• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35 #include <asm/desc.h>
36 #include <asm/ldt.h>
37 
38 #include "perf_event.h"
39 
40 struct x86_pmu x86_pmu __read_mostly;
41 
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43 	.enabled = 1,
44 };
45 
46 u64 __read_mostly hw_cache_event_ids
47 				[PERF_COUNT_HW_CACHE_MAX]
48 				[PERF_COUNT_HW_CACHE_OP_MAX]
49 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
50 u64 __read_mostly hw_cache_extra_regs
51 				[PERF_COUNT_HW_CACHE_MAX]
52 				[PERF_COUNT_HW_CACHE_OP_MAX]
53 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54 
55 /*
56  * Propagate event elapsed time into the generic event.
57  * Can only be executed on the CPU where the event is active.
58  * Returns the delta events processed.
59  */
x86_perf_event_update(struct perf_event * event)60 u64 x86_perf_event_update(struct perf_event *event)
61 {
62 	struct hw_perf_event *hwc = &event->hw;
63 	int shift = 64 - x86_pmu.cntval_bits;
64 	u64 prev_raw_count, new_raw_count;
65 	int idx = hwc->idx;
66 	s64 delta;
67 
68 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
69 		return 0;
70 
71 	/*
72 	 * Careful: an NMI might modify the previous event value.
73 	 *
74 	 * Our tactic to handle this is to first atomically read and
75 	 * exchange a new raw count - then add that new-prev delta
76 	 * count to the generic event atomically:
77 	 */
78 again:
79 	prev_raw_count = local64_read(&hwc->prev_count);
80 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81 
82 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83 					new_raw_count) != prev_raw_count)
84 		goto again;
85 
86 	/*
87 	 * Now we have the new raw value and have updated the prev
88 	 * timestamp already. We can now calculate the elapsed delta
89 	 * (event-)time and add that to the generic event.
90 	 *
91 	 * Careful, not all hw sign-extends above the physical width
92 	 * of the count.
93 	 */
94 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
95 	delta >>= shift;
96 
97 	local64_add(delta, &event->count);
98 	local64_sub(delta, &hwc->period_left);
99 
100 	return new_raw_count;
101 }
102 
103 /*
104  * Find and validate any extra registers to set up.
105  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)106 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
107 {
108 	struct hw_perf_event_extra *reg;
109 	struct extra_reg *er;
110 
111 	reg = &event->hw.extra_reg;
112 
113 	if (!x86_pmu.extra_regs)
114 		return 0;
115 
116 	for (er = x86_pmu.extra_regs; er->msr; er++) {
117 		if (er->event != (config & er->config_mask))
118 			continue;
119 		if (event->attr.config1 & ~er->valid_mask)
120 			return -EINVAL;
121 
122 		reg->idx = er->idx;
123 		reg->config = event->attr.config1;
124 		reg->reg = er->msr;
125 		break;
126 	}
127 	return 0;
128 }
129 
130 static atomic_t active_events;
131 static DEFINE_MUTEX(pmc_reserve_mutex);
132 
133 #ifdef CONFIG_X86_LOCAL_APIC
134 
reserve_pmc_hardware(void)135 static bool reserve_pmc_hardware(void)
136 {
137 	int i;
138 
139 	for (i = 0; i < x86_pmu.num_counters; i++) {
140 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141 			goto perfctr_fail;
142 	}
143 
144 	for (i = 0; i < x86_pmu.num_counters; i++) {
145 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146 			goto eventsel_fail;
147 	}
148 
149 	return true;
150 
151 eventsel_fail:
152 	for (i--; i >= 0; i--)
153 		release_evntsel_nmi(x86_pmu_config_addr(i));
154 
155 	i = x86_pmu.num_counters;
156 
157 perfctr_fail:
158 	for (i--; i >= 0; i--)
159 		release_perfctr_nmi(x86_pmu_event_addr(i));
160 
161 	return false;
162 }
163 
release_pmc_hardware(void)164 static void release_pmc_hardware(void)
165 {
166 	int i;
167 
168 	for (i = 0; i < x86_pmu.num_counters; i++) {
169 		release_perfctr_nmi(x86_pmu_event_addr(i));
170 		release_evntsel_nmi(x86_pmu_config_addr(i));
171 	}
172 }
173 
174 #else
175 
reserve_pmc_hardware(void)176 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)177 static void release_pmc_hardware(void) {}
178 
179 #endif
180 
check_hw_exists(void)181 static bool check_hw_exists(void)
182 {
183 	u64 val, val_fail, val_new= ~0;
184 	int i, reg, reg_fail, ret = 0;
185 	int bios_fail = 0;
186 
187 	/*
188 	 * Check to see if the BIOS enabled any of the counters, if so
189 	 * complain and bail.
190 	 */
191 	for (i = 0; i < x86_pmu.num_counters; i++) {
192 		reg = x86_pmu_config_addr(i);
193 		ret = rdmsrl_safe(reg, &val);
194 		if (ret)
195 			goto msr_fail;
196 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
197 			bios_fail = 1;
198 			val_fail = val;
199 			reg_fail = reg;
200 		}
201 	}
202 
203 	if (x86_pmu.num_counters_fixed) {
204 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
205 		ret = rdmsrl_safe(reg, &val);
206 		if (ret)
207 			goto msr_fail;
208 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
209 			if (val & (0x03 << i*4)) {
210 				bios_fail = 1;
211 				val_fail = val;
212 				reg_fail = reg;
213 			}
214 		}
215 	}
216 
217 	/*
218 	 * Read the current value, change it and read it back to see if it
219 	 * matches, this is needed to detect certain hardware emulators
220 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
221 	 */
222 	reg = x86_pmu_event_addr(0);
223 	if (rdmsrl_safe(reg, &val))
224 		goto msr_fail;
225 	val ^= 0xffffUL;
226 	ret = wrmsrl_safe(reg, val);
227 	ret |= rdmsrl_safe(reg, &val_new);
228 	if (ret || val != val_new)
229 		goto msr_fail;
230 
231 	/*
232 	 * We still allow the PMU driver to operate:
233 	 */
234 	if (bios_fail) {
235 		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
237 	}
238 
239 	return true;
240 
241 msr_fail:
242 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243 	printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
244 
245 	return false;
246 }
247 
hw_perf_event_destroy(struct perf_event * event)248 static void hw_perf_event_destroy(struct perf_event *event)
249 {
250 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
251 		release_pmc_hardware();
252 		release_ds_buffers();
253 		mutex_unlock(&pmc_reserve_mutex);
254 	}
255 }
256 
x86_pmu_initialized(void)257 static inline int x86_pmu_initialized(void)
258 {
259 	return x86_pmu.handle_irq != NULL;
260 }
261 
262 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)263 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
264 {
265 	struct perf_event_attr *attr = &event->attr;
266 	unsigned int cache_type, cache_op, cache_result;
267 	u64 config, val;
268 
269 	config = attr->config;
270 
271 	cache_type = (config >>  0) & 0xff;
272 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
273 		return -EINVAL;
274 
275 	cache_op = (config >>  8) & 0xff;
276 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
277 		return -EINVAL;
278 
279 	cache_result = (config >> 16) & 0xff;
280 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
281 		return -EINVAL;
282 
283 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
284 
285 	if (val == 0)
286 		return -ENOENT;
287 
288 	if (val == -1)
289 		return -EINVAL;
290 
291 	hwc->config |= val;
292 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
293 	return x86_pmu_extra_regs(val, event);
294 }
295 
x86_setup_perfctr(struct perf_event * event)296 int x86_setup_perfctr(struct perf_event *event)
297 {
298 	struct perf_event_attr *attr = &event->attr;
299 	struct hw_perf_event *hwc = &event->hw;
300 	u64 config;
301 
302 	if (!is_sampling_event(event)) {
303 		hwc->sample_period = x86_pmu.max_period;
304 		hwc->last_period = hwc->sample_period;
305 		local64_set(&hwc->period_left, hwc->sample_period);
306 	} else {
307 		/*
308 		 * If we have a PMU initialized but no APIC
309 		 * interrupts, we cannot sample hardware
310 		 * events (user-space has to fall back and
311 		 * sample via a hrtimer based software event):
312 		 */
313 		if (!x86_pmu.apic)
314 			return -EOPNOTSUPP;
315 	}
316 
317 	if (attr->type == PERF_TYPE_RAW)
318 		return x86_pmu_extra_regs(event->attr.config, event);
319 
320 	if (attr->type == PERF_TYPE_HW_CACHE)
321 		return set_ext_hw_attr(hwc, event);
322 
323 	if (attr->config >= x86_pmu.max_events)
324 		return -EINVAL;
325 
326 	/*
327 	 * The generic map:
328 	 */
329 	config = x86_pmu.event_map(attr->config);
330 
331 	if (config == 0)
332 		return -ENOENT;
333 
334 	if (config == -1LL)
335 		return -EINVAL;
336 
337 	/*
338 	 * Branch tracing:
339 	 */
340 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 	    !attr->freq && hwc->sample_period == 1) {
342 		/* BTS is not supported by this architecture. */
343 		if (!x86_pmu.bts_active)
344 			return -EOPNOTSUPP;
345 
346 		/* BTS is currently only allowed for user-mode. */
347 		if (!attr->exclude_kernel)
348 			return -EOPNOTSUPP;
349 	}
350 
351 	hwc->config |= config;
352 
353 	return 0;
354 }
355 
356 /*
357  * check that branch_sample_type is compatible with
358  * settings needed for precise_ip > 1 which implies
359  * using the LBR to capture ALL taken branches at the
360  * priv levels of the measurement
361  */
precise_br_compat(struct perf_event * event)362 static inline int precise_br_compat(struct perf_event *event)
363 {
364 	u64 m = event->attr.branch_sample_type;
365 	u64 b = 0;
366 
367 	/* must capture all branches */
368 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
369 		return 0;
370 
371 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372 
373 	if (!event->attr.exclude_user)
374 		b |= PERF_SAMPLE_BRANCH_USER;
375 
376 	if (!event->attr.exclude_kernel)
377 		b |= PERF_SAMPLE_BRANCH_KERNEL;
378 
379 	/*
380 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381 	 */
382 
383 	return m == b;
384 }
385 
x86_pmu_hw_config(struct perf_event * event)386 int x86_pmu_hw_config(struct perf_event *event)
387 {
388 	if (event->attr.precise_ip) {
389 		int precise = 0;
390 
391 		/* Support for constant skid */
392 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
393 			precise++;
394 
395 			/* Support for IP fixup */
396 			if (x86_pmu.lbr_nr)
397 				precise++;
398 		}
399 
400 		if (event->attr.precise_ip > precise)
401 			return -EOPNOTSUPP;
402 		/*
403 		 * check that PEBS LBR correction does not conflict with
404 		 * whatever the user is asking with attr->branch_sample_type
405 		 */
406 		if (event->attr.precise_ip > 1) {
407 			u64 *br_type = &event->attr.branch_sample_type;
408 
409 			if (has_branch_stack(event)) {
410 				if (!precise_br_compat(event))
411 					return -EOPNOTSUPP;
412 
413 				/* branch_sample_type is compatible */
414 
415 			} else {
416 				/*
417 				 * user did not specify  branch_sample_type
418 				 *
419 				 * For PEBS fixups, we capture all
420 				 * the branches at the priv level of the
421 				 * event.
422 				 */
423 				*br_type = PERF_SAMPLE_BRANCH_ANY;
424 
425 				if (!event->attr.exclude_user)
426 					*br_type |= PERF_SAMPLE_BRANCH_USER;
427 
428 				if (!event->attr.exclude_kernel)
429 					*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
430 			}
431 		}
432 	}
433 
434 	/*
435 	 * Generate PMC IRQs:
436 	 * (keep 'enabled' bit clear for now)
437 	 */
438 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
439 
440 	/*
441 	 * Count user and OS events unless requested not to
442 	 */
443 	if (!event->attr.exclude_user)
444 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
445 	if (!event->attr.exclude_kernel)
446 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
447 
448 	if (event->attr.type == PERF_TYPE_RAW)
449 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
450 
451 	return x86_setup_perfctr(event);
452 }
453 
454 /*
455  * Setup the hardware configuration for a given attr_type
456  */
__x86_pmu_event_init(struct perf_event * event)457 static int __x86_pmu_event_init(struct perf_event *event)
458 {
459 	int err;
460 
461 	if (!x86_pmu_initialized())
462 		return -ENODEV;
463 
464 	err = 0;
465 	if (!atomic_inc_not_zero(&active_events)) {
466 		mutex_lock(&pmc_reserve_mutex);
467 		if (atomic_read(&active_events) == 0) {
468 			if (!reserve_pmc_hardware())
469 				err = -EBUSY;
470 			else
471 				reserve_ds_buffers();
472 		}
473 		if (!err)
474 			atomic_inc(&active_events);
475 		mutex_unlock(&pmc_reserve_mutex);
476 	}
477 	if (err)
478 		return err;
479 
480 	event->destroy = hw_perf_event_destroy;
481 
482 	event->hw.idx = -1;
483 	event->hw.last_cpu = -1;
484 	event->hw.last_tag = ~0ULL;
485 
486 	/* mark unused */
487 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
488 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
489 
490 	return x86_pmu.hw_config(event);
491 }
492 
x86_pmu_disable_all(void)493 void x86_pmu_disable_all(void)
494 {
495 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
496 	int idx;
497 
498 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
499 		u64 val;
500 
501 		if (!test_bit(idx, cpuc->active_mask))
502 			continue;
503 		rdmsrl(x86_pmu_config_addr(idx), val);
504 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
505 			continue;
506 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
507 		wrmsrl(x86_pmu_config_addr(idx), val);
508 	}
509 }
510 
x86_pmu_disable(struct pmu * pmu)511 static void x86_pmu_disable(struct pmu *pmu)
512 {
513 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
514 
515 	if (!x86_pmu_initialized())
516 		return;
517 
518 	if (!cpuc->enabled)
519 		return;
520 
521 	cpuc->n_added = 0;
522 	cpuc->enabled = 0;
523 	barrier();
524 
525 	x86_pmu.disable_all();
526 }
527 
x86_pmu_enable_all(int added)528 void x86_pmu_enable_all(int added)
529 {
530 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
531 	int idx;
532 
533 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
534 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
535 
536 		if (!test_bit(idx, cpuc->active_mask))
537 			continue;
538 
539 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
540 	}
541 }
542 
543 static struct pmu pmu;
544 
is_x86_event(struct perf_event * event)545 static inline int is_x86_event(struct perf_event *event)
546 {
547 	return event->pmu == &pmu;
548 }
549 
550 /*
551  * Event scheduler state:
552  *
553  * Assign events iterating over all events and counters, beginning
554  * with events with least weights first. Keep the current iterator
555  * state in struct sched_state.
556  */
557 struct sched_state {
558 	int	weight;
559 	int	event;		/* event index */
560 	int	counter;	/* counter index */
561 	int	unassigned;	/* number of events to be assigned left */
562 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
563 };
564 
565 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
566 #define	SCHED_STATES_MAX	2
567 
568 struct perf_sched {
569 	int			max_weight;
570 	int			max_events;
571 	struct event_constraint	**constraints;
572 	struct sched_state	state;
573 	int			saved_states;
574 	struct sched_state	saved[SCHED_STATES_MAX];
575 };
576 
577 /*
578  * Initialize interator that runs through all events and counters.
579  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** c,int num,int wmin,int wmax)580 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
581 			    int num, int wmin, int wmax)
582 {
583 	int idx;
584 
585 	memset(sched, 0, sizeof(*sched));
586 	sched->max_events	= num;
587 	sched->max_weight	= wmax;
588 	sched->constraints	= c;
589 
590 	for (idx = 0; idx < num; idx++) {
591 		if (c[idx]->weight == wmin)
592 			break;
593 	}
594 
595 	sched->state.event	= idx;		/* start with min weight */
596 	sched->state.weight	= wmin;
597 	sched->state.unassigned	= num;
598 }
599 
perf_sched_save_state(struct perf_sched * sched)600 static void perf_sched_save_state(struct perf_sched *sched)
601 {
602 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
603 		return;
604 
605 	sched->saved[sched->saved_states] = sched->state;
606 	sched->saved_states++;
607 }
608 
perf_sched_restore_state(struct perf_sched * sched)609 static bool perf_sched_restore_state(struct perf_sched *sched)
610 {
611 	if (!sched->saved_states)
612 		return false;
613 
614 	sched->saved_states--;
615 	sched->state = sched->saved[sched->saved_states];
616 
617 	/* continue with next counter: */
618 	clear_bit(sched->state.counter++, sched->state.used);
619 
620 	return true;
621 }
622 
623 /*
624  * Select a counter for the current event to schedule. Return true on
625  * success.
626  */
__perf_sched_find_counter(struct perf_sched * sched)627 static bool __perf_sched_find_counter(struct perf_sched *sched)
628 {
629 	struct event_constraint *c;
630 	int idx;
631 
632 	if (!sched->state.unassigned)
633 		return false;
634 
635 	if (sched->state.event >= sched->max_events)
636 		return false;
637 
638 	c = sched->constraints[sched->state.event];
639 
640 	/* Prefer fixed purpose counters */
641 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
642 		idx = INTEL_PMC_IDX_FIXED;
643 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
644 			if (!__test_and_set_bit(idx, sched->state.used))
645 				goto done;
646 		}
647 	}
648 	/* Grab the first unused counter starting with idx */
649 	idx = sched->state.counter;
650 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
651 		if (!__test_and_set_bit(idx, sched->state.used))
652 			goto done;
653 	}
654 
655 	return false;
656 
657 done:
658 	sched->state.counter = idx;
659 
660 	if (c->overlap)
661 		perf_sched_save_state(sched);
662 
663 	return true;
664 }
665 
perf_sched_find_counter(struct perf_sched * sched)666 static bool perf_sched_find_counter(struct perf_sched *sched)
667 {
668 	while (!__perf_sched_find_counter(sched)) {
669 		if (!perf_sched_restore_state(sched))
670 			return false;
671 	}
672 
673 	return true;
674 }
675 
676 /*
677  * Go through all unassigned events and find the next one to schedule.
678  * Take events with the least weight first. Return true on success.
679  */
perf_sched_next_event(struct perf_sched * sched)680 static bool perf_sched_next_event(struct perf_sched *sched)
681 {
682 	struct event_constraint *c;
683 
684 	if (!sched->state.unassigned || !--sched->state.unassigned)
685 		return false;
686 
687 	do {
688 		/* next event */
689 		sched->state.event++;
690 		if (sched->state.event >= sched->max_events) {
691 			/* next weight */
692 			sched->state.event = 0;
693 			sched->state.weight++;
694 			if (sched->state.weight > sched->max_weight)
695 				return false;
696 		}
697 		c = sched->constraints[sched->state.event];
698 	} while (c->weight != sched->state.weight);
699 
700 	sched->state.counter = 0;	/* start with first counter */
701 
702 	return true;
703 }
704 
705 /*
706  * Assign a counter for each event.
707  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int * assign)708 int perf_assign_events(struct event_constraint **constraints, int n,
709 			int wmin, int wmax, int *assign)
710 {
711 	struct perf_sched sched;
712 
713 	perf_sched_init(&sched, constraints, n, wmin, wmax);
714 
715 	do {
716 		if (!perf_sched_find_counter(&sched))
717 			break;	/* failed */
718 		if (assign)
719 			assign[sched.state.event] = sched.state.counter;
720 	} while (perf_sched_next_event(&sched));
721 
722 	return sched.state.unassigned;
723 }
724 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)725 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
726 {
727 	struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
728 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
729 	int i, wmin, wmax, num = 0;
730 	struct hw_perf_event *hwc;
731 
732 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
733 
734 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
735 		c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
736 		constraints[i] = c;
737 		wmin = min(wmin, c->weight);
738 		wmax = max(wmax, c->weight);
739 	}
740 
741 	/*
742 	 * fastpath, try to reuse previous register
743 	 */
744 	for (i = 0; i < n; i++) {
745 		hwc = &cpuc->event_list[i]->hw;
746 		c = constraints[i];
747 
748 		/* never assigned */
749 		if (hwc->idx == -1)
750 			break;
751 
752 		/* constraint still honored */
753 		if (!test_bit(hwc->idx, c->idxmsk))
754 			break;
755 
756 		/* not already used */
757 		if (test_bit(hwc->idx, used_mask))
758 			break;
759 
760 		__set_bit(hwc->idx, used_mask);
761 		if (assign)
762 			assign[i] = hwc->idx;
763 	}
764 
765 	/* slow path */
766 	if (i != n)
767 		num = perf_assign_events(constraints, n, wmin, wmax, assign);
768 
769 	/*
770 	 * scheduling failed or is just a simulation,
771 	 * free resources if necessary
772 	 */
773 	if (!assign || num) {
774 		for (i = 0; i < n; i++) {
775 			if (x86_pmu.put_event_constraints)
776 				x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
777 		}
778 	}
779 	return num ? -EINVAL : 0;
780 }
781 
782 /*
783  * dogrp: true if must collect siblings events (group)
784  * returns total number of events and error code
785  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)786 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
787 {
788 	struct perf_event *event;
789 	int n, max_count;
790 
791 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
792 
793 	/* current number of events already accepted */
794 	n = cpuc->n_events;
795 
796 	if (is_x86_event(leader)) {
797 		if (n >= max_count)
798 			return -EINVAL;
799 		cpuc->event_list[n] = leader;
800 		n++;
801 	}
802 	if (!dogrp)
803 		return n;
804 
805 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
806 		if (!is_x86_event(event) ||
807 		    event->state <= PERF_EVENT_STATE_OFF)
808 			continue;
809 
810 		if (n >= max_count)
811 			return -EINVAL;
812 
813 		cpuc->event_list[n] = event;
814 		n++;
815 	}
816 	return n;
817 }
818 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)819 static inline void x86_assign_hw_event(struct perf_event *event,
820 				struct cpu_hw_events *cpuc, int i)
821 {
822 	struct hw_perf_event *hwc = &event->hw;
823 
824 	hwc->idx = cpuc->assign[i];
825 	hwc->last_cpu = smp_processor_id();
826 	hwc->last_tag = ++cpuc->tags[i];
827 
828 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
829 		hwc->config_base = 0;
830 		hwc->event_base	= 0;
831 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
832 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
833 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
834 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
835 	} else {
836 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
837 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
838 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
839 	}
840 }
841 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)842 static inline int match_prev_assignment(struct hw_perf_event *hwc,
843 					struct cpu_hw_events *cpuc,
844 					int i)
845 {
846 	return hwc->idx == cpuc->assign[i] &&
847 		hwc->last_cpu == smp_processor_id() &&
848 		hwc->last_tag == cpuc->tags[i];
849 }
850 
851 static void x86_pmu_start(struct perf_event *event, int flags);
852 
x86_pmu_enable(struct pmu * pmu)853 static void x86_pmu_enable(struct pmu *pmu)
854 {
855 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
856 	struct perf_event *event;
857 	struct hw_perf_event *hwc;
858 	int i, added = cpuc->n_added;
859 
860 	if (!x86_pmu_initialized())
861 		return;
862 
863 	if (cpuc->enabled)
864 		return;
865 
866 	if (cpuc->n_added) {
867 		int n_running = cpuc->n_events - cpuc->n_added;
868 		/*
869 		 * apply assignment obtained either from
870 		 * hw_perf_group_sched_in() or x86_pmu_enable()
871 		 *
872 		 * step1: save events moving to new counters
873 		 * step2: reprogram moved events into new counters
874 		 */
875 		for (i = 0; i < n_running; i++) {
876 			event = cpuc->event_list[i];
877 			hwc = &event->hw;
878 
879 			/*
880 			 * we can avoid reprogramming counter if:
881 			 * - assigned same counter as last time
882 			 * - running on same CPU as last time
883 			 * - no other event has used the counter since
884 			 */
885 			if (hwc->idx == -1 ||
886 			    match_prev_assignment(hwc, cpuc, i))
887 				continue;
888 
889 			/*
890 			 * Ensure we don't accidentally enable a stopped
891 			 * counter simply because we rescheduled.
892 			 */
893 			if (hwc->state & PERF_HES_STOPPED)
894 				hwc->state |= PERF_HES_ARCH;
895 
896 			x86_pmu_stop(event, PERF_EF_UPDATE);
897 		}
898 
899 		for (i = 0; i < cpuc->n_events; i++) {
900 			event = cpuc->event_list[i];
901 			hwc = &event->hw;
902 
903 			if (!match_prev_assignment(hwc, cpuc, i))
904 				x86_assign_hw_event(event, cpuc, i);
905 			else if (i < n_running)
906 				continue;
907 
908 			if (hwc->state & PERF_HES_ARCH)
909 				continue;
910 
911 			x86_pmu_start(event, PERF_EF_RELOAD);
912 		}
913 		cpuc->n_added = 0;
914 		perf_events_lapic_init();
915 	}
916 
917 	cpuc->enabled = 1;
918 	barrier();
919 
920 	x86_pmu.enable_all(added);
921 }
922 
923 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
924 
925 /*
926  * Set the next IRQ period, based on the hwc->period_left value.
927  * To be called with the event disabled in hw:
928  */
x86_perf_event_set_period(struct perf_event * event)929 int x86_perf_event_set_period(struct perf_event *event)
930 {
931 	struct hw_perf_event *hwc = &event->hw;
932 	s64 left = local64_read(&hwc->period_left);
933 	s64 period = hwc->sample_period;
934 	int ret = 0, idx = hwc->idx;
935 
936 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
937 		return 0;
938 
939 	/*
940 	 * If we are way outside a reasonable range then just skip forward:
941 	 */
942 	if (unlikely(left <= -period)) {
943 		left = period;
944 		local64_set(&hwc->period_left, left);
945 		hwc->last_period = period;
946 		ret = 1;
947 	}
948 
949 	if (unlikely(left <= 0)) {
950 		left += period;
951 		local64_set(&hwc->period_left, left);
952 		hwc->last_period = period;
953 		ret = 1;
954 	}
955 	/*
956 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
957 	 */
958 	if (unlikely(left < 2))
959 		left = 2;
960 
961 	if (left > x86_pmu.max_period)
962 		left = x86_pmu.max_period;
963 
964 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
965 
966 	/*
967 	 * The hw event starts counting from this event offset,
968 	 * mark it to be able to extra future deltas:
969 	 */
970 	local64_set(&hwc->prev_count, (u64)-left);
971 
972 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
973 
974 	/*
975 	 * Due to erratum on certan cpu we need
976 	 * a second write to be sure the register
977 	 * is updated properly
978 	 */
979 	if (x86_pmu.perfctr_second_write) {
980 		wrmsrl(hwc->event_base,
981 			(u64)(-left) & x86_pmu.cntval_mask);
982 	}
983 
984 	perf_event_update_userpage(event);
985 
986 	return ret;
987 }
988 
x86_pmu_enable_event(struct perf_event * event)989 void x86_pmu_enable_event(struct perf_event *event)
990 {
991 	if (__this_cpu_read(cpu_hw_events.enabled))
992 		__x86_pmu_enable_event(&event->hw,
993 				       ARCH_PERFMON_EVENTSEL_ENABLE);
994 }
995 
996 /*
997  * Add a single event to the PMU.
998  *
999  * The event is added to the group of enabled events
1000  * but only if it can be scehduled with existing events.
1001  */
x86_pmu_add(struct perf_event * event,int flags)1002 static int x86_pmu_add(struct perf_event *event, int flags)
1003 {
1004 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 	struct hw_perf_event *hwc;
1006 	int assign[X86_PMC_IDX_MAX];
1007 	int n, n0, ret;
1008 
1009 	hwc = &event->hw;
1010 
1011 	perf_pmu_disable(event->pmu);
1012 	n0 = cpuc->n_events;
1013 	ret = n = collect_events(cpuc, event, false);
1014 	if (ret < 0)
1015 		goto out;
1016 
1017 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1018 	if (!(flags & PERF_EF_START))
1019 		hwc->state |= PERF_HES_ARCH;
1020 
1021 	/*
1022 	 * If group events scheduling transaction was started,
1023 	 * skip the schedulability test here, it will be performed
1024 	 * at commit time (->commit_txn) as a whole
1025 	 */
1026 	if (cpuc->group_flag & PERF_EVENT_TXN)
1027 		goto done_collect;
1028 
1029 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1030 	if (ret)
1031 		goto out;
1032 	/*
1033 	 * copy new assignment, now we know it is possible
1034 	 * will be used by hw_perf_enable()
1035 	 */
1036 	memcpy(cpuc->assign, assign, n*sizeof(int));
1037 
1038 done_collect:
1039 	cpuc->n_events = n;
1040 	cpuc->n_added += n - n0;
1041 	cpuc->n_txn += n - n0;
1042 
1043 	ret = 0;
1044 out:
1045 	perf_pmu_enable(event->pmu);
1046 	return ret;
1047 }
1048 
x86_pmu_start(struct perf_event * event,int flags)1049 static void x86_pmu_start(struct perf_event *event, int flags)
1050 {
1051 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052 	int idx = event->hw.idx;
1053 
1054 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1055 		return;
1056 
1057 	if (WARN_ON_ONCE(idx == -1))
1058 		return;
1059 
1060 	if (flags & PERF_EF_RELOAD) {
1061 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1062 		x86_perf_event_set_period(event);
1063 	}
1064 
1065 	event->hw.state = 0;
1066 
1067 	cpuc->events[idx] = event;
1068 	__set_bit(idx, cpuc->active_mask);
1069 	__set_bit(idx, cpuc->running);
1070 	x86_pmu.enable(event);
1071 	perf_event_update_userpage(event);
1072 }
1073 
perf_event_print_debug(void)1074 void perf_event_print_debug(void)
1075 {
1076 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1077 	u64 pebs;
1078 	struct cpu_hw_events *cpuc;
1079 	unsigned long flags;
1080 	int cpu, idx;
1081 
1082 	if (!x86_pmu.num_counters)
1083 		return;
1084 
1085 	local_irq_save(flags);
1086 
1087 	cpu = smp_processor_id();
1088 	cpuc = &per_cpu(cpu_hw_events, cpu);
1089 
1090 	if (x86_pmu.version >= 2) {
1091 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1092 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1093 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1094 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1095 		rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1096 
1097 		pr_info("\n");
1098 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1099 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1100 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1101 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1102 		pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1103 	}
1104 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1105 
1106 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1108 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1109 
1110 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1111 
1112 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1113 			cpu, idx, pmc_ctrl);
1114 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1115 			cpu, idx, pmc_count);
1116 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1117 			cpu, idx, prev_left);
1118 	}
1119 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1120 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1121 
1122 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1123 			cpu, idx, pmc_count);
1124 	}
1125 	local_irq_restore(flags);
1126 }
1127 
x86_pmu_stop(struct perf_event * event,int flags)1128 void x86_pmu_stop(struct perf_event *event, int flags)
1129 {
1130 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1131 	struct hw_perf_event *hwc = &event->hw;
1132 
1133 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1134 		x86_pmu.disable(event);
1135 		cpuc->events[hwc->idx] = NULL;
1136 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1137 		hwc->state |= PERF_HES_STOPPED;
1138 	}
1139 
1140 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1141 		/*
1142 		 * Drain the remaining delta count out of a event
1143 		 * that we are disabling:
1144 		 */
1145 		x86_perf_event_update(event);
1146 		hwc->state |= PERF_HES_UPTODATE;
1147 	}
1148 }
1149 
x86_pmu_del(struct perf_event * event,int flags)1150 static void x86_pmu_del(struct perf_event *event, int flags)
1151 {
1152 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153 	int i;
1154 
1155 	/*
1156 	 * If we're called during a txn, we don't need to do anything.
1157 	 * The events never got scheduled and ->cancel_txn will truncate
1158 	 * the event_list.
1159 	 */
1160 	if (cpuc->group_flag & PERF_EVENT_TXN)
1161 		return;
1162 
1163 	x86_pmu_stop(event, PERF_EF_UPDATE);
1164 
1165 	for (i = 0; i < cpuc->n_events; i++) {
1166 		if (event == cpuc->event_list[i]) {
1167 
1168 			if (x86_pmu.put_event_constraints)
1169 				x86_pmu.put_event_constraints(cpuc, event);
1170 
1171 			while (++i < cpuc->n_events)
1172 				cpuc->event_list[i-1] = cpuc->event_list[i];
1173 
1174 			--cpuc->n_events;
1175 			break;
1176 		}
1177 	}
1178 	perf_event_update_userpage(event);
1179 }
1180 
x86_pmu_handle_irq(struct pt_regs * regs)1181 int x86_pmu_handle_irq(struct pt_regs *regs)
1182 {
1183 	struct perf_sample_data data;
1184 	struct cpu_hw_events *cpuc;
1185 	struct perf_event *event;
1186 	int idx, handled = 0;
1187 	u64 val;
1188 
1189 	cpuc = &__get_cpu_var(cpu_hw_events);
1190 
1191 	/*
1192 	 * Some chipsets need to unmask the LVTPC in a particular spot
1193 	 * inside the nmi handler.  As a result, the unmasking was pushed
1194 	 * into all the nmi handlers.
1195 	 *
1196 	 * This generic handler doesn't seem to have any issues where the
1197 	 * unmasking occurs so it was left at the top.
1198 	 */
1199 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1200 
1201 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1202 		if (!test_bit(idx, cpuc->active_mask)) {
1203 			/*
1204 			 * Though we deactivated the counter some cpus
1205 			 * might still deliver spurious interrupts still
1206 			 * in flight. Catch them:
1207 			 */
1208 			if (__test_and_clear_bit(idx, cpuc->running))
1209 				handled++;
1210 			continue;
1211 		}
1212 
1213 		event = cpuc->events[idx];
1214 
1215 		val = x86_perf_event_update(event);
1216 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1217 			continue;
1218 
1219 		/*
1220 		 * event overflow
1221 		 */
1222 		handled++;
1223 		perf_sample_data_init(&data, 0, event->hw.last_period);
1224 
1225 		if (!x86_perf_event_set_period(event))
1226 			continue;
1227 
1228 		if (perf_event_overflow(event, &data, regs))
1229 			x86_pmu_stop(event, 0);
1230 	}
1231 
1232 	if (handled)
1233 		inc_irq_stat(apic_perf_irqs);
1234 
1235 	return handled;
1236 }
1237 
perf_events_lapic_init(void)1238 void perf_events_lapic_init(void)
1239 {
1240 	if (!x86_pmu.apic || !x86_pmu_initialized())
1241 		return;
1242 
1243 	/*
1244 	 * Always use NMI for PMU
1245 	 */
1246 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1247 }
1248 
1249 static int __kprobes
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1250 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1251 {
1252 	if (!atomic_read(&active_events))
1253 		return NMI_DONE;
1254 
1255 	return x86_pmu.handle_irq(regs);
1256 }
1257 
1258 struct event_constraint emptyconstraint;
1259 struct event_constraint unconstrained;
1260 
1261 static int __cpuinit
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1262 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1263 {
1264 	unsigned int cpu = (long)hcpu;
1265 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1266 	int ret = NOTIFY_OK;
1267 
1268 	switch (action & ~CPU_TASKS_FROZEN) {
1269 	case CPU_UP_PREPARE:
1270 		cpuc->kfree_on_online = NULL;
1271 		if (x86_pmu.cpu_prepare)
1272 			ret = x86_pmu.cpu_prepare(cpu);
1273 		break;
1274 
1275 	case CPU_STARTING:
1276 		if (x86_pmu.attr_rdpmc)
1277 			set_in_cr4(X86_CR4_PCE);
1278 		if (x86_pmu.cpu_starting)
1279 			x86_pmu.cpu_starting(cpu);
1280 		break;
1281 
1282 	case CPU_ONLINE:
1283 		kfree(cpuc->kfree_on_online);
1284 		break;
1285 
1286 	case CPU_DYING:
1287 		if (x86_pmu.cpu_dying)
1288 			x86_pmu.cpu_dying(cpu);
1289 		break;
1290 
1291 	case CPU_UP_CANCELED:
1292 	case CPU_DEAD:
1293 		if (x86_pmu.cpu_dead)
1294 			x86_pmu.cpu_dead(cpu);
1295 		break;
1296 
1297 	default:
1298 		break;
1299 	}
1300 
1301 	return ret;
1302 }
1303 
pmu_check_apic(void)1304 static void __init pmu_check_apic(void)
1305 {
1306 	if (cpu_has_apic)
1307 		return;
1308 
1309 	x86_pmu.apic = 0;
1310 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1311 	pr_info("no hardware sampling interrupt available.\n");
1312 }
1313 
1314 static struct attribute_group x86_pmu_format_group = {
1315 	.name = "format",
1316 	.attrs = NULL,
1317 };
1318 
1319 /*
1320  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1321  * out of events_attr attributes.
1322  */
filter_events(struct attribute ** attrs)1323 static void __init filter_events(struct attribute **attrs)
1324 {
1325 	struct device_attribute *d;
1326 	struct perf_pmu_events_attr *pmu_attr;
1327 	int i, j;
1328 
1329 	for (i = 0; attrs[i]; i++) {
1330 		d = (struct device_attribute *)attrs[i];
1331 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1332 		/* str trumps id */
1333 		if (pmu_attr->event_str)
1334 			continue;
1335 		if (x86_pmu.event_map(i))
1336 			continue;
1337 
1338 		for (j = i; attrs[j]; j++)
1339 			attrs[j] = attrs[j + 1];
1340 
1341 		/* Check the shifted attr. */
1342 		i--;
1343 	}
1344 }
1345 
1346 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1347 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1348 {
1349 	struct attribute **new;
1350 	int j, i;
1351 
1352 	for (j = 0; a[j]; j++)
1353 		;
1354 	for (i = 0; b[i]; i++)
1355 		j++;
1356 	j++;
1357 
1358 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1359 	if (!new)
1360 		return NULL;
1361 
1362 	j = 0;
1363 	for (i = 0; a[i]; i++)
1364 		new[j++] = a[i];
1365 	for (i = 0; b[i]; i++)
1366 		new[j++] = b[i];
1367 	new[j] = NULL;
1368 
1369 	return new;
1370 }
1371 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1372 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1373 			  char *page)
1374 {
1375 	struct perf_pmu_events_attr *pmu_attr = \
1376 		container_of(attr, struct perf_pmu_events_attr, attr);
1377 	u64 config = x86_pmu.event_map(pmu_attr->id);
1378 
1379 	/* string trumps id */
1380 	if (pmu_attr->event_str)
1381 		return sprintf(page, "%s", pmu_attr->event_str);
1382 
1383 	return x86_pmu.events_sysfs_show(page, config);
1384 }
1385 
1386 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1387 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1388 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1389 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1390 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1391 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1392 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1393 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1394 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1395 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1396 
1397 static struct attribute *empty_attrs;
1398 
1399 static struct attribute *events_attr[] = {
1400 	EVENT_PTR(CPU_CYCLES),
1401 	EVENT_PTR(INSTRUCTIONS),
1402 	EVENT_PTR(CACHE_REFERENCES),
1403 	EVENT_PTR(CACHE_MISSES),
1404 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1405 	EVENT_PTR(BRANCH_MISSES),
1406 	EVENT_PTR(BUS_CYCLES),
1407 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1408 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1409 	EVENT_PTR(REF_CPU_CYCLES),
1410 	NULL,
1411 };
1412 
1413 static struct attribute_group x86_pmu_events_group = {
1414 	.name = "events",
1415 	.attrs = events_attr,
1416 };
1417 
x86_event_sysfs_show(char * page,u64 config,u64 event)1418 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1419 {
1420 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1421 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1422 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1423 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1424 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1425 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1426 	ssize_t ret;
1427 
1428 	/*
1429 	* We have whole page size to spend and just little data
1430 	* to write, so we can safely use sprintf.
1431 	*/
1432 	ret = sprintf(page, "event=0x%02llx", event);
1433 
1434 	if (umask)
1435 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1436 
1437 	if (edge)
1438 		ret += sprintf(page + ret, ",edge");
1439 
1440 	if (pc)
1441 		ret += sprintf(page + ret, ",pc");
1442 
1443 	if (any)
1444 		ret += sprintf(page + ret, ",any");
1445 
1446 	if (inv)
1447 		ret += sprintf(page + ret, ",inv");
1448 
1449 	if (cmask)
1450 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1451 
1452 	ret += sprintf(page + ret, "\n");
1453 
1454 	return ret;
1455 }
1456 
init_hw_perf_events(void)1457 static int __init init_hw_perf_events(void)
1458 {
1459 	struct x86_pmu_quirk *quirk;
1460 	int err;
1461 
1462 	pr_info("Performance Events: ");
1463 
1464 	switch (boot_cpu_data.x86_vendor) {
1465 	case X86_VENDOR_INTEL:
1466 		err = intel_pmu_init();
1467 		break;
1468 	case X86_VENDOR_AMD:
1469 		err = amd_pmu_init();
1470 		break;
1471 	default:
1472 		return 0;
1473 	}
1474 	if (err != 0) {
1475 		pr_cont("no PMU driver, software events only.\n");
1476 		return 0;
1477 	}
1478 
1479 	pmu_check_apic();
1480 
1481 	/* sanity check that the hardware exists or is emulated */
1482 	if (!check_hw_exists())
1483 		return 0;
1484 
1485 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1486 
1487 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1488 		quirk->func();
1489 
1490 	if (!x86_pmu.intel_ctrl)
1491 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1492 
1493 	perf_events_lapic_init();
1494 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1495 
1496 	unconstrained = (struct event_constraint)
1497 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1498 				   0, x86_pmu.num_counters, 0, 0);
1499 
1500 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1501 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1502 
1503 	if (x86_pmu.event_attrs)
1504 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1505 
1506 	if (!x86_pmu.events_sysfs_show)
1507 		x86_pmu_events_group.attrs = &empty_attrs;
1508 	else
1509 		filter_events(x86_pmu_events_group.attrs);
1510 
1511 	if (x86_pmu.cpu_events) {
1512 		struct attribute **tmp;
1513 
1514 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1515 		if (!WARN_ON(!tmp))
1516 			x86_pmu_events_group.attrs = tmp;
1517 	}
1518 
1519 	pr_info("... version:                %d\n",     x86_pmu.version);
1520 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1521 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1522 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1523 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1524 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1525 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1526 
1527 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1528 	perf_cpu_notifier(x86_pmu_notifier);
1529 
1530 	return 0;
1531 }
1532 early_initcall(init_hw_perf_events);
1533 
x86_pmu_read(struct perf_event * event)1534 static inline void x86_pmu_read(struct perf_event *event)
1535 {
1536 	x86_perf_event_update(event);
1537 }
1538 
1539 /*
1540  * Start group events scheduling transaction
1541  * Set the flag to make pmu::enable() not perform the
1542  * schedulability test, it will be performed at commit time
1543  */
x86_pmu_start_txn(struct pmu * pmu)1544 static void x86_pmu_start_txn(struct pmu *pmu)
1545 {
1546 	perf_pmu_disable(pmu);
1547 	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1548 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1549 }
1550 
1551 /*
1552  * Stop group events scheduling transaction
1553  * Clear the flag and pmu::enable() will perform the
1554  * schedulability test.
1555  */
x86_pmu_cancel_txn(struct pmu * pmu)1556 static void x86_pmu_cancel_txn(struct pmu *pmu)
1557 {
1558 	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1559 	/*
1560 	 * Truncate the collected events.
1561 	 */
1562 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1563 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1564 	perf_pmu_enable(pmu);
1565 }
1566 
1567 /*
1568  * Commit group events scheduling transaction
1569  * Perform the group schedulability test as a whole
1570  * Return 0 if success
1571  */
x86_pmu_commit_txn(struct pmu * pmu)1572 static int x86_pmu_commit_txn(struct pmu *pmu)
1573 {
1574 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1575 	int assign[X86_PMC_IDX_MAX];
1576 	int n, ret;
1577 
1578 	n = cpuc->n_events;
1579 
1580 	if (!x86_pmu_initialized())
1581 		return -EAGAIN;
1582 
1583 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1584 	if (ret)
1585 		return ret;
1586 
1587 	/*
1588 	 * copy new assignment, now we know it is possible
1589 	 * will be used by hw_perf_enable()
1590 	 */
1591 	memcpy(cpuc->assign, assign, n*sizeof(int));
1592 
1593 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1594 	perf_pmu_enable(pmu);
1595 	return 0;
1596 }
1597 /*
1598  * a fake_cpuc is used to validate event groups. Due to
1599  * the extra reg logic, we need to also allocate a fake
1600  * per_core and per_cpu structure. Otherwise, group events
1601  * using extra reg may conflict without the kernel being
1602  * able to catch this when the last event gets added to
1603  * the group.
1604  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1605 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1606 {
1607 	kfree(cpuc->shared_regs);
1608 	kfree(cpuc);
1609 }
1610 
allocate_fake_cpuc(void)1611 static struct cpu_hw_events *allocate_fake_cpuc(void)
1612 {
1613 	struct cpu_hw_events *cpuc;
1614 	int cpu = raw_smp_processor_id();
1615 
1616 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1617 	if (!cpuc)
1618 		return ERR_PTR(-ENOMEM);
1619 
1620 	/* only needed, if we have extra_regs */
1621 	if (x86_pmu.extra_regs) {
1622 		cpuc->shared_regs = allocate_shared_regs(cpu);
1623 		if (!cpuc->shared_regs)
1624 			goto error;
1625 	}
1626 	cpuc->is_fake = 1;
1627 	return cpuc;
1628 error:
1629 	free_fake_cpuc(cpuc);
1630 	return ERR_PTR(-ENOMEM);
1631 }
1632 
1633 /*
1634  * validate that we can schedule this event
1635  */
validate_event(struct perf_event * event)1636 static int validate_event(struct perf_event *event)
1637 {
1638 	struct cpu_hw_events *fake_cpuc;
1639 	struct event_constraint *c;
1640 	int ret = 0;
1641 
1642 	fake_cpuc = allocate_fake_cpuc();
1643 	if (IS_ERR(fake_cpuc))
1644 		return PTR_ERR(fake_cpuc);
1645 
1646 	c = x86_pmu.get_event_constraints(fake_cpuc, event);
1647 
1648 	if (!c || !c->weight)
1649 		ret = -EINVAL;
1650 
1651 	if (x86_pmu.put_event_constraints)
1652 		x86_pmu.put_event_constraints(fake_cpuc, event);
1653 
1654 	free_fake_cpuc(fake_cpuc);
1655 
1656 	return ret;
1657 }
1658 
1659 /*
1660  * validate a single event group
1661  *
1662  * validation include:
1663  *	- check events are compatible which each other
1664  *	- events do not compete for the same counter
1665  *	- number of events <= number of counters
1666  *
1667  * validation ensures the group can be loaded onto the
1668  * PMU if it was the only group available.
1669  */
validate_group(struct perf_event * event)1670 static int validate_group(struct perf_event *event)
1671 {
1672 	struct perf_event *leader = event->group_leader;
1673 	struct cpu_hw_events *fake_cpuc;
1674 	int ret = -EINVAL, n;
1675 
1676 	fake_cpuc = allocate_fake_cpuc();
1677 	if (IS_ERR(fake_cpuc))
1678 		return PTR_ERR(fake_cpuc);
1679 	/*
1680 	 * the event is not yet connected with its
1681 	 * siblings therefore we must first collect
1682 	 * existing siblings, then add the new event
1683 	 * before we can simulate the scheduling
1684 	 */
1685 	n = collect_events(fake_cpuc, leader, true);
1686 	if (n < 0)
1687 		goto out;
1688 
1689 	fake_cpuc->n_events = n;
1690 	n = collect_events(fake_cpuc, event, false);
1691 	if (n < 0)
1692 		goto out;
1693 
1694 	fake_cpuc->n_events = n;
1695 
1696 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1697 
1698 out:
1699 	free_fake_cpuc(fake_cpuc);
1700 	return ret;
1701 }
1702 
x86_pmu_event_init(struct perf_event * event)1703 static int x86_pmu_event_init(struct perf_event *event)
1704 {
1705 	struct pmu *tmp;
1706 	int err;
1707 
1708 	switch (event->attr.type) {
1709 	case PERF_TYPE_RAW:
1710 	case PERF_TYPE_HARDWARE:
1711 	case PERF_TYPE_HW_CACHE:
1712 		break;
1713 
1714 	default:
1715 		return -ENOENT;
1716 	}
1717 
1718 	err = __x86_pmu_event_init(event);
1719 	if (!err) {
1720 		/*
1721 		 * we temporarily connect event to its pmu
1722 		 * such that validate_group() can classify
1723 		 * it as an x86 event using is_x86_event()
1724 		 */
1725 		tmp = event->pmu;
1726 		event->pmu = &pmu;
1727 
1728 		if (event->group_leader != event)
1729 			err = validate_group(event);
1730 		else
1731 			err = validate_event(event);
1732 
1733 		event->pmu = tmp;
1734 	}
1735 	if (err) {
1736 		if (event->destroy)
1737 			event->destroy(event);
1738 	}
1739 
1740 	return err;
1741 }
1742 
x86_pmu_event_idx(struct perf_event * event)1743 static int x86_pmu_event_idx(struct perf_event *event)
1744 {
1745 	int idx = event->hw.idx;
1746 
1747 	if (!x86_pmu.attr_rdpmc)
1748 		return 0;
1749 
1750 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1751 		idx -= INTEL_PMC_IDX_FIXED;
1752 		idx |= 1 << 30;
1753 	}
1754 
1755 	return idx + 1;
1756 }
1757 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)1758 static ssize_t get_attr_rdpmc(struct device *cdev,
1759 			      struct device_attribute *attr,
1760 			      char *buf)
1761 {
1762 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1763 }
1764 
change_rdpmc(void * info)1765 static void change_rdpmc(void *info)
1766 {
1767 	bool enable = !!(unsigned long)info;
1768 
1769 	if (enable)
1770 		set_in_cr4(X86_CR4_PCE);
1771 	else
1772 		clear_in_cr4(X86_CR4_PCE);
1773 }
1774 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)1775 static ssize_t set_attr_rdpmc(struct device *cdev,
1776 			      struct device_attribute *attr,
1777 			      const char *buf, size_t count)
1778 {
1779 	unsigned long val;
1780 	ssize_t ret;
1781 
1782 	ret = kstrtoul(buf, 0, &val);
1783 	if (ret)
1784 		return ret;
1785 
1786 	if (!!val != !!x86_pmu.attr_rdpmc) {
1787 		x86_pmu.attr_rdpmc = !!val;
1788 		smp_call_function(change_rdpmc, (void *)val, 1);
1789 	}
1790 
1791 	return count;
1792 }
1793 
1794 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1795 
1796 static struct attribute *x86_pmu_attrs[] = {
1797 	&dev_attr_rdpmc.attr,
1798 	NULL,
1799 };
1800 
1801 static struct attribute_group x86_pmu_attr_group = {
1802 	.attrs = x86_pmu_attrs,
1803 };
1804 
1805 static const struct attribute_group *x86_pmu_attr_groups[] = {
1806 	&x86_pmu_attr_group,
1807 	&x86_pmu_format_group,
1808 	&x86_pmu_events_group,
1809 	NULL,
1810 };
1811 
x86_pmu_flush_branch_stack(void)1812 static void x86_pmu_flush_branch_stack(void)
1813 {
1814 	if (x86_pmu.flush_branch_stack)
1815 		x86_pmu.flush_branch_stack();
1816 }
1817 
perf_check_microcode(void)1818 void perf_check_microcode(void)
1819 {
1820 	if (x86_pmu.check_microcode)
1821 		x86_pmu.check_microcode();
1822 }
1823 EXPORT_SYMBOL_GPL(perf_check_microcode);
1824 
1825 static struct pmu pmu = {
1826 	.pmu_enable		= x86_pmu_enable,
1827 	.pmu_disable		= x86_pmu_disable,
1828 
1829 	.attr_groups		= x86_pmu_attr_groups,
1830 
1831 	.event_init		= x86_pmu_event_init,
1832 
1833 	.add			= x86_pmu_add,
1834 	.del			= x86_pmu_del,
1835 	.start			= x86_pmu_start,
1836 	.stop			= x86_pmu_stop,
1837 	.read			= x86_pmu_read,
1838 
1839 	.start_txn		= x86_pmu_start_txn,
1840 	.cancel_txn		= x86_pmu_cancel_txn,
1841 	.commit_txn		= x86_pmu_commit_txn,
1842 
1843 	.event_idx		= x86_pmu_event_idx,
1844 	.flush_branch_stack	= x86_pmu_flush_branch_stack,
1845 };
1846 
arch_perf_update_userpage(struct perf_event_mmap_page * userpg,u64 now)1847 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1848 {
1849 	userpg->cap_usr_time = 0;
1850 	userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1851 	userpg->pmc_width = x86_pmu.cntval_bits;
1852 
1853 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1854 		return;
1855 
1856 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1857 		return;
1858 
1859 	userpg->cap_usr_time = 1;
1860 	userpg->time_mult = this_cpu_read(cyc2ns);
1861 	userpg->time_shift = CYC2NS_SCALE_FACTOR;
1862 	userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1863 }
1864 
1865 /*
1866  * callchain support
1867  */
1868 
backtrace_stack(void * data,char * name)1869 static int backtrace_stack(void *data, char *name)
1870 {
1871 	return 0;
1872 }
1873 
backtrace_address(void * data,unsigned long addr,int reliable)1874 static void backtrace_address(void *data, unsigned long addr, int reliable)
1875 {
1876 	struct perf_callchain_entry *entry = data;
1877 
1878 	perf_callchain_store(entry, addr);
1879 }
1880 
1881 static const struct stacktrace_ops backtrace_ops = {
1882 	.stack			= backtrace_stack,
1883 	.address		= backtrace_address,
1884 	.walk_stack		= print_context_stack_bp,
1885 };
1886 
1887 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1888 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1889 {
1890 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1891 		/* TODO: We don't support guest os callchain now */
1892 		return;
1893 	}
1894 
1895 	perf_callchain_store(entry, regs->ip);
1896 
1897 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1898 }
1899 
1900 static inline int
valid_user_frame(const void __user * fp,unsigned long size)1901 valid_user_frame(const void __user *fp, unsigned long size)
1902 {
1903 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1904 }
1905 
get_segment_base(unsigned int segment)1906 static unsigned long get_segment_base(unsigned int segment)
1907 {
1908 	struct desc_struct *desc;
1909 	int idx = segment >> 3;
1910 
1911 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1912 		if (idx > LDT_ENTRIES)
1913 			return 0;
1914 
1915 		if (idx > current->active_mm->context.size)
1916 			return 0;
1917 
1918 		desc = current->active_mm->context.ldt;
1919 	} else {
1920 		if (idx > GDT_ENTRIES)
1921 			return 0;
1922 
1923 		desc = __this_cpu_ptr(&gdt_page.gdt[0]);
1924 	}
1925 
1926 	return get_desc_base(desc + idx);
1927 }
1928 
1929 #ifdef CONFIG_COMPAT
1930 
1931 #include <asm/compat.h>
1932 
1933 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1934 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1935 {
1936 	/* 32-bit process in 64-bit kernel. */
1937 	unsigned long ss_base, cs_base;
1938 	struct stack_frame_ia32 frame;
1939 	const void __user *fp;
1940 
1941 	if (!test_thread_flag(TIF_IA32))
1942 		return 0;
1943 
1944 	cs_base = get_segment_base(regs->cs);
1945 	ss_base = get_segment_base(regs->ss);
1946 
1947 	fp = compat_ptr(ss_base + regs->bp);
1948 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
1949 		unsigned long bytes;
1950 		frame.next_frame     = 0;
1951 		frame.return_address = 0;
1952 
1953 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1954 		if (bytes != sizeof(frame))
1955 			break;
1956 
1957 		if (!valid_user_frame(fp, sizeof(frame)))
1958 			break;
1959 
1960 		perf_callchain_store(entry, cs_base + frame.return_address);
1961 		fp = compat_ptr(ss_base + frame.next_frame);
1962 	}
1963 	return 1;
1964 }
1965 #else
1966 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1967 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1968 {
1969     return 0;
1970 }
1971 #endif
1972 
1973 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)1974 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1975 {
1976 	struct stack_frame frame;
1977 	const void __user *fp;
1978 
1979 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1980 		/* TODO: We don't support guest os callchain now */
1981 		return;
1982 	}
1983 
1984 	/*
1985 	 * We don't know what to do with VM86 stacks.. ignore them for now.
1986 	 */
1987 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
1988 		return;
1989 
1990 	fp = (void __user *)regs->bp;
1991 
1992 	perf_callchain_store(entry, regs->ip);
1993 
1994 	if (!current->mm)
1995 		return;
1996 
1997 	if (perf_callchain_user32(regs, entry))
1998 		return;
1999 
2000 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2001 		unsigned long bytes;
2002 		frame.next_frame	     = NULL;
2003 		frame.return_address = 0;
2004 
2005 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2006 		if (bytes != sizeof(frame))
2007 			break;
2008 
2009 		if (!valid_user_frame(fp, sizeof(frame)))
2010 			break;
2011 
2012 		perf_callchain_store(entry, frame.return_address);
2013 		fp = frame.next_frame;
2014 	}
2015 }
2016 
2017 /*
2018  * Deal with code segment offsets for the various execution modes:
2019  *
2020  *   VM86 - the good olde 16 bit days, where the linear address is
2021  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2022  *
2023  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2024  *          to figure out what the 32bit base address is.
2025  *
2026  *    X32 - has TIF_X32 set, but is running in x86_64
2027  *
2028  * X86_64 - CS,DS,SS,ES are all zero based.
2029  */
code_segment_base(struct pt_regs * regs)2030 static unsigned long code_segment_base(struct pt_regs *regs)
2031 {
2032 	/*
2033 	 * If we are in VM86 mode, add the segment offset to convert to a
2034 	 * linear address.
2035 	 */
2036 	if (regs->flags & X86_VM_MASK)
2037 		return 0x10 * regs->cs;
2038 
2039 	/*
2040 	 * For IA32 we look at the GDT/LDT segment base to convert the
2041 	 * effective IP to a linear address.
2042 	 */
2043 #ifdef CONFIG_X86_32
2044 	if (user_mode(regs) && regs->cs != __USER_CS)
2045 		return get_segment_base(regs->cs);
2046 #else
2047 	if (test_thread_flag(TIF_IA32)) {
2048 		if (user_mode(regs) && regs->cs != __USER32_CS)
2049 			return get_segment_base(regs->cs);
2050 	}
2051 #endif
2052 	return 0;
2053 }
2054 
perf_instruction_pointer(struct pt_regs * regs)2055 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2056 {
2057 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2058 		return perf_guest_cbs->get_guest_ip();
2059 
2060 	return regs->ip + code_segment_base(regs);
2061 }
2062 
perf_misc_flags(struct pt_regs * regs)2063 unsigned long perf_misc_flags(struct pt_regs *regs)
2064 {
2065 	int misc = 0;
2066 
2067 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2068 		if (perf_guest_cbs->is_user_mode())
2069 			misc |= PERF_RECORD_MISC_GUEST_USER;
2070 		else
2071 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2072 	} else {
2073 		if (user_mode(regs))
2074 			misc |= PERF_RECORD_MISC_USER;
2075 		else
2076 			misc |= PERF_RECORD_MISC_KERNEL;
2077 	}
2078 
2079 	if (regs->flags & PERF_EFLAGS_EXACT)
2080 		misc |= PERF_RECORD_MISC_EXACT_IP;
2081 
2082 	return misc;
2083 }
2084 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2085 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2086 {
2087 	cap->version		= x86_pmu.version;
2088 	cap->num_counters_gp	= x86_pmu.num_counters;
2089 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2090 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2091 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2092 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2093 	cap->events_mask_len	= x86_pmu.events_mask_len;
2094 }
2095 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2096