• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
48 
49 
50 #ifdef HAVE_PERCPU_SB
51 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57 
58 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
60 #endif
61 
62 static const struct {
63 	short offset;
64 	short type;	/* 0 = integer
65 			 * 1 = binary / string (no translation)
66 			 */
67 } xfs_sb_info[] = {
68     { offsetof(xfs_sb_t, sb_magicnum),   0 },
69     { offsetof(xfs_sb_t, sb_blocksize),  0 },
70     { offsetof(xfs_sb_t, sb_dblocks),    0 },
71     { offsetof(xfs_sb_t, sb_rblocks),    0 },
72     { offsetof(xfs_sb_t, sb_rextents),   0 },
73     { offsetof(xfs_sb_t, sb_uuid),       1 },
74     { offsetof(xfs_sb_t, sb_logstart),   0 },
75     { offsetof(xfs_sb_t, sb_rootino),    0 },
76     { offsetof(xfs_sb_t, sb_rbmino),     0 },
77     { offsetof(xfs_sb_t, sb_rsumino),    0 },
78     { offsetof(xfs_sb_t, sb_rextsize),   0 },
79     { offsetof(xfs_sb_t, sb_agblocks),   0 },
80     { offsetof(xfs_sb_t, sb_agcount),    0 },
81     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
82     { offsetof(xfs_sb_t, sb_logblocks),  0 },
83     { offsetof(xfs_sb_t, sb_versionnum), 0 },
84     { offsetof(xfs_sb_t, sb_sectsize),   0 },
85     { offsetof(xfs_sb_t, sb_inodesize),  0 },
86     { offsetof(xfs_sb_t, sb_inopblock),  0 },
87     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
88     { offsetof(xfs_sb_t, sb_blocklog),   0 },
89     { offsetof(xfs_sb_t, sb_sectlog),    0 },
90     { offsetof(xfs_sb_t, sb_inodelog),   0 },
91     { offsetof(xfs_sb_t, sb_inopblog),   0 },
92     { offsetof(xfs_sb_t, sb_agblklog),   0 },
93     { offsetof(xfs_sb_t, sb_rextslog),   0 },
94     { offsetof(xfs_sb_t, sb_inprogress), 0 },
95     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
96     { offsetof(xfs_sb_t, sb_icount),     0 },
97     { offsetof(xfs_sb_t, sb_ifree),      0 },
98     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
99     { offsetof(xfs_sb_t, sb_frextents),  0 },
100     { offsetof(xfs_sb_t, sb_uquotino),   0 },
101     { offsetof(xfs_sb_t, sb_gquotino),   0 },
102     { offsetof(xfs_sb_t, sb_qflags),     0 },
103     { offsetof(xfs_sb_t, sb_flags),      0 },
104     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
105     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106     { offsetof(xfs_sb_t, sb_unit),	 0 },
107     { offsetof(xfs_sb_t, sb_width),	 0 },
108     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
109     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110     { offsetof(xfs_sb_t, sb_logsectsize),0 },
111     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
112     { offsetof(xfs_sb_t, sb_features2),	 0 },
113     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114     { offsetof(xfs_sb_t, sb_features_compat), 0 },
115     { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116     { offsetof(xfs_sb_t, sb_features_incompat), 0 },
117     { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
118     { offsetof(xfs_sb_t, sb_crc),	 0 },
119     { offsetof(xfs_sb_t, sb_pad),	 0 },
120     { offsetof(xfs_sb_t, sb_pquotino),	 0 },
121     { offsetof(xfs_sb_t, sb_lsn),	 0 },
122     { sizeof(xfs_sb_t),			 0 }
123 };
124 
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128 
129 /*
130  * See if the UUID is unique among mounted XFS filesystems.
131  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132  */
133 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)134 xfs_uuid_mount(
135 	struct xfs_mount	*mp)
136 {
137 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
138 	int			hole, i;
139 
140 	if (mp->m_flags & XFS_MOUNT_NOUUID)
141 		return 0;
142 
143 	if (uuid_is_nil(uuid)) {
144 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
145 		return XFS_ERROR(EINVAL);
146 	}
147 
148 	mutex_lock(&xfs_uuid_table_mutex);
149 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 		if (uuid_is_nil(&xfs_uuid_table[i])) {
151 			hole = i;
152 			continue;
153 		}
154 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 			goto out_duplicate;
156 	}
157 
158 	if (hole < 0) {
159 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
162 			KM_SLEEP);
163 		hole = xfs_uuid_table_size++;
164 	}
165 	xfs_uuid_table[hole] = *uuid;
166 	mutex_unlock(&xfs_uuid_table_mutex);
167 
168 	return 0;
169 
170  out_duplicate:
171 	mutex_unlock(&xfs_uuid_table_mutex);
172 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
173 	return XFS_ERROR(EINVAL);
174 }
175 
176 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)177 xfs_uuid_unmount(
178 	struct xfs_mount	*mp)
179 {
180 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
181 	int			i;
182 
183 	if (mp->m_flags & XFS_MOUNT_NOUUID)
184 		return;
185 
186 	mutex_lock(&xfs_uuid_table_mutex);
187 	for (i = 0; i < xfs_uuid_table_size; i++) {
188 		if (uuid_is_nil(&xfs_uuid_table[i]))
189 			continue;
190 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 			continue;
192 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 		break;
194 	}
195 	ASSERT(i < xfs_uuid_table_size);
196 	mutex_unlock(&xfs_uuid_table_mutex);
197 }
198 
199 
200 /*
201  * Reference counting access wrappers to the perag structures.
202  * Because we never free per-ag structures, the only thing we
203  * have to protect against changes is the tree structure itself.
204  */
205 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
207 {
208 	struct xfs_perag	*pag;
209 	int			ref = 0;
210 
211 	rcu_read_lock();
212 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 	if (pag) {
214 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 		ref = atomic_inc_return(&pag->pag_ref);
216 	}
217 	rcu_read_unlock();
218 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 	return pag;
220 }
221 
222 /*
223  * search from @first to find the next perag with the given tag set.
224  */
225 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)226 xfs_perag_get_tag(
227 	struct xfs_mount	*mp,
228 	xfs_agnumber_t		first,
229 	int			tag)
230 {
231 	struct xfs_perag	*pag;
232 	int			found;
233 	int			ref;
234 
235 	rcu_read_lock();
236 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 					(void **)&pag, first, 1, tag);
238 	if (found <= 0) {
239 		rcu_read_unlock();
240 		return NULL;
241 	}
242 	ref = atomic_inc_return(&pag->pag_ref);
243 	rcu_read_unlock();
244 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 	return pag;
246 }
247 
248 void
xfs_perag_put(struct xfs_perag * pag)249 xfs_perag_put(struct xfs_perag *pag)
250 {
251 	int	ref;
252 
253 	ASSERT(atomic_read(&pag->pag_ref) > 0);
254 	ref = atomic_dec_return(&pag->pag_ref);
255 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
256 }
257 
258 STATIC void
__xfs_free_perag(struct rcu_head * head)259 __xfs_free_perag(
260 	struct rcu_head	*head)
261 {
262 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
263 
264 	ASSERT(atomic_read(&pag->pag_ref) == 0);
265 	kmem_free(pag);
266 }
267 
268 /*
269  * Free up the per-ag resources associated with the mount structure.
270  */
271 STATIC void
xfs_free_perag(xfs_mount_t * mp)272 xfs_free_perag(
273 	xfs_mount_t	*mp)
274 {
275 	xfs_agnumber_t	agno;
276 	struct xfs_perag *pag;
277 
278 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 		spin_lock(&mp->m_perag_lock);
280 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 		spin_unlock(&mp->m_perag_lock);
282 		ASSERT(pag);
283 		ASSERT(atomic_read(&pag->pag_ref) == 0);
284 		call_rcu(&pag->rcu_head, __xfs_free_perag);
285 	}
286 }
287 
288 /*
289  * Check size of device based on the (data/realtime) block count.
290  * Note: this check is used by the growfs code as well as mount.
291  */
292 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)293 xfs_sb_validate_fsb_count(
294 	xfs_sb_t	*sbp,
295 	__uint64_t	nblocks)
296 {
297 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
298 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
299 
300 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
301 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
302 		return EFBIG;
303 #else                  /* Limited by UINT_MAX of sectors */
304 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
305 		return EFBIG;
306 #endif
307 	return 0;
308 }
309 
310 /*
311  * Check the validity of the SB found.
312  */
313 STATIC int
xfs_mount_validate_sb(xfs_mount_t * mp,xfs_sb_t * sbp,bool check_inprogress,bool check_version)314 xfs_mount_validate_sb(
315 	xfs_mount_t	*mp,
316 	xfs_sb_t	*sbp,
317 	bool		check_inprogress,
318 	bool		check_version)
319 {
320 
321 	/*
322 	 * If the log device and data device have the
323 	 * same device number, the log is internal.
324 	 * Consequently, the sb_logstart should be non-zero.  If
325 	 * we have a zero sb_logstart in this case, we may be trying to mount
326 	 * a volume filesystem in a non-volume manner.
327 	 */
328 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
329 		xfs_warn(mp, "bad magic number");
330 		return XFS_ERROR(EWRONGFS);
331 	}
332 
333 
334 	if (!xfs_sb_good_version(sbp)) {
335 		xfs_warn(mp, "bad version");
336 		return XFS_ERROR(EWRONGFS);
337 	}
338 
339 	/*
340 	 * Version 5 superblock feature mask validation. Reject combinations the
341 	 * kernel cannot support up front before checking anything else. For
342 	 * write validation, we don't need to check feature masks.
343 	 */
344 	if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
345 		xfs_alert(mp,
346 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
347 "Use of these features in this kernel is at your own risk!");
348 
349 		if (xfs_sb_has_compat_feature(sbp,
350 					XFS_SB_FEAT_COMPAT_UNKNOWN)) {
351 			xfs_warn(mp,
352 "Superblock has unknown compatible features (0x%x) enabled.\n"
353 "Using a more recent kernel is recommended.",
354 				(sbp->sb_features_compat &
355 						XFS_SB_FEAT_COMPAT_UNKNOWN));
356 		}
357 
358 		if (xfs_sb_has_ro_compat_feature(sbp,
359 					XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
360 			xfs_alert(mp,
361 "Superblock has unknown read-only compatible features (0x%x) enabled.",
362 				(sbp->sb_features_ro_compat &
363 						XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
364 			if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
365 				xfs_warn(mp,
366 "Attempted to mount read-only compatible filesystem read-write.\n"
367 "Filesystem can only be safely mounted read only.");
368 				return XFS_ERROR(EINVAL);
369 			}
370 		}
371 		if (xfs_sb_has_incompat_feature(sbp,
372 					XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
373 			xfs_warn(mp,
374 "Superblock has unknown incompatible features (0x%x) enabled.\n"
375 "Filesystem can not be safely mounted by this kernel.",
376 				(sbp->sb_features_incompat &
377 						XFS_SB_FEAT_INCOMPAT_UNKNOWN));
378 			return XFS_ERROR(EINVAL);
379 		}
380 	}
381 
382 	if (unlikely(
383 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
384 		xfs_warn(mp,
385 		"filesystem is marked as having an external log; "
386 		"specify logdev on the mount command line.");
387 		return XFS_ERROR(EINVAL);
388 	}
389 
390 	if (unlikely(
391 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
392 		xfs_warn(mp,
393 		"filesystem is marked as having an internal log; "
394 		"do not specify logdev on the mount command line.");
395 		return XFS_ERROR(EINVAL);
396 	}
397 
398 	/*
399 	 * More sanity checking.  Most of these were stolen directly from
400 	 * xfs_repair.
401 	 */
402 	if (unlikely(
403 	    sbp->sb_agcount <= 0					||
404 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
405 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
406 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
407 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
408 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
409 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
410 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
411 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
412 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
413 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
414 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
415 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
416 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
417 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
418 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
419 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
420 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
421 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
422 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
423 	    sbp->sb_dblocks == 0					||
424 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
425 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
426 		XFS_CORRUPTION_ERROR("SB sanity check failed",
427 				XFS_ERRLEVEL_LOW, mp, sbp);
428 		return XFS_ERROR(EFSCORRUPTED);
429 	}
430 
431 	/*
432 	 * Until this is fixed only page-sized or smaller data blocks work.
433 	 */
434 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
435 		xfs_warn(mp,
436 		"File system with blocksize %d bytes. "
437 		"Only pagesize (%ld) or less will currently work.",
438 				sbp->sb_blocksize, PAGE_SIZE);
439 		return XFS_ERROR(ENOSYS);
440 	}
441 
442 	/*
443 	 * Currently only very few inode sizes are supported.
444 	 */
445 	switch (sbp->sb_inodesize) {
446 	case 256:
447 	case 512:
448 	case 1024:
449 	case 2048:
450 		break;
451 	default:
452 		xfs_warn(mp, "inode size of %d bytes not supported",
453 				sbp->sb_inodesize);
454 		return XFS_ERROR(ENOSYS);
455 	}
456 
457 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
458 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
459 		xfs_warn(mp,
460 		"file system too large to be mounted on this system.");
461 		return XFS_ERROR(EFBIG);
462 	}
463 
464 	if (check_inprogress && sbp->sb_inprogress) {
465 		xfs_warn(mp, "Offline file system operation in progress!");
466 		return XFS_ERROR(EFSCORRUPTED);
467 	}
468 
469 	/*
470 	 * Version 1 directory format has never worked on Linux.
471 	 */
472 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
473 		xfs_warn(mp, "file system using version 1 directory format");
474 		return XFS_ERROR(ENOSYS);
475 	}
476 
477 	return 0;
478 }
479 
480 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)481 xfs_initialize_perag(
482 	xfs_mount_t	*mp,
483 	xfs_agnumber_t	agcount,
484 	xfs_agnumber_t	*maxagi)
485 {
486 	xfs_agnumber_t	index;
487 	xfs_agnumber_t	first_initialised = 0;
488 	xfs_perag_t	*pag;
489 	xfs_agino_t	agino;
490 	xfs_ino_t	ino;
491 	xfs_sb_t	*sbp = &mp->m_sb;
492 	int		error = -ENOMEM;
493 
494 	/*
495 	 * Walk the current per-ag tree so we don't try to initialise AGs
496 	 * that already exist (growfs case). Allocate and insert all the
497 	 * AGs we don't find ready for initialisation.
498 	 */
499 	for (index = 0; index < agcount; index++) {
500 		pag = xfs_perag_get(mp, index);
501 		if (pag) {
502 			xfs_perag_put(pag);
503 			continue;
504 		}
505 		if (!first_initialised)
506 			first_initialised = index;
507 
508 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
509 		if (!pag)
510 			goto out_unwind;
511 		pag->pag_agno = index;
512 		pag->pag_mount = mp;
513 		spin_lock_init(&pag->pag_ici_lock);
514 		mutex_init(&pag->pag_ici_reclaim_lock);
515 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
516 		spin_lock_init(&pag->pag_buf_lock);
517 		pag->pag_buf_tree = RB_ROOT;
518 
519 		if (radix_tree_preload(GFP_NOFS))
520 			goto out_unwind;
521 
522 		spin_lock(&mp->m_perag_lock);
523 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
524 			BUG();
525 			spin_unlock(&mp->m_perag_lock);
526 			radix_tree_preload_end();
527 			error = -EEXIST;
528 			goto out_unwind;
529 		}
530 		spin_unlock(&mp->m_perag_lock);
531 		radix_tree_preload_end();
532 	}
533 
534 	/*
535 	 * If we mount with the inode64 option, or no inode overflows
536 	 * the legacy 32-bit address space clear the inode32 option.
537 	 */
538 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
539 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
540 
541 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
542 		mp->m_flags |= XFS_MOUNT_32BITINODES;
543 	else
544 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
545 
546 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
547 		index = xfs_set_inode32(mp);
548 	else
549 		index = xfs_set_inode64(mp);
550 
551 	if (maxagi)
552 		*maxagi = index;
553 	return 0;
554 
555 out_unwind:
556 	kmem_free(pag);
557 	for (; index > first_initialised; index--) {
558 		pag = radix_tree_delete(&mp->m_perag_tree, index);
559 		kmem_free(pag);
560 	}
561 	return error;
562 }
563 
564 void
xfs_sb_from_disk(struct xfs_sb * to,xfs_dsb_t * from)565 xfs_sb_from_disk(
566 	struct xfs_sb	*to,
567 	xfs_dsb_t	*from)
568 {
569 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
570 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
571 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
572 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
573 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
574 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
575 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
576 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
577 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
578 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
579 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
580 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
581 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
582 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
583 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
584 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
585 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
586 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
587 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
588 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
589 	to->sb_blocklog = from->sb_blocklog;
590 	to->sb_sectlog = from->sb_sectlog;
591 	to->sb_inodelog = from->sb_inodelog;
592 	to->sb_inopblog = from->sb_inopblog;
593 	to->sb_agblklog = from->sb_agblklog;
594 	to->sb_rextslog = from->sb_rextslog;
595 	to->sb_inprogress = from->sb_inprogress;
596 	to->sb_imax_pct = from->sb_imax_pct;
597 	to->sb_icount = be64_to_cpu(from->sb_icount);
598 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
599 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
600 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
601 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
602 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
603 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
604 	to->sb_flags = from->sb_flags;
605 	to->sb_shared_vn = from->sb_shared_vn;
606 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
607 	to->sb_unit = be32_to_cpu(from->sb_unit);
608 	to->sb_width = be32_to_cpu(from->sb_width);
609 	to->sb_dirblklog = from->sb_dirblklog;
610 	to->sb_logsectlog = from->sb_logsectlog;
611 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
612 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
613 	to->sb_features2 = be32_to_cpu(from->sb_features2);
614 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
615 	to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
616 	to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
617 	to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
618 	to->sb_features_log_incompat =
619 				be32_to_cpu(from->sb_features_log_incompat);
620 	to->sb_pad = 0;
621 	to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
622 	to->sb_lsn = be64_to_cpu(from->sb_lsn);
623 }
624 
625 /*
626  * Copy in core superblock to ondisk one.
627  *
628  * The fields argument is mask of superblock fields to copy.
629  */
630 void
xfs_sb_to_disk(xfs_dsb_t * to,xfs_sb_t * from,__int64_t fields)631 xfs_sb_to_disk(
632 	xfs_dsb_t	*to,
633 	xfs_sb_t	*from,
634 	__int64_t	fields)
635 {
636 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
637 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
638 	xfs_sb_field_t	f;
639 	int		first;
640 	int		size;
641 
642 	ASSERT(fields);
643 	if (!fields)
644 		return;
645 
646 	while (fields) {
647 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
648 		first = xfs_sb_info[f].offset;
649 		size = xfs_sb_info[f + 1].offset - first;
650 
651 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
652 
653 		if (size == 1 || xfs_sb_info[f].type == 1) {
654 			memcpy(to_ptr + first, from_ptr + first, size);
655 		} else {
656 			switch (size) {
657 			case 2:
658 				*(__be16 *)(to_ptr + first) =
659 					cpu_to_be16(*(__u16 *)(from_ptr + first));
660 				break;
661 			case 4:
662 				*(__be32 *)(to_ptr + first) =
663 					cpu_to_be32(*(__u32 *)(from_ptr + first));
664 				break;
665 			case 8:
666 				*(__be64 *)(to_ptr + first) =
667 					cpu_to_be64(*(__u64 *)(from_ptr + first));
668 				break;
669 			default:
670 				ASSERT(0);
671 			}
672 		}
673 
674 		fields &= ~(1LL << f);
675 	}
676 }
677 
678 static int
xfs_sb_verify(struct xfs_buf * bp,bool check_version)679 xfs_sb_verify(
680 	struct xfs_buf	*bp,
681 	bool		check_version)
682 {
683 	struct xfs_mount *mp = bp->b_target->bt_mount;
684 	struct xfs_sb	sb;
685 
686 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
687 
688 	/*
689 	 * Only check the in progress field for the primary superblock as
690 	 * mkfs.xfs doesn't clear it from secondary superblocks.
691 	 */
692 	return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR,
693 				     check_version);
694 }
695 
696 /*
697  * If the superblock has the CRC feature bit set or the CRC field is non-null,
698  * check that the CRC is valid.  We check the CRC field is non-null because a
699  * single bit error could clear the feature bit and unused parts of the
700  * superblock are supposed to be zero. Hence a non-null crc field indicates that
701  * we've potentially lost a feature bit and we should check it anyway.
702  */
703 static void
xfs_sb_read_verify(struct xfs_buf * bp)704 xfs_sb_read_verify(
705 	struct xfs_buf	*bp)
706 {
707 	struct xfs_mount *mp = bp->b_target->bt_mount;
708 	struct xfs_dsb	*dsb = XFS_BUF_TO_SBP(bp);
709 	int		error;
710 
711 	/*
712 	 * open code the version check to avoid needing to convert the entire
713 	 * superblock from disk order just to check the version number
714 	 */
715 	if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
716 	    (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
717 						XFS_SB_VERSION_5) ||
718 	     dsb->sb_crc != 0)) {
719 
720 		if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
721 				      offsetof(struct xfs_sb, sb_crc))) {
722 			error = EFSCORRUPTED;
723 			goto out_error;
724 		}
725 	}
726 	error = xfs_sb_verify(bp, true);
727 
728 out_error:
729 	if (error) {
730 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
731 		xfs_buf_ioerror(bp, error);
732 	}
733 }
734 
735 /*
736  * We may be probed for a filesystem match, so we may not want to emit
737  * messages when the superblock buffer is not actually an XFS superblock.
738  * If we find an XFS superblock, the run a normal, noisy mount because we are
739  * really going to mount it and want to know about errors.
740  */
741 static void
xfs_sb_quiet_read_verify(struct xfs_buf * bp)742 xfs_sb_quiet_read_verify(
743 	struct xfs_buf	*bp)
744 {
745 	struct xfs_dsb	*dsb = XFS_BUF_TO_SBP(bp);
746 
747 
748 	if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
749 		/* XFS filesystem, verify noisily! */
750 		xfs_sb_read_verify(bp);
751 		return;
752 	}
753 	/* quietly fail */
754 	xfs_buf_ioerror(bp, EWRONGFS);
755 }
756 
757 static void
xfs_sb_write_verify(struct xfs_buf * bp)758 xfs_sb_write_verify(
759 	struct xfs_buf		*bp)
760 {
761 	struct xfs_mount	*mp = bp->b_target->bt_mount;
762 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
763 	int			error;
764 
765 	error = xfs_sb_verify(bp, false);
766 	if (error) {
767 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
768 		xfs_buf_ioerror(bp, error);
769 		return;
770 	}
771 
772 	if (!xfs_sb_version_hascrc(&mp->m_sb))
773 		return;
774 
775 	if (bip)
776 		XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
777 
778 	xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
779 			 offsetof(struct xfs_sb, sb_crc));
780 }
781 
782 const struct xfs_buf_ops xfs_sb_buf_ops = {
783 	.verify_read = xfs_sb_read_verify,
784 	.verify_write = xfs_sb_write_verify,
785 };
786 
787 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
788 	.verify_read = xfs_sb_quiet_read_verify,
789 	.verify_write = xfs_sb_write_verify,
790 };
791 
792 /*
793  * xfs_readsb
794  *
795  * Does the initial read of the superblock.
796  */
797 int
xfs_readsb(xfs_mount_t * mp,int flags)798 xfs_readsb(xfs_mount_t *mp, int flags)
799 {
800 	unsigned int	sector_size;
801 	struct xfs_buf	*bp;
802 	struct xfs_sb	*sbp = &mp->m_sb;
803 	int		error;
804 	int		loud = !(flags & XFS_MFSI_QUIET);
805 
806 	ASSERT(mp->m_sb_bp == NULL);
807 	ASSERT(mp->m_ddev_targp != NULL);
808 
809 	/*
810 	 * Allocate a (locked) buffer to hold the superblock.
811 	 * This will be kept around at all times to optimize
812 	 * access to the superblock.
813 	 */
814 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
815 
816 reread:
817 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
818 				   BTOBB(sector_size), 0,
819 				   loud ? &xfs_sb_buf_ops
820 				        : &xfs_sb_quiet_buf_ops);
821 	if (!bp) {
822 		if (loud)
823 			xfs_warn(mp, "SB buffer read failed");
824 		return EIO;
825 	}
826 	if (bp->b_error) {
827 		error = bp->b_error;
828 		if (loud)
829 			xfs_warn(mp, "SB validate failed with error %d.", error);
830 		goto release_buf;
831 	}
832 
833 	/*
834 	 * Initialize the mount structure from the superblock.
835 	 */
836 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
837 
838 	/*
839 	 * We must be able to do sector-sized and sector-aligned IO.
840 	 */
841 	if (sector_size > sbp->sb_sectsize) {
842 		if (loud)
843 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
844 				sector_size, sbp->sb_sectsize);
845 		error = ENOSYS;
846 		goto release_buf;
847 	}
848 
849 	/*
850 	 * If device sector size is smaller than the superblock size,
851 	 * re-read the superblock so the buffer is correctly sized.
852 	 */
853 	if (sector_size < sbp->sb_sectsize) {
854 		xfs_buf_relse(bp);
855 		sector_size = sbp->sb_sectsize;
856 		goto reread;
857 	}
858 
859 	/* Initialize per-cpu counters */
860 	xfs_icsb_reinit_counters(mp);
861 
862 	/* no need to be quiet anymore, so reset the buf ops */
863 	bp->b_ops = &xfs_sb_buf_ops;
864 
865 	mp->m_sb_bp = bp;
866 	xfs_buf_unlock(bp);
867 	return 0;
868 
869 release_buf:
870 	xfs_buf_relse(bp);
871 	return error;
872 }
873 
874 
875 /*
876  * xfs_mount_common
877  *
878  * Mount initialization code establishing various mount
879  * fields from the superblock associated with the given
880  * mount structure
881  */
882 STATIC void
xfs_mount_common(xfs_mount_t * mp,xfs_sb_t * sbp)883 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
884 {
885 	mp->m_agfrotor = mp->m_agirotor = 0;
886 	spin_lock_init(&mp->m_agirotor_lock);
887 	mp->m_maxagi = mp->m_sb.sb_agcount;
888 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
889 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
890 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
891 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
892 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
893 	mp->m_blockmask = sbp->sb_blocksize - 1;
894 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
895 	mp->m_blockwmask = mp->m_blockwsize - 1;
896 
897 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
898 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
899 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
900 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
901 
902 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
903 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
904 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
905 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
906 
907 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
908 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
909 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
910 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
911 
912 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
913 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
914 					sbp->sb_inopblock);
915 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
916 }
917 
918 /*
919  * xfs_initialize_perag_data
920  *
921  * Read in each per-ag structure so we can count up the number of
922  * allocated inodes, free inodes and used filesystem blocks as this
923  * information is no longer persistent in the superblock. Once we have
924  * this information, write it into the in-core superblock structure.
925  */
926 STATIC int
xfs_initialize_perag_data(xfs_mount_t * mp,xfs_agnumber_t agcount)927 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
928 {
929 	xfs_agnumber_t	index;
930 	xfs_perag_t	*pag;
931 	xfs_sb_t	*sbp = &mp->m_sb;
932 	uint64_t	ifree = 0;
933 	uint64_t	ialloc = 0;
934 	uint64_t	bfree = 0;
935 	uint64_t	bfreelst = 0;
936 	uint64_t	btree = 0;
937 	int		error;
938 
939 	for (index = 0; index < agcount; index++) {
940 		/*
941 		 * read the agf, then the agi. This gets us
942 		 * all the information we need and populates the
943 		 * per-ag structures for us.
944 		 */
945 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
946 		if (error)
947 			return error;
948 
949 		error = xfs_ialloc_pagi_init(mp, NULL, index);
950 		if (error)
951 			return error;
952 		pag = xfs_perag_get(mp, index);
953 		ifree += pag->pagi_freecount;
954 		ialloc += pag->pagi_count;
955 		bfree += pag->pagf_freeblks;
956 		bfreelst += pag->pagf_flcount;
957 		btree += pag->pagf_btreeblks;
958 		xfs_perag_put(pag);
959 	}
960 	/*
961 	 * Overwrite incore superblock counters with just-read data
962 	 */
963 	spin_lock(&mp->m_sb_lock);
964 	sbp->sb_ifree = ifree;
965 	sbp->sb_icount = ialloc;
966 	sbp->sb_fdblocks = bfree + bfreelst + btree;
967 	spin_unlock(&mp->m_sb_lock);
968 
969 	/* Fixup the per-cpu counters as well. */
970 	xfs_icsb_reinit_counters(mp);
971 
972 	return 0;
973 }
974 
975 /*
976  * Update alignment values based on mount options and sb values
977  */
978 STATIC int
xfs_update_alignment(xfs_mount_t * mp)979 xfs_update_alignment(xfs_mount_t *mp)
980 {
981 	xfs_sb_t	*sbp = &(mp->m_sb);
982 
983 	if (mp->m_dalign) {
984 		/*
985 		 * If stripe unit and stripe width are not multiples
986 		 * of the fs blocksize turn off alignment.
987 		 */
988 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
989 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
990 			if (mp->m_flags & XFS_MOUNT_RETERR) {
991 				xfs_warn(mp, "alignment check failed: "
992 					 "(sunit/swidth vs. blocksize)");
993 				return XFS_ERROR(EINVAL);
994 			}
995 			mp->m_dalign = mp->m_swidth = 0;
996 		} else {
997 			/*
998 			 * Convert the stripe unit and width to FSBs.
999 			 */
1000 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
1001 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
1002 				if (mp->m_flags & XFS_MOUNT_RETERR) {
1003 					xfs_warn(mp, "alignment check failed: "
1004 						 "(sunit/swidth vs. ag size)");
1005 					return XFS_ERROR(EINVAL);
1006 				}
1007 				xfs_warn(mp,
1008 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
1009 		"incompatible with agsize(%d)",
1010 					mp->m_dalign, mp->m_swidth,
1011 					sbp->sb_agblocks);
1012 
1013 				mp->m_dalign = 0;
1014 				mp->m_swidth = 0;
1015 			} else if (mp->m_dalign) {
1016 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1017 			} else {
1018 				if (mp->m_flags & XFS_MOUNT_RETERR) {
1019 					xfs_warn(mp, "alignment check failed: "
1020 						"sunit(%d) less than bsize(%d)",
1021 						mp->m_dalign,
1022 						mp->m_blockmask +1);
1023 					return XFS_ERROR(EINVAL);
1024 				}
1025 				mp->m_swidth = 0;
1026 			}
1027 		}
1028 
1029 		/*
1030 		 * Update superblock with new values
1031 		 * and log changes
1032 		 */
1033 		if (xfs_sb_version_hasdalign(sbp)) {
1034 			if (sbp->sb_unit != mp->m_dalign) {
1035 				sbp->sb_unit = mp->m_dalign;
1036 				mp->m_update_flags |= XFS_SB_UNIT;
1037 			}
1038 			if (sbp->sb_width != mp->m_swidth) {
1039 				sbp->sb_width = mp->m_swidth;
1040 				mp->m_update_flags |= XFS_SB_WIDTH;
1041 			}
1042 		}
1043 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1044 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
1045 			mp->m_dalign = sbp->sb_unit;
1046 			mp->m_swidth = sbp->sb_width;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 /*
1053  * Set the maximum inode count for this filesystem
1054  */
1055 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)1056 xfs_set_maxicount(xfs_mount_t *mp)
1057 {
1058 	xfs_sb_t	*sbp = &(mp->m_sb);
1059 	__uint64_t	icount;
1060 
1061 	if (sbp->sb_imax_pct) {
1062 		/*
1063 		 * Make sure the maximum inode count is a multiple
1064 		 * of the units we allocate inodes in.
1065 		 */
1066 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1067 		do_div(icount, 100);
1068 		do_div(icount, mp->m_ialloc_blks);
1069 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
1070 				   sbp->sb_inopblog;
1071 	} else {
1072 		mp->m_maxicount = 0;
1073 	}
1074 }
1075 
1076 /*
1077  * Set the default minimum read and write sizes unless
1078  * already specified in a mount option.
1079  * We use smaller I/O sizes when the file system
1080  * is being used for NFS service (wsync mount option).
1081  */
1082 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)1083 xfs_set_rw_sizes(xfs_mount_t *mp)
1084 {
1085 	xfs_sb_t	*sbp = &(mp->m_sb);
1086 	int		readio_log, writeio_log;
1087 
1088 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1089 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
1090 			readio_log = XFS_WSYNC_READIO_LOG;
1091 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
1092 		} else {
1093 			readio_log = XFS_READIO_LOG_LARGE;
1094 			writeio_log = XFS_WRITEIO_LOG_LARGE;
1095 		}
1096 	} else {
1097 		readio_log = mp->m_readio_log;
1098 		writeio_log = mp->m_writeio_log;
1099 	}
1100 
1101 	if (sbp->sb_blocklog > readio_log) {
1102 		mp->m_readio_log = sbp->sb_blocklog;
1103 	} else {
1104 		mp->m_readio_log = readio_log;
1105 	}
1106 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1107 	if (sbp->sb_blocklog > writeio_log) {
1108 		mp->m_writeio_log = sbp->sb_blocklog;
1109 	} else {
1110 		mp->m_writeio_log = writeio_log;
1111 	}
1112 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1113 }
1114 
1115 /*
1116  * precalculate the low space thresholds for dynamic speculative preallocation.
1117  */
1118 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)1119 xfs_set_low_space_thresholds(
1120 	struct xfs_mount	*mp)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
1125 		__uint64_t space = mp->m_sb.sb_dblocks;
1126 
1127 		do_div(space, 100);
1128 		mp->m_low_space[i] = space * (i + 1);
1129 	}
1130 }
1131 
1132 
1133 /*
1134  * Set whether we're using inode alignment.
1135  */
1136 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)1137 xfs_set_inoalignment(xfs_mount_t *mp)
1138 {
1139 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1140 	    mp->m_sb.sb_inoalignmt >=
1141 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1142 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1143 	else
1144 		mp->m_inoalign_mask = 0;
1145 	/*
1146 	 * If we are using stripe alignment, check whether
1147 	 * the stripe unit is a multiple of the inode alignment
1148 	 */
1149 	if (mp->m_dalign && mp->m_inoalign_mask &&
1150 	    !(mp->m_dalign & mp->m_inoalign_mask))
1151 		mp->m_sinoalign = mp->m_dalign;
1152 	else
1153 		mp->m_sinoalign = 0;
1154 }
1155 
1156 /*
1157  * Check that the data (and log if separate) are an ok size.
1158  */
1159 STATIC int
xfs_check_sizes(xfs_mount_t * mp)1160 xfs_check_sizes(xfs_mount_t *mp)
1161 {
1162 	xfs_buf_t	*bp;
1163 	xfs_daddr_t	d;
1164 
1165 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1166 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1167 		xfs_warn(mp, "filesystem size mismatch detected");
1168 		return XFS_ERROR(EFBIG);
1169 	}
1170 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1171 					d - XFS_FSS_TO_BB(mp, 1),
1172 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
1173 	if (!bp) {
1174 		xfs_warn(mp, "last sector read failed");
1175 		return EIO;
1176 	}
1177 	xfs_buf_relse(bp);
1178 
1179 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1180 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1181 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1182 			xfs_warn(mp, "log size mismatch detected");
1183 			return XFS_ERROR(EFBIG);
1184 		}
1185 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1186 					d - XFS_FSB_TO_BB(mp, 1),
1187 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
1188 		if (!bp) {
1189 			xfs_warn(mp, "log device read failed");
1190 			return EIO;
1191 		}
1192 		xfs_buf_relse(bp);
1193 	}
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Clear the quotaflags in memory and in the superblock.
1199  */
1200 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)1201 xfs_mount_reset_sbqflags(
1202 	struct xfs_mount	*mp)
1203 {
1204 	int			error;
1205 	struct xfs_trans	*tp;
1206 
1207 	mp->m_qflags = 0;
1208 
1209 	/*
1210 	 * It is OK to look at sb_qflags here in mount path,
1211 	 * without m_sb_lock.
1212 	 */
1213 	if (mp->m_sb.sb_qflags == 0)
1214 		return 0;
1215 	spin_lock(&mp->m_sb_lock);
1216 	mp->m_sb.sb_qflags = 0;
1217 	spin_unlock(&mp->m_sb_lock);
1218 
1219 	/*
1220 	 * If the fs is readonly, let the incore superblock run
1221 	 * with quotas off but don't flush the update out to disk
1222 	 */
1223 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1224 		return 0;
1225 
1226 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1227 	error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1228 				  0, 0, XFS_DEFAULT_LOG_COUNT);
1229 	if (error) {
1230 		xfs_trans_cancel(tp, 0);
1231 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1232 		return error;
1233 	}
1234 
1235 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1236 	return xfs_trans_commit(tp, 0);
1237 }
1238 
1239 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)1240 xfs_default_resblks(xfs_mount_t *mp)
1241 {
1242 	__uint64_t resblks;
1243 
1244 	/*
1245 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1246 	 * smaller.  This is intended to cover concurrent allocation
1247 	 * transactions when we initially hit enospc. These each require a 4
1248 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1249 	 * allocation reservations.
1250 	 */
1251 	resblks = mp->m_sb.sb_dblocks;
1252 	do_div(resblks, 20);
1253 	resblks = min_t(__uint64_t, resblks, 8192);
1254 	return resblks;
1255 }
1256 
1257 /*
1258  * This function does the following on an initial mount of a file system:
1259  *	- reads the superblock from disk and init the mount struct
1260  *	- if we're a 32-bit kernel, do a size check on the superblock
1261  *		so we don't mount terabyte filesystems
1262  *	- init mount struct realtime fields
1263  *	- allocate inode hash table for fs
1264  *	- init directory manager
1265  *	- perform recovery and init the log manager
1266  */
1267 int
xfs_mountfs(xfs_mount_t * mp)1268 xfs_mountfs(
1269 	xfs_mount_t	*mp)
1270 {
1271 	xfs_sb_t	*sbp = &(mp->m_sb);
1272 	xfs_inode_t	*rip;
1273 	__uint64_t	resblks;
1274 	uint		quotamount = 0;
1275 	uint		quotaflags = 0;
1276 	int		error = 0;
1277 
1278 	xfs_mount_common(mp, sbp);
1279 
1280 	/*
1281 	 * Check for a mismatched features2 values.  Older kernels
1282 	 * read & wrote into the wrong sb offset for sb_features2
1283 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1284 	 * when sb_features2 was added, which made older superblock
1285 	 * reading/writing routines swap it as a 64-bit value.
1286 	 *
1287 	 * For backwards compatibility, we make both slots equal.
1288 	 *
1289 	 * If we detect a mismatched field, we OR the set bits into the
1290 	 * existing features2 field in case it has already been modified; we
1291 	 * don't want to lose any features.  We then update the bad location
1292 	 * with the ORed value so that older kernels will see any features2
1293 	 * flags, and mark the two fields as needing updates once the
1294 	 * transaction subsystem is online.
1295 	 */
1296 	if (xfs_sb_has_mismatched_features2(sbp)) {
1297 		xfs_warn(mp, "correcting sb_features alignment problem");
1298 		sbp->sb_features2 |= sbp->sb_bad_features2;
1299 		sbp->sb_bad_features2 = sbp->sb_features2;
1300 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1301 
1302 		/*
1303 		 * Re-check for ATTR2 in case it was found in bad_features2
1304 		 * slot.
1305 		 */
1306 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1307 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1308 			mp->m_flags |= XFS_MOUNT_ATTR2;
1309 	}
1310 
1311 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1312 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1313 		xfs_sb_version_removeattr2(&mp->m_sb);
1314 		mp->m_update_flags |= XFS_SB_FEATURES2;
1315 
1316 		/* update sb_versionnum for the clearing of the morebits */
1317 		if (!sbp->sb_features2)
1318 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1319 	}
1320 
1321 	/*
1322 	 * Check if sb_agblocks is aligned at stripe boundary
1323 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1324 	 * allocator alignment is within an ag, therefore ag has
1325 	 * to be aligned at stripe boundary.
1326 	 */
1327 	error = xfs_update_alignment(mp);
1328 	if (error)
1329 		goto out;
1330 
1331 	xfs_alloc_compute_maxlevels(mp);
1332 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1333 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1334 	xfs_ialloc_compute_maxlevels(mp);
1335 
1336 	xfs_set_maxicount(mp);
1337 
1338 	error = xfs_uuid_mount(mp);
1339 	if (error)
1340 		goto out;
1341 
1342 	/*
1343 	 * Set the minimum read and write sizes
1344 	 */
1345 	xfs_set_rw_sizes(mp);
1346 
1347 	/* set the low space thresholds for dynamic preallocation */
1348 	xfs_set_low_space_thresholds(mp);
1349 
1350 	/*
1351 	 * Set the inode cluster size.
1352 	 * This may still be overridden by the file system
1353 	 * block size if it is larger than the chosen cluster size.
1354 	 */
1355 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1356 
1357 	/*
1358 	 * Set inode alignment fields
1359 	 */
1360 	xfs_set_inoalignment(mp);
1361 
1362 	/*
1363 	 * Check that the data (and log if separate) are an ok size.
1364 	 */
1365 	error = xfs_check_sizes(mp);
1366 	if (error)
1367 		goto out_remove_uuid;
1368 
1369 	/*
1370 	 * Initialize realtime fields in the mount structure
1371 	 */
1372 	error = xfs_rtmount_init(mp);
1373 	if (error) {
1374 		xfs_warn(mp, "RT mount failed");
1375 		goto out_remove_uuid;
1376 	}
1377 
1378 	/*
1379 	 *  Copies the low order bits of the timestamp and the randomly
1380 	 *  set "sequence" number out of a UUID.
1381 	 */
1382 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1383 
1384 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1385 
1386 	xfs_dir_mount(mp);
1387 
1388 	/*
1389 	 * Initialize the attribute manager's entries.
1390 	 */
1391 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1392 
1393 	/*
1394 	 * Initialize the precomputed transaction reservations values.
1395 	 */
1396 	xfs_trans_init(mp);
1397 
1398 	/*
1399 	 * Allocate and initialize the per-ag data.
1400 	 */
1401 	spin_lock_init(&mp->m_perag_lock);
1402 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1403 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1404 	if (error) {
1405 		xfs_warn(mp, "Failed per-ag init: %d", error);
1406 		goto out_remove_uuid;
1407 	}
1408 
1409 	if (!sbp->sb_logblocks) {
1410 		xfs_warn(mp, "no log defined");
1411 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1412 		error = XFS_ERROR(EFSCORRUPTED);
1413 		goto out_free_perag;
1414 	}
1415 
1416 	/*
1417 	 * log's mount-time initialization. Perform 1st part recovery if needed
1418 	 */
1419 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1420 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1421 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1422 	if (error) {
1423 		xfs_warn(mp, "log mount failed");
1424 		goto out_fail_wait;
1425 	}
1426 
1427 	/*
1428 	 * Now the log is mounted, we know if it was an unclean shutdown or
1429 	 * not. If it was, with the first phase of recovery has completed, we
1430 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1431 	 * but they are recovered transactionally in the second recovery phase
1432 	 * later.
1433 	 *
1434 	 * Hence we can safely re-initialise incore superblock counters from
1435 	 * the per-ag data. These may not be correct if the filesystem was not
1436 	 * cleanly unmounted, so we need to wait for recovery to finish before
1437 	 * doing this.
1438 	 *
1439 	 * If the filesystem was cleanly unmounted, then we can trust the
1440 	 * values in the superblock to be correct and we don't need to do
1441 	 * anything here.
1442 	 *
1443 	 * If we are currently making the filesystem, the initialisation will
1444 	 * fail as the perag data is in an undefined state.
1445 	 */
1446 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1447 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1448 	     !mp->m_sb.sb_inprogress) {
1449 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1450 		if (error)
1451 			goto out_fail_wait;
1452 	}
1453 
1454 	/*
1455 	 * Get and sanity-check the root inode.
1456 	 * Save the pointer to it in the mount structure.
1457 	 */
1458 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1459 	if (error) {
1460 		xfs_warn(mp, "failed to read root inode");
1461 		goto out_log_dealloc;
1462 	}
1463 
1464 	ASSERT(rip != NULL);
1465 
1466 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1467 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1468 			(unsigned long long)rip->i_ino);
1469 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1470 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1471 				 mp);
1472 		error = XFS_ERROR(EFSCORRUPTED);
1473 		goto out_rele_rip;
1474 	}
1475 	mp->m_rootip = rip;	/* save it */
1476 
1477 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1478 
1479 	/*
1480 	 * Initialize realtime inode pointers in the mount structure
1481 	 */
1482 	error = xfs_rtmount_inodes(mp);
1483 	if (error) {
1484 		/*
1485 		 * Free up the root inode.
1486 		 */
1487 		xfs_warn(mp, "failed to read RT inodes");
1488 		goto out_rele_rip;
1489 	}
1490 
1491 	/*
1492 	 * If this is a read-only mount defer the superblock updates until
1493 	 * the next remount into writeable mode.  Otherwise we would never
1494 	 * perform the update e.g. for the root filesystem.
1495 	 */
1496 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1497 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1498 		if (error) {
1499 			xfs_warn(mp, "failed to write sb changes");
1500 			goto out_rtunmount;
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * Initialise the XFS quota management subsystem for this mount
1506 	 */
1507 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1508 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1509 		if (error)
1510 			goto out_rtunmount;
1511 	} else {
1512 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1513 
1514 		/*
1515 		 * If a file system had quotas running earlier, but decided to
1516 		 * mount without -o uquota/pquota/gquota options, revoke the
1517 		 * quotachecked license.
1518 		 */
1519 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1520 			xfs_notice(mp, "resetting quota flags");
1521 			error = xfs_mount_reset_sbqflags(mp);
1522 			if (error)
1523 				return error;
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Finish recovering the file system.  This part needed to be
1529 	 * delayed until after the root and real-time bitmap inodes
1530 	 * were consistently read in.
1531 	 */
1532 	error = xfs_log_mount_finish(mp);
1533 	if (error) {
1534 		xfs_warn(mp, "log mount finish failed");
1535 		goto out_rtunmount;
1536 	}
1537 
1538 	/*
1539 	 * Complete the quota initialisation, post-log-replay component.
1540 	 */
1541 	if (quotamount) {
1542 		ASSERT(mp->m_qflags == 0);
1543 		mp->m_qflags = quotaflags;
1544 
1545 		xfs_qm_mount_quotas(mp);
1546 	}
1547 
1548 	/*
1549 	 * Now we are mounted, reserve a small amount of unused space for
1550 	 * privileged transactions. This is needed so that transaction
1551 	 * space required for critical operations can dip into this pool
1552 	 * when at ENOSPC. This is needed for operations like create with
1553 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1554 	 * are not allowed to use this reserved space.
1555 	 *
1556 	 * This may drive us straight to ENOSPC on mount, but that implies
1557 	 * we were already there on the last unmount. Warn if this occurs.
1558 	 */
1559 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1560 		resblks = xfs_default_resblks(mp);
1561 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1562 		if (error)
1563 			xfs_warn(mp,
1564 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1565 	}
1566 
1567 	return 0;
1568 
1569  out_rtunmount:
1570 	xfs_rtunmount_inodes(mp);
1571  out_rele_rip:
1572 	IRELE(rip);
1573  out_log_dealloc:
1574 	xfs_log_unmount(mp);
1575  out_fail_wait:
1576 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1577 		xfs_wait_buftarg(mp->m_logdev_targp);
1578 	xfs_wait_buftarg(mp->m_ddev_targp);
1579  out_free_perag:
1580 	xfs_free_perag(mp);
1581  out_remove_uuid:
1582 	xfs_uuid_unmount(mp);
1583  out:
1584 	return error;
1585 }
1586 
1587 /*
1588  * This flushes out the inodes,dquots and the superblock, unmounts the
1589  * log and makes sure that incore structures are freed.
1590  */
1591 void
xfs_unmountfs(struct xfs_mount * mp)1592 xfs_unmountfs(
1593 	struct xfs_mount	*mp)
1594 {
1595 	__uint64_t		resblks;
1596 	int			error;
1597 
1598 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1599 
1600 	xfs_qm_unmount_quotas(mp);
1601 	xfs_rtunmount_inodes(mp);
1602 	IRELE(mp->m_rootip);
1603 
1604 	/*
1605 	 * We can potentially deadlock here if we have an inode cluster
1606 	 * that has been freed has its buffer still pinned in memory because
1607 	 * the transaction is still sitting in a iclog. The stale inodes
1608 	 * on that buffer will have their flush locks held until the
1609 	 * transaction hits the disk and the callbacks run. the inode
1610 	 * flush takes the flush lock unconditionally and with nothing to
1611 	 * push out the iclog we will never get that unlocked. hence we
1612 	 * need to force the log first.
1613 	 */
1614 	xfs_log_force(mp, XFS_LOG_SYNC);
1615 
1616 	/*
1617 	 * Flush all pending changes from the AIL.
1618 	 */
1619 	xfs_ail_push_all_sync(mp->m_ail);
1620 
1621 	/*
1622 	 * And reclaim all inodes.  At this point there should be no dirty
1623 	 * inodes and none should be pinned or locked, but use synchronous
1624 	 * reclaim just to be sure. We can stop background inode reclaim
1625 	 * here as well if it is still running.
1626 	 */
1627 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1628 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1629 
1630 	xfs_qm_unmount(mp);
1631 
1632 	/*
1633 	 * Unreserve any blocks we have so that when we unmount we don't account
1634 	 * the reserved free space as used. This is really only necessary for
1635 	 * lazy superblock counting because it trusts the incore superblock
1636 	 * counters to be absolutely correct on clean unmount.
1637 	 *
1638 	 * We don't bother correcting this elsewhere for lazy superblock
1639 	 * counting because on mount of an unclean filesystem we reconstruct the
1640 	 * correct counter value and this is irrelevant.
1641 	 *
1642 	 * For non-lazy counter filesystems, this doesn't matter at all because
1643 	 * we only every apply deltas to the superblock and hence the incore
1644 	 * value does not matter....
1645 	 */
1646 	resblks = 0;
1647 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1648 	if (error)
1649 		xfs_warn(mp, "Unable to free reserved block pool. "
1650 				"Freespace may not be correct on next mount.");
1651 
1652 	error = xfs_log_sbcount(mp);
1653 	if (error)
1654 		xfs_warn(mp, "Unable to update superblock counters. "
1655 				"Freespace may not be correct on next mount.");
1656 
1657 	xfs_log_unmount(mp);
1658 	xfs_uuid_unmount(mp);
1659 
1660 #if defined(DEBUG)
1661 	xfs_errortag_clearall(mp, 0);
1662 #endif
1663 	xfs_free_perag(mp);
1664 }
1665 
1666 int
xfs_fs_writable(xfs_mount_t * mp)1667 xfs_fs_writable(xfs_mount_t *mp)
1668 {
1669 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1670 		(mp->m_flags & XFS_MOUNT_RDONLY));
1671 }
1672 
1673 /*
1674  * xfs_log_sbcount
1675  *
1676  * Sync the superblock counters to disk.
1677  *
1678  * Note this code can be called during the process of freezing, so
1679  * we may need to use the transaction allocator which does not
1680  * block when the transaction subsystem is in its frozen state.
1681  */
1682 int
xfs_log_sbcount(xfs_mount_t * mp)1683 xfs_log_sbcount(xfs_mount_t *mp)
1684 {
1685 	xfs_trans_t	*tp;
1686 	int		error;
1687 
1688 	if (!xfs_fs_writable(mp))
1689 		return 0;
1690 
1691 	xfs_icsb_sync_counters(mp, 0);
1692 
1693 	/*
1694 	 * we don't need to do this if we are updating the superblock
1695 	 * counters on every modification.
1696 	 */
1697 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1698 		return 0;
1699 
1700 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1701 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1702 				  XFS_DEFAULT_LOG_COUNT);
1703 	if (error) {
1704 		xfs_trans_cancel(tp, 0);
1705 		return error;
1706 	}
1707 
1708 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1709 	xfs_trans_set_sync(tp);
1710 	error = xfs_trans_commit(tp, 0);
1711 	return error;
1712 }
1713 
1714 /*
1715  * xfs_mod_sb() can be used to copy arbitrary changes to the
1716  * in-core superblock into the superblock buffer to be logged.
1717  * It does not provide the higher level of locking that is
1718  * needed to protect the in-core superblock from concurrent
1719  * access.
1720  */
1721 void
xfs_mod_sb(xfs_trans_t * tp,__int64_t fields)1722 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1723 {
1724 	xfs_buf_t	*bp;
1725 	int		first;
1726 	int		last;
1727 	xfs_mount_t	*mp;
1728 	xfs_sb_field_t	f;
1729 
1730 	ASSERT(fields);
1731 	if (!fields)
1732 		return;
1733 	mp = tp->t_mountp;
1734 	bp = xfs_trans_getsb(tp, mp, 0);
1735 	first = sizeof(xfs_sb_t);
1736 	last = 0;
1737 
1738 	/* translate/copy */
1739 
1740 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1741 
1742 	/* find modified range */
1743 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1744 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1745 	last = xfs_sb_info[f + 1].offset - 1;
1746 
1747 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1748 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1749 	first = xfs_sb_info[f].offset;
1750 
1751 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1752 	xfs_trans_log_buf(tp, bp, first, last);
1753 }
1754 
1755 
1756 /*
1757  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1758  * a delta to a specified field in the in-core superblock.  Simply
1759  * switch on the field indicated and apply the delta to that field.
1760  * Fields are not allowed to dip below zero, so if the delta would
1761  * do this do not apply it and return EINVAL.
1762  *
1763  * The m_sb_lock must be held when this routine is called.
1764  */
1765 STATIC int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1766 xfs_mod_incore_sb_unlocked(
1767 	xfs_mount_t	*mp,
1768 	xfs_sb_field_t	field,
1769 	int64_t		delta,
1770 	int		rsvd)
1771 {
1772 	int		scounter;	/* short counter for 32 bit fields */
1773 	long long	lcounter;	/* long counter for 64 bit fields */
1774 	long long	res_used, rem;
1775 
1776 	/*
1777 	 * With the in-core superblock spin lock held, switch
1778 	 * on the indicated field.  Apply the delta to the
1779 	 * proper field.  If the fields value would dip below
1780 	 * 0, then do not apply the delta and return EINVAL.
1781 	 */
1782 	switch (field) {
1783 	case XFS_SBS_ICOUNT:
1784 		lcounter = (long long)mp->m_sb.sb_icount;
1785 		lcounter += delta;
1786 		if (lcounter < 0) {
1787 			ASSERT(0);
1788 			return XFS_ERROR(EINVAL);
1789 		}
1790 		mp->m_sb.sb_icount = lcounter;
1791 		return 0;
1792 	case XFS_SBS_IFREE:
1793 		lcounter = (long long)mp->m_sb.sb_ifree;
1794 		lcounter += delta;
1795 		if (lcounter < 0) {
1796 			ASSERT(0);
1797 			return XFS_ERROR(EINVAL);
1798 		}
1799 		mp->m_sb.sb_ifree = lcounter;
1800 		return 0;
1801 	case XFS_SBS_FDBLOCKS:
1802 		lcounter = (long long)
1803 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1804 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1805 
1806 		if (delta > 0) {		/* Putting blocks back */
1807 			if (res_used > delta) {
1808 				mp->m_resblks_avail += delta;
1809 			} else {
1810 				rem = delta - res_used;
1811 				mp->m_resblks_avail = mp->m_resblks;
1812 				lcounter += rem;
1813 			}
1814 		} else {				/* Taking blocks away */
1815 			lcounter += delta;
1816 			if (lcounter >= 0) {
1817 				mp->m_sb.sb_fdblocks = lcounter +
1818 							XFS_ALLOC_SET_ASIDE(mp);
1819 				return 0;
1820 			}
1821 
1822 			/*
1823 			 * We are out of blocks, use any available reserved
1824 			 * blocks if were allowed to.
1825 			 */
1826 			if (!rsvd)
1827 				return XFS_ERROR(ENOSPC);
1828 
1829 			lcounter = (long long)mp->m_resblks_avail + delta;
1830 			if (lcounter >= 0) {
1831 				mp->m_resblks_avail = lcounter;
1832 				return 0;
1833 			}
1834 			printk_once(KERN_WARNING
1835 				"Filesystem \"%s\": reserve blocks depleted! "
1836 				"Consider increasing reserve pool size.",
1837 				mp->m_fsname);
1838 			return XFS_ERROR(ENOSPC);
1839 		}
1840 
1841 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1842 		return 0;
1843 	case XFS_SBS_FREXTENTS:
1844 		lcounter = (long long)mp->m_sb.sb_frextents;
1845 		lcounter += delta;
1846 		if (lcounter < 0) {
1847 			return XFS_ERROR(ENOSPC);
1848 		}
1849 		mp->m_sb.sb_frextents = lcounter;
1850 		return 0;
1851 	case XFS_SBS_DBLOCKS:
1852 		lcounter = (long long)mp->m_sb.sb_dblocks;
1853 		lcounter += delta;
1854 		if (lcounter < 0) {
1855 			ASSERT(0);
1856 			return XFS_ERROR(EINVAL);
1857 		}
1858 		mp->m_sb.sb_dblocks = lcounter;
1859 		return 0;
1860 	case XFS_SBS_AGCOUNT:
1861 		scounter = mp->m_sb.sb_agcount;
1862 		scounter += delta;
1863 		if (scounter < 0) {
1864 			ASSERT(0);
1865 			return XFS_ERROR(EINVAL);
1866 		}
1867 		mp->m_sb.sb_agcount = scounter;
1868 		return 0;
1869 	case XFS_SBS_IMAX_PCT:
1870 		scounter = mp->m_sb.sb_imax_pct;
1871 		scounter += delta;
1872 		if (scounter < 0) {
1873 			ASSERT(0);
1874 			return XFS_ERROR(EINVAL);
1875 		}
1876 		mp->m_sb.sb_imax_pct = scounter;
1877 		return 0;
1878 	case XFS_SBS_REXTSIZE:
1879 		scounter = mp->m_sb.sb_rextsize;
1880 		scounter += delta;
1881 		if (scounter < 0) {
1882 			ASSERT(0);
1883 			return XFS_ERROR(EINVAL);
1884 		}
1885 		mp->m_sb.sb_rextsize = scounter;
1886 		return 0;
1887 	case XFS_SBS_RBMBLOCKS:
1888 		scounter = mp->m_sb.sb_rbmblocks;
1889 		scounter += delta;
1890 		if (scounter < 0) {
1891 			ASSERT(0);
1892 			return XFS_ERROR(EINVAL);
1893 		}
1894 		mp->m_sb.sb_rbmblocks = scounter;
1895 		return 0;
1896 	case XFS_SBS_RBLOCKS:
1897 		lcounter = (long long)mp->m_sb.sb_rblocks;
1898 		lcounter += delta;
1899 		if (lcounter < 0) {
1900 			ASSERT(0);
1901 			return XFS_ERROR(EINVAL);
1902 		}
1903 		mp->m_sb.sb_rblocks = lcounter;
1904 		return 0;
1905 	case XFS_SBS_REXTENTS:
1906 		lcounter = (long long)mp->m_sb.sb_rextents;
1907 		lcounter += delta;
1908 		if (lcounter < 0) {
1909 			ASSERT(0);
1910 			return XFS_ERROR(EINVAL);
1911 		}
1912 		mp->m_sb.sb_rextents = lcounter;
1913 		return 0;
1914 	case XFS_SBS_REXTSLOG:
1915 		scounter = mp->m_sb.sb_rextslog;
1916 		scounter += delta;
1917 		if (scounter < 0) {
1918 			ASSERT(0);
1919 			return XFS_ERROR(EINVAL);
1920 		}
1921 		mp->m_sb.sb_rextslog = scounter;
1922 		return 0;
1923 	default:
1924 		ASSERT(0);
1925 		return XFS_ERROR(EINVAL);
1926 	}
1927 }
1928 
1929 /*
1930  * xfs_mod_incore_sb() is used to change a field in the in-core
1931  * superblock structure by the specified delta.  This modification
1932  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1933  * routine to do the work.
1934  */
1935 int
xfs_mod_incore_sb(struct xfs_mount * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1936 xfs_mod_incore_sb(
1937 	struct xfs_mount	*mp,
1938 	xfs_sb_field_t		field,
1939 	int64_t			delta,
1940 	int			rsvd)
1941 {
1942 	int			status;
1943 
1944 #ifdef HAVE_PERCPU_SB
1945 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1946 #endif
1947 	spin_lock(&mp->m_sb_lock);
1948 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1949 	spin_unlock(&mp->m_sb_lock);
1950 
1951 	return status;
1952 }
1953 
1954 /*
1955  * Change more than one field in the in-core superblock structure at a time.
1956  *
1957  * The fields and changes to those fields are specified in the array of
1958  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1959  * will be applied or none of them will.  If any modified field dips below 0,
1960  * then all modifications will be backed out and EINVAL will be returned.
1961  *
1962  * Note that this function may not be used for the superblock values that
1963  * are tracked with the in-memory per-cpu counters - a direct call to
1964  * xfs_icsb_modify_counters is required for these.
1965  */
1966 int
xfs_mod_incore_sb_batch(struct xfs_mount * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1967 xfs_mod_incore_sb_batch(
1968 	struct xfs_mount	*mp,
1969 	xfs_mod_sb_t		*msb,
1970 	uint			nmsb,
1971 	int			rsvd)
1972 {
1973 	xfs_mod_sb_t		*msbp;
1974 	int			error = 0;
1975 
1976 	/*
1977 	 * Loop through the array of mod structures and apply each individually.
1978 	 * If any fail, then back out all those which have already been applied.
1979 	 * Do all of this within the scope of the m_sb_lock so that all of the
1980 	 * changes will be atomic.
1981 	 */
1982 	spin_lock(&mp->m_sb_lock);
1983 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1984 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1985 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1986 
1987 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1988 						   msbp->msb_delta, rsvd);
1989 		if (error)
1990 			goto unwind;
1991 	}
1992 	spin_unlock(&mp->m_sb_lock);
1993 	return 0;
1994 
1995 unwind:
1996 	while (--msbp >= msb) {
1997 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1998 						   -msbp->msb_delta, rsvd);
1999 		ASSERT(error == 0);
2000 	}
2001 	spin_unlock(&mp->m_sb_lock);
2002 	return error;
2003 }
2004 
2005 /*
2006  * xfs_getsb() is called to obtain the buffer for the superblock.
2007  * The buffer is returned locked and read in from disk.
2008  * The buffer should be released with a call to xfs_brelse().
2009  *
2010  * If the flags parameter is BUF_TRYLOCK, then we'll only return
2011  * the superblock buffer if it can be locked without sleeping.
2012  * If it can't then we'll return NULL.
2013  */
2014 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)2015 xfs_getsb(
2016 	struct xfs_mount	*mp,
2017 	int			flags)
2018 {
2019 	struct xfs_buf		*bp = mp->m_sb_bp;
2020 
2021 	if (!xfs_buf_trylock(bp)) {
2022 		if (flags & XBF_TRYLOCK)
2023 			return NULL;
2024 		xfs_buf_lock(bp);
2025 	}
2026 
2027 	xfs_buf_hold(bp);
2028 	ASSERT(XFS_BUF_ISDONE(bp));
2029 	return bp;
2030 }
2031 
2032 /*
2033  * Used to free the superblock along various error paths.
2034  */
2035 void
xfs_freesb(struct xfs_mount * mp)2036 xfs_freesb(
2037 	struct xfs_mount	*mp)
2038 {
2039 	struct xfs_buf		*bp = mp->m_sb_bp;
2040 
2041 	xfs_buf_lock(bp);
2042 	mp->m_sb_bp = NULL;
2043 	xfs_buf_relse(bp);
2044 }
2045 
2046 /*
2047  * Used to log changes to the superblock unit and width fields which could
2048  * be altered by the mount options, as well as any potential sb_features2
2049  * fixup. Only the first superblock is updated.
2050  */
2051 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)2052 xfs_mount_log_sb(
2053 	xfs_mount_t	*mp,
2054 	__int64_t	fields)
2055 {
2056 	xfs_trans_t	*tp;
2057 	int		error;
2058 
2059 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2060 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2061 			 XFS_SB_VERSIONNUM));
2062 
2063 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2064 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2065 				  XFS_DEFAULT_LOG_COUNT);
2066 	if (error) {
2067 		xfs_trans_cancel(tp, 0);
2068 		return error;
2069 	}
2070 	xfs_mod_sb(tp, fields);
2071 	error = xfs_trans_commit(tp, 0);
2072 	return error;
2073 }
2074 
2075 /*
2076  * If the underlying (data/log/rt) device is readonly, there are some
2077  * operations that cannot proceed.
2078  */
2079 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)2080 xfs_dev_is_read_only(
2081 	struct xfs_mount	*mp,
2082 	char			*message)
2083 {
2084 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2085 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2086 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2087 		xfs_notice(mp, "%s required on read-only device.", message);
2088 		xfs_notice(mp, "write access unavailable, cannot proceed.");
2089 		return EROFS;
2090 	}
2091 	return 0;
2092 }
2093 
2094 #ifdef HAVE_PERCPU_SB
2095 /*
2096  * Per-cpu incore superblock counters
2097  *
2098  * Simple concept, difficult implementation
2099  *
2100  * Basically, replace the incore superblock counters with a distributed per cpu
2101  * counter for contended fields (e.g.  free block count).
2102  *
2103  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2104  * hence needs to be accurately read when we are running low on space. Hence
2105  * there is a method to enable and disable the per-cpu counters based on how
2106  * much "stuff" is available in them.
2107  *
2108  * Basically, a counter is enabled if there is enough free resource to justify
2109  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2110  * ENOSPC), then we disable the counters to synchronise all callers and
2111  * re-distribute the available resources.
2112  *
2113  * If, once we redistributed the available resources, we still get a failure,
2114  * we disable the per-cpu counter and go through the slow path.
2115  *
2116  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2117  * when we disable a per-cpu counter, we need to drain its resources back to
2118  * the global superblock. We do this after disabling the counter to prevent
2119  * more threads from queueing up on the counter.
2120  *
2121  * Essentially, this means that we still need a lock in the fast path to enable
2122  * synchronisation between the global counters and the per-cpu counters. This
2123  * is not a problem because the lock will be local to a CPU almost all the time
2124  * and have little contention except when we get to ENOSPC conditions.
2125  *
2126  * Basically, this lock becomes a barrier that enables us to lock out the fast
2127  * path while we do things like enabling and disabling counters and
2128  * synchronising the counters.
2129  *
2130  * Locking rules:
2131  *
2132  * 	1. m_sb_lock before picking up per-cpu locks
2133  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2134  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2135  * 	4. modifying per-cpu counters requires holding per-cpu lock
2136  * 	5. modifying global counters requires holding m_sb_lock
2137  *	6. enabling or disabling a counter requires holding the m_sb_lock
2138  *	   and _none_ of the per-cpu locks.
2139  *
2140  * Disabled counters are only ever re-enabled by a balance operation
2141  * that results in more free resources per CPU than a given threshold.
2142  * To ensure counters don't remain disabled, they are rebalanced when
2143  * the global resource goes above a higher threshold (i.e. some hysteresis
2144  * is present to prevent thrashing).
2145  */
2146 
2147 #ifdef CONFIG_HOTPLUG_CPU
2148 /*
2149  * hot-plug CPU notifier support.
2150  *
2151  * We need a notifier per filesystem as we need to be able to identify
2152  * the filesystem to balance the counters out. This is achieved by
2153  * having a notifier block embedded in the xfs_mount_t and doing pointer
2154  * magic to get the mount pointer from the notifier block address.
2155  */
2156 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)2157 xfs_icsb_cpu_notify(
2158 	struct notifier_block *nfb,
2159 	unsigned long action,
2160 	void *hcpu)
2161 {
2162 	xfs_icsb_cnts_t *cntp;
2163 	xfs_mount_t	*mp;
2164 
2165 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2166 	cntp = (xfs_icsb_cnts_t *)
2167 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2168 	switch (action) {
2169 	case CPU_UP_PREPARE:
2170 	case CPU_UP_PREPARE_FROZEN:
2171 		/* Easy Case - initialize the area and locks, and
2172 		 * then rebalance when online does everything else for us. */
2173 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2174 		break;
2175 	case CPU_ONLINE:
2176 	case CPU_ONLINE_FROZEN:
2177 		xfs_icsb_lock(mp);
2178 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2179 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2180 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2181 		xfs_icsb_unlock(mp);
2182 		break;
2183 	case CPU_DEAD:
2184 	case CPU_DEAD_FROZEN:
2185 		/* Disable all the counters, then fold the dead cpu's
2186 		 * count into the total on the global superblock and
2187 		 * re-enable the counters. */
2188 		xfs_icsb_lock(mp);
2189 		spin_lock(&mp->m_sb_lock);
2190 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2191 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2192 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2193 
2194 		mp->m_sb.sb_icount += cntp->icsb_icount;
2195 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2196 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2197 
2198 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2199 
2200 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2201 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2202 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2203 		spin_unlock(&mp->m_sb_lock);
2204 		xfs_icsb_unlock(mp);
2205 		break;
2206 	}
2207 
2208 	return NOTIFY_OK;
2209 }
2210 #endif /* CONFIG_HOTPLUG_CPU */
2211 
2212 int
xfs_icsb_init_counters(xfs_mount_t * mp)2213 xfs_icsb_init_counters(
2214 	xfs_mount_t	*mp)
2215 {
2216 	xfs_icsb_cnts_t *cntp;
2217 	int		i;
2218 
2219 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2220 	if (mp->m_sb_cnts == NULL)
2221 		return -ENOMEM;
2222 
2223 #ifdef CONFIG_HOTPLUG_CPU
2224 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2225 	mp->m_icsb_notifier.priority = 0;
2226 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2227 #endif /* CONFIG_HOTPLUG_CPU */
2228 
2229 	for_each_online_cpu(i) {
2230 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2231 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2232 	}
2233 
2234 	mutex_init(&mp->m_icsb_mutex);
2235 
2236 	/*
2237 	 * start with all counters disabled so that the
2238 	 * initial balance kicks us off correctly
2239 	 */
2240 	mp->m_icsb_counters = -1;
2241 	return 0;
2242 }
2243 
2244 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)2245 xfs_icsb_reinit_counters(
2246 	xfs_mount_t	*mp)
2247 {
2248 	xfs_icsb_lock(mp);
2249 	/*
2250 	 * start with all counters disabled so that the
2251 	 * initial balance kicks us off correctly
2252 	 */
2253 	mp->m_icsb_counters = -1;
2254 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2255 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2256 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2257 	xfs_icsb_unlock(mp);
2258 }
2259 
2260 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)2261 xfs_icsb_destroy_counters(
2262 	xfs_mount_t	*mp)
2263 {
2264 	if (mp->m_sb_cnts) {
2265 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2266 		free_percpu(mp->m_sb_cnts);
2267 	}
2268 	mutex_destroy(&mp->m_icsb_mutex);
2269 }
2270 
2271 STATIC void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)2272 xfs_icsb_lock_cntr(
2273 	xfs_icsb_cnts_t	*icsbp)
2274 {
2275 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2276 		ndelay(1000);
2277 	}
2278 }
2279 
2280 STATIC void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)2281 xfs_icsb_unlock_cntr(
2282 	xfs_icsb_cnts_t	*icsbp)
2283 {
2284 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2285 }
2286 
2287 
2288 STATIC void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)2289 xfs_icsb_lock_all_counters(
2290 	xfs_mount_t	*mp)
2291 {
2292 	xfs_icsb_cnts_t *cntp;
2293 	int		i;
2294 
2295 	for_each_online_cpu(i) {
2296 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2297 		xfs_icsb_lock_cntr(cntp);
2298 	}
2299 }
2300 
2301 STATIC void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)2302 xfs_icsb_unlock_all_counters(
2303 	xfs_mount_t	*mp)
2304 {
2305 	xfs_icsb_cnts_t *cntp;
2306 	int		i;
2307 
2308 	for_each_online_cpu(i) {
2309 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2310 		xfs_icsb_unlock_cntr(cntp);
2311 	}
2312 }
2313 
2314 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)2315 xfs_icsb_count(
2316 	xfs_mount_t	*mp,
2317 	xfs_icsb_cnts_t	*cnt,
2318 	int		flags)
2319 {
2320 	xfs_icsb_cnts_t *cntp;
2321 	int		i;
2322 
2323 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2324 
2325 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2326 		xfs_icsb_lock_all_counters(mp);
2327 
2328 	for_each_online_cpu(i) {
2329 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2330 		cnt->icsb_icount += cntp->icsb_icount;
2331 		cnt->icsb_ifree += cntp->icsb_ifree;
2332 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2333 	}
2334 
2335 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2336 		xfs_icsb_unlock_all_counters(mp);
2337 }
2338 
2339 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)2340 xfs_icsb_counter_disabled(
2341 	xfs_mount_t	*mp,
2342 	xfs_sb_field_t	field)
2343 {
2344 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2345 	return test_bit(field, &mp->m_icsb_counters);
2346 }
2347 
2348 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)2349 xfs_icsb_disable_counter(
2350 	xfs_mount_t	*mp,
2351 	xfs_sb_field_t	field)
2352 {
2353 	xfs_icsb_cnts_t	cnt;
2354 
2355 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2356 
2357 	/*
2358 	 * If we are already disabled, then there is nothing to do
2359 	 * here. We check before locking all the counters to avoid
2360 	 * the expensive lock operation when being called in the
2361 	 * slow path and the counter is already disabled. This is
2362 	 * safe because the only time we set or clear this state is under
2363 	 * the m_icsb_mutex.
2364 	 */
2365 	if (xfs_icsb_counter_disabled(mp, field))
2366 		return;
2367 
2368 	xfs_icsb_lock_all_counters(mp);
2369 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2370 		/* drain back to superblock */
2371 
2372 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2373 		switch(field) {
2374 		case XFS_SBS_ICOUNT:
2375 			mp->m_sb.sb_icount = cnt.icsb_icount;
2376 			break;
2377 		case XFS_SBS_IFREE:
2378 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2379 			break;
2380 		case XFS_SBS_FDBLOCKS:
2381 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2382 			break;
2383 		default:
2384 			BUG();
2385 		}
2386 	}
2387 
2388 	xfs_icsb_unlock_all_counters(mp);
2389 }
2390 
2391 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)2392 xfs_icsb_enable_counter(
2393 	xfs_mount_t	*mp,
2394 	xfs_sb_field_t	field,
2395 	uint64_t	count,
2396 	uint64_t	resid)
2397 {
2398 	xfs_icsb_cnts_t	*cntp;
2399 	int		i;
2400 
2401 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2402 
2403 	xfs_icsb_lock_all_counters(mp);
2404 	for_each_online_cpu(i) {
2405 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2406 		switch (field) {
2407 		case XFS_SBS_ICOUNT:
2408 			cntp->icsb_icount = count + resid;
2409 			break;
2410 		case XFS_SBS_IFREE:
2411 			cntp->icsb_ifree = count + resid;
2412 			break;
2413 		case XFS_SBS_FDBLOCKS:
2414 			cntp->icsb_fdblocks = count + resid;
2415 			break;
2416 		default:
2417 			BUG();
2418 			break;
2419 		}
2420 		resid = 0;
2421 	}
2422 	clear_bit(field, &mp->m_icsb_counters);
2423 	xfs_icsb_unlock_all_counters(mp);
2424 }
2425 
2426 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)2427 xfs_icsb_sync_counters_locked(
2428 	xfs_mount_t	*mp,
2429 	int		flags)
2430 {
2431 	xfs_icsb_cnts_t	cnt;
2432 
2433 	xfs_icsb_count(mp, &cnt, flags);
2434 
2435 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2436 		mp->m_sb.sb_icount = cnt.icsb_icount;
2437 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2438 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2439 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2440 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2441 }
2442 
2443 /*
2444  * Accurate update of per-cpu counters to incore superblock
2445  */
2446 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)2447 xfs_icsb_sync_counters(
2448 	xfs_mount_t	*mp,
2449 	int		flags)
2450 {
2451 	spin_lock(&mp->m_sb_lock);
2452 	xfs_icsb_sync_counters_locked(mp, flags);
2453 	spin_unlock(&mp->m_sb_lock);
2454 }
2455 
2456 /*
2457  * Balance and enable/disable counters as necessary.
2458  *
2459  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2460  * chosen to be the same number as single on disk allocation chunk per CPU, and
2461  * free blocks is something far enough zero that we aren't going thrash when we
2462  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2463  * prevent looping endlessly when xfs_alloc_space asks for more than will
2464  * be distributed to a single CPU but each CPU has enough blocks to be
2465  * reenabled.
2466  *
2467  * Note that we can be called when counters are already disabled.
2468  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2469  * prevent locking every per-cpu counter needlessly.
2470  */
2471 
2472 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2473 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2474 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2475 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)2476 xfs_icsb_balance_counter_locked(
2477 	xfs_mount_t	*mp,
2478 	xfs_sb_field_t  field,
2479 	int		min_per_cpu)
2480 {
2481 	uint64_t	count, resid;
2482 	int		weight = num_online_cpus();
2483 	uint64_t	min = (uint64_t)min_per_cpu;
2484 
2485 	/* disable counter and sync counter */
2486 	xfs_icsb_disable_counter(mp, field);
2487 
2488 	/* update counters  - first CPU gets residual*/
2489 	switch (field) {
2490 	case XFS_SBS_ICOUNT:
2491 		count = mp->m_sb.sb_icount;
2492 		resid = do_div(count, weight);
2493 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2494 			return;
2495 		break;
2496 	case XFS_SBS_IFREE:
2497 		count = mp->m_sb.sb_ifree;
2498 		resid = do_div(count, weight);
2499 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2500 			return;
2501 		break;
2502 	case XFS_SBS_FDBLOCKS:
2503 		count = mp->m_sb.sb_fdblocks;
2504 		resid = do_div(count, weight);
2505 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2506 			return;
2507 		break;
2508 	default:
2509 		BUG();
2510 		count = resid = 0;	/* quiet, gcc */
2511 		break;
2512 	}
2513 
2514 	xfs_icsb_enable_counter(mp, field, count, resid);
2515 }
2516 
2517 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)2518 xfs_icsb_balance_counter(
2519 	xfs_mount_t	*mp,
2520 	xfs_sb_field_t  fields,
2521 	int		min_per_cpu)
2522 {
2523 	spin_lock(&mp->m_sb_lock);
2524 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2525 	spin_unlock(&mp->m_sb_lock);
2526 }
2527 
2528 int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)2529 xfs_icsb_modify_counters(
2530 	xfs_mount_t	*mp,
2531 	xfs_sb_field_t	field,
2532 	int64_t		delta,
2533 	int		rsvd)
2534 {
2535 	xfs_icsb_cnts_t	*icsbp;
2536 	long long	lcounter;	/* long counter for 64 bit fields */
2537 	int		ret = 0;
2538 
2539 	might_sleep();
2540 again:
2541 	preempt_disable();
2542 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2543 
2544 	/*
2545 	 * if the counter is disabled, go to slow path
2546 	 */
2547 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2548 		goto slow_path;
2549 	xfs_icsb_lock_cntr(icsbp);
2550 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2551 		xfs_icsb_unlock_cntr(icsbp);
2552 		goto slow_path;
2553 	}
2554 
2555 	switch (field) {
2556 	case XFS_SBS_ICOUNT:
2557 		lcounter = icsbp->icsb_icount;
2558 		lcounter += delta;
2559 		if (unlikely(lcounter < 0))
2560 			goto balance_counter;
2561 		icsbp->icsb_icount = lcounter;
2562 		break;
2563 
2564 	case XFS_SBS_IFREE:
2565 		lcounter = icsbp->icsb_ifree;
2566 		lcounter += delta;
2567 		if (unlikely(lcounter < 0))
2568 			goto balance_counter;
2569 		icsbp->icsb_ifree = lcounter;
2570 		break;
2571 
2572 	case XFS_SBS_FDBLOCKS:
2573 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2574 
2575 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2576 		lcounter += delta;
2577 		if (unlikely(lcounter < 0))
2578 			goto balance_counter;
2579 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2580 		break;
2581 	default:
2582 		BUG();
2583 		break;
2584 	}
2585 	xfs_icsb_unlock_cntr(icsbp);
2586 	preempt_enable();
2587 	return 0;
2588 
2589 slow_path:
2590 	preempt_enable();
2591 
2592 	/*
2593 	 * serialise with a mutex so we don't burn lots of cpu on
2594 	 * the superblock lock. We still need to hold the superblock
2595 	 * lock, however, when we modify the global structures.
2596 	 */
2597 	xfs_icsb_lock(mp);
2598 
2599 	/*
2600 	 * Now running atomically.
2601 	 *
2602 	 * If the counter is enabled, someone has beaten us to rebalancing.
2603 	 * Drop the lock and try again in the fast path....
2604 	 */
2605 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2606 		xfs_icsb_unlock(mp);
2607 		goto again;
2608 	}
2609 
2610 	/*
2611 	 * The counter is currently disabled. Because we are
2612 	 * running atomically here, we know a rebalance cannot
2613 	 * be in progress. Hence we can go straight to operating
2614 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2615 	 * here even though we need to get the m_sb_lock. Doing so
2616 	 * will cause us to re-enter this function and deadlock.
2617 	 * Hence we get the m_sb_lock ourselves and then call
2618 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2619 	 * directly on the global counters.
2620 	 */
2621 	spin_lock(&mp->m_sb_lock);
2622 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2623 	spin_unlock(&mp->m_sb_lock);
2624 
2625 	/*
2626 	 * Now that we've modified the global superblock, we
2627 	 * may be able to re-enable the distributed counters
2628 	 * (e.g. lots of space just got freed). After that
2629 	 * we are done.
2630 	 */
2631 	if (ret != ENOSPC)
2632 		xfs_icsb_balance_counter(mp, field, 0);
2633 	xfs_icsb_unlock(mp);
2634 	return ret;
2635 
2636 balance_counter:
2637 	xfs_icsb_unlock_cntr(icsbp);
2638 	preempt_enable();
2639 
2640 	/*
2641 	 * We may have multiple threads here if multiple per-cpu
2642 	 * counters run dry at the same time. This will mean we can
2643 	 * do more balances than strictly necessary but it is not
2644 	 * the common slowpath case.
2645 	 */
2646 	xfs_icsb_lock(mp);
2647 
2648 	/*
2649 	 * running atomically.
2650 	 *
2651 	 * This will leave the counter in the correct state for future
2652 	 * accesses. After the rebalance, we simply try again and our retry
2653 	 * will either succeed through the fast path or slow path without
2654 	 * another balance operation being required.
2655 	 */
2656 	xfs_icsb_balance_counter(mp, field, delta);
2657 	xfs_icsb_unlock(mp);
2658 	goto again;
2659 }
2660 
2661 #endif
2662