1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 enum { UDF_MAX_LINKS = 0xffff };
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96
udf_sb_lvidiu(struct udf_sb_info * sbi)97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 struct logicalVolIntegrityDesc *lvid =
100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 __u32 offset = number_of_partitions * 2 *
103 sizeof(uint32_t)/sizeof(uint8_t);
104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106
107 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 int flags, const char *dev_name, void *data)
110 {
111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113
114 static struct file_system_type udf_fstype = {
115 .owner = THIS_MODULE,
116 .name = "udf",
117 .mount = udf_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120 };
121 MODULE_ALIAS_FS("udf");
122
123 static struct kmem_cache *udf_inode_cachep;
124
udf_alloc_inode(struct super_block * sb)125 static struct inode *udf_alloc_inode(struct super_block *sb)
126 {
127 struct udf_inode_info *ei;
128 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129 if (!ei)
130 return NULL;
131
132 ei->i_unique = 0;
133 ei->i_lenExtents = 0;
134 ei->i_next_alloc_block = 0;
135 ei->i_next_alloc_goal = 0;
136 ei->i_strat4096 = 0;
137 init_rwsem(&ei->i_data_sem);
138 ei->cached_extent.lstart = -1;
139 spin_lock_init(&ei->i_extent_cache_lock);
140
141 return &ei->vfs_inode;
142 }
143
udf_i_callback(struct rcu_head * head)144 static void udf_i_callback(struct rcu_head *head)
145 {
146 struct inode *inode = container_of(head, struct inode, i_rcu);
147 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
148 }
149
udf_destroy_inode(struct inode * inode)150 static void udf_destroy_inode(struct inode *inode)
151 {
152 call_rcu(&inode->i_rcu, udf_i_callback);
153 }
154
init_once(void * foo)155 static void init_once(void *foo)
156 {
157 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
158
159 ei->i_ext.i_data = NULL;
160 inode_init_once(&ei->vfs_inode);
161 }
162
init_inodecache(void)163 static int init_inodecache(void)
164 {
165 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
166 sizeof(struct udf_inode_info),
167 0, (SLAB_RECLAIM_ACCOUNT |
168 SLAB_MEM_SPREAD),
169 init_once);
170 if (!udf_inode_cachep)
171 return -ENOMEM;
172 return 0;
173 }
174
destroy_inodecache(void)175 static void destroy_inodecache(void)
176 {
177 /*
178 * Make sure all delayed rcu free inodes are flushed before we
179 * destroy cache.
180 */
181 rcu_barrier();
182 kmem_cache_destroy(udf_inode_cachep);
183 }
184
185 /* Superblock operations */
186 static const struct super_operations udf_sb_ops = {
187 .alloc_inode = udf_alloc_inode,
188 .destroy_inode = udf_destroy_inode,
189 .write_inode = udf_write_inode,
190 .evict_inode = udf_evict_inode,
191 .put_super = udf_put_super,
192 .sync_fs = udf_sync_fs,
193 .statfs = udf_statfs,
194 .remount_fs = udf_remount_fs,
195 .show_options = udf_show_options,
196 };
197
198 struct udf_options {
199 unsigned char novrs;
200 unsigned int blocksize;
201 unsigned int session;
202 unsigned int lastblock;
203 unsigned int anchor;
204 unsigned int volume;
205 unsigned short partition;
206 unsigned int fileset;
207 unsigned int rootdir;
208 unsigned int flags;
209 umode_t umask;
210 kgid_t gid;
211 kuid_t uid;
212 umode_t fmode;
213 umode_t dmode;
214 struct nls_table *nls_map;
215 };
216
init_udf_fs(void)217 static int __init init_udf_fs(void)
218 {
219 int err;
220
221 err = init_inodecache();
222 if (err)
223 goto out1;
224 err = register_filesystem(&udf_fstype);
225 if (err)
226 goto out;
227
228 return 0;
229
230 out:
231 destroy_inodecache();
232
233 out1:
234 return err;
235 }
236
exit_udf_fs(void)237 static void __exit exit_udf_fs(void)
238 {
239 unregister_filesystem(&udf_fstype);
240 destroy_inodecache();
241 }
242
243 module_init(init_udf_fs)
module_exit(exit_udf_fs)244 module_exit(exit_udf_fs)
245
246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 struct udf_sb_info *sbi = UDF_SB(sb);
249
250 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
251 GFP_KERNEL);
252 if (!sbi->s_partmaps) {
253 udf_err(sb, "Unable to allocate space for %d partition maps\n",
254 count);
255 sbi->s_partitions = 0;
256 return -ENOMEM;
257 }
258
259 sbi->s_partitions = count;
260 return 0;
261 }
262
udf_sb_free_bitmap(struct udf_bitmap * bitmap)263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 int i;
266 int nr_groups = bitmap->s_nr_groups;
267 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
268 nr_groups);
269
270 for (i = 0; i < nr_groups; i++)
271 if (bitmap->s_block_bitmap[i])
272 brelse(bitmap->s_block_bitmap[i]);
273
274 if (size <= PAGE_SIZE)
275 kfree(bitmap);
276 else
277 vfree(bitmap);
278 }
279
udf_free_partition(struct udf_part_map * map)280 static void udf_free_partition(struct udf_part_map *map)
281 {
282 int i;
283 struct udf_meta_data *mdata;
284
285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
286 iput(map->s_uspace.s_table);
287 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
288 iput(map->s_fspace.s_table);
289 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
290 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
291 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
292 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
293 if (map->s_partition_type == UDF_SPARABLE_MAP15)
294 for (i = 0; i < 4; i++)
295 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
296 else if (map->s_partition_type == UDF_METADATA_MAP25) {
297 mdata = &map->s_type_specific.s_metadata;
298 iput(mdata->s_metadata_fe);
299 mdata->s_metadata_fe = NULL;
300
301 iput(mdata->s_mirror_fe);
302 mdata->s_mirror_fe = NULL;
303
304 iput(mdata->s_bitmap_fe);
305 mdata->s_bitmap_fe = NULL;
306 }
307 }
308
udf_sb_free_partitions(struct super_block * sb)309 static void udf_sb_free_partitions(struct super_block *sb)
310 {
311 struct udf_sb_info *sbi = UDF_SB(sb);
312 int i;
313 if (sbi->s_partmaps == NULL)
314 return;
315 for (i = 0; i < sbi->s_partitions; i++)
316 udf_free_partition(&sbi->s_partmaps[i]);
317 kfree(sbi->s_partmaps);
318 sbi->s_partmaps = NULL;
319 }
320
udf_show_options(struct seq_file * seq,struct dentry * root)321 static int udf_show_options(struct seq_file *seq, struct dentry *root)
322 {
323 struct super_block *sb = root->d_sb;
324 struct udf_sb_info *sbi = UDF_SB(sb);
325
326 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
327 seq_puts(seq, ",nostrict");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
329 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
331 seq_puts(seq, ",unhide");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
333 seq_puts(seq, ",undelete");
334 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
335 seq_puts(seq, ",noadinicb");
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
337 seq_puts(seq, ",shortad");
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
339 seq_puts(seq, ",uid=forget");
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
341 seq_puts(seq, ",uid=ignore");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
343 seq_puts(seq, ",gid=forget");
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
345 seq_puts(seq, ",gid=ignore");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
347 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
349 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
350 if (sbi->s_umask != 0)
351 seq_printf(seq, ",umask=%ho", sbi->s_umask);
352 if (sbi->s_fmode != UDF_INVALID_MODE)
353 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
354 if (sbi->s_dmode != UDF_INVALID_MODE)
355 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
357 seq_printf(seq, ",session=%u", sbi->s_session);
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
359 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
360 if (sbi->s_anchor != 0)
361 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
362 /*
363 * volume, partition, fileset and rootdir seem to be ignored
364 * currently
365 */
366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
367 seq_puts(seq, ",utf8");
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
369 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
370
371 return 0;
372 }
373
374 /*
375 * udf_parse_options
376 *
377 * PURPOSE
378 * Parse mount options.
379 *
380 * DESCRIPTION
381 * The following mount options are supported:
382 *
383 * gid= Set the default group.
384 * umask= Set the default umask.
385 * mode= Set the default file permissions.
386 * dmode= Set the default directory permissions.
387 * uid= Set the default user.
388 * bs= Set the block size.
389 * unhide Show otherwise hidden files.
390 * undelete Show deleted files in lists.
391 * adinicb Embed data in the inode (default)
392 * noadinicb Don't embed data in the inode
393 * shortad Use short ad's
394 * longad Use long ad's (default)
395 * nostrict Unset strict conformance
396 * iocharset= Set the NLS character set
397 *
398 * The remaining are for debugging and disaster recovery:
399 *
400 * novrs Skip volume sequence recognition
401 *
402 * The following expect a offset from 0.
403 *
404 * session= Set the CDROM session (default= last session)
405 * anchor= Override standard anchor location. (default= 256)
406 * volume= Override the VolumeDesc location. (unused)
407 * partition= Override the PartitionDesc location. (unused)
408 * lastblock= Set the last block of the filesystem/
409 *
410 * The following expect a offset from the partition root.
411 *
412 * fileset= Override the fileset block location. (unused)
413 * rootdir= Override the root directory location. (unused)
414 * WARNING: overriding the rootdir to a non-directory may
415 * yield highly unpredictable results.
416 *
417 * PRE-CONDITIONS
418 * options Pointer to mount options string.
419 * uopts Pointer to mount options variable.
420 *
421 * POST-CONDITIONS
422 * <return> 1 Mount options parsed okay.
423 * <return> 0 Error parsing mount options.
424 *
425 * HISTORY
426 * July 1, 1997 - Andrew E. Mileski
427 * Written, tested, and released.
428 */
429
430 enum {
431 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
432 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
433 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
434 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
435 Opt_rootdir, Opt_utf8, Opt_iocharset,
436 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
437 Opt_fmode, Opt_dmode
438 };
439
440 static const match_table_t tokens = {
441 {Opt_novrs, "novrs"},
442 {Opt_nostrict, "nostrict"},
443 {Opt_bs, "bs=%u"},
444 {Opt_unhide, "unhide"},
445 {Opt_undelete, "undelete"},
446 {Opt_noadinicb, "noadinicb"},
447 {Opt_adinicb, "adinicb"},
448 {Opt_shortad, "shortad"},
449 {Opt_longad, "longad"},
450 {Opt_uforget, "uid=forget"},
451 {Opt_uignore, "uid=ignore"},
452 {Opt_gforget, "gid=forget"},
453 {Opt_gignore, "gid=ignore"},
454 {Opt_gid, "gid=%u"},
455 {Opt_uid, "uid=%u"},
456 {Opt_umask, "umask=%o"},
457 {Opt_session, "session=%u"},
458 {Opt_lastblock, "lastblock=%u"},
459 {Opt_anchor, "anchor=%u"},
460 {Opt_volume, "volume=%u"},
461 {Opt_partition, "partition=%u"},
462 {Opt_fileset, "fileset=%u"},
463 {Opt_rootdir, "rootdir=%u"},
464 {Opt_utf8, "utf8"},
465 {Opt_iocharset, "iocharset=%s"},
466 {Opt_fmode, "mode=%o"},
467 {Opt_dmode, "dmode=%o"},
468 {Opt_err, NULL}
469 };
470
udf_parse_options(char * options,struct udf_options * uopt,bool remount)471 static int udf_parse_options(char *options, struct udf_options *uopt,
472 bool remount)
473 {
474 char *p;
475 int option;
476
477 uopt->novrs = 0;
478 uopt->partition = 0xFFFF;
479 uopt->session = 0xFFFFFFFF;
480 uopt->lastblock = 0;
481 uopt->anchor = 0;
482 uopt->volume = 0xFFFFFFFF;
483 uopt->rootdir = 0xFFFFFFFF;
484 uopt->fileset = 0xFFFFFFFF;
485 uopt->nls_map = NULL;
486
487 if (!options)
488 return 1;
489
490 while ((p = strsep(&options, ",")) != NULL) {
491 substring_t args[MAX_OPT_ARGS];
492 int token;
493 if (!*p)
494 continue;
495
496 token = match_token(p, tokens, args);
497 switch (token) {
498 case Opt_novrs:
499 uopt->novrs = 1;
500 break;
501 case Opt_bs:
502 if (match_int(&args[0], &option))
503 return 0;
504 uopt->blocksize = option;
505 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
506 break;
507 case Opt_unhide:
508 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
509 break;
510 case Opt_undelete:
511 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
512 break;
513 case Opt_noadinicb:
514 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
515 break;
516 case Opt_adinicb:
517 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
518 break;
519 case Opt_shortad:
520 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
521 break;
522 case Opt_longad:
523 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
524 break;
525 case Opt_gid:
526 if (match_int(args, &option))
527 return 0;
528 uopt->gid = make_kgid(current_user_ns(), option);
529 if (!gid_valid(uopt->gid))
530 return 0;
531 uopt->flags |= (1 << UDF_FLAG_GID_SET);
532 break;
533 case Opt_uid:
534 if (match_int(args, &option))
535 return 0;
536 uopt->uid = make_kuid(current_user_ns(), option);
537 if (!uid_valid(uopt->uid))
538 return 0;
539 uopt->flags |= (1 << UDF_FLAG_UID_SET);
540 break;
541 case Opt_umask:
542 if (match_octal(args, &option))
543 return 0;
544 uopt->umask = option;
545 break;
546 case Opt_nostrict:
547 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
548 break;
549 case Opt_session:
550 if (match_int(args, &option))
551 return 0;
552 uopt->session = option;
553 if (!remount)
554 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
555 break;
556 case Opt_lastblock:
557 if (match_int(args, &option))
558 return 0;
559 uopt->lastblock = option;
560 if (!remount)
561 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
562 break;
563 case Opt_anchor:
564 if (match_int(args, &option))
565 return 0;
566 uopt->anchor = option;
567 break;
568 case Opt_volume:
569 if (match_int(args, &option))
570 return 0;
571 uopt->volume = option;
572 break;
573 case Opt_partition:
574 if (match_int(args, &option))
575 return 0;
576 uopt->partition = option;
577 break;
578 case Opt_fileset:
579 if (match_int(args, &option))
580 return 0;
581 uopt->fileset = option;
582 break;
583 case Opt_rootdir:
584 if (match_int(args, &option))
585 return 0;
586 uopt->rootdir = option;
587 break;
588 case Opt_utf8:
589 uopt->flags |= (1 << UDF_FLAG_UTF8);
590 break;
591 #ifdef CONFIG_UDF_NLS
592 case Opt_iocharset:
593 uopt->nls_map = load_nls(args[0].from);
594 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
595 break;
596 #endif
597 case Opt_uignore:
598 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
599 break;
600 case Opt_uforget:
601 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
602 break;
603 case Opt_gignore:
604 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
605 break;
606 case Opt_gforget:
607 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
608 break;
609 case Opt_fmode:
610 if (match_octal(args, &option))
611 return 0;
612 uopt->fmode = option & 0777;
613 break;
614 case Opt_dmode:
615 if (match_octal(args, &option))
616 return 0;
617 uopt->dmode = option & 0777;
618 break;
619 default:
620 pr_err("bad mount option \"%s\" or missing value\n", p);
621 return 0;
622 }
623 }
624 return 1;
625 }
626
udf_remount_fs(struct super_block * sb,int * flags,char * options)627 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
628 {
629 struct udf_options uopt;
630 struct udf_sb_info *sbi = UDF_SB(sb);
631 int error = 0;
632 sync_filesystem(sb);
633
634 uopt.flags = sbi->s_flags;
635 uopt.uid = sbi->s_uid;
636 uopt.gid = sbi->s_gid;
637 uopt.umask = sbi->s_umask;
638 uopt.fmode = sbi->s_fmode;
639 uopt.dmode = sbi->s_dmode;
640
641 if (!udf_parse_options(options, &uopt, true))
642 return -EINVAL;
643
644 write_lock(&sbi->s_cred_lock);
645 sbi->s_flags = uopt.flags;
646 sbi->s_uid = uopt.uid;
647 sbi->s_gid = uopt.gid;
648 sbi->s_umask = uopt.umask;
649 sbi->s_fmode = uopt.fmode;
650 sbi->s_dmode = uopt.dmode;
651 write_unlock(&sbi->s_cred_lock);
652
653 if (sbi->s_lvid_bh) {
654 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
655 if (write_rev > UDF_MAX_WRITE_VERSION)
656 *flags |= MS_RDONLY;
657 }
658
659 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
660 goto out_unlock;
661
662 if (*flags & MS_RDONLY)
663 udf_close_lvid(sb);
664 else
665 udf_open_lvid(sb);
666
667 out_unlock:
668 return error;
669 }
670
671 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
672 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
udf_check_vsd(struct super_block * sb)673 static loff_t udf_check_vsd(struct super_block *sb)
674 {
675 struct volStructDesc *vsd = NULL;
676 loff_t sector = 32768;
677 int sectorsize;
678 struct buffer_head *bh = NULL;
679 int nsr02 = 0;
680 int nsr03 = 0;
681 struct udf_sb_info *sbi;
682
683 sbi = UDF_SB(sb);
684 if (sb->s_blocksize < sizeof(struct volStructDesc))
685 sectorsize = sizeof(struct volStructDesc);
686 else
687 sectorsize = sb->s_blocksize;
688
689 sector += (sbi->s_session << sb->s_blocksize_bits);
690
691 udf_debug("Starting at sector %u (%ld byte sectors)\n",
692 (unsigned int)(sector >> sb->s_blocksize_bits),
693 sb->s_blocksize);
694 /* Process the sequence (if applicable) */
695 for (; !nsr02 && !nsr03; sector += sectorsize) {
696 /* Read a block */
697 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
698 if (!bh)
699 break;
700
701 /* Look for ISO descriptors */
702 vsd = (struct volStructDesc *)(bh->b_data +
703 (sector & (sb->s_blocksize - 1)));
704
705 if (vsd->stdIdent[0] == 0) {
706 brelse(bh);
707 break;
708 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
709 VSD_STD_ID_LEN)) {
710 switch (vsd->structType) {
711 case 0:
712 udf_debug("ISO9660 Boot Record found\n");
713 break;
714 case 1:
715 udf_debug("ISO9660 Primary Volume Descriptor found\n");
716 break;
717 case 2:
718 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
719 break;
720 case 3:
721 udf_debug("ISO9660 Volume Partition Descriptor found\n");
722 break;
723 case 255:
724 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
725 break;
726 default:
727 udf_debug("ISO9660 VRS (%u) found\n",
728 vsd->structType);
729 break;
730 }
731 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
732 VSD_STD_ID_LEN))
733 ; /* nothing */
734 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
735 VSD_STD_ID_LEN)) {
736 brelse(bh);
737 break;
738 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
739 VSD_STD_ID_LEN))
740 nsr02 = sector;
741 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
742 VSD_STD_ID_LEN))
743 nsr03 = sector;
744 brelse(bh);
745 }
746
747 if (nsr03)
748 return nsr03;
749 else if (nsr02)
750 return nsr02;
751 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
752 return -1;
753 else
754 return 0;
755 }
756
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)757 static int udf_find_fileset(struct super_block *sb,
758 struct kernel_lb_addr *fileset,
759 struct kernel_lb_addr *root)
760 {
761 struct buffer_head *bh = NULL;
762 long lastblock;
763 uint16_t ident;
764 struct udf_sb_info *sbi;
765
766 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
767 fileset->partitionReferenceNum != 0xFFFF) {
768 bh = udf_read_ptagged(sb, fileset, 0, &ident);
769
770 if (!bh) {
771 return 1;
772 } else if (ident != TAG_IDENT_FSD) {
773 brelse(bh);
774 return 1;
775 }
776
777 }
778
779 sbi = UDF_SB(sb);
780 if (!bh) {
781 /* Search backwards through the partitions */
782 struct kernel_lb_addr newfileset;
783
784 /* --> cvg: FIXME - is it reasonable? */
785 return 1;
786
787 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
788 (newfileset.partitionReferenceNum != 0xFFFF &&
789 fileset->logicalBlockNum == 0xFFFFFFFF &&
790 fileset->partitionReferenceNum == 0xFFFF);
791 newfileset.partitionReferenceNum--) {
792 lastblock = sbi->s_partmaps
793 [newfileset.partitionReferenceNum]
794 .s_partition_len;
795 newfileset.logicalBlockNum = 0;
796
797 do {
798 bh = udf_read_ptagged(sb, &newfileset, 0,
799 &ident);
800 if (!bh) {
801 newfileset.logicalBlockNum++;
802 continue;
803 }
804
805 switch (ident) {
806 case TAG_IDENT_SBD:
807 {
808 struct spaceBitmapDesc *sp;
809 sp = (struct spaceBitmapDesc *)
810 bh->b_data;
811 newfileset.logicalBlockNum += 1 +
812 ((le32_to_cpu(sp->numOfBytes) +
813 sizeof(struct spaceBitmapDesc)
814 - 1) >> sb->s_blocksize_bits);
815 brelse(bh);
816 break;
817 }
818 case TAG_IDENT_FSD:
819 *fileset = newfileset;
820 break;
821 default:
822 newfileset.logicalBlockNum++;
823 brelse(bh);
824 bh = NULL;
825 break;
826 }
827 } while (newfileset.logicalBlockNum < lastblock &&
828 fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF);
830 }
831 }
832
833 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
834 fileset->partitionReferenceNum != 0xFFFF) && bh) {
835 udf_debug("Fileset at block=%d, partition=%d\n",
836 fileset->logicalBlockNum,
837 fileset->partitionReferenceNum);
838
839 sbi->s_partition = fileset->partitionReferenceNum;
840 udf_load_fileset(sb, bh, root);
841 brelse(bh);
842 return 0;
843 }
844 return 1;
845 }
846
udf_load_pvoldesc(struct super_block * sb,sector_t block)847 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
848 {
849 struct primaryVolDesc *pvoldesc;
850 struct ustr *instr, *outstr;
851 struct buffer_head *bh;
852 uint16_t ident;
853 int ret = 1;
854
855 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
856 if (!instr)
857 return 1;
858
859 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
860 if (!outstr)
861 goto out1;
862
863 bh = udf_read_tagged(sb, block, block, &ident);
864 if (!bh)
865 goto out2;
866
867 BUG_ON(ident != TAG_IDENT_PVD);
868
869 pvoldesc = (struct primaryVolDesc *)bh->b_data;
870
871 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
872 pvoldesc->recordingDateAndTime)) {
873 #ifdef UDFFS_DEBUG
874 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
875 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
876 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
877 ts->minute, le16_to_cpu(ts->typeAndTimezone));
878 #endif
879 }
880
881 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
882 if (udf_CS0toUTF8(outstr, instr)) {
883 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
884 outstr->u_len > 31 ? 31 : outstr->u_len);
885 udf_debug("volIdent[] = '%s'\n",
886 UDF_SB(sb)->s_volume_ident);
887 }
888
889 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
890 if (udf_CS0toUTF8(outstr, instr))
891 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
892
893 brelse(bh);
894 ret = 0;
895 out2:
896 kfree(outstr);
897 out1:
898 kfree(instr);
899 return ret;
900 }
901
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_num)902 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
903 u32 meta_file_loc, u32 partition_num)
904 {
905 struct kernel_lb_addr addr;
906 struct inode *metadata_fe;
907
908 addr.logicalBlockNum = meta_file_loc;
909 addr.partitionReferenceNum = partition_num;
910
911 metadata_fe = udf_iget(sb, &addr);
912
913 if (metadata_fe == NULL)
914 udf_warn(sb, "metadata inode efe not found\n");
915 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
916 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
917 iput(metadata_fe);
918 metadata_fe = NULL;
919 }
920
921 return metadata_fe;
922 }
923
udf_load_metadata_files(struct super_block * sb,int partition)924 static int udf_load_metadata_files(struct super_block *sb, int partition)
925 {
926 struct udf_sb_info *sbi = UDF_SB(sb);
927 struct udf_part_map *map;
928 struct udf_meta_data *mdata;
929 struct kernel_lb_addr addr;
930
931 map = &sbi->s_partmaps[partition];
932 mdata = &map->s_type_specific.s_metadata;
933
934 /* metadata address */
935 udf_debug("Metadata file location: block = %d part = %d\n",
936 mdata->s_meta_file_loc, map->s_partition_num);
937
938 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
939 mdata->s_meta_file_loc, map->s_partition_num);
940
941 if (mdata->s_metadata_fe == NULL) {
942 /* mirror file entry */
943 udf_debug("Mirror metadata file location: block = %d part = %d\n",
944 mdata->s_mirror_file_loc, map->s_partition_num);
945
946 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
947 mdata->s_mirror_file_loc, map->s_partition_num);
948
949 if (mdata->s_mirror_fe == NULL) {
950 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
951 goto error_exit;
952 }
953 }
954
955 /*
956 * bitmap file entry
957 * Note:
958 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
959 */
960 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
961 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
962 addr.partitionReferenceNum = map->s_partition_num;
963
964 udf_debug("Bitmap file location: block = %d part = %d\n",
965 addr.logicalBlockNum, addr.partitionReferenceNum);
966
967 mdata->s_bitmap_fe = udf_iget(sb, &addr);
968
969 if (mdata->s_bitmap_fe == NULL) {
970 if (sb->s_flags & MS_RDONLY)
971 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
972 else {
973 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
974 goto error_exit;
975 }
976 }
977 }
978
979 udf_debug("udf_load_metadata_files Ok\n");
980
981 return 0;
982
983 error_exit:
984 return 1;
985 }
986
udf_load_fileset(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * root)987 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
988 struct kernel_lb_addr *root)
989 {
990 struct fileSetDesc *fset;
991
992 fset = (struct fileSetDesc *)bh->b_data;
993
994 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
995
996 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
997
998 udf_debug("Rootdir at block=%d, partition=%d\n",
999 root->logicalBlockNum, root->partitionReferenceNum);
1000 }
1001
udf_compute_nr_groups(struct super_block * sb,u32 partition)1002 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1003 {
1004 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1005 return DIV_ROUND_UP(map->s_partition_len +
1006 (sizeof(struct spaceBitmapDesc) << 3),
1007 sb->s_blocksize * 8);
1008 }
1009
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1010 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1011 {
1012 struct udf_bitmap *bitmap;
1013 int nr_groups;
1014 int size;
1015
1016 nr_groups = udf_compute_nr_groups(sb, index);
1017 size = sizeof(struct udf_bitmap) +
1018 (sizeof(struct buffer_head *) * nr_groups);
1019
1020 if (size <= PAGE_SIZE)
1021 bitmap = kzalloc(size, GFP_KERNEL);
1022 else
1023 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1024
1025 if (bitmap == NULL)
1026 return NULL;
1027
1028 bitmap->s_nr_groups = nr_groups;
1029 return bitmap;
1030 }
1031
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1032 static int udf_fill_partdesc_info(struct super_block *sb,
1033 struct partitionDesc *p, int p_index)
1034 {
1035 struct udf_part_map *map;
1036 struct udf_sb_info *sbi = UDF_SB(sb);
1037 struct partitionHeaderDesc *phd;
1038
1039 map = &sbi->s_partmaps[p_index];
1040
1041 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1042 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1043
1044 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1045 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1046 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1047 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1048 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1049 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1050 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1051 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1052
1053 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1054 p_index, map->s_partition_type,
1055 map->s_partition_root, map->s_partition_len);
1056
1057 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1058 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1059 return 0;
1060
1061 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1062 if (phd->unallocSpaceTable.extLength) {
1063 struct kernel_lb_addr loc = {
1064 .logicalBlockNum = le32_to_cpu(
1065 phd->unallocSpaceTable.extPosition),
1066 .partitionReferenceNum = p_index,
1067 };
1068
1069 map->s_uspace.s_table = udf_iget(sb, &loc);
1070 if (!map->s_uspace.s_table) {
1071 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1072 p_index);
1073 return 1;
1074 }
1075 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1076 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1077 p_index, map->s_uspace.s_table->i_ino);
1078 }
1079
1080 if (phd->unallocSpaceBitmap.extLength) {
1081 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1082 if (!bitmap)
1083 return 1;
1084 map->s_uspace.s_bitmap = bitmap;
1085 bitmap->s_extPosition = le32_to_cpu(
1086 phd->unallocSpaceBitmap.extPosition);
1087 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1088 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1089 p_index, bitmap->s_extPosition);
1090 }
1091
1092 if (phd->partitionIntegrityTable.extLength)
1093 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1094
1095 if (phd->freedSpaceTable.extLength) {
1096 struct kernel_lb_addr loc = {
1097 .logicalBlockNum = le32_to_cpu(
1098 phd->freedSpaceTable.extPosition),
1099 .partitionReferenceNum = p_index,
1100 };
1101
1102 map->s_fspace.s_table = udf_iget(sb, &loc);
1103 if (!map->s_fspace.s_table) {
1104 udf_debug("cannot load freedSpaceTable (part %d)\n",
1105 p_index);
1106 return 1;
1107 }
1108
1109 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1110 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1111 p_index, map->s_fspace.s_table->i_ino);
1112 }
1113
1114 if (phd->freedSpaceBitmap.extLength) {
1115 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1116 if (!bitmap)
1117 return 1;
1118 map->s_fspace.s_bitmap = bitmap;
1119 bitmap->s_extPosition = le32_to_cpu(
1120 phd->freedSpaceBitmap.extPosition);
1121 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1122 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1123 p_index, bitmap->s_extPosition);
1124 }
1125 return 0;
1126 }
1127
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1128 static void udf_find_vat_block(struct super_block *sb, int p_index,
1129 int type1_index, sector_t start_block)
1130 {
1131 struct udf_sb_info *sbi = UDF_SB(sb);
1132 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1133 sector_t vat_block;
1134 struct kernel_lb_addr ino;
1135
1136 /*
1137 * VAT file entry is in the last recorded block. Some broken disks have
1138 * it a few blocks before so try a bit harder...
1139 */
1140 ino.partitionReferenceNum = type1_index;
1141 for (vat_block = start_block;
1142 vat_block >= map->s_partition_root &&
1143 vat_block >= start_block - 3 &&
1144 !sbi->s_vat_inode; vat_block--) {
1145 ino.logicalBlockNum = vat_block - map->s_partition_root;
1146 sbi->s_vat_inode = udf_iget(sb, &ino);
1147 }
1148 }
1149
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1150 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1151 {
1152 struct udf_sb_info *sbi = UDF_SB(sb);
1153 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154 struct buffer_head *bh = NULL;
1155 struct udf_inode_info *vati;
1156 uint32_t pos;
1157 struct virtualAllocationTable20 *vat20;
1158 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1159
1160 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1161 if (!sbi->s_vat_inode &&
1162 sbi->s_last_block != blocks - 1) {
1163 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1164 (unsigned long)sbi->s_last_block,
1165 (unsigned long)blocks - 1);
1166 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1167 }
1168 if (!sbi->s_vat_inode)
1169 return 1;
1170
1171 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1172 map->s_type_specific.s_virtual.s_start_offset = 0;
1173 map->s_type_specific.s_virtual.s_num_entries =
1174 (sbi->s_vat_inode->i_size - 36) >> 2;
1175 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1176 vati = UDF_I(sbi->s_vat_inode);
1177 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1178 pos = udf_block_map(sbi->s_vat_inode, 0);
1179 bh = sb_bread(sb, pos);
1180 if (!bh)
1181 return 1;
1182 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1183 } else {
1184 vat20 = (struct virtualAllocationTable20 *)
1185 vati->i_ext.i_data;
1186 }
1187
1188 map->s_type_specific.s_virtual.s_start_offset =
1189 le16_to_cpu(vat20->lengthHeader);
1190 map->s_type_specific.s_virtual.s_num_entries =
1191 (sbi->s_vat_inode->i_size -
1192 map->s_type_specific.s_virtual.
1193 s_start_offset) >> 2;
1194 brelse(bh);
1195 }
1196 return 0;
1197 }
1198
udf_load_partdesc(struct super_block * sb,sector_t block)1199 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1200 {
1201 struct buffer_head *bh;
1202 struct partitionDesc *p;
1203 struct udf_part_map *map;
1204 struct udf_sb_info *sbi = UDF_SB(sb);
1205 int i, type1_idx;
1206 uint16_t partitionNumber;
1207 uint16_t ident;
1208 int ret = 0;
1209
1210 bh = udf_read_tagged(sb, block, block, &ident);
1211 if (!bh)
1212 return 1;
1213 if (ident != TAG_IDENT_PD)
1214 goto out_bh;
1215
1216 p = (struct partitionDesc *)bh->b_data;
1217 partitionNumber = le16_to_cpu(p->partitionNumber);
1218
1219 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1220 for (i = 0; i < sbi->s_partitions; i++) {
1221 map = &sbi->s_partmaps[i];
1222 udf_debug("Searching map: (%d == %d)\n",
1223 map->s_partition_num, partitionNumber);
1224 if (map->s_partition_num == partitionNumber &&
1225 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1226 map->s_partition_type == UDF_SPARABLE_MAP15))
1227 break;
1228 }
1229
1230 if (i >= sbi->s_partitions) {
1231 udf_debug("Partition (%d) not found in partition map\n",
1232 partitionNumber);
1233 goto out_bh;
1234 }
1235
1236 ret = udf_fill_partdesc_info(sb, p, i);
1237
1238 /*
1239 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1240 * PHYSICAL partitions are already set up
1241 */
1242 type1_idx = i;
1243 for (i = 0; i < sbi->s_partitions; i++) {
1244 map = &sbi->s_partmaps[i];
1245
1246 if (map->s_partition_num == partitionNumber &&
1247 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1248 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1249 map->s_partition_type == UDF_METADATA_MAP25))
1250 break;
1251 }
1252
1253 if (i >= sbi->s_partitions)
1254 goto out_bh;
1255
1256 ret = udf_fill_partdesc_info(sb, p, i);
1257 if (ret)
1258 goto out_bh;
1259
1260 if (map->s_partition_type == UDF_METADATA_MAP25) {
1261 ret = udf_load_metadata_files(sb, i);
1262 if (ret) {
1263 udf_err(sb, "error loading MetaData partition map %d\n",
1264 i);
1265 goto out_bh;
1266 }
1267 } else {
1268 ret = udf_load_vat(sb, i, type1_idx);
1269 if (ret)
1270 goto out_bh;
1271 /*
1272 * Mark filesystem read-only if we have a partition with
1273 * virtual map since we don't handle writing to it (we
1274 * overwrite blocks instead of relocating them).
1275 */
1276 sb->s_flags |= MS_RDONLY;
1277 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1278 }
1279 out_bh:
1280 /* In case loading failed, we handle cleanup in udf_fill_super */
1281 brelse(bh);
1282 return ret;
1283 }
1284
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1285 static int udf_load_sparable_map(struct super_block *sb,
1286 struct udf_part_map *map,
1287 struct sparablePartitionMap *spm)
1288 {
1289 uint32_t loc;
1290 uint16_t ident;
1291 struct sparingTable *st;
1292 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1293 int i;
1294 struct buffer_head *bh;
1295
1296 map->s_partition_type = UDF_SPARABLE_MAP15;
1297 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1298 if (!is_power_of_2(sdata->s_packet_len)) {
1299 udf_err(sb, "error loading logical volume descriptor: "
1300 "Invalid packet length %u\n",
1301 (unsigned)sdata->s_packet_len);
1302 return -EIO;
1303 }
1304 if (spm->numSparingTables > 4) {
1305 udf_err(sb, "error loading logical volume descriptor: "
1306 "Too many sparing tables (%d)\n",
1307 (int)spm->numSparingTables);
1308 return -EIO;
1309 }
1310
1311 for (i = 0; i < spm->numSparingTables; i++) {
1312 loc = le32_to_cpu(spm->locSparingTable[i]);
1313 bh = udf_read_tagged(sb, loc, loc, &ident);
1314 if (!bh)
1315 continue;
1316
1317 st = (struct sparingTable *)bh->b_data;
1318 if (ident != 0 ||
1319 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1320 strlen(UDF_ID_SPARING)) ||
1321 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1322 sb->s_blocksize) {
1323 brelse(bh);
1324 continue;
1325 }
1326
1327 sdata->s_spar_map[i] = bh;
1328 }
1329 map->s_partition_func = udf_get_pblock_spar15;
1330 return 0;
1331 }
1332
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1333 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1334 struct kernel_lb_addr *fileset)
1335 {
1336 struct logicalVolDesc *lvd;
1337 int i, offset;
1338 uint8_t type;
1339 struct udf_sb_info *sbi = UDF_SB(sb);
1340 struct genericPartitionMap *gpm;
1341 uint16_t ident;
1342 struct buffer_head *bh;
1343 unsigned int table_len;
1344 int ret = 0;
1345
1346 bh = udf_read_tagged(sb, block, block, &ident);
1347 if (!bh)
1348 return 1;
1349 BUG_ON(ident != TAG_IDENT_LVD);
1350 lvd = (struct logicalVolDesc *)bh->b_data;
1351 table_len = le32_to_cpu(lvd->mapTableLength);
1352 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1353 udf_err(sb, "error loading logical volume descriptor: "
1354 "Partition table too long (%u > %lu)\n", table_len,
1355 sb->s_blocksize - sizeof(*lvd));
1356 ret = 1;
1357 goto out_bh;
1358 }
1359
1360 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1361 if (ret)
1362 goto out_bh;
1363
1364 for (i = 0, offset = 0;
1365 i < sbi->s_partitions && offset < table_len;
1366 i++, offset += gpm->partitionMapLength) {
1367 struct udf_part_map *map = &sbi->s_partmaps[i];
1368 gpm = (struct genericPartitionMap *)
1369 &(lvd->partitionMaps[offset]);
1370 type = gpm->partitionMapType;
1371 if (type == 1) {
1372 struct genericPartitionMap1 *gpm1 =
1373 (struct genericPartitionMap1 *)gpm;
1374 map->s_partition_type = UDF_TYPE1_MAP15;
1375 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1376 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1377 map->s_partition_func = NULL;
1378 } else if (type == 2) {
1379 struct udfPartitionMap2 *upm2 =
1380 (struct udfPartitionMap2 *)gpm;
1381 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1382 strlen(UDF_ID_VIRTUAL))) {
1383 u16 suf =
1384 le16_to_cpu(((__le16 *)upm2->partIdent.
1385 identSuffix)[0]);
1386 if (suf < 0x0200) {
1387 map->s_partition_type =
1388 UDF_VIRTUAL_MAP15;
1389 map->s_partition_func =
1390 udf_get_pblock_virt15;
1391 } else {
1392 map->s_partition_type =
1393 UDF_VIRTUAL_MAP20;
1394 map->s_partition_func =
1395 udf_get_pblock_virt20;
1396 }
1397 } else if (!strncmp(upm2->partIdent.ident,
1398 UDF_ID_SPARABLE,
1399 strlen(UDF_ID_SPARABLE))) {
1400 if (udf_load_sparable_map(sb, map,
1401 (struct sparablePartitionMap *)gpm) < 0) {
1402 ret = 1;
1403 goto out_bh;
1404 }
1405 } else if (!strncmp(upm2->partIdent.ident,
1406 UDF_ID_METADATA,
1407 strlen(UDF_ID_METADATA))) {
1408 struct udf_meta_data *mdata =
1409 &map->s_type_specific.s_metadata;
1410 struct metadataPartitionMap *mdm =
1411 (struct metadataPartitionMap *)
1412 &(lvd->partitionMaps[offset]);
1413 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1414 i, type, UDF_ID_METADATA);
1415
1416 map->s_partition_type = UDF_METADATA_MAP25;
1417 map->s_partition_func = udf_get_pblock_meta25;
1418
1419 mdata->s_meta_file_loc =
1420 le32_to_cpu(mdm->metadataFileLoc);
1421 mdata->s_mirror_file_loc =
1422 le32_to_cpu(mdm->metadataMirrorFileLoc);
1423 mdata->s_bitmap_file_loc =
1424 le32_to_cpu(mdm->metadataBitmapFileLoc);
1425 mdata->s_alloc_unit_size =
1426 le32_to_cpu(mdm->allocUnitSize);
1427 mdata->s_align_unit_size =
1428 le16_to_cpu(mdm->alignUnitSize);
1429 if (mdm->flags & 0x01)
1430 mdata->s_flags |= MF_DUPLICATE_MD;
1431
1432 udf_debug("Metadata Ident suffix=0x%x\n",
1433 le16_to_cpu(*(__le16 *)
1434 mdm->partIdent.identSuffix));
1435 udf_debug("Metadata part num=%d\n",
1436 le16_to_cpu(mdm->partitionNum));
1437 udf_debug("Metadata part alloc unit size=%d\n",
1438 le32_to_cpu(mdm->allocUnitSize));
1439 udf_debug("Metadata file loc=%d\n",
1440 le32_to_cpu(mdm->metadataFileLoc));
1441 udf_debug("Mirror file loc=%d\n",
1442 le32_to_cpu(mdm->metadataMirrorFileLoc));
1443 udf_debug("Bitmap file loc=%d\n",
1444 le32_to_cpu(mdm->metadataBitmapFileLoc));
1445 udf_debug("Flags: %d %d\n",
1446 mdata->s_flags, mdm->flags);
1447 } else {
1448 udf_debug("Unknown ident: %s\n",
1449 upm2->partIdent.ident);
1450 continue;
1451 }
1452 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1453 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1454 }
1455 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1456 i, map->s_partition_num, type, map->s_volumeseqnum);
1457 }
1458
1459 if (fileset) {
1460 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1461
1462 *fileset = lelb_to_cpu(la->extLocation);
1463 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1464 fileset->logicalBlockNum,
1465 fileset->partitionReferenceNum);
1466 }
1467 if (lvd->integritySeqExt.extLength)
1468 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1469
1470 out_bh:
1471 brelse(bh);
1472 return ret;
1473 }
1474
1475 /*
1476 * udf_load_logicalvolint
1477 *
1478 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1479 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1480 {
1481 struct buffer_head *bh = NULL;
1482 uint16_t ident;
1483 struct udf_sb_info *sbi = UDF_SB(sb);
1484 struct logicalVolIntegrityDesc *lvid;
1485
1486 while (loc.extLength > 0 &&
1487 (bh = udf_read_tagged(sb, loc.extLocation,
1488 loc.extLocation, &ident)) &&
1489 ident == TAG_IDENT_LVID) {
1490 sbi->s_lvid_bh = bh;
1491 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1492
1493 if (lvid->nextIntegrityExt.extLength)
1494 udf_load_logicalvolint(sb,
1495 leea_to_cpu(lvid->nextIntegrityExt));
1496
1497 if (sbi->s_lvid_bh != bh)
1498 brelse(bh);
1499 loc.extLength -= sb->s_blocksize;
1500 loc.extLocation++;
1501 }
1502 if (sbi->s_lvid_bh != bh)
1503 brelse(bh);
1504 }
1505
1506 /*
1507 * udf_process_sequence
1508 *
1509 * PURPOSE
1510 * Process a main/reserve volume descriptor sequence.
1511 *
1512 * PRE-CONDITIONS
1513 * sb Pointer to _locked_ superblock.
1514 * block First block of first extent of the sequence.
1515 * lastblock Lastblock of first extent of the sequence.
1516 *
1517 * HISTORY
1518 * July 1, 1997 - Andrew E. Mileski
1519 * Written, tested, and released.
1520 */
udf_process_sequence(struct super_block * sb,long block,long lastblock,struct kernel_lb_addr * fileset)1521 static noinline int udf_process_sequence(struct super_block *sb, long block,
1522 long lastblock, struct kernel_lb_addr *fileset)
1523 {
1524 struct buffer_head *bh = NULL;
1525 struct udf_vds_record vds[VDS_POS_LENGTH];
1526 struct udf_vds_record *curr;
1527 struct generic_desc *gd;
1528 struct volDescPtr *vdp;
1529 int done = 0;
1530 uint32_t vdsn;
1531 uint16_t ident;
1532 long next_s = 0, next_e = 0;
1533
1534 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1535
1536 /*
1537 * Read the main descriptor sequence and find which descriptors
1538 * are in it.
1539 */
1540 for (; (!done && block <= lastblock); block++) {
1541
1542 bh = udf_read_tagged(sb, block, block, &ident);
1543 if (!bh) {
1544 udf_err(sb,
1545 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1546 (unsigned long long)block);
1547 return 1;
1548 }
1549
1550 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1551 gd = (struct generic_desc *)bh->b_data;
1552 vdsn = le32_to_cpu(gd->volDescSeqNum);
1553 switch (ident) {
1554 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1555 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1556 if (vdsn >= curr->volDescSeqNum) {
1557 curr->volDescSeqNum = vdsn;
1558 curr->block = block;
1559 }
1560 break;
1561 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1562 curr = &vds[VDS_POS_VOL_DESC_PTR];
1563 if (vdsn >= curr->volDescSeqNum) {
1564 curr->volDescSeqNum = vdsn;
1565 curr->block = block;
1566
1567 vdp = (struct volDescPtr *)bh->b_data;
1568 next_s = le32_to_cpu(
1569 vdp->nextVolDescSeqExt.extLocation);
1570 next_e = le32_to_cpu(
1571 vdp->nextVolDescSeqExt.extLength);
1572 next_e = next_e >> sb->s_blocksize_bits;
1573 next_e += next_s;
1574 }
1575 break;
1576 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1577 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1578 if (vdsn >= curr->volDescSeqNum) {
1579 curr->volDescSeqNum = vdsn;
1580 curr->block = block;
1581 }
1582 break;
1583 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1584 curr = &vds[VDS_POS_PARTITION_DESC];
1585 if (!curr->block)
1586 curr->block = block;
1587 break;
1588 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1589 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1590 if (vdsn >= curr->volDescSeqNum) {
1591 curr->volDescSeqNum = vdsn;
1592 curr->block = block;
1593 }
1594 break;
1595 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1596 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1597 if (vdsn >= curr->volDescSeqNum) {
1598 curr->volDescSeqNum = vdsn;
1599 curr->block = block;
1600 }
1601 break;
1602 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1603 vds[VDS_POS_TERMINATING_DESC].block = block;
1604 if (next_e) {
1605 block = next_s;
1606 lastblock = next_e;
1607 next_s = next_e = 0;
1608 } else
1609 done = 1;
1610 break;
1611 }
1612 brelse(bh);
1613 }
1614 /*
1615 * Now read interesting descriptors again and process them
1616 * in a suitable order
1617 */
1618 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1619 udf_err(sb, "Primary Volume Descriptor not found!\n");
1620 return 1;
1621 }
1622 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1623 return 1;
1624
1625 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1626 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1627 return 1;
1628
1629 if (vds[VDS_POS_PARTITION_DESC].block) {
1630 /*
1631 * We rescan the whole descriptor sequence to find
1632 * partition descriptor blocks and process them.
1633 */
1634 for (block = vds[VDS_POS_PARTITION_DESC].block;
1635 block < vds[VDS_POS_TERMINATING_DESC].block;
1636 block++)
1637 if (udf_load_partdesc(sb, block))
1638 return 1;
1639 }
1640
1641 return 0;
1642 }
1643
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1644 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1645 struct kernel_lb_addr *fileset)
1646 {
1647 struct anchorVolDescPtr *anchor;
1648 long main_s, main_e, reserve_s, reserve_e;
1649
1650 anchor = (struct anchorVolDescPtr *)bh->b_data;
1651
1652 /* Locate the main sequence */
1653 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1654 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1655 main_e = main_e >> sb->s_blocksize_bits;
1656 main_e += main_s;
1657
1658 /* Locate the reserve sequence */
1659 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1660 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1661 reserve_e = reserve_e >> sb->s_blocksize_bits;
1662 reserve_e += reserve_s;
1663
1664 /* Process the main & reserve sequences */
1665 /* responsible for finding the PartitionDesc(s) */
1666 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1667 return 1;
1668 udf_sb_free_partitions(sb);
1669 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1670 return 1;
1671 udf_sb_free_partitions(sb);
1672 return 0;
1673 }
1674
1675 /*
1676 * Check whether there is an anchor block in the given block and
1677 * load Volume Descriptor Sequence if so.
1678 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1679 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1680 struct kernel_lb_addr *fileset)
1681 {
1682 struct buffer_head *bh;
1683 uint16_t ident;
1684 int ret;
1685
1686 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1687 udf_fixed_to_variable(block) >=
1688 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1689 return 0;
1690
1691 bh = udf_read_tagged(sb, block, block, &ident);
1692 if (!bh)
1693 return 0;
1694 if (ident != TAG_IDENT_AVDP) {
1695 brelse(bh);
1696 return 0;
1697 }
1698 ret = udf_load_sequence(sb, bh, fileset);
1699 brelse(bh);
1700 return ret;
1701 }
1702
1703 /* Search for an anchor volume descriptor pointer */
udf_scan_anchors(struct super_block * sb,sector_t lastblock,struct kernel_lb_addr * fileset)1704 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1705 struct kernel_lb_addr *fileset)
1706 {
1707 sector_t last[6];
1708 int i;
1709 struct udf_sb_info *sbi = UDF_SB(sb);
1710 int last_count = 0;
1711
1712 /* First try user provided anchor */
1713 if (sbi->s_anchor) {
1714 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1715 return lastblock;
1716 }
1717 /*
1718 * according to spec, anchor is in either:
1719 * block 256
1720 * lastblock-256
1721 * lastblock
1722 * however, if the disc isn't closed, it could be 512.
1723 */
1724 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1725 return lastblock;
1726 /*
1727 * The trouble is which block is the last one. Drives often misreport
1728 * this so we try various possibilities.
1729 */
1730 last[last_count++] = lastblock;
1731 if (lastblock >= 1)
1732 last[last_count++] = lastblock - 1;
1733 last[last_count++] = lastblock + 1;
1734 if (lastblock >= 2)
1735 last[last_count++] = lastblock - 2;
1736 if (lastblock >= 150)
1737 last[last_count++] = lastblock - 150;
1738 if (lastblock >= 152)
1739 last[last_count++] = lastblock - 152;
1740
1741 for (i = 0; i < last_count; i++) {
1742 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1743 sb->s_blocksize_bits)
1744 continue;
1745 if (udf_check_anchor_block(sb, last[i], fileset))
1746 return last[i];
1747 if (last[i] < 256)
1748 continue;
1749 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1750 return last[i];
1751 }
1752
1753 /* Finally try block 512 in case media is open */
1754 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1755 return last[0];
1756 return 0;
1757 }
1758
1759 /*
1760 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1761 * area specified by it. The function expects sbi->s_lastblock to be the last
1762 * block on the media.
1763 *
1764 * Return 1 if ok, 0 if not found.
1765 *
1766 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1767 static int udf_find_anchor(struct super_block *sb,
1768 struct kernel_lb_addr *fileset)
1769 {
1770 sector_t lastblock;
1771 struct udf_sb_info *sbi = UDF_SB(sb);
1772
1773 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1774 if (lastblock)
1775 goto out;
1776
1777 /* No anchor found? Try VARCONV conversion of block numbers */
1778 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1779 /* Firstly, we try to not convert number of the last block */
1780 lastblock = udf_scan_anchors(sb,
1781 udf_variable_to_fixed(sbi->s_last_block),
1782 fileset);
1783 if (lastblock)
1784 goto out;
1785
1786 /* Secondly, we try with converted number of the last block */
1787 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1788 if (!lastblock) {
1789 /* VARCONV didn't help. Clear it. */
1790 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1791 return 0;
1792 }
1793 out:
1794 sbi->s_last_block = lastblock;
1795 return 1;
1796 }
1797
1798 /*
1799 * Check Volume Structure Descriptor, find Anchor block and load Volume
1800 * Descriptor Sequence
1801 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1802 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1803 int silent, struct kernel_lb_addr *fileset)
1804 {
1805 struct udf_sb_info *sbi = UDF_SB(sb);
1806 loff_t nsr_off;
1807
1808 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1809 if (!silent)
1810 udf_warn(sb, "Bad block size\n");
1811 return 0;
1812 }
1813 sbi->s_last_block = uopt->lastblock;
1814 if (!uopt->novrs) {
1815 /* Check that it is NSR02 compliant */
1816 nsr_off = udf_check_vsd(sb);
1817 if (!nsr_off) {
1818 if (!silent)
1819 udf_warn(sb, "No VRS found\n");
1820 return 0;
1821 }
1822 if (nsr_off == -1)
1823 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1824 if (!sbi->s_last_block)
1825 sbi->s_last_block = udf_get_last_block(sb);
1826 } else {
1827 udf_debug("Validity check skipped because of novrs option\n");
1828 }
1829
1830 /* Look for anchor block and load Volume Descriptor Sequence */
1831 sbi->s_anchor = uopt->anchor;
1832 if (!udf_find_anchor(sb, fileset)) {
1833 if (!silent)
1834 udf_warn(sb, "No anchor found\n");
1835 return 0;
1836 }
1837 return 1;
1838 }
1839
udf_open_lvid(struct super_block * sb)1840 static void udf_open_lvid(struct super_block *sb)
1841 {
1842 struct udf_sb_info *sbi = UDF_SB(sb);
1843 struct buffer_head *bh = sbi->s_lvid_bh;
1844 struct logicalVolIntegrityDesc *lvid;
1845 struct logicalVolIntegrityDescImpUse *lvidiu;
1846
1847 if (!bh)
1848 return;
1849
1850 mutex_lock(&sbi->s_alloc_mutex);
1851 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852 lvidiu = udf_sb_lvidiu(sbi);
1853
1854 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1855 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1856 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1857 CURRENT_TIME);
1858 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1859
1860 lvid->descTag.descCRC = cpu_to_le16(
1861 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1862 le16_to_cpu(lvid->descTag.descCRCLength)));
1863
1864 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1865 mark_buffer_dirty(bh);
1866 sbi->s_lvid_dirty = 0;
1867 mutex_unlock(&sbi->s_alloc_mutex);
1868 /* Make opening of filesystem visible on the media immediately */
1869 sync_dirty_buffer(bh);
1870 }
1871
udf_close_lvid(struct super_block * sb)1872 static void udf_close_lvid(struct super_block *sb)
1873 {
1874 struct udf_sb_info *sbi = UDF_SB(sb);
1875 struct buffer_head *bh = sbi->s_lvid_bh;
1876 struct logicalVolIntegrityDesc *lvid;
1877 struct logicalVolIntegrityDescImpUse *lvidiu;
1878
1879 if (!bh)
1880 return;
1881
1882 mutex_lock(&sbi->s_alloc_mutex);
1883 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1884 lvidiu = udf_sb_lvidiu(sbi);
1885 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1886 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1887 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1888 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1889 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1890 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1891 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1892 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1893 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1894 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1895
1896 lvid->descTag.descCRC = cpu_to_le16(
1897 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1898 le16_to_cpu(lvid->descTag.descCRCLength)));
1899
1900 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1901 /*
1902 * We set buffer uptodate unconditionally here to avoid spurious
1903 * warnings from mark_buffer_dirty() when previous EIO has marked
1904 * the buffer as !uptodate
1905 */
1906 set_buffer_uptodate(bh);
1907 mark_buffer_dirty(bh);
1908 sbi->s_lvid_dirty = 0;
1909 mutex_unlock(&sbi->s_alloc_mutex);
1910 /* Make closing of filesystem visible on the media immediately */
1911 sync_dirty_buffer(bh);
1912 }
1913
lvid_get_unique_id(struct super_block * sb)1914 u64 lvid_get_unique_id(struct super_block *sb)
1915 {
1916 struct buffer_head *bh;
1917 struct udf_sb_info *sbi = UDF_SB(sb);
1918 struct logicalVolIntegrityDesc *lvid;
1919 struct logicalVolHeaderDesc *lvhd;
1920 u64 uniqueID;
1921 u64 ret;
1922
1923 bh = sbi->s_lvid_bh;
1924 if (!bh)
1925 return 0;
1926
1927 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1928 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1929
1930 mutex_lock(&sbi->s_alloc_mutex);
1931 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1932 if (!(++uniqueID & 0xFFFFFFFF))
1933 uniqueID += 16;
1934 lvhd->uniqueID = cpu_to_le64(uniqueID);
1935 mutex_unlock(&sbi->s_alloc_mutex);
1936 mark_buffer_dirty(bh);
1937
1938 return ret;
1939 }
1940
udf_fill_super(struct super_block * sb,void * options,int silent)1941 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1942 {
1943 int ret;
1944 struct inode *inode = NULL;
1945 struct udf_options uopt;
1946 struct kernel_lb_addr rootdir, fileset;
1947 struct udf_sb_info *sbi;
1948
1949 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1950 uopt.uid = INVALID_UID;
1951 uopt.gid = INVALID_GID;
1952 uopt.umask = 0;
1953 uopt.fmode = UDF_INVALID_MODE;
1954 uopt.dmode = UDF_INVALID_MODE;
1955
1956 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1957 if (!sbi)
1958 return -ENOMEM;
1959
1960 sb->s_fs_info = sbi;
1961
1962 mutex_init(&sbi->s_alloc_mutex);
1963
1964 if (!udf_parse_options((char *)options, &uopt, false))
1965 goto error_out;
1966
1967 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1968 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1969 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1970 goto error_out;
1971 }
1972 #ifdef CONFIG_UDF_NLS
1973 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1974 uopt.nls_map = load_nls_default();
1975 if (!uopt.nls_map)
1976 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1977 else
1978 udf_debug("Using default NLS map\n");
1979 }
1980 #endif
1981 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1982 uopt.flags |= (1 << UDF_FLAG_UTF8);
1983
1984 fileset.logicalBlockNum = 0xFFFFFFFF;
1985 fileset.partitionReferenceNum = 0xFFFF;
1986
1987 sbi->s_flags = uopt.flags;
1988 sbi->s_uid = uopt.uid;
1989 sbi->s_gid = uopt.gid;
1990 sbi->s_umask = uopt.umask;
1991 sbi->s_fmode = uopt.fmode;
1992 sbi->s_dmode = uopt.dmode;
1993 sbi->s_nls_map = uopt.nls_map;
1994 rwlock_init(&sbi->s_cred_lock);
1995
1996 if (uopt.session == 0xFFFFFFFF)
1997 sbi->s_session = udf_get_last_session(sb);
1998 else
1999 sbi->s_session = uopt.session;
2000
2001 udf_debug("Multi-session=%d\n", sbi->s_session);
2002
2003 /* Fill in the rest of the superblock */
2004 sb->s_op = &udf_sb_ops;
2005 sb->s_export_op = &udf_export_ops;
2006
2007 sb->s_magic = UDF_SUPER_MAGIC;
2008 sb->s_time_gran = 1000;
2009
2010 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2011 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2012 } else {
2013 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2014 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2015 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2016 if (!silent)
2017 pr_notice("Rescanning with blocksize %d\n",
2018 UDF_DEFAULT_BLOCKSIZE);
2019 brelse(sbi->s_lvid_bh);
2020 sbi->s_lvid_bh = NULL;
2021 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2022 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2023 }
2024 }
2025 if (!ret) {
2026 udf_warn(sb, "No partition found (1)\n");
2027 goto error_out;
2028 }
2029
2030 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2031
2032 if (sbi->s_lvid_bh) {
2033 struct logicalVolIntegrityDescImpUse *lvidiu =
2034 udf_sb_lvidiu(sbi);
2035 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2036 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2037 /* uint16_t maxUDFWriteRev =
2038 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2039
2040 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2041 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2042 le16_to_cpu(lvidiu->minUDFReadRev),
2043 UDF_MAX_READ_VERSION);
2044 goto error_out;
2045 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2046 sb->s_flags |= MS_RDONLY;
2047
2048 sbi->s_udfrev = minUDFWriteRev;
2049
2050 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2051 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2052 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2053 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2054 }
2055
2056 if (!sbi->s_partitions) {
2057 udf_warn(sb, "No partition found (2)\n");
2058 goto error_out;
2059 }
2060
2061 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2062 UDF_PART_FLAG_READ_ONLY) {
2063 pr_notice("Partition marked readonly; forcing readonly mount\n");
2064 sb->s_flags |= MS_RDONLY;
2065 }
2066
2067 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2068 udf_warn(sb, "No fileset found\n");
2069 goto error_out;
2070 }
2071
2072 if (!silent) {
2073 struct timestamp ts;
2074 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2075 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2076 sbi->s_volume_ident,
2077 le16_to_cpu(ts.year), ts.month, ts.day,
2078 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2079 }
2080 if (!(sb->s_flags & MS_RDONLY))
2081 udf_open_lvid(sb);
2082
2083 /* Assign the root inode */
2084 /* assign inodes by physical block number */
2085 /* perhaps it's not extensible enough, but for now ... */
2086 inode = udf_iget(sb, &rootdir);
2087 if (!inode) {
2088 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2089 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2090 goto error_out;
2091 }
2092
2093 /* Allocate a dentry for the root inode */
2094 sb->s_root = d_make_root(inode);
2095 if (!sb->s_root) {
2096 udf_err(sb, "Couldn't allocate root dentry\n");
2097 goto error_out;
2098 }
2099 sb->s_maxbytes = MAX_LFS_FILESIZE;
2100 sb->s_max_links = UDF_MAX_LINKS;
2101 return 0;
2102
2103 error_out:
2104 if (sbi->s_vat_inode)
2105 iput(sbi->s_vat_inode);
2106 #ifdef CONFIG_UDF_NLS
2107 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2108 unload_nls(sbi->s_nls_map);
2109 #endif
2110 if (!(sb->s_flags & MS_RDONLY))
2111 udf_close_lvid(sb);
2112 brelse(sbi->s_lvid_bh);
2113 udf_sb_free_partitions(sb);
2114 kfree(sbi);
2115 sb->s_fs_info = NULL;
2116
2117 return -EINVAL;
2118 }
2119
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2120 void _udf_err(struct super_block *sb, const char *function,
2121 const char *fmt, ...)
2122 {
2123 struct va_format vaf;
2124 va_list args;
2125
2126 va_start(args, fmt);
2127
2128 vaf.fmt = fmt;
2129 vaf.va = &args;
2130
2131 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2132
2133 va_end(args);
2134 }
2135
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2136 void _udf_warn(struct super_block *sb, const char *function,
2137 const char *fmt, ...)
2138 {
2139 struct va_format vaf;
2140 va_list args;
2141
2142 va_start(args, fmt);
2143
2144 vaf.fmt = fmt;
2145 vaf.va = &args;
2146
2147 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2148
2149 va_end(args);
2150 }
2151
udf_put_super(struct super_block * sb)2152 static void udf_put_super(struct super_block *sb)
2153 {
2154 struct udf_sb_info *sbi;
2155
2156 sbi = UDF_SB(sb);
2157
2158 if (sbi->s_vat_inode)
2159 iput(sbi->s_vat_inode);
2160 #ifdef CONFIG_UDF_NLS
2161 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2162 unload_nls(sbi->s_nls_map);
2163 #endif
2164 if (!(sb->s_flags & MS_RDONLY))
2165 udf_close_lvid(sb);
2166 brelse(sbi->s_lvid_bh);
2167 udf_sb_free_partitions(sb);
2168 kfree(sb->s_fs_info);
2169 sb->s_fs_info = NULL;
2170 }
2171
udf_sync_fs(struct super_block * sb,int wait)2172 static int udf_sync_fs(struct super_block *sb, int wait)
2173 {
2174 struct udf_sb_info *sbi = UDF_SB(sb);
2175
2176 mutex_lock(&sbi->s_alloc_mutex);
2177 if (sbi->s_lvid_dirty) {
2178 /*
2179 * Blockdevice will be synced later so we don't have to submit
2180 * the buffer for IO
2181 */
2182 mark_buffer_dirty(sbi->s_lvid_bh);
2183 sbi->s_lvid_dirty = 0;
2184 }
2185 mutex_unlock(&sbi->s_alloc_mutex);
2186
2187 return 0;
2188 }
2189
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2190 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2191 {
2192 struct super_block *sb = dentry->d_sb;
2193 struct udf_sb_info *sbi = UDF_SB(sb);
2194 struct logicalVolIntegrityDescImpUse *lvidiu;
2195 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2196
2197 if (sbi->s_lvid_bh != NULL)
2198 lvidiu = udf_sb_lvidiu(sbi);
2199 else
2200 lvidiu = NULL;
2201
2202 buf->f_type = UDF_SUPER_MAGIC;
2203 buf->f_bsize = sb->s_blocksize;
2204 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2205 buf->f_bfree = udf_count_free(sb);
2206 buf->f_bavail = buf->f_bfree;
2207 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2208 le32_to_cpu(lvidiu->numDirs)) : 0)
2209 + buf->f_bfree;
2210 buf->f_ffree = buf->f_bfree;
2211 buf->f_namelen = UDF_NAME_LEN - 2;
2212 buf->f_fsid.val[0] = (u32)id;
2213 buf->f_fsid.val[1] = (u32)(id >> 32);
2214
2215 return 0;
2216 }
2217
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2218 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2219 struct udf_bitmap *bitmap)
2220 {
2221 struct buffer_head *bh = NULL;
2222 unsigned int accum = 0;
2223 int index;
2224 int block = 0, newblock;
2225 struct kernel_lb_addr loc;
2226 uint32_t bytes;
2227 uint8_t *ptr;
2228 uint16_t ident;
2229 struct spaceBitmapDesc *bm;
2230
2231 loc.logicalBlockNum = bitmap->s_extPosition;
2232 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2233 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2234
2235 if (!bh) {
2236 udf_err(sb, "udf_count_free failed\n");
2237 goto out;
2238 } else if (ident != TAG_IDENT_SBD) {
2239 brelse(bh);
2240 udf_err(sb, "udf_count_free failed\n");
2241 goto out;
2242 }
2243
2244 bm = (struct spaceBitmapDesc *)bh->b_data;
2245 bytes = le32_to_cpu(bm->numOfBytes);
2246 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2247 ptr = (uint8_t *)bh->b_data;
2248
2249 while (bytes > 0) {
2250 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2251 accum += bitmap_weight((const unsigned long *)(ptr + index),
2252 cur_bytes * 8);
2253 bytes -= cur_bytes;
2254 if (bytes) {
2255 brelse(bh);
2256 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2257 bh = udf_tread(sb, newblock);
2258 if (!bh) {
2259 udf_debug("read failed\n");
2260 goto out;
2261 }
2262 index = 0;
2263 ptr = (uint8_t *)bh->b_data;
2264 }
2265 }
2266 brelse(bh);
2267 out:
2268 return accum;
2269 }
2270
udf_count_free_table(struct super_block * sb,struct inode * table)2271 static unsigned int udf_count_free_table(struct super_block *sb,
2272 struct inode *table)
2273 {
2274 unsigned int accum = 0;
2275 uint32_t elen;
2276 struct kernel_lb_addr eloc;
2277 int8_t etype;
2278 struct extent_position epos;
2279
2280 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2281 epos.block = UDF_I(table)->i_location;
2282 epos.offset = sizeof(struct unallocSpaceEntry);
2283 epos.bh = NULL;
2284
2285 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2286 accum += (elen >> table->i_sb->s_blocksize_bits);
2287
2288 brelse(epos.bh);
2289 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2290
2291 return accum;
2292 }
2293
udf_count_free(struct super_block * sb)2294 static unsigned int udf_count_free(struct super_block *sb)
2295 {
2296 unsigned int accum = 0;
2297 struct udf_sb_info *sbi;
2298 struct udf_part_map *map;
2299
2300 sbi = UDF_SB(sb);
2301 if (sbi->s_lvid_bh) {
2302 struct logicalVolIntegrityDesc *lvid =
2303 (struct logicalVolIntegrityDesc *)
2304 sbi->s_lvid_bh->b_data;
2305 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2306 accum = le32_to_cpu(
2307 lvid->freeSpaceTable[sbi->s_partition]);
2308 if (accum == 0xFFFFFFFF)
2309 accum = 0;
2310 }
2311 }
2312
2313 if (accum)
2314 return accum;
2315
2316 map = &sbi->s_partmaps[sbi->s_partition];
2317 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2318 accum += udf_count_free_bitmap(sb,
2319 map->s_uspace.s_bitmap);
2320 }
2321 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2322 accum += udf_count_free_bitmap(sb,
2323 map->s_fspace.s_bitmap);
2324 }
2325 if (accum)
2326 return accum;
2327
2328 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2329 accum += udf_count_free_table(sb,
2330 map->s_uspace.s_table);
2331 }
2332 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2333 accum += udf_count_free_table(sb,
2334 map->s_fspace.s_table);
2335 }
2336
2337 return accum;
2338 }
2339