1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
39 #include <asm/page.h>
40 #include <linux/cache.h>
41
42 #include "csio_hw.h"
43 #include "csio_wr.h"
44 #include "csio_mb.h"
45 #include "csio_defs.h"
46
47 int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
48 static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
49
50 int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
51 static int csio_sge_timer_reg = 1;
52
53 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
54 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg)
55
56 static void
csio_get_flbuf_size(struct csio_hw * hw,struct csio_sge * sge,uint32_t reg)57 csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
58 {
59 sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0 +
60 reg * sizeof(uint32_t));
61 }
62
63 /* Free list buffer size */
64 static inline uint32_t
csio_wr_fl_bufsz(struct csio_sge * sge,struct csio_dma_buf * buf)65 csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
66 {
67 return sge->sge_fl_buf_size[buf->paddr & 0xF];
68 }
69
70 /* Size of the egress queue status page */
71 static inline uint32_t
csio_wr_qstat_pgsz(struct csio_hw * hw)72 csio_wr_qstat_pgsz(struct csio_hw *hw)
73 {
74 return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE(1)) ? 128 : 64;
75 }
76
77 /* Ring freelist doorbell */
78 static inline void
csio_wr_ring_fldb(struct csio_hw * hw,struct csio_q * flq)79 csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
80 {
81 /*
82 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
83 * number of bytes in the freelist queue. This translates to atleast
84 * 8 freelist buffer pointers (since each pointer is 8 bytes).
85 */
86 if (flq->inc_idx >= 8) {
87 csio_wr_reg32(hw, DBPRIO(1) | QID(flq->un.fl.flid) |
88 CSIO_HW_PIDX(hw, flq->inc_idx / 8),
89 MYPF_REG(SGE_PF_KDOORBELL));
90 flq->inc_idx &= 7;
91 }
92 }
93
94 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
95 static void
csio_wr_sge_intr_enable(struct csio_hw * hw,uint16_t iqid)96 csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
97 {
98 csio_wr_reg32(hw, CIDXINC(0) |
99 INGRESSQID(iqid) |
100 TIMERREG(X_TIMERREG_RESTART_COUNTER),
101 MYPF_REG(SGE_PF_GTS));
102 }
103
104 /*
105 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
106 * @hw: HW module.
107 * @flq: Freelist queue.
108 *
109 * Fill up freelist buffer entries with buffers of size specified
110 * in the size register.
111 *
112 */
113 static int
csio_wr_fill_fl(struct csio_hw * hw,struct csio_q * flq)114 csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
115 {
116 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
117 struct csio_sge *sge = &wrm->sge;
118 __be64 *d = (__be64 *)(flq->vstart);
119 struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
120 uint64_t paddr;
121 int sreg = flq->un.fl.sreg;
122 int n = flq->credits;
123
124 while (n--) {
125 buf->len = sge->sge_fl_buf_size[sreg];
126 buf->vaddr = pci_alloc_consistent(hw->pdev, buf->len,
127 &buf->paddr);
128 if (!buf->vaddr) {
129 csio_err(hw, "Could only fill %d buffers!\n", n + 1);
130 return -ENOMEM;
131 }
132
133 paddr = buf->paddr | (sreg & 0xF);
134
135 *d++ = cpu_to_be64(paddr);
136 buf++;
137 }
138
139 return 0;
140 }
141
142 /*
143 * csio_wr_update_fl -
144 * @hw: HW module.
145 * @flq: Freelist queue.
146 *
147 *
148 */
149 static inline void
csio_wr_update_fl(struct csio_hw * hw,struct csio_q * flq,uint16_t n)150 csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
151 {
152
153 flq->inc_idx += n;
154 flq->pidx += n;
155 if (unlikely(flq->pidx >= flq->credits))
156 flq->pidx -= (uint16_t)flq->credits;
157
158 CSIO_INC_STATS(flq, n_flq_refill);
159 }
160
161 /*
162 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
163 * @hw: HW module
164 * @qsize: Size of the queue in bytes
165 * @wrsize: Since of WR in this queue, if fixed.
166 * @type: Type of queue (Ingress/Egress/Freelist)
167 * @owner: Module that owns this queue.
168 * @nflb: Number of freelist buffers for FL.
169 * @sreg: What is the FL buffer size register?
170 * @iq_int_handler: Ingress queue handler in INTx mode.
171 *
172 * This function allocates and sets up a queue for the caller
173 * of size qsize, aligned at the required boundary. This is subject to
174 * be free entries being available in the queue array. If one is found,
175 * it is initialized with the allocated queue, marked as being used (owner),
176 * and a handle returned to the caller in form of the queue's index
177 * into the q_arr array.
178 * If user has indicated a freelist (by specifying nflb > 0), create
179 * another queue (with its own index into q_arr) for the freelist. Allocate
180 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
181 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
182 * with its owning ingress queue.
183 */
184 int
csio_wr_alloc_q(struct csio_hw * hw,uint32_t qsize,uint32_t wrsize,uint16_t type,void * owner,uint32_t nflb,int sreg,iq_handler_t iq_intx_handler)185 csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
186 uint16_t type, void *owner, uint32_t nflb, int sreg,
187 iq_handler_t iq_intx_handler)
188 {
189 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
190 struct csio_q *q, *flq;
191 int free_idx = wrm->free_qidx;
192 int ret_idx = free_idx;
193 uint32_t qsz;
194 int flq_idx;
195
196 if (free_idx >= wrm->num_q) {
197 csio_err(hw, "No more free queues.\n");
198 return -1;
199 }
200
201 switch (type) {
202 case CSIO_EGRESS:
203 qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
204 break;
205 case CSIO_INGRESS:
206 switch (wrsize) {
207 case 16:
208 case 32:
209 case 64:
210 case 128:
211 break;
212 default:
213 csio_err(hw, "Invalid Ingress queue WR size:%d\n",
214 wrsize);
215 return -1;
216 }
217
218 /*
219 * Number of elements must be a multiple of 16
220 * So this includes status page size
221 */
222 qsz = ALIGN(qsize/wrsize, 16) * wrsize;
223
224 break;
225 case CSIO_FREELIST:
226 qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
227 break;
228 default:
229 csio_err(hw, "Invalid queue type: 0x%x\n", type);
230 return -1;
231 }
232
233 q = wrm->q_arr[free_idx];
234
235 q->vstart = pci_alloc_consistent(hw->pdev, qsz, &q->pstart);
236 if (!q->vstart) {
237 csio_err(hw,
238 "Failed to allocate DMA memory for "
239 "queue at id: %d size: %d\n", free_idx, qsize);
240 return -1;
241 }
242
243 /*
244 * We need to zero out the contents, importantly for ingress,
245 * since we start with a generatiom bit of 1 for ingress.
246 */
247 memset(q->vstart, 0, qsz);
248
249 q->type = type;
250 q->owner = owner;
251 q->pidx = q->cidx = q->inc_idx = 0;
252 q->size = qsz;
253 q->wr_sz = wrsize; /* If using fixed size WRs */
254
255 wrm->free_qidx++;
256
257 if (type == CSIO_INGRESS) {
258 /* Since queue area is set to zero */
259 q->un.iq.genbit = 1;
260
261 /*
262 * Ingress queue status page size is always the size of
263 * the ingress queue entry.
264 */
265 q->credits = (qsz - q->wr_sz) / q->wr_sz;
266 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
267 - q->wr_sz);
268
269 /* Allocate memory for FL if requested */
270 if (nflb > 0) {
271 flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
272 sizeof(__be64), CSIO_FREELIST,
273 owner, 0, sreg, NULL);
274 if (flq_idx == -1) {
275 csio_err(hw,
276 "Failed to allocate FL queue"
277 " for IQ idx:%d\n", free_idx);
278 return -1;
279 }
280
281 /* Associate the new FL with the Ingress quue */
282 q->un.iq.flq_idx = flq_idx;
283
284 flq = wrm->q_arr[q->un.iq.flq_idx];
285 flq->un.fl.bufs = kzalloc(flq->credits *
286 sizeof(struct csio_dma_buf),
287 GFP_KERNEL);
288 if (!flq->un.fl.bufs) {
289 csio_err(hw,
290 "Failed to allocate FL queue bufs"
291 " for IQ idx:%d\n", free_idx);
292 return -1;
293 }
294
295 flq->un.fl.packen = 0;
296 flq->un.fl.offset = 0;
297 flq->un.fl.sreg = sreg;
298
299 /* Fill up the free list buffers */
300 if (csio_wr_fill_fl(hw, flq))
301 return -1;
302
303 /*
304 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
305 * remains unpopulated,otherwise HW thinks
306 * FLQ is empty.
307 */
308 flq->pidx = flq->inc_idx = flq->credits - 8;
309 } else {
310 q->un.iq.flq_idx = -1;
311 }
312
313 /* Associate the IQ INTx handler. */
314 q->un.iq.iq_intx_handler = iq_intx_handler;
315
316 csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
317
318 } else if (type == CSIO_EGRESS) {
319 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
320 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
321 - csio_wr_qstat_pgsz(hw));
322 csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
323 } else { /* Freelist */
324 q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
325 q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
326 - csio_wr_qstat_pgsz(hw));
327 csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
328 }
329
330 return ret_idx;
331 }
332
333 /*
334 * csio_wr_iq_create_rsp - Response handler for IQ creation.
335 * @hw: The HW module.
336 * @mbp: Mailbox.
337 * @iq_idx: Ingress queue that got created.
338 *
339 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
340 */
341 static int
csio_wr_iq_create_rsp(struct csio_hw * hw,struct csio_mb * mbp,int iq_idx)342 csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
343 {
344 struct csio_iq_params iqp;
345 enum fw_retval retval;
346 uint32_t iq_id;
347 int flq_idx;
348
349 memset(&iqp, 0, sizeof(struct csio_iq_params));
350
351 csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
352
353 if (retval != FW_SUCCESS) {
354 csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
355 mempool_free(mbp, hw->mb_mempool);
356 return -EINVAL;
357 }
358
359 csio_q_iqid(hw, iq_idx) = iqp.iqid;
360 csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
361 csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
362 csio_q_inc_idx(hw, iq_idx) = 0;
363
364 /* Actual iq-id. */
365 iq_id = iqp.iqid - hw->wrm.fw_iq_start;
366
367 /* Set the iq-id to iq map table. */
368 if (iq_id >= CSIO_MAX_IQ) {
369 csio_err(hw,
370 "Exceeding MAX_IQ(%d) supported!"
371 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
372 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
373 mempool_free(mbp, hw->mb_mempool);
374 return -EINVAL;
375 }
376 csio_q_set_intr_map(hw, iq_idx, iq_id);
377
378 /*
379 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
380 * ingress context of this queue. This will block interrupts to
381 * this queue until the next GTS write. Therefore, we do a
382 * 0-cidx increment GTS write for this queue just to clear the
383 * interrupt_sent bit. This will re-enable interrupts to this
384 * queue.
385 */
386 csio_wr_sge_intr_enable(hw, iqp.physiqid);
387
388 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
389 if (flq_idx != -1) {
390 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
391
392 csio_q_flid(hw, flq_idx) = iqp.fl0id;
393 csio_q_cidx(hw, flq_idx) = 0;
394 csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
395 csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
396
397 /* Now update SGE about the buffers allocated during init */
398 csio_wr_ring_fldb(hw, flq);
399 }
400
401 mempool_free(mbp, hw->mb_mempool);
402
403 return 0;
404 }
405
406 /*
407 * csio_wr_iq_create - Configure an Ingress queue with FW.
408 * @hw: The HW module.
409 * @priv: Private data object.
410 * @iq_idx: Ingress queue index in the WR module.
411 * @vec: MSIX vector.
412 * @portid: PCIE Channel to be associated with this queue.
413 * @async: Is this a FW asynchronous message handling queue?
414 * @cbfn: Completion callback.
415 *
416 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
417 * with alloc/write bits set.
418 */
419 int
csio_wr_iq_create(struct csio_hw * hw,void * priv,int iq_idx,uint32_t vec,uint8_t portid,bool async,void (* cbfn)(struct csio_hw *,struct csio_mb *))420 csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
421 uint32_t vec, uint8_t portid, bool async,
422 void (*cbfn) (struct csio_hw *, struct csio_mb *))
423 {
424 struct csio_mb *mbp;
425 struct csio_iq_params iqp;
426 int flq_idx;
427
428 memset(&iqp, 0, sizeof(struct csio_iq_params));
429 csio_q_portid(hw, iq_idx) = portid;
430
431 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
432 if (!mbp) {
433 csio_err(hw, "IQ command out of memory!\n");
434 return -ENOMEM;
435 }
436
437 switch (hw->intr_mode) {
438 case CSIO_IM_INTX:
439 case CSIO_IM_MSI:
440 /* For interrupt forwarding queue only */
441 if (hw->intr_iq_idx == iq_idx)
442 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
443 else
444 iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
445 iqp.iqandstindex =
446 csio_q_physiqid(hw, hw->intr_iq_idx);
447 break;
448 case CSIO_IM_MSIX:
449 iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
450 iqp.iqandstindex = (uint16_t)vec;
451 break;
452 case CSIO_IM_NONE:
453 mempool_free(mbp, hw->mb_mempool);
454 return -EINVAL;
455 }
456
457 /* Pass in the ingress queue cmd parameters */
458 iqp.pfn = hw->pfn;
459 iqp.vfn = 0;
460 iqp.iq_start = 1;
461 iqp.viid = 0;
462 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
463 iqp.iqasynch = async;
464 if (csio_intr_coalesce_cnt)
465 iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
466 else
467 iqp.iqanus = X_UPDATESCHEDULING_TIMER;
468 iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
469 iqp.iqpciech = portid;
470 iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
471
472 switch (csio_q_wr_sz(hw, iq_idx)) {
473 case 16:
474 iqp.iqesize = 0; break;
475 case 32:
476 iqp.iqesize = 1; break;
477 case 64:
478 iqp.iqesize = 2; break;
479 case 128:
480 iqp.iqesize = 3; break;
481 }
482
483 iqp.iqsize = csio_q_size(hw, iq_idx) /
484 csio_q_wr_sz(hw, iq_idx);
485 iqp.iqaddr = csio_q_pstart(hw, iq_idx);
486
487 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
488 if (flq_idx != -1) {
489 struct csio_q *flq = hw->wrm.q_arr[flq_idx];
490
491 iqp.fl0paden = 1;
492 iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
493 iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
494 iqp.fl0fbmax = X_FETCHBURSTMAX_512B;
495 iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
496 iqp.fl0addr = csio_q_pstart(hw, flq_idx);
497 }
498
499 csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
500
501 if (csio_mb_issue(hw, mbp)) {
502 csio_err(hw, "Issue of IQ cmd failed!\n");
503 mempool_free(mbp, hw->mb_mempool);
504 return -EINVAL;
505 }
506
507 if (cbfn != NULL)
508 return 0;
509
510 return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
511 }
512
513 /*
514 * csio_wr_eq_create_rsp - Response handler for EQ creation.
515 * @hw: The HW module.
516 * @mbp: Mailbox.
517 * @eq_idx: Egress queue that got created.
518 *
519 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
520 */
521 static int
csio_wr_eq_cfg_rsp(struct csio_hw * hw,struct csio_mb * mbp,int eq_idx)522 csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
523 {
524 struct csio_eq_params eqp;
525 enum fw_retval retval;
526
527 memset(&eqp, 0, sizeof(struct csio_eq_params));
528
529 csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
530
531 if (retval != FW_SUCCESS) {
532 csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
533 mempool_free(mbp, hw->mb_mempool);
534 return -EINVAL;
535 }
536
537 csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
538 csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
539 csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
540 csio_q_inc_idx(hw, eq_idx) = 0;
541
542 mempool_free(mbp, hw->mb_mempool);
543
544 return 0;
545 }
546
547 /*
548 * csio_wr_eq_create - Configure an Egress queue with FW.
549 * @hw: HW module.
550 * @priv: Private data.
551 * @eq_idx: Egress queue index in the WR module.
552 * @iq_idx: Associated ingress queue index.
553 * @cbfn: Completion callback.
554 *
555 * This API configures a offload egress queue with FW by issuing a
556 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
557 */
558 int
csio_wr_eq_create(struct csio_hw * hw,void * priv,int eq_idx,int iq_idx,uint8_t portid,void (* cbfn)(struct csio_hw *,struct csio_mb *))559 csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
560 int iq_idx, uint8_t portid,
561 void (*cbfn) (struct csio_hw *, struct csio_mb *))
562 {
563 struct csio_mb *mbp;
564 struct csio_eq_params eqp;
565
566 memset(&eqp, 0, sizeof(struct csio_eq_params));
567
568 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
569 if (!mbp) {
570 csio_err(hw, "EQ command out of memory!\n");
571 return -ENOMEM;
572 }
573
574 eqp.pfn = hw->pfn;
575 eqp.vfn = 0;
576 eqp.eqstart = 1;
577 eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
578 eqp.iqid = csio_q_iqid(hw, iq_idx);
579 eqp.fbmin = X_FETCHBURSTMIN_64B;
580 eqp.fbmax = X_FETCHBURSTMAX_512B;
581 eqp.cidxfthresh = 0;
582 eqp.pciechn = portid;
583 eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
584 eqp.eqaddr = csio_q_pstart(hw, eq_idx);
585
586 csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
587 &eqp, cbfn);
588
589 if (csio_mb_issue(hw, mbp)) {
590 csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
591 mempool_free(mbp, hw->mb_mempool);
592 return -EINVAL;
593 }
594
595 if (cbfn != NULL)
596 return 0;
597
598 return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
599 }
600
601 /*
602 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
603 * @hw: The HW module.
604 * @mbp: Mailbox.
605 * @iq_idx: Ingress queue that was freed.
606 *
607 * Handle FW_IQ_CMD (free) mailbox completion.
608 */
609 static int
csio_wr_iq_destroy_rsp(struct csio_hw * hw,struct csio_mb * mbp,int iq_idx)610 csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
611 {
612 enum fw_retval retval = csio_mb_fw_retval(mbp);
613 int rv = 0;
614
615 if (retval != FW_SUCCESS)
616 rv = -EINVAL;
617
618 mempool_free(mbp, hw->mb_mempool);
619
620 return rv;
621 }
622
623 /*
624 * csio_wr_iq_destroy - Free an ingress queue.
625 * @hw: The HW module.
626 * @priv: Private data object.
627 * @iq_idx: Ingress queue index to destroy
628 * @cbfn: Completion callback.
629 *
630 * This API frees an ingress queue by issuing the FW_IQ_CMD
631 * with the free bit set.
632 */
633 static int
csio_wr_iq_destroy(struct csio_hw * hw,void * priv,int iq_idx,void (* cbfn)(struct csio_hw *,struct csio_mb *))634 csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
635 void (*cbfn)(struct csio_hw *, struct csio_mb *))
636 {
637 int rv = 0;
638 struct csio_mb *mbp;
639 struct csio_iq_params iqp;
640 int flq_idx;
641
642 memset(&iqp, 0, sizeof(struct csio_iq_params));
643
644 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
645 if (!mbp)
646 return -ENOMEM;
647
648 iqp.pfn = hw->pfn;
649 iqp.vfn = 0;
650 iqp.iqid = csio_q_iqid(hw, iq_idx);
651 iqp.type = FW_IQ_TYPE_FL_INT_CAP;
652
653 flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
654 if (flq_idx != -1)
655 iqp.fl0id = csio_q_flid(hw, flq_idx);
656 else
657 iqp.fl0id = 0xFFFF;
658
659 iqp.fl1id = 0xFFFF;
660
661 csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
662
663 rv = csio_mb_issue(hw, mbp);
664 if (rv != 0) {
665 mempool_free(mbp, hw->mb_mempool);
666 return rv;
667 }
668
669 if (cbfn != NULL)
670 return 0;
671
672 return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
673 }
674
675 /*
676 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
677 * @hw: The HW module.
678 * @mbp: Mailbox.
679 * @eq_idx: Egress queue that was freed.
680 *
681 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
682 */
683 static int
csio_wr_eq_destroy_rsp(struct csio_hw * hw,struct csio_mb * mbp,int eq_idx)684 csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
685 {
686 enum fw_retval retval = csio_mb_fw_retval(mbp);
687 int rv = 0;
688
689 if (retval != FW_SUCCESS)
690 rv = -EINVAL;
691
692 mempool_free(mbp, hw->mb_mempool);
693
694 return rv;
695 }
696
697 /*
698 * csio_wr_eq_destroy - Free an Egress queue.
699 * @hw: The HW module.
700 * @priv: Private data object.
701 * @eq_idx: Egress queue index to destroy
702 * @cbfn: Completion callback.
703 *
704 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
705 * with the free bit set.
706 */
707 static int
csio_wr_eq_destroy(struct csio_hw * hw,void * priv,int eq_idx,void (* cbfn)(struct csio_hw *,struct csio_mb *))708 csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
709 void (*cbfn) (struct csio_hw *, struct csio_mb *))
710 {
711 int rv = 0;
712 struct csio_mb *mbp;
713 struct csio_eq_params eqp;
714
715 memset(&eqp, 0, sizeof(struct csio_eq_params));
716
717 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
718 if (!mbp)
719 return -ENOMEM;
720
721 eqp.pfn = hw->pfn;
722 eqp.vfn = 0;
723 eqp.eqid = csio_q_eqid(hw, eq_idx);
724
725 csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
726
727 rv = csio_mb_issue(hw, mbp);
728 if (rv != 0) {
729 mempool_free(mbp, hw->mb_mempool);
730 return rv;
731 }
732
733 if (cbfn != NULL)
734 return 0;
735
736 return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
737 }
738
739 /*
740 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
741 * @hw: HW module
742 * @qidx: Egress queue index
743 *
744 * Cleanup the Egress queue status page.
745 */
746 static void
csio_wr_cleanup_eq_stpg(struct csio_hw * hw,int qidx)747 csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
748 {
749 struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
750 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
751
752 memset(stp, 0, sizeof(*stp));
753 }
754
755 /*
756 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
757 * @hw: HW module
758 * @qidx: Ingress queue index
759 *
760 * Cleanup the footer entries in the given ingress queue,
761 * set to 1 the internal copy of genbit.
762 */
763 static void
csio_wr_cleanup_iq_ftr(struct csio_hw * hw,int qidx)764 csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
765 {
766 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
767 struct csio_q *q = wrm->q_arr[qidx];
768 void *wr;
769 struct csio_iqwr_footer *ftr;
770 uint32_t i = 0;
771
772 /* set to 1 since we are just about zero out genbit */
773 q->un.iq.genbit = 1;
774
775 for (i = 0; i < q->credits; i++) {
776 /* Get the WR */
777 wr = (void *)((uintptr_t)q->vstart +
778 (i * q->wr_sz));
779 /* Get the footer */
780 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
781 (q->wr_sz - sizeof(*ftr)));
782 /* Zero out footer */
783 memset(ftr, 0, sizeof(*ftr));
784 }
785 }
786
787 int
csio_wr_destroy_queues(struct csio_hw * hw,bool cmd)788 csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
789 {
790 int i, flq_idx;
791 struct csio_q *q;
792 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
793 int rv;
794
795 for (i = 0; i < wrm->free_qidx; i++) {
796 q = wrm->q_arr[i];
797
798 switch (q->type) {
799 case CSIO_EGRESS:
800 if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
801 csio_wr_cleanup_eq_stpg(hw, i);
802 if (!cmd) {
803 csio_q_eqid(hw, i) = CSIO_MAX_QID;
804 continue;
805 }
806
807 rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
808 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
809 cmd = false;
810
811 csio_q_eqid(hw, i) = CSIO_MAX_QID;
812 }
813 case CSIO_INGRESS:
814 if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
815 csio_wr_cleanup_iq_ftr(hw, i);
816 if (!cmd) {
817 csio_q_iqid(hw, i) = CSIO_MAX_QID;
818 flq_idx = csio_q_iq_flq_idx(hw, i);
819 if (flq_idx != -1)
820 csio_q_flid(hw, flq_idx) =
821 CSIO_MAX_QID;
822 continue;
823 }
824
825 rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
826 if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
827 cmd = false;
828
829 csio_q_iqid(hw, i) = CSIO_MAX_QID;
830 flq_idx = csio_q_iq_flq_idx(hw, i);
831 if (flq_idx != -1)
832 csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
833 }
834 default:
835 break;
836 }
837 }
838
839 hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
840
841 return 0;
842 }
843
844 /*
845 * csio_wr_get - Get requested size of WR entry/entries from queue.
846 * @hw: HW module.
847 * @qidx: Index of queue.
848 * @size: Cumulative size of Work request(s).
849 * @wrp: Work request pair.
850 *
851 * If requested credits are available, return the start address of the
852 * work request in the work request pair. Set pidx accordingly and
853 * return.
854 *
855 * NOTE about WR pair:
856 * ==================
857 * A WR can start towards the end of a queue, and then continue at the
858 * beginning, since the queue is considered to be circular. This will
859 * require a pair of address/size to be passed back to the caller -
860 * hence Work request pair format.
861 */
862 int
csio_wr_get(struct csio_hw * hw,int qidx,uint32_t size,struct csio_wr_pair * wrp)863 csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
864 struct csio_wr_pair *wrp)
865 {
866 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
867 struct csio_q *q = wrm->q_arr[qidx];
868 void *cwr = (void *)((uintptr_t)(q->vstart) +
869 (q->pidx * CSIO_QCREDIT_SZ));
870 struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
871 uint16_t cidx = q->cidx = ntohs(stp->cidx);
872 uint16_t pidx = q->pidx;
873 uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
874 int req_credits = req_sz / CSIO_QCREDIT_SZ;
875 int credits;
876
877 CSIO_DB_ASSERT(q->owner != NULL);
878 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
879 CSIO_DB_ASSERT(cidx <= q->credits);
880
881 /* Calculate credits */
882 if (pidx > cidx) {
883 credits = q->credits - (pidx - cidx) - 1;
884 } else if (cidx > pidx) {
885 credits = cidx - pidx - 1;
886 } else {
887 /* cidx == pidx, empty queue */
888 credits = q->credits;
889 CSIO_INC_STATS(q, n_qempty);
890 }
891
892 /*
893 * Check if we have enough credits.
894 * credits = 1 implies queue is full.
895 */
896 if (!credits || (req_credits > credits)) {
897 CSIO_INC_STATS(q, n_qfull);
898 return -EBUSY;
899 }
900
901 /*
902 * If we are here, we have enough credits to satisfy the
903 * request. Check if we are near the end of q, and if WR spills over.
904 * If it does, use the first addr/size to cover the queue until
905 * the end. Fit the remainder portion of the request at the top
906 * of queue and return it in the second addr/len. Set pidx
907 * accordingly.
908 */
909 if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
910 wrp->addr1 = cwr;
911 wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
912 wrp->addr2 = q->vstart;
913 wrp->size2 = req_sz - wrp->size1;
914 q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
915 CSIO_QCREDIT_SZ);
916 CSIO_INC_STATS(q, n_qwrap);
917 CSIO_INC_STATS(q, n_eq_wr_split);
918 } else {
919 wrp->addr1 = cwr;
920 wrp->size1 = req_sz;
921 wrp->addr2 = NULL;
922 wrp->size2 = 0;
923 q->pidx += (uint16_t)req_credits;
924
925 /* We are the end of queue, roll back pidx to top of queue */
926 if (unlikely(q->pidx == q->credits)) {
927 q->pidx = 0;
928 CSIO_INC_STATS(q, n_qwrap);
929 }
930 }
931
932 q->inc_idx = (uint16_t)req_credits;
933
934 CSIO_INC_STATS(q, n_tot_reqs);
935
936 return 0;
937 }
938
939 /*
940 * csio_wr_copy_to_wrp - Copies given data into WR.
941 * @data_buf - Data buffer
942 * @wrp - Work request pair.
943 * @wr_off - Work request offset.
944 * @data_len - Data length.
945 *
946 * Copies the given data in Work Request. Work request pair(wrp) specifies
947 * address information of Work request.
948 * Returns: none
949 */
950 void
csio_wr_copy_to_wrp(void * data_buf,struct csio_wr_pair * wrp,uint32_t wr_off,uint32_t data_len)951 csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
952 uint32_t wr_off, uint32_t data_len)
953 {
954 uint32_t nbytes;
955
956 /* Number of space available in buffer addr1 of WRP */
957 nbytes = ((wrp->size1 - wr_off) >= data_len) ?
958 data_len : (wrp->size1 - wr_off);
959
960 memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
961 data_len -= nbytes;
962
963 /* Write the remaining data from the begining of circular buffer */
964 if (data_len) {
965 CSIO_DB_ASSERT(data_len <= wrp->size2);
966 CSIO_DB_ASSERT(wrp->addr2 != NULL);
967 memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
968 }
969 }
970
971 /*
972 * csio_wr_issue - Notify chip of Work request.
973 * @hw: HW module.
974 * @qidx: Index of queue.
975 * @prio: 0: Low priority, 1: High priority
976 *
977 * Rings the SGE Doorbell by writing the current producer index of the passed
978 * in queue into the register.
979 *
980 */
981 int
csio_wr_issue(struct csio_hw * hw,int qidx,bool prio)982 csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
983 {
984 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
985 struct csio_q *q = wrm->q_arr[qidx];
986
987 CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
988
989 wmb();
990 /* Ring SGE Doorbell writing q->pidx into it */
991 csio_wr_reg32(hw, DBPRIO(prio) | QID(q->un.eq.physeqid) |
992 CSIO_HW_PIDX(hw, q->inc_idx),
993 MYPF_REG(SGE_PF_KDOORBELL));
994 q->inc_idx = 0;
995
996 return 0;
997 }
998
999 static inline uint32_t
csio_wr_avail_qcredits(struct csio_q * q)1000 csio_wr_avail_qcredits(struct csio_q *q)
1001 {
1002 if (q->pidx > q->cidx)
1003 return q->pidx - q->cidx;
1004 else if (q->cidx > q->pidx)
1005 return q->credits - (q->cidx - q->pidx);
1006 else
1007 return 0; /* cidx == pidx, empty queue */
1008 }
1009
1010 /*
1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1012 * @hw: HW module.
1013 * @flq: The freelist queue.
1014 *
1015 * Invalidate the driver's version of a freelist buffer entry,
1016 * without freeing the associated the DMA memory. The entry
1017 * to be invalidated is picked up from the current Free list
1018 * queue cidx.
1019 *
1020 */
1021 static inline void
csio_wr_inval_flq_buf(struct csio_hw * hw,struct csio_q * flq)1022 csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1023 {
1024 flq->cidx++;
1025 if (flq->cidx == flq->credits) {
1026 flq->cidx = 0;
1027 CSIO_INC_STATS(flq, n_qwrap);
1028 }
1029 }
1030
1031 /*
1032 * csio_wr_process_fl - Process a freelist completion.
1033 * @hw: HW module.
1034 * @q: The ingress queue attached to the Freelist.
1035 * @wr: The freelist completion WR in the ingress queue.
1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1037 * @iq_handler: Caller's handler for this completion.
1038 * @priv: Private pointer of caller
1039 *
1040 */
1041 static inline void
csio_wr_process_fl(struct csio_hw * hw,struct csio_q * q,void * wr,uint32_t len_to_qid,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1042 csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1043 void *wr, uint32_t len_to_qid,
1044 void (*iq_handler)(struct csio_hw *, void *,
1045 uint32_t, struct csio_fl_dma_buf *,
1046 void *),
1047 void *priv)
1048 {
1049 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1050 struct csio_sge *sge = &wrm->sge;
1051 struct csio_fl_dma_buf flb;
1052 struct csio_dma_buf *buf, *fbuf;
1053 uint32_t bufsz, len, lastlen = 0;
1054 int n;
1055 struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1056
1057 CSIO_DB_ASSERT(flq != NULL);
1058
1059 len = len_to_qid;
1060
1061 if (len & IQWRF_NEWBUF) {
1062 if (flq->un.fl.offset > 0) {
1063 csio_wr_inval_flq_buf(hw, flq);
1064 flq->un.fl.offset = 0;
1065 }
1066 len = IQWRF_LEN_GET(len);
1067 }
1068
1069 CSIO_DB_ASSERT(len != 0);
1070
1071 flb.totlen = len;
1072
1073 /* Consume all freelist buffers used for len bytes */
1074 for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1075 buf = &flq->un.fl.bufs[flq->cidx];
1076 bufsz = csio_wr_fl_bufsz(sge, buf);
1077
1078 fbuf->paddr = buf->paddr;
1079 fbuf->vaddr = buf->vaddr;
1080
1081 flb.offset = flq->un.fl.offset;
1082 lastlen = min(bufsz, len);
1083 fbuf->len = lastlen;
1084
1085 len -= lastlen;
1086 if (!len)
1087 break;
1088 csio_wr_inval_flq_buf(hw, flq);
1089 }
1090
1091 flb.defer_free = flq->un.fl.packen ? 0 : 1;
1092
1093 iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1094 &flb, priv);
1095
1096 if (flq->un.fl.packen)
1097 flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1098 else
1099 csio_wr_inval_flq_buf(hw, flq);
1100
1101 }
1102
1103 /*
1104 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1105 * @q: Ingress quueue.
1106 * @ftr: Ingress queue WR SGE footer.
1107 *
1108 * The entry is new if our generation bit matches the corresponding
1109 * bit in the footer of the current WR.
1110 */
1111 static inline bool
csio_is_new_iqwr(struct csio_q * q,struct csio_iqwr_footer * ftr)1112 csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1113 {
1114 return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1115 }
1116
1117 /*
1118 * csio_wr_process_iq - Process elements in Ingress queue.
1119 * @hw: HW pointer
1120 * @qidx: Index of queue
1121 * @iq_handler: Handler for this queue
1122 * @priv: Caller's private pointer
1123 *
1124 * This routine walks through every entry of the ingress queue, calling
1125 * the provided iq_handler with the entry, until the generation bit
1126 * flips.
1127 */
1128 int
csio_wr_process_iq(struct csio_hw * hw,struct csio_q * q,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1129 csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1130 void (*iq_handler)(struct csio_hw *, void *,
1131 uint32_t, struct csio_fl_dma_buf *,
1132 void *),
1133 void *priv)
1134 {
1135 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1136 void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1137 struct csio_iqwr_footer *ftr;
1138 uint32_t wr_type, fw_qid, qid;
1139 struct csio_q *q_completed;
1140 struct csio_q *flq = csio_iq_has_fl(q) ?
1141 wrm->q_arr[q->un.iq.flq_idx] : NULL;
1142 int rv = 0;
1143
1144 /* Get the footer */
1145 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1146 (q->wr_sz - sizeof(*ftr)));
1147
1148 /*
1149 * When q wrapped around last time, driver should have inverted
1150 * ic.genbit as well.
1151 */
1152 while (csio_is_new_iqwr(q, ftr)) {
1153
1154 CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1155 (uintptr_t)q->vwrap);
1156 rmb();
1157 wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1158
1159 switch (wr_type) {
1160 case X_RSPD_TYPE_CPL:
1161 /* Subtract footer from WR len */
1162 iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1163 break;
1164 case X_RSPD_TYPE_FLBUF:
1165 csio_wr_process_fl(hw, q, wr,
1166 ntohl(ftr->pldbuflen_qid),
1167 iq_handler, priv);
1168 break;
1169 case X_RSPD_TYPE_INTR:
1170 fw_qid = ntohl(ftr->pldbuflen_qid);
1171 qid = fw_qid - wrm->fw_iq_start;
1172 q_completed = hw->wrm.intr_map[qid];
1173
1174 if (unlikely(qid ==
1175 csio_q_physiqid(hw, hw->intr_iq_idx))) {
1176 /*
1177 * We are already in the Forward Interrupt
1178 * Interrupt Queue Service! Do-not service
1179 * again!
1180 *
1181 */
1182 } else {
1183 CSIO_DB_ASSERT(q_completed);
1184 CSIO_DB_ASSERT(
1185 q_completed->un.iq.iq_intx_handler);
1186
1187 /* Call the queue handler. */
1188 q_completed->un.iq.iq_intx_handler(hw, NULL,
1189 0, NULL, (void *)q_completed);
1190 }
1191 break;
1192 default:
1193 csio_warn(hw, "Unknown resp type 0x%x received\n",
1194 wr_type);
1195 CSIO_INC_STATS(q, n_rsp_unknown);
1196 break;
1197 }
1198
1199 /*
1200 * Ingress *always* has fixed size WR entries. Therefore,
1201 * there should always be complete WRs towards the end of
1202 * queue.
1203 */
1204 if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1205
1206 /* Roll over to start of queue */
1207 q->cidx = 0;
1208 wr = q->vstart;
1209
1210 /* Toggle genbit */
1211 q->un.iq.genbit ^= 0x1;
1212
1213 CSIO_INC_STATS(q, n_qwrap);
1214 } else {
1215 q->cidx++;
1216 wr = (void *)((uintptr_t)(q->vstart) +
1217 (q->cidx * q->wr_sz));
1218 }
1219
1220 ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1221 (q->wr_sz - sizeof(*ftr)));
1222 q->inc_idx++;
1223
1224 } /* while (q->un.iq.genbit == hdr->genbit) */
1225
1226 /*
1227 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1228 * especially in msix mode. With INTx, this may be a common occurence.
1229 */
1230 if (unlikely(!q->inc_idx)) {
1231 CSIO_INC_STATS(q, n_stray_comp);
1232 rv = -EINVAL;
1233 goto restart;
1234 }
1235
1236 /* Replenish free list buffers if pending falls below low water mark */
1237 if (flq) {
1238 uint32_t avail = csio_wr_avail_qcredits(flq);
1239 if (avail <= 16) {
1240 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1241 * remains unpopulated otherwise HW thinks
1242 * FLQ is empty.
1243 */
1244 csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1245 csio_wr_ring_fldb(hw, flq);
1246 }
1247 }
1248
1249 restart:
1250 /* Now inform SGE about our incremental index value */
1251 csio_wr_reg32(hw, CIDXINC(q->inc_idx) |
1252 INGRESSQID(q->un.iq.physiqid) |
1253 TIMERREG(csio_sge_timer_reg),
1254 MYPF_REG(SGE_PF_GTS));
1255 q->stats.n_tot_rsps += q->inc_idx;
1256
1257 q->inc_idx = 0;
1258
1259 return rv;
1260 }
1261
1262 int
csio_wr_process_iq_idx(struct csio_hw * hw,int qidx,void (* iq_handler)(struct csio_hw *,void *,uint32_t,struct csio_fl_dma_buf *,void *),void * priv)1263 csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1264 void (*iq_handler)(struct csio_hw *, void *,
1265 uint32_t, struct csio_fl_dma_buf *,
1266 void *),
1267 void *priv)
1268 {
1269 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1270 struct csio_q *iq = wrm->q_arr[qidx];
1271
1272 return csio_wr_process_iq(hw, iq, iq_handler, priv);
1273 }
1274
1275 static int
csio_closest_timer(struct csio_sge * s,int time)1276 csio_closest_timer(struct csio_sge *s, int time)
1277 {
1278 int i, delta, match = 0, min_delta = INT_MAX;
1279
1280 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1281 delta = time - s->timer_val[i];
1282 if (delta < 0)
1283 delta = -delta;
1284 if (delta < min_delta) {
1285 min_delta = delta;
1286 match = i;
1287 }
1288 }
1289 return match;
1290 }
1291
1292 static int
csio_closest_thresh(struct csio_sge * s,int cnt)1293 csio_closest_thresh(struct csio_sge *s, int cnt)
1294 {
1295 int i, delta, match = 0, min_delta = INT_MAX;
1296
1297 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1298 delta = cnt - s->counter_val[i];
1299 if (delta < 0)
1300 delta = -delta;
1301 if (delta < min_delta) {
1302 min_delta = delta;
1303 match = i;
1304 }
1305 }
1306 return match;
1307 }
1308
1309 static void
csio_wr_fixup_host_params(struct csio_hw * hw)1310 csio_wr_fixup_host_params(struct csio_hw *hw)
1311 {
1312 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1313 struct csio_sge *sge = &wrm->sge;
1314 uint32_t clsz = L1_CACHE_BYTES;
1315 uint32_t s_hps = PAGE_SHIFT - 10;
1316 uint32_t ingpad = 0;
1317 uint32_t stat_len = clsz > 64 ? 128 : 64;
1318
1319 csio_wr_reg32(hw, HOSTPAGESIZEPF0(s_hps) | HOSTPAGESIZEPF1(s_hps) |
1320 HOSTPAGESIZEPF2(s_hps) | HOSTPAGESIZEPF3(s_hps) |
1321 HOSTPAGESIZEPF4(s_hps) | HOSTPAGESIZEPF5(s_hps) |
1322 HOSTPAGESIZEPF6(s_hps) | HOSTPAGESIZEPF7(s_hps),
1323 SGE_HOST_PAGE_SIZE);
1324
1325 sge->csio_fl_align = clsz < 32 ? 32 : clsz;
1326 ingpad = ilog2(sge->csio_fl_align) - 5;
1327
1328 csio_set_reg_field(hw, SGE_CONTROL, INGPADBOUNDARY_MASK |
1329 EGRSTATUSPAGESIZE(1),
1330 INGPADBOUNDARY(ingpad) |
1331 EGRSTATUSPAGESIZE(stat_len != 64));
1332
1333 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1334 csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0);
1335
1336 /*
1337 * If using hard params, the following will get set correctly
1338 * in csio_wr_set_sge().
1339 */
1340 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1341 csio_wr_reg32(hw,
1342 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2) +
1343 sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1344 SGE_FL_BUFFER_SIZE2);
1345 csio_wr_reg32(hw,
1346 (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3) +
1347 sge->csio_fl_align - 1) & ~(sge->csio_fl_align - 1),
1348 SGE_FL_BUFFER_SIZE3);
1349 }
1350
1351 csio_wr_reg32(hw, HPZ0(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ);
1352
1353 /* default value of rx_dma_offset of the NIC driver */
1354 csio_set_reg_field(hw, SGE_CONTROL, PKTSHIFT_MASK,
1355 PKTSHIFT(CSIO_SGE_RX_DMA_OFFSET));
1356
1357 csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG,
1358 CSUM_HAS_PSEUDO_HDR, 0);
1359 }
1360
1361 static void
csio_init_intr_coalesce_parms(struct csio_hw * hw)1362 csio_init_intr_coalesce_parms(struct csio_hw *hw)
1363 {
1364 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1365 struct csio_sge *sge = &wrm->sge;
1366
1367 csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1368 if (csio_intr_coalesce_cnt) {
1369 csio_sge_thresh_reg = 0;
1370 csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1371 return;
1372 }
1373
1374 csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1375 }
1376
1377 /*
1378 * csio_wr_get_sge - Get SGE register values.
1379 * @hw: HW module.
1380 *
1381 * Used by non-master functions and by master-functions relying on config file.
1382 */
1383 static void
csio_wr_get_sge(struct csio_hw * hw)1384 csio_wr_get_sge(struct csio_hw *hw)
1385 {
1386 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1387 struct csio_sge *sge = &wrm->sge;
1388 uint32_t ingpad;
1389 int i;
1390 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1391 u32 ingress_rx_threshold;
1392
1393 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL);
1394
1395 ingpad = INGPADBOUNDARY_GET(sge->sge_control);
1396
1397 switch (ingpad) {
1398 case X_INGPCIEBOUNDARY_32B:
1399 sge->csio_fl_align = 32; break;
1400 case X_INGPCIEBOUNDARY_64B:
1401 sge->csio_fl_align = 64; break;
1402 case X_INGPCIEBOUNDARY_128B:
1403 sge->csio_fl_align = 128; break;
1404 case X_INGPCIEBOUNDARY_256B:
1405 sge->csio_fl_align = 256; break;
1406 case X_INGPCIEBOUNDARY_512B:
1407 sge->csio_fl_align = 512; break;
1408 case X_INGPCIEBOUNDARY_1024B:
1409 sge->csio_fl_align = 1024; break;
1410 case X_INGPCIEBOUNDARY_2048B:
1411 sge->csio_fl_align = 2048; break;
1412 case X_INGPCIEBOUNDARY_4096B:
1413 sge->csio_fl_align = 4096; break;
1414 }
1415
1416 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1417 csio_get_flbuf_size(hw, sge, i);
1418
1419 timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1);
1420 timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3);
1421 timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5);
1422
1423 sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1424 TIMERVALUE0_GET(timer_value_0_and_1));
1425 sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1426 TIMERVALUE1_GET(timer_value_0_and_1));
1427 sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1428 TIMERVALUE2_GET(timer_value_2_and_3));
1429 sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1430 TIMERVALUE3_GET(timer_value_2_and_3));
1431 sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1432 TIMERVALUE4_GET(timer_value_4_and_5));
1433 sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1434 TIMERVALUE5_GET(timer_value_4_and_5));
1435
1436 ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD);
1437 sge->counter_val[0] = THRESHOLD_0_GET(ingress_rx_threshold);
1438 sge->counter_val[1] = THRESHOLD_1_GET(ingress_rx_threshold);
1439 sge->counter_val[2] = THRESHOLD_2_GET(ingress_rx_threshold);
1440 sge->counter_val[3] = THRESHOLD_3_GET(ingress_rx_threshold);
1441
1442 csio_init_intr_coalesce_parms(hw);
1443 }
1444
1445 /*
1446 * csio_wr_set_sge - Initialize SGE registers
1447 * @hw: HW module.
1448 *
1449 * Used by Master function to initialize SGE registers in the absence
1450 * of a config file.
1451 */
1452 static void
csio_wr_set_sge(struct csio_hw * hw)1453 csio_wr_set_sge(struct csio_hw *hw)
1454 {
1455 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1456 struct csio_sge *sge = &wrm->sge;
1457 int i;
1458
1459 /*
1460 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1461 * Queue and Packet Date to the Free List.
1462 */
1463 csio_set_reg_field(hw, SGE_CONTROL, RXPKTCPLMODE(1), RXPKTCPLMODE(1));
1464
1465 sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL);
1466
1467 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1468
1469 /*
1470 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1471 * and generate an interrupt when this occurs so we can recover.
1472 */
1473 csio_set_reg_field(hw, SGE_DBFIFO_STATUS,
1474 HP_INT_THRESH(HP_INT_THRESH_MASK) |
1475 CSIO_HW_LP_INT_THRESH(hw, CSIO_HW_M_LP_INT_THRESH(hw)),
1476 HP_INT_THRESH(CSIO_SGE_DBFIFO_INT_THRESH) |
1477 CSIO_HW_LP_INT_THRESH(hw, CSIO_SGE_DBFIFO_INT_THRESH));
1478
1479 csio_set_reg_field(hw, SGE_DOORBELL_CONTROL, ENABLE_DROP,
1480 ENABLE_DROP);
1481
1482 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1483
1484 CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1485 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1486 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2);
1487 csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1488 & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3);
1489 CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1490 CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1491 CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1492 CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1493 CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1494
1495 for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1496 csio_get_flbuf_size(hw, sge, i);
1497
1498 /* Initialize interrupt coalescing attributes */
1499 sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1500 sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1501 sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1502 sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1503 sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1504 sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1505
1506 sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1507 sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1508 sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1509 sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1510
1511 csio_wr_reg32(hw, THRESHOLD_0(sge->counter_val[0]) |
1512 THRESHOLD_1(sge->counter_val[1]) |
1513 THRESHOLD_2(sge->counter_val[2]) |
1514 THRESHOLD_3(sge->counter_val[3]),
1515 SGE_INGRESS_RX_THRESHOLD);
1516
1517 csio_wr_reg32(hw,
1518 TIMERVALUE0(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1519 TIMERVALUE1(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1520 SGE_TIMER_VALUE_0_AND_1);
1521
1522 csio_wr_reg32(hw,
1523 TIMERVALUE2(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1524 TIMERVALUE3(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1525 SGE_TIMER_VALUE_2_AND_3);
1526
1527 csio_wr_reg32(hw,
1528 TIMERVALUE4(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1529 TIMERVALUE5(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1530 SGE_TIMER_VALUE_4_AND_5);
1531
1532 csio_init_intr_coalesce_parms(hw);
1533 }
1534
1535 void
csio_wr_sge_init(struct csio_hw * hw)1536 csio_wr_sge_init(struct csio_hw *hw)
1537 {
1538 /*
1539 * If we are master and chip is not initialized:
1540 * - If we plan to use the config file, we need to fixup some
1541 * host specific registers, and read the rest of the SGE
1542 * configuration.
1543 * - If we dont plan to use the config file, we need to initialize
1544 * SGE entirely, including fixing the host specific registers.
1545 * If we are master and chip is initialized, just read and work off of
1546 * the already initialized SGE values.
1547 * If we arent the master, we are only allowed to read and work off of
1548 * the already initialized SGE values.
1549 *
1550 * Therefore, before calling this function, we assume that the master-
1551 * ship of the card, state and whether to use config file or not, have
1552 * already been decided.
1553 */
1554 if (csio_is_hw_master(hw)) {
1555 if (hw->fw_state != CSIO_DEV_STATE_INIT)
1556 csio_wr_fixup_host_params(hw);
1557
1558 if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1559 csio_wr_get_sge(hw);
1560 else
1561 csio_wr_set_sge(hw);
1562 } else
1563 csio_wr_get_sge(hw);
1564 }
1565
1566 /*
1567 * csio_wrm_init - Initialize Work request module.
1568 * @wrm: WR module
1569 * @hw: HW pointer
1570 *
1571 * Allocates memory for an array of queue pointers starting at q_arr.
1572 */
1573 int
csio_wrm_init(struct csio_wrm * wrm,struct csio_hw * hw)1574 csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1575 {
1576 int i;
1577
1578 if (!wrm->num_q) {
1579 csio_err(hw, "Num queues is not set\n");
1580 return -EINVAL;
1581 }
1582
1583 wrm->q_arr = kzalloc(sizeof(struct csio_q *) * wrm->num_q, GFP_KERNEL);
1584 if (!wrm->q_arr)
1585 goto err;
1586
1587 for (i = 0; i < wrm->num_q; i++) {
1588 wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1589 if (!wrm->q_arr[i]) {
1590 while (--i >= 0)
1591 kfree(wrm->q_arr[i]);
1592 goto err_free_arr;
1593 }
1594 }
1595 wrm->free_qidx = 0;
1596
1597 return 0;
1598
1599 err_free_arr:
1600 kfree(wrm->q_arr);
1601 err:
1602 return -ENOMEM;
1603 }
1604
1605 /*
1606 * csio_wrm_exit - Initialize Work request module.
1607 * @wrm: WR module
1608 * @hw: HW module
1609 *
1610 * Uninitialize WR module. Free q_arr and pointers in it.
1611 * We have the additional job of freeing the DMA memory associated
1612 * with the queues.
1613 */
1614 void
csio_wrm_exit(struct csio_wrm * wrm,struct csio_hw * hw)1615 csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1616 {
1617 int i;
1618 uint32_t j;
1619 struct csio_q *q;
1620 struct csio_dma_buf *buf;
1621
1622 for (i = 0; i < wrm->num_q; i++) {
1623 q = wrm->q_arr[i];
1624
1625 if (wrm->free_qidx && (i < wrm->free_qidx)) {
1626 if (q->type == CSIO_FREELIST) {
1627 if (!q->un.fl.bufs)
1628 continue;
1629 for (j = 0; j < q->credits; j++) {
1630 buf = &q->un.fl.bufs[j];
1631 if (!buf->vaddr)
1632 continue;
1633 pci_free_consistent(hw->pdev, buf->len,
1634 buf->vaddr,
1635 buf->paddr);
1636 }
1637 kfree(q->un.fl.bufs);
1638 }
1639 pci_free_consistent(hw->pdev, q->size,
1640 q->vstart, q->pstart);
1641 }
1642 kfree(q);
1643 }
1644
1645 hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1646
1647 kfree(wrm->q_arr);
1648 }
1649