1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21 /*
22 * UBI wear-leveling sub-system.
23 *
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
45 *
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
49 *
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
64 *
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
91 *
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
99 */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111 * Maximum difference between two erase counters. If this threshold is
112 * exceeded, the WL sub-system starts moving data from used physical
113 * eraseblocks with low erase counter to free physical eraseblocks with high
114 * erase counter.
115 */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119 * When a physical eraseblock is moved, the WL sub-system has to pick the target
120 * physical eraseblock to move to. The simplest way would be just to pick the
121 * one with the highest erase counter. But in certain workloads this could lead
122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123 * situation when the picked physical eraseblock is constantly erased after the
124 * data is written to it. So, we have a constant which limits the highest erase
125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126 * does not pick eraseblocks with erase counter greater than the lowest erase
127 * counter plus %WL_FREE_MAX_DIFF.
128 */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132 * Maximum number of consecutive background thread failures which is enough to
133 * switch to read-only mode.
134 */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146 * @wrk: the work description object
147 */
update_fastmap_work_fn(struct work_struct * wrk)148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 ubi_update_fastmap(ubi);
152 }
153
154 /**
155 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156 * @ubi: UBI device description object
157 * @pnum: the to be checked PEB
158 */
ubi_is_fm_block(struct ubi_device * ubi,int pnum)159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161 int i;
162
163 if (!ubi->fm)
164 return 0;
165
166 for (i = 0; i < ubi->fm->used_blocks; i++)
167 if (ubi->fm->e[i]->pnum == pnum)
168 return 1;
169
170 return 0;
171 }
172 #else
ubi_is_fm_block(struct ubi_device * ubi,int pnum)173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175 return 0;
176 }
177 #endif
178
179 /**
180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181 * @e: the wear-leveling entry to add
182 * @root: the root of the tree
183 *
184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185 * the @ubi->used and @ubi->free RB-trees.
186 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189 struct rb_node **p, *parent = NULL;
190
191 p = &root->rb_node;
192 while (*p) {
193 struct ubi_wl_entry *e1;
194
195 parent = *p;
196 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197
198 if (e->ec < e1->ec)
199 p = &(*p)->rb_left;
200 else if (e->ec > e1->ec)
201 p = &(*p)->rb_right;
202 else {
203 ubi_assert(e->pnum != e1->pnum);
204 if (e->pnum < e1->pnum)
205 p = &(*p)->rb_left;
206 else
207 p = &(*p)->rb_right;
208 }
209 }
210
211 rb_link_node(&e->u.rb, parent, p);
212 rb_insert_color(&e->u.rb, root);
213 }
214
215 /**
216 * do_work - do one pending work.
217 * @ubi: UBI device description object
218 *
219 * This function returns zero in case of success and a negative error code in
220 * case of failure.
221 */
do_work(struct ubi_device * ubi)222 static int do_work(struct ubi_device *ubi)
223 {
224 int err;
225 struct ubi_work *wrk;
226
227 cond_resched();
228
229 /*
230 * @ubi->work_sem is used to synchronize with the workers. Workers take
231 * it in read mode, so many of them may be doing works at a time. But
232 * the queue flush code has to be sure the whole queue of works is
233 * done, and it takes the mutex in write mode.
234 */
235 down_read(&ubi->work_sem);
236 spin_lock(&ubi->wl_lock);
237 if (list_empty(&ubi->works)) {
238 spin_unlock(&ubi->wl_lock);
239 up_read(&ubi->work_sem);
240 return 0;
241 }
242
243 wrk = list_entry(ubi->works.next, struct ubi_work, list);
244 list_del(&wrk->list);
245 ubi->works_count -= 1;
246 ubi_assert(ubi->works_count >= 0);
247 spin_unlock(&ubi->wl_lock);
248
249 /*
250 * Call the worker function. Do not touch the work structure
251 * after this call as it will have been freed or reused by that
252 * time by the worker function.
253 */
254 err = wrk->func(ubi, wrk, 0);
255 if (err)
256 ubi_err("work failed with error code %d", err);
257 up_read(&ubi->work_sem);
258
259 return err;
260 }
261
262 /**
263 * produce_free_peb - produce a free physical eraseblock.
264 * @ubi: UBI device description object
265 *
266 * This function tries to make a free PEB by means of synchronous execution of
267 * pending works. This may be needed if, for example the background thread is
268 * disabled. Returns zero in case of success and a negative error code in case
269 * of failure.
270 */
produce_free_peb(struct ubi_device * ubi)271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273 int err;
274
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
277
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280
281 spin_lock(&ubi->wl_lock);
282 if (err)
283 return err;
284 }
285
286 return 0;
287 }
288
289 /**
290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291 * @e: the wear-leveling entry to check
292 * @root: the root of the tree
293 *
294 * This function returns non-zero if @e is in the @root RB-tree and zero if it
295 * is not.
296 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299 struct rb_node *p;
300
301 p = root->rb_node;
302 while (p) {
303 struct ubi_wl_entry *e1;
304
305 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306
307 if (e->pnum == e1->pnum) {
308 ubi_assert(e == e1);
309 return 1;
310 }
311
312 if (e->ec < e1->ec)
313 p = p->rb_left;
314 else if (e->ec > e1->ec)
315 p = p->rb_right;
316 else {
317 ubi_assert(e->pnum != e1->pnum);
318 if (e->pnum < e1->pnum)
319 p = p->rb_left;
320 else
321 p = p->rb_right;
322 }
323 }
324
325 return 0;
326 }
327
328 /**
329 * prot_queue_add - add physical eraseblock to the protection queue.
330 * @ubi: UBI device description object
331 * @e: the physical eraseblock to add
332 *
333 * This function adds @e to the tail of the protection queue @ubi->pq, where
334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336 * be locked.
337 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340 int pq_tail = ubi->pq_head - 1;
341
342 if (pq_tail < 0)
343 pq_tail = UBI_PROT_QUEUE_LEN - 1;
344 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348
349 /**
350 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351 * @ubi: UBI device description object
352 * @root: the RB-tree where to look for
353 * @diff: maximum possible difference from the smallest erase counter
354 *
355 * This function looks for a wear leveling entry with erase counter closest to
356 * min + @diff, where min is the smallest erase counter.
357 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359 struct rb_root *root, int diff)
360 {
361 struct rb_node *p;
362 struct ubi_wl_entry *e, *prev_e = NULL;
363 int max;
364
365 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366 max = e->ec + diff;
367
368 p = root->rb_node;
369 while (p) {
370 struct ubi_wl_entry *e1;
371
372 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373 if (e1->ec >= max)
374 p = p->rb_left;
375 else {
376 p = p->rb_right;
377 prev_e = e;
378 e = e1;
379 }
380 }
381
382 /* If no fastmap has been written and this WL entry can be used
383 * as anchor PEB, hold it back and return the second best WL entry
384 * such that fastmap can use the anchor PEB later. */
385 if (prev_e && !ubi->fm_disabled &&
386 !ubi->fm && e->pnum < UBI_FM_MAX_START)
387 return prev_e;
388
389 return e;
390 }
391
392 /**
393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394 * @ubi: UBI device description object
395 * @root: the RB-tree where to look for
396 *
397 * This function looks for a wear leveling entry with medium erase counter,
398 * but not greater or equivalent than the lowest erase counter plus
399 * %WL_FREE_MAX_DIFF/2.
400 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402 struct rb_root *root)
403 {
404 struct ubi_wl_entry *e, *first, *last;
405
406 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408
409 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413 /* If no fastmap has been written and this WL entry can be used
414 * as anchor PEB, hold it back and return the second best
415 * WL entry such that fastmap can use the anchor PEB later. */
416 if (e && !ubi->fm_disabled && !ubi->fm &&
417 e->pnum < UBI_FM_MAX_START)
418 e = rb_entry(rb_next(root->rb_node),
419 struct ubi_wl_entry, u.rb);
420 #endif
421 } else
422 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423
424 return e;
425 }
426
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430 * @root: the RB-tree where to look for
431 */
find_anchor_wl_entry(struct rb_root * root)432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434 struct rb_node *p;
435 struct ubi_wl_entry *e, *victim = NULL;
436 int max_ec = UBI_MAX_ERASECOUNTER;
437
438 ubi_rb_for_each_entry(p, e, root, u.rb) {
439 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440 victim = e;
441 max_ec = e->ec;
442 }
443 }
444
445 return victim;
446 }
447
anchor_pebs_avalible(struct rb_root * root)448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450 struct rb_node *p;
451 struct ubi_wl_entry *e;
452
453 ubi_rb_for_each_entry(p, e, root, u.rb)
454 if (e->pnum < UBI_FM_MAX_START)
455 return 1;
456
457 return 0;
458 }
459
460 /**
461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462 * @ubi: UBI device description object
463 * @anchor: This PEB will be used as anchor PEB by fastmap
464 *
465 * The function returns a physical erase block with a given maximal number
466 * and removes it from the wl subsystem.
467 * Must be called with wl_lock held!
468 */
ubi_wl_get_fm_peb(struct ubi_device * ubi,int anchor)469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471 struct ubi_wl_entry *e = NULL;
472
473 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474 goto out;
475
476 if (anchor)
477 e = find_anchor_wl_entry(&ubi->free);
478 else
479 e = find_mean_wl_entry(ubi, &ubi->free);
480
481 if (!e)
482 goto out;
483
484 self_check_in_wl_tree(ubi, e, &ubi->free);
485
486 /* remove it from the free list,
487 * the wl subsystem does no longer know this erase block */
488 rb_erase(&e->u.rb, &ubi->free);
489 ubi->free_count--;
490 out:
491 return e;
492 }
493 #endif
494
495 /**
496 * __wl_get_peb - get a physical eraseblock.
497 * @ubi: UBI device description object
498 *
499 * This function returns a physical eraseblock in case of success and a
500 * negative error code in case of failure.
501 */
__wl_get_peb(struct ubi_device * ubi)502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504 int err;
505 struct ubi_wl_entry *e;
506
507 retry:
508 if (!ubi->free.rb_node) {
509 if (ubi->works_count == 0) {
510 ubi_err("no free eraseblocks");
511 ubi_assert(list_empty(&ubi->works));
512 return -ENOSPC;
513 }
514
515 err = produce_free_peb(ubi);
516 if (err < 0)
517 return err;
518 goto retry;
519 }
520
521 e = find_mean_wl_entry(ubi, &ubi->free);
522 if (!e) {
523 ubi_err("no free eraseblocks");
524 return -ENOSPC;
525 }
526
527 self_check_in_wl_tree(ubi, e, &ubi->free);
528
529 /*
530 * Move the physical eraseblock to the protection queue where it will
531 * be protected from being moved for some time.
532 */
533 rb_erase(&e->u.rb, &ubi->free);
534 ubi->free_count--;
535 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537 /* We have to enqueue e only if fastmap is disabled,
538 * is fastmap enabled prot_queue_add() will be called by
539 * ubi_wl_get_peb() after removing e from the pool. */
540 prot_queue_add(ubi, e);
541 #endif
542 return e->pnum;
543 }
544
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547 * return_unused_pool_pebs - returns unused PEB to the free tree.
548 * @ubi: UBI device description object
549 * @pool: fastmap pool description object
550 */
return_unused_pool_pebs(struct ubi_device * ubi,struct ubi_fm_pool * pool)551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552 struct ubi_fm_pool *pool)
553 {
554 int i;
555 struct ubi_wl_entry *e;
556
557 for (i = pool->used; i < pool->size; i++) {
558 e = ubi->lookuptbl[pool->pebs[i]];
559 wl_tree_add(e, &ubi->free);
560 ubi->free_count++;
561 }
562 }
563
564 /**
565 * refill_wl_pool - refills all the fastmap pool used by the
566 * WL sub-system.
567 * @ubi: UBI device description object
568 */
refill_wl_pool(struct ubi_device * ubi)569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571 struct ubi_wl_entry *e;
572 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573
574 return_unused_pool_pebs(ubi, pool);
575
576 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577 if (!ubi->free.rb_node ||
578 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579 break;
580
581 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582 self_check_in_wl_tree(ubi, e, &ubi->free);
583 rb_erase(&e->u.rb, &ubi->free);
584 ubi->free_count--;
585
586 pool->pebs[pool->size] = e->pnum;
587 }
588 pool->used = 0;
589 }
590
591 /**
592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593 * @ubi: UBI device description object
594 */
refill_wl_user_pool(struct ubi_device * ubi)595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597 struct ubi_fm_pool *pool = &ubi->fm_pool;
598
599 return_unused_pool_pebs(ubi, pool);
600
601 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602 if (!ubi->free.rb_node ||
603 (ubi->free_count - ubi->beb_rsvd_pebs < 1))
604 break;
605
606 pool->pebs[pool->size] = __wl_get_peb(ubi);
607 if (pool->pebs[pool->size] < 0)
608 break;
609 }
610 pool->used = 0;
611 }
612
613 /**
614 * ubi_refill_pools - refills all fastmap PEB pools.
615 * @ubi: UBI device description object
616 */
ubi_refill_pools(struct ubi_device * ubi)617 void ubi_refill_pools(struct ubi_device *ubi)
618 {
619 spin_lock(&ubi->wl_lock);
620 refill_wl_pool(ubi);
621 refill_wl_user_pool(ubi);
622 spin_unlock(&ubi->wl_lock);
623 }
624
625 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
626 * the fastmap pool.
627 */
ubi_wl_get_peb(struct ubi_device * ubi)628 int ubi_wl_get_peb(struct ubi_device *ubi)
629 {
630 int ret;
631 struct ubi_fm_pool *pool = &ubi->fm_pool;
632 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
633
634 if (!pool->size || !wl_pool->size || pool->used == pool->size ||
635 wl_pool->used == wl_pool->size)
636 ubi_update_fastmap(ubi);
637
638 /* we got not a single free PEB */
639 if (!pool->size)
640 ret = -ENOSPC;
641 else {
642 spin_lock(&ubi->wl_lock);
643 ret = pool->pebs[pool->used++];
644 prot_queue_add(ubi, ubi->lookuptbl[ret]);
645 spin_unlock(&ubi->wl_lock);
646 }
647
648 return ret;
649 }
650
651 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
652 *
653 * @ubi: UBI device description object
654 */
get_peb_for_wl(struct ubi_device * ubi)655 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
656 {
657 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
658 int pnum;
659
660 if (pool->used == pool->size || !pool->size) {
661 /* We cannot update the fastmap here because this
662 * function is called in atomic context.
663 * Let's fail here and refill/update it as soon as possible. */
664 schedule_work(&ubi->fm_work);
665 return NULL;
666 } else {
667 pnum = pool->pebs[pool->used++];
668 return ubi->lookuptbl[pnum];
669 }
670 }
671 #else
get_peb_for_wl(struct ubi_device * ubi)672 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
673 {
674 struct ubi_wl_entry *e;
675
676 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
677 self_check_in_wl_tree(ubi, e, &ubi->free);
678 rb_erase(&e->u.rb, &ubi->free);
679
680 return e;
681 }
682
ubi_wl_get_peb(struct ubi_device * ubi)683 int ubi_wl_get_peb(struct ubi_device *ubi)
684 {
685 int peb, err;
686
687 spin_lock(&ubi->wl_lock);
688 peb = __wl_get_peb(ubi);
689 spin_unlock(&ubi->wl_lock);
690
691 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
692 ubi->peb_size - ubi->vid_hdr_aloffset);
693 if (err) {
694 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
695 return err;
696 }
697
698 return peb;
699 }
700 #endif
701
702 /**
703 * prot_queue_del - remove a physical eraseblock from the protection queue.
704 * @ubi: UBI device description object
705 * @pnum: the physical eraseblock to remove
706 *
707 * This function deletes PEB @pnum from the protection queue and returns zero
708 * in case of success and %-ENODEV if the PEB was not found.
709 */
prot_queue_del(struct ubi_device * ubi,int pnum)710 static int prot_queue_del(struct ubi_device *ubi, int pnum)
711 {
712 struct ubi_wl_entry *e;
713
714 e = ubi->lookuptbl[pnum];
715 if (!e)
716 return -ENODEV;
717
718 if (self_check_in_pq(ubi, e))
719 return -ENODEV;
720
721 list_del(&e->u.list);
722 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
723 return 0;
724 }
725
726 /**
727 * sync_erase - synchronously erase a physical eraseblock.
728 * @ubi: UBI device description object
729 * @e: the the physical eraseblock to erase
730 * @torture: if the physical eraseblock has to be tortured
731 *
732 * This function returns zero in case of success and a negative error code in
733 * case of failure.
734 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)735 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
736 int torture)
737 {
738 int err;
739 struct ubi_ec_hdr *ec_hdr;
740 unsigned long long ec = e->ec;
741
742 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
743
744 err = self_check_ec(ubi, e->pnum, e->ec);
745 if (err)
746 return -EINVAL;
747
748 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
749 if (!ec_hdr)
750 return -ENOMEM;
751
752 err = ubi_io_sync_erase(ubi, e->pnum, torture);
753 if (err < 0)
754 goto out_free;
755
756 ec += err;
757 if (ec > UBI_MAX_ERASECOUNTER) {
758 /*
759 * Erase counter overflow. Upgrade UBI and use 64-bit
760 * erase counters internally.
761 */
762 ubi_err("erase counter overflow at PEB %d, EC %llu",
763 e->pnum, ec);
764 err = -EINVAL;
765 goto out_free;
766 }
767
768 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
769
770 ec_hdr->ec = cpu_to_be64(ec);
771
772 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
773 if (err)
774 goto out_free;
775
776 e->ec = ec;
777 spin_lock(&ubi->wl_lock);
778 if (e->ec > ubi->max_ec)
779 ubi->max_ec = e->ec;
780 spin_unlock(&ubi->wl_lock);
781
782 out_free:
783 kfree(ec_hdr);
784 return err;
785 }
786
787 /**
788 * serve_prot_queue - check if it is time to stop protecting PEBs.
789 * @ubi: UBI device description object
790 *
791 * This function is called after each erase operation and removes PEBs from the
792 * tail of the protection queue. These PEBs have been protected for long enough
793 * and should be moved to the used tree.
794 */
serve_prot_queue(struct ubi_device * ubi)795 static void serve_prot_queue(struct ubi_device *ubi)
796 {
797 struct ubi_wl_entry *e, *tmp;
798 int count;
799
800 /*
801 * There may be several protected physical eraseblock to remove,
802 * process them all.
803 */
804 repeat:
805 count = 0;
806 spin_lock(&ubi->wl_lock);
807 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
808 dbg_wl("PEB %d EC %d protection over, move to used tree",
809 e->pnum, e->ec);
810
811 list_del(&e->u.list);
812 wl_tree_add(e, &ubi->used);
813 if (count++ > 32) {
814 /*
815 * Let's be nice and avoid holding the spinlock for
816 * too long.
817 */
818 spin_unlock(&ubi->wl_lock);
819 cond_resched();
820 goto repeat;
821 }
822 }
823
824 ubi->pq_head += 1;
825 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
826 ubi->pq_head = 0;
827 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
828 spin_unlock(&ubi->wl_lock);
829 }
830
831 /**
832 * __schedule_ubi_work - schedule a work.
833 * @ubi: UBI device description object
834 * @wrk: the work to schedule
835 *
836 * This function adds a work defined by @wrk to the tail of the pending works
837 * list. Can only be used of ubi->work_sem is already held in read mode!
838 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)839 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
840 {
841 spin_lock(&ubi->wl_lock);
842 list_add_tail(&wrk->list, &ubi->works);
843 ubi_assert(ubi->works_count >= 0);
844 ubi->works_count += 1;
845 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
846 wake_up_process(ubi->bgt_thread);
847 spin_unlock(&ubi->wl_lock);
848 }
849
850 /**
851 * schedule_ubi_work - schedule a work.
852 * @ubi: UBI device description object
853 * @wrk: the work to schedule
854 *
855 * This function adds a work defined by @wrk to the tail of the pending works
856 * list.
857 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)858 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
859 {
860 down_read(&ubi->work_sem);
861 __schedule_ubi_work(ubi, wrk);
862 up_read(&ubi->work_sem);
863 }
864
865 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
866 int cancel);
867
868 #ifdef CONFIG_MTD_UBI_FASTMAP
869 /**
870 * ubi_is_erase_work - checks whether a work is erase work.
871 * @wrk: The work object to be checked
872 */
ubi_is_erase_work(struct ubi_work * wrk)873 int ubi_is_erase_work(struct ubi_work *wrk)
874 {
875 return wrk->func == erase_worker;
876 }
877 #endif
878
879 /**
880 * schedule_erase - schedule an erase work.
881 * @ubi: UBI device description object
882 * @e: the WL entry of the physical eraseblock to erase
883 * @vol_id: the volume ID that last used this PEB
884 * @lnum: the last used logical eraseblock number for the PEB
885 * @torture: if the physical eraseblock has to be tortured
886 *
887 * This function returns zero in case of success and a %-ENOMEM in case of
888 * failure.
889 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)890 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
891 int vol_id, int lnum, int torture)
892 {
893 struct ubi_work *wl_wrk;
894
895 ubi_assert(e);
896 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
897
898 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
899 e->pnum, e->ec, torture);
900
901 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
902 if (!wl_wrk)
903 return -ENOMEM;
904
905 wl_wrk->func = &erase_worker;
906 wl_wrk->e = e;
907 wl_wrk->vol_id = vol_id;
908 wl_wrk->lnum = lnum;
909 wl_wrk->torture = torture;
910
911 schedule_ubi_work(ubi, wl_wrk);
912 return 0;
913 }
914
915 /**
916 * do_sync_erase - run the erase worker synchronously.
917 * @ubi: UBI device description object
918 * @e: the WL entry of the physical eraseblock to erase
919 * @vol_id: the volume ID that last used this PEB
920 * @lnum: the last used logical eraseblock number for the PEB
921 * @torture: if the physical eraseblock has to be tortured
922 *
923 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)924 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
925 int vol_id, int lnum, int torture)
926 {
927 struct ubi_work *wl_wrk;
928
929 dbg_wl("sync erase of PEB %i", e->pnum);
930
931 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
932 if (!wl_wrk)
933 return -ENOMEM;
934
935 wl_wrk->e = e;
936 wl_wrk->vol_id = vol_id;
937 wl_wrk->lnum = lnum;
938 wl_wrk->torture = torture;
939
940 return erase_worker(ubi, wl_wrk, 0);
941 }
942
943 #ifdef CONFIG_MTD_UBI_FASTMAP
944 /**
945 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
946 * sub-system.
947 * see: ubi_wl_put_peb()
948 *
949 * @ubi: UBI device description object
950 * @fm_e: physical eraseblock to return
951 * @lnum: the last used logical eraseblock number for the PEB
952 * @torture: if this physical eraseblock has to be tortured
953 */
ubi_wl_put_fm_peb(struct ubi_device * ubi,struct ubi_wl_entry * fm_e,int lnum,int torture)954 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
955 int lnum, int torture)
956 {
957 struct ubi_wl_entry *e;
958 int vol_id, pnum = fm_e->pnum;
959
960 dbg_wl("PEB %d", pnum);
961
962 ubi_assert(pnum >= 0);
963 ubi_assert(pnum < ubi->peb_count);
964
965 spin_lock(&ubi->wl_lock);
966 e = ubi->lookuptbl[pnum];
967
968 /* This can happen if we recovered from a fastmap the very
969 * first time and writing now a new one. In this case the wl system
970 * has never seen any PEB used by the original fastmap.
971 */
972 if (!e) {
973 e = fm_e;
974 ubi_assert(e->ec >= 0);
975 ubi->lookuptbl[pnum] = e;
976 } else {
977 e->ec = fm_e->ec;
978 kfree(fm_e);
979 }
980
981 spin_unlock(&ubi->wl_lock);
982
983 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
984 return schedule_erase(ubi, e, vol_id, lnum, torture);
985 }
986 #endif
987
988 /**
989 * wear_leveling_worker - wear-leveling worker function.
990 * @ubi: UBI device description object
991 * @wrk: the work object
992 * @cancel: non-zero if the worker has to free memory and exit
993 *
994 * This function copies a more worn out physical eraseblock to a less worn out
995 * one. Returns zero in case of success and a negative error code in case of
996 * failure.
997 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int cancel)998 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
999 int cancel)
1000 {
1001 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1002 int vol_id = -1, uninitialized_var(lnum);
1003 #ifdef CONFIG_MTD_UBI_FASTMAP
1004 int anchor = wrk->anchor;
1005 #endif
1006 struct ubi_wl_entry *e1, *e2;
1007 struct ubi_vid_hdr *vid_hdr;
1008
1009 kfree(wrk);
1010 if (cancel)
1011 return 0;
1012
1013 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1014 if (!vid_hdr)
1015 return -ENOMEM;
1016
1017 mutex_lock(&ubi->move_mutex);
1018 spin_lock(&ubi->wl_lock);
1019 ubi_assert(!ubi->move_from && !ubi->move_to);
1020 ubi_assert(!ubi->move_to_put);
1021
1022 if (!ubi->free.rb_node ||
1023 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1024 /*
1025 * No free physical eraseblocks? Well, they must be waiting in
1026 * the queue to be erased. Cancel movement - it will be
1027 * triggered again when a free physical eraseblock appears.
1028 *
1029 * No used physical eraseblocks? They must be temporarily
1030 * protected from being moved. They will be moved to the
1031 * @ubi->used tree later and the wear-leveling will be
1032 * triggered again.
1033 */
1034 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1035 !ubi->free.rb_node, !ubi->used.rb_node);
1036 goto out_cancel;
1037 }
1038
1039 #ifdef CONFIG_MTD_UBI_FASTMAP
1040 /* Check whether we need to produce an anchor PEB */
1041 if (!anchor)
1042 anchor = !anchor_pebs_avalible(&ubi->free);
1043
1044 if (anchor) {
1045 e1 = find_anchor_wl_entry(&ubi->used);
1046 if (!e1)
1047 goto out_cancel;
1048 e2 = get_peb_for_wl(ubi);
1049 if (!e2)
1050 goto out_cancel;
1051
1052 self_check_in_wl_tree(ubi, e1, &ubi->used);
1053 rb_erase(&e1->u.rb, &ubi->used);
1054 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1055 } else if (!ubi->scrub.rb_node) {
1056 #else
1057 if (!ubi->scrub.rb_node) {
1058 #endif
1059 /*
1060 * Now pick the least worn-out used physical eraseblock and a
1061 * highly worn-out free physical eraseblock. If the erase
1062 * counters differ much enough, start wear-leveling.
1063 */
1064 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1065 e2 = get_peb_for_wl(ubi);
1066 if (!e2)
1067 goto out_cancel;
1068
1069 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1070 dbg_wl("no WL needed: min used EC %d, max free EC %d",
1071 e1->ec, e2->ec);
1072 goto out_cancel;
1073 }
1074 self_check_in_wl_tree(ubi, e1, &ubi->used);
1075 rb_erase(&e1->u.rb, &ubi->used);
1076 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1077 e1->pnum, e1->ec, e2->pnum, e2->ec);
1078 } else {
1079 /* Perform scrubbing */
1080 scrubbing = 1;
1081 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1082 e2 = get_peb_for_wl(ubi);
1083 if (!e2)
1084 goto out_cancel;
1085
1086 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1087 rb_erase(&e1->u.rb, &ubi->scrub);
1088 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1089 }
1090
1091 ubi->move_from = e1;
1092 ubi->move_to = e2;
1093 spin_unlock(&ubi->wl_lock);
1094
1095 /*
1096 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1097 * We so far do not know which logical eraseblock our physical
1098 * eraseblock (@e1) belongs to. We have to read the volume identifier
1099 * header first.
1100 *
1101 * Note, we are protected from this PEB being unmapped and erased. The
1102 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1103 * which is being moved was unmapped.
1104 */
1105
1106 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1107 if (err && err != UBI_IO_BITFLIPS) {
1108 if (err == UBI_IO_FF) {
1109 /*
1110 * We are trying to move PEB without a VID header. UBI
1111 * always write VID headers shortly after the PEB was
1112 * given, so we have a situation when it has not yet
1113 * had a chance to write it, because it was preempted.
1114 * So add this PEB to the protection queue so far,
1115 * because presumably more data will be written there
1116 * (including the missing VID header), and then we'll
1117 * move it.
1118 */
1119 dbg_wl("PEB %d has no VID header", e1->pnum);
1120 protect = 1;
1121 goto out_not_moved;
1122 } else if (err == UBI_IO_FF_BITFLIPS) {
1123 /*
1124 * The same situation as %UBI_IO_FF, but bit-flips were
1125 * detected. It is better to schedule this PEB for
1126 * scrubbing.
1127 */
1128 dbg_wl("PEB %d has no VID header but has bit-flips",
1129 e1->pnum);
1130 scrubbing = 1;
1131 goto out_not_moved;
1132 }
1133
1134 ubi_err("error %d while reading VID header from PEB %d",
1135 err, e1->pnum);
1136 goto out_error;
1137 }
1138
1139 vol_id = be32_to_cpu(vid_hdr->vol_id);
1140 lnum = be32_to_cpu(vid_hdr->lnum);
1141
1142 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1143 if (err) {
1144 if (err == MOVE_CANCEL_RACE) {
1145 /*
1146 * The LEB has not been moved because the volume is
1147 * being deleted or the PEB has been put meanwhile. We
1148 * should prevent this PEB from being selected for
1149 * wear-leveling movement again, so put it to the
1150 * protection queue.
1151 */
1152 protect = 1;
1153 goto out_not_moved;
1154 }
1155 if (err == MOVE_RETRY) {
1156 scrubbing = 1;
1157 goto out_not_moved;
1158 }
1159 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1160 err == MOVE_TARGET_RD_ERR) {
1161 /*
1162 * Target PEB had bit-flips or write error - torture it.
1163 */
1164 torture = 1;
1165 goto out_not_moved;
1166 }
1167
1168 if (err == MOVE_SOURCE_RD_ERR) {
1169 /*
1170 * An error happened while reading the source PEB. Do
1171 * not switch to R/O mode in this case, and give the
1172 * upper layers a possibility to recover from this,
1173 * e.g. by unmapping corresponding LEB. Instead, just
1174 * put this PEB to the @ubi->erroneous list to prevent
1175 * UBI from trying to move it over and over again.
1176 */
1177 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1178 ubi_err("too many erroneous eraseblocks (%d)",
1179 ubi->erroneous_peb_count);
1180 goto out_error;
1181 }
1182 erroneous = 1;
1183 goto out_not_moved;
1184 }
1185
1186 if (err < 0)
1187 goto out_error;
1188
1189 ubi_assert(0);
1190 }
1191
1192 /* The PEB has been successfully moved */
1193 if (scrubbing)
1194 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1195 e1->pnum, vol_id, lnum, e2->pnum);
1196 ubi_free_vid_hdr(ubi, vid_hdr);
1197
1198 spin_lock(&ubi->wl_lock);
1199 if (!ubi->move_to_put) {
1200 wl_tree_add(e2, &ubi->used);
1201 e2 = NULL;
1202 }
1203 ubi->move_from = ubi->move_to = NULL;
1204 ubi->move_to_put = ubi->wl_scheduled = 0;
1205 spin_unlock(&ubi->wl_lock);
1206
1207 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1208 if (err) {
1209 kmem_cache_free(ubi_wl_entry_slab, e1);
1210 if (e2)
1211 kmem_cache_free(ubi_wl_entry_slab, e2);
1212 goto out_ro;
1213 }
1214
1215 if (e2) {
1216 /*
1217 * Well, the target PEB was put meanwhile, schedule it for
1218 * erasure.
1219 */
1220 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1221 e2->pnum, vol_id, lnum);
1222 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1223 if (err) {
1224 kmem_cache_free(ubi_wl_entry_slab, e2);
1225 goto out_ro;
1226 }
1227 }
1228
1229 dbg_wl("done");
1230 mutex_unlock(&ubi->move_mutex);
1231 return 0;
1232
1233 /*
1234 * For some reasons the LEB was not moved, might be an error, might be
1235 * something else. @e1 was not changed, so return it back. @e2 might
1236 * have been changed, schedule it for erasure.
1237 */
1238 out_not_moved:
1239 if (vol_id != -1)
1240 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1241 e1->pnum, vol_id, lnum, e2->pnum, err);
1242 else
1243 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1244 e1->pnum, e2->pnum, err);
1245 spin_lock(&ubi->wl_lock);
1246 if (protect)
1247 prot_queue_add(ubi, e1);
1248 else if (erroneous) {
1249 wl_tree_add(e1, &ubi->erroneous);
1250 ubi->erroneous_peb_count += 1;
1251 } else if (scrubbing)
1252 wl_tree_add(e1, &ubi->scrub);
1253 else
1254 wl_tree_add(e1, &ubi->used);
1255 ubi_assert(!ubi->move_to_put);
1256 ubi->move_from = ubi->move_to = NULL;
1257 ubi->wl_scheduled = 0;
1258 spin_unlock(&ubi->wl_lock);
1259
1260 ubi_free_vid_hdr(ubi, vid_hdr);
1261 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1262 if (err) {
1263 kmem_cache_free(ubi_wl_entry_slab, e2);
1264 goto out_ro;
1265 }
1266 mutex_unlock(&ubi->move_mutex);
1267 return 0;
1268
1269 out_error:
1270 if (vol_id != -1)
1271 ubi_err("error %d while moving PEB %d to PEB %d",
1272 err, e1->pnum, e2->pnum);
1273 else
1274 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1275 err, e1->pnum, vol_id, lnum, e2->pnum);
1276 spin_lock(&ubi->wl_lock);
1277 ubi->move_from = ubi->move_to = NULL;
1278 ubi->move_to_put = ubi->wl_scheduled = 0;
1279 spin_unlock(&ubi->wl_lock);
1280
1281 ubi_free_vid_hdr(ubi, vid_hdr);
1282 kmem_cache_free(ubi_wl_entry_slab, e1);
1283 kmem_cache_free(ubi_wl_entry_slab, e2);
1284
1285 out_ro:
1286 ubi_ro_mode(ubi);
1287 mutex_unlock(&ubi->move_mutex);
1288 ubi_assert(err != 0);
1289 return err < 0 ? err : -EIO;
1290
1291 out_cancel:
1292 ubi->wl_scheduled = 0;
1293 spin_unlock(&ubi->wl_lock);
1294 mutex_unlock(&ubi->move_mutex);
1295 ubi_free_vid_hdr(ubi, vid_hdr);
1296 return 0;
1297 }
1298
1299 /**
1300 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1301 * @ubi: UBI device description object
1302 * @nested: set to non-zero if this function is called from UBI worker
1303 *
1304 * This function checks if it is time to start wear-leveling and schedules it
1305 * if yes. This function returns zero in case of success and a negative error
1306 * code in case of failure.
1307 */
1308 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1309 {
1310 int err = 0;
1311 struct ubi_wl_entry *e1;
1312 struct ubi_wl_entry *e2;
1313 struct ubi_work *wrk;
1314
1315 spin_lock(&ubi->wl_lock);
1316 if (ubi->wl_scheduled)
1317 /* Wear-leveling is already in the work queue */
1318 goto out_unlock;
1319
1320 /*
1321 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1322 * the WL worker has to be scheduled anyway.
1323 */
1324 if (!ubi->scrub.rb_node) {
1325 if (!ubi->used.rb_node || !ubi->free.rb_node)
1326 /* No physical eraseblocks - no deal */
1327 goto out_unlock;
1328
1329 /*
1330 * We schedule wear-leveling only if the difference between the
1331 * lowest erase counter of used physical eraseblocks and a high
1332 * erase counter of free physical eraseblocks is greater than
1333 * %UBI_WL_THRESHOLD.
1334 */
1335 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1336 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1337
1338 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1339 goto out_unlock;
1340 dbg_wl("schedule wear-leveling");
1341 } else
1342 dbg_wl("schedule scrubbing");
1343
1344 ubi->wl_scheduled = 1;
1345 spin_unlock(&ubi->wl_lock);
1346
1347 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1348 if (!wrk) {
1349 err = -ENOMEM;
1350 goto out_cancel;
1351 }
1352
1353 wrk->anchor = 0;
1354 wrk->func = &wear_leveling_worker;
1355 if (nested)
1356 __schedule_ubi_work(ubi, wrk);
1357 else
1358 schedule_ubi_work(ubi, wrk);
1359 return err;
1360
1361 out_cancel:
1362 spin_lock(&ubi->wl_lock);
1363 ubi->wl_scheduled = 0;
1364 out_unlock:
1365 spin_unlock(&ubi->wl_lock);
1366 return err;
1367 }
1368
1369 #ifdef CONFIG_MTD_UBI_FASTMAP
1370 /**
1371 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1372 * @ubi: UBI device description object
1373 */
1374 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1375 {
1376 struct ubi_work *wrk;
1377
1378 spin_lock(&ubi->wl_lock);
1379 if (ubi->wl_scheduled) {
1380 spin_unlock(&ubi->wl_lock);
1381 return 0;
1382 }
1383 ubi->wl_scheduled = 1;
1384 spin_unlock(&ubi->wl_lock);
1385
1386 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1387 if (!wrk) {
1388 spin_lock(&ubi->wl_lock);
1389 ubi->wl_scheduled = 0;
1390 spin_unlock(&ubi->wl_lock);
1391 return -ENOMEM;
1392 }
1393
1394 wrk->anchor = 1;
1395 wrk->func = &wear_leveling_worker;
1396 schedule_ubi_work(ubi, wrk);
1397 return 0;
1398 }
1399 #endif
1400
1401 /**
1402 * erase_worker - physical eraseblock erase worker function.
1403 * @ubi: UBI device description object
1404 * @wl_wrk: the work object
1405 * @cancel: non-zero if the worker has to free memory and exit
1406 *
1407 * This function erases a physical eraseblock and perform torture testing if
1408 * needed. It also takes care about marking the physical eraseblock bad if
1409 * needed. Returns zero in case of success and a negative error code in case of
1410 * failure.
1411 */
1412 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1413 int cancel)
1414 {
1415 struct ubi_wl_entry *e = wl_wrk->e;
1416 int pnum = e->pnum;
1417 int vol_id = wl_wrk->vol_id;
1418 int lnum = wl_wrk->lnum;
1419 int err, available_consumed = 0;
1420
1421 if (cancel) {
1422 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1423 kfree(wl_wrk);
1424 kmem_cache_free(ubi_wl_entry_slab, e);
1425 return 0;
1426 }
1427
1428 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1429 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1430
1431 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1432
1433 err = sync_erase(ubi, e, wl_wrk->torture);
1434 if (!err) {
1435 /* Fine, we've erased it successfully */
1436 kfree(wl_wrk);
1437
1438 spin_lock(&ubi->wl_lock);
1439 wl_tree_add(e, &ubi->free);
1440 ubi->free_count++;
1441 spin_unlock(&ubi->wl_lock);
1442
1443 /*
1444 * One more erase operation has happened, take care about
1445 * protected physical eraseblocks.
1446 */
1447 serve_prot_queue(ubi);
1448
1449 /* And take care about wear-leveling */
1450 err = ensure_wear_leveling(ubi, 1);
1451 return err;
1452 }
1453
1454 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1455 kfree(wl_wrk);
1456
1457 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1458 err == -EBUSY) {
1459 int err1;
1460
1461 /* Re-schedule the LEB for erasure */
1462 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1463 if (err1) {
1464 err = err1;
1465 goto out_ro;
1466 }
1467 return err;
1468 }
1469
1470 kmem_cache_free(ubi_wl_entry_slab, e);
1471 if (err != -EIO)
1472 /*
1473 * If this is not %-EIO, we have no idea what to do. Scheduling
1474 * this physical eraseblock for erasure again would cause
1475 * errors again and again. Well, lets switch to R/O mode.
1476 */
1477 goto out_ro;
1478
1479 /* It is %-EIO, the PEB went bad */
1480
1481 if (!ubi->bad_allowed) {
1482 ubi_err("bad physical eraseblock %d detected", pnum);
1483 goto out_ro;
1484 }
1485
1486 spin_lock(&ubi->volumes_lock);
1487 if (ubi->beb_rsvd_pebs == 0) {
1488 if (ubi->avail_pebs == 0) {
1489 spin_unlock(&ubi->volumes_lock);
1490 ubi_err("no reserved/available physical eraseblocks");
1491 goto out_ro;
1492 }
1493 ubi->avail_pebs -= 1;
1494 available_consumed = 1;
1495 }
1496 spin_unlock(&ubi->volumes_lock);
1497
1498 ubi_msg("mark PEB %d as bad", pnum);
1499 err = ubi_io_mark_bad(ubi, pnum);
1500 if (err)
1501 goto out_ro;
1502
1503 spin_lock(&ubi->volumes_lock);
1504 if (ubi->beb_rsvd_pebs > 0) {
1505 if (available_consumed) {
1506 /*
1507 * The amount of reserved PEBs increased since we last
1508 * checked.
1509 */
1510 ubi->avail_pebs += 1;
1511 available_consumed = 0;
1512 }
1513 ubi->beb_rsvd_pebs -= 1;
1514 }
1515 ubi->bad_peb_count += 1;
1516 ubi->good_peb_count -= 1;
1517 ubi_calculate_reserved(ubi);
1518 if (available_consumed)
1519 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1520 else if (ubi->beb_rsvd_pebs)
1521 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1522 else
1523 ubi_warn("last PEB from the reserve was used");
1524 spin_unlock(&ubi->volumes_lock);
1525
1526 return err;
1527
1528 out_ro:
1529 if (available_consumed) {
1530 spin_lock(&ubi->volumes_lock);
1531 ubi->avail_pebs += 1;
1532 spin_unlock(&ubi->volumes_lock);
1533 }
1534 ubi_ro_mode(ubi);
1535 return err;
1536 }
1537
1538 /**
1539 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1540 * @ubi: UBI device description object
1541 * @vol_id: the volume ID that last used this PEB
1542 * @lnum: the last used logical eraseblock number for the PEB
1543 * @pnum: physical eraseblock to return
1544 * @torture: if this physical eraseblock has to be tortured
1545 *
1546 * This function is called to return physical eraseblock @pnum to the pool of
1547 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1548 * occurred to this @pnum and it has to be tested. This function returns zero
1549 * in case of success, and a negative error code in case of failure.
1550 */
1551 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1552 int pnum, int torture)
1553 {
1554 int err;
1555 struct ubi_wl_entry *e;
1556
1557 dbg_wl("PEB %d", pnum);
1558 ubi_assert(pnum >= 0);
1559 ubi_assert(pnum < ubi->peb_count);
1560
1561 retry:
1562 spin_lock(&ubi->wl_lock);
1563 e = ubi->lookuptbl[pnum];
1564 if (e == ubi->move_from) {
1565 /*
1566 * User is putting the physical eraseblock which was selected to
1567 * be moved. It will be scheduled for erasure in the
1568 * wear-leveling worker.
1569 */
1570 dbg_wl("PEB %d is being moved, wait", pnum);
1571 spin_unlock(&ubi->wl_lock);
1572
1573 /* Wait for the WL worker by taking the @ubi->move_mutex */
1574 mutex_lock(&ubi->move_mutex);
1575 mutex_unlock(&ubi->move_mutex);
1576 goto retry;
1577 } else if (e == ubi->move_to) {
1578 /*
1579 * User is putting the physical eraseblock which was selected
1580 * as the target the data is moved to. It may happen if the EBA
1581 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1582 * but the WL sub-system has not put the PEB to the "used" tree
1583 * yet, but it is about to do this. So we just set a flag which
1584 * will tell the WL worker that the PEB is not needed anymore
1585 * and should be scheduled for erasure.
1586 */
1587 dbg_wl("PEB %d is the target of data moving", pnum);
1588 ubi_assert(!ubi->move_to_put);
1589 ubi->move_to_put = 1;
1590 spin_unlock(&ubi->wl_lock);
1591 return 0;
1592 } else {
1593 if (in_wl_tree(e, &ubi->used)) {
1594 self_check_in_wl_tree(ubi, e, &ubi->used);
1595 rb_erase(&e->u.rb, &ubi->used);
1596 } else if (in_wl_tree(e, &ubi->scrub)) {
1597 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1598 rb_erase(&e->u.rb, &ubi->scrub);
1599 } else if (in_wl_tree(e, &ubi->erroneous)) {
1600 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1601 rb_erase(&e->u.rb, &ubi->erroneous);
1602 ubi->erroneous_peb_count -= 1;
1603 ubi_assert(ubi->erroneous_peb_count >= 0);
1604 /* Erroneous PEBs should be tortured */
1605 torture = 1;
1606 } else {
1607 err = prot_queue_del(ubi, e->pnum);
1608 if (err) {
1609 ubi_err("PEB %d not found", pnum);
1610 ubi_ro_mode(ubi);
1611 spin_unlock(&ubi->wl_lock);
1612 return err;
1613 }
1614 }
1615 }
1616 spin_unlock(&ubi->wl_lock);
1617
1618 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1619 if (err) {
1620 spin_lock(&ubi->wl_lock);
1621 wl_tree_add(e, &ubi->used);
1622 spin_unlock(&ubi->wl_lock);
1623 }
1624
1625 return err;
1626 }
1627
1628 /**
1629 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1630 * @ubi: UBI device description object
1631 * @pnum: the physical eraseblock to schedule
1632 *
1633 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1634 * needs scrubbing. This function schedules a physical eraseblock for
1635 * scrubbing which is done in background. This function returns zero in case of
1636 * success and a negative error code in case of failure.
1637 */
1638 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1639 {
1640 struct ubi_wl_entry *e;
1641
1642 ubi_msg("schedule PEB %d for scrubbing", pnum);
1643
1644 retry:
1645 spin_lock(&ubi->wl_lock);
1646 e = ubi->lookuptbl[pnum];
1647 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1648 in_wl_tree(e, &ubi->erroneous)) {
1649 spin_unlock(&ubi->wl_lock);
1650 return 0;
1651 }
1652
1653 if (e == ubi->move_to) {
1654 /*
1655 * This physical eraseblock was used to move data to. The data
1656 * was moved but the PEB was not yet inserted to the proper
1657 * tree. We should just wait a little and let the WL worker
1658 * proceed.
1659 */
1660 spin_unlock(&ubi->wl_lock);
1661 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1662 yield();
1663 goto retry;
1664 }
1665
1666 if (in_wl_tree(e, &ubi->used)) {
1667 self_check_in_wl_tree(ubi, e, &ubi->used);
1668 rb_erase(&e->u.rb, &ubi->used);
1669 } else {
1670 int err;
1671
1672 err = prot_queue_del(ubi, e->pnum);
1673 if (err) {
1674 ubi_err("PEB %d not found", pnum);
1675 ubi_ro_mode(ubi);
1676 spin_unlock(&ubi->wl_lock);
1677 return err;
1678 }
1679 }
1680
1681 wl_tree_add(e, &ubi->scrub);
1682 spin_unlock(&ubi->wl_lock);
1683
1684 /*
1685 * Technically scrubbing is the same as wear-leveling, so it is done
1686 * by the WL worker.
1687 */
1688 return ensure_wear_leveling(ubi, 0);
1689 }
1690
1691 /**
1692 * ubi_wl_flush - flush all pending works.
1693 * @ubi: UBI device description object
1694 * @vol_id: the volume id to flush for
1695 * @lnum: the logical eraseblock number to flush for
1696 *
1697 * This function executes all pending works for a particular volume id /
1698 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1699 * acts as a wildcard for all of the corresponding volume numbers or logical
1700 * eraseblock numbers. It returns zero in case of success and a negative error
1701 * code in case of failure.
1702 */
1703 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1704 {
1705 int err = 0;
1706 int found = 1;
1707
1708 /*
1709 * Erase while the pending works queue is not empty, but not more than
1710 * the number of currently pending works.
1711 */
1712 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1713 vol_id, lnum, ubi->works_count);
1714
1715 while (found) {
1716 struct ubi_work *wrk;
1717 found = 0;
1718
1719 down_read(&ubi->work_sem);
1720 spin_lock(&ubi->wl_lock);
1721 list_for_each_entry(wrk, &ubi->works, list) {
1722 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1723 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1724 list_del(&wrk->list);
1725 ubi->works_count -= 1;
1726 ubi_assert(ubi->works_count >= 0);
1727 spin_unlock(&ubi->wl_lock);
1728
1729 err = wrk->func(ubi, wrk, 0);
1730 if (err) {
1731 up_read(&ubi->work_sem);
1732 return err;
1733 }
1734
1735 spin_lock(&ubi->wl_lock);
1736 found = 1;
1737 break;
1738 }
1739 }
1740 spin_unlock(&ubi->wl_lock);
1741 up_read(&ubi->work_sem);
1742 }
1743
1744 /*
1745 * Make sure all the works which have been done in parallel are
1746 * finished.
1747 */
1748 down_write(&ubi->work_sem);
1749 up_write(&ubi->work_sem);
1750
1751 return err;
1752 }
1753
1754 /**
1755 * tree_destroy - destroy an RB-tree.
1756 * @root: the root of the tree to destroy
1757 */
1758 static void tree_destroy(struct rb_root *root)
1759 {
1760 struct rb_node *rb;
1761 struct ubi_wl_entry *e;
1762
1763 rb = root->rb_node;
1764 while (rb) {
1765 if (rb->rb_left)
1766 rb = rb->rb_left;
1767 else if (rb->rb_right)
1768 rb = rb->rb_right;
1769 else {
1770 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1771
1772 rb = rb_parent(rb);
1773 if (rb) {
1774 if (rb->rb_left == &e->u.rb)
1775 rb->rb_left = NULL;
1776 else
1777 rb->rb_right = NULL;
1778 }
1779
1780 kmem_cache_free(ubi_wl_entry_slab, e);
1781 }
1782 }
1783 }
1784
1785 /**
1786 * ubi_thread - UBI background thread.
1787 * @u: the UBI device description object pointer
1788 */
1789 int ubi_thread(void *u)
1790 {
1791 int failures = 0;
1792 struct ubi_device *ubi = u;
1793
1794 ubi_msg("background thread \"%s\" started, PID %d",
1795 ubi->bgt_name, task_pid_nr(current));
1796
1797 set_freezable();
1798 for (;;) {
1799 int err;
1800
1801 if (kthread_should_stop())
1802 break;
1803
1804 if (try_to_freeze())
1805 continue;
1806
1807 spin_lock(&ubi->wl_lock);
1808 if (list_empty(&ubi->works) || ubi->ro_mode ||
1809 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1810 set_current_state(TASK_INTERRUPTIBLE);
1811 spin_unlock(&ubi->wl_lock);
1812 schedule();
1813 continue;
1814 }
1815 spin_unlock(&ubi->wl_lock);
1816
1817 err = do_work(ubi);
1818 if (err) {
1819 ubi_err("%s: work failed with error code %d",
1820 ubi->bgt_name, err);
1821 if (failures++ > WL_MAX_FAILURES) {
1822 /*
1823 * Too many failures, disable the thread and
1824 * switch to read-only mode.
1825 */
1826 ubi_msg("%s: %d consecutive failures",
1827 ubi->bgt_name, WL_MAX_FAILURES);
1828 ubi_ro_mode(ubi);
1829 ubi->thread_enabled = 0;
1830 continue;
1831 }
1832 } else
1833 failures = 0;
1834
1835 cond_resched();
1836 }
1837
1838 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1839 return 0;
1840 }
1841
1842 /**
1843 * cancel_pending - cancel all pending works.
1844 * @ubi: UBI device description object
1845 */
1846 static void cancel_pending(struct ubi_device *ubi)
1847 {
1848 while (!list_empty(&ubi->works)) {
1849 struct ubi_work *wrk;
1850
1851 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1852 list_del(&wrk->list);
1853 wrk->func(ubi, wrk, 1);
1854 ubi->works_count -= 1;
1855 ubi_assert(ubi->works_count >= 0);
1856 }
1857 }
1858
1859 /**
1860 * ubi_wl_init - initialize the WL sub-system using attaching information.
1861 * @ubi: UBI device description object
1862 * @ai: attaching information
1863 *
1864 * This function returns zero in case of success, and a negative error code in
1865 * case of failure.
1866 */
1867 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1868 {
1869 int err, i, reserved_pebs, found_pebs = 0;
1870 struct rb_node *rb1, *rb2;
1871 struct ubi_ainf_volume *av;
1872 struct ubi_ainf_peb *aeb, *tmp;
1873 struct ubi_wl_entry *e;
1874
1875 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1876 spin_lock_init(&ubi->wl_lock);
1877 mutex_init(&ubi->move_mutex);
1878 init_rwsem(&ubi->work_sem);
1879 ubi->max_ec = ai->max_ec;
1880 INIT_LIST_HEAD(&ubi->works);
1881 #ifdef CONFIG_MTD_UBI_FASTMAP
1882 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1883 #endif
1884
1885 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1886
1887 err = -ENOMEM;
1888 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1889 if (!ubi->lookuptbl)
1890 return err;
1891
1892 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1893 INIT_LIST_HEAD(&ubi->pq[i]);
1894 ubi->pq_head = 0;
1895
1896 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1897 cond_resched();
1898
1899 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1900 if (!e)
1901 goto out_free;
1902
1903 e->pnum = aeb->pnum;
1904 e->ec = aeb->ec;
1905 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1906 ubi->lookuptbl[e->pnum] = e;
1907 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1908 kmem_cache_free(ubi_wl_entry_slab, e);
1909 goto out_free;
1910 }
1911
1912 found_pebs++;
1913 }
1914
1915 ubi->free_count = 0;
1916 list_for_each_entry(aeb, &ai->free, u.list) {
1917 cond_resched();
1918
1919 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1920 if (!e)
1921 goto out_free;
1922
1923 e->pnum = aeb->pnum;
1924 e->ec = aeb->ec;
1925 ubi_assert(e->ec >= 0);
1926 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1927
1928 wl_tree_add(e, &ubi->free);
1929 ubi->free_count++;
1930
1931 ubi->lookuptbl[e->pnum] = e;
1932
1933 found_pebs++;
1934 }
1935
1936 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1937 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1938 cond_resched();
1939
1940 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1941 if (!e)
1942 goto out_free;
1943
1944 e->pnum = aeb->pnum;
1945 e->ec = aeb->ec;
1946 ubi->lookuptbl[e->pnum] = e;
1947
1948 if (!aeb->scrub) {
1949 dbg_wl("add PEB %d EC %d to the used tree",
1950 e->pnum, e->ec);
1951 wl_tree_add(e, &ubi->used);
1952 } else {
1953 dbg_wl("add PEB %d EC %d to the scrub tree",
1954 e->pnum, e->ec);
1955 wl_tree_add(e, &ubi->scrub);
1956 }
1957
1958 found_pebs++;
1959 }
1960 }
1961
1962 dbg_wl("found %i PEBs", found_pebs);
1963
1964 if (ubi->fm)
1965 ubi_assert(ubi->good_peb_count == \
1966 found_pebs + ubi->fm->used_blocks);
1967 else
1968 ubi_assert(ubi->good_peb_count == found_pebs);
1969
1970 reserved_pebs = WL_RESERVED_PEBS;
1971 #ifdef CONFIG_MTD_UBI_FASTMAP
1972 /* Reserve enough LEBs to store two fastmaps. */
1973 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1974 #endif
1975
1976 if (ubi->avail_pebs < reserved_pebs) {
1977 ubi_err("no enough physical eraseblocks (%d, need %d)",
1978 ubi->avail_pebs, reserved_pebs);
1979 if (ubi->corr_peb_count)
1980 ubi_err("%d PEBs are corrupted and not used",
1981 ubi->corr_peb_count);
1982 goto out_free;
1983 }
1984 ubi->avail_pebs -= reserved_pebs;
1985 ubi->rsvd_pebs += reserved_pebs;
1986
1987 /* Schedule wear-leveling if needed */
1988 err = ensure_wear_leveling(ubi, 0);
1989 if (err)
1990 goto out_free;
1991
1992 return 0;
1993
1994 out_free:
1995 cancel_pending(ubi);
1996 tree_destroy(&ubi->used);
1997 tree_destroy(&ubi->free);
1998 tree_destroy(&ubi->scrub);
1999 kfree(ubi->lookuptbl);
2000 return err;
2001 }
2002
2003 /**
2004 * protection_queue_destroy - destroy the protection queue.
2005 * @ubi: UBI device description object
2006 */
2007 static void protection_queue_destroy(struct ubi_device *ubi)
2008 {
2009 int i;
2010 struct ubi_wl_entry *e, *tmp;
2011
2012 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2013 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2014 list_del(&e->u.list);
2015 kmem_cache_free(ubi_wl_entry_slab, e);
2016 }
2017 }
2018 }
2019
2020 /**
2021 * ubi_wl_close - close the wear-leveling sub-system.
2022 * @ubi: UBI device description object
2023 */
2024 void ubi_wl_close(struct ubi_device *ubi)
2025 {
2026 dbg_wl("close the WL sub-system");
2027 cancel_pending(ubi);
2028 protection_queue_destroy(ubi);
2029 tree_destroy(&ubi->used);
2030 tree_destroy(&ubi->erroneous);
2031 tree_destroy(&ubi->free);
2032 tree_destroy(&ubi->scrub);
2033 kfree(ubi->lookuptbl);
2034 }
2035
2036 /**
2037 * self_check_ec - make sure that the erase counter of a PEB is correct.
2038 * @ubi: UBI device description object
2039 * @pnum: the physical eraseblock number to check
2040 * @ec: the erase counter to check
2041 *
2042 * This function returns zero if the erase counter of physical eraseblock @pnum
2043 * is equivalent to @ec, and a negative error code if not or if an error
2044 * occurred.
2045 */
2046 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2047 {
2048 int err;
2049 long long read_ec;
2050 struct ubi_ec_hdr *ec_hdr;
2051
2052 if (!ubi_dbg_chk_gen(ubi))
2053 return 0;
2054
2055 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2056 if (!ec_hdr)
2057 return -ENOMEM;
2058
2059 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2060 if (err && err != UBI_IO_BITFLIPS) {
2061 /* The header does not have to exist */
2062 err = 0;
2063 goto out_free;
2064 }
2065
2066 read_ec = be64_to_cpu(ec_hdr->ec);
2067 if (ec != read_ec && read_ec - ec > 1) {
2068 ubi_err("self-check failed for PEB %d", pnum);
2069 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2070 dump_stack();
2071 err = 1;
2072 } else
2073 err = 0;
2074
2075 out_free:
2076 kfree(ec_hdr);
2077 return err;
2078 }
2079
2080 /**
2081 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2082 * @ubi: UBI device description object
2083 * @e: the wear-leveling entry to check
2084 * @root: the root of the tree
2085 *
2086 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2087 * is not.
2088 */
2089 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2090 struct ubi_wl_entry *e, struct rb_root *root)
2091 {
2092 if (!ubi_dbg_chk_gen(ubi))
2093 return 0;
2094
2095 if (in_wl_tree(e, root))
2096 return 0;
2097
2098 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2099 e->pnum, e->ec, root);
2100 dump_stack();
2101 return -EINVAL;
2102 }
2103
2104 /**
2105 * self_check_in_pq - check if wear-leveling entry is in the protection
2106 * queue.
2107 * @ubi: UBI device description object
2108 * @e: the wear-leveling entry to check
2109 *
2110 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2111 */
2112 static int self_check_in_pq(const struct ubi_device *ubi,
2113 struct ubi_wl_entry *e)
2114 {
2115 struct ubi_wl_entry *p;
2116 int i;
2117
2118 if (!ubi_dbg_chk_gen(ubi))
2119 return 0;
2120
2121 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2122 list_for_each_entry(p, &ubi->pq[i], u.list)
2123 if (p == e)
2124 return 0;
2125
2126 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2127 e->pnum, e->ec);
2128 dump_stack();
2129 return -EINVAL;
2130 }
2131