1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
48
49
50 #ifdef HAVE_PERCPU_SB
51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 int);
53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57
58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
60 #endif
61
62 static const struct {
63 short offset;
64 short type; /* 0 = integer
65 * 1 = binary / string (no translation)
66 */
67 } xfs_sb_info[] = {
68 { offsetof(xfs_sb_t, sb_magicnum), 0 },
69 { offsetof(xfs_sb_t, sb_blocksize), 0 },
70 { offsetof(xfs_sb_t, sb_dblocks), 0 },
71 { offsetof(xfs_sb_t, sb_rblocks), 0 },
72 { offsetof(xfs_sb_t, sb_rextents), 0 },
73 { offsetof(xfs_sb_t, sb_uuid), 1 },
74 { offsetof(xfs_sb_t, sb_logstart), 0 },
75 { offsetof(xfs_sb_t, sb_rootino), 0 },
76 { offsetof(xfs_sb_t, sb_rbmino), 0 },
77 { offsetof(xfs_sb_t, sb_rsumino), 0 },
78 { offsetof(xfs_sb_t, sb_rextsize), 0 },
79 { offsetof(xfs_sb_t, sb_agblocks), 0 },
80 { offsetof(xfs_sb_t, sb_agcount), 0 },
81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
82 { offsetof(xfs_sb_t, sb_logblocks), 0 },
83 { offsetof(xfs_sb_t, sb_versionnum), 0 },
84 { offsetof(xfs_sb_t, sb_sectsize), 0 },
85 { offsetof(xfs_sb_t, sb_inodesize), 0 },
86 { offsetof(xfs_sb_t, sb_inopblock), 0 },
87 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
88 { offsetof(xfs_sb_t, sb_blocklog), 0 },
89 { offsetof(xfs_sb_t, sb_sectlog), 0 },
90 { offsetof(xfs_sb_t, sb_inodelog), 0 },
91 { offsetof(xfs_sb_t, sb_inopblog), 0 },
92 { offsetof(xfs_sb_t, sb_agblklog), 0 },
93 { offsetof(xfs_sb_t, sb_rextslog), 0 },
94 { offsetof(xfs_sb_t, sb_inprogress), 0 },
95 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
96 { offsetof(xfs_sb_t, sb_icount), 0 },
97 { offsetof(xfs_sb_t, sb_ifree), 0 },
98 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
99 { offsetof(xfs_sb_t, sb_frextents), 0 },
100 { offsetof(xfs_sb_t, sb_uquotino), 0 },
101 { offsetof(xfs_sb_t, sb_gquotino), 0 },
102 { offsetof(xfs_sb_t, sb_qflags), 0 },
103 { offsetof(xfs_sb_t, sb_flags), 0 },
104 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106 { offsetof(xfs_sb_t, sb_unit), 0 },
107 { offsetof(xfs_sb_t, sb_width), 0 },
108 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
109 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110 { offsetof(xfs_sb_t, sb_logsectsize),0 },
111 { offsetof(xfs_sb_t, sb_logsunit), 0 },
112 { offsetof(xfs_sb_t, sb_features2), 0 },
113 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114 { offsetof(xfs_sb_t, sb_features_compat), 0 },
115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116 { offsetof(xfs_sb_t, sb_features_incompat), 0 },
117 { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
118 { offsetof(xfs_sb_t, sb_crc), 0 },
119 { offsetof(xfs_sb_t, sb_pad), 0 },
120 { offsetof(xfs_sb_t, sb_pquotino), 0 },
121 { offsetof(xfs_sb_t, sb_lsn), 0 },
122 { sizeof(xfs_sb_t), 0 }
123 };
124
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128
129 /*
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132 */
133 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)134 xfs_uuid_mount(
135 struct xfs_mount *mp)
136 {
137 uuid_t *uuid = &mp->m_sb.sb_uuid;
138 int hole, i;
139
140 if (mp->m_flags & XFS_MOUNT_NOUUID)
141 return 0;
142
143 if (uuid_is_nil(uuid)) {
144 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
145 return XFS_ERROR(EINVAL);
146 }
147
148 mutex_lock(&xfs_uuid_table_mutex);
149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 if (uuid_is_nil(&xfs_uuid_table[i])) {
151 hole = i;
152 continue;
153 }
154 if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 goto out_duplicate;
156 }
157
158 if (hole < 0) {
159 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
162 KM_SLEEP);
163 hole = xfs_uuid_table_size++;
164 }
165 xfs_uuid_table[hole] = *uuid;
166 mutex_unlock(&xfs_uuid_table_mutex);
167
168 return 0;
169
170 out_duplicate:
171 mutex_unlock(&xfs_uuid_table_mutex);
172 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
173 return XFS_ERROR(EINVAL);
174 }
175
176 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)177 xfs_uuid_unmount(
178 struct xfs_mount *mp)
179 {
180 uuid_t *uuid = &mp->m_sb.sb_uuid;
181 int i;
182
183 if (mp->m_flags & XFS_MOUNT_NOUUID)
184 return;
185
186 mutex_lock(&xfs_uuid_table_mutex);
187 for (i = 0; i < xfs_uuid_table_size; i++) {
188 if (uuid_is_nil(&xfs_uuid_table[i]))
189 continue;
190 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 continue;
192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 break;
194 }
195 ASSERT(i < xfs_uuid_table_size);
196 mutex_unlock(&xfs_uuid_table_mutex);
197 }
198
199
200 /*
201 * Reference counting access wrappers to the perag structures.
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
204 */
205 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
207 {
208 struct xfs_perag *pag;
209 int ref = 0;
210
211 rcu_read_lock();
212 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 if (pag) {
214 ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 ref = atomic_inc_return(&pag->pag_ref);
216 }
217 rcu_read_unlock();
218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 return pag;
220 }
221
222 /*
223 * search from @first to find the next perag with the given tag set.
224 */
225 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)226 xfs_perag_get_tag(
227 struct xfs_mount *mp,
228 xfs_agnumber_t first,
229 int tag)
230 {
231 struct xfs_perag *pag;
232 int found;
233 int ref;
234
235 rcu_read_lock();
236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 (void **)&pag, first, 1, tag);
238 if (found <= 0) {
239 rcu_read_unlock();
240 return NULL;
241 }
242 ref = atomic_inc_return(&pag->pag_ref);
243 rcu_read_unlock();
244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 return pag;
246 }
247
248 void
xfs_perag_put(struct xfs_perag * pag)249 xfs_perag_put(struct xfs_perag *pag)
250 {
251 int ref;
252
253 ASSERT(atomic_read(&pag->pag_ref) > 0);
254 ref = atomic_dec_return(&pag->pag_ref);
255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
256 }
257
258 STATIC void
__xfs_free_perag(struct rcu_head * head)259 __xfs_free_perag(
260 struct rcu_head *head)
261 {
262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
263
264 ASSERT(atomic_read(&pag->pag_ref) == 0);
265 kmem_free(pag);
266 }
267
268 /*
269 * Free up the per-ag resources associated with the mount structure.
270 */
271 STATIC void
xfs_free_perag(xfs_mount_t * mp)272 xfs_free_perag(
273 xfs_mount_t *mp)
274 {
275 xfs_agnumber_t agno;
276 struct xfs_perag *pag;
277
278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 spin_lock(&mp->m_perag_lock);
280 pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 spin_unlock(&mp->m_perag_lock);
282 ASSERT(pag);
283 ASSERT(atomic_read(&pag->pag_ref) == 0);
284 call_rcu(&pag->rcu_head, __xfs_free_perag);
285 }
286 }
287
288 /*
289 * Check size of device based on the (data/realtime) block count.
290 * Note: this check is used by the growfs code as well as mount.
291 */
292 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)293 xfs_sb_validate_fsb_count(
294 xfs_sb_t *sbp,
295 __uint64_t nblocks)
296 {
297 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
298 ASSERT(sbp->sb_blocklog >= BBSHIFT);
299
300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
301 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
302 return EFBIG;
303 #else /* Limited by UINT_MAX of sectors */
304 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
305 return EFBIG;
306 #endif
307 return 0;
308 }
309
310 /*
311 * Check the validity of the SB found.
312 */
313 STATIC int
xfs_mount_validate_sb(xfs_mount_t * mp,xfs_sb_t * sbp,bool check_inprogress,bool check_version)314 xfs_mount_validate_sb(
315 xfs_mount_t *mp,
316 xfs_sb_t *sbp,
317 bool check_inprogress,
318 bool check_version)
319 {
320
321 /*
322 * If the log device and data device have the
323 * same device number, the log is internal.
324 * Consequently, the sb_logstart should be non-zero. If
325 * we have a zero sb_logstart in this case, we may be trying to mount
326 * a volume filesystem in a non-volume manner.
327 */
328 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
329 xfs_warn(mp, "bad magic number");
330 return XFS_ERROR(EWRONGFS);
331 }
332
333
334 if (!xfs_sb_good_version(sbp)) {
335 xfs_warn(mp, "bad version");
336 return XFS_ERROR(EWRONGFS);
337 }
338
339 /*
340 * Version 5 superblock feature mask validation. Reject combinations the
341 * kernel cannot support up front before checking anything else. For
342 * write validation, we don't need to check feature masks.
343 */
344 if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
345 xfs_alert(mp,
346 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
347 "Use of these features in this kernel is at your own risk!");
348
349 if (xfs_sb_has_compat_feature(sbp,
350 XFS_SB_FEAT_COMPAT_UNKNOWN)) {
351 xfs_warn(mp,
352 "Superblock has unknown compatible features (0x%x) enabled.\n"
353 "Using a more recent kernel is recommended.",
354 (sbp->sb_features_compat &
355 XFS_SB_FEAT_COMPAT_UNKNOWN));
356 }
357
358 if (xfs_sb_has_ro_compat_feature(sbp,
359 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
360 xfs_alert(mp,
361 "Superblock has unknown read-only compatible features (0x%x) enabled.",
362 (sbp->sb_features_ro_compat &
363 XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
364 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
365 xfs_warn(mp,
366 "Attempted to mount read-only compatible filesystem read-write.\n"
367 "Filesystem can only be safely mounted read only.");
368 return XFS_ERROR(EINVAL);
369 }
370 }
371 if (xfs_sb_has_incompat_feature(sbp,
372 XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
373 xfs_warn(mp,
374 "Superblock has unknown incompatible features (0x%x) enabled.\n"
375 "Filesystem can not be safely mounted by this kernel.",
376 (sbp->sb_features_incompat &
377 XFS_SB_FEAT_INCOMPAT_UNKNOWN));
378 return XFS_ERROR(EINVAL);
379 }
380 }
381
382 if (unlikely(
383 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
384 xfs_warn(mp,
385 "filesystem is marked as having an external log; "
386 "specify logdev on the mount command line.");
387 return XFS_ERROR(EINVAL);
388 }
389
390 if (unlikely(
391 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
392 xfs_warn(mp,
393 "filesystem is marked as having an internal log; "
394 "do not specify logdev on the mount command line.");
395 return XFS_ERROR(EINVAL);
396 }
397
398 /*
399 * More sanity checking. Most of these were stolen directly from
400 * xfs_repair.
401 */
402 if (unlikely(
403 sbp->sb_agcount <= 0 ||
404 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
405 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
406 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
407 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
408 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
409 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
410 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
411 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
412 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
413 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
414 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
415 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
416 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
417 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
418 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
419 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
420 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
421 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
422 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
423 sbp->sb_dblocks == 0 ||
424 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
425 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
426 XFS_CORRUPTION_ERROR("SB sanity check failed",
427 XFS_ERRLEVEL_LOW, mp, sbp);
428 return XFS_ERROR(EFSCORRUPTED);
429 }
430
431 /*
432 * Until this is fixed only page-sized or smaller data blocks work.
433 */
434 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
435 xfs_warn(mp,
436 "File system with blocksize %d bytes. "
437 "Only pagesize (%ld) or less will currently work.",
438 sbp->sb_blocksize, PAGE_SIZE);
439 return XFS_ERROR(ENOSYS);
440 }
441
442 /*
443 * Currently only very few inode sizes are supported.
444 */
445 switch (sbp->sb_inodesize) {
446 case 256:
447 case 512:
448 case 1024:
449 case 2048:
450 break;
451 default:
452 xfs_warn(mp, "inode size of %d bytes not supported",
453 sbp->sb_inodesize);
454 return XFS_ERROR(ENOSYS);
455 }
456
457 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
458 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
459 xfs_warn(mp,
460 "file system too large to be mounted on this system.");
461 return XFS_ERROR(EFBIG);
462 }
463
464 if (check_inprogress && sbp->sb_inprogress) {
465 xfs_warn(mp, "Offline file system operation in progress!");
466 return XFS_ERROR(EFSCORRUPTED);
467 }
468
469 /*
470 * Version 1 directory format has never worked on Linux.
471 */
472 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
473 xfs_warn(mp, "file system using version 1 directory format");
474 return XFS_ERROR(ENOSYS);
475 }
476
477 return 0;
478 }
479
480 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)481 xfs_initialize_perag(
482 xfs_mount_t *mp,
483 xfs_agnumber_t agcount,
484 xfs_agnumber_t *maxagi)
485 {
486 xfs_agnumber_t index;
487 xfs_agnumber_t first_initialised = 0;
488 xfs_perag_t *pag;
489 xfs_agino_t agino;
490 xfs_ino_t ino;
491 xfs_sb_t *sbp = &mp->m_sb;
492 int error = -ENOMEM;
493
494 /*
495 * Walk the current per-ag tree so we don't try to initialise AGs
496 * that already exist (growfs case). Allocate and insert all the
497 * AGs we don't find ready for initialisation.
498 */
499 for (index = 0; index < agcount; index++) {
500 pag = xfs_perag_get(mp, index);
501 if (pag) {
502 xfs_perag_put(pag);
503 continue;
504 }
505 if (!first_initialised)
506 first_initialised = index;
507
508 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
509 if (!pag)
510 goto out_unwind;
511 pag->pag_agno = index;
512 pag->pag_mount = mp;
513 spin_lock_init(&pag->pag_ici_lock);
514 mutex_init(&pag->pag_ici_reclaim_lock);
515 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
516 spin_lock_init(&pag->pag_buf_lock);
517 pag->pag_buf_tree = RB_ROOT;
518
519 if (radix_tree_preload(GFP_NOFS))
520 goto out_unwind;
521
522 spin_lock(&mp->m_perag_lock);
523 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
524 BUG();
525 spin_unlock(&mp->m_perag_lock);
526 radix_tree_preload_end();
527 error = -EEXIST;
528 goto out_unwind;
529 }
530 spin_unlock(&mp->m_perag_lock);
531 radix_tree_preload_end();
532 }
533
534 /*
535 * If we mount with the inode64 option, or no inode overflows
536 * the legacy 32-bit address space clear the inode32 option.
537 */
538 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
539 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
540
541 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
542 mp->m_flags |= XFS_MOUNT_32BITINODES;
543 else
544 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
545
546 if (mp->m_flags & XFS_MOUNT_32BITINODES)
547 index = xfs_set_inode32(mp);
548 else
549 index = xfs_set_inode64(mp);
550
551 if (maxagi)
552 *maxagi = index;
553 return 0;
554
555 out_unwind:
556 kmem_free(pag);
557 for (; index > first_initialised; index--) {
558 pag = radix_tree_delete(&mp->m_perag_tree, index);
559 kmem_free(pag);
560 }
561 return error;
562 }
563
564 void
xfs_sb_from_disk(struct xfs_sb * to,xfs_dsb_t * from)565 xfs_sb_from_disk(
566 struct xfs_sb *to,
567 xfs_dsb_t *from)
568 {
569 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
570 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
571 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
572 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
573 to->sb_rextents = be64_to_cpu(from->sb_rextents);
574 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
575 to->sb_logstart = be64_to_cpu(from->sb_logstart);
576 to->sb_rootino = be64_to_cpu(from->sb_rootino);
577 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
578 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
579 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
580 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
581 to->sb_agcount = be32_to_cpu(from->sb_agcount);
582 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
583 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
584 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
585 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
586 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
587 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
588 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
589 to->sb_blocklog = from->sb_blocklog;
590 to->sb_sectlog = from->sb_sectlog;
591 to->sb_inodelog = from->sb_inodelog;
592 to->sb_inopblog = from->sb_inopblog;
593 to->sb_agblklog = from->sb_agblklog;
594 to->sb_rextslog = from->sb_rextslog;
595 to->sb_inprogress = from->sb_inprogress;
596 to->sb_imax_pct = from->sb_imax_pct;
597 to->sb_icount = be64_to_cpu(from->sb_icount);
598 to->sb_ifree = be64_to_cpu(from->sb_ifree);
599 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
600 to->sb_frextents = be64_to_cpu(from->sb_frextents);
601 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
602 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
603 to->sb_qflags = be16_to_cpu(from->sb_qflags);
604 to->sb_flags = from->sb_flags;
605 to->sb_shared_vn = from->sb_shared_vn;
606 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
607 to->sb_unit = be32_to_cpu(from->sb_unit);
608 to->sb_width = be32_to_cpu(from->sb_width);
609 to->sb_dirblklog = from->sb_dirblklog;
610 to->sb_logsectlog = from->sb_logsectlog;
611 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
612 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
613 to->sb_features2 = be32_to_cpu(from->sb_features2);
614 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
615 to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
616 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
617 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
618 to->sb_features_log_incompat =
619 be32_to_cpu(from->sb_features_log_incompat);
620 to->sb_pad = 0;
621 to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
622 to->sb_lsn = be64_to_cpu(from->sb_lsn);
623 }
624
625 /*
626 * Copy in core superblock to ondisk one.
627 *
628 * The fields argument is mask of superblock fields to copy.
629 */
630 void
xfs_sb_to_disk(xfs_dsb_t * to,xfs_sb_t * from,__int64_t fields)631 xfs_sb_to_disk(
632 xfs_dsb_t *to,
633 xfs_sb_t *from,
634 __int64_t fields)
635 {
636 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
637 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
638 xfs_sb_field_t f;
639 int first;
640 int size;
641
642 ASSERT(fields);
643 if (!fields)
644 return;
645
646 while (fields) {
647 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
648 first = xfs_sb_info[f].offset;
649 size = xfs_sb_info[f + 1].offset - first;
650
651 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
652
653 if (size == 1 || xfs_sb_info[f].type == 1) {
654 memcpy(to_ptr + first, from_ptr + first, size);
655 } else {
656 switch (size) {
657 case 2:
658 *(__be16 *)(to_ptr + first) =
659 cpu_to_be16(*(__u16 *)(from_ptr + first));
660 break;
661 case 4:
662 *(__be32 *)(to_ptr + first) =
663 cpu_to_be32(*(__u32 *)(from_ptr + first));
664 break;
665 case 8:
666 *(__be64 *)(to_ptr + first) =
667 cpu_to_be64(*(__u64 *)(from_ptr + first));
668 break;
669 default:
670 ASSERT(0);
671 }
672 }
673
674 fields &= ~(1LL << f);
675 }
676 }
677
678 static int
xfs_sb_verify(struct xfs_buf * bp,bool check_version)679 xfs_sb_verify(
680 struct xfs_buf *bp,
681 bool check_version)
682 {
683 struct xfs_mount *mp = bp->b_target->bt_mount;
684 struct xfs_sb sb;
685
686 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
687
688 /*
689 * Only check the in progress field for the primary superblock as
690 * mkfs.xfs doesn't clear it from secondary superblocks.
691 */
692 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR,
693 check_version);
694 }
695
696 /*
697 * If the superblock has the CRC feature bit set or the CRC field is non-null,
698 * check that the CRC is valid. We check the CRC field is non-null because a
699 * single bit error could clear the feature bit and unused parts of the
700 * superblock are supposed to be zero. Hence a non-null crc field indicates that
701 * we've potentially lost a feature bit and we should check it anyway.
702 */
703 static void
xfs_sb_read_verify(struct xfs_buf * bp)704 xfs_sb_read_verify(
705 struct xfs_buf *bp)
706 {
707 struct xfs_mount *mp = bp->b_target->bt_mount;
708 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
709 int error;
710
711 /*
712 * open code the version check to avoid needing to convert the entire
713 * superblock from disk order just to check the version number
714 */
715 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
716 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
717 XFS_SB_VERSION_5) ||
718 dsb->sb_crc != 0)) {
719
720 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
721 offsetof(struct xfs_sb, sb_crc))) {
722 error = EFSCORRUPTED;
723 goto out_error;
724 }
725 }
726 error = xfs_sb_verify(bp, true);
727
728 out_error:
729 if (error) {
730 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
731 xfs_buf_ioerror(bp, error);
732 }
733 }
734
735 /*
736 * We may be probed for a filesystem match, so we may not want to emit
737 * messages when the superblock buffer is not actually an XFS superblock.
738 * If we find an XFS superblock, the run a normal, noisy mount because we are
739 * really going to mount it and want to know about errors.
740 */
741 static void
xfs_sb_quiet_read_verify(struct xfs_buf * bp)742 xfs_sb_quiet_read_verify(
743 struct xfs_buf *bp)
744 {
745 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
746
747
748 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
749 /* XFS filesystem, verify noisily! */
750 xfs_sb_read_verify(bp);
751 return;
752 }
753 /* quietly fail */
754 xfs_buf_ioerror(bp, EWRONGFS);
755 }
756
757 static void
xfs_sb_write_verify(struct xfs_buf * bp)758 xfs_sb_write_verify(
759 struct xfs_buf *bp)
760 {
761 struct xfs_mount *mp = bp->b_target->bt_mount;
762 struct xfs_buf_log_item *bip = bp->b_fspriv;
763 int error;
764
765 error = xfs_sb_verify(bp, false);
766 if (error) {
767 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
768 xfs_buf_ioerror(bp, error);
769 return;
770 }
771
772 if (!xfs_sb_version_hascrc(&mp->m_sb))
773 return;
774
775 if (bip)
776 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
777
778 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
779 offsetof(struct xfs_sb, sb_crc));
780 }
781
782 const struct xfs_buf_ops xfs_sb_buf_ops = {
783 .verify_read = xfs_sb_read_verify,
784 .verify_write = xfs_sb_write_verify,
785 };
786
787 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
788 .verify_read = xfs_sb_quiet_read_verify,
789 .verify_write = xfs_sb_write_verify,
790 };
791
792 /*
793 * xfs_readsb
794 *
795 * Does the initial read of the superblock.
796 */
797 int
xfs_readsb(xfs_mount_t * mp,int flags)798 xfs_readsb(xfs_mount_t *mp, int flags)
799 {
800 unsigned int sector_size;
801 struct xfs_buf *bp;
802 struct xfs_sb *sbp = &mp->m_sb;
803 int error;
804 int loud = !(flags & XFS_MFSI_QUIET);
805
806 ASSERT(mp->m_sb_bp == NULL);
807 ASSERT(mp->m_ddev_targp != NULL);
808
809 /*
810 * Allocate a (locked) buffer to hold the superblock.
811 * This will be kept around at all times to optimize
812 * access to the superblock.
813 */
814 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
815
816 reread:
817 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
818 BTOBB(sector_size), 0,
819 loud ? &xfs_sb_buf_ops
820 : &xfs_sb_quiet_buf_ops);
821 if (!bp) {
822 if (loud)
823 xfs_warn(mp, "SB buffer read failed");
824 return EIO;
825 }
826 if (bp->b_error) {
827 error = bp->b_error;
828 if (loud)
829 xfs_warn(mp, "SB validate failed with error %d.", error);
830 goto release_buf;
831 }
832
833 /*
834 * Initialize the mount structure from the superblock.
835 */
836 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
837
838 /*
839 * We must be able to do sector-sized and sector-aligned IO.
840 */
841 if (sector_size > sbp->sb_sectsize) {
842 if (loud)
843 xfs_warn(mp, "device supports %u byte sectors (not %u)",
844 sector_size, sbp->sb_sectsize);
845 error = ENOSYS;
846 goto release_buf;
847 }
848
849 /*
850 * If device sector size is smaller than the superblock size,
851 * re-read the superblock so the buffer is correctly sized.
852 */
853 if (sector_size < sbp->sb_sectsize) {
854 xfs_buf_relse(bp);
855 sector_size = sbp->sb_sectsize;
856 goto reread;
857 }
858
859 /* Initialize per-cpu counters */
860 xfs_icsb_reinit_counters(mp);
861
862 /* no need to be quiet anymore, so reset the buf ops */
863 bp->b_ops = &xfs_sb_buf_ops;
864
865 mp->m_sb_bp = bp;
866 xfs_buf_unlock(bp);
867 return 0;
868
869 release_buf:
870 xfs_buf_relse(bp);
871 return error;
872 }
873
874
875 /*
876 * xfs_mount_common
877 *
878 * Mount initialization code establishing various mount
879 * fields from the superblock associated with the given
880 * mount structure
881 */
882 STATIC void
xfs_mount_common(xfs_mount_t * mp,xfs_sb_t * sbp)883 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
884 {
885 mp->m_agfrotor = mp->m_agirotor = 0;
886 spin_lock_init(&mp->m_agirotor_lock);
887 mp->m_maxagi = mp->m_sb.sb_agcount;
888 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
889 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
890 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
891 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
892 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
893 mp->m_blockmask = sbp->sb_blocksize - 1;
894 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
895 mp->m_blockwmask = mp->m_blockwsize - 1;
896
897 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
898 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
899 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
900 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
901
902 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
903 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
904 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
905 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
906
907 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
908 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
909 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
910 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
911
912 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
913 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
914 sbp->sb_inopblock);
915 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
916 }
917
918 /*
919 * xfs_initialize_perag_data
920 *
921 * Read in each per-ag structure so we can count up the number of
922 * allocated inodes, free inodes and used filesystem blocks as this
923 * information is no longer persistent in the superblock. Once we have
924 * this information, write it into the in-core superblock structure.
925 */
926 STATIC int
xfs_initialize_perag_data(xfs_mount_t * mp,xfs_agnumber_t agcount)927 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
928 {
929 xfs_agnumber_t index;
930 xfs_perag_t *pag;
931 xfs_sb_t *sbp = &mp->m_sb;
932 uint64_t ifree = 0;
933 uint64_t ialloc = 0;
934 uint64_t bfree = 0;
935 uint64_t bfreelst = 0;
936 uint64_t btree = 0;
937 int error;
938
939 for (index = 0; index < agcount; index++) {
940 /*
941 * read the agf, then the agi. This gets us
942 * all the information we need and populates the
943 * per-ag structures for us.
944 */
945 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
946 if (error)
947 return error;
948
949 error = xfs_ialloc_pagi_init(mp, NULL, index);
950 if (error)
951 return error;
952 pag = xfs_perag_get(mp, index);
953 ifree += pag->pagi_freecount;
954 ialloc += pag->pagi_count;
955 bfree += pag->pagf_freeblks;
956 bfreelst += pag->pagf_flcount;
957 btree += pag->pagf_btreeblks;
958 xfs_perag_put(pag);
959 }
960 /*
961 * Overwrite incore superblock counters with just-read data
962 */
963 spin_lock(&mp->m_sb_lock);
964 sbp->sb_ifree = ifree;
965 sbp->sb_icount = ialloc;
966 sbp->sb_fdblocks = bfree + bfreelst + btree;
967 spin_unlock(&mp->m_sb_lock);
968
969 /* Fixup the per-cpu counters as well. */
970 xfs_icsb_reinit_counters(mp);
971
972 return 0;
973 }
974
975 /*
976 * Update alignment values based on mount options and sb values
977 */
978 STATIC int
xfs_update_alignment(xfs_mount_t * mp)979 xfs_update_alignment(xfs_mount_t *mp)
980 {
981 xfs_sb_t *sbp = &(mp->m_sb);
982
983 if (mp->m_dalign) {
984 /*
985 * If stripe unit and stripe width are not multiples
986 * of the fs blocksize turn off alignment.
987 */
988 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
989 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
990 if (mp->m_flags & XFS_MOUNT_RETERR) {
991 xfs_warn(mp, "alignment check failed: "
992 "(sunit/swidth vs. blocksize)");
993 return XFS_ERROR(EINVAL);
994 }
995 mp->m_dalign = mp->m_swidth = 0;
996 } else {
997 /*
998 * Convert the stripe unit and width to FSBs.
999 */
1000 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
1001 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
1002 if (mp->m_flags & XFS_MOUNT_RETERR) {
1003 xfs_warn(mp, "alignment check failed: "
1004 "(sunit/swidth vs. ag size)");
1005 return XFS_ERROR(EINVAL);
1006 }
1007 xfs_warn(mp,
1008 "stripe alignment turned off: sunit(%d)/swidth(%d) "
1009 "incompatible with agsize(%d)",
1010 mp->m_dalign, mp->m_swidth,
1011 sbp->sb_agblocks);
1012
1013 mp->m_dalign = 0;
1014 mp->m_swidth = 0;
1015 } else if (mp->m_dalign) {
1016 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1017 } else {
1018 if (mp->m_flags & XFS_MOUNT_RETERR) {
1019 xfs_warn(mp, "alignment check failed: "
1020 "sunit(%d) less than bsize(%d)",
1021 mp->m_dalign,
1022 mp->m_blockmask +1);
1023 return XFS_ERROR(EINVAL);
1024 }
1025 mp->m_swidth = 0;
1026 }
1027 }
1028
1029 /*
1030 * Update superblock with new values
1031 * and log changes
1032 */
1033 if (xfs_sb_version_hasdalign(sbp)) {
1034 if (sbp->sb_unit != mp->m_dalign) {
1035 sbp->sb_unit = mp->m_dalign;
1036 mp->m_update_flags |= XFS_SB_UNIT;
1037 }
1038 if (sbp->sb_width != mp->m_swidth) {
1039 sbp->sb_width = mp->m_swidth;
1040 mp->m_update_flags |= XFS_SB_WIDTH;
1041 }
1042 }
1043 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1044 xfs_sb_version_hasdalign(&mp->m_sb)) {
1045 mp->m_dalign = sbp->sb_unit;
1046 mp->m_swidth = sbp->sb_width;
1047 }
1048
1049 return 0;
1050 }
1051
1052 /*
1053 * Set the maximum inode count for this filesystem
1054 */
1055 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)1056 xfs_set_maxicount(xfs_mount_t *mp)
1057 {
1058 xfs_sb_t *sbp = &(mp->m_sb);
1059 __uint64_t icount;
1060
1061 if (sbp->sb_imax_pct) {
1062 /*
1063 * Make sure the maximum inode count is a multiple
1064 * of the units we allocate inodes in.
1065 */
1066 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1067 do_div(icount, 100);
1068 do_div(icount, mp->m_ialloc_blks);
1069 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
1070 sbp->sb_inopblog;
1071 } else {
1072 mp->m_maxicount = 0;
1073 }
1074 }
1075
1076 /*
1077 * Set the default minimum read and write sizes unless
1078 * already specified in a mount option.
1079 * We use smaller I/O sizes when the file system
1080 * is being used for NFS service (wsync mount option).
1081 */
1082 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)1083 xfs_set_rw_sizes(xfs_mount_t *mp)
1084 {
1085 xfs_sb_t *sbp = &(mp->m_sb);
1086 int readio_log, writeio_log;
1087
1088 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1089 if (mp->m_flags & XFS_MOUNT_WSYNC) {
1090 readio_log = XFS_WSYNC_READIO_LOG;
1091 writeio_log = XFS_WSYNC_WRITEIO_LOG;
1092 } else {
1093 readio_log = XFS_READIO_LOG_LARGE;
1094 writeio_log = XFS_WRITEIO_LOG_LARGE;
1095 }
1096 } else {
1097 readio_log = mp->m_readio_log;
1098 writeio_log = mp->m_writeio_log;
1099 }
1100
1101 if (sbp->sb_blocklog > readio_log) {
1102 mp->m_readio_log = sbp->sb_blocklog;
1103 } else {
1104 mp->m_readio_log = readio_log;
1105 }
1106 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1107 if (sbp->sb_blocklog > writeio_log) {
1108 mp->m_writeio_log = sbp->sb_blocklog;
1109 } else {
1110 mp->m_writeio_log = writeio_log;
1111 }
1112 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1113 }
1114
1115 /*
1116 * precalculate the low space thresholds for dynamic speculative preallocation.
1117 */
1118 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)1119 xfs_set_low_space_thresholds(
1120 struct xfs_mount *mp)
1121 {
1122 int i;
1123
1124 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1125 __uint64_t space = mp->m_sb.sb_dblocks;
1126
1127 do_div(space, 100);
1128 mp->m_low_space[i] = space * (i + 1);
1129 }
1130 }
1131
1132
1133 /*
1134 * Set whether we're using inode alignment.
1135 */
1136 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)1137 xfs_set_inoalignment(xfs_mount_t *mp)
1138 {
1139 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1140 mp->m_sb.sb_inoalignmt >=
1141 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1142 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1143 else
1144 mp->m_inoalign_mask = 0;
1145 /*
1146 * If we are using stripe alignment, check whether
1147 * the stripe unit is a multiple of the inode alignment
1148 */
1149 if (mp->m_dalign && mp->m_inoalign_mask &&
1150 !(mp->m_dalign & mp->m_inoalign_mask))
1151 mp->m_sinoalign = mp->m_dalign;
1152 else
1153 mp->m_sinoalign = 0;
1154 }
1155
1156 /*
1157 * Check that the data (and log if separate) are an ok size.
1158 */
1159 STATIC int
xfs_check_sizes(xfs_mount_t * mp)1160 xfs_check_sizes(xfs_mount_t *mp)
1161 {
1162 xfs_buf_t *bp;
1163 xfs_daddr_t d;
1164
1165 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1166 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1167 xfs_warn(mp, "filesystem size mismatch detected");
1168 return XFS_ERROR(EFBIG);
1169 }
1170 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1171 d - XFS_FSS_TO_BB(mp, 1),
1172 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1173 if (!bp) {
1174 xfs_warn(mp, "last sector read failed");
1175 return EIO;
1176 }
1177 xfs_buf_relse(bp);
1178
1179 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1180 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1181 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1182 xfs_warn(mp, "log size mismatch detected");
1183 return XFS_ERROR(EFBIG);
1184 }
1185 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1186 d - XFS_FSB_TO_BB(mp, 1),
1187 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1188 if (!bp) {
1189 xfs_warn(mp, "log device read failed");
1190 return EIO;
1191 }
1192 xfs_buf_relse(bp);
1193 }
1194 return 0;
1195 }
1196
1197 /*
1198 * Clear the quotaflags in memory and in the superblock.
1199 */
1200 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)1201 xfs_mount_reset_sbqflags(
1202 struct xfs_mount *mp)
1203 {
1204 int error;
1205 struct xfs_trans *tp;
1206
1207 mp->m_qflags = 0;
1208
1209 /*
1210 * It is OK to look at sb_qflags here in mount path,
1211 * without m_sb_lock.
1212 */
1213 if (mp->m_sb.sb_qflags == 0)
1214 return 0;
1215 spin_lock(&mp->m_sb_lock);
1216 mp->m_sb.sb_qflags = 0;
1217 spin_unlock(&mp->m_sb_lock);
1218
1219 /*
1220 * If the fs is readonly, let the incore superblock run
1221 * with quotas off but don't flush the update out to disk
1222 */
1223 if (mp->m_flags & XFS_MOUNT_RDONLY)
1224 return 0;
1225
1226 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1227 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1228 0, 0, XFS_DEFAULT_LOG_COUNT);
1229 if (error) {
1230 xfs_trans_cancel(tp, 0);
1231 xfs_alert(mp, "%s: Superblock update failed!", __func__);
1232 return error;
1233 }
1234
1235 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1236 return xfs_trans_commit(tp, 0);
1237 }
1238
1239 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)1240 xfs_default_resblks(xfs_mount_t *mp)
1241 {
1242 __uint64_t resblks;
1243
1244 /*
1245 * We default to 5% or 8192 fsbs of space reserved, whichever is
1246 * smaller. This is intended to cover concurrent allocation
1247 * transactions when we initially hit enospc. These each require a 4
1248 * block reservation. Hence by default we cover roughly 2000 concurrent
1249 * allocation reservations.
1250 */
1251 resblks = mp->m_sb.sb_dblocks;
1252 do_div(resblks, 20);
1253 resblks = min_t(__uint64_t, resblks, 8192);
1254 return resblks;
1255 }
1256
1257 /*
1258 * This function does the following on an initial mount of a file system:
1259 * - reads the superblock from disk and init the mount struct
1260 * - if we're a 32-bit kernel, do a size check on the superblock
1261 * so we don't mount terabyte filesystems
1262 * - init mount struct realtime fields
1263 * - allocate inode hash table for fs
1264 * - init directory manager
1265 * - perform recovery and init the log manager
1266 */
1267 int
xfs_mountfs(xfs_mount_t * mp)1268 xfs_mountfs(
1269 xfs_mount_t *mp)
1270 {
1271 xfs_sb_t *sbp = &(mp->m_sb);
1272 xfs_inode_t *rip;
1273 __uint64_t resblks;
1274 uint quotamount = 0;
1275 uint quotaflags = 0;
1276 int error = 0;
1277
1278 xfs_mount_common(mp, sbp);
1279
1280 /*
1281 * Check for a mismatched features2 values. Older kernels
1282 * read & wrote into the wrong sb offset for sb_features2
1283 * on some platforms due to xfs_sb_t not being 64bit size aligned
1284 * when sb_features2 was added, which made older superblock
1285 * reading/writing routines swap it as a 64-bit value.
1286 *
1287 * For backwards compatibility, we make both slots equal.
1288 *
1289 * If we detect a mismatched field, we OR the set bits into the
1290 * existing features2 field in case it has already been modified; we
1291 * don't want to lose any features. We then update the bad location
1292 * with the ORed value so that older kernels will see any features2
1293 * flags, and mark the two fields as needing updates once the
1294 * transaction subsystem is online.
1295 */
1296 if (xfs_sb_has_mismatched_features2(sbp)) {
1297 xfs_warn(mp, "correcting sb_features alignment problem");
1298 sbp->sb_features2 |= sbp->sb_bad_features2;
1299 sbp->sb_bad_features2 = sbp->sb_features2;
1300 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1301
1302 /*
1303 * Re-check for ATTR2 in case it was found in bad_features2
1304 * slot.
1305 */
1306 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1307 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1308 mp->m_flags |= XFS_MOUNT_ATTR2;
1309 }
1310
1311 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1312 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1313 xfs_sb_version_removeattr2(&mp->m_sb);
1314 mp->m_update_flags |= XFS_SB_FEATURES2;
1315
1316 /* update sb_versionnum for the clearing of the morebits */
1317 if (!sbp->sb_features2)
1318 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1319 }
1320
1321 /*
1322 * Check if sb_agblocks is aligned at stripe boundary
1323 * If sb_agblocks is NOT aligned turn off m_dalign since
1324 * allocator alignment is within an ag, therefore ag has
1325 * to be aligned at stripe boundary.
1326 */
1327 error = xfs_update_alignment(mp);
1328 if (error)
1329 goto out;
1330
1331 xfs_alloc_compute_maxlevels(mp);
1332 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1333 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1334 xfs_ialloc_compute_maxlevels(mp);
1335
1336 xfs_set_maxicount(mp);
1337
1338 error = xfs_uuid_mount(mp);
1339 if (error)
1340 goto out;
1341
1342 /*
1343 * Set the minimum read and write sizes
1344 */
1345 xfs_set_rw_sizes(mp);
1346
1347 /* set the low space thresholds for dynamic preallocation */
1348 xfs_set_low_space_thresholds(mp);
1349
1350 /*
1351 * Set the inode cluster size.
1352 * This may still be overridden by the file system
1353 * block size if it is larger than the chosen cluster size.
1354 */
1355 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1356
1357 /*
1358 * Set inode alignment fields
1359 */
1360 xfs_set_inoalignment(mp);
1361
1362 /*
1363 * Check that the data (and log if separate) are an ok size.
1364 */
1365 error = xfs_check_sizes(mp);
1366 if (error)
1367 goto out_remove_uuid;
1368
1369 /*
1370 * Initialize realtime fields in the mount structure
1371 */
1372 error = xfs_rtmount_init(mp);
1373 if (error) {
1374 xfs_warn(mp, "RT mount failed");
1375 goto out_remove_uuid;
1376 }
1377
1378 /*
1379 * Copies the low order bits of the timestamp and the randomly
1380 * set "sequence" number out of a UUID.
1381 */
1382 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1383
1384 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1385
1386 xfs_dir_mount(mp);
1387
1388 /*
1389 * Initialize the attribute manager's entries.
1390 */
1391 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1392
1393 /*
1394 * Initialize the precomputed transaction reservations values.
1395 */
1396 xfs_trans_init(mp);
1397
1398 /*
1399 * Allocate and initialize the per-ag data.
1400 */
1401 spin_lock_init(&mp->m_perag_lock);
1402 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1403 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1404 if (error) {
1405 xfs_warn(mp, "Failed per-ag init: %d", error);
1406 goto out_remove_uuid;
1407 }
1408
1409 if (!sbp->sb_logblocks) {
1410 xfs_warn(mp, "no log defined");
1411 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1412 error = XFS_ERROR(EFSCORRUPTED);
1413 goto out_free_perag;
1414 }
1415
1416 /*
1417 * log's mount-time initialization. Perform 1st part recovery if needed
1418 */
1419 error = xfs_log_mount(mp, mp->m_logdev_targp,
1420 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1421 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1422 if (error) {
1423 xfs_warn(mp, "log mount failed");
1424 goto out_fail_wait;
1425 }
1426
1427 /*
1428 * Now the log is mounted, we know if it was an unclean shutdown or
1429 * not. If it was, with the first phase of recovery has completed, we
1430 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1431 * but they are recovered transactionally in the second recovery phase
1432 * later.
1433 *
1434 * Hence we can safely re-initialise incore superblock counters from
1435 * the per-ag data. These may not be correct if the filesystem was not
1436 * cleanly unmounted, so we need to wait for recovery to finish before
1437 * doing this.
1438 *
1439 * If the filesystem was cleanly unmounted, then we can trust the
1440 * values in the superblock to be correct and we don't need to do
1441 * anything here.
1442 *
1443 * If we are currently making the filesystem, the initialisation will
1444 * fail as the perag data is in an undefined state.
1445 */
1446 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1447 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1448 !mp->m_sb.sb_inprogress) {
1449 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1450 if (error)
1451 goto out_fail_wait;
1452 }
1453
1454 /*
1455 * Get and sanity-check the root inode.
1456 * Save the pointer to it in the mount structure.
1457 */
1458 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1459 if (error) {
1460 xfs_warn(mp, "failed to read root inode");
1461 goto out_log_dealloc;
1462 }
1463
1464 ASSERT(rip != NULL);
1465
1466 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1467 xfs_warn(mp, "corrupted root inode %llu: not a directory",
1468 (unsigned long long)rip->i_ino);
1469 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1470 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1471 mp);
1472 error = XFS_ERROR(EFSCORRUPTED);
1473 goto out_rele_rip;
1474 }
1475 mp->m_rootip = rip; /* save it */
1476
1477 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1478
1479 /*
1480 * Initialize realtime inode pointers in the mount structure
1481 */
1482 error = xfs_rtmount_inodes(mp);
1483 if (error) {
1484 /*
1485 * Free up the root inode.
1486 */
1487 xfs_warn(mp, "failed to read RT inodes");
1488 goto out_rele_rip;
1489 }
1490
1491 /*
1492 * If this is a read-only mount defer the superblock updates until
1493 * the next remount into writeable mode. Otherwise we would never
1494 * perform the update e.g. for the root filesystem.
1495 */
1496 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1497 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1498 if (error) {
1499 xfs_warn(mp, "failed to write sb changes");
1500 goto out_rtunmount;
1501 }
1502 }
1503
1504 /*
1505 * Initialise the XFS quota management subsystem for this mount
1506 */
1507 if (XFS_IS_QUOTA_RUNNING(mp)) {
1508 error = xfs_qm_newmount(mp, "amount, "aflags);
1509 if (error)
1510 goto out_rtunmount;
1511 } else {
1512 ASSERT(!XFS_IS_QUOTA_ON(mp));
1513
1514 /*
1515 * If a file system had quotas running earlier, but decided to
1516 * mount without -o uquota/pquota/gquota options, revoke the
1517 * quotachecked license.
1518 */
1519 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1520 xfs_notice(mp, "resetting quota flags");
1521 error = xfs_mount_reset_sbqflags(mp);
1522 if (error)
1523 return error;
1524 }
1525 }
1526
1527 /*
1528 * Finish recovering the file system. This part needed to be
1529 * delayed until after the root and real-time bitmap inodes
1530 * were consistently read in.
1531 */
1532 error = xfs_log_mount_finish(mp);
1533 if (error) {
1534 xfs_warn(mp, "log mount finish failed");
1535 goto out_rtunmount;
1536 }
1537
1538 /*
1539 * Complete the quota initialisation, post-log-replay component.
1540 */
1541 if (quotamount) {
1542 ASSERT(mp->m_qflags == 0);
1543 mp->m_qflags = quotaflags;
1544
1545 xfs_qm_mount_quotas(mp);
1546 }
1547
1548 /*
1549 * Now we are mounted, reserve a small amount of unused space for
1550 * privileged transactions. This is needed so that transaction
1551 * space required for critical operations can dip into this pool
1552 * when at ENOSPC. This is needed for operations like create with
1553 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1554 * are not allowed to use this reserved space.
1555 *
1556 * This may drive us straight to ENOSPC on mount, but that implies
1557 * we were already there on the last unmount. Warn if this occurs.
1558 */
1559 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1560 resblks = xfs_default_resblks(mp);
1561 error = xfs_reserve_blocks(mp, &resblks, NULL);
1562 if (error)
1563 xfs_warn(mp,
1564 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1565 }
1566
1567 return 0;
1568
1569 out_rtunmount:
1570 xfs_rtunmount_inodes(mp);
1571 out_rele_rip:
1572 IRELE(rip);
1573 out_log_dealloc:
1574 xfs_log_unmount(mp);
1575 out_fail_wait:
1576 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1577 xfs_wait_buftarg(mp->m_logdev_targp);
1578 xfs_wait_buftarg(mp->m_ddev_targp);
1579 out_free_perag:
1580 xfs_free_perag(mp);
1581 out_remove_uuid:
1582 xfs_uuid_unmount(mp);
1583 out:
1584 return error;
1585 }
1586
1587 /*
1588 * This flushes out the inodes,dquots and the superblock, unmounts the
1589 * log and makes sure that incore structures are freed.
1590 */
1591 void
xfs_unmountfs(struct xfs_mount * mp)1592 xfs_unmountfs(
1593 struct xfs_mount *mp)
1594 {
1595 __uint64_t resblks;
1596 int error;
1597
1598 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1599
1600 xfs_qm_unmount_quotas(mp);
1601 xfs_rtunmount_inodes(mp);
1602 IRELE(mp->m_rootip);
1603
1604 /*
1605 * We can potentially deadlock here if we have an inode cluster
1606 * that has been freed has its buffer still pinned in memory because
1607 * the transaction is still sitting in a iclog. The stale inodes
1608 * on that buffer will have their flush locks held until the
1609 * transaction hits the disk and the callbacks run. the inode
1610 * flush takes the flush lock unconditionally and with nothing to
1611 * push out the iclog we will never get that unlocked. hence we
1612 * need to force the log first.
1613 */
1614 xfs_log_force(mp, XFS_LOG_SYNC);
1615
1616 /*
1617 * Flush all pending changes from the AIL.
1618 */
1619 xfs_ail_push_all_sync(mp->m_ail);
1620
1621 /*
1622 * And reclaim all inodes. At this point there should be no dirty
1623 * inodes and none should be pinned or locked, but use synchronous
1624 * reclaim just to be sure. We can stop background inode reclaim
1625 * here as well if it is still running.
1626 */
1627 cancel_delayed_work_sync(&mp->m_reclaim_work);
1628 xfs_reclaim_inodes(mp, SYNC_WAIT);
1629
1630 xfs_qm_unmount(mp);
1631
1632 /*
1633 * Unreserve any blocks we have so that when we unmount we don't account
1634 * the reserved free space as used. This is really only necessary for
1635 * lazy superblock counting because it trusts the incore superblock
1636 * counters to be absolutely correct on clean unmount.
1637 *
1638 * We don't bother correcting this elsewhere for lazy superblock
1639 * counting because on mount of an unclean filesystem we reconstruct the
1640 * correct counter value and this is irrelevant.
1641 *
1642 * For non-lazy counter filesystems, this doesn't matter at all because
1643 * we only every apply deltas to the superblock and hence the incore
1644 * value does not matter....
1645 */
1646 resblks = 0;
1647 error = xfs_reserve_blocks(mp, &resblks, NULL);
1648 if (error)
1649 xfs_warn(mp, "Unable to free reserved block pool. "
1650 "Freespace may not be correct on next mount.");
1651
1652 error = xfs_log_sbcount(mp);
1653 if (error)
1654 xfs_warn(mp, "Unable to update superblock counters. "
1655 "Freespace may not be correct on next mount.");
1656
1657 xfs_log_unmount(mp);
1658 xfs_uuid_unmount(mp);
1659
1660 #if defined(DEBUG)
1661 xfs_errortag_clearall(mp, 0);
1662 #endif
1663 xfs_free_perag(mp);
1664 }
1665
1666 int
xfs_fs_writable(xfs_mount_t * mp)1667 xfs_fs_writable(xfs_mount_t *mp)
1668 {
1669 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1670 (mp->m_flags & XFS_MOUNT_RDONLY));
1671 }
1672
1673 /*
1674 * xfs_log_sbcount
1675 *
1676 * Sync the superblock counters to disk.
1677 *
1678 * Note this code can be called during the process of freezing, so
1679 * we may need to use the transaction allocator which does not
1680 * block when the transaction subsystem is in its frozen state.
1681 */
1682 int
xfs_log_sbcount(xfs_mount_t * mp)1683 xfs_log_sbcount(xfs_mount_t *mp)
1684 {
1685 xfs_trans_t *tp;
1686 int error;
1687
1688 if (!xfs_fs_writable(mp))
1689 return 0;
1690
1691 xfs_icsb_sync_counters(mp, 0);
1692
1693 /*
1694 * we don't need to do this if we are updating the superblock
1695 * counters on every modification.
1696 */
1697 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1698 return 0;
1699
1700 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1701 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1702 XFS_DEFAULT_LOG_COUNT);
1703 if (error) {
1704 xfs_trans_cancel(tp, 0);
1705 return error;
1706 }
1707
1708 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1709 xfs_trans_set_sync(tp);
1710 error = xfs_trans_commit(tp, 0);
1711 return error;
1712 }
1713
1714 /*
1715 * xfs_mod_sb() can be used to copy arbitrary changes to the
1716 * in-core superblock into the superblock buffer to be logged.
1717 * It does not provide the higher level of locking that is
1718 * needed to protect the in-core superblock from concurrent
1719 * access.
1720 */
1721 void
xfs_mod_sb(xfs_trans_t * tp,__int64_t fields)1722 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1723 {
1724 xfs_buf_t *bp;
1725 int first;
1726 int last;
1727 xfs_mount_t *mp;
1728 xfs_sb_field_t f;
1729
1730 ASSERT(fields);
1731 if (!fields)
1732 return;
1733 mp = tp->t_mountp;
1734 bp = xfs_trans_getsb(tp, mp, 0);
1735 first = sizeof(xfs_sb_t);
1736 last = 0;
1737
1738 /* translate/copy */
1739
1740 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1741
1742 /* find modified range */
1743 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1744 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1745 last = xfs_sb_info[f + 1].offset - 1;
1746
1747 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1748 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1749 first = xfs_sb_info[f].offset;
1750
1751 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1752 xfs_trans_log_buf(tp, bp, first, last);
1753 }
1754
1755
1756 /*
1757 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1758 * a delta to a specified field in the in-core superblock. Simply
1759 * switch on the field indicated and apply the delta to that field.
1760 * Fields are not allowed to dip below zero, so if the delta would
1761 * do this do not apply it and return EINVAL.
1762 *
1763 * The m_sb_lock must be held when this routine is called.
1764 */
1765 STATIC int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1766 xfs_mod_incore_sb_unlocked(
1767 xfs_mount_t *mp,
1768 xfs_sb_field_t field,
1769 int64_t delta,
1770 int rsvd)
1771 {
1772 int scounter; /* short counter for 32 bit fields */
1773 long long lcounter; /* long counter for 64 bit fields */
1774 long long res_used, rem;
1775
1776 /*
1777 * With the in-core superblock spin lock held, switch
1778 * on the indicated field. Apply the delta to the
1779 * proper field. If the fields value would dip below
1780 * 0, then do not apply the delta and return EINVAL.
1781 */
1782 switch (field) {
1783 case XFS_SBS_ICOUNT:
1784 lcounter = (long long)mp->m_sb.sb_icount;
1785 lcounter += delta;
1786 if (lcounter < 0) {
1787 ASSERT(0);
1788 return XFS_ERROR(EINVAL);
1789 }
1790 mp->m_sb.sb_icount = lcounter;
1791 return 0;
1792 case XFS_SBS_IFREE:
1793 lcounter = (long long)mp->m_sb.sb_ifree;
1794 lcounter += delta;
1795 if (lcounter < 0) {
1796 ASSERT(0);
1797 return XFS_ERROR(EINVAL);
1798 }
1799 mp->m_sb.sb_ifree = lcounter;
1800 return 0;
1801 case XFS_SBS_FDBLOCKS:
1802 lcounter = (long long)
1803 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1804 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1805
1806 if (delta > 0) { /* Putting blocks back */
1807 if (res_used > delta) {
1808 mp->m_resblks_avail += delta;
1809 } else {
1810 rem = delta - res_used;
1811 mp->m_resblks_avail = mp->m_resblks;
1812 lcounter += rem;
1813 }
1814 } else { /* Taking blocks away */
1815 lcounter += delta;
1816 if (lcounter >= 0) {
1817 mp->m_sb.sb_fdblocks = lcounter +
1818 XFS_ALLOC_SET_ASIDE(mp);
1819 return 0;
1820 }
1821
1822 /*
1823 * We are out of blocks, use any available reserved
1824 * blocks if were allowed to.
1825 */
1826 if (!rsvd)
1827 return XFS_ERROR(ENOSPC);
1828
1829 lcounter = (long long)mp->m_resblks_avail + delta;
1830 if (lcounter >= 0) {
1831 mp->m_resblks_avail = lcounter;
1832 return 0;
1833 }
1834 printk_once(KERN_WARNING
1835 "Filesystem \"%s\": reserve blocks depleted! "
1836 "Consider increasing reserve pool size.",
1837 mp->m_fsname);
1838 return XFS_ERROR(ENOSPC);
1839 }
1840
1841 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1842 return 0;
1843 case XFS_SBS_FREXTENTS:
1844 lcounter = (long long)mp->m_sb.sb_frextents;
1845 lcounter += delta;
1846 if (lcounter < 0) {
1847 return XFS_ERROR(ENOSPC);
1848 }
1849 mp->m_sb.sb_frextents = lcounter;
1850 return 0;
1851 case XFS_SBS_DBLOCKS:
1852 lcounter = (long long)mp->m_sb.sb_dblocks;
1853 lcounter += delta;
1854 if (lcounter < 0) {
1855 ASSERT(0);
1856 return XFS_ERROR(EINVAL);
1857 }
1858 mp->m_sb.sb_dblocks = lcounter;
1859 return 0;
1860 case XFS_SBS_AGCOUNT:
1861 scounter = mp->m_sb.sb_agcount;
1862 scounter += delta;
1863 if (scounter < 0) {
1864 ASSERT(0);
1865 return XFS_ERROR(EINVAL);
1866 }
1867 mp->m_sb.sb_agcount = scounter;
1868 return 0;
1869 case XFS_SBS_IMAX_PCT:
1870 scounter = mp->m_sb.sb_imax_pct;
1871 scounter += delta;
1872 if (scounter < 0) {
1873 ASSERT(0);
1874 return XFS_ERROR(EINVAL);
1875 }
1876 mp->m_sb.sb_imax_pct = scounter;
1877 return 0;
1878 case XFS_SBS_REXTSIZE:
1879 scounter = mp->m_sb.sb_rextsize;
1880 scounter += delta;
1881 if (scounter < 0) {
1882 ASSERT(0);
1883 return XFS_ERROR(EINVAL);
1884 }
1885 mp->m_sb.sb_rextsize = scounter;
1886 return 0;
1887 case XFS_SBS_RBMBLOCKS:
1888 scounter = mp->m_sb.sb_rbmblocks;
1889 scounter += delta;
1890 if (scounter < 0) {
1891 ASSERT(0);
1892 return XFS_ERROR(EINVAL);
1893 }
1894 mp->m_sb.sb_rbmblocks = scounter;
1895 return 0;
1896 case XFS_SBS_RBLOCKS:
1897 lcounter = (long long)mp->m_sb.sb_rblocks;
1898 lcounter += delta;
1899 if (lcounter < 0) {
1900 ASSERT(0);
1901 return XFS_ERROR(EINVAL);
1902 }
1903 mp->m_sb.sb_rblocks = lcounter;
1904 return 0;
1905 case XFS_SBS_REXTENTS:
1906 lcounter = (long long)mp->m_sb.sb_rextents;
1907 lcounter += delta;
1908 if (lcounter < 0) {
1909 ASSERT(0);
1910 return XFS_ERROR(EINVAL);
1911 }
1912 mp->m_sb.sb_rextents = lcounter;
1913 return 0;
1914 case XFS_SBS_REXTSLOG:
1915 scounter = mp->m_sb.sb_rextslog;
1916 scounter += delta;
1917 if (scounter < 0) {
1918 ASSERT(0);
1919 return XFS_ERROR(EINVAL);
1920 }
1921 mp->m_sb.sb_rextslog = scounter;
1922 return 0;
1923 default:
1924 ASSERT(0);
1925 return XFS_ERROR(EINVAL);
1926 }
1927 }
1928
1929 /*
1930 * xfs_mod_incore_sb() is used to change a field in the in-core
1931 * superblock structure by the specified delta. This modification
1932 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1933 * routine to do the work.
1934 */
1935 int
xfs_mod_incore_sb(struct xfs_mount * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1936 xfs_mod_incore_sb(
1937 struct xfs_mount *mp,
1938 xfs_sb_field_t field,
1939 int64_t delta,
1940 int rsvd)
1941 {
1942 int status;
1943
1944 #ifdef HAVE_PERCPU_SB
1945 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1946 #endif
1947 spin_lock(&mp->m_sb_lock);
1948 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1949 spin_unlock(&mp->m_sb_lock);
1950
1951 return status;
1952 }
1953
1954 /*
1955 * Change more than one field in the in-core superblock structure at a time.
1956 *
1957 * The fields and changes to those fields are specified in the array of
1958 * xfs_mod_sb structures passed in. Either all of the specified deltas
1959 * will be applied or none of them will. If any modified field dips below 0,
1960 * then all modifications will be backed out and EINVAL will be returned.
1961 *
1962 * Note that this function may not be used for the superblock values that
1963 * are tracked with the in-memory per-cpu counters - a direct call to
1964 * xfs_icsb_modify_counters is required for these.
1965 */
1966 int
xfs_mod_incore_sb_batch(struct xfs_mount * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1967 xfs_mod_incore_sb_batch(
1968 struct xfs_mount *mp,
1969 xfs_mod_sb_t *msb,
1970 uint nmsb,
1971 int rsvd)
1972 {
1973 xfs_mod_sb_t *msbp;
1974 int error = 0;
1975
1976 /*
1977 * Loop through the array of mod structures and apply each individually.
1978 * If any fail, then back out all those which have already been applied.
1979 * Do all of this within the scope of the m_sb_lock so that all of the
1980 * changes will be atomic.
1981 */
1982 spin_lock(&mp->m_sb_lock);
1983 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1984 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1985 msbp->msb_field > XFS_SBS_FDBLOCKS);
1986
1987 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1988 msbp->msb_delta, rsvd);
1989 if (error)
1990 goto unwind;
1991 }
1992 spin_unlock(&mp->m_sb_lock);
1993 return 0;
1994
1995 unwind:
1996 while (--msbp >= msb) {
1997 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1998 -msbp->msb_delta, rsvd);
1999 ASSERT(error == 0);
2000 }
2001 spin_unlock(&mp->m_sb_lock);
2002 return error;
2003 }
2004
2005 /*
2006 * xfs_getsb() is called to obtain the buffer for the superblock.
2007 * The buffer is returned locked and read in from disk.
2008 * The buffer should be released with a call to xfs_brelse().
2009 *
2010 * If the flags parameter is BUF_TRYLOCK, then we'll only return
2011 * the superblock buffer if it can be locked without sleeping.
2012 * If it can't then we'll return NULL.
2013 */
2014 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)2015 xfs_getsb(
2016 struct xfs_mount *mp,
2017 int flags)
2018 {
2019 struct xfs_buf *bp = mp->m_sb_bp;
2020
2021 if (!xfs_buf_trylock(bp)) {
2022 if (flags & XBF_TRYLOCK)
2023 return NULL;
2024 xfs_buf_lock(bp);
2025 }
2026
2027 xfs_buf_hold(bp);
2028 ASSERT(XFS_BUF_ISDONE(bp));
2029 return bp;
2030 }
2031
2032 /*
2033 * Used to free the superblock along various error paths.
2034 */
2035 void
xfs_freesb(struct xfs_mount * mp)2036 xfs_freesb(
2037 struct xfs_mount *mp)
2038 {
2039 struct xfs_buf *bp = mp->m_sb_bp;
2040
2041 xfs_buf_lock(bp);
2042 mp->m_sb_bp = NULL;
2043 xfs_buf_relse(bp);
2044 }
2045
2046 /*
2047 * Used to log changes to the superblock unit and width fields which could
2048 * be altered by the mount options, as well as any potential sb_features2
2049 * fixup. Only the first superblock is updated.
2050 */
2051 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)2052 xfs_mount_log_sb(
2053 xfs_mount_t *mp,
2054 __int64_t fields)
2055 {
2056 xfs_trans_t *tp;
2057 int error;
2058
2059 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2060 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2061 XFS_SB_VERSIONNUM));
2062
2063 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2064 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2065 XFS_DEFAULT_LOG_COUNT);
2066 if (error) {
2067 xfs_trans_cancel(tp, 0);
2068 return error;
2069 }
2070 xfs_mod_sb(tp, fields);
2071 error = xfs_trans_commit(tp, 0);
2072 return error;
2073 }
2074
2075 /*
2076 * If the underlying (data/log/rt) device is readonly, there are some
2077 * operations that cannot proceed.
2078 */
2079 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)2080 xfs_dev_is_read_only(
2081 struct xfs_mount *mp,
2082 char *message)
2083 {
2084 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2085 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2086 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2087 xfs_notice(mp, "%s required on read-only device.", message);
2088 xfs_notice(mp, "write access unavailable, cannot proceed.");
2089 return EROFS;
2090 }
2091 return 0;
2092 }
2093
2094 #ifdef HAVE_PERCPU_SB
2095 /*
2096 * Per-cpu incore superblock counters
2097 *
2098 * Simple concept, difficult implementation
2099 *
2100 * Basically, replace the incore superblock counters with a distributed per cpu
2101 * counter for contended fields (e.g. free block count).
2102 *
2103 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2104 * hence needs to be accurately read when we are running low on space. Hence
2105 * there is a method to enable and disable the per-cpu counters based on how
2106 * much "stuff" is available in them.
2107 *
2108 * Basically, a counter is enabled if there is enough free resource to justify
2109 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2110 * ENOSPC), then we disable the counters to synchronise all callers and
2111 * re-distribute the available resources.
2112 *
2113 * If, once we redistributed the available resources, we still get a failure,
2114 * we disable the per-cpu counter and go through the slow path.
2115 *
2116 * The slow path is the current xfs_mod_incore_sb() function. This means that
2117 * when we disable a per-cpu counter, we need to drain its resources back to
2118 * the global superblock. We do this after disabling the counter to prevent
2119 * more threads from queueing up on the counter.
2120 *
2121 * Essentially, this means that we still need a lock in the fast path to enable
2122 * synchronisation between the global counters and the per-cpu counters. This
2123 * is not a problem because the lock will be local to a CPU almost all the time
2124 * and have little contention except when we get to ENOSPC conditions.
2125 *
2126 * Basically, this lock becomes a barrier that enables us to lock out the fast
2127 * path while we do things like enabling and disabling counters and
2128 * synchronising the counters.
2129 *
2130 * Locking rules:
2131 *
2132 * 1. m_sb_lock before picking up per-cpu locks
2133 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2134 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2135 * 4. modifying per-cpu counters requires holding per-cpu lock
2136 * 5. modifying global counters requires holding m_sb_lock
2137 * 6. enabling or disabling a counter requires holding the m_sb_lock
2138 * and _none_ of the per-cpu locks.
2139 *
2140 * Disabled counters are only ever re-enabled by a balance operation
2141 * that results in more free resources per CPU than a given threshold.
2142 * To ensure counters don't remain disabled, they are rebalanced when
2143 * the global resource goes above a higher threshold (i.e. some hysteresis
2144 * is present to prevent thrashing).
2145 */
2146
2147 #ifdef CONFIG_HOTPLUG_CPU
2148 /*
2149 * hot-plug CPU notifier support.
2150 *
2151 * We need a notifier per filesystem as we need to be able to identify
2152 * the filesystem to balance the counters out. This is achieved by
2153 * having a notifier block embedded in the xfs_mount_t and doing pointer
2154 * magic to get the mount pointer from the notifier block address.
2155 */
2156 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)2157 xfs_icsb_cpu_notify(
2158 struct notifier_block *nfb,
2159 unsigned long action,
2160 void *hcpu)
2161 {
2162 xfs_icsb_cnts_t *cntp;
2163 xfs_mount_t *mp;
2164
2165 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2166 cntp = (xfs_icsb_cnts_t *)
2167 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2168 switch (action) {
2169 case CPU_UP_PREPARE:
2170 case CPU_UP_PREPARE_FROZEN:
2171 /* Easy Case - initialize the area and locks, and
2172 * then rebalance when online does everything else for us. */
2173 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2174 break;
2175 case CPU_ONLINE:
2176 case CPU_ONLINE_FROZEN:
2177 xfs_icsb_lock(mp);
2178 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2179 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2180 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2181 xfs_icsb_unlock(mp);
2182 break;
2183 case CPU_DEAD:
2184 case CPU_DEAD_FROZEN:
2185 /* Disable all the counters, then fold the dead cpu's
2186 * count into the total on the global superblock and
2187 * re-enable the counters. */
2188 xfs_icsb_lock(mp);
2189 spin_lock(&mp->m_sb_lock);
2190 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2191 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2192 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2193
2194 mp->m_sb.sb_icount += cntp->icsb_icount;
2195 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2196 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2197
2198 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2199
2200 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2201 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2202 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2203 spin_unlock(&mp->m_sb_lock);
2204 xfs_icsb_unlock(mp);
2205 break;
2206 }
2207
2208 return NOTIFY_OK;
2209 }
2210 #endif /* CONFIG_HOTPLUG_CPU */
2211
2212 int
xfs_icsb_init_counters(xfs_mount_t * mp)2213 xfs_icsb_init_counters(
2214 xfs_mount_t *mp)
2215 {
2216 xfs_icsb_cnts_t *cntp;
2217 int i;
2218
2219 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2220 if (mp->m_sb_cnts == NULL)
2221 return -ENOMEM;
2222
2223 #ifdef CONFIG_HOTPLUG_CPU
2224 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2225 mp->m_icsb_notifier.priority = 0;
2226 register_hotcpu_notifier(&mp->m_icsb_notifier);
2227 #endif /* CONFIG_HOTPLUG_CPU */
2228
2229 for_each_online_cpu(i) {
2230 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2231 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2232 }
2233
2234 mutex_init(&mp->m_icsb_mutex);
2235
2236 /*
2237 * start with all counters disabled so that the
2238 * initial balance kicks us off correctly
2239 */
2240 mp->m_icsb_counters = -1;
2241 return 0;
2242 }
2243
2244 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)2245 xfs_icsb_reinit_counters(
2246 xfs_mount_t *mp)
2247 {
2248 xfs_icsb_lock(mp);
2249 /*
2250 * start with all counters disabled so that the
2251 * initial balance kicks us off correctly
2252 */
2253 mp->m_icsb_counters = -1;
2254 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2255 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2256 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2257 xfs_icsb_unlock(mp);
2258 }
2259
2260 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)2261 xfs_icsb_destroy_counters(
2262 xfs_mount_t *mp)
2263 {
2264 if (mp->m_sb_cnts) {
2265 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2266 free_percpu(mp->m_sb_cnts);
2267 }
2268 mutex_destroy(&mp->m_icsb_mutex);
2269 }
2270
2271 STATIC void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)2272 xfs_icsb_lock_cntr(
2273 xfs_icsb_cnts_t *icsbp)
2274 {
2275 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2276 ndelay(1000);
2277 }
2278 }
2279
2280 STATIC void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)2281 xfs_icsb_unlock_cntr(
2282 xfs_icsb_cnts_t *icsbp)
2283 {
2284 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2285 }
2286
2287
2288 STATIC void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)2289 xfs_icsb_lock_all_counters(
2290 xfs_mount_t *mp)
2291 {
2292 xfs_icsb_cnts_t *cntp;
2293 int i;
2294
2295 for_each_online_cpu(i) {
2296 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2297 xfs_icsb_lock_cntr(cntp);
2298 }
2299 }
2300
2301 STATIC void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)2302 xfs_icsb_unlock_all_counters(
2303 xfs_mount_t *mp)
2304 {
2305 xfs_icsb_cnts_t *cntp;
2306 int i;
2307
2308 for_each_online_cpu(i) {
2309 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2310 xfs_icsb_unlock_cntr(cntp);
2311 }
2312 }
2313
2314 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)2315 xfs_icsb_count(
2316 xfs_mount_t *mp,
2317 xfs_icsb_cnts_t *cnt,
2318 int flags)
2319 {
2320 xfs_icsb_cnts_t *cntp;
2321 int i;
2322
2323 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2324
2325 if (!(flags & XFS_ICSB_LAZY_COUNT))
2326 xfs_icsb_lock_all_counters(mp);
2327
2328 for_each_online_cpu(i) {
2329 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2330 cnt->icsb_icount += cntp->icsb_icount;
2331 cnt->icsb_ifree += cntp->icsb_ifree;
2332 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2333 }
2334
2335 if (!(flags & XFS_ICSB_LAZY_COUNT))
2336 xfs_icsb_unlock_all_counters(mp);
2337 }
2338
2339 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)2340 xfs_icsb_counter_disabled(
2341 xfs_mount_t *mp,
2342 xfs_sb_field_t field)
2343 {
2344 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2345 return test_bit(field, &mp->m_icsb_counters);
2346 }
2347
2348 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)2349 xfs_icsb_disable_counter(
2350 xfs_mount_t *mp,
2351 xfs_sb_field_t field)
2352 {
2353 xfs_icsb_cnts_t cnt;
2354
2355 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2356
2357 /*
2358 * If we are already disabled, then there is nothing to do
2359 * here. We check before locking all the counters to avoid
2360 * the expensive lock operation when being called in the
2361 * slow path and the counter is already disabled. This is
2362 * safe because the only time we set or clear this state is under
2363 * the m_icsb_mutex.
2364 */
2365 if (xfs_icsb_counter_disabled(mp, field))
2366 return;
2367
2368 xfs_icsb_lock_all_counters(mp);
2369 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2370 /* drain back to superblock */
2371
2372 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2373 switch(field) {
2374 case XFS_SBS_ICOUNT:
2375 mp->m_sb.sb_icount = cnt.icsb_icount;
2376 break;
2377 case XFS_SBS_IFREE:
2378 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2379 break;
2380 case XFS_SBS_FDBLOCKS:
2381 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2382 break;
2383 default:
2384 BUG();
2385 }
2386 }
2387
2388 xfs_icsb_unlock_all_counters(mp);
2389 }
2390
2391 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)2392 xfs_icsb_enable_counter(
2393 xfs_mount_t *mp,
2394 xfs_sb_field_t field,
2395 uint64_t count,
2396 uint64_t resid)
2397 {
2398 xfs_icsb_cnts_t *cntp;
2399 int i;
2400
2401 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2402
2403 xfs_icsb_lock_all_counters(mp);
2404 for_each_online_cpu(i) {
2405 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2406 switch (field) {
2407 case XFS_SBS_ICOUNT:
2408 cntp->icsb_icount = count + resid;
2409 break;
2410 case XFS_SBS_IFREE:
2411 cntp->icsb_ifree = count + resid;
2412 break;
2413 case XFS_SBS_FDBLOCKS:
2414 cntp->icsb_fdblocks = count + resid;
2415 break;
2416 default:
2417 BUG();
2418 break;
2419 }
2420 resid = 0;
2421 }
2422 clear_bit(field, &mp->m_icsb_counters);
2423 xfs_icsb_unlock_all_counters(mp);
2424 }
2425
2426 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)2427 xfs_icsb_sync_counters_locked(
2428 xfs_mount_t *mp,
2429 int flags)
2430 {
2431 xfs_icsb_cnts_t cnt;
2432
2433 xfs_icsb_count(mp, &cnt, flags);
2434
2435 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2436 mp->m_sb.sb_icount = cnt.icsb_icount;
2437 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2438 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2439 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2440 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2441 }
2442
2443 /*
2444 * Accurate update of per-cpu counters to incore superblock
2445 */
2446 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)2447 xfs_icsb_sync_counters(
2448 xfs_mount_t *mp,
2449 int flags)
2450 {
2451 spin_lock(&mp->m_sb_lock);
2452 xfs_icsb_sync_counters_locked(mp, flags);
2453 spin_unlock(&mp->m_sb_lock);
2454 }
2455
2456 /*
2457 * Balance and enable/disable counters as necessary.
2458 *
2459 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2460 * chosen to be the same number as single on disk allocation chunk per CPU, and
2461 * free blocks is something far enough zero that we aren't going thrash when we
2462 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2463 * prevent looping endlessly when xfs_alloc_space asks for more than will
2464 * be distributed to a single CPU but each CPU has enough blocks to be
2465 * reenabled.
2466 *
2467 * Note that we can be called when counters are already disabled.
2468 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2469 * prevent locking every per-cpu counter needlessly.
2470 */
2471
2472 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2473 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2474 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2475 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)2476 xfs_icsb_balance_counter_locked(
2477 xfs_mount_t *mp,
2478 xfs_sb_field_t field,
2479 int min_per_cpu)
2480 {
2481 uint64_t count, resid;
2482 int weight = num_online_cpus();
2483 uint64_t min = (uint64_t)min_per_cpu;
2484
2485 /* disable counter and sync counter */
2486 xfs_icsb_disable_counter(mp, field);
2487
2488 /* update counters - first CPU gets residual*/
2489 switch (field) {
2490 case XFS_SBS_ICOUNT:
2491 count = mp->m_sb.sb_icount;
2492 resid = do_div(count, weight);
2493 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2494 return;
2495 break;
2496 case XFS_SBS_IFREE:
2497 count = mp->m_sb.sb_ifree;
2498 resid = do_div(count, weight);
2499 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2500 return;
2501 break;
2502 case XFS_SBS_FDBLOCKS:
2503 count = mp->m_sb.sb_fdblocks;
2504 resid = do_div(count, weight);
2505 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2506 return;
2507 break;
2508 default:
2509 BUG();
2510 count = resid = 0; /* quiet, gcc */
2511 break;
2512 }
2513
2514 xfs_icsb_enable_counter(mp, field, count, resid);
2515 }
2516
2517 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)2518 xfs_icsb_balance_counter(
2519 xfs_mount_t *mp,
2520 xfs_sb_field_t fields,
2521 int min_per_cpu)
2522 {
2523 spin_lock(&mp->m_sb_lock);
2524 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2525 spin_unlock(&mp->m_sb_lock);
2526 }
2527
2528 int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)2529 xfs_icsb_modify_counters(
2530 xfs_mount_t *mp,
2531 xfs_sb_field_t field,
2532 int64_t delta,
2533 int rsvd)
2534 {
2535 xfs_icsb_cnts_t *icsbp;
2536 long long lcounter; /* long counter for 64 bit fields */
2537 int ret = 0;
2538
2539 might_sleep();
2540 again:
2541 preempt_disable();
2542 icsbp = this_cpu_ptr(mp->m_sb_cnts);
2543
2544 /*
2545 * if the counter is disabled, go to slow path
2546 */
2547 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2548 goto slow_path;
2549 xfs_icsb_lock_cntr(icsbp);
2550 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2551 xfs_icsb_unlock_cntr(icsbp);
2552 goto slow_path;
2553 }
2554
2555 switch (field) {
2556 case XFS_SBS_ICOUNT:
2557 lcounter = icsbp->icsb_icount;
2558 lcounter += delta;
2559 if (unlikely(lcounter < 0))
2560 goto balance_counter;
2561 icsbp->icsb_icount = lcounter;
2562 break;
2563
2564 case XFS_SBS_IFREE:
2565 lcounter = icsbp->icsb_ifree;
2566 lcounter += delta;
2567 if (unlikely(lcounter < 0))
2568 goto balance_counter;
2569 icsbp->icsb_ifree = lcounter;
2570 break;
2571
2572 case XFS_SBS_FDBLOCKS:
2573 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2574
2575 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2576 lcounter += delta;
2577 if (unlikely(lcounter < 0))
2578 goto balance_counter;
2579 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2580 break;
2581 default:
2582 BUG();
2583 break;
2584 }
2585 xfs_icsb_unlock_cntr(icsbp);
2586 preempt_enable();
2587 return 0;
2588
2589 slow_path:
2590 preempt_enable();
2591
2592 /*
2593 * serialise with a mutex so we don't burn lots of cpu on
2594 * the superblock lock. We still need to hold the superblock
2595 * lock, however, when we modify the global structures.
2596 */
2597 xfs_icsb_lock(mp);
2598
2599 /*
2600 * Now running atomically.
2601 *
2602 * If the counter is enabled, someone has beaten us to rebalancing.
2603 * Drop the lock and try again in the fast path....
2604 */
2605 if (!(xfs_icsb_counter_disabled(mp, field))) {
2606 xfs_icsb_unlock(mp);
2607 goto again;
2608 }
2609
2610 /*
2611 * The counter is currently disabled. Because we are
2612 * running atomically here, we know a rebalance cannot
2613 * be in progress. Hence we can go straight to operating
2614 * on the global superblock. We do not call xfs_mod_incore_sb()
2615 * here even though we need to get the m_sb_lock. Doing so
2616 * will cause us to re-enter this function and deadlock.
2617 * Hence we get the m_sb_lock ourselves and then call
2618 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2619 * directly on the global counters.
2620 */
2621 spin_lock(&mp->m_sb_lock);
2622 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2623 spin_unlock(&mp->m_sb_lock);
2624
2625 /*
2626 * Now that we've modified the global superblock, we
2627 * may be able to re-enable the distributed counters
2628 * (e.g. lots of space just got freed). After that
2629 * we are done.
2630 */
2631 if (ret != ENOSPC)
2632 xfs_icsb_balance_counter(mp, field, 0);
2633 xfs_icsb_unlock(mp);
2634 return ret;
2635
2636 balance_counter:
2637 xfs_icsb_unlock_cntr(icsbp);
2638 preempt_enable();
2639
2640 /*
2641 * We may have multiple threads here if multiple per-cpu
2642 * counters run dry at the same time. This will mean we can
2643 * do more balances than strictly necessary but it is not
2644 * the common slowpath case.
2645 */
2646 xfs_icsb_lock(mp);
2647
2648 /*
2649 * running atomically.
2650 *
2651 * This will leave the counter in the correct state for future
2652 * accesses. After the rebalance, we simply try again and our retry
2653 * will either succeed through the fast path or slow path without
2654 * another balance operation being required.
2655 */
2656 xfs_icsb_balance_counter(mp, field, delta);
2657 xfs_icsb_unlock(mp);
2658 goto again;
2659 }
2660
2661 #endif
2662