1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37
38 #include "perf_event.h"
39
40 struct x86_pmu x86_pmu __read_mostly;
41
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43 .enabled = 1,
44 };
45
46 u64 __read_mostly hw_cache_event_ids
47 [PERF_COUNT_HW_CACHE_MAX]
48 [PERF_COUNT_HW_CACHE_OP_MAX]
49 [PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54
55 /*
56 * Propagate event elapsed time into the generic event.
57 * Can only be executed on the CPU where the event is active.
58 * Returns the delta events processed.
59 */
x86_perf_event_update(struct perf_event * event)60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62 struct hw_perf_event *hwc = &event->hw;
63 int shift = 64 - x86_pmu.cntval_bits;
64 u64 prev_raw_count, new_raw_count;
65 int idx = hwc->idx;
66 s64 delta;
67
68 if (idx == INTEL_PMC_IDX_FIXED_BTS)
69 return 0;
70
71 /*
72 * Careful: an NMI might modify the previous event value.
73 *
74 * Our tactic to handle this is to first atomically read and
75 * exchange a new raw count - then add that new-prev delta
76 * count to the generic event atomically:
77 */
78 again:
79 prev_raw_count = local64_read(&hwc->prev_count);
80 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81
82 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83 new_raw_count) != prev_raw_count)
84 goto again;
85
86 /*
87 * Now we have the new raw value and have updated the prev
88 * timestamp already. We can now calculate the elapsed delta
89 * (event-)time and add that to the generic event.
90 *
91 * Careful, not all hw sign-extends above the physical width
92 * of the count.
93 */
94 delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 delta >>= shift;
96
97 local64_add(delta, &event->count);
98 local64_sub(delta, &hwc->period_left);
99
100 return new_raw_count;
101 }
102
103 /*
104 * Find and validate any extra registers to set up.
105 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108 struct hw_perf_event_extra *reg;
109 struct extra_reg *er;
110
111 reg = &event->hw.extra_reg;
112
113 if (!x86_pmu.extra_regs)
114 return 0;
115
116 for (er = x86_pmu.extra_regs; er->msr; er++) {
117 if (er->event != (config & er->config_mask))
118 continue;
119 if (event->attr.config1 & ~er->valid_mask)
120 return -EINVAL;
121
122 reg->idx = er->idx;
123 reg->config = event->attr.config1;
124 reg->reg = er->msr;
125 break;
126 }
127 return 0;
128 }
129
130 static atomic_t active_events;
131 static DEFINE_MUTEX(pmc_reserve_mutex);
132
133 #ifdef CONFIG_X86_LOCAL_APIC
134
reserve_pmc_hardware(void)135 static bool reserve_pmc_hardware(void)
136 {
137 int i;
138
139 for (i = 0; i < x86_pmu.num_counters; i++) {
140 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141 goto perfctr_fail;
142 }
143
144 for (i = 0; i < x86_pmu.num_counters; i++) {
145 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146 goto eventsel_fail;
147 }
148
149 return true;
150
151 eventsel_fail:
152 for (i--; i >= 0; i--)
153 release_evntsel_nmi(x86_pmu_config_addr(i));
154
155 i = x86_pmu.num_counters;
156
157 perfctr_fail:
158 for (i--; i >= 0; i--)
159 release_perfctr_nmi(x86_pmu_event_addr(i));
160
161 return false;
162 }
163
release_pmc_hardware(void)164 static void release_pmc_hardware(void)
165 {
166 int i;
167
168 for (i = 0; i < x86_pmu.num_counters; i++) {
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170 release_evntsel_nmi(x86_pmu_config_addr(i));
171 }
172 }
173
174 #else
175
reserve_pmc_hardware(void)176 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)177 static void release_pmc_hardware(void) {}
178
179 #endif
180
check_hw_exists(void)181 static bool check_hw_exists(void)
182 {
183 u64 val, val_fail, val_new= ~0;
184 int i, reg, reg_fail, ret = 0;
185 int bios_fail = 0;
186
187 /*
188 * Check to see if the BIOS enabled any of the counters, if so
189 * complain and bail.
190 */
191 for (i = 0; i < x86_pmu.num_counters; i++) {
192 reg = x86_pmu_config_addr(i);
193 ret = rdmsrl_safe(reg, &val);
194 if (ret)
195 goto msr_fail;
196 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
197 bios_fail = 1;
198 val_fail = val;
199 reg_fail = reg;
200 }
201 }
202
203 if (x86_pmu.num_counters_fixed) {
204 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
208 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
209 if (val & (0x03 << i*4)) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 }
214 }
215 }
216
217 /*
218 * Read the current value, change it and read it back to see if it
219 * matches, this is needed to detect certain hardware emulators
220 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
221 */
222 reg = x86_pmu_event_addr(0);
223 if (rdmsrl_safe(reg, &val))
224 goto msr_fail;
225 val ^= 0xffffUL;
226 ret = wrmsrl_safe(reg, val);
227 ret |= rdmsrl_safe(reg, &val_new);
228 if (ret || val != val_new)
229 goto msr_fail;
230
231 /*
232 * We still allow the PMU driver to operate:
233 */
234 if (bios_fail) {
235 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
237 }
238
239 return true;
240
241 msr_fail:
242 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
244
245 return false;
246 }
247
hw_perf_event_destroy(struct perf_event * event)248 static void hw_perf_event_destroy(struct perf_event *event)
249 {
250 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
251 release_pmc_hardware();
252 release_ds_buffers();
253 mutex_unlock(&pmc_reserve_mutex);
254 }
255 }
256
x86_pmu_initialized(void)257 static inline int x86_pmu_initialized(void)
258 {
259 return x86_pmu.handle_irq != NULL;
260 }
261
262 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)263 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
264 {
265 struct perf_event_attr *attr = &event->attr;
266 unsigned int cache_type, cache_op, cache_result;
267 u64 config, val;
268
269 config = attr->config;
270
271 cache_type = (config >> 0) & 0xff;
272 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
273 return -EINVAL;
274
275 cache_op = (config >> 8) & 0xff;
276 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
277 return -EINVAL;
278
279 cache_result = (config >> 16) & 0xff;
280 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
281 return -EINVAL;
282
283 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
284
285 if (val == 0)
286 return -ENOENT;
287
288 if (val == -1)
289 return -EINVAL;
290
291 hwc->config |= val;
292 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
293 return x86_pmu_extra_regs(val, event);
294 }
295
x86_setup_perfctr(struct perf_event * event)296 int x86_setup_perfctr(struct perf_event *event)
297 {
298 struct perf_event_attr *attr = &event->attr;
299 struct hw_perf_event *hwc = &event->hw;
300 u64 config;
301
302 if (!is_sampling_event(event)) {
303 hwc->sample_period = x86_pmu.max_period;
304 hwc->last_period = hwc->sample_period;
305 local64_set(&hwc->period_left, hwc->sample_period);
306 } else {
307 /*
308 * If we have a PMU initialized but no APIC
309 * interrupts, we cannot sample hardware
310 * events (user-space has to fall back and
311 * sample via a hrtimer based software event):
312 */
313 if (!x86_pmu.apic)
314 return -EOPNOTSUPP;
315 }
316
317 if (attr->type == PERF_TYPE_RAW)
318 return x86_pmu_extra_regs(event->attr.config, event);
319
320 if (attr->type == PERF_TYPE_HW_CACHE)
321 return set_ext_hw_attr(hwc, event);
322
323 if (attr->config >= x86_pmu.max_events)
324 return -EINVAL;
325
326 /*
327 * The generic map:
328 */
329 config = x86_pmu.event_map(attr->config);
330
331 if (config == 0)
332 return -ENOENT;
333
334 if (config == -1LL)
335 return -EINVAL;
336
337 /*
338 * Branch tracing:
339 */
340 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 !attr->freq && hwc->sample_period == 1) {
342 /* BTS is not supported by this architecture. */
343 if (!x86_pmu.bts_active)
344 return -EOPNOTSUPP;
345
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr->exclude_kernel)
348 return -EOPNOTSUPP;
349 }
350
351 hwc->config |= config;
352
353 return 0;
354 }
355
356 /*
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
361 */
precise_br_compat(struct perf_event * event)362 static inline int precise_br_compat(struct perf_event *event)
363 {
364 u64 m = event->attr.branch_sample_type;
365 u64 b = 0;
366
367 /* must capture all branches */
368 if (!(m & PERF_SAMPLE_BRANCH_ANY))
369 return 0;
370
371 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372
373 if (!event->attr.exclude_user)
374 b |= PERF_SAMPLE_BRANCH_USER;
375
376 if (!event->attr.exclude_kernel)
377 b |= PERF_SAMPLE_BRANCH_KERNEL;
378
379 /*
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381 */
382
383 return m == b;
384 }
385
x86_pmu_hw_config(struct perf_event * event)386 int x86_pmu_hw_config(struct perf_event *event)
387 {
388 if (event->attr.precise_ip) {
389 int precise = 0;
390
391 /* Support for constant skid */
392 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
393 precise++;
394
395 /* Support for IP fixup */
396 if (x86_pmu.lbr_nr)
397 precise++;
398 }
399
400 if (event->attr.precise_ip > precise)
401 return -EOPNOTSUPP;
402 /*
403 * check that PEBS LBR correction does not conflict with
404 * whatever the user is asking with attr->branch_sample_type
405 */
406 if (event->attr.precise_ip > 1) {
407 u64 *br_type = &event->attr.branch_sample_type;
408
409 if (has_branch_stack(event)) {
410 if (!precise_br_compat(event))
411 return -EOPNOTSUPP;
412
413 /* branch_sample_type is compatible */
414
415 } else {
416 /*
417 * user did not specify branch_sample_type
418 *
419 * For PEBS fixups, we capture all
420 * the branches at the priv level of the
421 * event.
422 */
423 *br_type = PERF_SAMPLE_BRANCH_ANY;
424
425 if (!event->attr.exclude_user)
426 *br_type |= PERF_SAMPLE_BRANCH_USER;
427
428 if (!event->attr.exclude_kernel)
429 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
430 }
431 }
432 }
433
434 /*
435 * Generate PMC IRQs:
436 * (keep 'enabled' bit clear for now)
437 */
438 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
439
440 /*
441 * Count user and OS events unless requested not to
442 */
443 if (!event->attr.exclude_user)
444 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
445 if (!event->attr.exclude_kernel)
446 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
447
448 if (event->attr.type == PERF_TYPE_RAW)
449 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
450
451 return x86_setup_perfctr(event);
452 }
453
454 /*
455 * Setup the hardware configuration for a given attr_type
456 */
__x86_pmu_event_init(struct perf_event * event)457 static int __x86_pmu_event_init(struct perf_event *event)
458 {
459 int err;
460
461 if (!x86_pmu_initialized())
462 return -ENODEV;
463
464 err = 0;
465 if (!atomic_inc_not_zero(&active_events)) {
466 mutex_lock(&pmc_reserve_mutex);
467 if (atomic_read(&active_events) == 0) {
468 if (!reserve_pmc_hardware())
469 err = -EBUSY;
470 else
471 reserve_ds_buffers();
472 }
473 if (!err)
474 atomic_inc(&active_events);
475 mutex_unlock(&pmc_reserve_mutex);
476 }
477 if (err)
478 return err;
479
480 event->destroy = hw_perf_event_destroy;
481
482 event->hw.idx = -1;
483 event->hw.last_cpu = -1;
484 event->hw.last_tag = ~0ULL;
485
486 /* mark unused */
487 event->hw.extra_reg.idx = EXTRA_REG_NONE;
488 event->hw.branch_reg.idx = EXTRA_REG_NONE;
489
490 return x86_pmu.hw_config(event);
491 }
492
x86_pmu_disable_all(void)493 void x86_pmu_disable_all(void)
494 {
495 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
496 int idx;
497
498 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
499 u64 val;
500
501 if (!test_bit(idx, cpuc->active_mask))
502 continue;
503 rdmsrl(x86_pmu_config_addr(idx), val);
504 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
505 continue;
506 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
507 wrmsrl(x86_pmu_config_addr(idx), val);
508 }
509 }
510
x86_pmu_disable(struct pmu * pmu)511 static void x86_pmu_disable(struct pmu *pmu)
512 {
513 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
514
515 if (!x86_pmu_initialized())
516 return;
517
518 if (!cpuc->enabled)
519 return;
520
521 cpuc->n_added = 0;
522 cpuc->enabled = 0;
523 barrier();
524
525 x86_pmu.disable_all();
526 }
527
x86_pmu_enable_all(int added)528 void x86_pmu_enable_all(int added)
529 {
530 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
531 int idx;
532
533 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
534 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
535
536 if (!test_bit(idx, cpuc->active_mask))
537 continue;
538
539 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
540 }
541 }
542
543 static struct pmu pmu;
544
is_x86_event(struct perf_event * event)545 static inline int is_x86_event(struct perf_event *event)
546 {
547 return event->pmu == &pmu;
548 }
549
550 /*
551 * Event scheduler state:
552 *
553 * Assign events iterating over all events and counters, beginning
554 * with events with least weights first. Keep the current iterator
555 * state in struct sched_state.
556 */
557 struct sched_state {
558 int weight;
559 int event; /* event index */
560 int counter; /* counter index */
561 int unassigned; /* number of events to be assigned left */
562 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
563 };
564
565 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
566 #define SCHED_STATES_MAX 2
567
568 struct perf_sched {
569 int max_weight;
570 int max_events;
571 struct event_constraint **constraints;
572 struct sched_state state;
573 int saved_states;
574 struct sched_state saved[SCHED_STATES_MAX];
575 };
576
577 /*
578 * Initialize interator that runs through all events and counters.
579 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** c,int num,int wmin,int wmax)580 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
581 int num, int wmin, int wmax)
582 {
583 int idx;
584
585 memset(sched, 0, sizeof(*sched));
586 sched->max_events = num;
587 sched->max_weight = wmax;
588 sched->constraints = c;
589
590 for (idx = 0; idx < num; idx++) {
591 if (c[idx]->weight == wmin)
592 break;
593 }
594
595 sched->state.event = idx; /* start with min weight */
596 sched->state.weight = wmin;
597 sched->state.unassigned = num;
598 }
599
perf_sched_save_state(struct perf_sched * sched)600 static void perf_sched_save_state(struct perf_sched *sched)
601 {
602 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
603 return;
604
605 sched->saved[sched->saved_states] = sched->state;
606 sched->saved_states++;
607 }
608
perf_sched_restore_state(struct perf_sched * sched)609 static bool perf_sched_restore_state(struct perf_sched *sched)
610 {
611 if (!sched->saved_states)
612 return false;
613
614 sched->saved_states--;
615 sched->state = sched->saved[sched->saved_states];
616
617 /* continue with next counter: */
618 clear_bit(sched->state.counter++, sched->state.used);
619
620 return true;
621 }
622
623 /*
624 * Select a counter for the current event to schedule. Return true on
625 * success.
626 */
__perf_sched_find_counter(struct perf_sched * sched)627 static bool __perf_sched_find_counter(struct perf_sched *sched)
628 {
629 struct event_constraint *c;
630 int idx;
631
632 if (!sched->state.unassigned)
633 return false;
634
635 if (sched->state.event >= sched->max_events)
636 return false;
637
638 c = sched->constraints[sched->state.event];
639
640 /* Prefer fixed purpose counters */
641 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
642 idx = INTEL_PMC_IDX_FIXED;
643 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
644 if (!__test_and_set_bit(idx, sched->state.used))
645 goto done;
646 }
647 }
648 /* Grab the first unused counter starting with idx */
649 idx = sched->state.counter;
650 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
651 if (!__test_and_set_bit(idx, sched->state.used))
652 goto done;
653 }
654
655 return false;
656
657 done:
658 sched->state.counter = idx;
659
660 if (c->overlap)
661 perf_sched_save_state(sched);
662
663 return true;
664 }
665
perf_sched_find_counter(struct perf_sched * sched)666 static bool perf_sched_find_counter(struct perf_sched *sched)
667 {
668 while (!__perf_sched_find_counter(sched)) {
669 if (!perf_sched_restore_state(sched))
670 return false;
671 }
672
673 return true;
674 }
675
676 /*
677 * Go through all unassigned events and find the next one to schedule.
678 * Take events with the least weight first. Return true on success.
679 */
perf_sched_next_event(struct perf_sched * sched)680 static bool perf_sched_next_event(struct perf_sched *sched)
681 {
682 struct event_constraint *c;
683
684 if (!sched->state.unassigned || !--sched->state.unassigned)
685 return false;
686
687 do {
688 /* next event */
689 sched->state.event++;
690 if (sched->state.event >= sched->max_events) {
691 /* next weight */
692 sched->state.event = 0;
693 sched->state.weight++;
694 if (sched->state.weight > sched->max_weight)
695 return false;
696 }
697 c = sched->constraints[sched->state.event];
698 } while (c->weight != sched->state.weight);
699
700 sched->state.counter = 0; /* start with first counter */
701
702 return true;
703 }
704
705 /*
706 * Assign a counter for each event.
707 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int * assign)708 int perf_assign_events(struct event_constraint **constraints, int n,
709 int wmin, int wmax, int *assign)
710 {
711 struct perf_sched sched;
712
713 perf_sched_init(&sched, constraints, n, wmin, wmax);
714
715 do {
716 if (!perf_sched_find_counter(&sched))
717 break; /* failed */
718 if (assign)
719 assign[sched.state.event] = sched.state.counter;
720 } while (perf_sched_next_event(&sched));
721
722 return sched.state.unassigned;
723 }
724
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)725 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
726 {
727 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
728 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
729 int i, wmin, wmax, num = 0;
730 struct hw_perf_event *hwc;
731
732 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733
734 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
735 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
736 constraints[i] = c;
737 wmin = min(wmin, c->weight);
738 wmax = max(wmax, c->weight);
739 }
740
741 /*
742 * fastpath, try to reuse previous register
743 */
744 for (i = 0; i < n; i++) {
745 hwc = &cpuc->event_list[i]->hw;
746 c = constraints[i];
747
748 /* never assigned */
749 if (hwc->idx == -1)
750 break;
751
752 /* constraint still honored */
753 if (!test_bit(hwc->idx, c->idxmsk))
754 break;
755
756 /* not already used */
757 if (test_bit(hwc->idx, used_mask))
758 break;
759
760 __set_bit(hwc->idx, used_mask);
761 if (assign)
762 assign[i] = hwc->idx;
763 }
764
765 /* slow path */
766 if (i != n)
767 num = perf_assign_events(constraints, n, wmin, wmax, assign);
768
769 /*
770 * scheduling failed or is just a simulation,
771 * free resources if necessary
772 */
773 if (!assign || num) {
774 for (i = 0; i < n; i++) {
775 if (x86_pmu.put_event_constraints)
776 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
777 }
778 }
779 return num ? -EINVAL : 0;
780 }
781
782 /*
783 * dogrp: true if must collect siblings events (group)
784 * returns total number of events and error code
785 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)786 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
787 {
788 struct perf_event *event;
789 int n, max_count;
790
791 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
792
793 /* current number of events already accepted */
794 n = cpuc->n_events;
795
796 if (is_x86_event(leader)) {
797 if (n >= max_count)
798 return -EINVAL;
799 cpuc->event_list[n] = leader;
800 n++;
801 }
802 if (!dogrp)
803 return n;
804
805 list_for_each_entry(event, &leader->sibling_list, group_entry) {
806 if (!is_x86_event(event) ||
807 event->state <= PERF_EVENT_STATE_OFF)
808 continue;
809
810 if (n >= max_count)
811 return -EINVAL;
812
813 cpuc->event_list[n] = event;
814 n++;
815 }
816 return n;
817 }
818
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)819 static inline void x86_assign_hw_event(struct perf_event *event,
820 struct cpu_hw_events *cpuc, int i)
821 {
822 struct hw_perf_event *hwc = &event->hw;
823
824 hwc->idx = cpuc->assign[i];
825 hwc->last_cpu = smp_processor_id();
826 hwc->last_tag = ++cpuc->tags[i];
827
828 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
829 hwc->config_base = 0;
830 hwc->event_base = 0;
831 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
832 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
833 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
834 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
835 } else {
836 hwc->config_base = x86_pmu_config_addr(hwc->idx);
837 hwc->event_base = x86_pmu_event_addr(hwc->idx);
838 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
839 }
840 }
841
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)842 static inline int match_prev_assignment(struct hw_perf_event *hwc,
843 struct cpu_hw_events *cpuc,
844 int i)
845 {
846 return hwc->idx == cpuc->assign[i] &&
847 hwc->last_cpu == smp_processor_id() &&
848 hwc->last_tag == cpuc->tags[i];
849 }
850
851 static void x86_pmu_start(struct perf_event *event, int flags);
852
x86_pmu_enable(struct pmu * pmu)853 static void x86_pmu_enable(struct pmu *pmu)
854 {
855 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
856 struct perf_event *event;
857 struct hw_perf_event *hwc;
858 int i, added = cpuc->n_added;
859
860 if (!x86_pmu_initialized())
861 return;
862
863 if (cpuc->enabled)
864 return;
865
866 if (cpuc->n_added) {
867 int n_running = cpuc->n_events - cpuc->n_added;
868 /*
869 * apply assignment obtained either from
870 * hw_perf_group_sched_in() or x86_pmu_enable()
871 *
872 * step1: save events moving to new counters
873 * step2: reprogram moved events into new counters
874 */
875 for (i = 0; i < n_running; i++) {
876 event = cpuc->event_list[i];
877 hwc = &event->hw;
878
879 /*
880 * we can avoid reprogramming counter if:
881 * - assigned same counter as last time
882 * - running on same CPU as last time
883 * - no other event has used the counter since
884 */
885 if (hwc->idx == -1 ||
886 match_prev_assignment(hwc, cpuc, i))
887 continue;
888
889 /*
890 * Ensure we don't accidentally enable a stopped
891 * counter simply because we rescheduled.
892 */
893 if (hwc->state & PERF_HES_STOPPED)
894 hwc->state |= PERF_HES_ARCH;
895
896 x86_pmu_stop(event, PERF_EF_UPDATE);
897 }
898
899 for (i = 0; i < cpuc->n_events; i++) {
900 event = cpuc->event_list[i];
901 hwc = &event->hw;
902
903 if (!match_prev_assignment(hwc, cpuc, i))
904 x86_assign_hw_event(event, cpuc, i);
905 else if (i < n_running)
906 continue;
907
908 if (hwc->state & PERF_HES_ARCH)
909 continue;
910
911 x86_pmu_start(event, PERF_EF_RELOAD);
912 }
913 cpuc->n_added = 0;
914 perf_events_lapic_init();
915 }
916
917 cpuc->enabled = 1;
918 barrier();
919
920 x86_pmu.enable_all(added);
921 }
922
923 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
924
925 /*
926 * Set the next IRQ period, based on the hwc->period_left value.
927 * To be called with the event disabled in hw:
928 */
x86_perf_event_set_period(struct perf_event * event)929 int x86_perf_event_set_period(struct perf_event *event)
930 {
931 struct hw_perf_event *hwc = &event->hw;
932 s64 left = local64_read(&hwc->period_left);
933 s64 period = hwc->sample_period;
934 int ret = 0, idx = hwc->idx;
935
936 if (idx == INTEL_PMC_IDX_FIXED_BTS)
937 return 0;
938
939 /*
940 * If we are way outside a reasonable range then just skip forward:
941 */
942 if (unlikely(left <= -period)) {
943 left = period;
944 local64_set(&hwc->period_left, left);
945 hwc->last_period = period;
946 ret = 1;
947 }
948
949 if (unlikely(left <= 0)) {
950 left += period;
951 local64_set(&hwc->period_left, left);
952 hwc->last_period = period;
953 ret = 1;
954 }
955 /*
956 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
957 */
958 if (unlikely(left < 2))
959 left = 2;
960
961 if (left > x86_pmu.max_period)
962 left = x86_pmu.max_period;
963
964 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
965
966 /*
967 * The hw event starts counting from this event offset,
968 * mark it to be able to extra future deltas:
969 */
970 local64_set(&hwc->prev_count, (u64)-left);
971
972 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
973
974 /*
975 * Due to erratum on certan cpu we need
976 * a second write to be sure the register
977 * is updated properly
978 */
979 if (x86_pmu.perfctr_second_write) {
980 wrmsrl(hwc->event_base,
981 (u64)(-left) & x86_pmu.cntval_mask);
982 }
983
984 perf_event_update_userpage(event);
985
986 return ret;
987 }
988
x86_pmu_enable_event(struct perf_event * event)989 void x86_pmu_enable_event(struct perf_event *event)
990 {
991 if (__this_cpu_read(cpu_hw_events.enabled))
992 __x86_pmu_enable_event(&event->hw,
993 ARCH_PERFMON_EVENTSEL_ENABLE);
994 }
995
996 /*
997 * Add a single event to the PMU.
998 *
999 * The event is added to the group of enabled events
1000 * but only if it can be scehduled with existing events.
1001 */
x86_pmu_add(struct perf_event * event,int flags)1002 static int x86_pmu_add(struct perf_event *event, int flags)
1003 {
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 struct hw_perf_event *hwc;
1006 int assign[X86_PMC_IDX_MAX];
1007 int n, n0, ret;
1008
1009 hwc = &event->hw;
1010
1011 perf_pmu_disable(event->pmu);
1012 n0 = cpuc->n_events;
1013 ret = n = collect_events(cpuc, event, false);
1014 if (ret < 0)
1015 goto out;
1016
1017 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1018 if (!(flags & PERF_EF_START))
1019 hwc->state |= PERF_HES_ARCH;
1020
1021 /*
1022 * If group events scheduling transaction was started,
1023 * skip the schedulability test here, it will be performed
1024 * at commit time (->commit_txn) as a whole
1025 */
1026 if (cpuc->group_flag & PERF_EVENT_TXN)
1027 goto done_collect;
1028
1029 ret = x86_pmu.schedule_events(cpuc, n, assign);
1030 if (ret)
1031 goto out;
1032 /*
1033 * copy new assignment, now we know it is possible
1034 * will be used by hw_perf_enable()
1035 */
1036 memcpy(cpuc->assign, assign, n*sizeof(int));
1037
1038 done_collect:
1039 cpuc->n_events = n;
1040 cpuc->n_added += n - n0;
1041 cpuc->n_txn += n - n0;
1042
1043 ret = 0;
1044 out:
1045 perf_pmu_enable(event->pmu);
1046 return ret;
1047 }
1048
x86_pmu_start(struct perf_event * event,int flags)1049 static void x86_pmu_start(struct perf_event *event, int flags)
1050 {
1051 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052 int idx = event->hw.idx;
1053
1054 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1055 return;
1056
1057 if (WARN_ON_ONCE(idx == -1))
1058 return;
1059
1060 if (flags & PERF_EF_RELOAD) {
1061 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1062 x86_perf_event_set_period(event);
1063 }
1064
1065 event->hw.state = 0;
1066
1067 cpuc->events[idx] = event;
1068 __set_bit(idx, cpuc->active_mask);
1069 __set_bit(idx, cpuc->running);
1070 x86_pmu.enable(event);
1071 perf_event_update_userpage(event);
1072 }
1073
perf_event_print_debug(void)1074 void perf_event_print_debug(void)
1075 {
1076 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1077 u64 pebs;
1078 struct cpu_hw_events *cpuc;
1079 unsigned long flags;
1080 int cpu, idx;
1081
1082 if (!x86_pmu.num_counters)
1083 return;
1084
1085 local_irq_save(flags);
1086
1087 cpu = smp_processor_id();
1088 cpuc = &per_cpu(cpu_hw_events, cpu);
1089
1090 if (x86_pmu.version >= 2) {
1091 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1092 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1093 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1094 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1095 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1096
1097 pr_info("\n");
1098 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1099 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1100 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1101 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1102 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1103 }
1104 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1105
1106 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1108 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1109
1110 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1111
1112 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1113 cpu, idx, pmc_ctrl);
1114 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1115 cpu, idx, pmc_count);
1116 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1117 cpu, idx, prev_left);
1118 }
1119 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1120 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1121
1122 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1123 cpu, idx, pmc_count);
1124 }
1125 local_irq_restore(flags);
1126 }
1127
x86_pmu_stop(struct perf_event * event,int flags)1128 void x86_pmu_stop(struct perf_event *event, int flags)
1129 {
1130 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1131 struct hw_perf_event *hwc = &event->hw;
1132
1133 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1134 x86_pmu.disable(event);
1135 cpuc->events[hwc->idx] = NULL;
1136 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1137 hwc->state |= PERF_HES_STOPPED;
1138 }
1139
1140 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1141 /*
1142 * Drain the remaining delta count out of a event
1143 * that we are disabling:
1144 */
1145 x86_perf_event_update(event);
1146 hwc->state |= PERF_HES_UPTODATE;
1147 }
1148 }
1149
x86_pmu_del(struct perf_event * event,int flags)1150 static void x86_pmu_del(struct perf_event *event, int flags)
1151 {
1152 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153 int i;
1154
1155 /*
1156 * If we're called during a txn, we don't need to do anything.
1157 * The events never got scheduled and ->cancel_txn will truncate
1158 * the event_list.
1159 */
1160 if (cpuc->group_flag & PERF_EVENT_TXN)
1161 return;
1162
1163 x86_pmu_stop(event, PERF_EF_UPDATE);
1164
1165 for (i = 0; i < cpuc->n_events; i++) {
1166 if (event == cpuc->event_list[i]) {
1167
1168 if (x86_pmu.put_event_constraints)
1169 x86_pmu.put_event_constraints(cpuc, event);
1170
1171 while (++i < cpuc->n_events)
1172 cpuc->event_list[i-1] = cpuc->event_list[i];
1173
1174 --cpuc->n_events;
1175 break;
1176 }
1177 }
1178 perf_event_update_userpage(event);
1179 }
1180
x86_pmu_handle_irq(struct pt_regs * regs)1181 int x86_pmu_handle_irq(struct pt_regs *regs)
1182 {
1183 struct perf_sample_data data;
1184 struct cpu_hw_events *cpuc;
1185 struct perf_event *event;
1186 int idx, handled = 0;
1187 u64 val;
1188
1189 cpuc = &__get_cpu_var(cpu_hw_events);
1190
1191 /*
1192 * Some chipsets need to unmask the LVTPC in a particular spot
1193 * inside the nmi handler. As a result, the unmasking was pushed
1194 * into all the nmi handlers.
1195 *
1196 * This generic handler doesn't seem to have any issues where the
1197 * unmasking occurs so it was left at the top.
1198 */
1199 apic_write(APIC_LVTPC, APIC_DM_NMI);
1200
1201 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1202 if (!test_bit(idx, cpuc->active_mask)) {
1203 /*
1204 * Though we deactivated the counter some cpus
1205 * might still deliver spurious interrupts still
1206 * in flight. Catch them:
1207 */
1208 if (__test_and_clear_bit(idx, cpuc->running))
1209 handled++;
1210 continue;
1211 }
1212
1213 event = cpuc->events[idx];
1214
1215 val = x86_perf_event_update(event);
1216 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1217 continue;
1218
1219 /*
1220 * event overflow
1221 */
1222 handled++;
1223 perf_sample_data_init(&data, 0, event->hw.last_period);
1224
1225 if (!x86_perf_event_set_period(event))
1226 continue;
1227
1228 if (perf_event_overflow(event, &data, regs))
1229 x86_pmu_stop(event, 0);
1230 }
1231
1232 if (handled)
1233 inc_irq_stat(apic_perf_irqs);
1234
1235 return handled;
1236 }
1237
perf_events_lapic_init(void)1238 void perf_events_lapic_init(void)
1239 {
1240 if (!x86_pmu.apic || !x86_pmu_initialized())
1241 return;
1242
1243 /*
1244 * Always use NMI for PMU
1245 */
1246 apic_write(APIC_LVTPC, APIC_DM_NMI);
1247 }
1248
1249 static int __kprobes
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1250 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1251 {
1252 if (!atomic_read(&active_events))
1253 return NMI_DONE;
1254
1255 return x86_pmu.handle_irq(regs);
1256 }
1257
1258 struct event_constraint emptyconstraint;
1259 struct event_constraint unconstrained;
1260
1261 static int __cpuinit
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1262 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1263 {
1264 unsigned int cpu = (long)hcpu;
1265 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1266 int ret = NOTIFY_OK;
1267
1268 switch (action & ~CPU_TASKS_FROZEN) {
1269 case CPU_UP_PREPARE:
1270 cpuc->kfree_on_online = NULL;
1271 if (x86_pmu.cpu_prepare)
1272 ret = x86_pmu.cpu_prepare(cpu);
1273 break;
1274
1275 case CPU_STARTING:
1276 if (x86_pmu.attr_rdpmc)
1277 set_in_cr4(X86_CR4_PCE);
1278 if (x86_pmu.cpu_starting)
1279 x86_pmu.cpu_starting(cpu);
1280 break;
1281
1282 case CPU_ONLINE:
1283 kfree(cpuc->kfree_on_online);
1284 break;
1285
1286 case CPU_DYING:
1287 if (x86_pmu.cpu_dying)
1288 x86_pmu.cpu_dying(cpu);
1289 break;
1290
1291 case CPU_UP_CANCELED:
1292 case CPU_DEAD:
1293 if (x86_pmu.cpu_dead)
1294 x86_pmu.cpu_dead(cpu);
1295 break;
1296
1297 default:
1298 break;
1299 }
1300
1301 return ret;
1302 }
1303
pmu_check_apic(void)1304 static void __init pmu_check_apic(void)
1305 {
1306 if (cpu_has_apic)
1307 return;
1308
1309 x86_pmu.apic = 0;
1310 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1311 pr_info("no hardware sampling interrupt available.\n");
1312 }
1313
1314 static struct attribute_group x86_pmu_format_group = {
1315 .name = "format",
1316 .attrs = NULL,
1317 };
1318
1319 /*
1320 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1321 * out of events_attr attributes.
1322 */
filter_events(struct attribute ** attrs)1323 static void __init filter_events(struct attribute **attrs)
1324 {
1325 struct device_attribute *d;
1326 struct perf_pmu_events_attr *pmu_attr;
1327 int i, j;
1328
1329 for (i = 0; attrs[i]; i++) {
1330 d = (struct device_attribute *)attrs[i];
1331 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1332 /* str trumps id */
1333 if (pmu_attr->event_str)
1334 continue;
1335 if (x86_pmu.event_map(i))
1336 continue;
1337
1338 for (j = i; attrs[j]; j++)
1339 attrs[j] = attrs[j + 1];
1340
1341 /* Check the shifted attr. */
1342 i--;
1343 }
1344 }
1345
1346 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1347 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1348 {
1349 struct attribute **new;
1350 int j, i;
1351
1352 for (j = 0; a[j]; j++)
1353 ;
1354 for (i = 0; b[i]; i++)
1355 j++;
1356 j++;
1357
1358 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1359 if (!new)
1360 return NULL;
1361
1362 j = 0;
1363 for (i = 0; a[i]; i++)
1364 new[j++] = a[i];
1365 for (i = 0; b[i]; i++)
1366 new[j++] = b[i];
1367 new[j] = NULL;
1368
1369 return new;
1370 }
1371
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1372 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1373 char *page)
1374 {
1375 struct perf_pmu_events_attr *pmu_attr = \
1376 container_of(attr, struct perf_pmu_events_attr, attr);
1377 u64 config = x86_pmu.event_map(pmu_attr->id);
1378
1379 /* string trumps id */
1380 if (pmu_attr->event_str)
1381 return sprintf(page, "%s", pmu_attr->event_str);
1382
1383 return x86_pmu.events_sysfs_show(page, config);
1384 }
1385
1386 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1387 EVENT_ATTR(instructions, INSTRUCTIONS );
1388 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1389 EVENT_ATTR(cache-misses, CACHE_MISSES );
1390 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1391 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1392 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1393 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1394 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1395 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1396
1397 static struct attribute *empty_attrs;
1398
1399 static struct attribute *events_attr[] = {
1400 EVENT_PTR(CPU_CYCLES),
1401 EVENT_PTR(INSTRUCTIONS),
1402 EVENT_PTR(CACHE_REFERENCES),
1403 EVENT_PTR(CACHE_MISSES),
1404 EVENT_PTR(BRANCH_INSTRUCTIONS),
1405 EVENT_PTR(BRANCH_MISSES),
1406 EVENT_PTR(BUS_CYCLES),
1407 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1408 EVENT_PTR(STALLED_CYCLES_BACKEND),
1409 EVENT_PTR(REF_CPU_CYCLES),
1410 NULL,
1411 };
1412
1413 static struct attribute_group x86_pmu_events_group = {
1414 .name = "events",
1415 .attrs = events_attr,
1416 };
1417
x86_event_sysfs_show(char * page,u64 config,u64 event)1418 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1419 {
1420 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1421 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1422 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1423 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1424 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1425 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1426 ssize_t ret;
1427
1428 /*
1429 * We have whole page size to spend and just little data
1430 * to write, so we can safely use sprintf.
1431 */
1432 ret = sprintf(page, "event=0x%02llx", event);
1433
1434 if (umask)
1435 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1436
1437 if (edge)
1438 ret += sprintf(page + ret, ",edge");
1439
1440 if (pc)
1441 ret += sprintf(page + ret, ",pc");
1442
1443 if (any)
1444 ret += sprintf(page + ret, ",any");
1445
1446 if (inv)
1447 ret += sprintf(page + ret, ",inv");
1448
1449 if (cmask)
1450 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1451
1452 ret += sprintf(page + ret, "\n");
1453
1454 return ret;
1455 }
1456
init_hw_perf_events(void)1457 static int __init init_hw_perf_events(void)
1458 {
1459 struct x86_pmu_quirk *quirk;
1460 int err;
1461
1462 pr_info("Performance Events: ");
1463
1464 switch (boot_cpu_data.x86_vendor) {
1465 case X86_VENDOR_INTEL:
1466 err = intel_pmu_init();
1467 break;
1468 case X86_VENDOR_AMD:
1469 err = amd_pmu_init();
1470 break;
1471 default:
1472 return 0;
1473 }
1474 if (err != 0) {
1475 pr_cont("no PMU driver, software events only.\n");
1476 return 0;
1477 }
1478
1479 pmu_check_apic();
1480
1481 /* sanity check that the hardware exists or is emulated */
1482 if (!check_hw_exists())
1483 return 0;
1484
1485 pr_cont("%s PMU driver.\n", x86_pmu.name);
1486
1487 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1488 quirk->func();
1489
1490 if (!x86_pmu.intel_ctrl)
1491 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1492
1493 perf_events_lapic_init();
1494 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1495
1496 unconstrained = (struct event_constraint)
1497 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1498 0, x86_pmu.num_counters, 0, 0);
1499
1500 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1501 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1502
1503 if (x86_pmu.event_attrs)
1504 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1505
1506 if (!x86_pmu.events_sysfs_show)
1507 x86_pmu_events_group.attrs = &empty_attrs;
1508 else
1509 filter_events(x86_pmu_events_group.attrs);
1510
1511 if (x86_pmu.cpu_events) {
1512 struct attribute **tmp;
1513
1514 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1515 if (!WARN_ON(!tmp))
1516 x86_pmu_events_group.attrs = tmp;
1517 }
1518
1519 pr_info("... version: %d\n", x86_pmu.version);
1520 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1521 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1522 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1523 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1524 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1525 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1526
1527 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1528 perf_cpu_notifier(x86_pmu_notifier);
1529
1530 return 0;
1531 }
1532 early_initcall(init_hw_perf_events);
1533
x86_pmu_read(struct perf_event * event)1534 static inline void x86_pmu_read(struct perf_event *event)
1535 {
1536 x86_perf_event_update(event);
1537 }
1538
1539 /*
1540 * Start group events scheduling transaction
1541 * Set the flag to make pmu::enable() not perform the
1542 * schedulability test, it will be performed at commit time
1543 */
x86_pmu_start_txn(struct pmu * pmu)1544 static void x86_pmu_start_txn(struct pmu *pmu)
1545 {
1546 perf_pmu_disable(pmu);
1547 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1548 __this_cpu_write(cpu_hw_events.n_txn, 0);
1549 }
1550
1551 /*
1552 * Stop group events scheduling transaction
1553 * Clear the flag and pmu::enable() will perform the
1554 * schedulability test.
1555 */
x86_pmu_cancel_txn(struct pmu * pmu)1556 static void x86_pmu_cancel_txn(struct pmu *pmu)
1557 {
1558 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1559 /*
1560 * Truncate the collected events.
1561 */
1562 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1563 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1564 perf_pmu_enable(pmu);
1565 }
1566
1567 /*
1568 * Commit group events scheduling transaction
1569 * Perform the group schedulability test as a whole
1570 * Return 0 if success
1571 */
x86_pmu_commit_txn(struct pmu * pmu)1572 static int x86_pmu_commit_txn(struct pmu *pmu)
1573 {
1574 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1575 int assign[X86_PMC_IDX_MAX];
1576 int n, ret;
1577
1578 n = cpuc->n_events;
1579
1580 if (!x86_pmu_initialized())
1581 return -EAGAIN;
1582
1583 ret = x86_pmu.schedule_events(cpuc, n, assign);
1584 if (ret)
1585 return ret;
1586
1587 /*
1588 * copy new assignment, now we know it is possible
1589 * will be used by hw_perf_enable()
1590 */
1591 memcpy(cpuc->assign, assign, n*sizeof(int));
1592
1593 cpuc->group_flag &= ~PERF_EVENT_TXN;
1594 perf_pmu_enable(pmu);
1595 return 0;
1596 }
1597 /*
1598 * a fake_cpuc is used to validate event groups. Due to
1599 * the extra reg logic, we need to also allocate a fake
1600 * per_core and per_cpu structure. Otherwise, group events
1601 * using extra reg may conflict without the kernel being
1602 * able to catch this when the last event gets added to
1603 * the group.
1604 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1605 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1606 {
1607 kfree(cpuc->shared_regs);
1608 kfree(cpuc);
1609 }
1610
allocate_fake_cpuc(void)1611 static struct cpu_hw_events *allocate_fake_cpuc(void)
1612 {
1613 struct cpu_hw_events *cpuc;
1614 int cpu = raw_smp_processor_id();
1615
1616 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1617 if (!cpuc)
1618 return ERR_PTR(-ENOMEM);
1619
1620 /* only needed, if we have extra_regs */
1621 if (x86_pmu.extra_regs) {
1622 cpuc->shared_regs = allocate_shared_regs(cpu);
1623 if (!cpuc->shared_regs)
1624 goto error;
1625 }
1626 cpuc->is_fake = 1;
1627 return cpuc;
1628 error:
1629 free_fake_cpuc(cpuc);
1630 return ERR_PTR(-ENOMEM);
1631 }
1632
1633 /*
1634 * validate that we can schedule this event
1635 */
validate_event(struct perf_event * event)1636 static int validate_event(struct perf_event *event)
1637 {
1638 struct cpu_hw_events *fake_cpuc;
1639 struct event_constraint *c;
1640 int ret = 0;
1641
1642 fake_cpuc = allocate_fake_cpuc();
1643 if (IS_ERR(fake_cpuc))
1644 return PTR_ERR(fake_cpuc);
1645
1646 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1647
1648 if (!c || !c->weight)
1649 ret = -EINVAL;
1650
1651 if (x86_pmu.put_event_constraints)
1652 x86_pmu.put_event_constraints(fake_cpuc, event);
1653
1654 free_fake_cpuc(fake_cpuc);
1655
1656 return ret;
1657 }
1658
1659 /*
1660 * validate a single event group
1661 *
1662 * validation include:
1663 * - check events are compatible which each other
1664 * - events do not compete for the same counter
1665 * - number of events <= number of counters
1666 *
1667 * validation ensures the group can be loaded onto the
1668 * PMU if it was the only group available.
1669 */
validate_group(struct perf_event * event)1670 static int validate_group(struct perf_event *event)
1671 {
1672 struct perf_event *leader = event->group_leader;
1673 struct cpu_hw_events *fake_cpuc;
1674 int ret = -EINVAL, n;
1675
1676 fake_cpuc = allocate_fake_cpuc();
1677 if (IS_ERR(fake_cpuc))
1678 return PTR_ERR(fake_cpuc);
1679 /*
1680 * the event is not yet connected with its
1681 * siblings therefore we must first collect
1682 * existing siblings, then add the new event
1683 * before we can simulate the scheduling
1684 */
1685 n = collect_events(fake_cpuc, leader, true);
1686 if (n < 0)
1687 goto out;
1688
1689 fake_cpuc->n_events = n;
1690 n = collect_events(fake_cpuc, event, false);
1691 if (n < 0)
1692 goto out;
1693
1694 fake_cpuc->n_events = n;
1695
1696 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1697
1698 out:
1699 free_fake_cpuc(fake_cpuc);
1700 return ret;
1701 }
1702
x86_pmu_event_init(struct perf_event * event)1703 static int x86_pmu_event_init(struct perf_event *event)
1704 {
1705 struct pmu *tmp;
1706 int err;
1707
1708 switch (event->attr.type) {
1709 case PERF_TYPE_RAW:
1710 case PERF_TYPE_HARDWARE:
1711 case PERF_TYPE_HW_CACHE:
1712 break;
1713
1714 default:
1715 return -ENOENT;
1716 }
1717
1718 err = __x86_pmu_event_init(event);
1719 if (!err) {
1720 /*
1721 * we temporarily connect event to its pmu
1722 * such that validate_group() can classify
1723 * it as an x86 event using is_x86_event()
1724 */
1725 tmp = event->pmu;
1726 event->pmu = &pmu;
1727
1728 if (event->group_leader != event)
1729 err = validate_group(event);
1730 else
1731 err = validate_event(event);
1732
1733 event->pmu = tmp;
1734 }
1735 if (err) {
1736 if (event->destroy)
1737 event->destroy(event);
1738 }
1739
1740 return err;
1741 }
1742
x86_pmu_event_idx(struct perf_event * event)1743 static int x86_pmu_event_idx(struct perf_event *event)
1744 {
1745 int idx = event->hw.idx;
1746
1747 if (!x86_pmu.attr_rdpmc)
1748 return 0;
1749
1750 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1751 idx -= INTEL_PMC_IDX_FIXED;
1752 idx |= 1 << 30;
1753 }
1754
1755 return idx + 1;
1756 }
1757
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)1758 static ssize_t get_attr_rdpmc(struct device *cdev,
1759 struct device_attribute *attr,
1760 char *buf)
1761 {
1762 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1763 }
1764
change_rdpmc(void * info)1765 static void change_rdpmc(void *info)
1766 {
1767 bool enable = !!(unsigned long)info;
1768
1769 if (enable)
1770 set_in_cr4(X86_CR4_PCE);
1771 else
1772 clear_in_cr4(X86_CR4_PCE);
1773 }
1774
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)1775 static ssize_t set_attr_rdpmc(struct device *cdev,
1776 struct device_attribute *attr,
1777 const char *buf, size_t count)
1778 {
1779 unsigned long val;
1780 ssize_t ret;
1781
1782 ret = kstrtoul(buf, 0, &val);
1783 if (ret)
1784 return ret;
1785
1786 if (!!val != !!x86_pmu.attr_rdpmc) {
1787 x86_pmu.attr_rdpmc = !!val;
1788 smp_call_function(change_rdpmc, (void *)val, 1);
1789 }
1790
1791 return count;
1792 }
1793
1794 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1795
1796 static struct attribute *x86_pmu_attrs[] = {
1797 &dev_attr_rdpmc.attr,
1798 NULL,
1799 };
1800
1801 static struct attribute_group x86_pmu_attr_group = {
1802 .attrs = x86_pmu_attrs,
1803 };
1804
1805 static const struct attribute_group *x86_pmu_attr_groups[] = {
1806 &x86_pmu_attr_group,
1807 &x86_pmu_format_group,
1808 &x86_pmu_events_group,
1809 NULL,
1810 };
1811
x86_pmu_flush_branch_stack(void)1812 static void x86_pmu_flush_branch_stack(void)
1813 {
1814 if (x86_pmu.flush_branch_stack)
1815 x86_pmu.flush_branch_stack();
1816 }
1817
perf_check_microcode(void)1818 void perf_check_microcode(void)
1819 {
1820 if (x86_pmu.check_microcode)
1821 x86_pmu.check_microcode();
1822 }
1823 EXPORT_SYMBOL_GPL(perf_check_microcode);
1824
1825 static struct pmu pmu = {
1826 .pmu_enable = x86_pmu_enable,
1827 .pmu_disable = x86_pmu_disable,
1828
1829 .attr_groups = x86_pmu_attr_groups,
1830
1831 .event_init = x86_pmu_event_init,
1832
1833 .add = x86_pmu_add,
1834 .del = x86_pmu_del,
1835 .start = x86_pmu_start,
1836 .stop = x86_pmu_stop,
1837 .read = x86_pmu_read,
1838
1839 .start_txn = x86_pmu_start_txn,
1840 .cancel_txn = x86_pmu_cancel_txn,
1841 .commit_txn = x86_pmu_commit_txn,
1842
1843 .event_idx = x86_pmu_event_idx,
1844 .flush_branch_stack = x86_pmu_flush_branch_stack,
1845 };
1846
arch_perf_update_userpage(struct perf_event_mmap_page * userpg,u64 now)1847 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1848 {
1849 userpg->cap_usr_time = 0;
1850 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1851 userpg->pmc_width = x86_pmu.cntval_bits;
1852
1853 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1854 return;
1855
1856 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1857 return;
1858
1859 userpg->cap_usr_time = 1;
1860 userpg->time_mult = this_cpu_read(cyc2ns);
1861 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1862 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1863 }
1864
1865 /*
1866 * callchain support
1867 */
1868
backtrace_stack(void * data,char * name)1869 static int backtrace_stack(void *data, char *name)
1870 {
1871 return 0;
1872 }
1873
backtrace_address(void * data,unsigned long addr,int reliable)1874 static void backtrace_address(void *data, unsigned long addr, int reliable)
1875 {
1876 struct perf_callchain_entry *entry = data;
1877
1878 perf_callchain_store(entry, addr);
1879 }
1880
1881 static const struct stacktrace_ops backtrace_ops = {
1882 .stack = backtrace_stack,
1883 .address = backtrace_address,
1884 .walk_stack = print_context_stack_bp,
1885 };
1886
1887 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1888 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1889 {
1890 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1891 /* TODO: We don't support guest os callchain now */
1892 return;
1893 }
1894
1895 perf_callchain_store(entry, regs->ip);
1896
1897 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1898 }
1899
1900 static inline int
valid_user_frame(const void __user * fp,unsigned long size)1901 valid_user_frame(const void __user *fp, unsigned long size)
1902 {
1903 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1904 }
1905
get_segment_base(unsigned int segment)1906 static unsigned long get_segment_base(unsigned int segment)
1907 {
1908 struct desc_struct *desc;
1909 int idx = segment >> 3;
1910
1911 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1912 if (idx > LDT_ENTRIES)
1913 return 0;
1914
1915 if (idx > current->active_mm->context.size)
1916 return 0;
1917
1918 desc = current->active_mm->context.ldt;
1919 } else {
1920 if (idx > GDT_ENTRIES)
1921 return 0;
1922
1923 desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1924 }
1925
1926 return get_desc_base(desc + idx);
1927 }
1928
1929 #ifdef CONFIG_COMPAT
1930
1931 #include <asm/compat.h>
1932
1933 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1934 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1935 {
1936 /* 32-bit process in 64-bit kernel. */
1937 unsigned long ss_base, cs_base;
1938 struct stack_frame_ia32 frame;
1939 const void __user *fp;
1940
1941 if (!test_thread_flag(TIF_IA32))
1942 return 0;
1943
1944 cs_base = get_segment_base(regs->cs);
1945 ss_base = get_segment_base(regs->ss);
1946
1947 fp = compat_ptr(ss_base + regs->bp);
1948 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1949 unsigned long bytes;
1950 frame.next_frame = 0;
1951 frame.return_address = 0;
1952
1953 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1954 if (bytes != sizeof(frame))
1955 break;
1956
1957 if (!valid_user_frame(fp, sizeof(frame)))
1958 break;
1959
1960 perf_callchain_store(entry, cs_base + frame.return_address);
1961 fp = compat_ptr(ss_base + frame.next_frame);
1962 }
1963 return 1;
1964 }
1965 #else
1966 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1967 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1968 {
1969 return 0;
1970 }
1971 #endif
1972
1973 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)1974 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1975 {
1976 struct stack_frame frame;
1977 const void __user *fp;
1978
1979 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1980 /* TODO: We don't support guest os callchain now */
1981 return;
1982 }
1983
1984 /*
1985 * We don't know what to do with VM86 stacks.. ignore them for now.
1986 */
1987 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
1988 return;
1989
1990 fp = (void __user *)regs->bp;
1991
1992 perf_callchain_store(entry, regs->ip);
1993
1994 if (!current->mm)
1995 return;
1996
1997 if (perf_callchain_user32(regs, entry))
1998 return;
1999
2000 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2001 unsigned long bytes;
2002 frame.next_frame = NULL;
2003 frame.return_address = 0;
2004
2005 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2006 if (bytes != sizeof(frame))
2007 break;
2008
2009 if (!valid_user_frame(fp, sizeof(frame)))
2010 break;
2011
2012 perf_callchain_store(entry, frame.return_address);
2013 fp = frame.next_frame;
2014 }
2015 }
2016
2017 /*
2018 * Deal with code segment offsets for the various execution modes:
2019 *
2020 * VM86 - the good olde 16 bit days, where the linear address is
2021 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2022 *
2023 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2024 * to figure out what the 32bit base address is.
2025 *
2026 * X32 - has TIF_X32 set, but is running in x86_64
2027 *
2028 * X86_64 - CS,DS,SS,ES are all zero based.
2029 */
code_segment_base(struct pt_regs * regs)2030 static unsigned long code_segment_base(struct pt_regs *regs)
2031 {
2032 /*
2033 * If we are in VM86 mode, add the segment offset to convert to a
2034 * linear address.
2035 */
2036 if (regs->flags & X86_VM_MASK)
2037 return 0x10 * regs->cs;
2038
2039 /*
2040 * For IA32 we look at the GDT/LDT segment base to convert the
2041 * effective IP to a linear address.
2042 */
2043 #ifdef CONFIG_X86_32
2044 if (user_mode(regs) && regs->cs != __USER_CS)
2045 return get_segment_base(regs->cs);
2046 #else
2047 if (test_thread_flag(TIF_IA32)) {
2048 if (user_mode(regs) && regs->cs != __USER32_CS)
2049 return get_segment_base(regs->cs);
2050 }
2051 #endif
2052 return 0;
2053 }
2054
perf_instruction_pointer(struct pt_regs * regs)2055 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2056 {
2057 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2058 return perf_guest_cbs->get_guest_ip();
2059
2060 return regs->ip + code_segment_base(regs);
2061 }
2062
perf_misc_flags(struct pt_regs * regs)2063 unsigned long perf_misc_flags(struct pt_regs *regs)
2064 {
2065 int misc = 0;
2066
2067 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2068 if (perf_guest_cbs->is_user_mode())
2069 misc |= PERF_RECORD_MISC_GUEST_USER;
2070 else
2071 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2072 } else {
2073 if (user_mode(regs))
2074 misc |= PERF_RECORD_MISC_USER;
2075 else
2076 misc |= PERF_RECORD_MISC_KERNEL;
2077 }
2078
2079 if (regs->flags & PERF_EFLAGS_EXACT)
2080 misc |= PERF_RECORD_MISC_EXACT_IP;
2081
2082 return misc;
2083 }
2084
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2085 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2086 {
2087 cap->version = x86_pmu.version;
2088 cap->num_counters_gp = x86_pmu.num_counters;
2089 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2090 cap->bit_width_gp = x86_pmu.cntval_bits;
2091 cap->bit_width_fixed = x86_pmu.cntval_bits;
2092 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2093 cap->events_mask_len = x86_pmu.events_mask_len;
2094 }
2095 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2096