1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/prefetch.h>
16
17 #include "vxge-traffic.h"
18 #include "vxge-config.h"
19 #include "vxge-main.h"
20
21 /*
22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23 * @vp: Virtual Path handle.
24 *
25 * Enable vpath interrupts. The function is to be executed the last in
26 * vpath initialization sequence.
27 *
28 * See also: vxge_hw_vpath_intr_disable()
29 */
vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle * vp)30 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31 {
32 u64 val64;
33
34 struct __vxge_hw_virtualpath *vpath;
35 struct vxge_hw_vpath_reg __iomem *vp_reg;
36 enum vxge_hw_status status = VXGE_HW_OK;
37 if (vp == NULL) {
38 status = VXGE_HW_ERR_INVALID_HANDLE;
39 goto exit;
40 }
41
42 vpath = vp->vpath;
43
44 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
45 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
46 goto exit;
47 }
48
49 vp_reg = vpath->vp_reg;
50
51 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
52
53 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
54 &vp_reg->general_errors_reg);
55
56 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
57 &vp_reg->pci_config_errors_reg);
58
59 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
60 &vp_reg->mrpcim_to_vpath_alarm_reg);
61
62 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
63 &vp_reg->srpcim_to_vpath_alarm_reg);
64
65 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
66 &vp_reg->vpath_ppif_int_status);
67
68 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
69 &vp_reg->srpcim_msg_to_vpath_reg);
70
71 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
72 &vp_reg->vpath_pcipif_int_status);
73
74 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
75 &vp_reg->prc_alarm_reg);
76
77 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
78 &vp_reg->wrdma_alarm_status);
79
80 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
81 &vp_reg->asic_ntwk_vp_err_reg);
82
83 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
84 &vp_reg->xgmac_vp_int_status);
85
86 val64 = readq(&vp_reg->vpath_general_int_status);
87
88 /* Mask unwanted interrupts */
89
90 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
91 &vp_reg->vpath_pcipif_int_mask);
92
93 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
94 &vp_reg->srpcim_msg_to_vpath_mask);
95
96 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
97 &vp_reg->srpcim_to_vpath_alarm_mask);
98
99 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
100 &vp_reg->mrpcim_to_vpath_alarm_mask);
101
102 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
103 &vp_reg->pci_config_errors_mask);
104
105 /* Unmask the individual interrupts */
106
107 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
110 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
111 &vp_reg->general_errors_mask);
112
113 __vxge_hw_pio_mem_write32_upper(
114 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
119 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
120 &vp_reg->kdfcctl_errors_mask);
121
122 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
123
124 __vxge_hw_pio_mem_write32_upper(
125 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
126 &vp_reg->prc_alarm_mask);
127
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
129 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
130
131 if (vpath->hldev->first_vp_id != vpath->vp_id)
132 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
133 &vp_reg->asic_ntwk_vp_err_mask);
134 else
135 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
137 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
138 &vp_reg->asic_ntwk_vp_err_mask);
139
140 __vxge_hw_pio_mem_write32_upper(0,
141 &vp_reg->vpath_general_int_mask);
142 exit:
143 return status;
144
145 }
146
147 /*
148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
149 * @vp: Virtual Path handle.
150 *
151 * Disable vpath interrupts. The function is to be executed the last in
152 * vpath initialization sequence.
153 *
154 * See also: vxge_hw_vpath_intr_enable()
155 */
vxge_hw_vpath_intr_disable(struct __vxge_hw_vpath_handle * vp)156 enum vxge_hw_status vxge_hw_vpath_intr_disable(
157 struct __vxge_hw_vpath_handle *vp)
158 {
159 u64 val64;
160
161 struct __vxge_hw_virtualpath *vpath;
162 enum vxge_hw_status status = VXGE_HW_OK;
163 struct vxge_hw_vpath_reg __iomem *vp_reg;
164 if (vp == NULL) {
165 status = VXGE_HW_ERR_INVALID_HANDLE;
166 goto exit;
167 }
168
169 vpath = vp->vpath;
170
171 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
172 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
173 goto exit;
174 }
175 vp_reg = vpath->vp_reg;
176
177 __vxge_hw_pio_mem_write32_upper(
178 (u32)VXGE_HW_INTR_MASK_ALL,
179 &vp_reg->vpath_general_int_mask);
180
181 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
182
183 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
184
185 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
186 &vp_reg->general_errors_mask);
187
188 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
189 &vp_reg->pci_config_errors_mask);
190
191 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
192 &vp_reg->mrpcim_to_vpath_alarm_mask);
193
194 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
195 &vp_reg->srpcim_to_vpath_alarm_mask);
196
197 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
198 &vp_reg->vpath_ppif_int_mask);
199
200 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
201 &vp_reg->srpcim_msg_to_vpath_mask);
202
203 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
204 &vp_reg->vpath_pcipif_int_mask);
205
206 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
207 &vp_reg->wrdma_alarm_mask);
208
209 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
210 &vp_reg->prc_alarm_mask);
211
212 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
213 &vp_reg->xgmac_vp_int_mask);
214
215 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
216 &vp_reg->asic_ntwk_vp_err_mask);
217
218 exit:
219 return status;
220 }
221
vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo * fifo)222 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
223 {
224 struct vxge_hw_vpath_reg __iomem *vp_reg;
225 struct vxge_hw_vp_config *config;
226 u64 val64;
227
228 if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
229 return;
230
231 vp_reg = fifo->vp_reg;
232 config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
233
234 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
235 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
236 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
237 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
238 fifo->tim_tti_cfg1_saved = val64;
239 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
240 }
241 }
242
vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring * ring)243 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
244 {
245 u64 val64 = ring->tim_rti_cfg1_saved;
246
247 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
248 ring->tim_rti_cfg1_saved = val64;
249 writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
250 }
251
vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo * fifo)252 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
253 {
254 u64 val64 = fifo->tim_tti_cfg3_saved;
255 u64 timer = (fifo->rtimer * 1000) / 272;
256
257 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
258 if (timer)
259 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
260 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
261
262 writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
263 /* tti_cfg3_saved is not updated again because it is
264 * initialized at one place only - init time.
265 */
266 }
267
vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring * ring)268 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
269 {
270 u64 val64 = ring->tim_rti_cfg3_saved;
271 u64 timer = (ring->rtimer * 1000) / 272;
272
273 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
274 if (timer)
275 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
276 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
277
278 writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
279 /* rti_cfg3_saved is not updated again because it is
280 * initialized at one place only - init time.
281 */
282 }
283
284 /**
285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
286 * @channeh: Channel for rx or tx handle
287 * @msix_id: MSIX ID
288 *
289 * The function masks the msix interrupt for the given msix_id
290 *
291 * Returns: 0
292 */
vxge_hw_channel_msix_mask(struct __vxge_hw_channel * channel,int msix_id)293 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
294 {
295
296 __vxge_hw_pio_mem_write32_upper(
297 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
298 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
299 }
300
301 /**
302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
303 * @channeh: Channel for rx or tx handle
304 * @msix_id: MSI ID
305 *
306 * The function unmasks the msix interrupt for the given msix_id
307 *
308 * Returns: 0
309 */
310 void
vxge_hw_channel_msix_unmask(struct __vxge_hw_channel * channel,int msix_id)311 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
312 {
313
314 __vxge_hw_pio_mem_write32_upper(
315 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
316 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
317 }
318
319 /**
320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
321 * @channel: Channel for rx or tx handle
322 * @msix_id: MSI ID
323 *
324 * The function unmasks the msix interrupt for the given msix_id
325 * if configured in MSIX oneshot mode
326 *
327 * Returns: 0
328 */
vxge_hw_channel_msix_clear(struct __vxge_hw_channel * channel,int msix_id)329 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
330 {
331 __vxge_hw_pio_mem_write32_upper(
332 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
333 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
334 }
335
336 /**
337 * vxge_hw_device_set_intr_type - Updates the configuration
338 * with new interrupt type.
339 * @hldev: HW device handle.
340 * @intr_mode: New interrupt type
341 */
vxge_hw_device_set_intr_type(struct __vxge_hw_device * hldev,u32 intr_mode)342 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
343 {
344
345 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
346 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
347 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
348 (intr_mode != VXGE_HW_INTR_MODE_DEF))
349 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
350
351 hldev->config.intr_mode = intr_mode;
352 return intr_mode;
353 }
354
355 /**
356 * vxge_hw_device_intr_enable - Enable interrupts.
357 * @hldev: HW device handle.
358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
359 * the type(s) of interrupts to enable.
360 *
361 * Enable Titan interrupts. The function is to be executed the last in
362 * Titan initialization sequence.
363 *
364 * See also: vxge_hw_device_intr_disable()
365 */
vxge_hw_device_intr_enable(struct __vxge_hw_device * hldev)366 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
367 {
368 u32 i;
369 u64 val64;
370 u32 val32;
371
372 vxge_hw_device_mask_all(hldev);
373
374 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
375
376 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
377 continue;
378
379 vxge_hw_vpath_intr_enable(
380 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
381 }
382
383 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
384 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
385 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
386
387 if (val64 != 0) {
388 writeq(val64, &hldev->common_reg->tim_int_status0);
389
390 writeq(~val64, &hldev->common_reg->tim_int_mask0);
391 }
392
393 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
394 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
395
396 if (val32 != 0) {
397 __vxge_hw_pio_mem_write32_upper(val32,
398 &hldev->common_reg->tim_int_status1);
399
400 __vxge_hw_pio_mem_write32_upper(~val32,
401 &hldev->common_reg->tim_int_mask1);
402 }
403 }
404
405 val64 = readq(&hldev->common_reg->titan_general_int_status);
406
407 vxge_hw_device_unmask_all(hldev);
408 }
409
410 /**
411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
412 * @hldev: HW device handle.
413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
414 * the type(s) of interrupts to disable.
415 *
416 * Disable Titan interrupts.
417 *
418 * See also: vxge_hw_device_intr_enable()
419 */
vxge_hw_device_intr_disable(struct __vxge_hw_device * hldev)420 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
421 {
422 u32 i;
423
424 vxge_hw_device_mask_all(hldev);
425
426 /* mask all the tim interrupts */
427 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
428 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
429 &hldev->common_reg->tim_int_mask1);
430
431 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
432
433 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
434 continue;
435
436 vxge_hw_vpath_intr_disable(
437 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
438 }
439 }
440
441 /**
442 * vxge_hw_device_mask_all - Mask all device interrupts.
443 * @hldev: HW device handle.
444 *
445 * Mask all device interrupts.
446 *
447 * See also: vxge_hw_device_unmask_all()
448 */
vxge_hw_device_mask_all(struct __vxge_hw_device * hldev)449 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
450 {
451 u64 val64;
452
453 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
454 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
455
456 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
457 &hldev->common_reg->titan_mask_all_int);
458 }
459
460 /**
461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
462 * @hldev: HW device handle.
463 *
464 * Unmask all device interrupts.
465 *
466 * See also: vxge_hw_device_mask_all()
467 */
vxge_hw_device_unmask_all(struct __vxge_hw_device * hldev)468 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
469 {
470 u64 val64 = 0;
471
472 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
473 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
474
475 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
476 &hldev->common_reg->titan_mask_all_int);
477 }
478
479 /**
480 * vxge_hw_device_flush_io - Flush io writes.
481 * @hldev: HW device handle.
482 *
483 * The function performs a read operation to flush io writes.
484 *
485 * Returns: void
486 */
vxge_hw_device_flush_io(struct __vxge_hw_device * hldev)487 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
488 {
489 u32 val32;
490
491 val32 = readl(&hldev->common_reg->titan_general_int_status);
492 }
493
494 /**
495 * __vxge_hw_device_handle_error - Handle error
496 * @hldev: HW device
497 * @vp_id: Vpath Id
498 * @type: Error type. Please see enum vxge_hw_event{}
499 *
500 * Handle error.
501 */
502 static enum vxge_hw_status
__vxge_hw_device_handle_error(struct __vxge_hw_device * hldev,u32 vp_id,enum vxge_hw_event type)503 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
504 enum vxge_hw_event type)
505 {
506 switch (type) {
507 case VXGE_HW_EVENT_UNKNOWN:
508 break;
509 case VXGE_HW_EVENT_RESET_START:
510 case VXGE_HW_EVENT_RESET_COMPLETE:
511 case VXGE_HW_EVENT_LINK_DOWN:
512 case VXGE_HW_EVENT_LINK_UP:
513 goto out;
514 case VXGE_HW_EVENT_ALARM_CLEARED:
515 goto out;
516 case VXGE_HW_EVENT_ECCERR:
517 case VXGE_HW_EVENT_MRPCIM_ECCERR:
518 goto out;
519 case VXGE_HW_EVENT_FIFO_ERR:
520 case VXGE_HW_EVENT_VPATH_ERR:
521 case VXGE_HW_EVENT_CRITICAL_ERR:
522 case VXGE_HW_EVENT_SERR:
523 break;
524 case VXGE_HW_EVENT_SRPCIM_SERR:
525 case VXGE_HW_EVENT_MRPCIM_SERR:
526 goto out;
527 case VXGE_HW_EVENT_SLOT_FREEZE:
528 break;
529 default:
530 vxge_assert(0);
531 goto out;
532 }
533
534 /* notify driver */
535 if (hldev->uld_callbacks->crit_err)
536 hldev->uld_callbacks->crit_err(hldev,
537 type, vp_id);
538 out:
539
540 return VXGE_HW_OK;
541 }
542
543 /*
544 * __vxge_hw_device_handle_link_down_ind
545 * @hldev: HW device handle.
546 *
547 * Link down indication handler. The function is invoked by HW when
548 * Titan indicates that the link is down.
549 */
550 static enum vxge_hw_status
__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device * hldev)551 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
552 {
553 /*
554 * If the previous link state is not down, return.
555 */
556 if (hldev->link_state == VXGE_HW_LINK_DOWN)
557 goto exit;
558
559 hldev->link_state = VXGE_HW_LINK_DOWN;
560
561 /* notify driver */
562 if (hldev->uld_callbacks->link_down)
563 hldev->uld_callbacks->link_down(hldev);
564 exit:
565 return VXGE_HW_OK;
566 }
567
568 /*
569 * __vxge_hw_device_handle_link_up_ind
570 * @hldev: HW device handle.
571 *
572 * Link up indication handler. The function is invoked by HW when
573 * Titan indicates that the link is up for programmable amount of time.
574 */
575 static enum vxge_hw_status
__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device * hldev)576 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
577 {
578 /*
579 * If the previous link state is not down, return.
580 */
581 if (hldev->link_state == VXGE_HW_LINK_UP)
582 goto exit;
583
584 hldev->link_state = VXGE_HW_LINK_UP;
585
586 /* notify driver */
587 if (hldev->uld_callbacks->link_up)
588 hldev->uld_callbacks->link_up(hldev);
589 exit:
590 return VXGE_HW_OK;
591 }
592
593 /*
594 * __vxge_hw_vpath_alarm_process - Process Alarms.
595 * @vpath: Virtual Path.
596 * @skip_alarms: Do not clear the alarms
597 *
598 * Process vpath alarms.
599 *
600 */
601 static enum vxge_hw_status
__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath * vpath,u32 skip_alarms)602 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
603 u32 skip_alarms)
604 {
605 u64 val64;
606 u64 alarm_status;
607 u64 pic_status;
608 struct __vxge_hw_device *hldev = NULL;
609 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
610 u64 mask64;
611 struct vxge_hw_vpath_stats_sw_info *sw_stats;
612 struct vxge_hw_vpath_reg __iomem *vp_reg;
613
614 if (vpath == NULL) {
615 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
616 alarm_event);
617 goto out2;
618 }
619
620 hldev = vpath->hldev;
621 vp_reg = vpath->vp_reg;
622 alarm_status = readq(&vp_reg->vpath_general_int_status);
623
624 if (alarm_status == VXGE_HW_ALL_FOXES) {
625 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
626 alarm_event);
627 goto out;
628 }
629
630 sw_stats = vpath->sw_stats;
631
632 if (alarm_status & ~(
633 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
634 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
635 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
636 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
637 sw_stats->error_stats.unknown_alarms++;
638
639 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
640 alarm_event);
641 goto out;
642 }
643
644 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
645
646 val64 = readq(&vp_reg->xgmac_vp_int_status);
647
648 if (val64 &
649 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
650
651 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
652
653 if (((val64 &
654 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
655 (!(val64 &
656 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
657 ((val64 &
658 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
659 (!(val64 &
660 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
661 ))) {
662 sw_stats->error_stats.network_sustained_fault++;
663
664 writeq(
665 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
666 &vp_reg->asic_ntwk_vp_err_mask);
667
668 __vxge_hw_device_handle_link_down_ind(hldev);
669 alarm_event = VXGE_HW_SET_LEVEL(
670 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
671 }
672
673 if (((val64 &
674 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
675 (!(val64 &
676 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
677 ((val64 &
678 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
679 (!(val64 &
680 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
681 ))) {
682
683 sw_stats->error_stats.network_sustained_ok++;
684
685 writeq(
686 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
687 &vp_reg->asic_ntwk_vp_err_mask);
688
689 __vxge_hw_device_handle_link_up_ind(hldev);
690 alarm_event = VXGE_HW_SET_LEVEL(
691 VXGE_HW_EVENT_LINK_UP, alarm_event);
692 }
693
694 writeq(VXGE_HW_INTR_MASK_ALL,
695 &vp_reg->asic_ntwk_vp_err_reg);
696
697 alarm_event = VXGE_HW_SET_LEVEL(
698 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
699
700 if (skip_alarms)
701 return VXGE_HW_OK;
702 }
703 }
704
705 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
706
707 pic_status = readq(&vp_reg->vpath_ppif_int_status);
708
709 if (pic_status &
710 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
711
712 val64 = readq(&vp_reg->general_errors_reg);
713 mask64 = readq(&vp_reg->general_errors_mask);
714
715 if ((val64 &
716 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
717 ~mask64) {
718 sw_stats->error_stats.ini_serr_det++;
719
720 alarm_event = VXGE_HW_SET_LEVEL(
721 VXGE_HW_EVENT_SERR, alarm_event);
722 }
723
724 if ((val64 &
725 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
726 ~mask64) {
727 sw_stats->error_stats.dblgen_fifo0_overflow++;
728
729 alarm_event = VXGE_HW_SET_LEVEL(
730 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
731 }
732
733 if ((val64 &
734 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
735 ~mask64)
736 sw_stats->error_stats.statsb_pif_chain_error++;
737
738 if ((val64 &
739 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
740 ~mask64)
741 sw_stats->error_stats.statsb_drop_timeout++;
742
743 if ((val64 &
744 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
745 ~mask64)
746 sw_stats->error_stats.target_illegal_access++;
747
748 if (!skip_alarms) {
749 writeq(VXGE_HW_INTR_MASK_ALL,
750 &vp_reg->general_errors_reg);
751 alarm_event = VXGE_HW_SET_LEVEL(
752 VXGE_HW_EVENT_ALARM_CLEARED,
753 alarm_event);
754 }
755 }
756
757 if (pic_status &
758 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
759
760 val64 = readq(&vp_reg->kdfcctl_errors_reg);
761 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
762
763 if ((val64 &
764 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
765 ~mask64) {
766 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
767
768 alarm_event = VXGE_HW_SET_LEVEL(
769 VXGE_HW_EVENT_FIFO_ERR,
770 alarm_event);
771 }
772
773 if ((val64 &
774 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
775 ~mask64) {
776 sw_stats->error_stats.kdfcctl_fifo0_poison++;
777
778 alarm_event = VXGE_HW_SET_LEVEL(
779 VXGE_HW_EVENT_FIFO_ERR,
780 alarm_event);
781 }
782
783 if ((val64 &
784 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
785 ~mask64) {
786 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
787
788 alarm_event = VXGE_HW_SET_LEVEL(
789 VXGE_HW_EVENT_FIFO_ERR,
790 alarm_event);
791 }
792
793 if (!skip_alarms) {
794 writeq(VXGE_HW_INTR_MASK_ALL,
795 &vp_reg->kdfcctl_errors_reg);
796 alarm_event = VXGE_HW_SET_LEVEL(
797 VXGE_HW_EVENT_ALARM_CLEARED,
798 alarm_event);
799 }
800 }
801
802 }
803
804 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
805
806 val64 = readq(&vp_reg->wrdma_alarm_status);
807
808 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
809
810 val64 = readq(&vp_reg->prc_alarm_reg);
811 mask64 = readq(&vp_reg->prc_alarm_mask);
812
813 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
814 ~mask64)
815 sw_stats->error_stats.prc_ring_bumps++;
816
817 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
818 ~mask64) {
819 sw_stats->error_stats.prc_rxdcm_sc_err++;
820
821 alarm_event = VXGE_HW_SET_LEVEL(
822 VXGE_HW_EVENT_VPATH_ERR,
823 alarm_event);
824 }
825
826 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
827 & ~mask64) {
828 sw_stats->error_stats.prc_rxdcm_sc_abort++;
829
830 alarm_event = VXGE_HW_SET_LEVEL(
831 VXGE_HW_EVENT_VPATH_ERR,
832 alarm_event);
833 }
834
835 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
836 & ~mask64) {
837 sw_stats->error_stats.prc_quanta_size_err++;
838
839 alarm_event = VXGE_HW_SET_LEVEL(
840 VXGE_HW_EVENT_VPATH_ERR,
841 alarm_event);
842 }
843
844 if (!skip_alarms) {
845 writeq(VXGE_HW_INTR_MASK_ALL,
846 &vp_reg->prc_alarm_reg);
847 alarm_event = VXGE_HW_SET_LEVEL(
848 VXGE_HW_EVENT_ALARM_CLEARED,
849 alarm_event);
850 }
851 }
852 }
853 out:
854 hldev->stats.sw_dev_err_stats.vpath_alarms++;
855 out2:
856 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
857 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
858 return VXGE_HW_OK;
859
860 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
861
862 if (alarm_event == VXGE_HW_EVENT_SERR)
863 return VXGE_HW_ERR_CRITICAL;
864
865 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
866 VXGE_HW_ERR_SLOT_FREEZE :
867 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
868 VXGE_HW_ERR_VPATH;
869 }
870
871 /**
872 * vxge_hw_device_begin_irq - Begin IRQ processing.
873 * @hldev: HW device handle.
874 * @skip_alarms: Do not clear the alarms
875 * @reason: "Reason" for the interrupt, the value of Titan's
876 * general_int_status register.
877 *
878 * The function performs two actions, It first checks whether (shared IRQ) the
879 * interrupt was raised by the device. Next, it masks the device interrupts.
880 *
881 * Note:
882 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
883 * bridge. Therefore, two back-to-back interrupts are potentially possible.
884 *
885 * Returns: 0, if the interrupt is not "ours" (note that in this case the
886 * device remain enabled).
887 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
888 * status.
889 */
vxge_hw_device_begin_irq(struct __vxge_hw_device * hldev,u32 skip_alarms,u64 * reason)890 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
891 u32 skip_alarms, u64 *reason)
892 {
893 u32 i;
894 u64 val64;
895 u64 adapter_status;
896 u64 vpath_mask;
897 enum vxge_hw_status ret = VXGE_HW_OK;
898
899 val64 = readq(&hldev->common_reg->titan_general_int_status);
900
901 if (unlikely(!val64)) {
902 /* not Titan interrupt */
903 *reason = 0;
904 ret = VXGE_HW_ERR_WRONG_IRQ;
905 goto exit;
906 }
907
908 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
909
910 adapter_status = readq(&hldev->common_reg->adapter_status);
911
912 if (adapter_status == VXGE_HW_ALL_FOXES) {
913
914 __vxge_hw_device_handle_error(hldev,
915 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
916 *reason = 0;
917 ret = VXGE_HW_ERR_SLOT_FREEZE;
918 goto exit;
919 }
920 }
921
922 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
923
924 *reason = val64;
925
926 vpath_mask = hldev->vpaths_deployed >>
927 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
928
929 if (val64 &
930 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
931 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
932
933 return VXGE_HW_OK;
934 }
935
936 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
937
938 if (unlikely(val64 &
939 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
940
941 enum vxge_hw_status error_level = VXGE_HW_OK;
942
943 hldev->stats.sw_dev_err_stats.vpath_alarms++;
944
945 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
946
947 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
948 continue;
949
950 ret = __vxge_hw_vpath_alarm_process(
951 &hldev->virtual_paths[i], skip_alarms);
952
953 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
954
955 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
956 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
957 break;
958 }
959
960 ret = error_level;
961 }
962 exit:
963 return ret;
964 }
965
966 /**
967 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
968 * condition that has caused the Tx and RX interrupt.
969 * @hldev: HW device.
970 *
971 * Acknowledge (that is, clear) the condition that has caused
972 * the Tx and Rx interrupt.
973 * See also: vxge_hw_device_begin_irq(),
974 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
975 */
vxge_hw_device_clear_tx_rx(struct __vxge_hw_device * hldev)976 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
977 {
978
979 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
980 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
981 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
982 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
983 &hldev->common_reg->tim_int_status0);
984 }
985
986 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
987 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
988 __vxge_hw_pio_mem_write32_upper(
989 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
990 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
991 &hldev->common_reg->tim_int_status1);
992 }
993 }
994
995 /*
996 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
997 * @channel: Channel
998 * @dtrh: Buffer to return the DTR pointer
999 *
1000 * Allocates a dtr from the reserve array. If the reserve array is empty,
1001 * it swaps the reserve and free arrays.
1002 *
1003 */
1004 static enum vxge_hw_status
vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel * channel,void ** dtrh)1005 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1006 {
1007 void **tmp_arr;
1008
1009 if (channel->reserve_ptr - channel->reserve_top > 0) {
1010 _alloc_after_swap:
1011 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1012
1013 return VXGE_HW_OK;
1014 }
1015
1016 /* switch between empty and full arrays */
1017
1018 /* the idea behind such a design is that by having free and reserved
1019 * arrays separated we basically separated irq and non-irq parts.
1020 * i.e. no additional lock need to be done when we free a resource */
1021
1022 if (channel->length - channel->free_ptr > 0) {
1023
1024 tmp_arr = channel->reserve_arr;
1025 channel->reserve_arr = channel->free_arr;
1026 channel->free_arr = tmp_arr;
1027 channel->reserve_ptr = channel->length;
1028 channel->reserve_top = channel->free_ptr;
1029 channel->free_ptr = channel->length;
1030
1031 channel->stats->reserve_free_swaps_cnt++;
1032
1033 goto _alloc_after_swap;
1034 }
1035
1036 channel->stats->full_cnt++;
1037
1038 *dtrh = NULL;
1039 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1040 }
1041
1042 /*
1043 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1044 * @channelh: Channel
1045 * @dtrh: DTR pointer
1046 *
1047 * Posts a dtr to work array.
1048 *
1049 */
1050 static void
vxge_hw_channel_dtr_post(struct __vxge_hw_channel * channel,void * dtrh)1051 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1052 {
1053 vxge_assert(channel->work_arr[channel->post_index] == NULL);
1054
1055 channel->work_arr[channel->post_index++] = dtrh;
1056
1057 /* wrap-around */
1058 if (channel->post_index == channel->length)
1059 channel->post_index = 0;
1060 }
1061
1062 /*
1063 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1064 * @channel: Channel
1065 * @dtr: Buffer to return the next completed DTR pointer
1066 *
1067 * Returns the next completed dtr with out removing it from work array
1068 *
1069 */
1070 void
vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel * channel,void ** dtrh)1071 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1072 {
1073 vxge_assert(channel->compl_index < channel->length);
1074
1075 *dtrh = channel->work_arr[channel->compl_index];
1076 prefetch(*dtrh);
1077 }
1078
1079 /*
1080 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1081 * @channel: Channel handle
1082 *
1083 * Removes the next completed dtr from work array
1084 *
1085 */
vxge_hw_channel_dtr_complete(struct __vxge_hw_channel * channel)1086 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1087 {
1088 channel->work_arr[channel->compl_index] = NULL;
1089
1090 /* wrap-around */
1091 if (++channel->compl_index == channel->length)
1092 channel->compl_index = 0;
1093
1094 channel->stats->total_compl_cnt++;
1095 }
1096
1097 /*
1098 * vxge_hw_channel_dtr_free - Frees a dtr
1099 * @channel: Channel handle
1100 * @dtr: DTR pointer
1101 *
1102 * Returns the dtr to free array
1103 *
1104 */
vxge_hw_channel_dtr_free(struct __vxge_hw_channel * channel,void * dtrh)1105 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1106 {
1107 channel->free_arr[--channel->free_ptr] = dtrh;
1108 }
1109
1110 /*
1111 * vxge_hw_channel_dtr_count
1112 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1113 *
1114 * Retrieve number of DTRs available. This function can not be called
1115 * from data path. ring_initial_replenishi() is the only user.
1116 */
vxge_hw_channel_dtr_count(struct __vxge_hw_channel * channel)1117 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1118 {
1119 return (channel->reserve_ptr - channel->reserve_top) +
1120 (channel->length - channel->free_ptr);
1121 }
1122
1123 /**
1124 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
1125 * @ring: Handle to the ring object used for receive
1126 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1127 * with a valid handle.
1128 *
1129 * Reserve Rx descriptor for the subsequent filling-in driver
1130 * and posting on the corresponding channel (@channelh)
1131 * via vxge_hw_ring_rxd_post().
1132 *
1133 * Returns: VXGE_HW_OK - success.
1134 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1135 *
1136 */
vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring * ring,void ** rxdh)1137 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1138 void **rxdh)
1139 {
1140 enum vxge_hw_status status;
1141 struct __vxge_hw_channel *channel;
1142
1143 channel = &ring->channel;
1144
1145 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1146
1147 if (status == VXGE_HW_OK) {
1148 struct vxge_hw_ring_rxd_1 *rxdp =
1149 (struct vxge_hw_ring_rxd_1 *)*rxdh;
1150
1151 rxdp->control_0 = rxdp->control_1 = 0;
1152 }
1153
1154 return status;
1155 }
1156
1157 /**
1158 * vxge_hw_ring_rxd_free - Free descriptor.
1159 * @ring: Handle to the ring object used for receive
1160 * @rxdh: Descriptor handle.
1161 *
1162 * Free the reserved descriptor. This operation is "symmetrical" to
1163 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1164 * lifecycle.
1165 *
1166 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1167 * be:
1168 *
1169 * - reserved (vxge_hw_ring_rxd_reserve);
1170 *
1171 * - posted (vxge_hw_ring_rxd_post);
1172 *
1173 * - completed (vxge_hw_ring_rxd_next_completed);
1174 *
1175 * - and recycled again (vxge_hw_ring_rxd_free).
1176 *
1177 * For alternative state transitions and more details please refer to
1178 * the design doc.
1179 *
1180 */
vxge_hw_ring_rxd_free(struct __vxge_hw_ring * ring,void * rxdh)1181 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1182 {
1183 struct __vxge_hw_channel *channel;
1184
1185 channel = &ring->channel;
1186
1187 vxge_hw_channel_dtr_free(channel, rxdh);
1188
1189 }
1190
1191 /**
1192 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1193 * @ring: Handle to the ring object used for receive
1194 * @rxdh: Descriptor handle.
1195 *
1196 * This routine prepares a rxd and posts
1197 */
vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring * ring,void * rxdh)1198 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1199 {
1200 struct __vxge_hw_channel *channel;
1201
1202 channel = &ring->channel;
1203
1204 vxge_hw_channel_dtr_post(channel, rxdh);
1205 }
1206
1207 /**
1208 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1209 * @ring: Handle to the ring object used for receive
1210 * @rxdh: Descriptor handle.
1211 *
1212 * Processes rxd after post
1213 */
vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring * ring,void * rxdh)1214 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1215 {
1216 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1217 struct __vxge_hw_channel *channel;
1218
1219 channel = &ring->channel;
1220
1221 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1222
1223 if (ring->stats->common_stats.usage_cnt > 0)
1224 ring->stats->common_stats.usage_cnt--;
1225 }
1226
1227 /**
1228 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1229 * @ring: Handle to the ring object used for receive
1230 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1231 *
1232 * Post descriptor on the ring.
1233 * Prior to posting the descriptor should be filled in accordance with
1234 * Host/Titan interface specification for a given service (LL, etc.).
1235 *
1236 */
vxge_hw_ring_rxd_post(struct __vxge_hw_ring * ring,void * rxdh)1237 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1238 {
1239 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1240 struct __vxge_hw_channel *channel;
1241
1242 channel = &ring->channel;
1243
1244 wmb();
1245 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1246
1247 vxge_hw_channel_dtr_post(channel, rxdh);
1248
1249 if (ring->stats->common_stats.usage_cnt > 0)
1250 ring->stats->common_stats.usage_cnt--;
1251 }
1252
1253 /**
1254 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1255 * @ring: Handle to the ring object used for receive
1256 * @rxdh: Descriptor handle.
1257 *
1258 * Processes rxd after post with memory barrier.
1259 */
vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring * ring,void * rxdh)1260 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1261 {
1262 wmb();
1263 vxge_hw_ring_rxd_post_post(ring, rxdh);
1264 }
1265
1266 /**
1267 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1268 * @ring: Handle to the ring object used for receive
1269 * @rxdh: Descriptor handle. Returned by HW.
1270 * @t_code: Transfer code, as per Titan User Guide,
1271 * Receive Descriptor Format. Returned by HW.
1272 *
1273 * Retrieve the _next_ completed descriptor.
1274 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1275 * driver of new completed descriptors. After that
1276 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1277 * completions (the very first completion is passed by HW via
1278 * vxge_hw_ring_callback_f).
1279 *
1280 * Implementation-wise, the driver is free to call
1281 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1282 * ring callback, or in a deferred fashion and separate (from HW)
1283 * context.
1284 *
1285 * Non-zero @t_code means failure to fill-in receive buffer(s)
1286 * of the descriptor.
1287 * For instance, parity error detected during the data transfer.
1288 * In this case Titan will complete the descriptor and indicate
1289 * for the host that the received data is not to be used.
1290 * For details please refer to Titan User Guide.
1291 *
1292 * Returns: VXGE_HW_OK - success.
1293 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1294 * are currently available for processing.
1295 *
1296 * See also: vxge_hw_ring_callback_f{},
1297 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1298 */
vxge_hw_ring_rxd_next_completed(struct __vxge_hw_ring * ring,void ** rxdh,u8 * t_code)1299 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1300 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1301 {
1302 struct __vxge_hw_channel *channel;
1303 struct vxge_hw_ring_rxd_1 *rxdp;
1304 enum vxge_hw_status status = VXGE_HW_OK;
1305 u64 control_0, own;
1306
1307 channel = &ring->channel;
1308
1309 vxge_hw_channel_dtr_try_complete(channel, rxdh);
1310
1311 rxdp = *rxdh;
1312 if (rxdp == NULL) {
1313 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1314 goto exit;
1315 }
1316
1317 control_0 = rxdp->control_0;
1318 own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1319 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1320
1321 /* check whether it is not the end */
1322 if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1323
1324 vxge_assert((rxdp)->host_control !=
1325 0);
1326
1327 ++ring->cmpl_cnt;
1328 vxge_hw_channel_dtr_complete(channel);
1329
1330 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1331
1332 ring->stats->common_stats.usage_cnt++;
1333 if (ring->stats->common_stats.usage_max <
1334 ring->stats->common_stats.usage_cnt)
1335 ring->stats->common_stats.usage_max =
1336 ring->stats->common_stats.usage_cnt;
1337
1338 status = VXGE_HW_OK;
1339 goto exit;
1340 }
1341
1342 /* reset it. since we don't want to return
1343 * garbage to the driver */
1344 *rxdh = NULL;
1345 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1346 exit:
1347 return status;
1348 }
1349
1350 /**
1351 * vxge_hw_ring_handle_tcode - Handle transfer code.
1352 * @ring: Handle to the ring object used for receive
1353 * @rxdh: Descriptor handle.
1354 * @t_code: One of the enumerated (and documented in the Titan user guide)
1355 * "transfer codes".
1356 *
1357 * Handle descriptor's transfer code. The latter comes with each completed
1358 * descriptor.
1359 *
1360 * Returns: one of the enum vxge_hw_status{} enumerated types.
1361 * VXGE_HW_OK - for success.
1362 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1363 */
vxge_hw_ring_handle_tcode(struct __vxge_hw_ring * ring,void * rxdh,u8 t_code)1364 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1365 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1366 {
1367 struct __vxge_hw_channel *channel;
1368 enum vxge_hw_status status = VXGE_HW_OK;
1369
1370 channel = &ring->channel;
1371
1372 /* If the t_code is not supported and if the
1373 * t_code is other than 0x5 (unparseable packet
1374 * such as unknown UPV6 header), Drop it !!!
1375 */
1376
1377 if (t_code == VXGE_HW_RING_T_CODE_OK ||
1378 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1379 status = VXGE_HW_OK;
1380 goto exit;
1381 }
1382
1383 if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1384 status = VXGE_HW_ERR_INVALID_TCODE;
1385 goto exit;
1386 }
1387
1388 ring->stats->rxd_t_code_err_cnt[t_code]++;
1389 exit:
1390 return status;
1391 }
1392
1393 /**
1394 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1395 *
1396 * @fifo: fifohandle
1397 * @txdl_ptr: The starting location of the TxDL in host memory
1398 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1399 * @no_snoop: No snoop flags
1400 *
1401 * This function posts a non-offload doorbell to doorbell FIFO
1402 *
1403 */
__vxge_hw_non_offload_db_post(struct __vxge_hw_fifo * fifo,u64 txdl_ptr,u32 num_txds,u32 no_snoop)1404 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1405 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1406 {
1407 struct __vxge_hw_channel *channel;
1408
1409 channel = &fifo->channel;
1410
1411 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1412 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1413 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1414 &fifo->nofl_db->control_0);
1415
1416 mmiowb();
1417
1418 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1419
1420 mmiowb();
1421 }
1422
1423 /**
1424 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1425 * the fifo
1426 * @fifoh: Handle to the fifo object used for non offload send
1427 */
vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo * fifoh)1428 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1429 {
1430 return vxge_hw_channel_dtr_count(&fifoh->channel);
1431 }
1432
1433 /**
1434 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1435 * @fifoh: Handle to the fifo object used for non offload send
1436 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1437 * with a valid handle.
1438 * @txdl_priv: Buffer to return the pointer to per txdl space
1439 *
1440 * Reserve a single TxDL (that is, fifo descriptor)
1441 * for the subsequent filling-in by driver)
1442 * and posting on the corresponding channel (@channelh)
1443 * via vxge_hw_fifo_txdl_post().
1444 *
1445 * Note: it is the responsibility of driver to reserve multiple descriptors
1446 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1447 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1448 *
1449 * Returns: VXGE_HW_OK - success;
1450 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1451 *
1452 */
vxge_hw_fifo_txdl_reserve(struct __vxge_hw_fifo * fifo,void ** txdlh,void ** txdl_priv)1453 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1454 struct __vxge_hw_fifo *fifo,
1455 void **txdlh, void **txdl_priv)
1456 {
1457 struct __vxge_hw_channel *channel;
1458 enum vxge_hw_status status;
1459 int i;
1460
1461 channel = &fifo->channel;
1462
1463 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1464
1465 if (status == VXGE_HW_OK) {
1466 struct vxge_hw_fifo_txd *txdp =
1467 (struct vxge_hw_fifo_txd *)*txdlh;
1468 struct __vxge_hw_fifo_txdl_priv *priv;
1469
1470 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1471
1472 /* reset the TxDL's private */
1473 priv->align_dma_offset = 0;
1474 priv->align_vaddr_start = priv->align_vaddr;
1475 priv->align_used_frags = 0;
1476 priv->frags = 0;
1477 priv->alloc_frags = fifo->config->max_frags;
1478 priv->next_txdl_priv = NULL;
1479
1480 *txdl_priv = (void *)(size_t)txdp->host_control;
1481
1482 for (i = 0; i < fifo->config->max_frags; i++) {
1483 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1484 txdp->control_0 = txdp->control_1 = 0;
1485 }
1486 }
1487
1488 return status;
1489 }
1490
1491 /**
1492 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1493 * descriptor.
1494 * @fifo: Handle to the fifo object used for non offload send
1495 * @txdlh: Descriptor handle.
1496 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1497 * (of buffers).
1498 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1499 * @size: Size of the data buffer (in bytes).
1500 *
1501 * This API is part of the preparation of the transmit descriptor for posting
1502 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1503 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1504 * All three APIs fill in the fields of the fifo descriptor,
1505 * in accordance with the Titan specification.
1506 *
1507 */
vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo * fifo,void * txdlh,u32 frag_idx,dma_addr_t dma_pointer,u32 size)1508 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1509 void *txdlh, u32 frag_idx,
1510 dma_addr_t dma_pointer, u32 size)
1511 {
1512 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1513 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1514 struct __vxge_hw_channel *channel;
1515
1516 channel = &fifo->channel;
1517
1518 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1519 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1520
1521 if (frag_idx != 0)
1522 txdp->control_0 = txdp->control_1 = 0;
1523 else {
1524 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1525 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1526 txdp->control_1 |= fifo->interrupt_type;
1527 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1528 fifo->tx_intr_num);
1529 if (txdl_priv->frags) {
1530 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1531 (txdl_priv->frags - 1);
1532 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1533 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1534 }
1535 }
1536
1537 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1538
1539 txdp->buffer_pointer = (u64)dma_pointer;
1540 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1541 fifo->stats->total_buffers++;
1542 txdl_priv->frags++;
1543 }
1544
1545 /**
1546 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1547 * @fifo: Handle to the fifo object used for non offload send
1548 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1549 * @frags: Number of contiguous buffers that are part of a single
1550 * transmit operation.
1551 *
1552 * Post descriptor on the 'fifo' type channel for transmission.
1553 * Prior to posting the descriptor should be filled in accordance with
1554 * Host/Titan interface specification for a given service (LL, etc.).
1555 *
1556 */
vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo * fifo,void * txdlh)1557 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1558 {
1559 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1560 struct vxge_hw_fifo_txd *txdp_last;
1561 struct vxge_hw_fifo_txd *txdp_first;
1562 struct __vxge_hw_channel *channel;
1563
1564 channel = &fifo->channel;
1565
1566 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1567 txdp_first = txdlh;
1568
1569 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1570 txdp_last->control_0 |=
1571 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1572 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1573
1574 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1575
1576 __vxge_hw_non_offload_db_post(fifo,
1577 (u64)txdl_priv->dma_addr,
1578 txdl_priv->frags - 1,
1579 fifo->no_snoop_bits);
1580
1581 fifo->stats->total_posts++;
1582 fifo->stats->common_stats.usage_cnt++;
1583 if (fifo->stats->common_stats.usage_max <
1584 fifo->stats->common_stats.usage_cnt)
1585 fifo->stats->common_stats.usage_max =
1586 fifo->stats->common_stats.usage_cnt;
1587 }
1588
1589 /**
1590 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1591 * @fifo: Handle to the fifo object used for non offload send
1592 * @txdlh: Descriptor handle. Returned by HW.
1593 * @t_code: Transfer code, as per Titan User Guide,
1594 * Transmit Descriptor Format.
1595 * Returned by HW.
1596 *
1597 * Retrieve the _next_ completed descriptor.
1598 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1599 * driver of new completed descriptors. After that
1600 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1601 * completions (the very first completion is passed by HW via
1602 * vxge_hw_channel_callback_f).
1603 *
1604 * Implementation-wise, the driver is free to call
1605 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1606 * channel callback, or in a deferred fashion and separate (from HW)
1607 * context.
1608 *
1609 * Non-zero @t_code means failure to process the descriptor.
1610 * The failure could happen, for instance, when the link is
1611 * down, in which case Titan completes the descriptor because it
1612 * is not able to send the data out.
1613 *
1614 * For details please refer to Titan User Guide.
1615 *
1616 * Returns: VXGE_HW_OK - success.
1617 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1618 * are currently available for processing.
1619 *
1620 */
vxge_hw_fifo_txdl_next_completed(struct __vxge_hw_fifo * fifo,void ** txdlh,enum vxge_hw_fifo_tcode * t_code)1621 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1622 struct __vxge_hw_fifo *fifo, void **txdlh,
1623 enum vxge_hw_fifo_tcode *t_code)
1624 {
1625 struct __vxge_hw_channel *channel;
1626 struct vxge_hw_fifo_txd *txdp;
1627 enum vxge_hw_status status = VXGE_HW_OK;
1628
1629 channel = &fifo->channel;
1630
1631 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1632
1633 txdp = *txdlh;
1634 if (txdp == NULL) {
1635 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1636 goto exit;
1637 }
1638
1639 /* check whether host owns it */
1640 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1641
1642 vxge_assert(txdp->host_control != 0);
1643
1644 vxge_hw_channel_dtr_complete(channel);
1645
1646 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1647
1648 if (fifo->stats->common_stats.usage_cnt > 0)
1649 fifo->stats->common_stats.usage_cnt--;
1650
1651 status = VXGE_HW_OK;
1652 goto exit;
1653 }
1654
1655 /* no more completions */
1656 *txdlh = NULL;
1657 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1658 exit:
1659 return status;
1660 }
1661
1662 /**
1663 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1664 * @fifo: Handle to the fifo object used for non offload send
1665 * @txdlh: Descriptor handle.
1666 * @t_code: One of the enumerated (and documented in the Titan user guide)
1667 * "transfer codes".
1668 *
1669 * Handle descriptor's transfer code. The latter comes with each completed
1670 * descriptor.
1671 *
1672 * Returns: one of the enum vxge_hw_status{} enumerated types.
1673 * VXGE_HW_OK - for success.
1674 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1675 */
vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo * fifo,void * txdlh,enum vxge_hw_fifo_tcode t_code)1676 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1677 void *txdlh,
1678 enum vxge_hw_fifo_tcode t_code)
1679 {
1680 struct __vxge_hw_channel *channel;
1681
1682 enum vxge_hw_status status = VXGE_HW_OK;
1683 channel = &fifo->channel;
1684
1685 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1686 status = VXGE_HW_ERR_INVALID_TCODE;
1687 goto exit;
1688 }
1689
1690 fifo->stats->txd_t_code_err_cnt[t_code]++;
1691 exit:
1692 return status;
1693 }
1694
1695 /**
1696 * vxge_hw_fifo_txdl_free - Free descriptor.
1697 * @fifo: Handle to the fifo object used for non offload send
1698 * @txdlh: Descriptor handle.
1699 *
1700 * Free the reserved descriptor. This operation is "symmetrical" to
1701 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1702 * lifecycle.
1703 *
1704 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1705 * be:
1706 *
1707 * - reserved (vxge_hw_fifo_txdl_reserve);
1708 *
1709 * - posted (vxge_hw_fifo_txdl_post);
1710 *
1711 * - completed (vxge_hw_fifo_txdl_next_completed);
1712 *
1713 * - and recycled again (vxge_hw_fifo_txdl_free).
1714 *
1715 * For alternative state transitions and more details please refer to
1716 * the design doc.
1717 *
1718 */
vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo * fifo,void * txdlh)1719 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1720 {
1721 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1722 u32 max_frags;
1723 struct __vxge_hw_channel *channel;
1724
1725 channel = &fifo->channel;
1726
1727 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1728 (struct vxge_hw_fifo_txd *)txdlh);
1729
1730 max_frags = fifo->config->max_frags;
1731
1732 vxge_hw_channel_dtr_free(channel, txdlh);
1733 }
1734
1735 /**
1736 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1737 * to MAC address table.
1738 * @vp: Vpath handle.
1739 * @macaddr: MAC address to be added for this vpath into the list
1740 * @macaddr_mask: MAC address mask for macaddr
1741 * @duplicate_mode: Duplicate MAC address add mode. Please see
1742 * enum vxge_hw_vpath_mac_addr_add_mode{}
1743 *
1744 * Adds the given mac address and mac address mask into the list for this
1745 * vpath.
1746 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1747 * vxge_hw_vpath_mac_addr_get_next
1748 *
1749 */
1750 enum vxge_hw_status
vxge_hw_vpath_mac_addr_add(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN],enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)1751 vxge_hw_vpath_mac_addr_add(
1752 struct __vxge_hw_vpath_handle *vp,
1753 u8 (macaddr)[ETH_ALEN],
1754 u8 (macaddr_mask)[ETH_ALEN],
1755 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1756 {
1757 u32 i;
1758 u64 data1 = 0ULL;
1759 u64 data2 = 0ULL;
1760 enum vxge_hw_status status = VXGE_HW_OK;
1761
1762 if (vp == NULL) {
1763 status = VXGE_HW_ERR_INVALID_HANDLE;
1764 goto exit;
1765 }
1766
1767 for (i = 0; i < ETH_ALEN; i++) {
1768 data1 <<= 8;
1769 data1 |= (u8)macaddr[i];
1770
1771 data2 <<= 8;
1772 data2 |= (u8)macaddr_mask[i];
1773 }
1774
1775 switch (duplicate_mode) {
1776 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1777 i = 0;
1778 break;
1779 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1780 i = 1;
1781 break;
1782 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1783 i = 2;
1784 break;
1785 default:
1786 i = 0;
1787 break;
1788 }
1789
1790 status = __vxge_hw_vpath_rts_table_set(vp,
1791 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1792 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1793 0,
1794 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1795 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1796 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1797 exit:
1798 return status;
1799 }
1800
1801 /**
1802 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1803 * from MAC address table.
1804 * @vp: Vpath handle.
1805 * @macaddr: First MAC address entry for this vpath in the list
1806 * @macaddr_mask: MAC address mask for macaddr
1807 *
1808 * Returns the first mac address and mac address mask in the list for this
1809 * vpath.
1810 * see also: vxge_hw_vpath_mac_addr_get_next
1811 *
1812 */
1813 enum vxge_hw_status
vxge_hw_vpath_mac_addr_get(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1814 vxge_hw_vpath_mac_addr_get(
1815 struct __vxge_hw_vpath_handle *vp,
1816 u8 (macaddr)[ETH_ALEN],
1817 u8 (macaddr_mask)[ETH_ALEN])
1818 {
1819 u32 i;
1820 u64 data1 = 0ULL;
1821 u64 data2 = 0ULL;
1822 enum vxge_hw_status status = VXGE_HW_OK;
1823
1824 if (vp == NULL) {
1825 status = VXGE_HW_ERR_INVALID_HANDLE;
1826 goto exit;
1827 }
1828
1829 status = __vxge_hw_vpath_rts_table_get(vp,
1830 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1831 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1832 0, &data1, &data2);
1833
1834 if (status != VXGE_HW_OK)
1835 goto exit;
1836
1837 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1838
1839 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1840
1841 for (i = ETH_ALEN; i > 0; i--) {
1842 macaddr[i-1] = (u8)(data1 & 0xFF);
1843 data1 >>= 8;
1844
1845 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1846 data2 >>= 8;
1847 }
1848 exit:
1849 return status;
1850 }
1851
1852 /**
1853 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1854 * vpath
1855 * from MAC address table.
1856 * @vp: Vpath handle.
1857 * @macaddr: Next MAC address entry for this vpath in the list
1858 * @macaddr_mask: MAC address mask for macaddr
1859 *
1860 * Returns the next mac address and mac address mask in the list for this
1861 * vpath.
1862 * see also: vxge_hw_vpath_mac_addr_get
1863 *
1864 */
1865 enum vxge_hw_status
vxge_hw_vpath_mac_addr_get_next(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1866 vxge_hw_vpath_mac_addr_get_next(
1867 struct __vxge_hw_vpath_handle *vp,
1868 u8 (macaddr)[ETH_ALEN],
1869 u8 (macaddr_mask)[ETH_ALEN])
1870 {
1871 u32 i;
1872 u64 data1 = 0ULL;
1873 u64 data2 = 0ULL;
1874 enum vxge_hw_status status = VXGE_HW_OK;
1875
1876 if (vp == NULL) {
1877 status = VXGE_HW_ERR_INVALID_HANDLE;
1878 goto exit;
1879 }
1880
1881 status = __vxge_hw_vpath_rts_table_get(vp,
1882 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1883 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1884 0, &data1, &data2);
1885
1886 if (status != VXGE_HW_OK)
1887 goto exit;
1888
1889 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1890
1891 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1892
1893 for (i = ETH_ALEN; i > 0; i--) {
1894 macaddr[i-1] = (u8)(data1 & 0xFF);
1895 data1 >>= 8;
1896
1897 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1898 data2 >>= 8;
1899 }
1900
1901 exit:
1902 return status;
1903 }
1904
1905 /**
1906 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1907 * to MAC address table.
1908 * @vp: Vpath handle.
1909 * @macaddr: MAC address to be added for this vpath into the list
1910 * @macaddr_mask: MAC address mask for macaddr
1911 *
1912 * Delete the given mac address and mac address mask into the list for this
1913 * vpath.
1914 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1915 * vxge_hw_vpath_mac_addr_get_next
1916 *
1917 */
1918 enum vxge_hw_status
vxge_hw_vpath_mac_addr_delete(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1919 vxge_hw_vpath_mac_addr_delete(
1920 struct __vxge_hw_vpath_handle *vp,
1921 u8 (macaddr)[ETH_ALEN],
1922 u8 (macaddr_mask)[ETH_ALEN])
1923 {
1924 u32 i;
1925 u64 data1 = 0ULL;
1926 u64 data2 = 0ULL;
1927 enum vxge_hw_status status = VXGE_HW_OK;
1928
1929 if (vp == NULL) {
1930 status = VXGE_HW_ERR_INVALID_HANDLE;
1931 goto exit;
1932 }
1933
1934 for (i = 0; i < ETH_ALEN; i++) {
1935 data1 <<= 8;
1936 data1 |= (u8)macaddr[i];
1937
1938 data2 <<= 8;
1939 data2 |= (u8)macaddr_mask[i];
1940 }
1941
1942 status = __vxge_hw_vpath_rts_table_set(vp,
1943 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1944 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1945 0,
1946 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1947 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1948 exit:
1949 return status;
1950 }
1951
1952 /**
1953 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1954 * to vlan id table.
1955 * @vp: Vpath handle.
1956 * @vid: vlan id to be added for this vpath into the list
1957 *
1958 * Adds the given vlan id into the list for this vpath.
1959 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1960 * vxge_hw_vpath_vid_get_next
1961 *
1962 */
1963 enum vxge_hw_status
vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle * vp,u64 vid)1964 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1965 {
1966 enum vxge_hw_status status = VXGE_HW_OK;
1967
1968 if (vp == NULL) {
1969 status = VXGE_HW_ERR_INVALID_HANDLE;
1970 goto exit;
1971 }
1972
1973 status = __vxge_hw_vpath_rts_table_set(vp,
1974 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1975 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1976 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1977 exit:
1978 return status;
1979 }
1980
1981 /**
1982 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1983 * from vlan id table.
1984 * @vp: Vpath handle.
1985 * @vid: Buffer to return vlan id
1986 *
1987 * Returns the first vlan id in the list for this vpath.
1988 * see also: vxge_hw_vpath_vid_get_next
1989 *
1990 */
1991 enum vxge_hw_status
vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle * vp,u64 * vid)1992 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1993 {
1994 u64 data;
1995 enum vxge_hw_status status = VXGE_HW_OK;
1996
1997 if (vp == NULL) {
1998 status = VXGE_HW_ERR_INVALID_HANDLE;
1999 goto exit;
2000 }
2001
2002 status = __vxge_hw_vpath_rts_table_get(vp,
2003 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
2004 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2005 0, vid, &data);
2006
2007 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
2008 exit:
2009 return status;
2010 }
2011
2012 /**
2013 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
2014 * to vlan id table.
2015 * @vp: Vpath handle.
2016 * @vid: vlan id to be added for this vpath into the list
2017 *
2018 * Adds the given vlan id into the list for this vpath.
2019 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
2020 * vxge_hw_vpath_vid_get_next
2021 *
2022 */
2023 enum vxge_hw_status
vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle * vp,u64 vid)2024 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
2025 {
2026 enum vxge_hw_status status = VXGE_HW_OK;
2027
2028 if (vp == NULL) {
2029 status = VXGE_HW_ERR_INVALID_HANDLE;
2030 goto exit;
2031 }
2032
2033 status = __vxge_hw_vpath_rts_table_set(vp,
2034 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
2035 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2036 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
2037 exit:
2038 return status;
2039 }
2040
2041 /**
2042 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2043 * @vp: Vpath handle.
2044 *
2045 * Enable promiscuous mode of Titan-e operation.
2046 *
2047 * See also: vxge_hw_vpath_promisc_disable().
2048 */
vxge_hw_vpath_promisc_enable(struct __vxge_hw_vpath_handle * vp)2049 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2050 struct __vxge_hw_vpath_handle *vp)
2051 {
2052 u64 val64;
2053 struct __vxge_hw_virtualpath *vpath;
2054 enum vxge_hw_status status = VXGE_HW_OK;
2055
2056 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2057 status = VXGE_HW_ERR_INVALID_HANDLE;
2058 goto exit;
2059 }
2060
2061 vpath = vp->vpath;
2062
2063 /* Enable promiscuous mode for function 0 only */
2064 if (!(vpath->hldev->access_rights &
2065 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2066 return VXGE_HW_OK;
2067
2068 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2069
2070 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2071
2072 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2073 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2074 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2075 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2076
2077 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2078 }
2079 exit:
2080 return status;
2081 }
2082
2083 /**
2084 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2085 * @vp: Vpath handle.
2086 *
2087 * Disable promiscuous mode of Titan-e operation.
2088 *
2089 * See also: vxge_hw_vpath_promisc_enable().
2090 */
vxge_hw_vpath_promisc_disable(struct __vxge_hw_vpath_handle * vp)2091 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2092 struct __vxge_hw_vpath_handle *vp)
2093 {
2094 u64 val64;
2095 struct __vxge_hw_virtualpath *vpath;
2096 enum vxge_hw_status status = VXGE_HW_OK;
2097
2098 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2099 status = VXGE_HW_ERR_INVALID_HANDLE;
2100 goto exit;
2101 }
2102
2103 vpath = vp->vpath;
2104
2105 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2106
2107 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2108
2109 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2110 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2111 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2112
2113 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2114 }
2115 exit:
2116 return status;
2117 }
2118
2119 /*
2120 * vxge_hw_vpath_bcast_enable - Enable broadcast
2121 * @vp: Vpath handle.
2122 *
2123 * Enable receiving broadcasts.
2124 */
vxge_hw_vpath_bcast_enable(struct __vxge_hw_vpath_handle * vp)2125 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2126 struct __vxge_hw_vpath_handle *vp)
2127 {
2128 u64 val64;
2129 struct __vxge_hw_virtualpath *vpath;
2130 enum vxge_hw_status status = VXGE_HW_OK;
2131
2132 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2133 status = VXGE_HW_ERR_INVALID_HANDLE;
2134 goto exit;
2135 }
2136
2137 vpath = vp->vpath;
2138
2139 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2140
2141 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2142 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2143 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2144 }
2145 exit:
2146 return status;
2147 }
2148
2149 /**
2150 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2151 * @vp: Vpath handle.
2152 *
2153 * Enable Titan-e multicast addresses.
2154 * Returns: VXGE_HW_OK on success.
2155 *
2156 */
vxge_hw_vpath_mcast_enable(struct __vxge_hw_vpath_handle * vp)2157 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2158 struct __vxge_hw_vpath_handle *vp)
2159 {
2160 u64 val64;
2161 struct __vxge_hw_virtualpath *vpath;
2162 enum vxge_hw_status status = VXGE_HW_OK;
2163
2164 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2165 status = VXGE_HW_ERR_INVALID_HANDLE;
2166 goto exit;
2167 }
2168
2169 vpath = vp->vpath;
2170
2171 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2172
2173 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2174 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2175 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2176 }
2177 exit:
2178 return status;
2179 }
2180
2181 /**
2182 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
2183 * @vp: Vpath handle.
2184 *
2185 * Disable Titan-e multicast addresses.
2186 * Returns: VXGE_HW_OK - success.
2187 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2188 *
2189 */
2190 enum vxge_hw_status
vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle * vp)2191 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2192 {
2193 u64 val64;
2194 struct __vxge_hw_virtualpath *vpath;
2195 enum vxge_hw_status status = VXGE_HW_OK;
2196
2197 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2198 status = VXGE_HW_ERR_INVALID_HANDLE;
2199 goto exit;
2200 }
2201
2202 vpath = vp->vpath;
2203
2204 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2205
2206 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2207 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2208 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2209 }
2210 exit:
2211 return status;
2212 }
2213
2214 /*
2215 * vxge_hw_vpath_alarm_process - Process Alarms.
2216 * @vpath: Virtual Path.
2217 * @skip_alarms: Do not clear the alarms
2218 *
2219 * Process vpath alarms.
2220 *
2221 */
vxge_hw_vpath_alarm_process(struct __vxge_hw_vpath_handle * vp,u32 skip_alarms)2222 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2223 struct __vxge_hw_vpath_handle *vp,
2224 u32 skip_alarms)
2225 {
2226 enum vxge_hw_status status = VXGE_HW_OK;
2227
2228 if (vp == NULL) {
2229 status = VXGE_HW_ERR_INVALID_HANDLE;
2230 goto exit;
2231 }
2232
2233 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2234 exit:
2235 return status;
2236 }
2237
2238 /**
2239 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2240 * alrms
2241 * @vp: Virtual Path handle.
2242 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2243 * interrupts(Can be repeated). If fifo or ring are not enabled
2244 * the MSIX vector for that should be set to 0
2245 * @alarm_msix_id: MSIX vector for alarm.
2246 *
2247 * This API will associate a given MSIX vector numbers with the four TIM
2248 * interrupts and alarm interrupt.
2249 */
2250 void
vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle * vp,int * tim_msix_id,int alarm_msix_id)2251 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2252 int alarm_msix_id)
2253 {
2254 u64 val64;
2255 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2256 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2257 u32 vp_id = vp->vpath->vp_id;
2258
2259 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2260 (vp_id * 4) + tim_msix_id[0]) |
2261 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2262 (vp_id * 4) + tim_msix_id[1]);
2263
2264 writeq(val64, &vp_reg->interrupt_cfg0);
2265
2266 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2267 (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2268 &vp_reg->interrupt_cfg2);
2269
2270 if (vpath->hldev->config.intr_mode ==
2271 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2272 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2273 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2274 0, 32), &vp_reg->one_shot_vect0_en);
2275 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2276 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2277 0, 32), &vp_reg->one_shot_vect1_en);
2278 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2279 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2280 0, 32), &vp_reg->one_shot_vect2_en);
2281 }
2282 }
2283
2284 /**
2285 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2286 * @vp: Virtual Path handle.
2287 * @msix_id: MSIX ID
2288 *
2289 * The function masks the msix interrupt for the given msix_id
2290 *
2291 * Returns: 0,
2292 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2293 * status.
2294 * See also:
2295 */
2296 void
vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle * vp,int msix_id)2297 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2298 {
2299 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2300 __vxge_hw_pio_mem_write32_upper(
2301 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2302 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2303 }
2304
2305 /**
2306 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2307 * @vp: Virtual Path handle.
2308 * @msix_id: MSI ID
2309 *
2310 * The function clears the msix interrupt for the given msix_id
2311 *
2312 * Returns: 0,
2313 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2314 * status.
2315 * See also:
2316 */
vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle * vp,int msix_id)2317 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2318 {
2319 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2320
2321 if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2322 __vxge_hw_pio_mem_write32_upper(
2323 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2324 &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2325 else
2326 __vxge_hw_pio_mem_write32_upper(
2327 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2328 &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2329 }
2330
2331 /**
2332 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2333 * @vp: Virtual Path handle.
2334 * @msix_id: MSI ID
2335 *
2336 * The function unmasks the msix interrupt for the given msix_id
2337 *
2338 * Returns: 0,
2339 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2340 * status.
2341 * See also:
2342 */
2343 void
vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle * vp,int msix_id)2344 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2345 {
2346 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2347 __vxge_hw_pio_mem_write32_upper(
2348 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2349 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2350 }
2351
2352 /**
2353 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2354 * @vp: Virtual Path handle.
2355 *
2356 * Mask Tx and Rx vpath interrupts.
2357 *
2358 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2359 */
vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle * vp)2360 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2361 {
2362 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2363 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2364 u64 val64;
2365 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2366
2367 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2368 tim_int_mask1, vp->vpath->vp_id);
2369
2370 val64 = readq(&hldev->common_reg->tim_int_mask0);
2371
2372 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2373 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2374 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2375 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2376 &hldev->common_reg->tim_int_mask0);
2377 }
2378
2379 val64 = readl(&hldev->common_reg->tim_int_mask1);
2380
2381 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2382 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2383 __vxge_hw_pio_mem_write32_upper(
2384 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2385 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2386 &hldev->common_reg->tim_int_mask1);
2387 }
2388 }
2389
2390 /**
2391 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2392 * @vp: Virtual Path handle.
2393 *
2394 * Unmask Tx and Rx vpath interrupts.
2395 *
2396 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2397 */
vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle * vp)2398 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2399 {
2400 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2401 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2402 u64 val64;
2403 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2404
2405 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2406 tim_int_mask1, vp->vpath->vp_id);
2407
2408 val64 = readq(&hldev->common_reg->tim_int_mask0);
2409
2410 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2411 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2412 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2413 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2414 &hldev->common_reg->tim_int_mask0);
2415 }
2416
2417 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2418 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2419 __vxge_hw_pio_mem_write32_upper(
2420 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2421 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2422 &hldev->common_reg->tim_int_mask1);
2423 }
2424 }
2425
2426 /**
2427 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2428 * descriptors and process the same.
2429 * @ring: Handle to the ring object used for receive
2430 *
2431 * The function polls the Rx for the completed descriptors and calls
2432 * the driver via supplied completion callback.
2433 *
2434 * Returns: VXGE_HW_OK, if the polling is completed successful.
2435 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2436 * descriptors available which are yet to be processed.
2437 *
2438 * See also: vxge_hw_vpath_poll_rx()
2439 */
vxge_hw_vpath_poll_rx(struct __vxge_hw_ring * ring)2440 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2441 {
2442 u8 t_code;
2443 enum vxge_hw_status status = VXGE_HW_OK;
2444 void *first_rxdh;
2445 u64 val64 = 0;
2446 int new_count = 0;
2447
2448 ring->cmpl_cnt = 0;
2449
2450 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2451 if (status == VXGE_HW_OK)
2452 ring->callback(ring, first_rxdh,
2453 t_code, ring->channel.userdata);
2454
2455 if (ring->cmpl_cnt != 0) {
2456 ring->doorbell_cnt += ring->cmpl_cnt;
2457 if (ring->doorbell_cnt >= ring->rxds_limit) {
2458 /*
2459 * Each RxD is of 4 qwords, update the number of
2460 * qwords replenished
2461 */
2462 new_count = (ring->doorbell_cnt * 4);
2463
2464 /* For each block add 4 more qwords */
2465 ring->total_db_cnt += ring->doorbell_cnt;
2466 if (ring->total_db_cnt >= ring->rxds_per_block) {
2467 new_count += 4;
2468 /* Reset total count */
2469 ring->total_db_cnt %= ring->rxds_per_block;
2470 }
2471 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2472 &ring->vp_reg->prc_rxd_doorbell);
2473 val64 =
2474 readl(&ring->common_reg->titan_general_int_status);
2475 ring->doorbell_cnt = 0;
2476 }
2477 }
2478
2479 return status;
2480 }
2481
2482 /**
2483 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2484 * the same.
2485 * @fifo: Handle to the fifo object used for non offload send
2486 *
2487 * The function polls the Tx for the completed descriptors and calls
2488 * the driver via supplied completion callback.
2489 *
2490 * Returns: VXGE_HW_OK, if the polling is completed successful.
2491 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2492 * descriptors available which are yet to be processed.
2493 */
vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo * fifo,struct sk_buff *** skb_ptr,int nr_skb,int * more)2494 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2495 struct sk_buff ***skb_ptr, int nr_skb,
2496 int *more)
2497 {
2498 enum vxge_hw_fifo_tcode t_code;
2499 void *first_txdlh;
2500 enum vxge_hw_status status = VXGE_HW_OK;
2501 struct __vxge_hw_channel *channel;
2502
2503 channel = &fifo->channel;
2504
2505 status = vxge_hw_fifo_txdl_next_completed(fifo,
2506 &first_txdlh, &t_code);
2507 if (status == VXGE_HW_OK)
2508 if (fifo->callback(fifo, first_txdlh, t_code,
2509 channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2510 status = VXGE_HW_COMPLETIONS_REMAIN;
2511
2512 return status;
2513 }
2514