• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <trace/events/skb.h>
112 #include "udp_impl.h"
113 
114 struct udp_table udp_table __read_mostly;
115 EXPORT_SYMBOL(udp_table);
116 
117 long sysctl_udp_mem[3] __read_mostly;
118 EXPORT_SYMBOL(sysctl_udp_mem);
119 
120 int sysctl_udp_rmem_min __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_rmem_min);
122 
123 int sysctl_udp_wmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_wmem_min);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk,
136 			       int (*saddr_comp)(const struct sock *sk1,
137 						 const struct sock *sk2),
138 			       unsigned int log)
139 {
140 	struct sock *sk2;
141 	struct hlist_nulls_node *node;
142 	kuid_t uid = sock_i_uid(sk);
143 
144 	sk_nulls_for_each(sk2, node, &hslot->head)
145 		if (net_eq(sock_net(sk2), net) &&
146 		    sk2 != sk &&
147 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
148 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
149 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
150 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
151 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
152 		      !uid_eq(uid, sock_i_uid(sk2))) &&
153 		    (*saddr_comp)(sk, sk2)) {
154 			if (bitmap)
155 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
156 					  bitmap);
157 			else
158 				return 1;
159 		}
160 	return 0;
161 }
162 
163 /*
164  * Note: we still hold spinlock of primary hash chain, so no other writer
165  * can insert/delete a socket with local_port == num
166  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2))167 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
168 			       struct udp_hslot *hslot2,
169 			       struct sock *sk,
170 			       int (*saddr_comp)(const struct sock *sk1,
171 						 const struct sock *sk2))
172 {
173 	struct sock *sk2;
174 	struct hlist_nulls_node *node;
175 	kuid_t uid = sock_i_uid(sk);
176 	int res = 0;
177 
178 	spin_lock(&hslot2->lock);
179 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
180 		if (net_eq(sock_net(sk2), net) &&
181 		    sk2 != sk &&
182 		    (udp_sk(sk2)->udp_port_hash == num) &&
183 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
184 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
185 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
186 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
187 		      !uid_eq(uid, sock_i_uid(sk2))) &&
188 		    (*saddr_comp)(sk, sk2)) {
189 			res = 1;
190 			break;
191 		}
192 	spin_unlock(&hslot2->lock);
193 	return res;
194 }
195 
196 /**
197  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
198  *
199  *  @sk:          socket struct in question
200  *  @snum:        port number to look up
201  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
202  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
203  *                   with NULL address
204  */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int hash2_nulladdr)205 int udp_lib_get_port(struct sock *sk, unsigned short snum,
206 		       int (*saddr_comp)(const struct sock *sk1,
207 					 const struct sock *sk2),
208 		     unsigned int hash2_nulladdr)
209 {
210 	struct udp_hslot *hslot, *hslot2;
211 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
212 	int    error = 1;
213 	struct net *net = sock_net(sk);
214 
215 	if (!snum) {
216 		int low, high, remaining;
217 		unsigned int rand;
218 		unsigned short first, last;
219 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
220 
221 		inet_get_local_port_range(&low, &high);
222 		remaining = (high - low) + 1;
223 
224 		rand = net_random();
225 		first = (((u64)rand * remaining) >> 32) + low;
226 		/*
227 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
228 		 */
229 		rand = (rand | 1) * (udptable->mask + 1);
230 		last = first + udptable->mask + 1;
231 		do {
232 			hslot = udp_hashslot(udptable, net, first);
233 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
234 			spin_lock_bh(&hslot->lock);
235 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
236 					    saddr_comp, udptable->log);
237 
238 			snum = first;
239 			/*
240 			 * Iterate on all possible values of snum for this hash.
241 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
242 			 * give us randomization and full range coverage.
243 			 */
244 			do {
245 				if (low <= snum && snum <= high &&
246 				    !test_bit(snum >> udptable->log, bitmap) &&
247 				    !inet_is_reserved_local_port(snum))
248 					goto found;
249 				snum += rand;
250 			} while (snum != first);
251 			spin_unlock_bh(&hslot->lock);
252 		} while (++first != last);
253 		goto fail;
254 	} else {
255 		hslot = udp_hashslot(udptable, net, snum);
256 		spin_lock_bh(&hslot->lock);
257 		if (hslot->count > 10) {
258 			int exist;
259 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
260 
261 			slot2          &= udptable->mask;
262 			hash2_nulladdr &= udptable->mask;
263 
264 			hslot2 = udp_hashslot2(udptable, slot2);
265 			if (hslot->count < hslot2->count)
266 				goto scan_primary_hash;
267 
268 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
269 						     sk, saddr_comp);
270 			if (!exist && (hash2_nulladdr != slot2)) {
271 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
272 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 							     sk, saddr_comp);
274 			}
275 			if (exist)
276 				goto fail_unlock;
277 			else
278 				goto found;
279 		}
280 scan_primary_hash:
281 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
282 					saddr_comp, 0))
283 			goto fail_unlock;
284 	}
285 found:
286 	inet_sk(sk)->inet_num = snum;
287 	udp_sk(sk)->udp_port_hash = snum;
288 	udp_sk(sk)->udp_portaddr_hash ^= snum;
289 	if (sk_unhashed(sk)) {
290 		sk_nulls_add_node_rcu(sk, &hslot->head);
291 		hslot->count++;
292 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
293 
294 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
295 		spin_lock(&hslot2->lock);
296 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
297 					 &hslot2->head);
298 		hslot2->count++;
299 		spin_unlock(&hslot2->lock);
300 	}
301 	error = 0;
302 fail_unlock:
303 	spin_unlock_bh(&hslot->lock);
304 fail:
305 	return error;
306 }
307 EXPORT_SYMBOL(udp_lib_get_port);
308 
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2)309 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
310 {
311 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
312 
313 	return 	(!ipv6_only_sock(sk2)  &&
314 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
315 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
316 }
317 
udp4_portaddr_hash(struct net * net,__be32 saddr,unsigned int port)318 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
319 				       unsigned int port)
320 {
321 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
322 }
323 
udp_v4_get_port(struct sock * sk,unsigned short snum)324 int udp_v4_get_port(struct sock *sk, unsigned short snum)
325 {
326 	unsigned int hash2_nulladdr =
327 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
328 	unsigned int hash2_partial =
329 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
330 
331 	/* precompute partial secondary hash */
332 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
333 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
334 }
335 
compute_score(struct sock * sk,struct net * net,__be32 saddr,unsigned short hnum,__be16 sport,__be32 daddr,__be16 dport,int dif)336 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
337 			 unsigned short hnum,
338 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
339 {
340 	int score = -1;
341 
342 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
343 			!ipv6_only_sock(sk)) {
344 		struct inet_sock *inet = inet_sk(sk);
345 
346 		score = (sk->sk_family == PF_INET ? 2 : 1);
347 		if (inet->inet_rcv_saddr) {
348 			if (inet->inet_rcv_saddr != daddr)
349 				return -1;
350 			score += 4;
351 		}
352 		if (inet->inet_daddr) {
353 			if (inet->inet_daddr != saddr)
354 				return -1;
355 			score += 4;
356 		}
357 		if (inet->inet_dport) {
358 			if (inet->inet_dport != sport)
359 				return -1;
360 			score += 4;
361 		}
362 		if (sk->sk_bound_dev_if) {
363 			if (sk->sk_bound_dev_if != dif)
364 				return -1;
365 			score += 4;
366 		}
367 	}
368 	return score;
369 }
370 
371 /*
372  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
373  */
compute_score2(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif)374 static inline int compute_score2(struct sock *sk, struct net *net,
375 				 __be32 saddr, __be16 sport,
376 				 __be32 daddr, unsigned int hnum, int dif)
377 {
378 	int score = -1;
379 
380 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
381 		struct inet_sock *inet = inet_sk(sk);
382 
383 		if (inet->inet_rcv_saddr != daddr)
384 			return -1;
385 		if (inet->inet_num != hnum)
386 			return -1;
387 
388 		score = (sk->sk_family == PF_INET ? 2 : 1);
389 		if (inet->inet_daddr) {
390 			if (inet->inet_daddr != saddr)
391 				return -1;
392 			score += 4;
393 		}
394 		if (inet->inet_dport) {
395 			if (inet->inet_dport != sport)
396 				return -1;
397 			score += 4;
398 		}
399 		if (sk->sk_bound_dev_if) {
400 			if (sk->sk_bound_dev_if != dif)
401 				return -1;
402 			score += 4;
403 		}
404 	}
405 	return score;
406 }
407 
408 
409 /* called with read_rcu_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,unsigned int slot2)410 static struct sock *udp4_lib_lookup2(struct net *net,
411 		__be32 saddr, __be16 sport,
412 		__be32 daddr, unsigned int hnum, int dif,
413 		struct udp_hslot *hslot2, unsigned int slot2)
414 {
415 	struct sock *sk, *result;
416 	struct hlist_nulls_node *node;
417 	int score, badness, matches = 0, reuseport = 0;
418 	u32 hash = 0;
419 
420 begin:
421 	result = NULL;
422 	badness = 0;
423 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
424 		score = compute_score2(sk, net, saddr, sport,
425 				      daddr, hnum, dif);
426 		if (score > badness) {
427 			result = sk;
428 			badness = score;
429 			reuseport = sk->sk_reuseport;
430 			if (reuseport) {
431 				hash = inet_ehashfn(net, daddr, hnum,
432 						    saddr, htons(sport));
433 				matches = 1;
434 			}
435 		} else if (score == badness && reuseport) {
436 			matches++;
437 			if (((u64)hash * matches) >> 32 == 0)
438 				result = sk;
439 			hash = next_pseudo_random32(hash);
440 		}
441 	}
442 	/*
443 	 * if the nulls value we got at the end of this lookup is
444 	 * not the expected one, we must restart lookup.
445 	 * We probably met an item that was moved to another chain.
446 	 */
447 	if (get_nulls_value(node) != slot2)
448 		goto begin;
449 	if (result) {
450 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
451 			result = NULL;
452 		else if (unlikely(compute_score2(result, net, saddr, sport,
453 				  daddr, hnum, dif) < badness)) {
454 			sock_put(result);
455 			goto begin;
456 		}
457 	}
458 	return result;
459 }
460 
461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
462  * harder than this. -DaveM
463  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable)464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
465 		__be16 sport, __be32 daddr, __be16 dport,
466 		int dif, struct udp_table *udptable)
467 {
468 	struct sock *sk, *result;
469 	struct hlist_nulls_node *node;
470 	unsigned short hnum = ntohs(dport);
471 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
472 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
473 	int score, badness, matches = 0, reuseport = 0;
474 	u32 hash = 0;
475 
476 	rcu_read_lock();
477 	if (hslot->count > 10) {
478 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
479 		slot2 = hash2 & udptable->mask;
480 		hslot2 = &udptable->hash2[slot2];
481 		if (hslot->count < hslot2->count)
482 			goto begin;
483 
484 		result = udp4_lib_lookup2(net, saddr, sport,
485 					  daddr, hnum, dif,
486 					  hslot2, slot2);
487 		if (!result) {
488 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
489 			slot2 = hash2 & udptable->mask;
490 			hslot2 = &udptable->hash2[slot2];
491 			if (hslot->count < hslot2->count)
492 				goto begin;
493 
494 			result = udp4_lib_lookup2(net, saddr, sport,
495 						  htonl(INADDR_ANY), hnum, dif,
496 						  hslot2, slot2);
497 		}
498 		rcu_read_unlock();
499 		return result;
500 	}
501 begin:
502 	result = NULL;
503 	badness = 0;
504 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
505 		score = compute_score(sk, net, saddr, hnum, sport,
506 				      daddr, dport, dif);
507 		if (score > badness) {
508 			result = sk;
509 			badness = score;
510 			reuseport = sk->sk_reuseport;
511 			if (reuseport) {
512 				hash = inet_ehashfn(net, daddr, hnum,
513 						    saddr, htons(sport));
514 				matches = 1;
515 			}
516 		} else if (score == badness && reuseport) {
517 			matches++;
518 			if (((u64)hash * matches) >> 32 == 0)
519 				result = sk;
520 			hash = next_pseudo_random32(hash);
521 		}
522 	}
523 	/*
524 	 * if the nulls value we got at the end of this lookup is
525 	 * not the expected one, we must restart lookup.
526 	 * We probably met an item that was moved to another chain.
527 	 */
528 	if (get_nulls_value(node) != slot)
529 		goto begin;
530 
531 	if (result) {
532 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
533 			result = NULL;
534 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
535 				  daddr, dport, dif) < badness)) {
536 			sock_put(result);
537 			goto begin;
538 		}
539 	}
540 	rcu_read_unlock();
541 	return result;
542 }
543 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
544 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)545 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
546 						 __be16 sport, __be16 dport,
547 						 struct udp_table *udptable)
548 {
549 	struct sock *sk;
550 	const struct iphdr *iph = ip_hdr(skb);
551 
552 	if (unlikely(sk = skb_steal_sock(skb)))
553 		return sk;
554 	else
555 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
556 					 iph->daddr, dport, inet_iif(skb),
557 					 udptable);
558 }
559 
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)560 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
561 			     __be32 daddr, __be16 dport, int dif)
562 {
563 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
566 
udp_v4_mcast_next(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)567 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
568 					     __be16 loc_port, __be32 loc_addr,
569 					     __be16 rmt_port, __be32 rmt_addr,
570 					     int dif)
571 {
572 	struct hlist_nulls_node *node;
573 	struct sock *s = sk;
574 	unsigned short hnum = ntohs(loc_port);
575 
576 	sk_nulls_for_each_from(s, node) {
577 		struct inet_sock *inet = inet_sk(s);
578 
579 		if (!net_eq(sock_net(s), net) ||
580 		    udp_sk(s)->udp_port_hash != hnum ||
581 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
582 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
583 		    (inet->inet_rcv_saddr &&
584 		     inet->inet_rcv_saddr != loc_addr) ||
585 		    ipv6_only_sock(s) ||
586 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
587 			continue;
588 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
589 			continue;
590 		goto found;
591 	}
592 	s = NULL;
593 found:
594 	return s;
595 }
596 
597 /*
598  * This routine is called by the ICMP module when it gets some
599  * sort of error condition.  If err < 0 then the socket should
600  * be closed and the error returned to the user.  If err > 0
601  * it's just the icmp type << 8 | icmp code.
602  * Header points to the ip header of the error packet. We move
603  * on past this. Then (as it used to claim before adjustment)
604  * header points to the first 8 bytes of the udp header.  We need
605  * to find the appropriate port.
606  */
607 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)608 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
609 {
610 	struct inet_sock *inet;
611 	const struct iphdr *iph = (const struct iphdr *)skb->data;
612 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
613 	const int type = icmp_hdr(skb)->type;
614 	const int code = icmp_hdr(skb)->code;
615 	struct sock *sk;
616 	int harderr;
617 	int err;
618 	struct net *net = dev_net(skb->dev);
619 
620 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
621 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
622 	if (sk == NULL) {
623 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
624 		return;	/* No socket for error */
625 	}
626 
627 	err = 0;
628 	harderr = 0;
629 	inet = inet_sk(sk);
630 
631 	switch (type) {
632 	default:
633 	case ICMP_TIME_EXCEEDED:
634 		err = EHOSTUNREACH;
635 		break;
636 	case ICMP_SOURCE_QUENCH:
637 		goto out;
638 	case ICMP_PARAMETERPROB:
639 		err = EPROTO;
640 		harderr = 1;
641 		break;
642 	case ICMP_DEST_UNREACH:
643 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
644 			ipv4_sk_update_pmtu(skb, sk, info);
645 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
646 				err = EMSGSIZE;
647 				harderr = 1;
648 				break;
649 			}
650 			goto out;
651 		}
652 		err = EHOSTUNREACH;
653 		if (code <= NR_ICMP_UNREACH) {
654 			harderr = icmp_err_convert[code].fatal;
655 			err = icmp_err_convert[code].errno;
656 		}
657 		break;
658 	case ICMP_REDIRECT:
659 		ipv4_sk_redirect(skb, sk);
660 		break;
661 	}
662 
663 	/*
664 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
665 	 *	4.1.3.3.
666 	 */
667 	if (!inet->recverr) {
668 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
669 			goto out;
670 	} else
671 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
672 
673 	sk->sk_err = err;
674 	sk->sk_error_report(sk);
675 out:
676 	sock_put(sk);
677 }
678 
udp_err(struct sk_buff * skb,u32 info)679 void udp_err(struct sk_buff *skb, u32 info)
680 {
681 	__udp4_lib_err(skb, info, &udp_table);
682 }
683 
684 /*
685  * Throw away all pending data and cancel the corking. Socket is locked.
686  */
udp_flush_pending_frames(struct sock * sk)687 void udp_flush_pending_frames(struct sock *sk)
688 {
689 	struct udp_sock *up = udp_sk(sk);
690 
691 	if (up->pending) {
692 		up->len = 0;
693 		up->pending = 0;
694 		ip_flush_pending_frames(sk);
695 	}
696 }
697 EXPORT_SYMBOL(udp_flush_pending_frames);
698 
699 /**
700  * 	udp4_hwcsum  -  handle outgoing HW checksumming
701  * 	@skb: 	sk_buff containing the filled-in UDP header
702  * 	        (checksum field must be zeroed out)
703  *	@src:	source IP address
704  *	@dst:	destination IP address
705  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)706 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
707 {
708 	struct udphdr *uh = udp_hdr(skb);
709 	struct sk_buff *frags = skb_shinfo(skb)->frag_list;
710 	int offset = skb_transport_offset(skb);
711 	int len = skb->len - offset;
712 	int hlen = len;
713 	__wsum csum = 0;
714 
715 	if (!frags) {
716 		/*
717 		 * Only one fragment on the socket.
718 		 */
719 		skb->csum_start = skb_transport_header(skb) - skb->head;
720 		skb->csum_offset = offsetof(struct udphdr, check);
721 		uh->check = ~csum_tcpudp_magic(src, dst, len,
722 					       IPPROTO_UDP, 0);
723 	} else {
724 		/*
725 		 * HW-checksum won't work as there are two or more
726 		 * fragments on the socket so that all csums of sk_buffs
727 		 * should be together
728 		 */
729 		do {
730 			csum = csum_add(csum, frags->csum);
731 			hlen -= frags->len;
732 		} while ((frags = frags->next));
733 
734 		csum = skb_checksum(skb, offset, hlen, csum);
735 		skb->ip_summed = CHECKSUM_NONE;
736 
737 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
738 		if (uh->check == 0)
739 			uh->check = CSUM_MANGLED_0;
740 	}
741 }
742 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)743 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
744 {
745 	struct sock *sk = skb->sk;
746 	struct inet_sock *inet = inet_sk(sk);
747 	struct udphdr *uh;
748 	int err = 0;
749 	int is_udplite = IS_UDPLITE(sk);
750 	int offset = skb_transport_offset(skb);
751 	int len = skb->len - offset;
752 	__wsum csum = 0;
753 
754 	/*
755 	 * Create a UDP header
756 	 */
757 	uh = udp_hdr(skb);
758 	uh->source = inet->inet_sport;
759 	uh->dest = fl4->fl4_dport;
760 	uh->len = htons(len);
761 	uh->check = 0;
762 
763 	if (is_udplite)  				 /*     UDP-Lite      */
764 		csum = udplite_csum(skb);
765 
766 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
767 
768 		skb->ip_summed = CHECKSUM_NONE;
769 		goto send;
770 
771 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
772 
773 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
774 		goto send;
775 
776 	} else
777 		csum = udp_csum(skb);
778 
779 	/* add protocol-dependent pseudo-header */
780 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
781 				      sk->sk_protocol, csum);
782 	if (uh->check == 0)
783 		uh->check = CSUM_MANGLED_0;
784 
785 send:
786 	err = ip_send_skb(sock_net(sk), skb);
787 	if (err) {
788 		if (err == -ENOBUFS && !inet->recverr) {
789 			UDP_INC_STATS_USER(sock_net(sk),
790 					   UDP_MIB_SNDBUFERRORS, is_udplite);
791 			err = 0;
792 		}
793 	} else
794 		UDP_INC_STATS_USER(sock_net(sk),
795 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
796 	return err;
797 }
798 
799 /*
800  * Push out all pending data as one UDP datagram. Socket is locked.
801  */
udp_push_pending_frames(struct sock * sk)802 static int udp_push_pending_frames(struct sock *sk)
803 {
804 	struct udp_sock  *up = udp_sk(sk);
805 	struct inet_sock *inet = inet_sk(sk);
806 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
807 	struct sk_buff *skb;
808 	int err = 0;
809 
810 	skb = ip_finish_skb(sk, fl4);
811 	if (!skb)
812 		goto out;
813 
814 	err = udp_send_skb(skb, fl4);
815 
816 out:
817 	up->len = 0;
818 	up->pending = 0;
819 	return err;
820 }
821 
udp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len)822 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
823 		size_t len)
824 {
825 	struct inet_sock *inet = inet_sk(sk);
826 	struct udp_sock *up = udp_sk(sk);
827 	struct flowi4 fl4_stack;
828 	struct flowi4 *fl4;
829 	int ulen = len;
830 	struct ipcm_cookie ipc;
831 	struct rtable *rt = NULL;
832 	int free = 0;
833 	int connected = 0;
834 	__be32 daddr, faddr, saddr;
835 	__be16 dport;
836 	u8  tos;
837 	int err, is_udplite = IS_UDPLITE(sk);
838 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
839 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
840 	struct sk_buff *skb;
841 	struct ip_options_data opt_copy;
842 
843 	if (len > 0xFFFF)
844 		return -EMSGSIZE;
845 
846 	/*
847 	 *	Check the flags.
848 	 */
849 
850 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
851 		return -EOPNOTSUPP;
852 
853 	ipc.opt = NULL;
854 	ipc.tx_flags = 0;
855 
856 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
857 
858 	fl4 = &inet->cork.fl.u.ip4;
859 	if (up->pending) {
860 		/*
861 		 * There are pending frames.
862 		 * The socket lock must be held while it's corked.
863 		 */
864 		lock_sock(sk);
865 		if (likely(up->pending)) {
866 			if (unlikely(up->pending != AF_INET)) {
867 				release_sock(sk);
868 				return -EINVAL;
869 			}
870 			goto do_append_data;
871 		}
872 		release_sock(sk);
873 	}
874 	ulen += sizeof(struct udphdr);
875 
876 	/*
877 	 *	Get and verify the address.
878 	 */
879 	if (msg->msg_name) {
880 		struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
881 		if (msg->msg_namelen < sizeof(*usin))
882 			return -EINVAL;
883 		if (usin->sin_family != AF_INET) {
884 			if (usin->sin_family != AF_UNSPEC)
885 				return -EAFNOSUPPORT;
886 		}
887 
888 		daddr = usin->sin_addr.s_addr;
889 		dport = usin->sin_port;
890 		if (dport == 0)
891 			return -EINVAL;
892 	} else {
893 		if (sk->sk_state != TCP_ESTABLISHED)
894 			return -EDESTADDRREQ;
895 		daddr = inet->inet_daddr;
896 		dport = inet->inet_dport;
897 		/* Open fast path for connected socket.
898 		   Route will not be used, if at least one option is set.
899 		 */
900 		connected = 1;
901 	}
902 	ipc.addr = inet->inet_saddr;
903 
904 	ipc.oif = sk->sk_bound_dev_if;
905 
906 	sock_tx_timestamp(sk, &ipc.tx_flags);
907 
908 	if (msg->msg_controllen) {
909 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
910 		if (err)
911 			return err;
912 		if (ipc.opt)
913 			free = 1;
914 		connected = 0;
915 	}
916 	if (!ipc.opt) {
917 		struct ip_options_rcu *inet_opt;
918 
919 		rcu_read_lock();
920 		inet_opt = rcu_dereference(inet->inet_opt);
921 		if (inet_opt) {
922 			memcpy(&opt_copy, inet_opt,
923 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
924 			ipc.opt = &opt_copy.opt;
925 		}
926 		rcu_read_unlock();
927 	}
928 
929 	saddr = ipc.addr;
930 	ipc.addr = faddr = daddr;
931 
932 	if (ipc.opt && ipc.opt->opt.srr) {
933 		if (!daddr)
934 			return -EINVAL;
935 		faddr = ipc.opt->opt.faddr;
936 		connected = 0;
937 	}
938 	tos = RT_TOS(inet->tos);
939 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
940 	    (msg->msg_flags & MSG_DONTROUTE) ||
941 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
942 		tos |= RTO_ONLINK;
943 		connected = 0;
944 	}
945 
946 	if (ipv4_is_multicast(daddr)) {
947 		if (!ipc.oif)
948 			ipc.oif = inet->mc_index;
949 		if (!saddr)
950 			saddr = inet->mc_addr;
951 		connected = 0;
952 	} else if (!ipc.oif)
953 		ipc.oif = inet->uc_index;
954 
955 	if (connected)
956 		rt = (struct rtable *)sk_dst_check(sk, 0);
957 
958 	if (rt == NULL) {
959 		struct net *net = sock_net(sk);
960 
961 		fl4 = &fl4_stack;
962 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
963 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
964 				   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
965 				   faddr, saddr, dport, inet->inet_sport,
966 				   sk->sk_uid);
967 
968 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
969 		rt = ip_route_output_flow(net, fl4, sk);
970 		if (IS_ERR(rt)) {
971 			err = PTR_ERR(rt);
972 			rt = NULL;
973 			if (err == -ENETUNREACH)
974 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
975 			goto out;
976 		}
977 
978 		err = -EACCES;
979 		if ((rt->rt_flags & RTCF_BROADCAST) &&
980 		    !sock_flag(sk, SOCK_BROADCAST))
981 			goto out;
982 		if (connected)
983 			sk_dst_set(sk, dst_clone(&rt->dst));
984 	}
985 
986 	if (msg->msg_flags&MSG_CONFIRM)
987 		goto do_confirm;
988 back_from_confirm:
989 
990 	saddr = fl4->saddr;
991 	if (!ipc.addr)
992 		daddr = ipc.addr = fl4->daddr;
993 
994 	/* Lockless fast path for the non-corking case. */
995 	if (!corkreq) {
996 		skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
997 				  sizeof(struct udphdr), &ipc, &rt,
998 				  msg->msg_flags);
999 		err = PTR_ERR(skb);
1000 		if (!IS_ERR_OR_NULL(skb))
1001 			err = udp_send_skb(skb, fl4);
1002 		goto out;
1003 	}
1004 
1005 	lock_sock(sk);
1006 	if (unlikely(up->pending)) {
1007 		/* The socket is already corked while preparing it. */
1008 		/* ... which is an evident application bug. --ANK */
1009 		release_sock(sk);
1010 
1011 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1012 		err = -EINVAL;
1013 		goto out;
1014 	}
1015 	/*
1016 	 *	Now cork the socket to pend data.
1017 	 */
1018 	fl4 = &inet->cork.fl.u.ip4;
1019 	fl4->daddr = daddr;
1020 	fl4->saddr = saddr;
1021 	fl4->fl4_dport = dport;
1022 	fl4->fl4_sport = inet->inet_sport;
1023 	up->pending = AF_INET;
1024 
1025 do_append_data:
1026 	up->len += ulen;
1027 	err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1028 			     sizeof(struct udphdr), &ipc, &rt,
1029 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1030 	if (err)
1031 		udp_flush_pending_frames(sk);
1032 	else if (!corkreq)
1033 		err = udp_push_pending_frames(sk);
1034 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1035 		up->pending = 0;
1036 	release_sock(sk);
1037 
1038 out:
1039 	ip_rt_put(rt);
1040 	if (free)
1041 		kfree(ipc.opt);
1042 	if (!err)
1043 		return len;
1044 	/*
1045 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1046 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1047 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1048 	 * things).  We could add another new stat but at least for now that
1049 	 * seems like overkill.
1050 	 */
1051 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1052 		UDP_INC_STATS_USER(sock_net(sk),
1053 				UDP_MIB_SNDBUFERRORS, is_udplite);
1054 	}
1055 	return err;
1056 
1057 do_confirm:
1058 	dst_confirm(&rt->dst);
1059 	if (!(msg->msg_flags&MSG_PROBE) || len)
1060 		goto back_from_confirm;
1061 	err = 0;
1062 	goto out;
1063 }
1064 EXPORT_SYMBOL(udp_sendmsg);
1065 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1066 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1067 		 size_t size, int flags)
1068 {
1069 	struct inet_sock *inet = inet_sk(sk);
1070 	struct udp_sock *up = udp_sk(sk);
1071 	int ret;
1072 
1073 	if (!up->pending) {
1074 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1075 
1076 		/* Call udp_sendmsg to specify destination address which
1077 		 * sendpage interface can't pass.
1078 		 * This will succeed only when the socket is connected.
1079 		 */
1080 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1081 		if (ret < 0)
1082 			return ret;
1083 	}
1084 
1085 	lock_sock(sk);
1086 
1087 	if (unlikely(!up->pending)) {
1088 		release_sock(sk);
1089 
1090 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1091 		return -EINVAL;
1092 	}
1093 
1094 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1095 			     page, offset, size, flags);
1096 	if (ret == -EOPNOTSUPP) {
1097 		release_sock(sk);
1098 		return sock_no_sendpage(sk->sk_socket, page, offset,
1099 					size, flags);
1100 	}
1101 	if (ret < 0) {
1102 		udp_flush_pending_frames(sk);
1103 		goto out;
1104 	}
1105 
1106 	up->len += size;
1107 	if (!(up->corkflag || (flags&MSG_MORE)))
1108 		ret = udp_push_pending_frames(sk);
1109 	if (!ret)
1110 		ret = size;
1111 out:
1112 	release_sock(sk);
1113 	return ret;
1114 }
1115 
1116 
1117 /**
1118  *	first_packet_length	- return length of first packet in receive queue
1119  *	@sk: socket
1120  *
1121  *	Drops all bad checksum frames, until a valid one is found.
1122  *	Returns the length of found skb, or 0 if none is found.
1123  */
first_packet_length(struct sock * sk)1124 static unsigned int first_packet_length(struct sock *sk)
1125 {
1126 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1127 	struct sk_buff *skb;
1128 	unsigned int res;
1129 
1130 	__skb_queue_head_init(&list_kill);
1131 
1132 	spin_lock_bh(&rcvq->lock);
1133 	while ((skb = skb_peek(rcvq)) != NULL &&
1134 		udp_lib_checksum_complete(skb)) {
1135 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1136 				 IS_UDPLITE(sk));
1137 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1138 				 IS_UDPLITE(sk));
1139 		atomic_inc(&sk->sk_drops);
1140 		__skb_unlink(skb, rcvq);
1141 		__skb_queue_tail(&list_kill, skb);
1142 	}
1143 	res = skb ? skb->len : 0;
1144 	spin_unlock_bh(&rcvq->lock);
1145 
1146 	if (!skb_queue_empty(&list_kill)) {
1147 		bool slow = lock_sock_fast(sk);
1148 
1149 		__skb_queue_purge(&list_kill);
1150 		sk_mem_reclaim_partial(sk);
1151 		unlock_sock_fast(sk, slow);
1152 	}
1153 	return res;
1154 }
1155 
1156 /*
1157  *	IOCTL requests applicable to the UDP protocol
1158  */
1159 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1160 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1161 {
1162 	switch (cmd) {
1163 	case SIOCOUTQ:
1164 	{
1165 		int amount = sk_wmem_alloc_get(sk);
1166 
1167 		return put_user(amount, (int __user *)arg);
1168 	}
1169 
1170 	case SIOCINQ:
1171 	{
1172 		unsigned int amount = first_packet_length(sk);
1173 
1174 		if (amount)
1175 			/*
1176 			 * We will only return the amount
1177 			 * of this packet since that is all
1178 			 * that will be read.
1179 			 */
1180 			amount -= sizeof(struct udphdr);
1181 
1182 		return put_user(amount, (int __user *)arg);
1183 	}
1184 
1185 	default:
1186 		return -ENOIOCTLCMD;
1187 	}
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL(udp_ioctl);
1192 
1193 /*
1194  * 	This should be easy, if there is something there we
1195  * 	return it, otherwise we block.
1196  */
1197 
udp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1198 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1199 		size_t len, int noblock, int flags, int *addr_len)
1200 {
1201 	struct inet_sock *inet = inet_sk(sk);
1202 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1203 	struct sk_buff *skb;
1204 	unsigned int ulen, copied;
1205 	int peeked, off = 0;
1206 	int err;
1207 	int is_udplite = IS_UDPLITE(sk);
1208 	bool checksum_valid = false;
1209 	bool slow;
1210 
1211 	if (flags & MSG_ERRQUEUE)
1212 		return ip_recv_error(sk, msg, len, addr_len);
1213 
1214 try_again:
1215 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1216 				  &peeked, &off, &err);
1217 	if (!skb)
1218 		goto out;
1219 
1220 	ulen = skb->len - sizeof(struct udphdr);
1221 	copied = len;
1222 	if (copied > ulen)
1223 		copied = ulen;
1224 	else if (copied < ulen)
1225 		msg->msg_flags |= MSG_TRUNC;
1226 
1227 	/*
1228 	 * If checksum is needed at all, try to do it while copying the
1229 	 * data.  If the data is truncated, or if we only want a partial
1230 	 * coverage checksum (UDP-Lite), do it before the copy.
1231 	 */
1232 
1233 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1234 		checksum_valid = !udp_lib_checksum_complete(skb);
1235 		if (!checksum_valid)
1236 			goto csum_copy_err;
1237 	}
1238 
1239 	if (checksum_valid || skb_csum_unnecessary(skb))
1240 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1241 					      msg->msg_iov, copied);
1242 	else {
1243 		err = skb_copy_and_csum_datagram_iovec(skb,
1244 						       sizeof(struct udphdr),
1245 						       msg->msg_iov);
1246 
1247 		if (err == -EINVAL)
1248 			goto csum_copy_err;
1249 	}
1250 
1251 	if (unlikely(err)) {
1252 		trace_kfree_skb(skb, udp_recvmsg);
1253 		if (!peeked) {
1254 			atomic_inc(&sk->sk_drops);
1255 			UDP_INC_STATS_USER(sock_net(sk),
1256 					   UDP_MIB_INERRORS, is_udplite);
1257 		}
1258 		goto out_free;
1259 	}
1260 
1261 	if (!peeked)
1262 		UDP_INC_STATS_USER(sock_net(sk),
1263 				UDP_MIB_INDATAGRAMS, is_udplite);
1264 
1265 	sock_recv_ts_and_drops(msg, sk, skb);
1266 
1267 	/* Copy the address. */
1268 	if (sin) {
1269 		sin->sin_family = AF_INET;
1270 		sin->sin_port = udp_hdr(skb)->source;
1271 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1272 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1273 		*addr_len = sizeof(*sin);
1274 	}
1275 	if (inet->cmsg_flags)
1276 		ip_cmsg_recv(msg, skb);
1277 
1278 	err = copied;
1279 	if (flags & MSG_TRUNC)
1280 		err = ulen;
1281 
1282 out_free:
1283 	skb_free_datagram_locked(sk, skb);
1284 out:
1285 	return err;
1286 
1287 csum_copy_err:
1288 	slow = lock_sock_fast(sk);
1289 	if (!skb_kill_datagram(sk, skb, flags)) {
1290 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1291 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1292 	}
1293 	unlock_sock_fast(sk, slow);
1294 
1295 	/* starting over for a new packet, but check if we need to yield */
1296 	cond_resched();
1297 	msg->msg_flags &= ~MSG_TRUNC;
1298 	goto try_again;
1299 }
1300 
1301 
udp_disconnect(struct sock * sk,int flags)1302 int udp_disconnect(struct sock *sk, int flags)
1303 {
1304 	struct inet_sock *inet = inet_sk(sk);
1305 	/*
1306 	 *	1003.1g - break association.
1307 	 */
1308 
1309 	sk->sk_state = TCP_CLOSE;
1310 	inet->inet_daddr = 0;
1311 	inet->inet_dport = 0;
1312 	sock_rps_reset_rxhash(sk);
1313 	sk->sk_bound_dev_if = 0;
1314 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1315 		inet_reset_saddr(sk);
1316 
1317 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1318 		sk->sk_prot->unhash(sk);
1319 		inet->inet_sport = 0;
1320 	}
1321 	sk_dst_reset(sk);
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL(udp_disconnect);
1325 
udp_lib_unhash(struct sock * sk)1326 void udp_lib_unhash(struct sock *sk)
1327 {
1328 	if (sk_hashed(sk)) {
1329 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1330 		struct udp_hslot *hslot, *hslot2;
1331 
1332 		hslot  = udp_hashslot(udptable, sock_net(sk),
1333 				      udp_sk(sk)->udp_port_hash);
1334 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1335 
1336 		spin_lock_bh(&hslot->lock);
1337 		if (sk_nulls_del_node_init_rcu(sk)) {
1338 			hslot->count--;
1339 			inet_sk(sk)->inet_num = 0;
1340 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1341 
1342 			spin_lock(&hslot2->lock);
1343 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1344 			hslot2->count--;
1345 			spin_unlock(&hslot2->lock);
1346 		}
1347 		spin_unlock_bh(&hslot->lock);
1348 	}
1349 }
1350 EXPORT_SYMBOL(udp_lib_unhash);
1351 
1352 /*
1353  * inet_rcv_saddr was changed, we must rehash secondary hash
1354  */
udp_lib_rehash(struct sock * sk,u16 newhash)1355 void udp_lib_rehash(struct sock *sk, u16 newhash)
1356 {
1357 	if (sk_hashed(sk)) {
1358 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1359 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1360 
1361 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1362 		nhslot2 = udp_hashslot2(udptable, newhash);
1363 		udp_sk(sk)->udp_portaddr_hash = newhash;
1364 		if (hslot2 != nhslot2) {
1365 			hslot = udp_hashslot(udptable, sock_net(sk),
1366 					     udp_sk(sk)->udp_port_hash);
1367 			/* we must lock primary chain too */
1368 			spin_lock_bh(&hslot->lock);
1369 
1370 			spin_lock(&hslot2->lock);
1371 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1372 			hslot2->count--;
1373 			spin_unlock(&hslot2->lock);
1374 
1375 			spin_lock(&nhslot2->lock);
1376 			hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1377 						 &nhslot2->head);
1378 			nhslot2->count++;
1379 			spin_unlock(&nhslot2->lock);
1380 
1381 			spin_unlock_bh(&hslot->lock);
1382 		}
1383 	}
1384 }
1385 EXPORT_SYMBOL(udp_lib_rehash);
1386 
udp_v4_rehash(struct sock * sk)1387 static void udp_v4_rehash(struct sock *sk)
1388 {
1389 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1390 					  inet_sk(sk)->inet_rcv_saddr,
1391 					  inet_sk(sk)->inet_num);
1392 	udp_lib_rehash(sk, new_hash);
1393 }
1394 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1395 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1396 {
1397 	int rc;
1398 
1399 	if (inet_sk(sk)->inet_daddr)
1400 		sock_rps_save_rxhash(sk, skb);
1401 
1402 	rc = sock_queue_rcv_skb(sk, skb);
1403 	if (rc < 0) {
1404 		int is_udplite = IS_UDPLITE(sk);
1405 
1406 		/* Note that an ENOMEM error is charged twice */
1407 		if (rc == -ENOMEM)
1408 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1409 					 is_udplite);
1410 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1411 		kfree_skb(skb);
1412 		trace_udp_fail_queue_rcv_skb(rc, sk);
1413 		return -1;
1414 	}
1415 
1416 	return 0;
1417 
1418 }
1419 
1420 static struct static_key udp_encap_needed __read_mostly;
udp_encap_enable(void)1421 void udp_encap_enable(void)
1422 {
1423 	if (!static_key_enabled(&udp_encap_needed))
1424 		static_key_slow_inc(&udp_encap_needed);
1425 }
1426 EXPORT_SYMBOL(udp_encap_enable);
1427 
1428 /* returns:
1429  *  -1: error
1430  *   0: success
1431  *  >0: "udp encap" protocol resubmission
1432  *
1433  * Note that in the success and error cases, the skb is assumed to
1434  * have either been requeued or freed.
1435  */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1436 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1437 {
1438 	struct udp_sock *up = udp_sk(sk);
1439 	int rc;
1440 	int is_udplite = IS_UDPLITE(sk);
1441 
1442 	/*
1443 	 *	Charge it to the socket, dropping if the queue is full.
1444 	 */
1445 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1446 		goto drop;
1447 	nf_reset(skb);
1448 
1449 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1450 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1451 
1452 		/*
1453 		 * This is an encapsulation socket so pass the skb to
1454 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1455 		 * fall through and pass this up the UDP socket.
1456 		 * up->encap_rcv() returns the following value:
1457 		 * =0 if skb was successfully passed to the encap
1458 		 *    handler or was discarded by it.
1459 		 * >0 if skb should be passed on to UDP.
1460 		 * <0 if skb should be resubmitted as proto -N
1461 		 */
1462 
1463 		/* if we're overly short, let UDP handle it */
1464 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1465 		if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1466 			int ret;
1467 
1468 			ret = encap_rcv(sk, skb);
1469 			if (ret <= 0) {
1470 				UDP_INC_STATS_BH(sock_net(sk),
1471 						 UDP_MIB_INDATAGRAMS,
1472 						 is_udplite);
1473 				return -ret;
1474 			}
1475 		}
1476 
1477 		/* FALLTHROUGH -- it's a UDP Packet */
1478 	}
1479 
1480 	/*
1481 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1482 	 */
1483 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1484 
1485 		/*
1486 		 * MIB statistics other than incrementing the error count are
1487 		 * disabled for the following two types of errors: these depend
1488 		 * on the application settings, not on the functioning of the
1489 		 * protocol stack as such.
1490 		 *
1491 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1492 		 * way ... to ... at least let the receiving application block
1493 		 * delivery of packets with coverage values less than a value
1494 		 * provided by the application."
1495 		 */
1496 		if (up->pcrlen == 0) {          /* full coverage was set  */
1497 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1498 				       UDP_SKB_CB(skb)->cscov, skb->len);
1499 			goto drop;
1500 		}
1501 		/* The next case involves violating the min. coverage requested
1502 		 * by the receiver. This is subtle: if receiver wants x and x is
1503 		 * greater than the buffersize/MTU then receiver will complain
1504 		 * that it wants x while sender emits packets of smaller size y.
1505 		 * Therefore the above ...()->partial_cov statement is essential.
1506 		 */
1507 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1508 			LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1509 				       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1510 			goto drop;
1511 		}
1512 	}
1513 
1514 	if (rcu_access_pointer(sk->sk_filter) &&
1515 	    udp_lib_checksum_complete(skb))
1516 		goto csum_error;
1517 
1518 
1519 	if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1520 		goto drop;
1521 
1522 	rc = 0;
1523 
1524 	ipv4_pktinfo_prepare(skb);
1525 	bh_lock_sock(sk);
1526 	if (!sock_owned_by_user(sk))
1527 		rc = __udp_queue_rcv_skb(sk, skb);
1528 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1529 		bh_unlock_sock(sk);
1530 		goto drop;
1531 	}
1532 	bh_unlock_sock(sk);
1533 
1534 	return rc;
1535 
1536 csum_error:
1537 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1538 drop:
1539 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1540 	atomic_inc(&sk->sk_drops);
1541 	kfree_skb(skb);
1542 	return -1;
1543 }
1544 
1545 
flush_stack(struct sock ** stack,unsigned int count,struct sk_buff * skb,unsigned int final)1546 static void flush_stack(struct sock **stack, unsigned int count,
1547 			struct sk_buff *skb, unsigned int final)
1548 {
1549 	unsigned int i;
1550 	struct sk_buff *skb1 = NULL;
1551 	struct sock *sk;
1552 
1553 	for (i = 0; i < count; i++) {
1554 		sk = stack[i];
1555 		if (likely(skb1 == NULL))
1556 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1557 
1558 		if (!skb1) {
1559 			atomic_inc(&sk->sk_drops);
1560 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1561 					 IS_UDPLITE(sk));
1562 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1563 					 IS_UDPLITE(sk));
1564 		}
1565 
1566 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1567 			skb1 = NULL;
1568 	}
1569 	if (unlikely(skb1))
1570 		kfree_skb(skb1);
1571 }
1572 
1573 /*
1574  *	Multicasts and broadcasts go to each listener.
1575  *
1576  *	Note: called only from the BH handler context.
1577  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable)1578 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1579 				    struct udphdr  *uh,
1580 				    __be32 saddr, __be32 daddr,
1581 				    struct udp_table *udptable)
1582 {
1583 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1584 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1585 	int dif;
1586 	unsigned int i, count = 0;
1587 
1588 	spin_lock(&hslot->lock);
1589 	sk = sk_nulls_head(&hslot->head);
1590 	dif = skb->dev->ifindex;
1591 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1592 	while (sk) {
1593 		stack[count++] = sk;
1594 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1595 				       daddr, uh->source, saddr, dif);
1596 		if (unlikely(count == ARRAY_SIZE(stack))) {
1597 			if (!sk)
1598 				break;
1599 			flush_stack(stack, count, skb, ~0);
1600 			count = 0;
1601 		}
1602 	}
1603 	/*
1604 	 * before releasing chain lock, we must take a reference on sockets
1605 	 */
1606 	for (i = 0; i < count; i++)
1607 		sock_hold(stack[i]);
1608 
1609 	spin_unlock(&hslot->lock);
1610 
1611 	/*
1612 	 * do the slow work with no lock held
1613 	 */
1614 	if (count) {
1615 		flush_stack(stack, count, skb, count - 1);
1616 
1617 		for (i = 0; i < count; i++)
1618 			sock_put(stack[i]);
1619 	} else {
1620 		kfree_skb(skb);
1621 	}
1622 	return 0;
1623 }
1624 
1625 /* Initialize UDP checksum. If exited with zero value (success),
1626  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1627  * Otherwise, csum completion requires chacksumming packet body,
1628  * including udp header and folding it to skb->csum.
1629  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1630 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1631 				 int proto)
1632 {
1633 	const struct iphdr *iph;
1634 	int err;
1635 
1636 	UDP_SKB_CB(skb)->partial_cov = 0;
1637 	UDP_SKB_CB(skb)->cscov = skb->len;
1638 
1639 	if (proto == IPPROTO_UDPLITE) {
1640 		err = udplite_checksum_init(skb, uh);
1641 		if (err)
1642 			return err;
1643 	}
1644 
1645 	iph = ip_hdr(skb);
1646 	if (uh->check == 0) {
1647 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1648 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1649 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1650 				      proto, skb->csum))
1651 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1652 	}
1653 	if (!skb_csum_unnecessary(skb))
1654 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1655 					       skb->len, proto, 0);
1656 	/* Probably, we should checksum udp header (it should be in cache
1657 	 * in any case) and data in tiny packets (< rx copybreak).
1658 	 */
1659 
1660 	return 0;
1661 }
1662 
1663 /*
1664  *	All we need to do is get the socket, and then do a checksum.
1665  */
1666 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1667 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1668 		   int proto)
1669 {
1670 	struct sock *sk;
1671 	struct udphdr *uh;
1672 	unsigned short ulen;
1673 	struct rtable *rt = skb_rtable(skb);
1674 	__be32 saddr, daddr;
1675 	struct net *net = dev_net(skb->dev);
1676 
1677 	/*
1678 	 *  Validate the packet.
1679 	 */
1680 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1681 		goto drop;		/* No space for header. */
1682 
1683 	uh   = udp_hdr(skb);
1684 	ulen = ntohs(uh->len);
1685 	saddr = ip_hdr(skb)->saddr;
1686 	daddr = ip_hdr(skb)->daddr;
1687 
1688 	if (ulen > skb->len)
1689 		goto short_packet;
1690 
1691 	if (proto == IPPROTO_UDP) {
1692 		/* UDP validates ulen. */
1693 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1694 			goto short_packet;
1695 		uh = udp_hdr(skb);
1696 	}
1697 
1698 	if (udp4_csum_init(skb, uh, proto))
1699 		goto csum_error;
1700 
1701 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1702 		return __udp4_lib_mcast_deliver(net, skb, uh,
1703 				saddr, daddr, udptable);
1704 
1705 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1706 
1707 	if (sk != NULL) {
1708 		int ret = udp_queue_rcv_skb(sk, skb);
1709 		sock_put(sk);
1710 
1711 		/* a return value > 0 means to resubmit the input, but
1712 		 * it wants the return to be -protocol, or 0
1713 		 */
1714 		if (ret > 0)
1715 			return -ret;
1716 		return 0;
1717 	}
1718 
1719 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1720 		goto drop;
1721 	nf_reset(skb);
1722 
1723 	/* No socket. Drop packet silently, if checksum is wrong */
1724 	if (udp_lib_checksum_complete(skb))
1725 		goto csum_error;
1726 
1727 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1728 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1729 
1730 	/*
1731 	 * Hmm.  We got an UDP packet to a port to which we
1732 	 * don't wanna listen.  Ignore it.
1733 	 */
1734 	kfree_skb(skb);
1735 	return 0;
1736 
1737 short_packet:
1738 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1739 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1740 		       &saddr, ntohs(uh->source),
1741 		       ulen, skb->len,
1742 		       &daddr, ntohs(uh->dest));
1743 	goto drop;
1744 
1745 csum_error:
1746 	/*
1747 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1748 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1749 	 */
1750 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1751 		       proto == IPPROTO_UDPLITE ? "Lite" : "",
1752 		       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1753 		       ulen);
1754 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1755 drop:
1756 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1757 	kfree_skb(skb);
1758 	return 0;
1759 }
1760 
udp_rcv(struct sk_buff * skb)1761 int udp_rcv(struct sk_buff *skb)
1762 {
1763 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1764 }
1765 
udp_destroy_sock(struct sock * sk)1766 void udp_destroy_sock(struct sock *sk)
1767 {
1768 	struct udp_sock *up = udp_sk(sk);
1769 	bool slow = lock_sock_fast(sk);
1770 	udp_flush_pending_frames(sk);
1771 	unlock_sock_fast(sk, slow);
1772 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1773 		void (*encap_destroy)(struct sock *sk);
1774 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
1775 		if (encap_destroy)
1776 			encap_destroy(sk);
1777 	}
1778 }
1779 
1780 /*
1781  *	Socket option code for UDP
1782  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1783 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1784 		       char __user *optval, unsigned int optlen,
1785 		       int (*push_pending_frames)(struct sock *))
1786 {
1787 	struct udp_sock *up = udp_sk(sk);
1788 	int val;
1789 	int err = 0;
1790 	int is_udplite = IS_UDPLITE(sk);
1791 
1792 	if (optlen < sizeof(int))
1793 		return -EINVAL;
1794 
1795 	if (get_user(val, (int __user *)optval))
1796 		return -EFAULT;
1797 
1798 	switch (optname) {
1799 	case UDP_CORK:
1800 		if (val != 0) {
1801 			up->corkflag = 1;
1802 		} else {
1803 			up->corkflag = 0;
1804 			lock_sock(sk);
1805 			(*push_pending_frames)(sk);
1806 			release_sock(sk);
1807 		}
1808 		break;
1809 
1810 	case UDP_ENCAP:
1811 		switch (val) {
1812 		case 0:
1813 		case UDP_ENCAP_ESPINUDP:
1814 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1815 			up->encap_rcv = xfrm4_udp_encap_rcv;
1816 			/* FALLTHROUGH */
1817 		case UDP_ENCAP_L2TPINUDP:
1818 			up->encap_type = val;
1819 			udp_encap_enable();
1820 			break;
1821 		default:
1822 			err = -ENOPROTOOPT;
1823 			break;
1824 		}
1825 		break;
1826 
1827 	/*
1828 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1829 	 */
1830 	/* The sender sets actual checksum coverage length via this option.
1831 	 * The case coverage > packet length is handled by send module. */
1832 	case UDPLITE_SEND_CSCOV:
1833 		if (!is_udplite)         /* Disable the option on UDP sockets */
1834 			return -ENOPROTOOPT;
1835 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1836 			val = 8;
1837 		else if (val > USHRT_MAX)
1838 			val = USHRT_MAX;
1839 		up->pcslen = val;
1840 		up->pcflag |= UDPLITE_SEND_CC;
1841 		break;
1842 
1843 	/* The receiver specifies a minimum checksum coverage value. To make
1844 	 * sense, this should be set to at least 8 (as done below). If zero is
1845 	 * used, this again means full checksum coverage.                     */
1846 	case UDPLITE_RECV_CSCOV:
1847 		if (!is_udplite)         /* Disable the option on UDP sockets */
1848 			return -ENOPROTOOPT;
1849 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1850 			val = 8;
1851 		else if (val > USHRT_MAX)
1852 			val = USHRT_MAX;
1853 		up->pcrlen = val;
1854 		up->pcflag |= UDPLITE_RECV_CC;
1855 		break;
1856 
1857 	default:
1858 		err = -ENOPROTOOPT;
1859 		break;
1860 	}
1861 
1862 	return err;
1863 }
1864 EXPORT_SYMBOL(udp_lib_setsockopt);
1865 
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1866 int udp_setsockopt(struct sock *sk, int level, int optname,
1867 		   char __user *optval, unsigned int optlen)
1868 {
1869 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1870 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1871 					  udp_push_pending_frames);
1872 	return ip_setsockopt(sk, level, optname, optval, optlen);
1873 }
1874 
1875 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1876 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1877 			  char __user *optval, unsigned int optlen)
1878 {
1879 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1880 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1881 					  udp_push_pending_frames);
1882 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1883 }
1884 #endif
1885 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1886 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1887 		       char __user *optval, int __user *optlen)
1888 {
1889 	struct udp_sock *up = udp_sk(sk);
1890 	int val, len;
1891 
1892 	if (get_user(len, optlen))
1893 		return -EFAULT;
1894 
1895 	len = min_t(unsigned int, len, sizeof(int));
1896 
1897 	if (len < 0)
1898 		return -EINVAL;
1899 
1900 	switch (optname) {
1901 	case UDP_CORK:
1902 		val = up->corkflag;
1903 		break;
1904 
1905 	case UDP_ENCAP:
1906 		val = up->encap_type;
1907 		break;
1908 
1909 	/* The following two cannot be changed on UDP sockets, the return is
1910 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1911 	case UDPLITE_SEND_CSCOV:
1912 		val = up->pcslen;
1913 		break;
1914 
1915 	case UDPLITE_RECV_CSCOV:
1916 		val = up->pcrlen;
1917 		break;
1918 
1919 	default:
1920 		return -ENOPROTOOPT;
1921 	}
1922 
1923 	if (put_user(len, optlen))
1924 		return -EFAULT;
1925 	if (copy_to_user(optval, &val, len))
1926 		return -EFAULT;
1927 	return 0;
1928 }
1929 EXPORT_SYMBOL(udp_lib_getsockopt);
1930 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1931 int udp_getsockopt(struct sock *sk, int level, int optname,
1932 		   char __user *optval, int __user *optlen)
1933 {
1934 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1935 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1936 	return ip_getsockopt(sk, level, optname, optval, optlen);
1937 }
1938 
1939 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1940 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1941 				 char __user *optval, int __user *optlen)
1942 {
1943 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1944 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1945 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1946 }
1947 #endif
1948 /**
1949  * 	udp_poll - wait for a UDP event.
1950  *	@file - file struct
1951  *	@sock - socket
1952  *	@wait - poll table
1953  *
1954  *	This is same as datagram poll, except for the special case of
1955  *	blocking sockets. If application is using a blocking fd
1956  *	and a packet with checksum error is in the queue;
1957  *	then it could get return from select indicating data available
1958  *	but then block when reading it. Add special case code
1959  *	to work around these arguably broken applications.
1960  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)1961 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1962 {
1963 	unsigned int mask = datagram_poll(file, sock, wait);
1964 	struct sock *sk = sock->sk;
1965 
1966 	/* Check for false positives due to checksum errors */
1967 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1968 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1969 		mask &= ~(POLLIN | POLLRDNORM);
1970 
1971 	return mask;
1972 
1973 }
1974 EXPORT_SYMBOL(udp_poll);
1975 
udp_abort(struct sock * sk,int err)1976 int udp_abort(struct sock *sk, int err)
1977 {
1978 	lock_sock(sk);
1979 
1980 	sk->sk_err = err;
1981 	sk->sk_error_report(sk);
1982 	udp_disconnect(sk, 0);
1983 
1984 	release_sock(sk);
1985 
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(udp_abort);
1989 
1990 struct proto udp_prot = {
1991 	.name		   = "UDP",
1992 	.owner		   = THIS_MODULE,
1993 	.close		   = udp_lib_close,
1994 	.connect	   = ip4_datagram_connect,
1995 	.disconnect	   = udp_disconnect,
1996 	.ioctl		   = udp_ioctl,
1997 	.destroy	   = udp_destroy_sock,
1998 	.setsockopt	   = udp_setsockopt,
1999 	.getsockopt	   = udp_getsockopt,
2000 	.sendmsg	   = udp_sendmsg,
2001 	.recvmsg	   = udp_recvmsg,
2002 	.sendpage	   = udp_sendpage,
2003 	.backlog_rcv	   = __udp_queue_rcv_skb,
2004 	.release_cb	   = ip4_datagram_release_cb,
2005 	.hash		   = udp_lib_hash,
2006 	.unhash		   = udp_lib_unhash,
2007 	.rehash		   = udp_v4_rehash,
2008 	.get_port	   = udp_v4_get_port,
2009 	.memory_allocated  = &udp_memory_allocated,
2010 	.sysctl_mem	   = sysctl_udp_mem,
2011 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2012 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2013 	.obj_size	   = sizeof(struct udp_sock),
2014 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2015 	.h.udp_table	   = &udp_table,
2016 #ifdef CONFIG_COMPAT
2017 	.compat_setsockopt = compat_udp_setsockopt,
2018 	.compat_getsockopt = compat_udp_getsockopt,
2019 #endif
2020 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2021 	.diag_destroy	   = udp_abort,
2022 };
2023 EXPORT_SYMBOL(udp_prot);
2024 
2025 /* ------------------------------------------------------------------------ */
2026 #ifdef CONFIG_PROC_FS
2027 
udp_get_first(struct seq_file * seq,int start)2028 static struct sock *udp_get_first(struct seq_file *seq, int start)
2029 {
2030 	struct sock *sk;
2031 	struct udp_iter_state *state = seq->private;
2032 	struct net *net = seq_file_net(seq);
2033 
2034 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2035 	     ++state->bucket) {
2036 		struct hlist_nulls_node *node;
2037 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2038 
2039 		if (hlist_nulls_empty(&hslot->head))
2040 			continue;
2041 
2042 		spin_lock_bh(&hslot->lock);
2043 		sk_nulls_for_each(sk, node, &hslot->head) {
2044 			if (!net_eq(sock_net(sk), net))
2045 				continue;
2046 			if (sk->sk_family == state->family)
2047 				goto found;
2048 		}
2049 		spin_unlock_bh(&hslot->lock);
2050 	}
2051 	sk = NULL;
2052 found:
2053 	return sk;
2054 }
2055 
udp_get_next(struct seq_file * seq,struct sock * sk)2056 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2057 {
2058 	struct udp_iter_state *state = seq->private;
2059 	struct net *net = seq_file_net(seq);
2060 
2061 	do {
2062 		sk = sk_nulls_next(sk);
2063 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2064 
2065 	if (!sk) {
2066 		if (state->bucket <= state->udp_table->mask)
2067 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2068 		return udp_get_first(seq, state->bucket + 1);
2069 	}
2070 	return sk;
2071 }
2072 
udp_get_idx(struct seq_file * seq,loff_t pos)2073 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2074 {
2075 	struct sock *sk = udp_get_first(seq, 0);
2076 
2077 	if (sk)
2078 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2079 			--pos;
2080 	return pos ? NULL : sk;
2081 }
2082 
udp_seq_start(struct seq_file * seq,loff_t * pos)2083 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2084 {
2085 	struct udp_iter_state *state = seq->private;
2086 	state->bucket = MAX_UDP_PORTS;
2087 
2088 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2089 }
2090 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2091 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2092 {
2093 	struct sock *sk;
2094 
2095 	if (v == SEQ_START_TOKEN)
2096 		sk = udp_get_idx(seq, 0);
2097 	else
2098 		sk = udp_get_next(seq, v);
2099 
2100 	++*pos;
2101 	return sk;
2102 }
2103 
udp_seq_stop(struct seq_file * seq,void * v)2104 static void udp_seq_stop(struct seq_file *seq, void *v)
2105 {
2106 	struct udp_iter_state *state = seq->private;
2107 
2108 	if (state->bucket <= state->udp_table->mask)
2109 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2110 }
2111 
udp_seq_open(struct inode * inode,struct file * file)2112 int udp_seq_open(struct inode *inode, struct file *file)
2113 {
2114 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2115 	struct udp_iter_state *s;
2116 	int err;
2117 
2118 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2119 			   sizeof(struct udp_iter_state));
2120 	if (err < 0)
2121 		return err;
2122 
2123 	s = ((struct seq_file *)file->private_data)->private;
2124 	s->family		= afinfo->family;
2125 	s->udp_table		= afinfo->udp_table;
2126 	return err;
2127 }
2128 EXPORT_SYMBOL(udp_seq_open);
2129 
2130 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2131 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2132 {
2133 	struct proc_dir_entry *p;
2134 	int rc = 0;
2135 
2136 	afinfo->seq_ops.start		= udp_seq_start;
2137 	afinfo->seq_ops.next		= udp_seq_next;
2138 	afinfo->seq_ops.stop		= udp_seq_stop;
2139 
2140 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2141 			     afinfo->seq_fops, afinfo);
2142 	if (!p)
2143 		rc = -ENOMEM;
2144 	return rc;
2145 }
2146 EXPORT_SYMBOL(udp_proc_register);
2147 
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2148 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2149 {
2150 	remove_proc_entry(afinfo->name, net->proc_net);
2151 }
2152 EXPORT_SYMBOL(udp_proc_unregister);
2153 
2154 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket,int * len)2155 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2156 		int bucket, int *len)
2157 {
2158 	struct inet_sock *inet = inet_sk(sp);
2159 	__be32 dest = inet->inet_daddr;
2160 	__be32 src  = inet->inet_rcv_saddr;
2161 	__u16 destp	  = ntohs(inet->inet_dport);
2162 	__u16 srcp	  = ntohs(inet->inet_sport);
2163 
2164 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2165 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2166 		bucket, src, srcp, dest, destp, sp->sk_state,
2167 		sk_wmem_alloc_get(sp),
2168 		sk_rmem_alloc_get(sp),
2169 		0, 0L, 0,
2170 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2171 		0, sock_i_ino(sp),
2172 		atomic_read(&sp->sk_refcnt), sp,
2173 		atomic_read(&sp->sk_drops), len);
2174 }
2175 
udp4_seq_show(struct seq_file * seq,void * v)2176 int udp4_seq_show(struct seq_file *seq, void *v)
2177 {
2178 	if (v == SEQ_START_TOKEN)
2179 		seq_printf(seq, "%-127s\n",
2180 			   "  sl  local_address rem_address   st tx_queue "
2181 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2182 			   "inode ref pointer drops");
2183 	else {
2184 		struct udp_iter_state *state = seq->private;
2185 		int len;
2186 
2187 		udp4_format_sock(v, seq, state->bucket, &len);
2188 		seq_printf(seq, "%*s\n", 127 - len, "");
2189 	}
2190 	return 0;
2191 }
2192 
2193 static const struct file_operations udp_afinfo_seq_fops = {
2194 	.owner    = THIS_MODULE,
2195 	.open     = udp_seq_open,
2196 	.read     = seq_read,
2197 	.llseek   = seq_lseek,
2198 	.release  = seq_release_net
2199 };
2200 
2201 /* ------------------------------------------------------------------------ */
2202 static struct udp_seq_afinfo udp4_seq_afinfo = {
2203 	.name		= "udp",
2204 	.family		= AF_INET,
2205 	.udp_table	= &udp_table,
2206 	.seq_fops	= &udp_afinfo_seq_fops,
2207 	.seq_ops	= {
2208 		.show		= udp4_seq_show,
2209 	},
2210 };
2211 
udp4_proc_init_net(struct net * net)2212 static int __net_init udp4_proc_init_net(struct net *net)
2213 {
2214 	return udp_proc_register(net, &udp4_seq_afinfo);
2215 }
2216 
udp4_proc_exit_net(struct net * net)2217 static void __net_exit udp4_proc_exit_net(struct net *net)
2218 {
2219 	udp_proc_unregister(net, &udp4_seq_afinfo);
2220 }
2221 
2222 static struct pernet_operations udp4_net_ops = {
2223 	.init = udp4_proc_init_net,
2224 	.exit = udp4_proc_exit_net,
2225 };
2226 
udp4_proc_init(void)2227 int __init udp4_proc_init(void)
2228 {
2229 	return register_pernet_subsys(&udp4_net_ops);
2230 }
2231 
udp4_proc_exit(void)2232 void udp4_proc_exit(void)
2233 {
2234 	unregister_pernet_subsys(&udp4_net_ops);
2235 }
2236 #endif /* CONFIG_PROC_FS */
2237 
2238 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2239 static int __init set_uhash_entries(char *str)
2240 {
2241 	ssize_t ret;
2242 
2243 	if (!str)
2244 		return 0;
2245 
2246 	ret = kstrtoul(str, 0, &uhash_entries);
2247 	if (ret)
2248 		return 0;
2249 
2250 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2251 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2252 	return 1;
2253 }
2254 __setup("uhash_entries=", set_uhash_entries);
2255 
udp_table_init(struct udp_table * table,const char * name)2256 void __init udp_table_init(struct udp_table *table, const char *name)
2257 {
2258 	unsigned int i;
2259 
2260 	table->hash = alloc_large_system_hash(name,
2261 					      2 * sizeof(struct udp_hslot),
2262 					      uhash_entries,
2263 					      21, /* one slot per 2 MB */
2264 					      0,
2265 					      &table->log,
2266 					      &table->mask,
2267 					      UDP_HTABLE_SIZE_MIN,
2268 					      64 * 1024);
2269 
2270 	table->hash2 = table->hash + (table->mask + 1);
2271 	for (i = 0; i <= table->mask; i++) {
2272 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2273 		table->hash[i].count = 0;
2274 		spin_lock_init(&table->hash[i].lock);
2275 	}
2276 	for (i = 0; i <= table->mask; i++) {
2277 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2278 		table->hash2[i].count = 0;
2279 		spin_lock_init(&table->hash2[i].lock);
2280 	}
2281 }
2282 
udp_init(void)2283 void __init udp_init(void)
2284 {
2285 	unsigned long limit;
2286 
2287 	udp_table_init(&udp_table, "UDP");
2288 	limit = nr_free_buffer_pages() / 8;
2289 	limit = max(limit, 128UL);
2290 	sysctl_udp_mem[0] = limit / 4 * 3;
2291 	sysctl_udp_mem[1] = limit;
2292 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2293 
2294 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2295 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2296 }
2297 
udp4_ufo_send_check(struct sk_buff * skb)2298 int udp4_ufo_send_check(struct sk_buff *skb)
2299 {
2300 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2301 		return -EINVAL;
2302 
2303 	if (likely(!skb->encapsulation)) {
2304 		const struct iphdr *iph;
2305 		struct udphdr *uh;
2306 
2307 		iph = ip_hdr(skb);
2308 		uh = udp_hdr(skb);
2309 
2310 		uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2311 				IPPROTO_UDP, 0);
2312 		skb->csum_start = skb_transport_header(skb) - skb->head;
2313 		skb->csum_offset = offsetof(struct udphdr, check);
2314 		skb->ip_summed = CHECKSUM_PARTIAL;
2315 	}
2316 	return 0;
2317 }
2318 
skb_udp_tunnel_segment(struct sk_buff * skb,netdev_features_t features)2319 static struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2320 		netdev_features_t features)
2321 {
2322 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2323 	int mac_len = skb->mac_len;
2324 	int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2325 	__be16 protocol = skb->protocol;
2326 	netdev_features_t enc_features;
2327 	int outer_hlen;
2328 
2329 	if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2330 		goto out;
2331 
2332 	skb->encapsulation = 0;
2333 	__skb_pull(skb, tnl_hlen);
2334 	skb_reset_mac_header(skb);
2335 	skb_set_network_header(skb, skb_inner_network_offset(skb));
2336 	skb->mac_len = skb_inner_network_offset(skb);
2337 	skb->protocol = htons(ETH_P_TEB);
2338 
2339 	/* segment inner packet. */
2340 	enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2341 	segs = skb_mac_gso_segment(skb, enc_features);
2342 	if (!segs || IS_ERR(segs))
2343 		goto out;
2344 
2345 	outer_hlen = skb_tnl_header_len(skb);
2346 	skb = segs;
2347 	do {
2348 		struct udphdr *uh;
2349 		int udp_offset = outer_hlen - tnl_hlen;
2350 
2351 		skb->mac_len = mac_len;
2352 
2353 		skb_push(skb, outer_hlen);
2354 		skb_reset_mac_header(skb);
2355 		skb_set_network_header(skb, mac_len);
2356 		skb_set_transport_header(skb, udp_offset);
2357 		uh = udp_hdr(skb);
2358 		uh->len = htons(skb->len - udp_offset);
2359 
2360 		/* csum segment if tunnel sets skb with csum. */
2361 		if (unlikely(uh->check)) {
2362 			struct iphdr *iph = ip_hdr(skb);
2363 
2364 			uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2365 						       skb->len - udp_offset,
2366 						       IPPROTO_UDP, 0);
2367 			uh->check = csum_fold(skb_checksum(skb, udp_offset,
2368 							   skb->len - udp_offset, 0));
2369 			if (uh->check == 0)
2370 				uh->check = CSUM_MANGLED_0;
2371 
2372 		}
2373 		skb->ip_summed = CHECKSUM_NONE;
2374 		skb->protocol = protocol;
2375 	} while ((skb = skb->next));
2376 out:
2377 	return segs;
2378 }
2379 
udp4_ufo_fragment(struct sk_buff * skb,netdev_features_t features)2380 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2381 	netdev_features_t features)
2382 {
2383 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2384 	unsigned int mss;
2385 	mss = skb_shinfo(skb)->gso_size;
2386 	if (unlikely(skb->len <= mss))
2387 		goto out;
2388 
2389 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2390 		/* Packet is from an untrusted source, reset gso_segs. */
2391 		int type = skb_shinfo(skb)->gso_type;
2392 
2393 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY |
2394 				      SKB_GSO_UDP_TUNNEL |
2395 				      SKB_GSO_GRE) ||
2396 			     !(type & (SKB_GSO_UDP))))
2397 			goto out;
2398 
2399 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2400 
2401 		segs = NULL;
2402 		goto out;
2403 	}
2404 
2405 	/* Fragment the skb. IP headers of the fragments are updated in
2406 	 * inet_gso_segment()
2407 	 */
2408 	if (skb->encapsulation && skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL)
2409 		segs = skb_udp_tunnel_segment(skb, features);
2410 	else {
2411 		int offset;
2412 		__wsum csum;
2413 
2414 		/* Do software UFO. Complete and fill in the UDP checksum as
2415 		 * HW cannot do checksum of UDP packets sent as multiple
2416 		 * IP fragments.
2417 		 */
2418 		offset = skb_checksum_start_offset(skb);
2419 		csum = skb_checksum(skb, offset, skb->len - offset, 0);
2420 		offset += skb->csum_offset;
2421 		*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2422 		skb->ip_summed = CHECKSUM_NONE;
2423 
2424 		segs = skb_segment(skb, features);
2425 	}
2426 out:
2427 	return segs;
2428 }
2429