673 			}
1674 		}
1675 
1676 		if (!last_aeb)
1677 			continue;
1678 
1679 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1680 			ubi_err("bad highest_lnum %d", av->highest_lnum);
1681 			goto bad_vid_hdr;
1682 		}
1683 
1684 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1685 			ubi_err("bad last_data_size %d", av->last_data_size);
1686 			goto bad_vid_hdr;
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * Make sure that all the physical eraseblocks are in one of the lists
1692 	 * or trees.
1693 	 */
1694 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1695 	if (!buf)
1696 		return -ENOMEM;
1697 
1698 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1699 		err = ubi_io_is_bad(ubi, pnum);
1700 		if (err < 0) {
1701 			kfree(buf);
1702 			return err;
1703 		} else if (err)
1704 			buf[pnum] = 1;
1705 	}
1706 
1707 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1708 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1709 			buf[aeb->pnum] = 1;
1710 
1711 	list_for_each_entry(aeb, &ai->free, u.list)
1712 		buf[aeb->pnum] = 1;
1713 
1714 	list_for_each_entry(aeb, &ai->corr, u.list)
1715 		buf[aeb->pnum] = 1;
1716 
1717 	list_for_each_entry(aeb, &ai->erase, u.list)
1718 		buf[aeb->pnum] = 1;
1719 
1720 	list_for_each_entry(aeb, &ai->alien, u.list)
1721 		buf[aeb->pnum] = 1;
1722 
1723 	err = 0;
1724 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1725 		if (!buf[pnum]) {
1726 			ubi_err("PEB %d is not referred", pnum);
1727 			err = 1;
1728 		}
1729 
1730 	kfree(buf);
1731 	if (err)
1732 		goto out;
1733 	return 0;
1734 
1735 bad_aeb:
1736 	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1737 	ubi_dump_aeb(aeb, 0);
1738 	ubi_dump_av(av);
1739 	goto out;
1740 
1741 bad_av:
1742 	ubi_err("bad attaching information about volume %d", av->vol_id);
1743 	ubi_dump_av(av);
1744 	goto out;
1745 
1746 bad_vid_hdr:
1747 	ubi_err("bad attaching information about volume %d", av->vol_id);
1748 	ubi_dump_av(av);
1749 	ubi_dump_vid_hdr(vidh);
1750 
1751 out:
1752 	dump_stack();
1753 	return -EINVAL;
1754 }
1755