• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMware vSockets Driver
3  *
4  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15 
16 /* Implementation notes:
17  *
18  * - There are two kinds of sockets: those created by user action (such as
19  * calling socket(2)) and those created by incoming connection request packets.
20  *
21  * - There are two "global" tables, one for bound sockets (sockets that have
22  * specified an address that they are responsible for) and one for connected
23  * sockets (sockets that have established a connection with another socket).
24  * These tables are "global" in that all sockets on the system are placed
25  * within them. - Note, though, that the bound table contains an extra entry
26  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27  * that list. The bound table is used solely for lookup of sockets when packets
28  * are received and that's not necessary for SOCK_DGRAM sockets since we create
29  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
30  * sockets out of the bound hash buckets will reduce the chance of collisions
31  * when looking for SOCK_STREAM sockets and prevents us from having to check the
32  * socket type in the hash table lookups.
33  *
34  * - Sockets created by user action will either be "client" sockets that
35  * initiate a connection or "server" sockets that listen for connections; we do
36  * not support simultaneous connects (two "client" sockets connecting).
37  *
38  * - "Server" sockets are referred to as listener sockets throughout this
39  * implementation because they are in the SS_LISTEN state.  When a connection
40  * request is received (the second kind of socket mentioned above), we create a
41  * new socket and refer to it as a pending socket.  These pending sockets are
42  * placed on the pending connection list of the listener socket.  When future
43  * packets are received for the address the listener socket is bound to, we
44  * check if the source of the packet is from one that has an existing pending
45  * connection.  If it does, we process the packet for the pending socket.  When
46  * that socket reaches the connected state, it is removed from the listener
47  * socket's pending list and enqueued in the listener socket's accept queue.
48  * Callers of accept(2) will accept connected sockets from the listener socket's
49  * accept queue.  If the socket cannot be accepted for some reason then it is
50  * marked rejected.  Once the connection is accepted, it is owned by the user
51  * process and the responsibility for cleanup falls with that user process.
52  *
53  * - It is possible that these pending sockets will never reach the connected
54  * state; in fact, we may never receive another packet after the connection
55  * request.  Because of this, we must schedule a cleanup function to run in the
56  * future, after some amount of time passes where a connection should have been
57  * established.  This function ensures that the socket is off all lists so it
58  * cannot be retrieved, then drops all references to the socket so it is cleaned
59  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
60  * function will also cleanup rejected sockets, those that reach the connected
61  * state but leave it before they have been accepted.
62  *
63  * - Sockets created by user action will be cleaned up when the user process
64  * calls close(2), causing our release implementation to be called. Our release
65  * implementation will perform some cleanup then drop the last reference so our
66  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
67  * perform additional cleanup that's common for both types of sockets.
68  *
69  * - A socket's reference count is what ensures that the structure won't be
70  * freed.  Each entry in a list (such as the "global" bound and connected tables
71  * and the listener socket's pending list and connected queue) ensures a
72  * reference.  When we defer work until process context and pass a socket as our
73  * argument, we must ensure the reference count is increased to ensure the
74  * socket isn't freed before the function is run; the deferred function will
75  * then drop the reference.
76  */
77 
78 #include <linux/types.h>
79 #include <linux/bitops.h>
80 #include <linux/cred.h>
81 #include <linux/init.h>
82 #include <linux/io.h>
83 #include <linux/kernel.h>
84 #include <linux/kmod.h>
85 #include <linux/list.h>
86 #include <linux/miscdevice.h>
87 #include <linux/module.h>
88 #include <linux/mutex.h>
89 #include <linux/net.h>
90 #include <linux/poll.h>
91 #include <linux/skbuff.h>
92 #include <linux/smp.h>
93 #include <linux/socket.h>
94 #include <linux/stddef.h>
95 #include <linux/unistd.h>
96 #include <linux/wait.h>
97 #include <linux/workqueue.h>
98 #include <net/sock.h>
99 
100 #include "af_vsock.h"
101 
102 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
103 static void vsock_sk_destruct(struct sock *sk);
104 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
105 
106 /* Protocol family. */
107 static struct proto vsock_proto = {
108 	.name = "AF_VSOCK",
109 	.owner = THIS_MODULE,
110 	.obj_size = sizeof(struct vsock_sock),
111 };
112 
113 /* The default peer timeout indicates how long we will wait for a peer response
114  * to a control message.
115  */
116 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
117 
118 #define SS_LISTEN 255
119 
120 static const struct vsock_transport *transport;
121 static DEFINE_MUTEX(vsock_register_mutex);
122 
123 /**** EXPORTS ****/
124 
125 /* Get the ID of the local context.  This is transport dependent. */
126 
vm_sockets_get_local_cid(void)127 int vm_sockets_get_local_cid(void)
128 {
129 	return transport->get_local_cid();
130 }
131 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
132 
133 /**** UTILS ****/
134 
135 /* Each bound VSocket is stored in the bind hash table and each connected
136  * VSocket is stored in the connected hash table.
137  *
138  * Unbound sockets are all put on the same list attached to the end of the hash
139  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
140  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
141  * represents the list that addr hashes to).
142  *
143  * Specifically, we initialize the vsock_bind_table array to a size of
144  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
145  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
146  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
147  * mods with VSOCK_HASH_SIZE - 1 to ensure this.
148  */
149 #define VSOCK_HASH_SIZE         251
150 #define MAX_PORT_RETRIES        24
151 
152 #define VSOCK_HASH(addr)        ((addr)->svm_port % (VSOCK_HASH_SIZE - 1))
153 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
154 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
155 
156 /* XXX This can probably be implemented in a better way. */
157 #define VSOCK_CONN_HASH(src, dst)				\
158 	(((src)->svm_cid ^ (dst)->svm_port) % (VSOCK_HASH_SIZE - 1))
159 #define vsock_connected_sockets(src, dst)		\
160 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
161 #define vsock_connected_sockets_vsk(vsk)				\
162 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
163 
164 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
165 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
166 static DEFINE_SPINLOCK(vsock_table_lock);
167 
vsock_init_tables(void)168 static void vsock_init_tables(void)
169 {
170 	int i;
171 
172 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
173 		INIT_LIST_HEAD(&vsock_bind_table[i]);
174 
175 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
176 		INIT_LIST_HEAD(&vsock_connected_table[i]);
177 }
178 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)179 static void __vsock_insert_bound(struct list_head *list,
180 				 struct vsock_sock *vsk)
181 {
182 	sock_hold(&vsk->sk);
183 	list_add(&vsk->bound_table, list);
184 }
185 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)186 static void __vsock_insert_connected(struct list_head *list,
187 				     struct vsock_sock *vsk)
188 {
189 	sock_hold(&vsk->sk);
190 	list_add(&vsk->connected_table, list);
191 }
192 
__vsock_remove_bound(struct vsock_sock * vsk)193 static void __vsock_remove_bound(struct vsock_sock *vsk)
194 {
195 	list_del_init(&vsk->bound_table);
196 	sock_put(&vsk->sk);
197 }
198 
__vsock_remove_connected(struct vsock_sock * vsk)199 static void __vsock_remove_connected(struct vsock_sock *vsk)
200 {
201 	list_del_init(&vsk->connected_table);
202 	sock_put(&vsk->sk);
203 }
204 
__vsock_find_bound_socket(struct sockaddr_vm * addr)205 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
206 {
207 	struct vsock_sock *vsk;
208 
209 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
210 		if (addr->svm_port == vsk->local_addr.svm_port)
211 			return sk_vsock(vsk);
212 
213 	return NULL;
214 }
215 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)216 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
217 						  struct sockaddr_vm *dst)
218 {
219 	struct vsock_sock *vsk;
220 
221 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
222 			    connected_table) {
223 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
224 		    dst->svm_port == vsk->local_addr.svm_port) {
225 			return sk_vsock(vsk);
226 		}
227 	}
228 
229 	return NULL;
230 }
231 
__vsock_in_bound_table(struct vsock_sock * vsk)232 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
233 {
234 	return !list_empty(&vsk->bound_table);
235 }
236 
__vsock_in_connected_table(struct vsock_sock * vsk)237 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
238 {
239 	return !list_empty(&vsk->connected_table);
240 }
241 
vsock_insert_unbound(struct vsock_sock * vsk)242 static void vsock_insert_unbound(struct vsock_sock *vsk)
243 {
244 	spin_lock_bh(&vsock_table_lock);
245 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
246 	spin_unlock_bh(&vsock_table_lock);
247 }
248 
vsock_insert_connected(struct vsock_sock * vsk)249 void vsock_insert_connected(struct vsock_sock *vsk)
250 {
251 	struct list_head *list = vsock_connected_sockets(
252 		&vsk->remote_addr, &vsk->local_addr);
253 
254 	spin_lock_bh(&vsock_table_lock);
255 	__vsock_insert_connected(list, vsk);
256 	spin_unlock_bh(&vsock_table_lock);
257 }
258 EXPORT_SYMBOL_GPL(vsock_insert_connected);
259 
vsock_remove_bound(struct vsock_sock * vsk)260 void vsock_remove_bound(struct vsock_sock *vsk)
261 {
262 	spin_lock_bh(&vsock_table_lock);
263 	__vsock_remove_bound(vsk);
264 	spin_unlock_bh(&vsock_table_lock);
265 }
266 EXPORT_SYMBOL_GPL(vsock_remove_bound);
267 
vsock_remove_connected(struct vsock_sock * vsk)268 void vsock_remove_connected(struct vsock_sock *vsk)
269 {
270 	spin_lock_bh(&vsock_table_lock);
271 	__vsock_remove_connected(vsk);
272 	spin_unlock_bh(&vsock_table_lock);
273 }
274 EXPORT_SYMBOL_GPL(vsock_remove_connected);
275 
vsock_find_bound_socket(struct sockaddr_vm * addr)276 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
277 {
278 	struct sock *sk;
279 
280 	spin_lock_bh(&vsock_table_lock);
281 	sk = __vsock_find_bound_socket(addr);
282 	if (sk)
283 		sock_hold(sk);
284 
285 	spin_unlock_bh(&vsock_table_lock);
286 
287 	return sk;
288 }
289 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
290 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)291 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
292 					 struct sockaddr_vm *dst)
293 {
294 	struct sock *sk;
295 
296 	spin_lock_bh(&vsock_table_lock);
297 	sk = __vsock_find_connected_socket(src, dst);
298 	if (sk)
299 		sock_hold(sk);
300 
301 	spin_unlock_bh(&vsock_table_lock);
302 
303 	return sk;
304 }
305 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
306 
vsock_in_bound_table(struct vsock_sock * vsk)307 static bool vsock_in_bound_table(struct vsock_sock *vsk)
308 {
309 	bool ret;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	ret = __vsock_in_bound_table(vsk);
313 	spin_unlock_bh(&vsock_table_lock);
314 
315 	return ret;
316 }
317 
vsock_in_connected_table(struct vsock_sock * vsk)318 static bool vsock_in_connected_table(struct vsock_sock *vsk)
319 {
320 	bool ret;
321 
322 	spin_lock_bh(&vsock_table_lock);
323 	ret = __vsock_in_connected_table(vsk);
324 	spin_unlock_bh(&vsock_table_lock);
325 
326 	return ret;
327 }
328 
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))329 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
330 {
331 	int i;
332 
333 	spin_lock_bh(&vsock_table_lock);
334 
335 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
336 		struct vsock_sock *vsk;
337 		list_for_each_entry(vsk, &vsock_connected_table[i],
338 				    connected_table);
339 			fn(sk_vsock(vsk));
340 	}
341 
342 	spin_unlock_bh(&vsock_table_lock);
343 }
344 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
345 
vsock_add_pending(struct sock * listener,struct sock * pending)346 void vsock_add_pending(struct sock *listener, struct sock *pending)
347 {
348 	struct vsock_sock *vlistener;
349 	struct vsock_sock *vpending;
350 
351 	vlistener = vsock_sk(listener);
352 	vpending = vsock_sk(pending);
353 
354 	sock_hold(pending);
355 	sock_hold(listener);
356 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
357 }
358 EXPORT_SYMBOL_GPL(vsock_add_pending);
359 
vsock_remove_pending(struct sock * listener,struct sock * pending)360 void vsock_remove_pending(struct sock *listener, struct sock *pending)
361 {
362 	struct vsock_sock *vpending = vsock_sk(pending);
363 
364 	list_del_init(&vpending->pending_links);
365 	sock_put(listener);
366 	sock_put(pending);
367 }
368 EXPORT_SYMBOL_GPL(vsock_remove_pending);
369 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)370 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vconnected;
374 
375 	vlistener = vsock_sk(listener);
376 	vconnected = vsock_sk(connected);
377 
378 	sock_hold(connected);
379 	sock_hold(listener);
380 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
381 }
382 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
383 
vsock_dequeue_accept(struct sock * listener)384 static struct sock *vsock_dequeue_accept(struct sock *listener)
385 {
386 	struct vsock_sock *vlistener;
387 	struct vsock_sock *vconnected;
388 
389 	vlistener = vsock_sk(listener);
390 
391 	if (list_empty(&vlistener->accept_queue))
392 		return NULL;
393 
394 	vconnected = list_entry(vlistener->accept_queue.next,
395 				struct vsock_sock, accept_queue);
396 
397 	list_del_init(&vconnected->accept_queue);
398 	sock_put(listener);
399 	/* The caller will need a reference on the connected socket so we let
400 	 * it call sock_put().
401 	 */
402 
403 	return sk_vsock(vconnected);
404 }
405 
vsock_is_accept_queue_empty(struct sock * sk)406 static bool vsock_is_accept_queue_empty(struct sock *sk)
407 {
408 	struct vsock_sock *vsk = vsock_sk(sk);
409 	return list_empty(&vsk->accept_queue);
410 }
411 
vsock_is_pending(struct sock * sk)412 static bool vsock_is_pending(struct sock *sk)
413 {
414 	struct vsock_sock *vsk = vsock_sk(sk);
415 	return !list_empty(&vsk->pending_links);
416 }
417 
vsock_send_shutdown(struct sock * sk,int mode)418 static int vsock_send_shutdown(struct sock *sk, int mode)
419 {
420 	return transport->shutdown(vsock_sk(sk), mode);
421 }
422 
vsock_pending_work(struct work_struct * work)423 void vsock_pending_work(struct work_struct *work)
424 {
425 	struct sock *sk;
426 	struct sock *listener;
427 	struct vsock_sock *vsk;
428 	bool cleanup;
429 
430 	vsk = container_of(work, struct vsock_sock, dwork.work);
431 	sk = sk_vsock(vsk);
432 	listener = vsk->listener;
433 	cleanup = true;
434 
435 	lock_sock(listener);
436 	lock_sock(sk);
437 
438 	if (vsock_is_pending(sk)) {
439 		vsock_remove_pending(listener, sk);
440 	} else if (!vsk->rejected) {
441 		/* We are not on the pending list and accept() did not reject
442 		 * us, so we must have been accepted by our user process.  We
443 		 * just need to drop our references to the sockets and be on
444 		 * our way.
445 		 */
446 		cleanup = false;
447 		goto out;
448 	}
449 
450 	listener->sk_ack_backlog--;
451 
452 	/* We need to remove ourself from the global connected sockets list so
453 	 * incoming packets can't find this socket, and to reduce the reference
454 	 * count.
455 	 */
456 	if (vsock_in_connected_table(vsk))
457 		vsock_remove_connected(vsk);
458 
459 	sk->sk_state = SS_FREE;
460 
461 out:
462 	release_sock(sk);
463 	release_sock(listener);
464 	if (cleanup)
465 		sock_put(sk);
466 
467 	sock_put(sk);
468 	sock_put(listener);
469 }
470 EXPORT_SYMBOL_GPL(vsock_pending_work);
471 
472 /**** SOCKET OPERATIONS ****/
473 
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)474 static int __vsock_bind_stream(struct vsock_sock *vsk,
475 			       struct sockaddr_vm *addr)
476 {
477 	static u32 port = LAST_RESERVED_PORT + 1;
478 	struct sockaddr_vm new_addr;
479 
480 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
481 
482 	if (addr->svm_port == VMADDR_PORT_ANY) {
483 		bool found = false;
484 		unsigned int i;
485 
486 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
487 			if (port <= LAST_RESERVED_PORT)
488 				port = LAST_RESERVED_PORT + 1;
489 
490 			new_addr.svm_port = port++;
491 
492 			if (!__vsock_find_bound_socket(&new_addr)) {
493 				found = true;
494 				break;
495 			}
496 		}
497 
498 		if (!found)
499 			return -EADDRNOTAVAIL;
500 	} else {
501 		/* If port is in reserved range, ensure caller
502 		 * has necessary privileges.
503 		 */
504 		if (addr->svm_port <= LAST_RESERVED_PORT &&
505 		    !capable(CAP_NET_BIND_SERVICE)) {
506 			return -EACCES;
507 		}
508 
509 		if (__vsock_find_bound_socket(&new_addr))
510 			return -EADDRINUSE;
511 	}
512 
513 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
514 
515 	/* Remove stream sockets from the unbound list and add them to the hash
516 	 * table for easy lookup by its address.  The unbound list is simply an
517 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
518 	 */
519 	__vsock_remove_bound(vsk);
520 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
521 
522 	return 0;
523 }
524 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)525 static int __vsock_bind_dgram(struct vsock_sock *vsk,
526 			      struct sockaddr_vm *addr)
527 {
528 	return transport->dgram_bind(vsk, addr);
529 }
530 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)531 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
532 {
533 	struct vsock_sock *vsk = vsock_sk(sk);
534 	u32 cid;
535 	int retval;
536 
537 	/* First ensure this socket isn't already bound. */
538 	if (vsock_addr_bound(&vsk->local_addr))
539 		return -EINVAL;
540 
541 	/* Now bind to the provided address or select appropriate values if
542 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
543 	 * like AF_INET prevents binding to a non-local IP address (in most
544 	 * cases), we only allow binding to the local CID.
545 	 */
546 	cid = transport->get_local_cid();
547 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
548 		return -EADDRNOTAVAIL;
549 
550 	switch (sk->sk_socket->type) {
551 	case SOCK_STREAM:
552 		spin_lock_bh(&vsock_table_lock);
553 		retval = __vsock_bind_stream(vsk, addr);
554 		spin_unlock_bh(&vsock_table_lock);
555 		break;
556 
557 	case SOCK_DGRAM:
558 		retval = __vsock_bind_dgram(vsk, addr);
559 		break;
560 
561 	default:
562 		retval = -EINVAL;
563 		break;
564 	}
565 
566 	return retval;
567 }
568 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type)569 struct sock *__vsock_create(struct net *net,
570 			    struct socket *sock,
571 			    struct sock *parent,
572 			    gfp_t priority,
573 			    unsigned short type)
574 {
575 	struct sock *sk;
576 	struct vsock_sock *psk;
577 	struct vsock_sock *vsk;
578 
579 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto);
580 	if (!sk)
581 		return NULL;
582 
583 	sock_init_data(sock, sk);
584 
585 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
586 	 * non-NULL. We make sure that our sockets always have a type by
587 	 * setting it here if needed.
588 	 */
589 	if (!sock)
590 		sk->sk_type = type;
591 
592 	vsk = vsock_sk(sk);
593 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
594 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
595 
596 	sk->sk_destruct = vsock_sk_destruct;
597 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
598 	sk->sk_state = 0;
599 	sock_reset_flag(sk, SOCK_DONE);
600 
601 	INIT_LIST_HEAD(&vsk->bound_table);
602 	INIT_LIST_HEAD(&vsk->connected_table);
603 	vsk->listener = NULL;
604 	INIT_LIST_HEAD(&vsk->pending_links);
605 	INIT_LIST_HEAD(&vsk->accept_queue);
606 	vsk->rejected = false;
607 	vsk->sent_request = false;
608 	vsk->ignore_connecting_rst = false;
609 	vsk->peer_shutdown = 0;
610 
611 	psk = parent ? vsock_sk(parent) : NULL;
612 	if (parent) {
613 		vsk->trusted = psk->trusted;
614 		vsk->owner = get_cred(psk->owner);
615 		vsk->connect_timeout = psk->connect_timeout;
616 	} else {
617 		vsk->trusted = capable(CAP_NET_ADMIN);
618 		vsk->owner = get_current_cred();
619 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
620 	}
621 
622 	if (transport->init(vsk, psk) < 0) {
623 		sk_free(sk);
624 		return NULL;
625 	}
626 
627 	if (sock)
628 		vsock_insert_unbound(vsk);
629 
630 	return sk;
631 }
632 EXPORT_SYMBOL_GPL(__vsock_create);
633 
__vsock_release(struct sock * sk)634 static void __vsock_release(struct sock *sk)
635 {
636 	if (sk) {
637 		struct sk_buff *skb;
638 		struct sock *pending;
639 		struct vsock_sock *vsk;
640 
641 		vsk = vsock_sk(sk);
642 		pending = NULL;	/* Compiler warning. */
643 
644 		if (vsock_in_bound_table(vsk))
645 			vsock_remove_bound(vsk);
646 
647 		if (vsock_in_connected_table(vsk))
648 			vsock_remove_connected(vsk);
649 
650 		transport->release(vsk);
651 
652 		lock_sock(sk);
653 		sock_orphan(sk);
654 		sk->sk_shutdown = SHUTDOWN_MASK;
655 
656 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
657 			kfree_skb(skb);
658 
659 		/* Clean up any sockets that never were accepted. */
660 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
661 			__vsock_release(pending);
662 			sock_put(pending);
663 		}
664 
665 		release_sock(sk);
666 		sock_put(sk);
667 	}
668 }
669 
vsock_sk_destruct(struct sock * sk)670 static void vsock_sk_destruct(struct sock *sk)
671 {
672 	struct vsock_sock *vsk = vsock_sk(sk);
673 
674 	transport->destruct(vsk);
675 
676 	/* When clearing these addresses, there's no need to set the family and
677 	 * possibly register the address family with the kernel.
678 	 */
679 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
680 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
681 
682 	put_cred(vsk->owner);
683 }
684 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)685 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
686 {
687 	int err;
688 
689 	err = sock_queue_rcv_skb(sk, skb);
690 	if (err)
691 		kfree_skb(skb);
692 
693 	return err;
694 }
695 
vsock_stream_has_data(struct vsock_sock * vsk)696 s64 vsock_stream_has_data(struct vsock_sock *vsk)
697 {
698 	return transport->stream_has_data(vsk);
699 }
700 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
701 
vsock_stream_has_space(struct vsock_sock * vsk)702 s64 vsock_stream_has_space(struct vsock_sock *vsk)
703 {
704 	return transport->stream_has_space(vsk);
705 }
706 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
707 
vsock_release(struct socket * sock)708 static int vsock_release(struct socket *sock)
709 {
710 	__vsock_release(sock->sk);
711 	sock->sk = NULL;
712 	sock->state = SS_FREE;
713 
714 	return 0;
715 }
716 
717 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)718 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
719 {
720 	int err;
721 	struct sock *sk;
722 	struct sockaddr_vm *vm_addr;
723 
724 	sk = sock->sk;
725 
726 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
727 		return -EINVAL;
728 
729 	lock_sock(sk);
730 	err = __vsock_bind(sk, vm_addr);
731 	release_sock(sk);
732 
733 	return err;
734 }
735 
vsock_getname(struct socket * sock,struct sockaddr * addr,int * addr_len,int peer)736 static int vsock_getname(struct socket *sock,
737 			 struct sockaddr *addr, int *addr_len, int peer)
738 {
739 	int err;
740 	struct sock *sk;
741 	struct vsock_sock *vsk;
742 	struct sockaddr_vm *vm_addr;
743 
744 	sk = sock->sk;
745 	vsk = vsock_sk(sk);
746 	err = 0;
747 
748 	lock_sock(sk);
749 
750 	if (peer) {
751 		if (sock->state != SS_CONNECTED) {
752 			err = -ENOTCONN;
753 			goto out;
754 		}
755 		vm_addr = &vsk->remote_addr;
756 	} else {
757 		vm_addr = &vsk->local_addr;
758 	}
759 
760 	if (!vm_addr) {
761 		err = -EINVAL;
762 		goto out;
763 	}
764 
765 	/* sys_getsockname() and sys_getpeername() pass us a
766 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
767 	 * that macro is defined in socket.c instead of .h, so we hardcode its
768 	 * value here.
769 	 */
770 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
771 	memcpy(addr, vm_addr, sizeof(*vm_addr));
772 	*addr_len = sizeof(*vm_addr);
773 
774 out:
775 	release_sock(sk);
776 	return err;
777 }
778 
vsock_shutdown(struct socket * sock,int mode)779 static int vsock_shutdown(struct socket *sock, int mode)
780 {
781 	int err;
782 	struct sock *sk;
783 
784 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
785 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
786 	 * here like the other address families do.  Note also that the
787 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
788 	 * which is what we want.
789 	 */
790 	mode++;
791 
792 	if ((mode & ~SHUTDOWN_MASK) || !mode)
793 		return -EINVAL;
794 
795 	/* If this is a STREAM socket and it is not connected then bail out
796 	 * immediately.  If it is a DGRAM socket then we must first kick the
797 	 * socket so that it wakes up from any sleeping calls, for example
798 	 * recv(), and then afterwards return the error.
799 	 */
800 
801 	sk = sock->sk;
802 	if (sock->state == SS_UNCONNECTED) {
803 		err = -ENOTCONN;
804 		if (sk->sk_type == SOCK_STREAM)
805 			return err;
806 	} else {
807 		sock->state = SS_DISCONNECTING;
808 		err = 0;
809 	}
810 
811 	/* Receive and send shutdowns are treated alike. */
812 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
813 	if (mode) {
814 		lock_sock(sk);
815 		sk->sk_shutdown |= mode;
816 		sk->sk_state_change(sk);
817 		release_sock(sk);
818 
819 		if (sk->sk_type == SOCK_STREAM) {
820 			sock_reset_flag(sk, SOCK_DONE);
821 			vsock_send_shutdown(sk, mode);
822 		}
823 	}
824 
825 	return err;
826 }
827 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)828 static unsigned int vsock_poll(struct file *file, struct socket *sock,
829 			       poll_table *wait)
830 {
831 	struct sock *sk;
832 	unsigned int mask;
833 	struct vsock_sock *vsk;
834 
835 	sk = sock->sk;
836 	vsk = vsock_sk(sk);
837 
838 	poll_wait(file, sk_sleep(sk), wait);
839 	mask = 0;
840 
841 	if (sk->sk_err)
842 		/* Signify that there has been an error on this socket. */
843 		mask |= POLLERR;
844 
845 	/* INET sockets treat local write shutdown and peer write shutdown as a
846 	 * case of POLLHUP set.
847 	 */
848 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
849 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
850 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
851 		mask |= POLLHUP;
852 	}
853 
854 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
855 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
856 		mask |= POLLRDHUP;
857 	}
858 
859 	if (sock->type == SOCK_DGRAM) {
860 		/* For datagram sockets we can read if there is something in
861 		 * the queue and write as long as the socket isn't shutdown for
862 		 * sending.
863 		 */
864 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
865 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
866 			mask |= POLLIN | POLLRDNORM;
867 		}
868 
869 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
870 			mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
871 
872 	} else if (sock->type == SOCK_STREAM) {
873 		lock_sock(sk);
874 
875 		/* Listening sockets that have connections in their accept
876 		 * queue can be read.
877 		 */
878 		if (sk->sk_state == SS_LISTEN
879 		    && !vsock_is_accept_queue_empty(sk))
880 			mask |= POLLIN | POLLRDNORM;
881 
882 		/* If there is something in the queue then we can read. */
883 		if (transport->stream_is_active(vsk) &&
884 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
885 			bool data_ready_now = false;
886 			int ret = transport->notify_poll_in(
887 					vsk, 1, &data_ready_now);
888 			if (ret < 0) {
889 				mask |= POLLERR;
890 			} else {
891 				if (data_ready_now)
892 					mask |= POLLIN | POLLRDNORM;
893 
894 			}
895 		}
896 
897 		/* Sockets whose connections have been closed, reset, or
898 		 * terminated should also be considered read, and we check the
899 		 * shutdown flag for that.
900 		 */
901 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
902 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
903 			mask |= POLLIN | POLLRDNORM;
904 		}
905 
906 		/* Connected sockets that can produce data can be written. */
907 		if (sk->sk_state == SS_CONNECTED) {
908 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
909 				bool space_avail_now = false;
910 				int ret = transport->notify_poll_out(
911 						vsk, 1, &space_avail_now);
912 				if (ret < 0) {
913 					mask |= POLLERR;
914 				} else {
915 					if (space_avail_now)
916 						/* Remove POLLWRBAND since INET
917 						 * sockets are not setting it.
918 						 */
919 						mask |= POLLOUT | POLLWRNORM;
920 
921 				}
922 			}
923 		}
924 
925 		/* Simulate INET socket poll behaviors, which sets
926 		 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
927 		 * but local send is not shutdown.
928 		 */
929 		if (sk->sk_state == SS_UNCONNECTED) {
930 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
931 				mask |= POLLOUT | POLLWRNORM;
932 
933 		}
934 
935 		release_sock(sk);
936 	}
937 
938 	return mask;
939 }
940 
vsock_dgram_sendmsg(struct kiocb * kiocb,struct socket * sock,struct msghdr * msg,size_t len)941 static int vsock_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock,
942 			       struct msghdr *msg, size_t len)
943 {
944 	int err;
945 	struct sock *sk;
946 	struct vsock_sock *vsk;
947 	struct sockaddr_vm *remote_addr;
948 
949 	if (msg->msg_flags & MSG_OOB)
950 		return -EOPNOTSUPP;
951 
952 	/* For now, MSG_DONTWAIT is always assumed... */
953 	err = 0;
954 	sk = sock->sk;
955 	vsk = vsock_sk(sk);
956 
957 	lock_sock(sk);
958 
959 	if (!vsock_addr_bound(&vsk->local_addr)) {
960 		struct sockaddr_vm local_addr;
961 
962 		vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
963 		err = __vsock_bind(sk, &local_addr);
964 		if (err != 0)
965 			goto out;
966 
967 	}
968 
969 	/* If the provided message contains an address, use that.  Otherwise
970 	 * fall back on the socket's remote handle (if it has been connected).
971 	 */
972 	if (msg->msg_name &&
973 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
974 			    &remote_addr) == 0) {
975 		/* Ensure this address is of the right type and is a valid
976 		 * destination.
977 		 */
978 
979 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
980 			remote_addr->svm_cid = transport->get_local_cid();
981 
982 		if (!vsock_addr_bound(remote_addr)) {
983 			err = -EINVAL;
984 			goto out;
985 		}
986 	} else if (sock->state == SS_CONNECTED) {
987 		remote_addr = &vsk->remote_addr;
988 
989 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
990 			remote_addr->svm_cid = transport->get_local_cid();
991 
992 		/* XXX Should connect() or this function ensure remote_addr is
993 		 * bound?
994 		 */
995 		if (!vsock_addr_bound(&vsk->remote_addr)) {
996 			err = -EINVAL;
997 			goto out;
998 		}
999 	} else {
1000 		err = -EINVAL;
1001 		goto out;
1002 	}
1003 
1004 	if (!transport->dgram_allow(remote_addr->svm_cid,
1005 				    remote_addr->svm_port)) {
1006 		err = -EINVAL;
1007 		goto out;
1008 	}
1009 
1010 	err = transport->dgram_enqueue(vsk, remote_addr, msg->msg_iov, len);
1011 
1012 out:
1013 	release_sock(sk);
1014 	return err;
1015 }
1016 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1017 static int vsock_dgram_connect(struct socket *sock,
1018 			       struct sockaddr *addr, int addr_len, int flags)
1019 {
1020 	int err;
1021 	struct sock *sk;
1022 	struct vsock_sock *vsk;
1023 	struct sockaddr_vm *remote_addr;
1024 
1025 	sk = sock->sk;
1026 	vsk = vsock_sk(sk);
1027 
1028 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1029 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1030 		lock_sock(sk);
1031 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1032 				VMADDR_PORT_ANY);
1033 		sock->state = SS_UNCONNECTED;
1034 		release_sock(sk);
1035 		return 0;
1036 	} else if (err != 0)
1037 		return -EINVAL;
1038 
1039 	lock_sock(sk);
1040 
1041 	if (!vsock_addr_bound(&vsk->local_addr)) {
1042 		struct sockaddr_vm local_addr;
1043 
1044 		vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
1045 		err = __vsock_bind(sk, &local_addr);
1046 		if (err != 0)
1047 			goto out;
1048 
1049 	}
1050 
1051 	if (!transport->dgram_allow(remote_addr->svm_cid,
1052 				    remote_addr->svm_port)) {
1053 		err = -EINVAL;
1054 		goto out;
1055 	}
1056 
1057 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1058 	sock->state = SS_CONNECTED;
1059 
1060 out:
1061 	release_sock(sk);
1062 	return err;
1063 }
1064 
vsock_dgram_recvmsg(struct kiocb * kiocb,struct socket * sock,struct msghdr * msg,size_t len,int flags)1065 static int vsock_dgram_recvmsg(struct kiocb *kiocb, struct socket *sock,
1066 			       struct msghdr *msg, size_t len, int flags)
1067 {
1068 	return transport->dgram_dequeue(kiocb, vsock_sk(sock->sk), msg, len,
1069 					flags);
1070 }
1071 
1072 static const struct proto_ops vsock_dgram_ops = {
1073 	.family = PF_VSOCK,
1074 	.owner = THIS_MODULE,
1075 	.release = vsock_release,
1076 	.bind = vsock_bind,
1077 	.connect = vsock_dgram_connect,
1078 	.socketpair = sock_no_socketpair,
1079 	.accept = sock_no_accept,
1080 	.getname = vsock_getname,
1081 	.poll = vsock_poll,
1082 	.ioctl = sock_no_ioctl,
1083 	.listen = sock_no_listen,
1084 	.shutdown = vsock_shutdown,
1085 	.setsockopt = sock_no_setsockopt,
1086 	.getsockopt = sock_no_getsockopt,
1087 	.sendmsg = vsock_dgram_sendmsg,
1088 	.recvmsg = vsock_dgram_recvmsg,
1089 	.mmap = sock_no_mmap,
1090 	.sendpage = sock_no_sendpage,
1091 };
1092 
vsock_connect_timeout(struct work_struct * work)1093 static void vsock_connect_timeout(struct work_struct *work)
1094 {
1095 	struct sock *sk;
1096 	struct vsock_sock *vsk;
1097 
1098 	vsk = container_of(work, struct vsock_sock, dwork.work);
1099 	sk = sk_vsock(vsk);
1100 
1101 	lock_sock(sk);
1102 	if (sk->sk_state == SS_CONNECTING &&
1103 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1104 		sk->sk_state = SS_UNCONNECTED;
1105 		sk->sk_err = ETIMEDOUT;
1106 		sk->sk_error_report(sk);
1107 	}
1108 	release_sock(sk);
1109 
1110 	sock_put(sk);
1111 }
1112 
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1113 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1114 				int addr_len, int flags)
1115 {
1116 	int err;
1117 	struct sock *sk;
1118 	struct vsock_sock *vsk;
1119 	struct sockaddr_vm *remote_addr;
1120 	long timeout;
1121 	DEFINE_WAIT(wait);
1122 
1123 	err = 0;
1124 	sk = sock->sk;
1125 	vsk = vsock_sk(sk);
1126 
1127 	lock_sock(sk);
1128 
1129 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1130 	switch (sock->state) {
1131 	case SS_CONNECTED:
1132 		err = -EISCONN;
1133 		goto out;
1134 	case SS_DISCONNECTING:
1135 		err = -EINVAL;
1136 		goto out;
1137 	case SS_CONNECTING:
1138 		/* This continues on so we can move sock into the SS_CONNECTED
1139 		 * state once the connection has completed (at which point err
1140 		 * will be set to zero also).  Otherwise, we will either wait
1141 		 * for the connection or return -EALREADY should this be a
1142 		 * non-blocking call.
1143 		 */
1144 		err = -EALREADY;
1145 		break;
1146 	default:
1147 		if ((sk->sk_state == SS_LISTEN) ||
1148 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1149 			err = -EINVAL;
1150 			goto out;
1151 		}
1152 
1153 		/* The hypervisor and well-known contexts do not have socket
1154 		 * endpoints.
1155 		 */
1156 		if (!transport->stream_allow(remote_addr->svm_cid,
1157 					     remote_addr->svm_port)) {
1158 			err = -ENETUNREACH;
1159 			goto out;
1160 		}
1161 
1162 		/* Set the remote address that we are connecting to. */
1163 		memcpy(&vsk->remote_addr, remote_addr,
1164 		       sizeof(vsk->remote_addr));
1165 
1166 		/* Autobind this socket to the local address if necessary. */
1167 		if (!vsock_addr_bound(&vsk->local_addr)) {
1168 			struct sockaddr_vm local_addr;
1169 
1170 			vsock_addr_init(&local_addr, VMADDR_CID_ANY,
1171 					VMADDR_PORT_ANY);
1172 			err = __vsock_bind(sk, &local_addr);
1173 			if (err != 0)
1174 				goto out;
1175 
1176 		}
1177 
1178 		sk->sk_state = SS_CONNECTING;
1179 
1180 		err = transport->connect(vsk);
1181 		if (err < 0)
1182 			goto out;
1183 
1184 		/* Mark sock as connecting and set the error code to in
1185 		 * progress in case this is a non-blocking connect.
1186 		 */
1187 		sock->state = SS_CONNECTING;
1188 		err = -EINPROGRESS;
1189 	}
1190 
1191 	/* The receive path will handle all communication until we are able to
1192 	 * enter the connected state.  Here we wait for the connection to be
1193 	 * completed or a notification of an error.
1194 	 */
1195 	timeout = vsk->connect_timeout;
1196 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1197 
1198 	while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1199 		if (flags & O_NONBLOCK) {
1200 			/* If we're not going to block, we schedule a timeout
1201 			 * function to generate a timeout on the connection
1202 			 * attempt, in case the peer doesn't respond in a
1203 			 * timely manner. We hold on to the socket until the
1204 			 * timeout fires.
1205 			 */
1206 			sock_hold(sk);
1207 			INIT_DELAYED_WORK(&vsk->dwork,
1208 					  vsock_connect_timeout);
1209 			schedule_delayed_work(&vsk->dwork, timeout);
1210 
1211 			/* Skip ahead to preserve error code set above. */
1212 			goto out_wait;
1213 		}
1214 
1215 		release_sock(sk);
1216 		timeout = schedule_timeout(timeout);
1217 		lock_sock(sk);
1218 
1219 		if (signal_pending(current)) {
1220 			err = sock_intr_errno(timeout);
1221 			goto out_wait_error;
1222 		} else if (timeout == 0) {
1223 			err = -ETIMEDOUT;
1224 			goto out_wait_error;
1225 		}
1226 
1227 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1228 	}
1229 
1230 	if (sk->sk_err) {
1231 		err = -sk->sk_err;
1232 		goto out_wait_error;
1233 	} else
1234 		err = 0;
1235 
1236 out_wait:
1237 	finish_wait(sk_sleep(sk), &wait);
1238 out:
1239 	release_sock(sk);
1240 	return err;
1241 
1242 out_wait_error:
1243 	sk->sk_state = SS_UNCONNECTED;
1244 	sock->state = SS_UNCONNECTED;
1245 	goto out_wait;
1246 }
1247 
vsock_accept(struct socket * sock,struct socket * newsock,int flags)1248 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1249 {
1250 	struct sock *listener;
1251 	int err;
1252 	struct sock *connected;
1253 	struct vsock_sock *vconnected;
1254 	long timeout;
1255 	DEFINE_WAIT(wait);
1256 
1257 	err = 0;
1258 	listener = sock->sk;
1259 
1260 	lock_sock(listener);
1261 
1262 	if (sock->type != SOCK_STREAM) {
1263 		err = -EOPNOTSUPP;
1264 		goto out;
1265 	}
1266 
1267 	if (listener->sk_state != SS_LISTEN) {
1268 		err = -EINVAL;
1269 		goto out;
1270 	}
1271 
1272 	/* Wait for children sockets to appear; these are the new sockets
1273 	 * created upon connection establishment.
1274 	 */
1275 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1276 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1277 
1278 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1279 	       listener->sk_err == 0) {
1280 		release_sock(listener);
1281 		timeout = schedule_timeout(timeout);
1282 		lock_sock(listener);
1283 
1284 		if (signal_pending(current)) {
1285 			err = sock_intr_errno(timeout);
1286 			goto out_wait;
1287 		} else if (timeout == 0) {
1288 			err = -EAGAIN;
1289 			goto out_wait;
1290 		}
1291 
1292 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1293 	}
1294 
1295 	if (listener->sk_err)
1296 		err = -listener->sk_err;
1297 
1298 	if (connected) {
1299 		listener->sk_ack_backlog--;
1300 
1301 		lock_sock(connected);
1302 		vconnected = vsock_sk(connected);
1303 
1304 		/* If the listener socket has received an error, then we should
1305 		 * reject this socket and return.  Note that we simply mark the
1306 		 * socket rejected, drop our reference, and let the cleanup
1307 		 * function handle the cleanup; the fact that we found it in
1308 		 * the listener's accept queue guarantees that the cleanup
1309 		 * function hasn't run yet.
1310 		 */
1311 		if (err) {
1312 			vconnected->rejected = true;
1313 			release_sock(connected);
1314 			sock_put(connected);
1315 			goto out_wait;
1316 		}
1317 
1318 		newsock->state = SS_CONNECTED;
1319 		sock_graft(connected, newsock);
1320 		release_sock(connected);
1321 		sock_put(connected);
1322 	}
1323 
1324 out_wait:
1325 	finish_wait(sk_sleep(listener), &wait);
1326 out:
1327 	release_sock(listener);
1328 	return err;
1329 }
1330 
vsock_listen(struct socket * sock,int backlog)1331 static int vsock_listen(struct socket *sock, int backlog)
1332 {
1333 	int err;
1334 	struct sock *sk;
1335 	struct vsock_sock *vsk;
1336 
1337 	sk = sock->sk;
1338 
1339 	lock_sock(sk);
1340 
1341 	if (sock->type != SOCK_STREAM) {
1342 		err = -EOPNOTSUPP;
1343 		goto out;
1344 	}
1345 
1346 	if (sock->state != SS_UNCONNECTED) {
1347 		err = -EINVAL;
1348 		goto out;
1349 	}
1350 
1351 	vsk = vsock_sk(sk);
1352 
1353 	if (!vsock_addr_bound(&vsk->local_addr)) {
1354 		err = -EINVAL;
1355 		goto out;
1356 	}
1357 
1358 	sk->sk_max_ack_backlog = backlog;
1359 	sk->sk_state = SS_LISTEN;
1360 
1361 	err = 0;
1362 
1363 out:
1364 	release_sock(sk);
1365 	return err;
1366 }
1367 
vsock_stream_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1368 static int vsock_stream_setsockopt(struct socket *sock,
1369 				   int level,
1370 				   int optname,
1371 				   char __user *optval,
1372 				   unsigned int optlen)
1373 {
1374 	int err;
1375 	struct sock *sk;
1376 	struct vsock_sock *vsk;
1377 	u64 val;
1378 
1379 	if (level != AF_VSOCK)
1380 		return -ENOPROTOOPT;
1381 
1382 #define COPY_IN(_v)                                       \
1383 	do {						  \
1384 		if (optlen < sizeof(_v)) {		  \
1385 			err = -EINVAL;			  \
1386 			goto exit;			  \
1387 		}					  \
1388 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1389 			err = -EFAULT;					\
1390 			goto exit;					\
1391 		}							\
1392 	} while (0)
1393 
1394 	err = 0;
1395 	sk = sock->sk;
1396 	vsk = vsock_sk(sk);
1397 
1398 	lock_sock(sk);
1399 
1400 	switch (optname) {
1401 	case SO_VM_SOCKETS_BUFFER_SIZE:
1402 		COPY_IN(val);
1403 		transport->set_buffer_size(vsk, val);
1404 		break;
1405 
1406 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1407 		COPY_IN(val);
1408 		transport->set_max_buffer_size(vsk, val);
1409 		break;
1410 
1411 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1412 		COPY_IN(val);
1413 		transport->set_min_buffer_size(vsk, val);
1414 		break;
1415 
1416 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1417 		struct timeval tv;
1418 		COPY_IN(tv);
1419 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1420 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1421 			vsk->connect_timeout = tv.tv_sec * HZ +
1422 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1423 			if (vsk->connect_timeout == 0)
1424 				vsk->connect_timeout =
1425 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1426 
1427 		} else {
1428 			err = -ERANGE;
1429 		}
1430 		break;
1431 	}
1432 
1433 	default:
1434 		err = -ENOPROTOOPT;
1435 		break;
1436 	}
1437 
1438 #undef COPY_IN
1439 
1440 exit:
1441 	release_sock(sk);
1442 	return err;
1443 }
1444 
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1445 static int vsock_stream_getsockopt(struct socket *sock,
1446 				   int level, int optname,
1447 				   char __user *optval,
1448 				   int __user *optlen)
1449 {
1450 	int err;
1451 	int len;
1452 	struct sock *sk;
1453 	struct vsock_sock *vsk;
1454 	u64 val;
1455 
1456 	if (level != AF_VSOCK)
1457 		return -ENOPROTOOPT;
1458 
1459 	err = get_user(len, optlen);
1460 	if (err != 0)
1461 		return err;
1462 
1463 #define COPY_OUT(_v)                            \
1464 	do {					\
1465 		if (len < sizeof(_v))		\
1466 			return -EINVAL;		\
1467 						\
1468 		len = sizeof(_v);		\
1469 		if (copy_to_user(optval, &_v, len) != 0)	\
1470 			return -EFAULT;				\
1471 								\
1472 	} while (0)
1473 
1474 	err = 0;
1475 	sk = sock->sk;
1476 	vsk = vsock_sk(sk);
1477 
1478 	switch (optname) {
1479 	case SO_VM_SOCKETS_BUFFER_SIZE:
1480 		val = transport->get_buffer_size(vsk);
1481 		COPY_OUT(val);
1482 		break;
1483 
1484 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1485 		val = transport->get_max_buffer_size(vsk);
1486 		COPY_OUT(val);
1487 		break;
1488 
1489 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1490 		val = transport->get_min_buffer_size(vsk);
1491 		COPY_OUT(val);
1492 		break;
1493 
1494 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1495 		struct timeval tv;
1496 		tv.tv_sec = vsk->connect_timeout / HZ;
1497 		tv.tv_usec =
1498 		    (vsk->connect_timeout -
1499 		     tv.tv_sec * HZ) * (1000000 / HZ);
1500 		COPY_OUT(tv);
1501 		break;
1502 	}
1503 	default:
1504 		return -ENOPROTOOPT;
1505 	}
1506 
1507 	err = put_user(len, optlen);
1508 	if (err != 0)
1509 		return -EFAULT;
1510 
1511 #undef COPY_OUT
1512 
1513 	return 0;
1514 }
1515 
vsock_stream_sendmsg(struct kiocb * kiocb,struct socket * sock,struct msghdr * msg,size_t len)1516 static int vsock_stream_sendmsg(struct kiocb *kiocb, struct socket *sock,
1517 				struct msghdr *msg, size_t len)
1518 {
1519 	struct sock *sk;
1520 	struct vsock_sock *vsk;
1521 	ssize_t total_written;
1522 	long timeout;
1523 	int err;
1524 	struct vsock_transport_send_notify_data send_data;
1525 
1526 	DEFINE_WAIT(wait);
1527 
1528 	sk = sock->sk;
1529 	vsk = vsock_sk(sk);
1530 	total_written = 0;
1531 	err = 0;
1532 
1533 	if (msg->msg_flags & MSG_OOB)
1534 		return -EOPNOTSUPP;
1535 
1536 	lock_sock(sk);
1537 
1538 	/* Callers should not provide a destination with stream sockets. */
1539 	if (msg->msg_namelen) {
1540 		err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1541 		goto out;
1542 	}
1543 
1544 	/* Send data only if both sides are not shutdown in the direction. */
1545 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1546 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1547 		err = -EPIPE;
1548 		goto out;
1549 	}
1550 
1551 	if (sk->sk_state != SS_CONNECTED ||
1552 	    !vsock_addr_bound(&vsk->local_addr)) {
1553 		err = -ENOTCONN;
1554 		goto out;
1555 	}
1556 
1557 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1558 		err = -EDESTADDRREQ;
1559 		goto out;
1560 	}
1561 
1562 	/* Wait for room in the produce queue to enqueue our user's data. */
1563 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1564 
1565 	err = transport->notify_send_init(vsk, &send_data);
1566 	if (err < 0)
1567 		goto out;
1568 
1569 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1570 
1571 	while (total_written < len) {
1572 		ssize_t written;
1573 
1574 		while (vsock_stream_has_space(vsk) == 0 &&
1575 		       sk->sk_err == 0 &&
1576 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1577 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1578 
1579 			/* Don't wait for non-blocking sockets. */
1580 			if (timeout == 0) {
1581 				err = -EAGAIN;
1582 				goto out_wait;
1583 			}
1584 
1585 			err = transport->notify_send_pre_block(vsk, &send_data);
1586 			if (err < 0)
1587 				goto out_wait;
1588 
1589 			release_sock(sk);
1590 			timeout = schedule_timeout(timeout);
1591 			lock_sock(sk);
1592 			if (signal_pending(current)) {
1593 				err = sock_intr_errno(timeout);
1594 				goto out_wait;
1595 			} else if (timeout == 0) {
1596 				err = -EAGAIN;
1597 				goto out_wait;
1598 			}
1599 
1600 			prepare_to_wait(sk_sleep(sk), &wait,
1601 					TASK_INTERRUPTIBLE);
1602 		}
1603 
1604 		/* These checks occur both as part of and after the loop
1605 		 * conditional since we need to check before and after
1606 		 * sleeping.
1607 		 */
1608 		if (sk->sk_err) {
1609 			err = -sk->sk_err;
1610 			goto out_wait;
1611 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1612 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1613 			err = -EPIPE;
1614 			goto out_wait;
1615 		}
1616 
1617 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1618 		if (err < 0)
1619 			goto out_wait;
1620 
1621 		/* Note that enqueue will only write as many bytes as are free
1622 		 * in the produce queue, so we don't need to ensure len is
1623 		 * smaller than the queue size.  It is the caller's
1624 		 * responsibility to check how many bytes we were able to send.
1625 		 */
1626 
1627 		written = transport->stream_enqueue(
1628 				vsk, msg->msg_iov,
1629 				len - total_written);
1630 		if (written < 0) {
1631 			err = -ENOMEM;
1632 			goto out_wait;
1633 		}
1634 
1635 		total_written += written;
1636 
1637 		err = transport->notify_send_post_enqueue(
1638 				vsk, written, &send_data);
1639 		if (err < 0)
1640 			goto out_wait;
1641 
1642 	}
1643 
1644 out_wait:
1645 	if (total_written > 0)
1646 		err = total_written;
1647 	finish_wait(sk_sleep(sk), &wait);
1648 out:
1649 	release_sock(sk);
1650 	return err;
1651 }
1652 
1653 
1654 static int
vsock_stream_recvmsg(struct kiocb * kiocb,struct socket * sock,struct msghdr * msg,size_t len,int flags)1655 vsock_stream_recvmsg(struct kiocb *kiocb,
1656 		     struct socket *sock,
1657 		     struct msghdr *msg, size_t len, int flags)
1658 {
1659 	struct sock *sk;
1660 	struct vsock_sock *vsk;
1661 	int err;
1662 	size_t target;
1663 	ssize_t copied;
1664 	long timeout;
1665 	struct vsock_transport_recv_notify_data recv_data;
1666 
1667 	DEFINE_WAIT(wait);
1668 
1669 	sk = sock->sk;
1670 	vsk = vsock_sk(sk);
1671 	err = 0;
1672 
1673 	msg->msg_namelen = 0;
1674 
1675 	lock_sock(sk);
1676 
1677 	if (sk->sk_state != SS_CONNECTED) {
1678 		/* Recvmsg is supposed to return 0 if a peer performs an
1679 		 * orderly shutdown. Differentiate between that case and when a
1680 		 * peer has not connected or a local shutdown occured with the
1681 		 * SOCK_DONE flag.
1682 		 */
1683 		if (sock_flag(sk, SOCK_DONE))
1684 			err = 0;
1685 		else
1686 			err = -ENOTCONN;
1687 
1688 		goto out;
1689 	}
1690 
1691 	if (flags & MSG_OOB) {
1692 		err = -EOPNOTSUPP;
1693 		goto out;
1694 	}
1695 
1696 	/* We don't check peer_shutdown flag here since peer may actually shut
1697 	 * down, but there can be data in the queue that a local socket can
1698 	 * receive.
1699 	 */
1700 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1701 		err = 0;
1702 		goto out;
1703 	}
1704 
1705 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1706 	 * is not an error.  We may as well bail out now.
1707 	 */
1708 	if (!len) {
1709 		err = 0;
1710 		goto out;
1711 	}
1712 
1713 	/* We must not copy less than target bytes into the user's buffer
1714 	 * before returning successfully, so we wait for the consume queue to
1715 	 * have that much data to consume before dequeueing.  Note that this
1716 	 * makes it impossible to handle cases where target is greater than the
1717 	 * queue size.
1718 	 */
1719 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1720 	if (target >= transport->stream_rcvhiwat(vsk)) {
1721 		err = -ENOMEM;
1722 		goto out;
1723 	}
1724 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1725 	copied = 0;
1726 
1727 	err = transport->notify_recv_init(vsk, target, &recv_data);
1728 	if (err < 0)
1729 		goto out;
1730 
1731 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1732 
1733 	while (1) {
1734 		s64 ready = vsock_stream_has_data(vsk);
1735 
1736 		if (ready < 0) {
1737 			/* Invalid queue pair content. XXX This should be
1738 			 * changed to a connection reset in a later change.
1739 			 */
1740 
1741 			err = -ENOMEM;
1742 			goto out_wait;
1743 		} else if (ready > 0) {
1744 			ssize_t read;
1745 
1746 			err = transport->notify_recv_pre_dequeue(
1747 					vsk, target, &recv_data);
1748 			if (err < 0)
1749 				break;
1750 
1751 			read = transport->stream_dequeue(
1752 					vsk, msg->msg_iov,
1753 					len - copied, flags);
1754 			if (read < 0) {
1755 				err = -ENOMEM;
1756 				break;
1757 			}
1758 
1759 			copied += read;
1760 
1761 			err = transport->notify_recv_post_dequeue(
1762 					vsk, target, read,
1763 					!(flags & MSG_PEEK), &recv_data);
1764 			if (err < 0)
1765 				goto out_wait;
1766 
1767 			if (read >= target || flags & MSG_PEEK)
1768 				break;
1769 
1770 			target -= read;
1771 		} else {
1772 			if (sk->sk_err != 0 || (sk->sk_shutdown & RCV_SHUTDOWN)
1773 			    || (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1774 				break;
1775 			}
1776 			/* Don't wait for non-blocking sockets. */
1777 			if (timeout == 0) {
1778 				err = -EAGAIN;
1779 				break;
1780 			}
1781 
1782 			err = transport->notify_recv_pre_block(
1783 					vsk, target, &recv_data);
1784 			if (err < 0)
1785 				break;
1786 
1787 			release_sock(sk);
1788 			timeout = schedule_timeout(timeout);
1789 			lock_sock(sk);
1790 
1791 			if (signal_pending(current)) {
1792 				err = sock_intr_errno(timeout);
1793 				break;
1794 			} else if (timeout == 0) {
1795 				err = -EAGAIN;
1796 				break;
1797 			}
1798 
1799 			prepare_to_wait(sk_sleep(sk), &wait,
1800 					TASK_INTERRUPTIBLE);
1801 		}
1802 	}
1803 
1804 	if (sk->sk_err)
1805 		err = -sk->sk_err;
1806 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1807 		err = 0;
1808 
1809 	if (copied > 0) {
1810 		/* We only do these additional bookkeeping/notification steps
1811 		 * if we actually copied something out of the queue pair
1812 		 * instead of just peeking ahead.
1813 		 */
1814 
1815 		if (!(flags & MSG_PEEK)) {
1816 			/* If the other side has shutdown for sending and there
1817 			 * is nothing more to read, then modify the socket
1818 			 * state.
1819 			 */
1820 			if (vsk->peer_shutdown & SEND_SHUTDOWN) {
1821 				if (vsock_stream_has_data(vsk) <= 0) {
1822 					sk->sk_state = SS_UNCONNECTED;
1823 					sock_set_flag(sk, SOCK_DONE);
1824 					sk->sk_state_change(sk);
1825 				}
1826 			}
1827 		}
1828 		err = copied;
1829 	}
1830 
1831 out_wait:
1832 	finish_wait(sk_sleep(sk), &wait);
1833 out:
1834 	release_sock(sk);
1835 	return err;
1836 }
1837 
1838 static const struct proto_ops vsock_stream_ops = {
1839 	.family = PF_VSOCK,
1840 	.owner = THIS_MODULE,
1841 	.release = vsock_release,
1842 	.bind = vsock_bind,
1843 	.connect = vsock_stream_connect,
1844 	.socketpair = sock_no_socketpair,
1845 	.accept = vsock_accept,
1846 	.getname = vsock_getname,
1847 	.poll = vsock_poll,
1848 	.ioctl = sock_no_ioctl,
1849 	.listen = vsock_listen,
1850 	.shutdown = vsock_shutdown,
1851 	.setsockopt = vsock_stream_setsockopt,
1852 	.getsockopt = vsock_stream_getsockopt,
1853 	.sendmsg = vsock_stream_sendmsg,
1854 	.recvmsg = vsock_stream_recvmsg,
1855 	.mmap = sock_no_mmap,
1856 	.sendpage = sock_no_sendpage,
1857 };
1858 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)1859 static int vsock_create(struct net *net, struct socket *sock,
1860 			int protocol, int kern)
1861 {
1862 	if (!sock)
1863 		return -EINVAL;
1864 
1865 	if (protocol && protocol != PF_VSOCK)
1866 		return -EPROTONOSUPPORT;
1867 
1868 	switch (sock->type) {
1869 	case SOCK_DGRAM:
1870 		sock->ops = &vsock_dgram_ops;
1871 		break;
1872 	case SOCK_STREAM:
1873 		sock->ops = &vsock_stream_ops;
1874 		break;
1875 	default:
1876 		return -ESOCKTNOSUPPORT;
1877 	}
1878 
1879 	sock->state = SS_UNCONNECTED;
1880 
1881 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0) ? 0 : -ENOMEM;
1882 }
1883 
1884 static const struct net_proto_family vsock_family_ops = {
1885 	.family = AF_VSOCK,
1886 	.create = vsock_create,
1887 	.owner = THIS_MODULE,
1888 };
1889 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)1890 static long vsock_dev_do_ioctl(struct file *filp,
1891 			       unsigned int cmd, void __user *ptr)
1892 {
1893 	u32 __user *p = ptr;
1894 	int retval = 0;
1895 
1896 	switch (cmd) {
1897 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1898 		if (put_user(transport->get_local_cid(), p) != 0)
1899 			retval = -EFAULT;
1900 		break;
1901 
1902 	default:
1903 		pr_err("Unknown ioctl %d\n", cmd);
1904 		retval = -EINVAL;
1905 	}
1906 
1907 	return retval;
1908 }
1909 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1910 static long vsock_dev_ioctl(struct file *filp,
1911 			    unsigned int cmd, unsigned long arg)
1912 {
1913 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1914 }
1915 
1916 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1917 static long vsock_dev_compat_ioctl(struct file *filp,
1918 				   unsigned int cmd, unsigned long arg)
1919 {
1920 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1921 }
1922 #endif
1923 
1924 static const struct file_operations vsock_device_ops = {
1925 	.owner		= THIS_MODULE,
1926 	.unlocked_ioctl	= vsock_dev_ioctl,
1927 #ifdef CONFIG_COMPAT
1928 	.compat_ioctl	= vsock_dev_compat_ioctl,
1929 #endif
1930 	.open		= nonseekable_open,
1931 };
1932 
1933 static struct miscdevice vsock_device = {
1934 	.name		= "vsock",
1935 	.fops		= &vsock_device_ops,
1936 };
1937 
__vsock_core_init(void)1938 static int __vsock_core_init(void)
1939 {
1940 	int err;
1941 
1942 	vsock_init_tables();
1943 
1944 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1945 	err = misc_register(&vsock_device);
1946 	if (err) {
1947 		pr_err("Failed to register misc device\n");
1948 		return -ENOENT;
1949 	}
1950 
1951 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1952 	if (err) {
1953 		pr_err("Cannot register vsock protocol\n");
1954 		goto err_misc_deregister;
1955 	}
1956 
1957 	err = sock_register(&vsock_family_ops);
1958 	if (err) {
1959 		pr_err("could not register af_vsock (%d) address family: %d\n",
1960 		       AF_VSOCK, err);
1961 		goto err_unregister_proto;
1962 	}
1963 
1964 	return 0;
1965 
1966 err_unregister_proto:
1967 	proto_unregister(&vsock_proto);
1968 err_misc_deregister:
1969 	misc_deregister(&vsock_device);
1970 	return err;
1971 }
1972 
vsock_core_init(const struct vsock_transport * t)1973 int vsock_core_init(const struct vsock_transport *t)
1974 {
1975 	int retval = mutex_lock_interruptible(&vsock_register_mutex);
1976 	if (retval)
1977 		return retval;
1978 
1979 	if (transport) {
1980 		retval = -EBUSY;
1981 		goto out;
1982 	}
1983 
1984 	transport = t;
1985 	retval = __vsock_core_init();
1986 	if (retval)
1987 		transport = NULL;
1988 
1989 out:
1990 	mutex_unlock(&vsock_register_mutex);
1991 	return retval;
1992 }
1993 EXPORT_SYMBOL_GPL(vsock_core_init);
1994 
vsock_core_exit(void)1995 void vsock_core_exit(void)
1996 {
1997 	mutex_lock(&vsock_register_mutex);
1998 
1999 	misc_deregister(&vsock_device);
2000 	sock_unregister(AF_VSOCK);
2001 	proto_unregister(&vsock_proto);
2002 
2003 	/* We do not want the assignment below re-ordered. */
2004 	mb();
2005 	transport = NULL;
2006 
2007 	mutex_unlock(&vsock_register_mutex);
2008 }
2009 EXPORT_SYMBOL_GPL(vsock_core_exit);
2010 
2011 MODULE_AUTHOR("VMware, Inc.");
2012 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2013 MODULE_VERSION("1.0.0.0-k");
2014 MODULE_LICENSE("GPL v2");
2015