1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <trace/events/skb.h>
112 #include "udp_impl.h"
113
114 struct udp_table udp_table __read_mostly;
115 EXPORT_SYMBOL(udp_table);
116
117 long sysctl_udp_mem[3] __read_mostly;
118 EXPORT_SYMBOL(sysctl_udp_mem);
119
120 int sysctl_udp_rmem_min __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_rmem_min);
122
123 int sysctl_udp_wmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_wmem_min);
125
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk,
136 int (*saddr_comp)(const struct sock *sk1,
137 const struct sock *sk2),
138 unsigned int log)
139 {
140 struct sock *sk2;
141 struct hlist_nulls_node *node;
142 kuid_t uid = sock_i_uid(sk);
143
144 sk_nulls_for_each(sk2, node, &hslot->head)
145 if (net_eq(sock_net(sk2), net) &&
146 sk2 != sk &&
147 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
148 (!sk2->sk_reuse || !sk->sk_reuse) &&
149 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
150 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
151 (!sk2->sk_reuseport || !sk->sk_reuseport ||
152 !uid_eq(uid, sock_i_uid(sk2))) &&
153 (*saddr_comp)(sk, sk2)) {
154 if (bitmap)
155 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
156 bitmap);
157 else
158 return 1;
159 }
160 return 0;
161 }
162
163 /*
164 * Note: we still hold spinlock of primary hash chain, so no other writer
165 * can insert/delete a socket with local_port == num
166 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2))167 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
168 struct udp_hslot *hslot2,
169 struct sock *sk,
170 int (*saddr_comp)(const struct sock *sk1,
171 const struct sock *sk2))
172 {
173 struct sock *sk2;
174 struct hlist_nulls_node *node;
175 kuid_t uid = sock_i_uid(sk);
176 int res = 0;
177
178 spin_lock(&hslot2->lock);
179 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
180 if (net_eq(sock_net(sk2), net) &&
181 sk2 != sk &&
182 (udp_sk(sk2)->udp_port_hash == num) &&
183 (!sk2->sk_reuse || !sk->sk_reuse) &&
184 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
185 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
186 (!sk2->sk_reuseport || !sk->sk_reuseport ||
187 !uid_eq(uid, sock_i_uid(sk2))) &&
188 (*saddr_comp)(sk, sk2)) {
189 res = 1;
190 break;
191 }
192 spin_unlock(&hslot2->lock);
193 return res;
194 }
195
196 /**
197 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
198 *
199 * @sk: socket struct in question
200 * @snum: port number to look up
201 * @saddr_comp: AF-dependent comparison of bound local IP addresses
202 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
203 * with NULL address
204 */
udp_lib_get_port(struct sock * sk,unsigned short snum,int (* saddr_comp)(const struct sock * sk1,const struct sock * sk2),unsigned int hash2_nulladdr)205 int udp_lib_get_port(struct sock *sk, unsigned short snum,
206 int (*saddr_comp)(const struct sock *sk1,
207 const struct sock *sk2),
208 unsigned int hash2_nulladdr)
209 {
210 struct udp_hslot *hslot, *hslot2;
211 struct udp_table *udptable = sk->sk_prot->h.udp_table;
212 int error = 1;
213 struct net *net = sock_net(sk);
214
215 if (!snum) {
216 int low, high, remaining;
217 unsigned int rand;
218 unsigned short first, last;
219 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
220
221 inet_get_local_port_range(&low, &high);
222 remaining = (high - low) + 1;
223
224 rand = net_random();
225 first = (((u64)rand * remaining) >> 32) + low;
226 /*
227 * force rand to be an odd multiple of UDP_HTABLE_SIZE
228 */
229 rand = (rand | 1) * (udptable->mask + 1);
230 last = first + udptable->mask + 1;
231 do {
232 hslot = udp_hashslot(udptable, net, first);
233 bitmap_zero(bitmap, PORTS_PER_CHAIN);
234 spin_lock_bh(&hslot->lock);
235 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
236 saddr_comp, udptable->log);
237
238 snum = first;
239 /*
240 * Iterate on all possible values of snum for this hash.
241 * Using steps of an odd multiple of UDP_HTABLE_SIZE
242 * give us randomization and full range coverage.
243 */
244 do {
245 if (low <= snum && snum <= high &&
246 !test_bit(snum >> udptable->log, bitmap) &&
247 !inet_is_reserved_local_port(snum))
248 goto found;
249 snum += rand;
250 } while (snum != first);
251 spin_unlock_bh(&hslot->lock);
252 } while (++first != last);
253 goto fail;
254 } else {
255 hslot = udp_hashslot(udptable, net, snum);
256 spin_lock_bh(&hslot->lock);
257 if (hslot->count > 10) {
258 int exist;
259 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
260
261 slot2 &= udptable->mask;
262 hash2_nulladdr &= udptable->mask;
263
264 hslot2 = udp_hashslot2(udptable, slot2);
265 if (hslot->count < hslot2->count)
266 goto scan_primary_hash;
267
268 exist = udp_lib_lport_inuse2(net, snum, hslot2,
269 sk, saddr_comp);
270 if (!exist && (hash2_nulladdr != slot2)) {
271 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
272 exist = udp_lib_lport_inuse2(net, snum, hslot2,
273 sk, saddr_comp);
274 }
275 if (exist)
276 goto fail_unlock;
277 else
278 goto found;
279 }
280 scan_primary_hash:
281 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
282 saddr_comp, 0))
283 goto fail_unlock;
284 }
285 found:
286 inet_sk(sk)->inet_num = snum;
287 udp_sk(sk)->udp_port_hash = snum;
288 udp_sk(sk)->udp_portaddr_hash ^= snum;
289 if (sk_unhashed(sk)) {
290 sk_nulls_add_node_rcu(sk, &hslot->head);
291 hslot->count++;
292 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
293
294 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
295 spin_lock(&hslot2->lock);
296 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
297 &hslot2->head);
298 hslot2->count++;
299 spin_unlock(&hslot2->lock);
300 }
301 error = 0;
302 fail_unlock:
303 spin_unlock_bh(&hslot->lock);
304 fail:
305 return error;
306 }
307 EXPORT_SYMBOL(udp_lib_get_port);
308
ipv4_rcv_saddr_equal(const struct sock * sk1,const struct sock * sk2)309 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
310 {
311 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
312
313 return (!ipv6_only_sock(sk2) &&
314 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
315 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
316 }
317
udp4_portaddr_hash(struct net * net,__be32 saddr,unsigned int port)318 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
319 unsigned int port)
320 {
321 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
322 }
323
udp_v4_get_port(struct sock * sk,unsigned short snum)324 int udp_v4_get_port(struct sock *sk, unsigned short snum)
325 {
326 unsigned int hash2_nulladdr =
327 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
328 unsigned int hash2_partial =
329 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
330
331 /* precompute partial secondary hash */
332 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
333 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
334 }
335
compute_score(struct sock * sk,struct net * net,__be32 saddr,unsigned short hnum,__be16 sport,__be32 daddr,__be16 dport,int dif)336 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
337 unsigned short hnum,
338 __be16 sport, __be32 daddr, __be16 dport, int dif)
339 {
340 int score = -1;
341
342 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
343 !ipv6_only_sock(sk)) {
344 struct inet_sock *inet = inet_sk(sk);
345
346 score = (sk->sk_family == PF_INET ? 2 : 1);
347 if (inet->inet_rcv_saddr) {
348 if (inet->inet_rcv_saddr != daddr)
349 return -1;
350 score += 4;
351 }
352 if (inet->inet_daddr) {
353 if (inet->inet_daddr != saddr)
354 return -1;
355 score += 4;
356 }
357 if (inet->inet_dport) {
358 if (inet->inet_dport != sport)
359 return -1;
360 score += 4;
361 }
362 if (sk->sk_bound_dev_if) {
363 if (sk->sk_bound_dev_if != dif)
364 return -1;
365 score += 4;
366 }
367 }
368 return score;
369 }
370
371 /*
372 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
373 */
compute_score2(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif)374 static inline int compute_score2(struct sock *sk, struct net *net,
375 __be32 saddr, __be16 sport,
376 __be32 daddr, unsigned int hnum, int dif)
377 {
378 int score = -1;
379
380 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
381 struct inet_sock *inet = inet_sk(sk);
382
383 if (inet->inet_rcv_saddr != daddr)
384 return -1;
385 if (inet->inet_num != hnum)
386 return -1;
387
388 score = (sk->sk_family == PF_INET ? 2 : 1);
389 if (inet->inet_daddr) {
390 if (inet->inet_daddr != saddr)
391 return -1;
392 score += 4;
393 }
394 if (inet->inet_dport) {
395 if (inet->inet_dport != sport)
396 return -1;
397 score += 4;
398 }
399 if (sk->sk_bound_dev_if) {
400 if (sk->sk_bound_dev_if != dif)
401 return -1;
402 score += 4;
403 }
404 }
405 return score;
406 }
407
408
409 /* called with read_rcu_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,struct udp_hslot * hslot2,unsigned int slot2)410 static struct sock *udp4_lib_lookup2(struct net *net,
411 __be32 saddr, __be16 sport,
412 __be32 daddr, unsigned int hnum, int dif,
413 struct udp_hslot *hslot2, unsigned int slot2)
414 {
415 struct sock *sk, *result;
416 struct hlist_nulls_node *node;
417 int score, badness, matches = 0, reuseport = 0;
418 u32 hash = 0;
419
420 begin:
421 result = NULL;
422 badness = 0;
423 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
424 score = compute_score2(sk, net, saddr, sport,
425 daddr, hnum, dif);
426 if (score > badness) {
427 result = sk;
428 badness = score;
429 reuseport = sk->sk_reuseport;
430 if (reuseport) {
431 hash = inet_ehashfn(net, daddr, hnum,
432 saddr, htons(sport));
433 matches = 1;
434 }
435 } else if (score == badness && reuseport) {
436 matches++;
437 if (((u64)hash * matches) >> 32 == 0)
438 result = sk;
439 hash = next_pseudo_random32(hash);
440 }
441 }
442 /*
443 * if the nulls value we got at the end of this lookup is
444 * not the expected one, we must restart lookup.
445 * We probably met an item that was moved to another chain.
446 */
447 if (get_nulls_value(node) != slot2)
448 goto begin;
449 if (result) {
450 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
451 result = NULL;
452 else if (unlikely(compute_score2(result, net, saddr, sport,
453 daddr, hnum, dif) < badness)) {
454 sock_put(result);
455 goto begin;
456 }
457 }
458 return result;
459 }
460
461 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
462 * harder than this. -DaveM
463 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,struct udp_table * udptable)464 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
465 __be16 sport, __be32 daddr, __be16 dport,
466 int dif, struct udp_table *udptable)
467 {
468 struct sock *sk, *result;
469 struct hlist_nulls_node *node;
470 unsigned short hnum = ntohs(dport);
471 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
472 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
473 int score, badness, matches = 0, reuseport = 0;
474 u32 hash = 0;
475
476 rcu_read_lock();
477 if (hslot->count > 10) {
478 hash2 = udp4_portaddr_hash(net, daddr, hnum);
479 slot2 = hash2 & udptable->mask;
480 hslot2 = &udptable->hash2[slot2];
481 if (hslot->count < hslot2->count)
482 goto begin;
483
484 result = udp4_lib_lookup2(net, saddr, sport,
485 daddr, hnum, dif,
486 hslot2, slot2);
487 if (!result) {
488 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
489 slot2 = hash2 & udptable->mask;
490 hslot2 = &udptable->hash2[slot2];
491 if (hslot->count < hslot2->count)
492 goto begin;
493
494 result = udp4_lib_lookup2(net, saddr, sport,
495 htonl(INADDR_ANY), hnum, dif,
496 hslot2, slot2);
497 }
498 rcu_read_unlock();
499 return result;
500 }
501 begin:
502 result = NULL;
503 badness = 0;
504 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
505 score = compute_score(sk, net, saddr, hnum, sport,
506 daddr, dport, dif);
507 if (score > badness) {
508 result = sk;
509 badness = score;
510 reuseport = sk->sk_reuseport;
511 if (reuseport) {
512 hash = inet_ehashfn(net, daddr, hnum,
513 saddr, htons(sport));
514 matches = 1;
515 }
516 } else if (score == badness && reuseport) {
517 matches++;
518 if (((u64)hash * matches) >> 32 == 0)
519 result = sk;
520 hash = next_pseudo_random32(hash);
521 }
522 }
523 /*
524 * if the nulls value we got at the end of this lookup is
525 * not the expected one, we must restart lookup.
526 * We probably met an item that was moved to another chain.
527 */
528 if (get_nulls_value(node) != slot)
529 goto begin;
530
531 if (result) {
532 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
533 result = NULL;
534 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
535 daddr, dport, dif) < badness)) {
536 sock_put(result);
537 goto begin;
538 }
539 }
540 rcu_read_unlock();
541 return result;
542 }
543 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
544
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)545 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
546 __be16 sport, __be16 dport,
547 struct udp_table *udptable)
548 {
549 struct sock *sk;
550 const struct iphdr *iph = ip_hdr(skb);
551
552 if (unlikely(sk = skb_steal_sock(skb)))
553 return sk;
554 else
555 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
556 iph->daddr, dport, inet_iif(skb),
557 udptable);
558 }
559
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)560 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
561 __be32 daddr, __be16 dport, int dif)
562 {
563 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
564 }
565 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
566
udp_v4_mcast_next(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif)567 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
568 __be16 loc_port, __be32 loc_addr,
569 __be16 rmt_port, __be32 rmt_addr,
570 int dif)
571 {
572 struct hlist_nulls_node *node;
573 struct sock *s = sk;
574 unsigned short hnum = ntohs(loc_port);
575
576 sk_nulls_for_each_from(s, node) {
577 struct inet_sock *inet = inet_sk(s);
578
579 if (!net_eq(sock_net(s), net) ||
580 udp_sk(s)->udp_port_hash != hnum ||
581 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
582 (inet->inet_dport != rmt_port && inet->inet_dport) ||
583 (inet->inet_rcv_saddr &&
584 inet->inet_rcv_saddr != loc_addr) ||
585 ipv6_only_sock(s) ||
586 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
587 continue;
588 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
589 continue;
590 goto found;
591 }
592 s = NULL;
593 found:
594 return s;
595 }
596
597 /*
598 * This routine is called by the ICMP module when it gets some
599 * sort of error condition. If err < 0 then the socket should
600 * be closed and the error returned to the user. If err > 0
601 * it's just the icmp type << 8 | icmp code.
602 * Header points to the ip header of the error packet. We move
603 * on past this. Then (as it used to claim before adjustment)
604 * header points to the first 8 bytes of the udp header. We need
605 * to find the appropriate port.
606 */
607
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)608 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
609 {
610 struct inet_sock *inet;
611 const struct iphdr *iph = (const struct iphdr *)skb->data;
612 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
613 const int type = icmp_hdr(skb)->type;
614 const int code = icmp_hdr(skb)->code;
615 struct sock *sk;
616 int harderr;
617 int err;
618 struct net *net = dev_net(skb->dev);
619
620 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
621 iph->saddr, uh->source, skb->dev->ifindex, udptable);
622 if (sk == NULL) {
623 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
624 return; /* No socket for error */
625 }
626
627 err = 0;
628 harderr = 0;
629 inet = inet_sk(sk);
630
631 switch (type) {
632 default:
633 case ICMP_TIME_EXCEEDED:
634 err = EHOSTUNREACH;
635 break;
636 case ICMP_SOURCE_QUENCH:
637 goto out;
638 case ICMP_PARAMETERPROB:
639 err = EPROTO;
640 harderr = 1;
641 break;
642 case ICMP_DEST_UNREACH:
643 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
644 ipv4_sk_update_pmtu(skb, sk, info);
645 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
646 err = EMSGSIZE;
647 harderr = 1;
648 break;
649 }
650 goto out;
651 }
652 err = EHOSTUNREACH;
653 if (code <= NR_ICMP_UNREACH) {
654 harderr = icmp_err_convert[code].fatal;
655 err = icmp_err_convert[code].errno;
656 }
657 break;
658 case ICMP_REDIRECT:
659 ipv4_sk_redirect(skb, sk);
660 break;
661 }
662
663 /*
664 * RFC1122: OK. Passes ICMP errors back to application, as per
665 * 4.1.3.3.
666 */
667 if (!inet->recverr) {
668 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
669 goto out;
670 } else
671 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
672
673 sk->sk_err = err;
674 sk->sk_error_report(sk);
675 out:
676 sock_put(sk);
677 }
678
udp_err(struct sk_buff * skb,u32 info)679 void udp_err(struct sk_buff *skb, u32 info)
680 {
681 __udp4_lib_err(skb, info, &udp_table);
682 }
683
684 /*
685 * Throw away all pending data and cancel the corking. Socket is locked.
686 */
udp_flush_pending_frames(struct sock * sk)687 void udp_flush_pending_frames(struct sock *sk)
688 {
689 struct udp_sock *up = udp_sk(sk);
690
691 if (up->pending) {
692 up->len = 0;
693 up->pending = 0;
694 ip_flush_pending_frames(sk);
695 }
696 }
697 EXPORT_SYMBOL(udp_flush_pending_frames);
698
699 /**
700 * udp4_hwcsum - handle outgoing HW checksumming
701 * @skb: sk_buff containing the filled-in UDP header
702 * (checksum field must be zeroed out)
703 * @src: source IP address
704 * @dst: destination IP address
705 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)706 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
707 {
708 struct udphdr *uh = udp_hdr(skb);
709 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
710 int offset = skb_transport_offset(skb);
711 int len = skb->len - offset;
712 int hlen = len;
713 __wsum csum = 0;
714
715 if (!frags) {
716 /*
717 * Only one fragment on the socket.
718 */
719 skb->csum_start = skb_transport_header(skb) - skb->head;
720 skb->csum_offset = offsetof(struct udphdr, check);
721 uh->check = ~csum_tcpudp_magic(src, dst, len,
722 IPPROTO_UDP, 0);
723 } else {
724 /*
725 * HW-checksum won't work as there are two or more
726 * fragments on the socket so that all csums of sk_buffs
727 * should be together
728 */
729 do {
730 csum = csum_add(csum, frags->csum);
731 hlen -= frags->len;
732 } while ((frags = frags->next));
733
734 csum = skb_checksum(skb, offset, hlen, csum);
735 skb->ip_summed = CHECKSUM_NONE;
736
737 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
738 if (uh->check == 0)
739 uh->check = CSUM_MANGLED_0;
740 }
741 }
742
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4)743 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
744 {
745 struct sock *sk = skb->sk;
746 struct inet_sock *inet = inet_sk(sk);
747 struct udphdr *uh;
748 int err = 0;
749 int is_udplite = IS_UDPLITE(sk);
750 int offset = skb_transport_offset(skb);
751 int len = skb->len - offset;
752 __wsum csum = 0;
753
754 /*
755 * Create a UDP header
756 */
757 uh = udp_hdr(skb);
758 uh->source = inet->inet_sport;
759 uh->dest = fl4->fl4_dport;
760 uh->len = htons(len);
761 uh->check = 0;
762
763 if (is_udplite) /* UDP-Lite */
764 csum = udplite_csum(skb);
765
766 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
767
768 skb->ip_summed = CHECKSUM_NONE;
769 goto send;
770
771 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
772
773 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
774 goto send;
775
776 } else
777 csum = udp_csum(skb);
778
779 /* add protocol-dependent pseudo-header */
780 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
781 sk->sk_protocol, csum);
782 if (uh->check == 0)
783 uh->check = CSUM_MANGLED_0;
784
785 send:
786 err = ip_send_skb(sock_net(sk), skb);
787 if (err) {
788 if (err == -ENOBUFS && !inet->recverr) {
789 UDP_INC_STATS_USER(sock_net(sk),
790 UDP_MIB_SNDBUFERRORS, is_udplite);
791 err = 0;
792 }
793 } else
794 UDP_INC_STATS_USER(sock_net(sk),
795 UDP_MIB_OUTDATAGRAMS, is_udplite);
796 return err;
797 }
798
799 /*
800 * Push out all pending data as one UDP datagram. Socket is locked.
801 */
udp_push_pending_frames(struct sock * sk)802 static int udp_push_pending_frames(struct sock *sk)
803 {
804 struct udp_sock *up = udp_sk(sk);
805 struct inet_sock *inet = inet_sk(sk);
806 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
807 struct sk_buff *skb;
808 int err = 0;
809
810 skb = ip_finish_skb(sk, fl4);
811 if (!skb)
812 goto out;
813
814 err = udp_send_skb(skb, fl4);
815
816 out:
817 up->len = 0;
818 up->pending = 0;
819 return err;
820 }
821
udp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len)822 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
823 size_t len)
824 {
825 struct inet_sock *inet = inet_sk(sk);
826 struct udp_sock *up = udp_sk(sk);
827 struct flowi4 fl4_stack;
828 struct flowi4 *fl4;
829 int ulen = len;
830 struct ipcm_cookie ipc;
831 struct rtable *rt = NULL;
832 int free = 0;
833 int connected = 0;
834 __be32 daddr, faddr, saddr;
835 __be16 dport;
836 u8 tos;
837 int err, is_udplite = IS_UDPLITE(sk);
838 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
839 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
840 struct sk_buff *skb;
841 struct ip_options_data opt_copy;
842
843 if (len > 0xFFFF)
844 return -EMSGSIZE;
845
846 /*
847 * Check the flags.
848 */
849
850 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
851 return -EOPNOTSUPP;
852
853 ipc.opt = NULL;
854 ipc.tx_flags = 0;
855
856 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
857
858 fl4 = &inet->cork.fl.u.ip4;
859 if (up->pending) {
860 /*
861 * There are pending frames.
862 * The socket lock must be held while it's corked.
863 */
864 lock_sock(sk);
865 if (likely(up->pending)) {
866 if (unlikely(up->pending != AF_INET)) {
867 release_sock(sk);
868 return -EINVAL;
869 }
870 goto do_append_data;
871 }
872 release_sock(sk);
873 }
874 ulen += sizeof(struct udphdr);
875
876 /*
877 * Get and verify the address.
878 */
879 if (msg->msg_name) {
880 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
881 if (msg->msg_namelen < sizeof(*usin))
882 return -EINVAL;
883 if (usin->sin_family != AF_INET) {
884 if (usin->sin_family != AF_UNSPEC)
885 return -EAFNOSUPPORT;
886 }
887
888 daddr = usin->sin_addr.s_addr;
889 dport = usin->sin_port;
890 if (dport == 0)
891 return -EINVAL;
892 } else {
893 if (sk->sk_state != TCP_ESTABLISHED)
894 return -EDESTADDRREQ;
895 daddr = inet->inet_daddr;
896 dport = inet->inet_dport;
897 /* Open fast path for connected socket.
898 Route will not be used, if at least one option is set.
899 */
900 connected = 1;
901 }
902 ipc.addr = inet->inet_saddr;
903
904 ipc.oif = sk->sk_bound_dev_if;
905
906 sock_tx_timestamp(sk, &ipc.tx_flags);
907
908 if (msg->msg_controllen) {
909 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
910 if (err)
911 return err;
912 if (ipc.opt)
913 free = 1;
914 connected = 0;
915 }
916 if (!ipc.opt) {
917 struct ip_options_rcu *inet_opt;
918
919 rcu_read_lock();
920 inet_opt = rcu_dereference(inet->inet_opt);
921 if (inet_opt) {
922 memcpy(&opt_copy, inet_opt,
923 sizeof(*inet_opt) + inet_opt->opt.optlen);
924 ipc.opt = &opt_copy.opt;
925 }
926 rcu_read_unlock();
927 }
928
929 saddr = ipc.addr;
930 ipc.addr = faddr = daddr;
931
932 if (ipc.opt && ipc.opt->opt.srr) {
933 if (!daddr)
934 return -EINVAL;
935 faddr = ipc.opt->opt.faddr;
936 connected = 0;
937 }
938 tos = RT_TOS(inet->tos);
939 if (sock_flag(sk, SOCK_LOCALROUTE) ||
940 (msg->msg_flags & MSG_DONTROUTE) ||
941 (ipc.opt && ipc.opt->opt.is_strictroute)) {
942 tos |= RTO_ONLINK;
943 connected = 0;
944 }
945
946 if (ipv4_is_multicast(daddr)) {
947 if (!ipc.oif)
948 ipc.oif = inet->mc_index;
949 if (!saddr)
950 saddr = inet->mc_addr;
951 connected = 0;
952 } else if (!ipc.oif)
953 ipc.oif = inet->uc_index;
954
955 if (connected)
956 rt = (struct rtable *)sk_dst_check(sk, 0);
957
958 if (rt == NULL) {
959 struct net *net = sock_net(sk);
960
961 fl4 = &fl4_stack;
962 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
963 RT_SCOPE_UNIVERSE, sk->sk_protocol,
964 inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
965 faddr, saddr, dport, inet->inet_sport,
966 sk->sk_uid);
967
968 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
969 rt = ip_route_output_flow(net, fl4, sk);
970 if (IS_ERR(rt)) {
971 err = PTR_ERR(rt);
972 rt = NULL;
973 if (err == -ENETUNREACH)
974 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
975 goto out;
976 }
977
978 err = -EACCES;
979 if ((rt->rt_flags & RTCF_BROADCAST) &&
980 !sock_flag(sk, SOCK_BROADCAST))
981 goto out;
982 if (connected)
983 sk_dst_set(sk, dst_clone(&rt->dst));
984 }
985
986 if (msg->msg_flags&MSG_CONFIRM)
987 goto do_confirm;
988 back_from_confirm:
989
990 saddr = fl4->saddr;
991 if (!ipc.addr)
992 daddr = ipc.addr = fl4->daddr;
993
994 /* Lockless fast path for the non-corking case. */
995 if (!corkreq) {
996 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
997 sizeof(struct udphdr), &ipc, &rt,
998 msg->msg_flags);
999 err = PTR_ERR(skb);
1000 if (!IS_ERR_OR_NULL(skb))
1001 err = udp_send_skb(skb, fl4);
1002 goto out;
1003 }
1004
1005 lock_sock(sk);
1006 if (unlikely(up->pending)) {
1007 /* The socket is already corked while preparing it. */
1008 /* ... which is an evident application bug. --ANK */
1009 release_sock(sk);
1010
1011 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1012 err = -EINVAL;
1013 goto out;
1014 }
1015 /*
1016 * Now cork the socket to pend data.
1017 */
1018 fl4 = &inet->cork.fl.u.ip4;
1019 fl4->daddr = daddr;
1020 fl4->saddr = saddr;
1021 fl4->fl4_dport = dport;
1022 fl4->fl4_sport = inet->inet_sport;
1023 up->pending = AF_INET;
1024
1025 do_append_data:
1026 up->len += ulen;
1027 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1028 sizeof(struct udphdr), &ipc, &rt,
1029 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1030 if (err)
1031 udp_flush_pending_frames(sk);
1032 else if (!corkreq)
1033 err = udp_push_pending_frames(sk);
1034 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1035 up->pending = 0;
1036 release_sock(sk);
1037
1038 out:
1039 ip_rt_put(rt);
1040 if (free)
1041 kfree(ipc.opt);
1042 if (!err)
1043 return len;
1044 /*
1045 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1046 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1047 * we don't have a good statistic (IpOutDiscards but it can be too many
1048 * things). We could add another new stat but at least for now that
1049 * seems like overkill.
1050 */
1051 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1052 UDP_INC_STATS_USER(sock_net(sk),
1053 UDP_MIB_SNDBUFERRORS, is_udplite);
1054 }
1055 return err;
1056
1057 do_confirm:
1058 dst_confirm(&rt->dst);
1059 if (!(msg->msg_flags&MSG_PROBE) || len)
1060 goto back_from_confirm;
1061 err = 0;
1062 goto out;
1063 }
1064 EXPORT_SYMBOL(udp_sendmsg);
1065
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1066 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1067 size_t size, int flags)
1068 {
1069 struct inet_sock *inet = inet_sk(sk);
1070 struct udp_sock *up = udp_sk(sk);
1071 int ret;
1072
1073 if (!up->pending) {
1074 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1075
1076 /* Call udp_sendmsg to specify destination address which
1077 * sendpage interface can't pass.
1078 * This will succeed only when the socket is connected.
1079 */
1080 ret = udp_sendmsg(NULL, sk, &msg, 0);
1081 if (ret < 0)
1082 return ret;
1083 }
1084
1085 lock_sock(sk);
1086
1087 if (unlikely(!up->pending)) {
1088 release_sock(sk);
1089
1090 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1091 return -EINVAL;
1092 }
1093
1094 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1095 page, offset, size, flags);
1096 if (ret == -EOPNOTSUPP) {
1097 release_sock(sk);
1098 return sock_no_sendpage(sk->sk_socket, page, offset,
1099 size, flags);
1100 }
1101 if (ret < 0) {
1102 udp_flush_pending_frames(sk);
1103 goto out;
1104 }
1105
1106 up->len += size;
1107 if (!(up->corkflag || (flags&MSG_MORE)))
1108 ret = udp_push_pending_frames(sk);
1109 if (!ret)
1110 ret = size;
1111 out:
1112 release_sock(sk);
1113 return ret;
1114 }
1115
1116
1117 /**
1118 * first_packet_length - return length of first packet in receive queue
1119 * @sk: socket
1120 *
1121 * Drops all bad checksum frames, until a valid one is found.
1122 * Returns the length of found skb, or 0 if none is found.
1123 */
first_packet_length(struct sock * sk)1124 static unsigned int first_packet_length(struct sock *sk)
1125 {
1126 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1127 struct sk_buff *skb;
1128 unsigned int res;
1129
1130 __skb_queue_head_init(&list_kill);
1131
1132 spin_lock_bh(&rcvq->lock);
1133 while ((skb = skb_peek(rcvq)) != NULL &&
1134 udp_lib_checksum_complete(skb)) {
1135 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1136 IS_UDPLITE(sk));
1137 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1138 IS_UDPLITE(sk));
1139 atomic_inc(&sk->sk_drops);
1140 __skb_unlink(skb, rcvq);
1141 __skb_queue_tail(&list_kill, skb);
1142 }
1143 res = skb ? skb->len : 0;
1144 spin_unlock_bh(&rcvq->lock);
1145
1146 if (!skb_queue_empty(&list_kill)) {
1147 bool slow = lock_sock_fast(sk);
1148
1149 __skb_queue_purge(&list_kill);
1150 sk_mem_reclaim_partial(sk);
1151 unlock_sock_fast(sk, slow);
1152 }
1153 return res;
1154 }
1155
1156 /*
1157 * IOCTL requests applicable to the UDP protocol
1158 */
1159
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1160 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1161 {
1162 switch (cmd) {
1163 case SIOCOUTQ:
1164 {
1165 int amount = sk_wmem_alloc_get(sk);
1166
1167 return put_user(amount, (int __user *)arg);
1168 }
1169
1170 case SIOCINQ:
1171 {
1172 unsigned int amount = first_packet_length(sk);
1173
1174 if (amount)
1175 /*
1176 * We will only return the amount
1177 * of this packet since that is all
1178 * that will be read.
1179 */
1180 amount -= sizeof(struct udphdr);
1181
1182 return put_user(amount, (int __user *)arg);
1183 }
1184
1185 default:
1186 return -ENOIOCTLCMD;
1187 }
1188
1189 return 0;
1190 }
1191 EXPORT_SYMBOL(udp_ioctl);
1192
1193 /*
1194 * This should be easy, if there is something there we
1195 * return it, otherwise we block.
1196 */
1197
udp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1198 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1199 size_t len, int noblock, int flags, int *addr_len)
1200 {
1201 struct inet_sock *inet = inet_sk(sk);
1202 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1203 struct sk_buff *skb;
1204 unsigned int ulen, copied;
1205 int peeked, off = 0;
1206 int err;
1207 int is_udplite = IS_UDPLITE(sk);
1208 bool checksum_valid = false;
1209 bool slow;
1210
1211 if (flags & MSG_ERRQUEUE)
1212 return ip_recv_error(sk, msg, len, addr_len);
1213
1214 try_again:
1215 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1216 &peeked, &off, &err);
1217 if (!skb)
1218 goto out;
1219
1220 ulen = skb->len - sizeof(struct udphdr);
1221 copied = len;
1222 if (copied > ulen)
1223 copied = ulen;
1224 else if (copied < ulen)
1225 msg->msg_flags |= MSG_TRUNC;
1226
1227 /*
1228 * If checksum is needed at all, try to do it while copying the
1229 * data. If the data is truncated, or if we only want a partial
1230 * coverage checksum (UDP-Lite), do it before the copy.
1231 */
1232
1233 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1234 checksum_valid = !udp_lib_checksum_complete(skb);
1235 if (!checksum_valid)
1236 goto csum_copy_err;
1237 }
1238
1239 if (checksum_valid || skb_csum_unnecessary(skb))
1240 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1241 msg->msg_iov, copied);
1242 else {
1243 err = skb_copy_and_csum_datagram_iovec(skb,
1244 sizeof(struct udphdr),
1245 msg->msg_iov);
1246
1247 if (err == -EINVAL)
1248 goto csum_copy_err;
1249 }
1250
1251 if (unlikely(err)) {
1252 trace_kfree_skb(skb, udp_recvmsg);
1253 if (!peeked) {
1254 atomic_inc(&sk->sk_drops);
1255 UDP_INC_STATS_USER(sock_net(sk),
1256 UDP_MIB_INERRORS, is_udplite);
1257 }
1258 goto out_free;
1259 }
1260
1261 if (!peeked)
1262 UDP_INC_STATS_USER(sock_net(sk),
1263 UDP_MIB_INDATAGRAMS, is_udplite);
1264
1265 sock_recv_ts_and_drops(msg, sk, skb);
1266
1267 /* Copy the address. */
1268 if (sin) {
1269 sin->sin_family = AF_INET;
1270 sin->sin_port = udp_hdr(skb)->source;
1271 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1272 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1273 *addr_len = sizeof(*sin);
1274 }
1275 if (inet->cmsg_flags)
1276 ip_cmsg_recv(msg, skb);
1277
1278 err = copied;
1279 if (flags & MSG_TRUNC)
1280 err = ulen;
1281
1282 out_free:
1283 skb_free_datagram_locked(sk, skb);
1284 out:
1285 return err;
1286
1287 csum_copy_err:
1288 slow = lock_sock_fast(sk);
1289 if (!skb_kill_datagram(sk, skb, flags)) {
1290 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1291 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1292 }
1293 unlock_sock_fast(sk, slow);
1294
1295 /* starting over for a new packet, but check if we need to yield */
1296 cond_resched();
1297 msg->msg_flags &= ~MSG_TRUNC;
1298 goto try_again;
1299 }
1300
1301
udp_disconnect(struct sock * sk,int flags)1302 int udp_disconnect(struct sock *sk, int flags)
1303 {
1304 struct inet_sock *inet = inet_sk(sk);
1305 /*
1306 * 1003.1g - break association.
1307 */
1308
1309 sk->sk_state = TCP_CLOSE;
1310 inet->inet_daddr = 0;
1311 inet->inet_dport = 0;
1312 sock_rps_reset_rxhash(sk);
1313 sk->sk_bound_dev_if = 0;
1314 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1315 inet_reset_saddr(sk);
1316
1317 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1318 sk->sk_prot->unhash(sk);
1319 inet->inet_sport = 0;
1320 }
1321 sk_dst_reset(sk);
1322 return 0;
1323 }
1324 EXPORT_SYMBOL(udp_disconnect);
1325
udp_lib_unhash(struct sock * sk)1326 void udp_lib_unhash(struct sock *sk)
1327 {
1328 if (sk_hashed(sk)) {
1329 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1330 struct udp_hslot *hslot, *hslot2;
1331
1332 hslot = udp_hashslot(udptable, sock_net(sk),
1333 udp_sk(sk)->udp_port_hash);
1334 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1335
1336 spin_lock_bh(&hslot->lock);
1337 if (sk_nulls_del_node_init_rcu(sk)) {
1338 hslot->count--;
1339 inet_sk(sk)->inet_num = 0;
1340 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1341
1342 spin_lock(&hslot2->lock);
1343 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1344 hslot2->count--;
1345 spin_unlock(&hslot2->lock);
1346 }
1347 spin_unlock_bh(&hslot->lock);
1348 }
1349 }
1350 EXPORT_SYMBOL(udp_lib_unhash);
1351
1352 /*
1353 * inet_rcv_saddr was changed, we must rehash secondary hash
1354 */
udp_lib_rehash(struct sock * sk,u16 newhash)1355 void udp_lib_rehash(struct sock *sk, u16 newhash)
1356 {
1357 if (sk_hashed(sk)) {
1358 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1359 struct udp_hslot *hslot, *hslot2, *nhslot2;
1360
1361 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1362 nhslot2 = udp_hashslot2(udptable, newhash);
1363 udp_sk(sk)->udp_portaddr_hash = newhash;
1364 if (hslot2 != nhslot2) {
1365 hslot = udp_hashslot(udptable, sock_net(sk),
1366 udp_sk(sk)->udp_port_hash);
1367 /* we must lock primary chain too */
1368 spin_lock_bh(&hslot->lock);
1369
1370 spin_lock(&hslot2->lock);
1371 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1372 hslot2->count--;
1373 spin_unlock(&hslot2->lock);
1374
1375 spin_lock(&nhslot2->lock);
1376 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1377 &nhslot2->head);
1378 nhslot2->count++;
1379 spin_unlock(&nhslot2->lock);
1380
1381 spin_unlock_bh(&hslot->lock);
1382 }
1383 }
1384 }
1385 EXPORT_SYMBOL(udp_lib_rehash);
1386
udp_v4_rehash(struct sock * sk)1387 static void udp_v4_rehash(struct sock *sk)
1388 {
1389 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1390 inet_sk(sk)->inet_rcv_saddr,
1391 inet_sk(sk)->inet_num);
1392 udp_lib_rehash(sk, new_hash);
1393 }
1394
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1395 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1396 {
1397 int rc;
1398
1399 if (inet_sk(sk)->inet_daddr)
1400 sock_rps_save_rxhash(sk, skb);
1401
1402 rc = sock_queue_rcv_skb(sk, skb);
1403 if (rc < 0) {
1404 int is_udplite = IS_UDPLITE(sk);
1405
1406 /* Note that an ENOMEM error is charged twice */
1407 if (rc == -ENOMEM)
1408 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1409 is_udplite);
1410 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1411 kfree_skb(skb);
1412 trace_udp_fail_queue_rcv_skb(rc, sk);
1413 return -1;
1414 }
1415
1416 return 0;
1417
1418 }
1419
1420 static struct static_key udp_encap_needed __read_mostly;
udp_encap_enable(void)1421 void udp_encap_enable(void)
1422 {
1423 if (!static_key_enabled(&udp_encap_needed))
1424 static_key_slow_inc(&udp_encap_needed);
1425 }
1426 EXPORT_SYMBOL(udp_encap_enable);
1427
1428 /* returns:
1429 * -1: error
1430 * 0: success
1431 * >0: "udp encap" protocol resubmission
1432 *
1433 * Note that in the success and error cases, the skb is assumed to
1434 * have either been requeued or freed.
1435 */
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)1436 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1437 {
1438 struct udp_sock *up = udp_sk(sk);
1439 int rc;
1440 int is_udplite = IS_UDPLITE(sk);
1441
1442 /*
1443 * Charge it to the socket, dropping if the queue is full.
1444 */
1445 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1446 goto drop;
1447 nf_reset(skb);
1448
1449 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1450 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1451
1452 /*
1453 * This is an encapsulation socket so pass the skb to
1454 * the socket's udp_encap_rcv() hook. Otherwise, just
1455 * fall through and pass this up the UDP socket.
1456 * up->encap_rcv() returns the following value:
1457 * =0 if skb was successfully passed to the encap
1458 * handler or was discarded by it.
1459 * >0 if skb should be passed on to UDP.
1460 * <0 if skb should be resubmitted as proto -N
1461 */
1462
1463 /* if we're overly short, let UDP handle it */
1464 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1465 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1466 int ret;
1467
1468 ret = encap_rcv(sk, skb);
1469 if (ret <= 0) {
1470 UDP_INC_STATS_BH(sock_net(sk),
1471 UDP_MIB_INDATAGRAMS,
1472 is_udplite);
1473 return -ret;
1474 }
1475 }
1476
1477 /* FALLTHROUGH -- it's a UDP Packet */
1478 }
1479
1480 /*
1481 * UDP-Lite specific tests, ignored on UDP sockets
1482 */
1483 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1484
1485 /*
1486 * MIB statistics other than incrementing the error count are
1487 * disabled for the following two types of errors: these depend
1488 * on the application settings, not on the functioning of the
1489 * protocol stack as such.
1490 *
1491 * RFC 3828 here recommends (sec 3.3): "There should also be a
1492 * way ... to ... at least let the receiving application block
1493 * delivery of packets with coverage values less than a value
1494 * provided by the application."
1495 */
1496 if (up->pcrlen == 0) { /* full coverage was set */
1497 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1498 UDP_SKB_CB(skb)->cscov, skb->len);
1499 goto drop;
1500 }
1501 /* The next case involves violating the min. coverage requested
1502 * by the receiver. This is subtle: if receiver wants x and x is
1503 * greater than the buffersize/MTU then receiver will complain
1504 * that it wants x while sender emits packets of smaller size y.
1505 * Therefore the above ...()->partial_cov statement is essential.
1506 */
1507 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1508 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1509 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1510 goto drop;
1511 }
1512 }
1513
1514 if (rcu_access_pointer(sk->sk_filter) &&
1515 udp_lib_checksum_complete(skb))
1516 goto csum_error;
1517
1518
1519 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1520 goto drop;
1521
1522 rc = 0;
1523
1524 ipv4_pktinfo_prepare(skb);
1525 bh_lock_sock(sk);
1526 if (!sock_owned_by_user(sk))
1527 rc = __udp_queue_rcv_skb(sk, skb);
1528 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1529 bh_unlock_sock(sk);
1530 goto drop;
1531 }
1532 bh_unlock_sock(sk);
1533
1534 return rc;
1535
1536 csum_error:
1537 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1538 drop:
1539 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1540 atomic_inc(&sk->sk_drops);
1541 kfree_skb(skb);
1542 return -1;
1543 }
1544
1545
flush_stack(struct sock ** stack,unsigned int count,struct sk_buff * skb,unsigned int final)1546 static void flush_stack(struct sock **stack, unsigned int count,
1547 struct sk_buff *skb, unsigned int final)
1548 {
1549 unsigned int i;
1550 struct sk_buff *skb1 = NULL;
1551 struct sock *sk;
1552
1553 for (i = 0; i < count; i++) {
1554 sk = stack[i];
1555 if (likely(skb1 == NULL))
1556 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1557
1558 if (!skb1) {
1559 atomic_inc(&sk->sk_drops);
1560 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1561 IS_UDPLITE(sk));
1562 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1563 IS_UDPLITE(sk));
1564 }
1565
1566 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1567 skb1 = NULL;
1568 }
1569 if (unlikely(skb1))
1570 kfree_skb(skb1);
1571 }
1572
1573 /*
1574 * Multicasts and broadcasts go to each listener.
1575 *
1576 * Note: called only from the BH handler context.
1577 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable)1578 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1579 struct udphdr *uh,
1580 __be32 saddr, __be32 daddr,
1581 struct udp_table *udptable)
1582 {
1583 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1584 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1585 int dif;
1586 unsigned int i, count = 0;
1587
1588 spin_lock(&hslot->lock);
1589 sk = sk_nulls_head(&hslot->head);
1590 dif = skb->dev->ifindex;
1591 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1592 while (sk) {
1593 stack[count++] = sk;
1594 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1595 daddr, uh->source, saddr, dif);
1596 if (unlikely(count == ARRAY_SIZE(stack))) {
1597 if (!sk)
1598 break;
1599 flush_stack(stack, count, skb, ~0);
1600 count = 0;
1601 }
1602 }
1603 /*
1604 * before releasing chain lock, we must take a reference on sockets
1605 */
1606 for (i = 0; i < count; i++)
1607 sock_hold(stack[i]);
1608
1609 spin_unlock(&hslot->lock);
1610
1611 /*
1612 * do the slow work with no lock held
1613 */
1614 if (count) {
1615 flush_stack(stack, count, skb, count - 1);
1616
1617 for (i = 0; i < count; i++)
1618 sock_put(stack[i]);
1619 } else {
1620 kfree_skb(skb);
1621 }
1622 return 0;
1623 }
1624
1625 /* Initialize UDP checksum. If exited with zero value (success),
1626 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1627 * Otherwise, csum completion requires chacksumming packet body,
1628 * including udp header and folding it to skb->csum.
1629 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)1630 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1631 int proto)
1632 {
1633 const struct iphdr *iph;
1634 int err;
1635
1636 UDP_SKB_CB(skb)->partial_cov = 0;
1637 UDP_SKB_CB(skb)->cscov = skb->len;
1638
1639 if (proto == IPPROTO_UDPLITE) {
1640 err = udplite_checksum_init(skb, uh);
1641 if (err)
1642 return err;
1643 }
1644
1645 iph = ip_hdr(skb);
1646 if (uh->check == 0) {
1647 skb->ip_summed = CHECKSUM_UNNECESSARY;
1648 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1649 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1650 proto, skb->csum))
1651 skb->ip_summed = CHECKSUM_UNNECESSARY;
1652 }
1653 if (!skb_csum_unnecessary(skb))
1654 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1655 skb->len, proto, 0);
1656 /* Probably, we should checksum udp header (it should be in cache
1657 * in any case) and data in tiny packets (< rx copybreak).
1658 */
1659
1660 return 0;
1661 }
1662
1663 /*
1664 * All we need to do is get the socket, and then do a checksum.
1665 */
1666
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)1667 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1668 int proto)
1669 {
1670 struct sock *sk;
1671 struct udphdr *uh;
1672 unsigned short ulen;
1673 struct rtable *rt = skb_rtable(skb);
1674 __be32 saddr, daddr;
1675 struct net *net = dev_net(skb->dev);
1676
1677 /*
1678 * Validate the packet.
1679 */
1680 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1681 goto drop; /* No space for header. */
1682
1683 uh = udp_hdr(skb);
1684 ulen = ntohs(uh->len);
1685 saddr = ip_hdr(skb)->saddr;
1686 daddr = ip_hdr(skb)->daddr;
1687
1688 if (ulen > skb->len)
1689 goto short_packet;
1690
1691 if (proto == IPPROTO_UDP) {
1692 /* UDP validates ulen. */
1693 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1694 goto short_packet;
1695 uh = udp_hdr(skb);
1696 }
1697
1698 if (udp4_csum_init(skb, uh, proto))
1699 goto csum_error;
1700
1701 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1702 return __udp4_lib_mcast_deliver(net, skb, uh,
1703 saddr, daddr, udptable);
1704
1705 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1706
1707 if (sk != NULL) {
1708 int ret = udp_queue_rcv_skb(sk, skb);
1709 sock_put(sk);
1710
1711 /* a return value > 0 means to resubmit the input, but
1712 * it wants the return to be -protocol, or 0
1713 */
1714 if (ret > 0)
1715 return -ret;
1716 return 0;
1717 }
1718
1719 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1720 goto drop;
1721 nf_reset(skb);
1722
1723 /* No socket. Drop packet silently, if checksum is wrong */
1724 if (udp_lib_checksum_complete(skb))
1725 goto csum_error;
1726
1727 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1728 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1729
1730 /*
1731 * Hmm. We got an UDP packet to a port to which we
1732 * don't wanna listen. Ignore it.
1733 */
1734 kfree_skb(skb);
1735 return 0;
1736
1737 short_packet:
1738 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1739 proto == IPPROTO_UDPLITE ? "Lite" : "",
1740 &saddr, ntohs(uh->source),
1741 ulen, skb->len,
1742 &daddr, ntohs(uh->dest));
1743 goto drop;
1744
1745 csum_error:
1746 /*
1747 * RFC1122: OK. Discards the bad packet silently (as far as
1748 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1749 */
1750 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1751 proto == IPPROTO_UDPLITE ? "Lite" : "",
1752 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1753 ulen);
1754 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1755 drop:
1756 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1757 kfree_skb(skb);
1758 return 0;
1759 }
1760
udp_rcv(struct sk_buff * skb)1761 int udp_rcv(struct sk_buff *skb)
1762 {
1763 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1764 }
1765
udp_destroy_sock(struct sock * sk)1766 void udp_destroy_sock(struct sock *sk)
1767 {
1768 struct udp_sock *up = udp_sk(sk);
1769 bool slow = lock_sock_fast(sk);
1770 udp_flush_pending_frames(sk);
1771 unlock_sock_fast(sk, slow);
1772 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1773 void (*encap_destroy)(struct sock *sk);
1774 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1775 if (encap_destroy)
1776 encap_destroy(sk);
1777 }
1778 }
1779
1780 /*
1781 * Socket option code for UDP
1782 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))1783 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1784 char __user *optval, unsigned int optlen,
1785 int (*push_pending_frames)(struct sock *))
1786 {
1787 struct udp_sock *up = udp_sk(sk);
1788 int val;
1789 int err = 0;
1790 int is_udplite = IS_UDPLITE(sk);
1791
1792 if (optlen < sizeof(int))
1793 return -EINVAL;
1794
1795 if (get_user(val, (int __user *)optval))
1796 return -EFAULT;
1797
1798 switch (optname) {
1799 case UDP_CORK:
1800 if (val != 0) {
1801 up->corkflag = 1;
1802 } else {
1803 up->corkflag = 0;
1804 lock_sock(sk);
1805 (*push_pending_frames)(sk);
1806 release_sock(sk);
1807 }
1808 break;
1809
1810 case UDP_ENCAP:
1811 switch (val) {
1812 case 0:
1813 case UDP_ENCAP_ESPINUDP:
1814 case UDP_ENCAP_ESPINUDP_NON_IKE:
1815 up->encap_rcv = xfrm4_udp_encap_rcv;
1816 /* FALLTHROUGH */
1817 case UDP_ENCAP_L2TPINUDP:
1818 up->encap_type = val;
1819 udp_encap_enable();
1820 break;
1821 default:
1822 err = -ENOPROTOOPT;
1823 break;
1824 }
1825 break;
1826
1827 /*
1828 * UDP-Lite's partial checksum coverage (RFC 3828).
1829 */
1830 /* The sender sets actual checksum coverage length via this option.
1831 * The case coverage > packet length is handled by send module. */
1832 case UDPLITE_SEND_CSCOV:
1833 if (!is_udplite) /* Disable the option on UDP sockets */
1834 return -ENOPROTOOPT;
1835 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1836 val = 8;
1837 else if (val > USHRT_MAX)
1838 val = USHRT_MAX;
1839 up->pcslen = val;
1840 up->pcflag |= UDPLITE_SEND_CC;
1841 break;
1842
1843 /* The receiver specifies a minimum checksum coverage value. To make
1844 * sense, this should be set to at least 8 (as done below). If zero is
1845 * used, this again means full checksum coverage. */
1846 case UDPLITE_RECV_CSCOV:
1847 if (!is_udplite) /* Disable the option on UDP sockets */
1848 return -ENOPROTOOPT;
1849 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1850 val = 8;
1851 else if (val > USHRT_MAX)
1852 val = USHRT_MAX;
1853 up->pcrlen = val;
1854 up->pcflag |= UDPLITE_RECV_CC;
1855 break;
1856
1857 default:
1858 err = -ENOPROTOOPT;
1859 break;
1860 }
1861
1862 return err;
1863 }
1864 EXPORT_SYMBOL(udp_lib_setsockopt);
1865
udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1866 int udp_setsockopt(struct sock *sk, int level, int optname,
1867 char __user *optval, unsigned int optlen)
1868 {
1869 if (level == SOL_UDP || level == SOL_UDPLITE)
1870 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1871 udp_push_pending_frames);
1872 return ip_setsockopt(sk, level, optname, optval, optlen);
1873 }
1874
1875 #ifdef CONFIG_COMPAT
compat_udp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1876 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1877 char __user *optval, unsigned int optlen)
1878 {
1879 if (level == SOL_UDP || level == SOL_UDPLITE)
1880 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1881 udp_push_pending_frames);
1882 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1883 }
1884 #endif
1885
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1886 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1887 char __user *optval, int __user *optlen)
1888 {
1889 struct udp_sock *up = udp_sk(sk);
1890 int val, len;
1891
1892 if (get_user(len, optlen))
1893 return -EFAULT;
1894
1895 len = min_t(unsigned int, len, sizeof(int));
1896
1897 if (len < 0)
1898 return -EINVAL;
1899
1900 switch (optname) {
1901 case UDP_CORK:
1902 val = up->corkflag;
1903 break;
1904
1905 case UDP_ENCAP:
1906 val = up->encap_type;
1907 break;
1908
1909 /* The following two cannot be changed on UDP sockets, the return is
1910 * always 0 (which corresponds to the full checksum coverage of UDP). */
1911 case UDPLITE_SEND_CSCOV:
1912 val = up->pcslen;
1913 break;
1914
1915 case UDPLITE_RECV_CSCOV:
1916 val = up->pcrlen;
1917 break;
1918
1919 default:
1920 return -ENOPROTOOPT;
1921 }
1922
1923 if (put_user(len, optlen))
1924 return -EFAULT;
1925 if (copy_to_user(optval, &val, len))
1926 return -EFAULT;
1927 return 0;
1928 }
1929 EXPORT_SYMBOL(udp_lib_getsockopt);
1930
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1931 int udp_getsockopt(struct sock *sk, int level, int optname,
1932 char __user *optval, int __user *optlen)
1933 {
1934 if (level == SOL_UDP || level == SOL_UDPLITE)
1935 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1936 return ip_getsockopt(sk, level, optname, optval, optlen);
1937 }
1938
1939 #ifdef CONFIG_COMPAT
compat_udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1940 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1941 char __user *optval, int __user *optlen)
1942 {
1943 if (level == SOL_UDP || level == SOL_UDPLITE)
1944 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1945 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1946 }
1947 #endif
1948 /**
1949 * udp_poll - wait for a UDP event.
1950 * @file - file struct
1951 * @sock - socket
1952 * @wait - poll table
1953 *
1954 * This is same as datagram poll, except for the special case of
1955 * blocking sockets. If application is using a blocking fd
1956 * and a packet with checksum error is in the queue;
1957 * then it could get return from select indicating data available
1958 * but then block when reading it. Add special case code
1959 * to work around these arguably broken applications.
1960 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)1961 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1962 {
1963 unsigned int mask = datagram_poll(file, sock, wait);
1964 struct sock *sk = sock->sk;
1965
1966 /* Check for false positives due to checksum errors */
1967 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1968 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1969 mask &= ~(POLLIN | POLLRDNORM);
1970
1971 return mask;
1972
1973 }
1974 EXPORT_SYMBOL(udp_poll);
1975
udp_abort(struct sock * sk,int err)1976 int udp_abort(struct sock *sk, int err)
1977 {
1978 lock_sock(sk);
1979
1980 sk->sk_err = err;
1981 sk->sk_error_report(sk);
1982 udp_disconnect(sk, 0);
1983
1984 release_sock(sk);
1985
1986 return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(udp_abort);
1989
1990 struct proto udp_prot = {
1991 .name = "UDP",
1992 .owner = THIS_MODULE,
1993 .close = udp_lib_close,
1994 .connect = ip4_datagram_connect,
1995 .disconnect = udp_disconnect,
1996 .ioctl = udp_ioctl,
1997 .destroy = udp_destroy_sock,
1998 .setsockopt = udp_setsockopt,
1999 .getsockopt = udp_getsockopt,
2000 .sendmsg = udp_sendmsg,
2001 .recvmsg = udp_recvmsg,
2002 .sendpage = udp_sendpage,
2003 .backlog_rcv = __udp_queue_rcv_skb,
2004 .release_cb = ip4_datagram_release_cb,
2005 .hash = udp_lib_hash,
2006 .unhash = udp_lib_unhash,
2007 .rehash = udp_v4_rehash,
2008 .get_port = udp_v4_get_port,
2009 .memory_allocated = &udp_memory_allocated,
2010 .sysctl_mem = sysctl_udp_mem,
2011 .sysctl_wmem = &sysctl_udp_wmem_min,
2012 .sysctl_rmem = &sysctl_udp_rmem_min,
2013 .obj_size = sizeof(struct udp_sock),
2014 .slab_flags = SLAB_DESTROY_BY_RCU,
2015 .h.udp_table = &udp_table,
2016 #ifdef CONFIG_COMPAT
2017 .compat_setsockopt = compat_udp_setsockopt,
2018 .compat_getsockopt = compat_udp_getsockopt,
2019 #endif
2020 .clear_sk = sk_prot_clear_portaddr_nulls,
2021 .diag_destroy = udp_abort,
2022 };
2023 EXPORT_SYMBOL(udp_prot);
2024
2025 /* ------------------------------------------------------------------------ */
2026 #ifdef CONFIG_PROC_FS
2027
udp_get_first(struct seq_file * seq,int start)2028 static struct sock *udp_get_first(struct seq_file *seq, int start)
2029 {
2030 struct sock *sk;
2031 struct udp_iter_state *state = seq->private;
2032 struct net *net = seq_file_net(seq);
2033
2034 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2035 ++state->bucket) {
2036 struct hlist_nulls_node *node;
2037 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2038
2039 if (hlist_nulls_empty(&hslot->head))
2040 continue;
2041
2042 spin_lock_bh(&hslot->lock);
2043 sk_nulls_for_each(sk, node, &hslot->head) {
2044 if (!net_eq(sock_net(sk), net))
2045 continue;
2046 if (sk->sk_family == state->family)
2047 goto found;
2048 }
2049 spin_unlock_bh(&hslot->lock);
2050 }
2051 sk = NULL;
2052 found:
2053 return sk;
2054 }
2055
udp_get_next(struct seq_file * seq,struct sock * sk)2056 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2057 {
2058 struct udp_iter_state *state = seq->private;
2059 struct net *net = seq_file_net(seq);
2060
2061 do {
2062 sk = sk_nulls_next(sk);
2063 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2064
2065 if (!sk) {
2066 if (state->bucket <= state->udp_table->mask)
2067 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2068 return udp_get_first(seq, state->bucket + 1);
2069 }
2070 return sk;
2071 }
2072
udp_get_idx(struct seq_file * seq,loff_t pos)2073 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2074 {
2075 struct sock *sk = udp_get_first(seq, 0);
2076
2077 if (sk)
2078 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2079 --pos;
2080 return pos ? NULL : sk;
2081 }
2082
udp_seq_start(struct seq_file * seq,loff_t * pos)2083 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2084 {
2085 struct udp_iter_state *state = seq->private;
2086 state->bucket = MAX_UDP_PORTS;
2087
2088 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2089 }
2090
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2091 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2092 {
2093 struct sock *sk;
2094
2095 if (v == SEQ_START_TOKEN)
2096 sk = udp_get_idx(seq, 0);
2097 else
2098 sk = udp_get_next(seq, v);
2099
2100 ++*pos;
2101 return sk;
2102 }
2103
udp_seq_stop(struct seq_file * seq,void * v)2104 static void udp_seq_stop(struct seq_file *seq, void *v)
2105 {
2106 struct udp_iter_state *state = seq->private;
2107
2108 if (state->bucket <= state->udp_table->mask)
2109 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2110 }
2111
udp_seq_open(struct inode * inode,struct file * file)2112 int udp_seq_open(struct inode *inode, struct file *file)
2113 {
2114 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2115 struct udp_iter_state *s;
2116 int err;
2117
2118 err = seq_open_net(inode, file, &afinfo->seq_ops,
2119 sizeof(struct udp_iter_state));
2120 if (err < 0)
2121 return err;
2122
2123 s = ((struct seq_file *)file->private_data)->private;
2124 s->family = afinfo->family;
2125 s->udp_table = afinfo->udp_table;
2126 return err;
2127 }
2128 EXPORT_SYMBOL(udp_seq_open);
2129
2130 /* ------------------------------------------------------------------------ */
udp_proc_register(struct net * net,struct udp_seq_afinfo * afinfo)2131 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2132 {
2133 struct proc_dir_entry *p;
2134 int rc = 0;
2135
2136 afinfo->seq_ops.start = udp_seq_start;
2137 afinfo->seq_ops.next = udp_seq_next;
2138 afinfo->seq_ops.stop = udp_seq_stop;
2139
2140 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2141 afinfo->seq_fops, afinfo);
2142 if (!p)
2143 rc = -ENOMEM;
2144 return rc;
2145 }
2146 EXPORT_SYMBOL(udp_proc_register);
2147
udp_proc_unregister(struct net * net,struct udp_seq_afinfo * afinfo)2148 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2149 {
2150 remove_proc_entry(afinfo->name, net->proc_net);
2151 }
2152 EXPORT_SYMBOL(udp_proc_unregister);
2153
2154 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket,int * len)2155 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2156 int bucket, int *len)
2157 {
2158 struct inet_sock *inet = inet_sk(sp);
2159 __be32 dest = inet->inet_daddr;
2160 __be32 src = inet->inet_rcv_saddr;
2161 __u16 destp = ntohs(inet->inet_dport);
2162 __u16 srcp = ntohs(inet->inet_sport);
2163
2164 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2165 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2166 bucket, src, srcp, dest, destp, sp->sk_state,
2167 sk_wmem_alloc_get(sp),
2168 sk_rmem_alloc_get(sp),
2169 0, 0L, 0,
2170 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2171 0, sock_i_ino(sp),
2172 atomic_read(&sp->sk_refcnt), sp,
2173 atomic_read(&sp->sk_drops), len);
2174 }
2175
udp4_seq_show(struct seq_file * seq,void * v)2176 int udp4_seq_show(struct seq_file *seq, void *v)
2177 {
2178 if (v == SEQ_START_TOKEN)
2179 seq_printf(seq, "%-127s\n",
2180 " sl local_address rem_address st tx_queue "
2181 "rx_queue tr tm->when retrnsmt uid timeout "
2182 "inode ref pointer drops");
2183 else {
2184 struct udp_iter_state *state = seq->private;
2185 int len;
2186
2187 udp4_format_sock(v, seq, state->bucket, &len);
2188 seq_printf(seq, "%*s\n", 127 - len, "");
2189 }
2190 return 0;
2191 }
2192
2193 static const struct file_operations udp_afinfo_seq_fops = {
2194 .owner = THIS_MODULE,
2195 .open = udp_seq_open,
2196 .read = seq_read,
2197 .llseek = seq_lseek,
2198 .release = seq_release_net
2199 };
2200
2201 /* ------------------------------------------------------------------------ */
2202 static struct udp_seq_afinfo udp4_seq_afinfo = {
2203 .name = "udp",
2204 .family = AF_INET,
2205 .udp_table = &udp_table,
2206 .seq_fops = &udp_afinfo_seq_fops,
2207 .seq_ops = {
2208 .show = udp4_seq_show,
2209 },
2210 };
2211
udp4_proc_init_net(struct net * net)2212 static int __net_init udp4_proc_init_net(struct net *net)
2213 {
2214 return udp_proc_register(net, &udp4_seq_afinfo);
2215 }
2216
udp4_proc_exit_net(struct net * net)2217 static void __net_exit udp4_proc_exit_net(struct net *net)
2218 {
2219 udp_proc_unregister(net, &udp4_seq_afinfo);
2220 }
2221
2222 static struct pernet_operations udp4_net_ops = {
2223 .init = udp4_proc_init_net,
2224 .exit = udp4_proc_exit_net,
2225 };
2226
udp4_proc_init(void)2227 int __init udp4_proc_init(void)
2228 {
2229 return register_pernet_subsys(&udp4_net_ops);
2230 }
2231
udp4_proc_exit(void)2232 void udp4_proc_exit(void)
2233 {
2234 unregister_pernet_subsys(&udp4_net_ops);
2235 }
2236 #endif /* CONFIG_PROC_FS */
2237
2238 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)2239 static int __init set_uhash_entries(char *str)
2240 {
2241 ssize_t ret;
2242
2243 if (!str)
2244 return 0;
2245
2246 ret = kstrtoul(str, 0, &uhash_entries);
2247 if (ret)
2248 return 0;
2249
2250 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2251 uhash_entries = UDP_HTABLE_SIZE_MIN;
2252 return 1;
2253 }
2254 __setup("uhash_entries=", set_uhash_entries);
2255
udp_table_init(struct udp_table * table,const char * name)2256 void __init udp_table_init(struct udp_table *table, const char *name)
2257 {
2258 unsigned int i;
2259
2260 table->hash = alloc_large_system_hash(name,
2261 2 * sizeof(struct udp_hslot),
2262 uhash_entries,
2263 21, /* one slot per 2 MB */
2264 0,
2265 &table->log,
2266 &table->mask,
2267 UDP_HTABLE_SIZE_MIN,
2268 64 * 1024);
2269
2270 table->hash2 = table->hash + (table->mask + 1);
2271 for (i = 0; i <= table->mask; i++) {
2272 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2273 table->hash[i].count = 0;
2274 spin_lock_init(&table->hash[i].lock);
2275 }
2276 for (i = 0; i <= table->mask; i++) {
2277 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2278 table->hash2[i].count = 0;
2279 spin_lock_init(&table->hash2[i].lock);
2280 }
2281 }
2282
udp_init(void)2283 void __init udp_init(void)
2284 {
2285 unsigned long limit;
2286
2287 udp_table_init(&udp_table, "UDP");
2288 limit = nr_free_buffer_pages() / 8;
2289 limit = max(limit, 128UL);
2290 sysctl_udp_mem[0] = limit / 4 * 3;
2291 sysctl_udp_mem[1] = limit;
2292 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2293
2294 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2295 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2296 }
2297
udp4_ufo_send_check(struct sk_buff * skb)2298 int udp4_ufo_send_check(struct sk_buff *skb)
2299 {
2300 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2301 return -EINVAL;
2302
2303 if (likely(!skb->encapsulation)) {
2304 const struct iphdr *iph;
2305 struct udphdr *uh;
2306
2307 iph = ip_hdr(skb);
2308 uh = udp_hdr(skb);
2309
2310 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2311 IPPROTO_UDP, 0);
2312 skb->csum_start = skb_transport_header(skb) - skb->head;
2313 skb->csum_offset = offsetof(struct udphdr, check);
2314 skb->ip_summed = CHECKSUM_PARTIAL;
2315 }
2316 return 0;
2317 }
2318
skb_udp_tunnel_segment(struct sk_buff * skb,netdev_features_t features)2319 static struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2320 netdev_features_t features)
2321 {
2322 struct sk_buff *segs = ERR_PTR(-EINVAL);
2323 int mac_len = skb->mac_len;
2324 int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2325 __be16 protocol = skb->protocol;
2326 netdev_features_t enc_features;
2327 int outer_hlen;
2328
2329 if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2330 goto out;
2331
2332 skb->encapsulation = 0;
2333 __skb_pull(skb, tnl_hlen);
2334 skb_reset_mac_header(skb);
2335 skb_set_network_header(skb, skb_inner_network_offset(skb));
2336 skb->mac_len = skb_inner_network_offset(skb);
2337 skb->protocol = htons(ETH_P_TEB);
2338
2339 /* segment inner packet. */
2340 enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2341 segs = skb_mac_gso_segment(skb, enc_features);
2342 if (!segs || IS_ERR(segs))
2343 goto out;
2344
2345 outer_hlen = skb_tnl_header_len(skb);
2346 skb = segs;
2347 do {
2348 struct udphdr *uh;
2349 int udp_offset = outer_hlen - tnl_hlen;
2350
2351 skb->mac_len = mac_len;
2352
2353 skb_push(skb, outer_hlen);
2354 skb_reset_mac_header(skb);
2355 skb_set_network_header(skb, mac_len);
2356 skb_set_transport_header(skb, udp_offset);
2357 uh = udp_hdr(skb);
2358 uh->len = htons(skb->len - udp_offset);
2359
2360 /* csum segment if tunnel sets skb with csum. */
2361 if (unlikely(uh->check)) {
2362 struct iphdr *iph = ip_hdr(skb);
2363
2364 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2365 skb->len - udp_offset,
2366 IPPROTO_UDP, 0);
2367 uh->check = csum_fold(skb_checksum(skb, udp_offset,
2368 skb->len - udp_offset, 0));
2369 if (uh->check == 0)
2370 uh->check = CSUM_MANGLED_0;
2371
2372 }
2373 skb->ip_summed = CHECKSUM_NONE;
2374 skb->protocol = protocol;
2375 } while ((skb = skb->next));
2376 out:
2377 return segs;
2378 }
2379
udp4_ufo_fragment(struct sk_buff * skb,netdev_features_t features)2380 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2381 netdev_features_t features)
2382 {
2383 struct sk_buff *segs = ERR_PTR(-EINVAL);
2384 unsigned int mss;
2385 mss = skb_shinfo(skb)->gso_size;
2386 if (unlikely(skb->len <= mss))
2387 goto out;
2388
2389 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2390 /* Packet is from an untrusted source, reset gso_segs. */
2391 int type = skb_shinfo(skb)->gso_type;
2392
2393 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY |
2394 SKB_GSO_UDP_TUNNEL |
2395 SKB_GSO_GRE) ||
2396 !(type & (SKB_GSO_UDP))))
2397 goto out;
2398
2399 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2400
2401 segs = NULL;
2402 goto out;
2403 }
2404
2405 /* Fragment the skb. IP headers of the fragments are updated in
2406 * inet_gso_segment()
2407 */
2408 if (skb->encapsulation && skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL)
2409 segs = skb_udp_tunnel_segment(skb, features);
2410 else {
2411 int offset;
2412 __wsum csum;
2413
2414 /* Do software UFO. Complete and fill in the UDP checksum as
2415 * HW cannot do checksum of UDP packets sent as multiple
2416 * IP fragments.
2417 */
2418 offset = skb_checksum_start_offset(skb);
2419 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2420 offset += skb->csum_offset;
2421 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2422 skb->ip_summed = CHECKSUM_NONE;
2423
2424 segs = skb_segment(skb, features);
2425 }
2426 out:
2427 return segs;
2428 }
2429